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Preface

This volume contains the papers presented at the 29th International Conference on
Database and Expert Systems Applications (DEXA 2018), which was held in
Regensburg, Germany, during September 3–6, 2018. On behalf of the Program
Committee, we commend these papers to you and hope you find them useful.

Database, information, and knowledge systems have always been a core subject of
computer science. The ever-increasing need to distribute, exchange, and integrate data,
information, and knowledge has added further importance to this subject. Advances in
the field will help facilitate new avenues of communication, to proliferate interdisci-
plinary discovery, and to drive innovation and commercial opportunity.

DEXA is an international conference series that showcases state-of-the-art research
activities in database, information, and knowledge systems. The conference and its
associated workshops provide a premier annual forum to present original research
results and to examine advanced applications in the field. The goal is to bring together
developers, scientists, and users to extensively discuss requirements, challenges, and
solutions in database, information, and knowledge systems.

DEXA 2018 solicited original contributions dealing with any aspect of database,
information, and knowledge systems. Suggested topics included, but were not limited
to:

– Acquisition, Modeling, Management, and Processing of Knowledge
– Authenticity, Privacy, Security, and Trust
– Availability, Reliability, and Fault Tolerance
– Big Data Management and Analytics
– Consistency, Integrity, Quality of Data
– Constraint Modeling and Processing
– Cloud Computing and Database-as-a-Service
– Database Federation and Integration, Interoperability, Multi-Databases
– Data and Information Networks
– Data and Information Semantics
– Data Integration, Metadata Management, and Interoperability
– Data Structures and Data Management Algorithms
– Database and Information System Architecture and Performance
– Data Streams and Sensor Data
– Data Warehousing
– Decision Support Systems and Their Applications
– Dependability, Reliability, and Fault Tolerance
– Digital Libraries and Multimedia Databases
– Distributed, Parallel, P2P, Grid, and Cloud Databases
– Graph Databases
– Incomplete and Uncertain Data
– Information Retrieval



– Information and Database Systems and Their Applications
– Mobile, Pervasive, and Ubiquitous Data
– Modeling, Automation, and Optimization of Processes
– NoSQL and NewSQL Databases
– Object, Object-Relational, and Deductive Databases
– Provenance of Data and Information
– Semantic Web and Ontologies
– Social Networks, Social Web, Graph, and Personal Information Management
– Statistical and Scientific Databases
– Temporal, Spatial, and High-Dimensional Databases
– Query Processing and Transaction Management
– User Interfaces to Databases and Information Systems
– Visual Data Analytics, Data Mining, and Knowledge Discovery
– WWW and Databases, Web Services
– Workflow Management and Databases
– XML and Semi-structured Data

Following the call for papers, which yielded 160 submissions, there was a rigorous
review process that saw each submission refereed by three to six international experts.
The 35 submissions judged best by the Program Committee were accepted as full
research papers, yielding an acceptance rate of 22%. A further 40 submissions were
accepted as short research papers.

As is the tradition of DEXA, all accepted papers are published by Springer. Authors
of selected papers presented at the conference were invited to submit substantially
extended versions of their conference papers for publication in the Springer journal
Transactions on Large-Scale Data- and Knowledge-Centered Systems (TLDKS). The
submitted extended versions underwent a further review process.

The success of DEXA 2018 was the result of collegial teamwork from many
individuals. We wish to thank all authors who submitted papers and all conference
participants for the fruitful discussions.

We are grateful to Xiaofang Zhou (The University of Queensland) for his keynote
talk on “Spatial Trajectory Analytics: Past, Present, and Future” and to Tok Wang Ling
(National University of Singapore) for his keynote talk on “Data Models Revisited:
Improving the Quality of Database Schema Design, Integration and Keyword Search
with ORA-Semantics.”

This edition of DEXA also featured three international workshops covering a variety
of specialized topics:

– BDMICS 2018: Third International Workshop on Big Data Management in Cloud
Systems

– BIOKDD 2018: 9th International Workshop on Biological Knowledge Discovery
from Data

– TIR 2018: 15th International Workshop on Technologies for Information Retrieval

We would like to thank the members of the Program Committee and the external
reviewers for their timely expertise in carefully reviewing the submissions. We are
grateful to our general chairs, Abdelkader Hameurlain, Günther Pernul, and
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Roland R. Wagner, to our publication chair, Vladimir Marik, and to our workshop
chairs, A Min Tjoa and Roland R. Wagner.

We wish to express our deep appreciation to Gabriela Wagner of the DEXA con-
ference organization office. Without her outstanding work and excellent support, this
volume would not have seen the light of day.

Finally, we like to thank Günther Pernul and his team for being our hosts during the
wonderful days in Regensburg.

July 2018 Sven Hartmann
Hui Ma
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and Keyword Search with ORA-Semantics
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University of Singapore
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Introduction

Object class, relationship type, and attribute of object class and relationship type, are
three basic concepts in the Entity Relationship Model. We call them ORA-semantics.
In this talk, we highlight the limitations of the common database models such as the
relational and XML data model. One serious common limitation of these database
models is their inability to capture and explicitly represent object classes and rela-
tionship types together with their attributes in their schema languages. In fact, these
data models have no concepts of object class, relationship type, and their attribute.

Without using ORA-semantics in databases, the quality of important database tasks
such as relational and XML database schema design, data and schema integration, and
relational and XML keyword query processing are low, and serious problems may
arise. We show the reasons that lead to these problems, and demonstrate how
ORA-semantics can be used to improve the result quality of these database tasks
significantly.

Limitations of Relational Model

In the relational model, functional dependencies (FDs) and multivalued dependencies
(MVDs) are integrity constraints; many of which are artificially imposed by organi-
zation or database designers. These constraints have no semantics, and cannot be
automatically discovered by data mining techniques.

FDs and MVDs are used to remove redundancy and obtain normal form relations in
database schema design. During normalization, we must cover the given set of FDs



(i.e., the closure of the set of FDs remain unchanged), and we want to remove all
MVDs. However, MVDs are relation sensitive, and it is very difficult to detect them.
The existence of MVDs in a relation is because some unrelated multivalued attributes
(of an object class or a relationship type) are wrongly grouped in the relation [10]. Key
in relation is not the same as OID of object class. There is no concept of
ORA-semantics in the relational model.

ORA Semantics in Database Schema Design

There are three common approaches for relational database schema design:

a. Decomposition. This approach is based on the Universal Relation Assumption
(URA) that a database can be represented by a universal relation which contains all
the attributes of the database and this relation is then decomposed into smaller
relations in some good normal forms such as 3NF, BCNF, 4NF, etc. in order to
remove redundant data using the given FDs and MVDs. The process is
non-deterministic, and the relations obtained depend on the order of FDs and MVDs
chosen for decomposition, which may not cover the given set of FDs.

b. Synthesis [1]. This approach is based on the assumption that a database can be
described by a given set of attributes and a given set of functional dependencies. It
also assumes URA, and a set of 3NF and BCNF relations is synthesized based on
the given set of dependencies. The process is non-deterministic, and depends on the
order of the redundant FDs found to generate 3NF relations. It does not consider
MVDs and does not guarantee reconstructibility.

c. ER Approach. An ER diagram (ERD) is first constructed based on the database
specification and requirements, and then normalized to a normal form ERD. The
normal form ERD is then translated to a set of normal form relations together with a
set of additional constraints that exist in the ERD but cannot be represented in the
relational schema [11]. Multivalued attributes of object classes and relationships
will be in separated relations. Users do not need to consider MVDs which are
relation sensitive. ERD can use relaxed URA, i.e. only object identifier names must
be unique, which is much more convenient than using URA.

Both the decomposition and synthesis approaches cannot handle complex rela-
tionship types such as recursive relationship type, ISA relationship, and multiple
relationship types defined among 2 or more object classes. They also do not have the
concept of ORA-semantics and have many problems and short comings. Other prob-
lems and issues that arise when using decomposition and synthesis methods to design a
database include

(i) How to find a given set of FDs in a relational database? Can we use some data
mining techniques to find FDs and MVDs in a relational database?

(ii) If a relation is not in BCNF, can we always normalize it to a set of BCNF
relations?
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(iii) If a relation is not in 4NF, is there a non-loss decomposition of the relation into a
set of 4NF relations which cover all the given FDs?

(iv) 3NF and BCNF relations are defined on individual relations, rather than on the
whole database. Hence, they cannot detect redundancy among relations of the
database and may contain global redundant attributes [13].

In contrast, the ER approach captures ORA-semantics and avoids the problems
of the decomposition method and synthesis method.

ORA Semantics in Data and Schema Integration

In data and schema integration, entity resolution (or object identification) is widely
studied. However, this problem is still not well solved and cannot be handled fully
automatically, e.g., we cannot automatically identify authors of papers completely in
DBLP.

Besides entity resolution, we need to consider relationship resolution which aims to
identify different relationship types between/among same object classes. We also need
to differentiate between primary key vs object identifier (OID), local OID vs global
OID, system generated OID vs manually designed OID, local FD vs global FD,
semantic dependency vs FD/MVD constraint, structural conflicts [9], as well as
schematic discrepancy [3] among schemas. All these concepts are related to
ORA-semantics and they have a big impact on the quality of the integrated database
and schema.

The challenge to achieve a good quality integration remains. Since the ER model
can capture ORA-semantics, it is more promising to use the ER approach for data and
schema integration.

ORA Semantics in Relational Keyword Search

Methods for relational keyword search [4, 5] can be broadly classified into two cat-
egories: data graph approach and schema graph approach. In the data graph approach,
the relational database is modeled as a graph where each node represents a tuple and
each edge represents a foreign key-key reference. An answer to a keyword query is
typically defined as a minimal connected subgraph which contains all the keywords.
This graph search is equivalent to the Steiner tree problem, which is NP-complete.

In schema graph approach, the database schema is modeled as a schema graph
where each node represents a relation and each edge represents a foreign key-key
constraint between two relations. Based on the schema graph, a keyword query is
translated into a set of SQL statements that join the relations with tuples matching the
keywords.

We identify the serious limitations of existing relational keyword search, which
include incomplete answers, meaningless answers, inconsistent answers, and user
difficulty in understanding the answers when they are represented as Steiner trees, etc.
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In addition, the answers returned depend on the normal form of the relational database,
i.e., database schema dependence. We can improve the correctness and completeness of
relational keyword search by exploiting ORA-semantics because these semantics
enable us to detect duplication of objects and relationships and address the above
mentioned limitations [16].

We extend keyword queries by allowing keywords that match the metadata, i.e.,
relation name and attribute name. We also extend keyword queries with group-by and
aggregate functions including sum, max, min, avg, count, etc. In order to process these
extended keyword queries correctly, we use ORA-semantics to detect duplication of
objects and relationships. Without using ORA-semantics, the results of aggregate
functions may be computed wrongly. For more details, see [15, 17].

Limitations of XML Data Model

The XML data model also cannot capture ORA-Semantics [2, 12]. The constraints on
the structure and content of XML can be described by DTD or XML Schema. The ID
in DTD is not the same as the object identifier, ID attribute is OID of the object class,
but OID of an object class may not be able to declare as ID, and a multivalued attribute
of object class cannot be represented directly as an attribute in DTD/XML Schema.
IDREF is not the same as foreign key to key reference in RDB. IDREF has no type.

DTD/XML Schema can only represent the hierarchical structures with simple
constraints; they have no concept on ORA-semantics. The parent-child relationship in
XML may not represent relationship type; relationship type (especially n-ary) is not
explicitly captured in DTD/XML Schema. They cannot distinguish between attribute of
object class vs attribute of relationship type.

ORA Semantics in XML Keyword Search

Existing approaches to XML keyword search are structure-based because they mainly
rely on the exploration of the structure of XML data. These approaches can be clas-
sified as tree-based and graph-based search. Tree-based search is used when an XML
document is modeled as a tree, i.e. without ID references (IDREFs), while graph-based
search is used for XML documents with IDREFs.

Almost all tree-based approaches are based on some variations of LCA (Least
Common Ancestor) semantics such as SLCA, MLCA, VLCA, and ELCA [14]. Given
the lack of awareness of semantics in XML data, LCA-based methods do not exploit
hidden ORA-semantics in data-centric XML document. This causes serious problems
in processing LCA-based XML keyword queries, such as returning meaningless
answers, duplicated answers, incomplete answers, missing answers, and inconsistent
answers.

We can use ORA-semantics to improve the correctness and completeness of XML
keyword search by detecting duplication of objects and relationships. We introduce the
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concepts of object tree, reversed object tree, and relative of objects to address the above
mentioned problems of XML keyword search [6, 8]. We also extend XML keyword
queries by considering keywords that match the metadata, i.e., tag names of XML data,
and with group-by and aggregate functions [7].

Conclusion

In summary, the schemas of relational model and XML data model cannot capture the
ORA-semantics which exist in the ER model. We highlight the serious problems on the
quality of some database tasks due to the lack of knowledge on ORA-semantics in the
relational model and XML data model. However, programmers must know the
ORA-semantics of the database in order to write SQL and XQuery programs correctly.
ORA-SS data model [2, 12] is designed to capture ORA-semantics in XML data.

We conclude this talk with suggestions on further research on data and schema
integration, keyword query search in relational databases and XML databases such as
data model independent keyword query search, and the use of ORA-semantics in
NoSQL and big data applications.
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Trajectory computing involves a wide range of research topics centered around spa-
tiotemporal data, including data management, query processing, data mining and
recommendation systems, and more recently, data privacy and machine learning. It can
find many applications in intelligent transport systems, location-based systems, urban
planning and smart city.

Spatial trajectory computing research has attracted an extensive amount of effort
from researchers in database and data mining communities. In 2011 we edited a booked
to introduce the basic concepts and main research topics and progresses at that time in
spatial trajectory computing [6]. This area has been developed at a very rapid and still
accelerating speed, driven by the availability of massive volumes of both historical and
real-time streaming trajectory data from many sources such as GPS devices, smart
phones and social media applications. Major businesses also start to treat spatial tra-
jectory data as enterprise data to support all business units that require location and
movement intelligence. Trajectory data have now been embedded into traffic naviga-
tion and car sharing services, mobile apps and online social network applications,
leading to more sophisticated time-dependent queries [3] and millions of concurrent
queries that have not been considered in previous spatial query processing research.
New computing platforms and new computational and analytics tools such as machine
learning [4] have also contributed the current surge of research effort in this area. As
trajectory data can reveal highly unique information about individuals [1], there are
new research opportunities to address the both sides of the problem: to protect user's
location and movement privacy and to link users from different trajectory datasets.

There are strong industry demands to manage and process extremely large amount
of trajectory data for a diversified range of applications. Our community has developed
a quite comprehensive spectrum of solutions in the past to address different aspects of
trajectory analytics problems. There is an urgent need now to develop flexible and
powerful trajectory data management systems with proper support from data acquisi-
tion, management to analytics. Such a system should cater for the hierarchical nature of
spatial data [2] such that analytics can be applied at the right level to generate
meaningful results (for example, trajectory similarity analysis can only be done using
calibrated data [5]). This is the future direction of spatial trajectory computing research.
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Abstract. Advances in technology and the increasing growth of popu-
larity on Internet of Things (IoT) for many applications have produced
huge volume of data at a high velocity. These valuable big data can be of
a wide variety or different veracity. Embedded in these big data are useful
information and valuable knowledge. This leads to data science, which
aims to apply big data analytics to mine implicit, previously unknown
and potentially useful information from big data. As a popular data
analytic task, frequent itemset mining discovers knowledge about sets
of frequently co-occurring items in the big data. Such a task has drawn
attention in both academia and industry partially due to its practicality
in various real-life applications. Existing mining approaches mostly use
serial, distributed or parallel algorithms to mine the data horizontally
(i.e., on a transaction basis). In this paper, we present an alternative
big data analytic approach. Specifically, our scalable algorithm uses the
MapReduce programming model that runs in a Spark environment to
mine the data vertically (i.e., on an item basis). Evaluation results show
the effectiveness of our algorithm in big data analytics of frequent item-
sets.

Keywords: Data mining · Knowledge discovery · Frequent patterns
Vertical mining · Big data · Spark

1 Introduction

In the current era of big data, high volumes of a wide variety of valuable data of
different veracity are produced at a high velocity in various modern applications.
Embedded in these big data are useful information and knowledge. This calls
for data science [6,9]—which aims to apply data analytics and data mining tech-
niques for the discovery of implicit, previously unknown, and potentially useful
information knowledge from big data—are in demand. From business intelligence
(BI) viewpoint, the discovered knowledge usually leads to actionable decisions
in business. As “a picture is worth a thousand words”, visual representation of
the discovered information also helps to easily interpret and comprehend the
knowledge. This explains why data and knowledge visualization, together with
visual analytics [14,15], are also in demand.
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Characteristics of these big data can be described by 3V’s, 5V’s, 7V’s, and
even 42V’s [25]. Some of the well-known V’s include the following:

1. variety, which focuses on differences in types, contents, or formats of data
(e.g., key-value pairs, graphs [2,11,12]);

2. velocity, which focuses on the speed at which data are collected or generated
(e.g., dynamic streaming data [7]);

3. volume, which focuses on the quantity of data (e.g., huge volumes of data
[16]);

4. value, which focuses on the usefulness of data (e.g., information and knowl-
edge that can be discovered from the big data [5,13]);

5. veracity, which focuses on the quality of data (e.g., precise data, uncertain
and imprecise data [3,24]);

6. validity, which focuses on interpretation of data and discovered knowledge
from big data [13]; and

7. visibility, which focuses on visualization of data and discovered knowledge
from big data [4,14].

To process these big data, frequent itemset mining—as an important data
mining task—finds frequently co-occurring items, events, or objects (e.g., fre-
quently purchased merchandise items in shopper market basket, frequently collo-
cated events). Since the introduction of the frequent itemset mining problem [1],
numerous frequent itemset mining algorithms [17,19] have been proposed. For
instance, the Apriori algorithm [1] applies a generate-and-test paradigm in min-
ing frequent itemsets in a level-wise bottom-up fashion. As it requires K database
scans to discover all frequent itemsets (where K is the maximum cardinality of
discovered itemsets). The FP-growth algorithm [10] addresses this disadvantage
of the Apriori algorithm and improves efficiency by using an extended prefix-
tree structure called Frequent Pattern tree (FP-tree) to capture the content
of the transaction database. Unlike the Apriori algorithm, FP-growth scans
the database twice. However, as many smaller FP-trees (e.g., for {a}-projected
database, {a, b}-projected database, {a, b, c}-projected database,. . . ) need to be
built during the mining process, FP-growth requires lots of memory space. Algo-
rithms like TD-FP-Growth [27] and H-mine [22] avoid building and keeping mul-
tiple FP-trees at the same time during the mining process. During the mining
process, instead of recursively building sub-trees, TD-FP-Growth keeps updating
the global FP-tree by adjusting tree pointers. Similarly, the H-mine algorithm
uses a hyperlinked-array structure called H-struct to capture the content of the
transaction database. Consequently, a disadvantage of both TD-FP-Growth and
H-mine is that many of the pointers/hyperlinks need to be updated during the
mining process. Besides these algorithms that mine frequent itemsets horizon-
tally (i.e., using a transaction-centric approach to find what k-itemset is sup-
ported by, or contained in, a transaction), frequent itemsets can also be mined
vertically (i.e., using an item-centric approach to count the number of trans-
actions supporting or containing the itemsets). Three notable vertical frequent
itemset mining algorithms are VIPER [26], Eclat [28] and dEclat [29].
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To handle big data, parallel mining algorithms [18,21,23,30] have been pro-
posed to mine frequent itemsets horizontally in parallel. For instance, a parallel
Eclat algorithm called Peclat [20] was proposed in DEXA 2015, which uses the
concepts of a mixed sets, for opportunistic mining of frequent itemsets. However,
computation of mixed sets can be time-consuming.

This paper presents an alternative. Specifically, we present a Scalable Ver-
Tical (SVT) algorithm that analyzes and mines big data for frequent itemsets
vertically. Key contributions of our paper include the design and development
of the SVT algorithm. Moreover, the algorithm also reduces the communication
cost and balances workload among workers when running in an Apache Spark
environment.

The remainder of this paper is organized as follows. Next two sections present
related work and background. Section 4 presents our frequent itemset mining
algorithm called SVT. Evaluation and conclusions are given in Sects. 5 and 6,
respectively.

2 Related Works

2.1 Serial Frequent Itemset Mining

Besides the well-known algorithms—such as Apriori [1], FP-growth [10] TD-
FP-Growth [27] and H-mine [22]—that mine frequent itemsets horizontally (i.e.,
using a transaction-centric approach to find what k-itemset is supported by, or
contained in, a transaction), frequent itemsets can also be mined vertically (i.e.,
using an item-centric approach to count the number of transactions supporting
or containing the itemsets). Three notable vertical frequent itemset mining algo-
rithms are VIPER [26], Eclat [28] and dEclat [29]. Like the Apriori algorithm,
Eclat also uses a levelwise bottom-up paradigm. With Eclat, the database is
treated as a collection of item lists. Each list for an item x keeps IDs of transac-
tions (i.e., tidset) containing x. The length of the list for x gives the support of
1-itemset {x}. By taking the intersection of lists for two frequent itemsets α and
β, the IDs of transactions containing (α ∪ β) can be obtained. Again, the length
of the resulting (intersected) list gives the support of the itemset (α ∪ β). Eclat
works well when the database is sparse. However, when the database is dense,
these item lists can be long.

As an extension to Eclat, dEclat also uses a levelwise bottom-up paradigm.
Unlike Eclat (which uses tidset), dEclat uses diffset which is the set difference
between tidsets of two related itemsets. Specifically, the diffset of an itemset
X = Y ∪ {z} is defined as the difference between the tidset of X and the tid-
set of Y . To start mining a transaction database TDB, dEclat computes the
diffset of 1-itemset {x} by taking the complement of the tidset of {x}, i.e.,
diffset({x}) = tidset(TDB) − tidset({x}) = {ti|x �∈ ti ⊆ TDB}. For TDB con-
taining n transactions, the support of 1-itemset {x} is n − |diffset({x})|. By
taking the set difference between diffset(W ∪ {z}) and diffset(Y ) where W is a
(k−1)-prefix of a k-itemset Y = W ∪{y}, the support of k-itemset (Y ∪{z}) can
be computed by subtracting the cardinality of (Y ∪ {z}) from the support of Y .
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dEclat works well when the database is dense. However, when the database is
sparse, these diffsets can be long. Moreover, the computation of diffset may not
be too intuitive.

Alternatively, VIPER represents the item lists in the form of bit vectors.
Each bit in a vector for a domain item x indicates the presence (bit “1”) or
absence (bit “0”) of transaction containing x. The number of “1” bits for x gives
the support of 1-itemset {x}. By computing the dot product of vectors for two
frequent itemsets α and β, the vector indicating the presence of transactions
containing (α ∪ β) can be obtained. Again, the number of “1” bits of this vector
gives the support of the resulting itemset (α ∪ β). VIPER works well when the
database is dense. However, when the database is sparse, lots of space may be
wasted because the vector contains lots of 0s.

2.2 Distributed and Parallel Frequent Itemset Mining

To speed up the mining process of serial algorithms, several distributed and par-
allel mining algorithms [21,30] have been proposed. For instance, YAFIM [23]
is a parallel version of the Apriori algorithm, whereas PFP [18] is a parallel
version of the FP-growth algorithm. While these parallel algorithms run faster
than their serial counterparts, they also inherit disadvantages of their serial coun-
terparts. Specifically, YAFIM requires K sets of MapReduce functions to scan
the database K times for the discovery of all frequent itemsets (where K is the
maximum cardinality of discovered itemsets). PFP builds many smaller FP-trees
during the mining process. Hence, it requires lots of memory space. Moreover,
as PFP focuses on query recommendation, it does not take into account load
balancing. This problem is worsened when datasets are skewed.

In DEXA 2015, a parallel Eclat algorithm called Peclat [20] was proposed.
The algorithm applies the concepts of a mixed sets for opportunistic mining of
frequent itemsets. During the mining process, the mixed set of a frequent itemset
X are computed based on two components—namely, (i) the tidset of X and (ii)
the diffset of X.

3 Background

Over the past few years, researchers have been using the Spark framework for
managing and mining big data partially because of the following advantages of
using the Spark framework. First, in a Spark framework, (i) the driver program
serves as a resource distributor and a result collector, (ii) the cluster manager
can be considered as a built-in driver program, and (iii) worker nodes serve as
computing units handling sub-tasks. Second, Spark uses an elastic structure—
the resilient distribute dataset (RDD)—which can be distributed across different
nodes. Third, to speed up the mining process, Spark stores intermediate results
in memory (instead of disk as in the Hadoop framework). Fourth, Spark also
extends the MapReduce framework to support more complicated computations
like interactive queries and stream processing. For instance, the Spark framework
provides users with the following action and transformation operators:
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– map(f), which returns a new RDD formed by passing each item of the source
through the function f :Item �→ Item that maps each input item into a single
output item.

– flatMap(f), which returns a new RDD formed by passing each item of the
source through the function f :Item �→ SeqOfItems that maps each input item
into a sequence of 0 or more output items.

– filter(f), which returns a new RDD formed by selecting those items of the
source satisfying the Boolean function f :Item �→ {TRUE, FALSE}.

– collect(), which is usually used after filter(f) to return all items in the RDD
as an array at the driver program.

– reduceByKey(f), which returns a dataset of key-value pairs after the values
for each key are aggregated using f :(V, V ) �→ V .

In addition, the “shuffle” operator redistributes the data, and the “merge” oper-
ator merges one accumulator with another same-type accumulator into one.

4 Our SVT Algorithm

Our Scalable VerTical mining algorithm SVT aims to be memory-efficient as
we only needs to store either tidsets or diffsets for any itemset (cf. Peclat stores
both tidset and diffset to compute mixset for each itemset). The SVT starts with
tidsets then switches to diffsets depending on the data densities. Hence, our SVT
algorithm can be used for datasets of different densities. Moreover, with the load
balancing and communication reduction, SVT is also time-efficient.

Let us give an overview of our SVT algorithm, which consists of the following
three key phases:

1. Find frequent distributed singletons by performing the following actions:
(a) serializing the datasets and distributing the serialized sub-datasets to

workers;
(b) calculating frequencies in the driver node; and
(c) transforming into a vertical datasets in which items are sorted in

descending-frequency order.
2. Build parallel equivalence classes by performing the following actions:

(a) computing the proper size of prefix;
(b) mapping datasets into independent equivalence classes; and
(c) distributing equivalence classes to workers.

3. Mine local equivalence classes in parallel by performing the following actions:
(a) mining datasets vertically in each worker; and
(b) collecting results from workers to the driver.
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4.1 Phase 1: Finding the Global Frequent Singletons Among All
Distributed Datasets

In this first key phase, data are first serialized and distributed from the driver
(i.e., master) to workers. The input transaction database is partitioned into
equally sub-datasets called shards (by applying a “flatMap” function) and dis-
tributed among the workers. The shards in workers are in the form of 〈item ID,
transaction ID〉-pairs.

After the work is evenly distributed, each worker works simultaneously. SVT
then finds all frequent singletons (i.e., 1-itemsets) by applying the “reduce-
ByKey” and “filter” functions, which counts the number of local singletons and
groups the same singletons together to find the items having frequency higher
than or equal to the user-specified frequency threshold minsup.

Most computation is observed to happen among workers. Hence, as an
enhancement to reduce communication cost, SVT provides users an option to
request each worker to calculate and send its local 〈item ID, support〉-pairs to
the driver.

After aggregating all the keys (i.e., item ID), the driver filters out global
infrequent singletons, and keeps those that satisfy the user-specified minsup. It
then broadcasts the resulting list of frequent 1-itemsets to each processing unit
(i.e., worker) for further process.

Moreover, as the mining process uses a vertical data representation, SVT also
converts datasets from the usual horizontal format into an equivalent vertical
format. To accelerate the conversion process, a local hash table is generated in
each partition. Each domain item x and the number of transactions containing
x are both stored as a 〈item ID, support〉-pair in the hash table. Algorithm1
gives a skeleton of this first key phase, and Example 1 illustrates this phase.

Algorithm 1. Key Phase 1 of SVT: Find frequent distributed singletons
parallelize(DB)
for transaction Ti in transactions do

flatMap(Ti) �→ {itemk:Ti}
end for
for all workers do

C1 ← (reduceByKey {itemk: Ti} �→ {itemk:sup(itemk)})
end for
L1 ← C1.filter(itemk, if sup(itemk) ≥ minsup)
L1 ← L1.sortBy(L1.sup)
broadcast(L1)

Example 1. Let us consider the transaction database TDB as shown in Table 1.
Suppose there are three workers for this illustrative example. (For real-life appli-
cations, SVT uses more workers.) Our SVT algorithm first serializes the transac-
tion database by equally dividing the database into three parts for distribution
to workers:
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Table 1. Transaction database TDB in a horizontal format.

T1 {a, b, c, d, f, g, i,m}
T2 {a, b, c, f,m, o}
T3 {b, f, h, j, o}
T4 {b, c, k, p, s}
T5 {a, c, e, f, l,m, n, p}

Fig. 1. In Phase 1, SVT (a) serializes the datasets and distributes them to workers,
then (b) calculates frequencies in the driver node.

1. transactions T1 and T2 in Worker 1,
2. transactions T3 and T4 in Worker 2, and
3. transaction T5 in Worker 3.

After serialization, each worker stores one part of datasets, as shown in
Fig. 1. With the “flatMap” function, each worker emits a list of key-value pairs.
Specifically,

– Worker 1 emits a list of key-value pairs {a:T1, b:T1, c:T1, d:T1, f :T1, g:T1,
i:T1, m:T1, a:T2, b:T2, c:T2, f :T2, m:T2, o:T2};

– Worker 2 emits a list of key-value pairs {b:T3, f :T3, h:T3, j:T3, o:T3, b:T4,
c:T4, k:T4, p:T4, s:T4}; and

– Worker 3 emits a list of key-value pairs {a:T5, c:T5, e:T5, f :T5, l:T5, m:T5,
n:T5, p:T5}.

These workers send out their lists of key-value pairs to the driver node, as shown
in Fig. 1. With the “reduceByKey” function, the driver node combines those
values belonging to the same keys. Consequently, {a:3, b:4, c:4, d:1, e:1, f :4, g:1,
h:1, i:1, j:1, k:1, l:1, m:3, n:1, o:2, p:2, s:1} is resulted.

As an enhancement, SVT provides users an option to request each worker
to calculate and send its local 〈item ID, support〉-pairs to the driver. With this
option, Worker 1 sends out a list of 〈item ID, support〉-pairs {a:2, b:2, c:2, d:1,
f :2, g:1, i:1, m:2, o:1}. Similarly, Worker 2 sends out a list {b:2, c:1, f :1, h:1,
j:1, k:1, o:1, p:1, s:1}, and Worker 3 sends out a list {a:1, c:1, e:1, f :1, l:1, m:1,
n:1, p:1}. Note that, as these lists of 〈item ID, support〉-pairs sent by workers
to the driver are much shorter than the original lists of 〈item ID, transaction
ID〉-pairs, communication cost is reduced. Moreover, with the “reduceByKey”
function, the driver node can easily sums up those values belonging to the same
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Table 2. Transformed transaction database TDB′ in a vertical format.

tidset({b}) {T1, T2, T3, T4}
tidset({c}) {T1, T2, T4, T5}
tidset({f}) {T1, T2, T3, T5}
tidset({a}) {T1, T2, T5}
tidset({m}) {T1, T2, T5}

keys. Consequently, {a:3, b:4, c:4, d:1, e:1, f :4, g:1, h:1, i:1, j:1, k:1, l:1, m:3,
n:1, o:2, p:2, s:1} is resulted.

Afterwards, by applying the “filter” function to the list of key-value sum
pairs, SVT finds that only b:4, c:4, f :4, a:3 and m:3 (in descending frequency
order) are frequent when minsup = 50%. This frequent-item list is then defined
as a broadcasting variable, and each worker stores a copy of it. See Fig. 1.

Finally, at the end of this first key phase, the input transaction database
TDB is transformed from the horizontal database to a vertical database TDB′

containing only frequent singletons and their associated transaction IDs. See
Table 2. 
�

4.2 Phase 2: Computing the Proper Size of Equivalence Classes
that Can Fit into Workers’ Memory

After finding the global frequent 1-itemsets, our SVT algorithm computes the
size of equivalence classes (k-itemsets) that can fit into the memory of the work-
ing machines. A critical step in this phase is to balance the workload among
workers. The size of equivalence classes may vary among different scenarios based
on the density of the dataset and the capacity of the computation environment
(e.g., workers’ memory). Unlike existing approaches that use a fixed number
for the proper size of prefix, SVT uses a dynamic value based on the current
maximum load.

Once the proper size of prefix is determined, SVT then maps datasets into
independent equivalence class. As an enhancement to reduce communication cost,
SVT provides users an option to remap long names (or item ID) into shorter
ones.

Afterwards, SVT distributes the equivalence classes to all the workers by
applying the “map”, “shuffle” and “merge” functions. To elaborate, each equiv-
alence class is packed into 〈prefix of the equivalence class EC, list of candidate
itemsets in EC〉-pairs for distribution. When distributing the equivalence class
to each worker:

1. if the worker already has a list of equivalence-class itemsets, then it is nec-
essary to merge with previous transactions for every itemsets in these two
equivalence classes;

2. otherwise (i.e., when the worker does not have a list of equivalence-class
itemsets), then the worker just needs to build one with current itemsets.
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At the end, each partition keeps one branch of the itemsets, which have the same
prefix. Algorithm2 shows a skeleton of this second key phase, and Example 2
illustrates this phase.

Algorithm 2. Key Phase 2 of SVT: Build parallel equivalence class
for all workers do

Ck = 〈Lk−1, Lk−1〉
end for
Lk.reduceByKey(itemk:Ti) �→ {itemk:sup(itemk)}
Lk ← Lk.filter(itemk, if sup(itemk) ≥ minsup)
mk ← maximum size of candidate itemsets with same prefix
if sizeof(mk) ≤ memory of single worker then

Lk → EQk

else
compute Lk+1

end if

Example 2. Continue with Example 1. In Phase 2(a), our SVT determines the
proper size of prefix based on factors like (i) the number of workers and (ii)
system load (e.g., CPU, memory). To do so, SVT generates candidate 2-itemsets
from the vertical database returned by Phase 1:

– Worker 1 emits a list of 〈2-itemset X, tidset(X)〉-pairs {bc:T1T2, bf :T1T2,
ba:T1T2, bm:T1T2, cf :T1T2, ca:T1T2, cm:T1T2, fa:T1T2, fm:T1T2, am:T1T2};

– Worker 2 emits {bf :T3, bc:T4}; and
– Worker 3 emits {cf :T5, ca:T5, cm:T5, fa:T5, fm:T5, am:T5}.

By applying the “reduceByKey” and “filter” functions, the driver node combines
those values belonging to the same keys to generate global candidate 2-itemsets
and keeps only those frequent ones. Consequently, {bc:3, bf :3, cf :3, ca:3, cm:3,
fa:3, fm:3, am:3} is resulted. With this result, the best size of equivalence class
for this example happens to be 2 (representing 2-itemsets). Consequently, the
proper size of prefix for the equivalence classes shown in Fig. 2 is 1 (representing
prefix 1-itemsets).

With the “map” function, SVT computes a list of key-value pairs by per-
forming inner products (i.e., dot products) of the frequent itemsets mined from
the previous levels. As the prefix is the key in the key-value pairs and value is a
list of frequent candidates (with their corresponding tidsets), the results are as
shown in Fig. 3:

– Worker 1 emits a list of 〈prefix, [suffix|frequency]〉-pairs {b:[cf |T1T2],
c:[fam|T1T2], f :[am|T1T2] a:[m|T1T2]};

– Worker 2 emits {b:[f |T3, c|T4]}; and
– Worker 3 emits {c:[fam|T5], f :[am|T5], a:[m|T5]}.
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Fig. 2. In Phase 2, SVT (a) computes the proper size of prefix.

Fig. 3. In Phase 2, SVT (b) maps datasets into independent equivalence class and (c)
distributes equivalence class to workers.

Afterwards, with the “shuffle” and “merge” functions, SVT distributes key-
value pairs as equivalence classes to different workers. As shown in Fig. 3,

– Worker 1 gets {a:[m|T1T2T5]};
– Worker 2 gets {b:[c|T1T2T4, f |T1T2T3]}; and
– Worker 3 gets {c:[fam|T1T2T5], f :[am|T1T2T5]}.

Note that some worker (e.g., Worker 3) contains more than one equivalence class,
which is computed based on the workload capacity of each worker. Moreover,
the above results represent 1 + (1 + 1) + (3 + 2) = 8 itemsets:

– a:[m|T1T2T5] represents itemset {a,m}, which appears in transactions T1, T2

and T5;
– b:[c|T1T2T4] represents itemset {b, c}, which appears in transactions T1, T2

and T4;
– f :[c|T1T2T3] represents itemset {f, c}, which appears in transactions T1, T2

and T3;
– c:[fam|T1T2T5] represents itemsets {c, f}, {c, a} and {c,m}, which appear in

transactions T1, T2 and T5; and
– f :[am|T1T2T5] represents itemsets {f, a} and {f,m}, which appear in trans-

actions T1, T2 and T5.

This data structure is compact because the common prefix only appears once
(e.g., prefix “c” only appears once for three itemsets). 
�
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4.3 Phase 3: Distributing the Equivalence Classes to Different
Workers

The final key phase of SVT is to distribute the original transaction dataset and
to store the transactions as frequent equivalence classes in different units. With
the “map” function, the mappers apply hybrid vertical mining on each partition
without the need of any additional information from other workers. Unlike the
traditional vertical mining algorithms like Eclat or dEclat, our SVT algorithm
does not choose just a single strategy. Instead, it chooses different strategies
based on the densities of datasets. Specifically, SVT first captures transaction
IDs (i.e., tidsets), which consumes less time in calculating the support. SVT
then computes differences among the sets of transaction IDs (i.e., diffsets). The
switching from one strategy to another is based on the densities of datasets:

1. If the dataset is dense, SVT switches from using transaction IDs to using
diffsets early.

2. If the dataset is sparse, SVT uses transaction IDs for longer period of mining
time before it switches to diffsets.

Our analytical and empirical evaluation results suggest SVT to switch from using
tidsets to using diffsets when the frequency of the subset is at least half of that
of the superset. Another benefit of the switch is that, as each worker performs
the vertical mining simultaneously, each worker may choose a different strategy
based on the current system load. As another benefit, SVT only needs to scan
the database once in the entire mining process.

Once vertical mining is performed by each worker, the results (i.e., frequent
itemsets) are collected from these workers to the driver. Algorithm 3 shows a
skeleton of this third and final key phase of SVT, and Example 3 illustrates this
phase.

Algorithm 3. Key Phase 3 of SVT: Mine local equivalence class
for all Ci, Cj in equivalence class EQk do

Cij = Ci ∩ Cj

sup(Cij) = |Cij |
end for
if sup(Cij) ≤ 2 × sup(Ck) then

vertical mining using tidsets and equivalence class
else

vertical mining using diffsets
end if

Example 3. Let us continue with Examples 1 and 2. As the following equiv-
alence classes {a:[m|T1T2T5]}, {b:[c|T1T2T4, f |T1T2T3]} and {c:[fam|T1T2T5],
f :[am|T1T2T5]} are distributed to Workers 1, 2 and 3 respectively, SVT then



14 C. K. Leung et al.

computes the next level of frequent patterns with equivalence class trans-
formations. The results are {b, c, f}:T1T2T3, {c, f, a}:T1T2T5, {c, f,m}:T1T2T5,
{c, a,m}:T1T2T5 and {f, a,m}:T1T2T5.

When the support of {c, f, a} ≥ 2× sup({c, f}), our SVT algorithm switches
from tidsets to diffsets. Specifically, SVT computes diffset({c, f, a,m}) =
{c, f,m} − {c, f, a} = ∅ and thus sup({c, f, a,m}) = 3. At this level,
diffset({c, f, a,m}) requires less space than tidset({c, f, a,m}). 
�

5 Evaluation

We compared our SVT algorithm with existing algorithms like YAFIM [23],
PFP [18] and MREclat [30]. All these four algorithms were implemented and
run in a Spark environment with (a) five workers having 20 GB of memory and
an 8-core Intel Xenon CPU and (b) a driver having 8 GB of memory and a 4-
core Intel CPU. All machines are running Linux and Spark 2.0.1. We used both
synthetic datasets generated by the Synthetic Dataset Generator [8] and real-
life datasets (e.g., accidents, mushrooms, retails) from UCI ML Repository and
FIMI Repository.

Fig. 4. Experimental result
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First, we compared the runtime of the SVT algorithm using a synthetic
dataset t20i6d100k having 100,000 transactions with an average of 20 items per
itemset and an average cardinality of frequent itemsets being 6 (i.e., 6-itemsets).
Figure 4(a) shows that our SVT algorithms ran faster than existing algorithms
like PFP and MREclat.

Similarly, we compared the runtime of the SVT algorithm using different real-
life datasets from UC Irvine Machine Learning Repository. Figure 4(b) shows
the results for a retail dataset with more than 1M transactions and more than
46K distinct domain items. Again, our SVT algorithms was shown to run faster
than existing algorithm like YAFIM.

In addition, Fig. 4(b) also shows the benefits on load balancing and commu-
nication reduction in the vertical mining process. Specifically, communication
reduction helps lower the runtime. Load balancing further reduces the runtime.
SVT with both communication reduction and load balancing led to a low run-
time.

Moreover, we evaluated the runtime of our SVT algorithm with increasing
minsup. The results show that, when minsup increased, the runtime decreased
as expected. We also evaluated the scalability of SVT with increasing number of
transactions. The results show that our SVT algorithm was scalable with respect
to the size of transaction databases.

6 Conclusions

In this paper, we present a scalable vertical algorithm called SVT to “vertically”
mine frequent itemsets from big transaction data in a Spark environment. Our
SVT algorithm is time-efficient because it (a) balances the workload by dynam-
ically distributing work among workers based on the current system load and
(b) reduces communication costs by keeping main computation among work-
ers and only transferring results to the driver. Moreover, our SVT algorithm is
also space-efficient because it (a) dynamically switches from tidset representa-
tion to diffset representation of itemset in the vertical mining process and (b)
compresses data by remapping long item names or item IDs to shorter ones.
Evaluation results show the scalability and effectiveness of our SVT algorithms
in big data analytics of frequent itemsets—especially, vertical mining frequent
itemsets from big data.

As ongoing and future work, we are exploring further enhancements in reduc-
ing the computation cost and memory consumption, as well as speeding up the
mining process. Moreover, we are also conducting more exhaustive experiments
on our SVT algorithm.
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Abstract. How can we efficiently find clusters (a.k.a. communities)
included in a graph with millions or even billions of edges? Density-
based graph clustering SCAN is one of the fundamental graph clustering
algorithms that can find densely connected nodes as clusters. Although
SCAN is used in many applications due to its effectiveness, it is compu-
tationally expensive to apply SCAN to large-scale graphs since SCAN
needs to compute all nodes and edges. In this paper, we propose a novel
density-based graph clustering algorithm named ScaleSCAN for tackling
this problem on a multicore CPU. Towards the problem, ScaleSCAN inte-
grates efficient node pruning methods and parallel computation schemes
on the multicore CPU for avoiding the exhaustive nodes and edges com-
putations. As a result, ScaleSCAN detects exactly same clusters as those
of SCAN with much shorter computation time. Extensive experiments on
both real-world and synthetic graphs demonstrate that the performance
superiority of ScaleSCAN over the state-of-the-art methods.

Keywords: Graph mining · Density-based clustering
Manycore processor

1 Introduction

How can we efficiently find clusters (a.k.a. communities) included in a graph
with millions or even billions of edges? Graph is a fundamental data structure
that has helped us to understand complex systems and schema-less data in
the real-world [1,7,13]. One important aspect of graphs is cluster structures
where nodes in the same cluster have denser edge-connections than nodes in the
different clusters. One of the most successful clustering method is density-based
clustering algorithm, named SCAN, proposed by Xu et al. [20]. The main concept
of SCAN is that densely connected nodes should be in the same cluster; SCAN
excludes nodes with sparse connections from clusters, and SCAN classifies them
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as either hubs or outliers. In contrast to most traditional clustering algorithms
such as graph partitioning [19], spectral algorithm [14], and modularity-based
method [15] that only study the problem of the cluster detection and so ignore
hubs and outliers, SCAN successfully finds not only clusters but also hubs and
outliers. As a result, SCAN has been used in many applications [5,12].

Although SCAN is effective in finding highly accurate results, SCAN has
a serious weakness; it requires high computational costs for large-scale graphs.
This is because SCAN has to find all clusters prior to identifying hubs and
outliers; it finds densely connected subgraphs as clusters. It then classifies the
remaining non-clustered nodes into hubs or outliers. This clustering procedure
entails exhaustive density evaluations for all adjacent node pairs included in the
large-scale graphs. Furthermore, in order to evaluate the density, SCAN employs
a criteria, called structural similarity, that incurs a set intersection for each edge.
Thus, SCAN requires O(m1.5) in the worst case [3].

Existing Approaches and Challenges: To address the expensive time-
complexity of SCAN, many efforts have been made for the recent few years,
especially in the database and data mining communities. One of the major
approaches is nodes/edge pruning: SCAN++ [16] and pSCAN [3] are the most
representative methods. Although these algorithms certainly succeeded in reduc-
ing the time complexity of SCAN for the real-world graphs, the computation
time for large-scale graphs (i.e. graphs with more than 100 million edges) is still
large. Thus, it is a challenging task to improving the computational efficiency for
the structural graph clustering. Especially, most of existing approaches perform
as a single-threaded algorithms; they do not fully exploit parallel computation
architectures but this is time-consuming.

Our Approaches and Contributions: We focus on the problem of speeding
up SCAN for large-scale graphs. We present a novel parallel-computing algo-
rithm, ScaleSCAN, that is designed to efficiently perform on shared memory
architectures with the multicore CPU. The modern multicore CPU equips a lot of
physical cores on a chip, and each core highlights vector processing units (VPUs)
for powerful data-parallel processing, e.g., SIMD instructions. Thus, ScaleSCAN
employs thread-parallel algorithm and data-parallel algorithm in order to fully
exploit the performance of the multicore CPU. In addition, we also integrates
existing node pruning techniques [3] and our parallel algorithm. By pruning
unnecessary nodes in the parallel computation manner, we attempt to achieve
further improvement of the clustering speed. As a result, ScaleSCAN has the
following attractive characteristics:

1. Efficient: Compared with the existing approaches [3,16,18], ScaleSCAN
achieves high speed clustering by using the above approaches for density com-
putations; ScaleSCAN can avoid computing densities for the whole graph.

2. Scalable: ScaleSCAN shows near-linear speeding up as increasing of the num-
ber of threads. ScaleSCAN is also scalable to the dataset size.

3. Exact: While our approach achieves efficient and scalable clustering, it does
not to sacrifice the clustering accuracy; it returns exact clusters as SCAN.
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Our extensive experiments showed that ScaleSCAN runs ×500 faster than SCAN
without sacrificing the clustering quality. Also, ScaleSCAN achieved from ×17.3
to ×90.2 clustering speed improvements compared with the state-of-the-art algo-
rithms [3,18]. In specific, ScaleSCAN can compute graphs, which have more than
1.4 billion edges, within 6.4 s while SCAN did not finish even after 24 h. Even
though SCAN is effective in enhancing application quality, it has been difficult to
apply SCAN to large-scale graphs due to its performance limitations. However,
by providing our scalable approach that suits the identification of clusters, hubs
and outliers, ScaleSCAN will help to improve the effectiveness of a wider range
of applications.

Organization: The rest of this paper is organized as follows: Sect. 2 describes
a brief background of this work. Section 3 introduces our proposed approach
ScaleSCAN, and we report the experimental results in Sect. 4. In Sect. 5, we
briefly review the related work, and we conclude this paper in Sect. 6.

2 Preliminary

We first briefly review the baseline algorithm SCAN [20]. Then, we introduce
the data-parallel computation scheme that we used in our proposal.

2.1 The Density-Based Graph Clustering: SCAN

The density-based graph clustering SCAN [20] is one of the most popular graph
clustering method; it successfully detects not only clusters but also hubs and
outliers unlike traditional algorithms. Given an unweighted and undirected graph
G = (V,E), where V is the set of nodes and E is the set of edges, SCAN detects
not only the set of clusters C but also the set of hubs H and outliers O at the
same time. We denote the number of nodes and edges in G by n = |V | and
m = |E|, respectively.

SCAN extracts clusters as the sets of nodes that have dense internal connec-
tions; it identifies the other non-clustered nodes as hubs or outliers. Thus, prior
to identifying hubs and outliers, SCAN finds all clusters in a given graph G.
SCAN assigns two adjacent nodes into a same cluster according to how strong
the two nodes are densely connected with each other through their shared neigh-
borhoods. Let Nu be a set of neighbors of node u, so called structural neighbor-
hood defined in Definition 1, SCAN evaluates structural similarity between two
adjacent nodes u and v defined as follows:

Definition 1 (Structural neighborhood). The structural neighborhood of a
node u, denoted by Nu, is defined as Nu = {v ∈ V |(u, v) ∈ E} ∪ {u}.
Definition 2 (Structural similarity). The structural similarity σ(u, v)
between node u and v is defined as σ(u, v) = |Nu ∩Nv|/√

dudv, where du = |Nu|
and dv = |Nv|.
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Algorithm 1. Baseline algorithm: SCAN(G, ε, μ) [20]
1: for each edge (u, v) ∈ E do
2: Compute σ(u, v) by Definition 2;

3: C = ∅;
4: for each unvisited node u ∈ V do
5: C = {u};
6: for each unvisited node v ∈ C do
7: if |N ε

v | ≥ μ then
8: C = C ∪ N ε

v ;
9: Mark v as visited;

10: if |C| ≥ 2 then
11: C = C ∪ C;

We denote nodes u and v are similar if σ(u, v) ≥ ε; otherwise, the nodes are
dissimilar.

SCAN detects a special class of node, called core node, that plays as the seed
of a cluster, and SCAN then expands the cluster from the core node. Given a
similarity threshold ε ∈ R and a minimum size of a cluster μ ∈ N, core node
is a node that has μ neighbors with a structural similarity that exceeds the
threshold ε.

Definition 3 (Core node). Given a similarity threshold 0 ≤ ε ≤ 1 and an
integer μ ≥ 2, a node u is a core node iff |N ε

u| ≥ μ. Note that N ε
u, so called

ε-neighborhood of u, is defined as N ε
u = {v ∈ Nu|σ(u, v) ≥ ε}.

When node u is a core node, SCAN assigns all nodes in N ε
u to the same

cluster as node u, and it expands the cluster by checking whether each node in
the cluster is a core node or not.

Definition 4 (Cluster). Let a node u be a core node that belongs to a cluster
C ∈ C, the cluster C is defined as C = {w ∈ N ε

v |v ∈ C}, where C is initially set
to C = {u}.

Finally, SCAN classifies non-clustered nodes (i.e. nodes that belong to no
clusters) as hubs or outliers. If a node u is not in any clusters and its neighbors
belong to two or more clusters, SCAN regards node u as a hub, and it is an
outlier otherwise. Given the set of clusters, it is straightforward to obtain hubs
and outliers in O(n + m) time. Hereafter, we thus focus on only extracting the
set of clusters in G.

Algorithm 1 overviews the pseudo code of SCAN. SCAN first evaluates struc-
tural similarities for all edges in G, and then constructs clusters by traversing
all nodes. As proven in [3], Algorithm 1 is essentially based on the problem of
triangle enumeration on G since each node w ∈ {Nu ∩ Nv}\{u, v} forms a tri-
angle with u and v when we compute σ(u, v) = |Nu ∩ Nv|/√

dudv. This triangle
enumeration basically involves O(α(G) · m), where α(G) is the arboricity of G
such that α(G) ≤ √

m. Thus, the time complexity of SCAN is O(m1.5) and is
worst-case optimal [3].
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2.2 Data-Parallel Instructions

In our proposed method, we employ the data-parallel computation schemes [17]
for improving clustering speed. Thus, we briefly introduce the data-parallel
instructions.

Data-parallel instructions are the fundamental instructions included in mod-
ern CPUs (e.g., SSE, AVX, AVX2 in x86 architecture). By using the data-parallel
instructions, we can perform the same operation on multiple data elements simul-
taneously. CPU usually loads only one element into for each CPU register in
non-data-parallel computation scheme, whereas the data-parallel instructions
enables to load multiple elements for each CPU register, and simultaneously
perform an operation on the loaded elements.

The maximum number of elements that can be loaded on a register is deter-
mined by the size of the register and each element. For example, if a CPU
supports 126-bit wide registers, we can load four 32-bit integers for each reg-
ister. Also, CPUs with AVX2 and AVX-512 enable to perform eight and 16
integers simultaneously since the CPUs have 256-bit and 512-bit wide registers,
respectively.

3 Proposed Method: ScaleSCAN

Our goal is to find exactly the same clustering results as those of SCAN from
large-scale graphs within short runtimes. In this section, we present details of
our proposal, ScaleSCAN. We first overview the ideas underlying ScaleSCAN
and then give a full description of our proposed approaches.

3.1 Overview

The basic idea underlying ScaleSCAN is to reduce the computational cost for
the structural similarity computations from algorithmic and parallel processing
perspectives. Specifically, we first integrate the node pruning algorithms [3] into
massively parallel computation scheme on the modern multicore CPU. We then
propose the data-parallel algorithm for each structural similarity computation
for further improving the clustering efficiency. By combining the node pruning
and parallel computing nature, we design ScaleSCAN so as to compute only
necessary pairs of nodes.

Algorithm 2 shows the pseudocode of ScaleSCAN. For efficiently detecting
nodes that can be pruned, we maintain two integer values sd (similar-degree) [3]
and ed (effective-degree) [3]. Formally, sd and ed are defined as follows:

Definition 5 (Similar-degree). The similar-degree of node u, denoted sd[u],
is the number of neighbor nodes in Nu that have been determined to be structure-
similar to node u, i.e., σ(u, v) ≥ ε for v ∈ Nu.

Definition 6 (Effective-degree). The effective-degree of node u, denoted
ed[u], is du minus the number of neighbor nodes in N [u] that have been deter-
mined to be not structure-similar to node u, i.e., σ(u, v) < ε for v ∈ Nu.
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Algorithm 2. Proposed algorithm: ScaleSCAN(G, ε, μ)

� Step 0: Initialization
1: for each node u ∈ V do in thread-parallel
2: sd[u] ← 0, and ed[u] ← du;

� Step 1: Pre-pruning
3: for each edge (u, v) ∈ E do in thread-parallel
4: Get L[(u, v)] by Definition 7;
5: if L[(u, v)] �= unknown then UpdateSdEd(L[(u, v)]);

6: Eunknown ← {(u, v) ∈ E|L[(u, v)] = unknown}
� Step 2: Core detection
7: for each (u, v) ∈ Eunknown do in thread-parallel
8: if sd[u] < μ and ed[u] ≥ μ then
9: L[(u, v)] ←PStructuralSimilarity((u, v), ε);

10: UpdateSdEd(L[(u, v)]);

11: Ecore ← {(u, v) ∈ E|sd[u] ≥ μ and sd[v] ≥ μ};

� Step 3: Cluster construction
12: for each (u, v) ∈ Ecore do in thread-parallel
13: if find(u) �= find(v) then
14: if L[(u, v)] = unknown then L[(u, v)] ←PStructuralSimilarity((u, v), ε);

15: if L[(u, v)] = similar then cas union(u, v);

16: Eborder ← {(u, v) ∈ E\Ecore|sd[u] ≥ μ or sd[v] ≥ μ};
17: for each (u, v) ∈ Eborder do in thread-parallel
18: if find(u) �= find(v) then
19: if L[(u, v)] = unknown then L[(u, v)] ←PStructuralSimilarity((u, v), ε);

20: if L[(u, v)] = similar then cas union(u, v);

In the beginning of ScaleSCAN shown in Algorithm2 (Lines 1–2), ScaleSCAN
first initializes sd and ed for all nodes. By comparing the two values sd and
ed, we determine whether a node should be prune or not in the thread-parallel
manner. We describe the details of the node pruning techniques based on sd and
ed in Sect. 3.3.

After the initialization, the algorithm consists of three main thread-parallel
steps: (Step 1) pre-pruning, (Step 2) core detection, and (Step 3) cluster con-
struction. In the pre-pruning, ScaleSCAN first reduces the size of given graph
G in the thread-parallel manner; it prunes edges from E what are obviously
either similar or dissimilar without computing the structural similarity. Then,
ScaleSCAN extracts all core nodes in the core detection step that is the most
time-consuming part in the density-based graph clustering. In order to reduce
the computation time for the core detection, ScaleSCAN combines the nodes
pruning techniques proposed by Chang et al. [3] and the thread-parallelization
using the multicore processor. In addition, for further improving the efficiency
of the core detection step, we also propose a novel structural similarity compu-
tation technique, named PStructuralSimilarity, by using the data-parallel instruc-
tions. Finally, in the cluster construction step, ScaleSCAN finds clusters based on
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Algorithm 3. UpdateSdEd(L[(u, v)])
1: if L[(u, v)] = similar then
2: sd[u] ← sd[u] + 1 with atomic operation;
3: sd[v] ← sd[v] + 1 with atomic operation;
4: else if L[(u, v)] = dissimilar then
5: ed[u] ← ed[u] − 1 with atomic operation;
6: ed[v] ← ed[v] − 1 with atomic operation;

Definition 4 by employing union-find tree shown in Sect. 3.4. In the following sec-
tions, we describe the details of each thread-parallel step.

3.2 Pre-pruning

In this step, ScaleSCAN reduces the size of graph G by removing (u, v) ∈ E
what can be either σ(u, v) ≥ ε or σ(u, v) < ε without computing the structural
similarity defined in Definition 2. Specifically, let (u, v) ∈ E, we always have
σ(u, v) ≥ ε when 2√

dudv
≥ ε since |Nu ∩ Nv| ≥ 2 from Definition 1. Meanwhile,

we also have σ(u, v) < ε when du < ε2dv (or dv < ε2du), because if du < ε2dv

then σ(u, v) < du√
dudv

< ε. Clearly, we can check both 2√
dudv

≥ ε and du < ε2dv

(or dv < ε2du) in O(1). Thus, we can efficiently remove such edges from a given
graph.

Based on the above discussion, we maintain edge similarity label L[(u, v)] for
each edge (u, v) ∈ E; an edge (u, v) takes one of the three edge similarity labels,
i.e., similar, dissimilar, and unknown.

Definition 7 (Edge similarity label). Let (u, v) ∈ E, ScaleSCAN assigns
the following edge similarity label L[(u, v)] for (u, v):

L[(u, v)] =

⎧
⎪⎨

⎪⎩

similar (if 2√
dudv

≥ ε)

dissimilar (if du < ε2dv or dv < ε2du)
unknown (Otherwise)

(1)

If an edge (u, v) is determined to have σ(u, v) ≥ ε or σ(u, v) < ε, we assign
L[(u, v)] as similar or dissimilar, respectively; otherwise, we label the edge as
unknown. If L[(u, v)] = unknown, we can not verify the edge becomes σ(u, v) ≥ ε
or not without computing its structural similarity. Thus, we compute the struc-
tural similarity only for Eunknown = {(u, v) ∈ E|L[(u, v)] = unknown} in the
subsequent procedure.

The pseudocode of the pre-pruning step is shown in Algorithm2 (Lines 3–6).
In this step, we assign each edge to each thread on the multicore CPU. For each
edge (u, v) (Line 3), we first apply Definition 7, and obtain the edge similarity
label L[(u, v)] (Line 4). If L[(u, v)] �= unknown, we invoke UpdateSdEd(L[(u, v)])
(Line 5) for updating sd and ed values according to L[(u, v)] (Lines 1–6 in Algo-
rithm3). Note that sd and ed are shared by all threads, and thus UpdateS-
dEd(L[(u, v)]) has a possibility to cause write conflicts. Hence, to avoid the write
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conflicts, we use atomic operation (e.g., omp atomic in OpenMP) for updating
sd and ed values (Lines 2–3 and Lines 5–6 in Algorithm3). After the pre-pruning
procedure, we extract a set of edges Eunknown whose edge similarity label are
unknown (Line 6).

3.3 Core Detection

As we described in Sect. 2, core detection step is the most time-consuming part
since the original algorithm SCAN needs to compute all edges in E. Thus, to
speed up the core detection step, we propose a thread-parallel algorithm with
the node pruning and data-parallel similarity computation method PStructural-
Similarity.

(1) Thread-Parallel Node Pruning: The pseudocode of the thread-parallel
node pruning is shown in Algorithm2 (Lines 7–12). Algorithm2 (Lines 7–12)
detects all core nodes included in G by using the node pruning technique in
the thread-parallel manner. As shown in (Line 7) in Algorithm2, we first assign
each edge in Eunknown to each thread. In the threads, we compute the structural
similarity only for the nodes such that (1) they have not been core or non-
core, and (2) they have a possibility to be a core node. Clearly, if sd[u] ≥ μ
then node u satisfies the core node condition shown in Definition 3, and also if
ed[u] < μ then node u never satisfies the core node condition; otherwise, we
need to compute structural similarities between node u and its neighbor nodes
to determine whether node u is core node or not. Hence, once we determine
node u is either core or non-core, we stop to compute structural similarities
between node u and its neighbor nodes (Line 6). Meanwhile, in the case of
sd[u] < μ and ed[u] ≥ μ (Line 6), we compute structural similarities for node u
by PStructuralSimilarity (Line 7), and we finally update sd and ed by UpdateSdEd
according to L[(u, v)] (Line 8).

(2) Data-Parallel Similarity Computation: In the structural similarity
computation, we propose a novel algorithm PStructuralSimilarity for further
improving the efficiency of the core detection step. As we described in Sect. 2.2,
each physical core on the modern multicore CPU equips the data-parallel instruc-
tions [17] (e.g., SSE, AVX, AVX2 in x86 architecture); data-parallel instruc-
tions enable to compute multiple data elements simultaneously by using a single
instruction. Our proposal, PStructuralSimilarity, reduces the computation time
consumed in the structural similarity computations by using such data-parallel
instructions.

Algorithm 4 shows the pseudocode of PStructuralSimilarity. For ease of expla-
nation, we hereafter suppose that 256-bit wide registers are available, and we
use 32-bit integer for representing each node in Algorithm4. That is, we can
pack eight nodes into each register. In addition, we suppose that nodes in Nu

are stored in ascending order, and we denote Nu[i] to specify i-th element in
Nu. Given an edge (u, v) and the parameter ε, Algorithm 4 returns whether
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L[(u, v)] = similar or dissimilar based on the structural similarity σ(u, v). In
the structural similarity computations, the set intersection (i.e., |Nu ∩ Nv|) is
obviously the most time-consuming part since it requires O(min{du, dv}) for
obtaining σ(u, v) = |Nu∩Nv|√

dudv
while the other part (i.e.,

√
dudv) can be done in

O(1). Hence, in PStructuralSimilarity, we employ the data-parallel instructions to
improve the set intersection efficiency.

Algorithm 4 (Lines 6–11) shows our data-parallel set intersection algorithm
that is consisted of the following three phases:

Phase 1. We load α and β nodes from Nu and Nv as blocks, respectively, and
pack the blocks into the 256-bit wide registers, regu and regv (Lines 7–8). Since
we need to compare all possible α×β pairs of nodes in the data-parallel manner,
we should select α and β so that α × β = 8. That is, we have only two choices:
α = 8 and β = 1, or α = 4 and β = 2. Thus, we set α = 8 and β = 1 if
du and dv are significantly different, otherwise α = 4 and β = 2 (Lines 2–5).
dp load permute permute nodes in the blocks in the order of permutation arrays
πα and πβ .

Example. If we have sets of loaded nodes {u1, u2, u3, u4} and a permutation
array πα = [4, 3, 2, 1, 4, 3, 2, 1], dp load permute(πα, {u1, u2, u3, u4}) loads [u4,
u3, u2, u1, u4, u3, u2, u1] into regu. Also, dp load permute(πβ , {v1, v2}) loads
[v2, v2, v2, v2, v1, v1, v1, v1] into regv for {v1, v2} and πβ = [2, 2, 2, 2, 1, 1, 1, 1].

Phase 2. We compare the α × β pairs of nodes by dp compare in the data-
parallel manner. dp compare compares each pair of nodes in the corresponding
position of regu and regv. If each pair of nodes has same node it then outputs
1, otherwise 0.

Example. Let regu = [u4, u3, u2, u1, u4, u3, u2, u1] and regv = [v2, v2, v2, v2,
v1, v1, v1, v1], where u1 = v1 and u2 = v2, dp compare outputs [0, 0, 1, 0, 0, 0, 0, 1].

Phase 3. We update the blocks (Lines 10–11) and repeat these phases until we
can not load any blocks from Nu or Nv (Line 6).

After the termination, we count the number of common nodes 	 by (Line
12) in Algorithm 4. Finally, we obtain L[(u, v)] based on 	 ≥ ε

√
dudv or not

(Lines 13–16).

3.4 Cluster Construction

ScaleSCAN finally constructs clusters in the thread-parallel manner. For effi-
ciently maintaining clusters, we use union-find tree [4], which can efficiently
keep set of nodes partitioned into disjoint clusters. The union-find tree supports
two fundamental operations: find(u) and union(u, v). find(u) is an operation to
check which cluster does node u belong to, and union(u, v) merges two clusters,
which are node u and v belong to. It is known that each operation can be done in
Ω(A(n)) where A is Ackermann function, thus we can check and merge clusters
efficiently.
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Algorithm 4. PStructuralSimilarity((u, v), ε)
� Step 0: Initialization
1: � ← 0, pu ← 0, pv ← 0, and regadd ← dp load([0, 0, 0, 0, 0, 0, 0, 0]);
2: if du > 2dv (or dv > 2du) then
3: α = 8, β = 1, πα ← [1, 2, 3, 4, 5, 6, 7, 8], and πβ ← [1, 1, 1, 1, 1, 1, 1, 1];
4: else
5: α = 4, β = 2, πα ← [4, 3, 2, 1, 4, 3, 2, 1], and πβ ← [1, 1, 1, 1, 2, 2, 2, 2];

� Step 1: Data-parallel set intersection
6: while pu < du and pv < dv do
7: regu ← dp load permute(πα, [Nu[pu], · · · , Nu[pu + α − 1]]);
8: regv ← dp load permute(πβ , [Nu[pv], · · · , Nu[pv + β − 1]]);
9: regadd ← dp add(regadd, dp compare(regu, regv));

10: if Nu[pu + α − 1] ≥ Nv[pv + β − 1] then pv ← pv + β;

11: if Nu[pu + α − 1] ≤ Nv[pv + β − 1] then pu ← pu + α;

� Step 2: Edge similarity label assignment
12: � ← � + dp horizontal add(regadd);
13: if � < ε

√
dudv then � ← � + |{Nu[pu], . . . , Nu[du]} ∩ {Nv[pv], · · · , Nv[dv]}|;

14: if � ≥ ε
√

dudv then L[(u, v)] = similar;
15: else L[(u, v)] = dissimilar;

16: return L[(u, v)];

Algorithm 2 (Lines 12–20) shows our parallel cluster construction. We first
constructs clusters by using only core nodes (Lines 12–15), and then we
attach non-core nodes to the clusters (Lines 16–20). Recall that this cluster-
ing process is done in the thread-parallel manner. For avoiding conflicts among
multiple threads, we thus propose a multi-threading aware union operation,
cas union(u, v). can union employs compare-and-swap (CAS) atomic operation [8]
before merging two clusters.

4 Experimental Analysis

We conducted extensive experiments to evaluate the effectiveness of ScaleSCAN.
We designed our experiments to demonstrate that:

– Efficient and Scalable: ScaleSCAN outperforms the state-of-the-art algo-
rithms pSCAN and SCAN-XP by over one order of magnitude for all datasets.
Also, SacaleSCAN is scalable to the number of threads and edges (Sect. 4.2).

– Effectiveness: The key techniques of ScaleSCAN, parallel node-pruning and
data-parallel similarity computation, are effective for improving the clustering
speed on large-scale graphs (Sect. 4.3).

– Exactness: Regardless of parallel nodes pruning techniques, ScaleSCAN
always returns exactly same clustering results as those of SCAN (Sect. 4.4).
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Table 1. Statistics of real-world datasets

Dataset name # of nodes # of edges Data source

DB 317,080 1,049,866 com-DBLP [9]

LJ 4,847,571 68,993,773 soc-livejournal1 [9]

OK 3,072,441 117,185,083 com-orkut [9]

FS 65,608,366 141,874,960 com-friendster [9]

WB 118,142,155 1,019,903,190 webbase-2001 [2]

TW 41,652,230 1,468,365,182 twitter-2010 [2]

4.1 Experimental Setup

We compared ScaleSCAN with the baseline method SCAN [20], the state-of-
the-art sequential algorithm pSCAN [3], and the state-of-the-art thread-parallel
algorithm SCAN-XP [18]. All algorithms were implemented in g++ using -O3
option1. All experiments were conducted on a CentOS server with an Intel(R)
Xeon(R) E5-2690 2.60 GHz GPU and 128 GB RAM. The CPU has 14 physical
cores, we thus used threads for up to 14 in the experiments. Since each physical
core equips 256-bit wide registers, 256-bit wide data-parallel instructions were
also available. Unless otherwise stated, we used default parameters ε = 0.4 and
μ = 5.

Datasets: We evaluated the algorithms on six real-world graphs, which are
downloaded from the Stanford Network Analysis Platform (SNAP) [9] and the
Laboratory for Web Algorithmics (LAW) [2]. Table 1 summarizes the statistics of
real-world datasets. In addition to the real-world graphs, we also used synthetic
graphs generated by LFR benchmark [6], which is considered as the de facto
standard model for generating graphs. The settings will be detailed later.

4.2 Efficiency and Scalability

Efficiency: In Fig. 1, we evaluated the clustering speed on the real-world graphs
through wall clock time by varying ε. In this evaluation we used 14 threads for the
thread-parallel algorithms, i.e., ScaleSCAN and SCAN-XP. Note that SCAN did
not finish its clustering for WB and TW with in 24 h, so we omitted the results
from Fig. 1. Overall, ScaleSCAN outperforms SCAN-XP, pSCAN, and SCAN.
On average, ScaleSCAN achieves ×17.3 and ×90.2 faster than the state-of-the-
art methods SCAN-XP and pSCAN, respectively; also, ScaleSCAN is approxi-
mately ×500 faster than the baseline method SCAN. In particular, ScaleSCAN
can compute TW with 1.4 billion edges within 6.4 s. Although pSCAN slightly
improves its efficiency as ε increases, these improvements are negligible.

In Fig. 2, we also evaluated the clustering speeds on FS by varying the param-
eter μ. As well as Fig. 1, we used 14 threads for ScaleSCAN and SCAN-XP. We

1 We opened our source codes of ScaleSCAN on our website.
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Fig. 1. Runtimes of each algorithm by varying ε.

omitted the results for the other datasets since they show very similar results to
Fig. 2. As shown in Fig. 2, ScaleSCAN also outperforms the other algorithms that
we examined even though ScaleSCAN and pSCAN slightly increase runtimes as
μ increases.

Scalability: We assessed scalability tests of ScaleSCAN in Fig. 3a and b by
increasing the number of threads and edges, respectively. In Fig. 3a, we used
the real-world dataset TW. Meanwhile, in Fig. 3b, we generated four synthetic
datasets by using LFR benchmark; we varied the number of nodes from 105

to 108 with the average degree 30. As we can see from Fig. 3, the runtimes of
ScaleSCAN has near-linear in terms of the number of threads and edges. These
results verify that ScaleSCAN is scalable for large-scale graphs.

4.3 Effectiveness of the Key Techniques

As mentioned in Sect. 3.3, we employed thread-parallel node pruning and data-
parallel similarity computation to prune unnecessary computations. In the fol-
lowing experiments, we examined the effectiveness of the key techniques of
ScaleSCAN.

Thread-Parallel Node Pruning. ScaleSCAN prunes nodes that have already
been determined as core or non-core nodes in the thread-parallel manner. As
mentioned in Sect. 3.3, ScaleSCAN specifies the nodes to be pruned by checking
the two integer values sd and ed; ScaleSCAN prunes a node u from its subsequent
procedure if sd[u] ≥ μ or ed[u] < μ since it is determined as core or non-core,
respectively.
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Fig. 2. Runtimes by varying
μ on FS.

Fig. 3. Scalability test.

To show the effectiveness, we compared the runtimes of ScaleSCAN with and
without the node-pruning techniques. We set the number of threads as 14 for
each algorithm. Figure 4 shows the wall clock time of each algorithm for the real-
world graphs. Figure 4 shows that ScaleSCAN is faster than ScaleSCAN without
the node pruning by over one order of magnitude for all datasets. These results
indicate that the node pruning significantly contributes the efficiency of ScaleS-
CAN even though it requires several synchronization (i.e., atomic operations)
among threads for maintaining sd and ed.

Fig. 4. Effects of the
node pruning.

Fig. 5. Effects of PStruc-
turalSimilarity.

Fig. 6. Evaluate exact-
ness of ScaleSCAN.

Data-Parallel Similarity Computation. As shown in Algorithm 4, ScaleS-
CAN computes the structural similarity by using the data-parallel algorithm
PStructuralSimilarity. That is, ScaleSCAN compares two neighbor node sets Nu

and Nv whether they share same nodes or not in the data-parallel manner. In
order to confirm the impact of the data-parallel instructions, we evaluated the
running time of a variant of ScaleSCAN that did not use PStructuralSimilarity
for obtaining σ(u, v).

Figure 5 shows the wall clock time comparisons between ScaleSCAN with
and without using PStructuralSimilarity. As shown in Fig. 5, PStructuralSimilarity
achieved significant improvements in several datasets, e.g. DB, OK, WB, and
TW. On the other hand, the improvements seems to be moderated in LJ and
FS. More specifically, ScaleSCAN is ×20 faster than ScaleSCAN without PStruc-
turalSimilarity on average for DB, OK, WB and TW. Meanwhile, ScaleSCAN is
limited to approximately ×2 improvements in LJ and FS.
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(a) LJ

heterophily-edges

(b) WB

heterophily-edges

(c) TW

Fig. 7. Distribution of degree ratio λ(u,v)

For further discussing about this point, we measured the degree ratio λ(u,v) =
max{du

dv
, dv

du
} of each edge (u, v) ∈ E for LJ, WB, and TW. Figure 7 shows the

distributions of the degree ratio for each dataset; horizontal and vertical axis
show the degree ratio λ(u,v) and the number of edges with the corresponding
ratio. In Fig. 7, we can observe that WB has large number of edges with large
λ(u,v) values while LJ does not have such edges. This indicates that, differ from
LJ, edges in WB prefer to connect nodes with different size of degree. Here, let
us say an edge with large λ(u,v) value as heterophily-edge, PStructuralSimilarity
can perform efficiently if a graph has many heterophily-edges. This is because
that, as shown in Algorithm4 (Lines 2–3), we can load a lot of nodes from Nu

(or Nv) to the 256-bit wise registers at the same time since we set α = 8 and
beta = 1 for the heterophily-edges. In addition, by setting such imbalanced α
and beta, PStructuralSimilarity is expected to terminate earlier since the while
loop in Algorithm 4 (Lines 6–11) stops when pu ≥ du or pv ≥ dv. As a result,
PStructuralSimilarity thus performs efficiently for the heterophily-edges.

We observed that large-scale graphs tend to have a lot of heterophily-edges
because their structure grows more complicated when the graphs become more
larger. For example, TW shown in Fig. 7c has a peak around λ(u,v) = 105 values
(heterophily-edges), and ScaleSCAN gains large improvements on this dataset
(Fig. 5). Thus, these results imply that our approach is effective for large-scale
graphs.

4.4 Exactness of the Clustering Results

Finally, we experimentally confirm the exactness of clustering results produced
by ScaleSCAN. In order to measure the exactness, we employed the information-
theoretic metric, NMI (normalized mutual information) [11], that returns 1 if
two clustering results are completely same, otherwise 0. In Fig. 6, we compared
the clustering results produced by the original method SCAN and our proposed
method ScaleSCAN. Since SCAN did not finish in WB and TW within 24 h, we
omitted the results from Fig. 6. As we can see from Fig. 6, ScaleSCAN shows 1 for
all conditions we examined. Thus, we experimentally confirmed that ScaleSCAN
produces exactly same clustering results as those of SCAN.
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5 Related Work

The original density-based graph clustering method SCAN requires O(m1.5)
times and it is known as worst-case optimal [3]. To address the expensive time-
complexity, many efforts have been made for the recent few years, especially
from sequential and parallel computing perspectives. Here, we briefly review the
most successful algorithms.

Sequential Algorithms. One of the major approaches for improving clustering
speed is the node/edge pruning techniques: SCAN++ [16] and pSCAN [3] are the
representative algorithms. SCAN++ is designed to handle the property of real-
world graphs; a node and its two-hop-away nodes tend to have lots of common
neighbor nodes since real-world graphs have high clustering coefficients [16].
Based on this property, SCAN++ effectively reduces the number of structural
similarity computations. Chang et al. proposed pSCAN that employs a new
paradigm based on the observations in real-world graphs [3]. By following the
observations, pSCAN employs several the nodes pruning techniques and their
optimizations for reducing the number of structural similarity computations. To
the best of our knowledge pSCAN is the state-of-the-art sequential algorithm
that achieves high performance and exact clustering results at the same time.
However, SCAN++ and pSCAN ignore the thread-parallel and the data-parallel
computation schemes, and thus their performance improvements are still limited.
Our work is different from these algorithms in that provides not only the node
pruning techniques but also both thread-parallel and data-parallel algorithms.
Our experimental analysis in Sect. 4 show that ScaleSCAN is approximately ×90
faster clustering than pSCAN.

Parallel Algorithms. In a recent few years, several thread-parallel algorithms
have been proposed for improving the clustering speed of SCAN. To the best
of our knowledge, AnySCAN [10], proposed by Son et al. in 2017, is the first
solution that performs SCAN algorithm on the multicore CPUs. Similar to
SCAN++ [16], they applied randomized algorithm in order to avoid unnecessary
structural similarity computations. By performing the randomized algorithm in
the thread-parallel manner, AnySCAN achieved almost similar efficiency on the
multicore CPU compared with pSCAN [3]. Although AnySCAN is scalable on
large-scale graphs, it basically produces approximated clustering results due to
its randomized algorithm nature.

Takahashi et al. recently proposed SCAN-XP [18] that exploits massively
parallel processing hardware for the density-based graph clustering. As far as
we know, SCAN-XP is the state-of-the-art parallel algorithm that achieves the
fastest clustering without sacrificing clustering quality for graphs with millions or
even billions of edges. However, different from our proposed method ScaleSCAN,
SCAN-XP does not have any node pruning techniques; it need to compute all
nodes and edges included in a graph. As shown in Sect. 4, our ScaleSCAN is
much faster than SCAN-XP; ScaleSCAN outperforms SCAN-XP by over one
order of magnitude for the large datasets.
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6 Conclusion

We developed a novel parallel algorithm ScaleSCAN for density-based graph
clustering using the multicore CPU. We proposed thread-parallel and data-
parallel approaches that combines parallel computation capabilities and efficient
node pruning techniques. Our experimental evaluations showed that ScaleSCAN
outperforms the state-of-the-art algorithms over one order of magnitude even
though ScaleSCAN does not sacrifice its clustering qualities. The density-based
graph clustering is now a fundamental graph mining tool to current and prospec-
tive applications in various disciplines. By providing our scalable algorithm, it
will help to improve the effectiveness of future applications.
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Abstract. The scope and order of courses to take to graduate are typi-
cally defined, but liberal programs encourage flexibility and may generate
many possible paths to graduation. Students and course counselors strug-
gle with the question of choosing a suitable course at a proper time. Many
researchers have focused on making course recommendations with tradi-
tional data mining techniques, yet failed to take a student’s sequence of
past courses into consideration. In this paper, we study sequence-based
approaches for the course recommender system. First, we implement a
course recommender system based on three different sequence related
approaches: process mining, dependency graph and sequential pattern
mining. Then, we evaluate the impact of the recommender system. The
result shows that all can improve the performance of students while the
approach based on dependency graph contributes most.

Keywords: Recommender systems · Dependency graph
Process mining

1 Introduction

After taking some courses, deciding which one to take next is not a trivial deci-
sion. A recommendation of learning resources relies on a recommender system
(RS), a technique and software tool providing suggestions of items valuable for
users [14]. The typical approaches to recommend an item are based on rank-
ing some other items similar to another item a user or a customer has already
taken, purchased, or liked. These are called Content-based recommender systems
[3]. However, recommending a course simply based on similarity with previously
taken courses may not be the right thing to do. In practice, in addition to course
prerequisite constraints, when the curriculum is liberal, students typically chose
courses where their friends are, or based on their friends suggestions (i.e. ratings).
Collaborative filtering [16] is another approach for recommender systems that
could be used to recommend courses. It relies on the wisdom of the crowd, -i.e.
the learners that are similar to the current students in terms of courses taken or
“liked”. However, the exact sequence these courses are taken is not considered.
The order and succession of courses is indeed relevant in choosing the next course
to take. The questions students may ask include but are not restricted to: how
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can I finish my study as soon as possible? Is it more advantageous to take course
A before B or B before A? What is the best course for me to take this semester?
Will it improve my GPA if I take this course? Answering such questions to both
educators and students can greatly enhance the educational experience and pro-
cess. However, very few course RS (CRS) currently take advantage of this unique
sequence characteristic.

Recommender systems are widely used in commercial systems and while
rarely deployed in the learning environments, their use in the e-learning con-
text has already been advocated [9,24]. The overall goal of most RS in educa-
tion is to improve students’ performance. This goal can be achieved in diverse
ways by recommending various learning resources [18]. A common idea is to rec-
ommend papers, books and hyperlinks [6,8,17]. Course enrollment can also be
recommended [5,10]. However, most RS only apply content-based or collabora-
tive filtering approaches, and none have considered exploiting the order of how
students take courses. This missing link is what this paper tries to address.

The goal of our paper is to investigate a sequence-based CRS and show that
it is possible. We study three sequence-based approaches to build this RS using
process mining, dependency graphs, and sequential pattern mining.

2 CRS Based on Process Mining

2.1 Review of Process Mining

Process mining (PM) is an emerging technique that can discover the real
sequence of various activities from an event log, compare different processes and
ultimately find the bottlenecks of an existing process and hence improve it [20].
To be specific, PM consists of extracting knowledge from event logs recorded
by an information system and discovering business process from these event
logs (process discovery), comparing processes and finding discrepancies between
them (Process Conformance), and providing suggestions for improvements in
these processes (Process Enhancement).

Some attempts have already been made to exploit the power of PM in cur-
riculum data. For instance, authors of one section in [15] indicate that it can be
used in educational data. However, the description is too general and not enough
examples are given. The authors of [19] point out the significant benefit in com-
bining educational data with PM. The main idea is to model a curriculum as a
coloured Petri net using some standard patterns. However, most of the contri-
bution is plain theory and no real experiment is conducted. Targeted curriculum
data and thereby curriculum mining is explored in [11]. Similar with the three
components of PM, it clearly defines three main tasks of curriculum mining,
which are curriculum model discovery, curriculum model conformance checking
and curriculum model extensions. The authors explain vividly how curriculum
mining can answer some of the questions that teachers and administrators may
ask. However, no RS is built upon it.
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2.2 Implementation of a CRS Based on Process Mining

We recommend courses to a student that successful students who have a similar
course path have taken. Our course data are different from typical PM data
at least in the following three aspects: First, the order of the activities is not
rigidly determined. Students are quite free to take the courses they like and
they do not follow a specific order. Granted that there are restrictions such as
prerequisite courses or the courses we need to take in order to graduate, these
dependencies are relatively rare compared with the number of courses available.
Second, the dependency length is relatively short. In the course history data, we
do not have a long dependency. We may have a prerequisite requirement, e.g., we
must take CMPUT 174 and CMPUT 204 first in order to take CMPUT 304, but
such dependency is very short. Third, the type of activities in the sequence are
not singletons. Data from typical PM problems are sequence of single activities,
while in our case they are a sequence of sets. Students can take several courses
in the same term, which makes it more difficult to represent in a graph.

For these reasons, we do not attempt to build a dependency graph, and
proceed directly to conformance checking. The intuition behind our algorithm is
to recommend the path that successful students take, i.e., to recommend courses
taken by the students who are both successful and similar to our students who
need help. We achieve this by the steps in Algorithm1.

Algorithm 1. Algorithm of CRS based on PM
Input :

Logs L of finished students course history
Student stu who needs course recommendations

Execute :
1: Find all high GPA students from L as HS
2: Set candidate courses CC = ∅
3: for all stuHGPA in HS do
4: Apply Algorithm 2 to compute the similarity sim between stu and stuHGPA
5: if sim is greater than a certain threshold then
6: Add courses that stuHGPA take next to CC
7: end if
8: end for
9: Rank CC based on selected metrics

10: Recommend the top courses from CC to stu

In Algorithm 1 we first find the history of all past successful students. We
assume success is measured based on final GPA. Other means are of course
possible. From this list we only keep the successful students who are similar to
the current student based on some similarity metric, and retain the courses they
took as candidate courses to recommend. These are finally ranked and the top
are recommended. The ranking is explained later.

The method we use to compute the similarity between two students is high-
lighted in Algorithm 2. It is an improved version of the casual footprint approach
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for conformance checking in PM. Instead of building a process model, we apply
or method directly on the sequence of sets of courses to build the footprint tables.
In addition, we define some new relations among activities, courses in our case,
due to the special attributes of course history and the sequence of set.

– Direct succession: x → y iff x is directly followed by y
– Indirect succession: x →→ y iff x is indirectly followed by y
– Reverse direct succession: x ← y iff y is directly followed by x
– Reverse indirect succession: x ←← y iff y is indirectly followed by x
– Same term: x ‖ y iff x and y are in the same term
– Other: x#y for Initialization or if x and y have the same name.

With the relation terms defined, we can proceed to our improved version
of the footprint algorithm which computes the similarity of two course history
sequences.

Algorithm 2 . Algorithm of computing the similarity of two course history
sequences
Input :

Course history sequence of the first student s1
Course history sequence of the first student s2

Output :
1: Truncate the longer sequence to the same length with the shorter sequence
2: Build two blank footprint tables that map between s1 and s2
3: Fill out two footprint tables based on s1 and s2
4: Calculate the total elements and the number of elements that are different
5: Compute the similarity
6: Return the similarity of s1 and s2

In most cases, finished students’ course histories are much longer than the
current students’. To eliminate this difference we truncate the longer sequence to
the same length of the shorter sequence. The next step is to build a one-to-one
mapping of all courses in both sequences. Our CRS computes the above defined
relations based on the two sequences and fills the relations in the footprint table
separately. Lastly, our CRS calculates differenceCount which is the number of
elements in the footprint tables that s1 differs from s2, and totalCount which is
the total number of elements in one footprint table. similarity is then:

similarity = 1 − differenceCount

totalCount
. (1)

3 CRS Based on Dependency Graph

3.1 Review of Dependency Graph (DG)

A primitive method to discover DG from event data is stated in [1]. The depen-
dency relation is based on the intuition that for two activities A and B, if B
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follows A but A does not follow B, then B is dependent on A. If they both follow
each other in the data, they are independent. In fact, this simple intuitive idea
lays the foundation for many process discovery algorithms in PM. These are,
however, more advanced, as they use Petri nets [13] to deal with concurrency
and satisfy other criteria, such as the Alpha Algorithm [21], the heuristic mining
approach [23], and the fuzzy mining approach [7]. These approaches are, however,
not quite suitable for our task. Our method here is based on [4]. The authors
developed an approach of recommending of learning resources for users based on
users’ previous feedback. It learns a DG by users’ ratings. Learners are required
to give a rating or usefulness of the resources they used. The database evolves
by filtering learning objects with low ratings as time goes by. The dependencies
are discovered based on these ratings, positive or negative, using an association
rule mining approach.

3.2 Implementation of a CRS Based on Dependency Graph

The method in [4] is to recommend resources to learners based on what learners
have seen and rated. It creates dependencies between items i and items j only if
an item j is always positively rated immediately upon appearing after an always
positively rated i when it is before j, and independent or ignored otherwise.
Resource j is dependent on i in the pair (i, j) based on ratings.

Admittedly, the approach is simple but has drawbacks (i.e. linear, no context
used, and ignores noise), but we propose to adapt it to make it more suitable to
our case of courses, and improved it as follows. We cannot ask students to rate
all the courses they have taken, as these may not be very reliable for building
dependencies. The indicator we built our dependencies upon is the mark obtained
by students in courses. A good mark for course i before a good mark of course
j often implies course i is the prerequisite or positively influencer of course j.
Moreover, instead of using a universal notion of positive and negative as for the
ratings, A positive mark in a course or a negative mark is defined relative to
a student. A B+ may be a good mark in general, but for a successful student
whose mark is A on average, B+ is not that good. Moreover, we use association
rule mining parameters support (indicating frequency) and confidence (indicating
how often a rule has been found to be true) to threshold pairs of courses with
positive marks, and thus reduce potential noise.

Algorithm 3 outlines our approach with the above rationale. The CRS first
learns dependencies from the finished students’ course history. For a student
who needs recommendations, the CRS checks the previous course history of this
student and compares this history with the dependencies the CRS has learned.
A ranking of the candidate courses constitutes the final recommendation.
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Algorithm 3. Algorithm of CRS based on DG
Input :

Logs L of finished students course history
Student stu who needs course recommendations

Execute :
1: Convert all marks of courses from L to positive or negative signs. The standard

may differ based on GPA to make it relative to individual students
2: Build the projected dataset of positive courses Pi+ and negative courses Pi− with

the highlighted modification. Remove courses in Pi− from Pi+

3: Set candidate courses CC = ∅
4: Add to CC courses in Pi+ whose prerequisites are finished
5: Rank CC based on selected metrics
6: Recommend the top courses from CC to stu

4 CRS Based on Sequential Pattern Mining

4.1 Implementation of a CRS Based on Sequential Pattern Mining

Sequential pattern mining (SPM) consists of discovering frequent subsequences
in a sequential database [2]. There are many algorithms for SPM but we adopt
the widely used PrefixSpan [12] because of its recognized efficiency.

SPM was introduced and is typically used in the context of market basket
analysis. The sequences in the database are the progression of items purchased
together each time a purchaser comes back to a store, and SPM consists of pre-
dicting the next items that are likely to be purchased at the next visit. Students
take few courses each term. There is no order of courses in a specific term, yet
the courses of different terms do follow a chronological order. The analogy with
market basket analysis is simple. A semester for a student is a store visit, and the
set of courses taken during a semester are the items purchased together during
one visit. Just like frequent sequence patterns of items bought by customers can
be found, so can frequent sequence patterns of courses taken by students.

Our CRS Algorithm 4 based on SPM works as follows. Since we only want to
find the sequential patterns of positive courses, i.e., sequences of courses taken
by students with good outcome, we first filter all the course records and only
keep a course record when the mark is A or A+. Here A+ and A are taken
as reference examples. Note that a course deleted in one sequence of a student
may be selected in another sequence for another student. For instance, a stu-
dent who took CMPUT 101 and received an A then this course is kept in this
student’s sequence. If another student who also took CMPUT 101 but received
a B this course is filtered from their sequence. After this step, the course records
left in students history are all either A or A+. The second step in the algo-
rithm is to treat these courses like the shopping items and process them with
PrefixSpan [12] to find all the sequential patterns of courses. Among the course
sequential patterns we find, some are long, while some are short. Ideally, we want
to recommend courses from the most significant patterns.
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Algorithm 4. Algorithm of CRS based on SPM
Input :

Logs L of finished students course history
Student stu who needs course recommendations

Execute :
1: Filter all the course records of L with a predefined course mark standard as FL
2: Find all the course sequential patterns SP from FL with PrefixSpan [12].
3: for all Sequential pattern p from SP do
4: Compute the number of elements num of this sequential pattern that is also

contained in stu’s course history
5: Add the next course of this p to the Hashtable HT where the key is num
6: end for
7: Rank courses from HT ’s highest key as candidate courses CC based on selected

metrics
8: Recommend the top courses from CC to stu

Suppose we have a student who needs course recommendations and has
already taken courses 174, 175, and 204. We have discovered a short frequent
pattern s1 = 〈174, 206〉 while another long frequent pattern s2 we discovered is
〈174, 175, 204, 304〉. A more intuitive recommendation should be 304 because the
student has already finished three courses in s2.

Based on this intuition, the courses we recommend are the next unfinished
elements from the sequential patterns that have the longest common elements
with our student’s current course history. By this algorithm, the course we rec-
ommend for our example student earlier will be course 304 since the length of
common elements of s2 and this student is three, longer than one which is of s1.

Fig. 1. The overall workflow of our CRS that combines all 3 sequence-based algorithms

In addition to the three approaches for CRS, PM-based, DG-based, and
SPM-based, we combine all of our three sequence-based methods into one com-
prehensive one. We call it “Comprehensive” in our experiments. Since each of
them produces a potential list of recommended courses, it is straight forward to
combine the result of potential courses of all three methods and rank the result.
The overall structure of this approach is shown in Fig. 1.
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5 Ranking Results

All methods previously mentioned focus more on student’s course performance,
which we approximate with the GPA. Of course, other learning effectiveness
measure alternatives exist. Since the quickness of a program before graduation is
also of concern to many learners who would like to graduate as soon as possible,
we also consider the length of sequences of courses before graduation in our
recommendation. To do this, we incorporate this notion in the ranking of the
candidate courses before taking the top to recommend.

The sequence of some courses and the number of courses and the compulsory
courses to graduate are dictated by the school or department program. These
requirements can be obtained from the school guidelines. Most of these programs,
however, are liberal not enforcing most constraints and contain many electives.
These optional courses can be further considered in two aspects: First, these
courses may be very important that many students decide to take them even
though they are not in the mandatory list. We can compute the percentage of
students who take a specific course and rank courses based on this percentage
from high to low. It could be a must for students who want to graduate as
soon as possible if the percentage of students who take this course is above a
certain threshold. The second aspect to distinguish courses that can speed up
graduation is their relationship with the average duration before graduation. For
one course, we can compute the average time needed to graduate by students who
take this specific course. We do this for all the courses and rank them based on
the average graduation time from low to high, the lower the number the faster a
student graduates, i.e. the likelier it contributes to the acceleration of graduation.
In short, there are three attributes we consider: First, the course is mandatory
from the department’s guideline; Second, is the percentage of students who take
this course; Third, is the average time before graduation by students who take
this course. The second category can actually be merged into the first category
since they both indicate how crucial a course is, either by the department or
the choice of students. We combine the courses that are chosen by more than
90% (this threshold can be changed) of students with the compulsory courses
specified by educators as one group we call key courses.

This “agility strategy” is used to rank the potential recommended courses
selected by our three sequence-based algorithms. This ranking process is always
the last step of these three sequential based algorithms. To be more exact, after
selecting a few courses in the potential course list by one of the three sequence-
based approaches, there are three methods to rank them with this“agility” algo-
rithm.

1. No “agility”: Rank courses merely on the GPA contribution of courses.
2. Semi “agility”: Always rank key courses that are in the potential course list

first. The key course list and the non-key course list will be ranked based on
each course’s GPA contribution respectively.

3. Full “agility”: Always rank key courses that are in the potential course list
first. The key course list and the non-key course list will be ranked based on
each course’s average graduation time by students who take this course.
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6 Experiments

6.1 Data Simulator

The Computing Science Department of the University of Alberta collects for
each semester and for each student the courses they register in and the final
mark they obtain. While there are prerequisites for courses and other strict
constraints, the rules are not enforced and are thus often violated, giving a
plethora of paths to graduation. This history for many years, constituting the
exact needed event log, is readily available. However, such data cannot be used
for research purposes or for publication even though anonymized due to lack
of ethical approval. Indeed, we would need inaccessible consent from alumni
learners. It is hopeless to gather the consent of all past students, and impractical
to start collecting written consent from new students as it would require years to
do so. We were left with alternative to simulate historic curriculum data for proof
of concept and publication, and use real data for local implementation. For this
paper we opted for the simulation of the event log. A simulator was developed
to mimic the behaviours of undergraduate students with different characters
in higher education. The simulator encompasses the dynamic course directory
and the rules of enrollment, as well as student behaviour such as performance
and diligence in following guideline rules. The detail of the simulator simulating
arriving and graduating students one semester at a time can be found in [22].

6.2 Result Analysis

In this section we compare the performance of our CRS based on different
sequence-based algorithms. We want to see which sequence-based algorithm
performs better, whether the “speedup” algorithm works, and what additional
insights our CRS can provide. Moreover, we add one more approach to all exper-
iments, which is called“comprehensive” that combines all results from the three
methods. If not otherwise specified, the parameters of each algorithm are the
ones that performed best. The numbers presented in each table and figure for
this section are the average scores of their corresponding experiment three times
since the simulation is stochastic.

The first experiment is to compare the performance of different sequence-
based approaches at different student stages. “Different stages” means when do
students use our CRS. For example,“Year 4” means students only begin to take
courses recommended by our CRS in the fourth year, while “Year 1” means
students start using our CRS from the first year. Table 1 with its corresponding
Fig. 2 shows the result of this experiment: 200 students’ average GPAs varied
by the year of starting CRS in different approaches. The blue line in the middle
is our baseline 3.446 which is the average GPA if students do not take any
recommendations. From Table 1 and Fig. 2 we can observe the following. Firstly,
we can see a substantial effect for students who use our CRS in the first two
years. This steady increase indicates students can benefit more if they start using
our CRS earlier in their study. Secondly, the performance of CRS for all methods
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is about the same with the baseline if students only start to use our CRS in the
fourth year, which means it may be too late to improve a student’s GPA even
with the help of a CRS. Other than Year 4, our CRS does have a positive impact.
Thirdly, CRS based on DG outperforms all in nearly all scenarios while other
approaches are equally matched. Note that the comprehensive approach does
not outperform others. Our interpretation is that by combining the candidate
courses from all three methods, it obtains too many candidates and cannot
perform well if the candidates are not ranked properly. As to why CRS based on
DG performs best, it may be due to the intrinsic attribute of our data simulator.
The mark generation part of our simulator considers course prerequisites, which
may favour the DG algorithm. Thus, other approaches may outweigh DG if we
are dealing with real data.

Table 1. 200 students’ average GPAs varied by the year CRS is used by different
approaches

Approach Year 4 Year 3 Year 2 Year 1

PM 3.453 3.516 3.569 3.588

DG 3.433 3.529 3.617 3.652

SPM 3.447 3.498 3.545 3.602

Comprehensive 3.441 3.512 3.564 3.593

Fig. 2. 200 students’ average GPAs varied by the year CRS is used by different
approaches (Color figure online)

The next experiment is to check whether increasing the training data in the
number of students would lead to a better performance of our CRS. Table 2 and
Fig. 3 demonstrate 200 students’ average GPAs varied by the number of training
students of CRS in different approaches. We can see that, as the training data
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Table 2. 200 students’ average GPAs varied by the number of training students of
CRS in different approaches

Approach 500 1000 1500

PM 3.513 3.57 3.586

DG 3.535 3.607 3.639

SPM 3.528 3.581 3.598

Comprehensive 3.522 3.582 3.597

Fig. 3. 200 students’ average GPAs varied by the number of training students of CRS
in different approaches

size increases from 500 to 1000, the performance of our CRS improves. However,
when this size further increases from 1000 to 1500, the performance of our CRS
does not improve significantly. We than fixed the training data size to 1500
in all our experiments. This can be explained by the fact that the number of
courses in a program is finite and small (even though dynamic) and all important
dependencies are already expressed in a relatively small training dataset.

Besides improving students’ performance in grades, our CRS can also speed
up students’ graduation process by ranking the candidate courses selected by
sequence algorithms properly. Table 3 and Fig. 4 show the effect of using the full
“agility” ranking setting to recommend courses based on DG to 200 students.
Same as the first experiment in this section, Year X means students start to
use our CRS from year X. We can see a remarkable decrease in the number of
terms needed to graduate if students start using our CRS from the third year.
However, after that, such change is not very notable. Since the pivotal fact to
graduate fast is to take all key courses as soon as possible, our explanation is
that taking key courses from the third year is timely. There is no particular need
to focus on key courses in the first two years. Note that although the graduation
time improvement of our CRS is only in a decimal level, it is already quite a
boost considering students only need to study 12 terms in normal scenarios.
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Table 3. 200 students’ average graduation terms varied by the year of starting CRS
based on DG with the full “agility” setting

Starting Year Average graduation
terms

Year 4 11.917

Year 3 11.615

Year 2 11.567

Year 1 11.532

Fig. 4. 200 students’ average graduation terms varied by the year of starting CRS
based on DG with the full “agility” setting

Other than recommending courses, our CRS may provide some insights to
educators and course counselors. We previously mentioned computing courses’
GPA contribution and graduation time contribution. A course’s GPA contri-
bution is the average GPA of students who take this course, while a course’s
graduation time contribution is the average time before graduation of students
who take this course. These indicators are used to rank the candidate courses
obtained by sequence-based algorithms. Yet, these indicators themselves may
have values. Table 4 demonstrates the top 5 GPA contribution courses and grad-
uation time contribution courses. One interesting finding is course CMPUT 201.
This course is not one of the preferred courses in our simulator but is a prerequi-
site course for many courses. A preferred course is a course that will have a very
high probability to be taken in a particular term because it is the “right” course
for that term. Being a prerequisite course but not a preferred course means
that, CMPUT 201 has to be taken in order to perform well in other courses but
many students do not take it. Thus, finding this course actually means that our
CRS found an important course that is not in the curriculum but is necessary
for students to succeed. Sometimes it is risky to force to do so. For example,
CMPUT 275 is in the top position in the GPA contribution list, but we cannot
know whether this course causes students to succeed or successful students like
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to take it. Nevertheless, this contribution list would still provide some insights
to educators and course counselors if it is trained on real students’ data and is
carefully interpreted.

Table 4. The top 5 GPA contribution courses and graduation time contribution courses

Ranking Top GPA courses Top time courses

1 CMPUT 275 CMPUT 301

2 CMPUT 429 CMPUT 274

3 CMPUT 350 CMPUT 300

4 CMPUT 333 CMPUT 410

5 CMPUT 201 CMPUT 366

Finally, our CRS can assist educators and administrators to gain deep insights
on course relations and thus improve the curriculum. Figure 5 (Left) shows the
DG of courses with edge colours representing discovery sources (green = imposed
and confirmed; blue = expected but not found; red = new discovered). It com-
bines the prerequisite relations used by our simulator and the dependencies dis-
covered by our DGA. On one hand, we can consider the prerequisite course
relations used by our simulator as the “current curriculum” or behaviours we
expect to see from students. On the other hand, the courses’ prerequisite rela-
tions discovered by our CRS based on the DG algorithm can be deemed as
the prerequisite relations in reality or the actual behaviours by students. Many
dependencies used by our simulator are found by our DG algorithm (green edges)
like 204⇒304, which means that these rules are successfully carried out by stu-
dents. Some dependencies used by our simulator are not found in the data (blue
edges) like 175⇒229 because the students did not actually follow them, which
indicates there are some discrepancies between what we expect from students
and what students really do. Administrators may want to check why this hap-
pens. There are also some dependencies found by our DG algorithm but are not
in the rules for our simulator (red edges), such as 304⇒366 and 272⇒415. These
dependencies indicate some relations among courses unknown and unexpected
to administrators but are performed by students. Educators and administrators
may want to consider to add these new found prerequisites to the curriculum in
the future if these are indicative of good overall performance in terms of learning
objectives.

Figure 5 (Right) shows the paths of successful students (GPA above 3.8)
filtered from the 1500 training students with the weight of edges representing
the number of students. The thick edges mean many successful students have
gone through these paths and they should be considered when trying to improve
the curriculum. All in all, the benefits of these findings can be considerable when
sequences of courses are taken into account.
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Fig. 5. Left: the DG of courses with edge colours representing discovery sources (green
= imposed and confirmed; blue = expected but not found; red = new discovered).
Right: the paths of successful students filtered from the 1500 training students with
the weight of edges representing the number of students. (Color figure online)

7 Conclusions and Future Work

We built a course recommender system to assist students choose suitable courses
in order to improve their performance. This recommender is based on three dif-
ferent methods yet all three are related to the sequence of taken course. We
considered conformance checking of process mining as a first approach, rec-
ommending courses to a student that successful students, who have a similar
a course path, have taken. We have also suggested a new approach based on
dependency graphs modeling deep prerequisite relationships, by recommending
courses whose prerequisites are finished. We also advocated a third method based
on sequential pattern mining discovering frequent sequential course patterns of
successful students. Finally, we combined all the approaches in a comprehensive
method and proposed ranking methods to favour reducing the program length.

We conduct several experiments to evaluate our course recommender sys-
tems and to find the best recommendation approach. All three approaches can
improve students’ performance in different scales. The best recommendation
method is based on the dependency graph, and the number of recommended
courses accepted by students have a positive correlation with the performance.
Moreover, the course recommender system we build can speed up students’ grad-
uation if set properly, and provide some useful insights for educators and course
counselors.
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5. Garćıa, E., Romero, C., Ventura, S., De Castro, C.: An architecture for making
recommendations to courseware authors using association rule mining and collab-
orative filtering. User Model. User-Adap. Interact. 19(1–2), 99–132 (2009)

6. Ghauth, K.I., Abdullah, N.A.: Learning materials recommendation using good
learners’ ratings and content-based filtering. Educ. Technol. Res. Dev. 58(6), 711–
727 (2010)

7. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75183-0 24

8. Luo, J., Dong, F., Cao, J., Song, A.: A context-aware personalized resource rec-
ommendation for pervasive learning. Cluster Comput. 13(2), 213–239 (2010)

9. Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., Koper, R.: Recom-
mender systems in technology enhanced learning. In: Ricci, F., Rokach, L., Shapira,
B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 387–415. Springer,
Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3 12

10. O’Mahony, M.P., Smyth, B.: A recommender system for on-line course enrolment:
an initial study. In: Proceedings of the 2007 ACM Conference on Recommender
Systems, pp. 133–136. ACM (2007)

11. Pechenizkiy, M., Trcka, N., De Bra, P., Toledo, P.: CurriM: curriculum mining. In:
International Conference on Educational data Mining, pp. 216–217 (2012)

12. Pei, J., et al.: PrefixSpan: mining sequential patterns efficiently by prefix-projected
pattern growth. In: Proceedings of the 17th International Conference on Data
Engineering. IEEE (2001)

13. Peterson, J.L.: Petri Net Theory and the Modeling of Systems, vol. 132. Prentice-
Hall, Englewood Cliffs (1981)

14. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook.
In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems
Handbook, pp. 1–35. Springer, Boston, MA (2011). https://doi.org/10.1007/978-
0-387-85820-3 1

15. Romero, C., Ventura, S., Pechenizkiy, M., Baker, R.S.: Handbook of Educational
Data Mining. CRC Press, Boca Raton (2010)

16. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, pp. 285–295. ACM (2001)

17. Tang, T.Y., McCalla, G.: Smart recommendation for an evolving e-learning system.
In: Workshop on Technologies for Electronic Documents for Supporting Learning,
AIED (2003)

https://doi.org/10.1007/BFb0101003
https://doi.org/10.1007/BFb0101003
https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1007/978-3-540-75183-0_24
https://doi.org/10.1007/978-0-387-85820-3_12
https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1007/978-0-387-85820-3_1


50 R. Wang and O. R. Zäıane
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Abstract. Integrity constraints (ICs) are meant for many data manage-
ment tasks. However, some types of ICs can express semantic rules that
others ICs cannot, or vice versa. Denial constraints (DCs) are known
to be a response to this expressiveness issue because they generalize
important types of ICs, such as functional dependencies (FDs), condi-
tional FDs, and check constraints. In this regard, automatic DC discov-
ery is essential to avoid the expensive and error-prone task of manually
designing DCs. FASTDC is an algorithm that serves this purpose, but
it is highly sensitive to the number of records in the dataset. This paper
presents BFASTDC, a bitwise version of FASTDC that uses logical oper-
ations to form the auxiliary data structures from which DCs are mined.
Our experimental study shows that BFASTDC can be more than one
order of magnitude faster than FASTDC.

Keywords: Data profiling · Denial constraints · Integrity constraints

1 Introduction

Production databases often generate large and disordered datasets which become
challenging to explore over time. Sometimes analysts will spend more time look-
ing for relevant and clean data than they will do producing useful insights [1]. A
research field that helps with this challenge is data profiling: the set of activities
to gather statistical and structural properties, i.e, metadata, about datasets [2].

Data profiling research continually focus on developing efficient methods to
discover integrity constraints (ICs) satisfied by datasets [2]. ICs validate the
integrity and consistency of real-world entities that are represented in data and,
although were initially devised for database schema design, are commonly used
in other data management tasks, such as data integration [3] and data cleaning
[4]. Well known exemplars of ICs include attribute dependencies (e.g, functional
dependencies (FDs)), which express semantic relationships for data. Notice, how-
ever, that attribute dependencies may not be able to express important rules that
hold in data, as shown by the examples below.
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Consider an instance of relation, employees, as shown in Table 1. An FD could
state that (1) employees’ names identify their manager. A check constraint could
state that (2) employees’ salaries must be greater than their bonus. Denial con-
straints (DCs) [5,6] could state rules 1–2, and more expressive ones, for example,
(3) if two employees are managed by the same person, the one earning a higher
salary has a higher bonus. Thus, DCs are able to express many business rules,
and subsume other types of ICs [6].

Table 1. An instance of the relation employees.

Name Manager Salary Bonus

t0 John Jim $1000 $300

t1 Brad Frank $1000 $400

t2 Jim Mark $3000 $1100

t3 Paul Jim $1200 $400

DCs define sets of predicates that databases must satisfy to prevent
attributes from taking combinations of values considered semantically incon-
sistent. For example, the FD (1) mentioned earlier can be defined as a
sequence of (in)equality predicates: if two tuples of employees agree on Name
(tx.Name = ty.Name), then, they cannot disagree on Managers (tx.Manager �=
ty.Manager). Notice that predicates of DCs are easily expressed by SQL queries
and, therefore, DCs can be readily used with commercial databases.

DCs have been adopted as the IC language in various scenarios [5,7]. Par-
ticularly, they have received considerable attention in data cleaning (violation
of DCs usually indicates that data is dirty). Holoclean [7] and LLUNATIC [8]
are examples of cleaning tools that use DCs. However, they assume DCs to
be user-provided. Designing DCs is challenging because it requires expensive
domain expertise that is not always available. Furthermore, DCs may become
obsolete as business rules and data evolve. To overcome these limitations, DC-
based cleaning tools (or any other DC-dependent solution) should also provide
mechanisms to discover DCs holding on sample data.

Discovering DCs is nontrivial because the search space for DCs grows expo-
nentially with the number of predicates. Predicates are defined over attributes,
tuples and operators. For example, the Salary attribute in the relation employees
define six predicates with the form {tx.Salary wo ty.Salary}, wo ∈ W : {=, �=, <,
≤, >,≥}. Additionally, predicates can be defined over different attributes (e.g.,
{tx.Salary wo ty.Bonus}). The predicate space P is the set of all predicates
defined for a relation, and there are 2|P| DC candidates because a DC may be
any subset of P. Thus, checking DC candidates against every tuple combination
of a relation instance becomes impractical [6].

Chu et al. [6] introduce important properties for DCs, and present a discovery
algorithm called FASTDC. The algorithm uses the predicate space to compute
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sets of predicates that tuple pairs satisfy, namely, the evidence set. FASTDC then
reduces the problem of discovering DCs to the problem of finding minimal covers
for the evidence set. Unfortunately, a dominant computational cost of FASTDC
is computing the evidence set. The algorithm needs to test every pair of tuples
of the relation instance on every predicate in P; therefore, its performance is
highly dependent on the number of records.

In this paper, we present a new algorithm that improves DC discovery by
changing how the evidence set is built. Our algorithm, BFASTDC, is a bitwise
version of FASTDC that exploits bit-level operations to avoid unnecessary tuple
comparisons. BFASTDC builds associations between attribute values and lists
of tuple identifiers so that different combinations of these associations indicate
which tuple pairs satisfy predicates. To frame evidence sets, BFASTDC operates
over auxiliary bit structures that store predicate satisfaction data. This allows
our algorithm to use simple logical operations (e.g., conjunctions and disjunc-
tions) to imply the satisfaction of remaining predicates. In addition, BFASTDC
can use two modifications described in [6] to discover approximate and con-
stant DCs. These DCs variants let the discovery process to work with data con-
taining errors (e.g., integrated data from multiple sources). In our experiments,
BFASTDC produced considerable improvements on DCs discovery performance.

Organization. Section 2 discusses the Related Work. Section 3 reviews the defi-
nition of DCs and the DC discovery problem. Section 4 describes the BFASTDC
Algorithm. Section 5 presents our Experimental Study. Finally, Sect. 6 concludes
this paper.

2 Related Work

Most works on IC discovery have focused on attribute dependencies. Liu et al. [9]
present a comprehensive review of the topic. Papenbrock et al. [10] have looked
into the experimental comparison of various FD discovery algorithms.

Dependency discovery algorithms usually employ strategies to reduce the
number of candidate dependencies they must check. For example, Tane [11] is an
FD discovery algorithm that uses a level-wise approach to traverse the attribute-
set lattice of a relation. Supersets of attributes from level k +1 of the lattice are
pruned as Tane validates FDs from level k. FastFD [12] compares tuple pairs
to build difference sets: the set of attributes in which two tuple differ. It uses
depth-first search to find covers of difference sets and then derives valid FDs.

As data may be inconsistent, discovery algorithms need to, somehow, avoid
returning unreliable ICs. Fan et al. [13] describe CTane and FastCFD to discov-
ering conditional FDs, that is, FDs enforced by constants patterns. Conditional
dependencies are particularly useful when working with integrated data because
some dependencies may hold only on portions of the data [13]. Approximate dis-
covery is another approach to avoid overfitting ICs [9,14]. For this matter, ICs
are allowed to be approximately satisfied by a dataset. Liu et al. [9] also present
a discussion on satisfaction metrics for approximate discovery algorithms.
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As opposed to dependency discovery, for which many algorithms were devised
[9,10], there are only two algorithms for discovering DCs: Hydra [15] and
FASTDC [6]. Hydra can only detect exact variable DCs (DCs that are neither
approximate nor contains constant predicates). The principle of the algorithm
is to avoid comparing redundant tuple pairs, i.e, tuple pairs satisfying the same
predicate set. It generates preliminary DCs from a sample of tuple pairs and
identifies the tuple pairs violating those DCs. Hydra then derives exact DCs
from the evidence set built upon the combination of the sample and tuple pairs
violating the preliminary DCs. Because Hydra eliminates the need for checking
every pair of tuple, it is not able to count how many times a predicate set is
satisfied by a dataset. This counting feature is precisely what enables FASTDC
to discover approximate DCs. The inspiration for FASTDC comes from FastFD-
FastCFD, and is twofold: pairwise comparison of tuples for extracting evidence
from datasets; depth-first search for finding covers for the evidence and deriving
valid ICs. As described in [6], simple modifications in FASTDC enable the algo-
rithm to also discover DCs with constant predicates. BFASTDC is designed to
avoid the exhaustive tuple pairs comparison of FASTDC, but keeping the ability
to discover exact, approximate and constant DCs.

3 Background

Consider a relational database schema R and a set of operators W : {=, �=, <,
≤, >,≥}. A DC [5,6] has the form ϕ : ∀tx, ty, ... ∈ r, ¬(P1 ∧ ... ∧ Pm), where
tx, ty, ... are tuples of an instance of relation r of R, and R ∈ R. A predicate Pi

is a comparison atom with either the form v1wov2 or v1woc: v1, v2 are variables
tid.Aj , Aj ∈ R, id ∈ {x, y, ...}, c is a constant from Aj ’s domain, and wo ∈ W.

Example 1. The ICs (1), (2) and (3) from Sect. 1 can be expressed as the fol-
lowing DCs: ϕ1 : ¬(tx.Name = ty.Name ∧ tx.Manager �= ty.Manager), ϕ2 :
¬(tx.Salary < tx.Bonus), ϕ3 : ¬(tx.Manager = ty.Manager ∧ tx.Salary >
ty.Salary ∧ tx.Bonus < ty.Bonus).

An instance of relation r satisfies a DC ϕ if at least one predicate of ϕ is false,
for every pair of tuples of r. In other words, the predicates of ϕ cannot be all
true at the same time. We follow the conventions of [6] for DC discovery. We
consider there is only one relation in R, and discover DCs involving at most two
tuples because they suffice to represent most rules used in practice. Allowing
more tuples in a single DC would unnecessarily incur a much bigger predicate
spaces for the DC discovery [6].

Table 2 shows the inverse, wo, and implication, I(wo), of the operators wo ∈
W. The inverse of a predicate P : v1wov2 has the form P : v1wov2, which is the
logical complement of P . The set of predicates implied by P is I(P ) = {P ′ |
P ′ : v1w

′
ov2,∀w′

o ∈ I(wo)}. Every P ′ ∈ I(P ) is true if P is true. BFASTDC is
designed to use these properties in the form of bitwise operations so that implied
and inversed predicates can be transitively evaluated.
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Table 2. Inverse and implied operators.

wo = �= < ≤ > ≥
wo �= = ≥ > ≤ <

I(wo) =, ≤, ≥ �= <, ≤, �= ≤ >, ≥, �= ≥

We follow the problem definition of [6] to discover minimal DCs. A DC ϕ1 on
r is minimal if there does not exist a ϕ2 such that both ϕ1 and ϕ2 are satisfied
by r, and the predicates of ϕ2 are a subset of ϕ1. Chu et al. [6] also describe
additional properties for DCs and an inference system that helps eliminating
non-minimal DCs. An in-depth discussion on the theoretical aspects of DCs and
other ICs can be found in [5,16].

3.1 DC Discovery

The first step to discover DCs is to set the predicate space P from which DCs
are derived. Experts can define predicates for attributes based on the database
structure. One could also use approaches, such as [17], for mining associations
between attributes. Predicates on categorical attributes use operators {=, �=},
and predicates on numerical attributes {=, �=, <,>,≤,≥}. Figure 1 illustrates a
predicate space for the relation employees from Sect. 1.

P1 : tx.Name = ty.Name P2 : tx.Name �= ty.Name P3 : tx.Name = tx.Manager
P4 : tx.Name �= tx.Manager P5 : tx.Manager = ty.Manager P6 : tx.Manager �= ty.Manager
P7 : tx.Salary = ty.Salary P8 : tx.Salary �= ty.Salary P9 : tx.Salary < ty.Salary
P10 : tx.Salary ≤ ty.Salary P11 : tx.Salary > ty.Salary P12 : tx.Salary ≥ ty.Salary
P13 : tx.Bonus = ty.Bonus P14 : tx.Bonus �= ty.Bonus P15 : tx.Bonus < ty.Bonus
P16 : tx.Bonus ≤ ty.Bonus P17 : tx.Bonus > ty.Bonus P18 : tx.Bonus ≥ ty.Bonus

Fig. 1. Example of predicate space for employees.

The satisfied predicate set Qtμ,tν
of an arbitrary pair of tuples (tμ, tν) ∈ r is

a subset Q ⊂ P such that for every P ∈ Q, P (tμ, tν) is true. The set of satisfied
predicate sets of r is the evidence set Er = {Qtμ,tν

| ∀(tμ, tν) ∈ r}. Different
tuple pairs may return the same predicate set, hence, each Q ∈ Er is associated
with an occurrence counter.

A cover for Er is a set of predicates that intersects with every satisfied predi-
cate set of Er, and it is minimal if none of its subsets equally intersects with Er.
The authors of FASTDC demonstrate that minimal covers of Er represent the
predicates of minimal DCs [6]. Thus, the DC discovery problem becomes finding
covers for evidence set Er.

FASTDC uses a depth-first search (DFS) strategy to find minimal covers for
Er. Predicates of P are recursively arranged to form the branches of the search
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tree. To optimize the search, predicates that cover more elements of the evidence
set are added to the path first. As minimal covers are discovered, unnecessary
branches of the DFS are pruned with the inference system. Any path of the
tree is a candidate cover that identifies a set of elements Epath ⊂ Er not yet
covered. When a candidate cover includes a predicate P , elements that contain
P are removed from its corresponding Epath. The search stops for a branch when
there are no more predicates in Epath. The candidate cover is minimal if satisfies
minimality property and Epath is empty.

The authors of FASTDC also present two modifications for their algorithm:
A-FASTDC and C-FASTDC.

A-FASTDC is an algorithm for discovering approximate DCs, that is, DCs
whose number of violations is bounded. The algorithm uses the same evidence
set Er as FASTDC, but modify the minimal cover search to work with approx-
imation levels ε. In short, the search prioritizes predicates that appear in the
most frequent predicate sets of Er. The search stops for branches of the search
tree when their predicates cover frequent predicate sets. This means that the
frequency of the predicate sets that were not used in the search are below a
threshold ε |r| (|r| − 1). This approximate approach is only possible because the
evidence set Er counts the number of times a predicate set appears in the dataset.

C-FASTDC discovers DCs with constant predicates. It builds a constant
predicate space from attribute domains and then follows an Apriori approach
to identify τ -frequent constant predicate sets. A constant predicate set C is τ -
frequent if |sup(C,r)|

|r| ≥ τ , where sup(C, r) is the set of tuples of r that satisfy
all predicates of C [6]. As τ -frequent predicate sets C are identified, FASTDC
discovers the variable predicates holding on sup(C, r) and outputs DCs that are
combinations of C and the variable predicates.

Challenge. FASTDC builds the evidence set by evaluating every predicates of
the predicate space P on every pair of tuples of r. This computation requires
|P| × |r|2 predicate evaluations, of which at least half return false if we consider
groups of predicates {P, P , ...}. We next describe how BFASTDC reduces this
computational cost.

4 The BFASTDC Algorithm

BFASTDC operates at the bit level and takes advantage of the inversion and
implication properties presented in Table 2. The computational cost of our app-
roach grows as a function of the number of predicates that evaluate to true, and
is potentially smaller than FASTDC. We next describe how to set simple data
structures to represent predicate satisfaction.

4.1 Data Structures

Attribute-Values Maps. Attribute values are organized as entries 〈k, l〉, where
key k is an element of the set of values in attribute Aj , and l is a list of tuple
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Fig. 2. Organizing attribute values: (a) assign tuple identifiers; (b) generate permuta-
tions (dashed line arrows)/Cartesian products (solid line arrows).

identifiers such that ∀id ∈ l then tid[Aj ] = k. Procedure Search(Aj , k) finds
the list l for k in Aj . Predecessors(Aj , k) is defined for numerical attributes.
It returns the set L2 consisting of the lists Search(Aj , k2) associated with the
values k2 smaller than k. Notice that Search(Aj , k) and Predecessors(Aj , k)
may return ∅ if they find no tuple identifiers associated with k. Figure 2a depicts
the assignment of tuples identifiers for employees. In the example, a key “Jim”
from attribute Name is inputted to Search(Manager,Jim); and a key 1100
from attribute Bonus is inputted to Predecessors(Salary,1100).

Bit Vectors. A bit vector B is associated with a predicate P to represent the
relationship between P and the tuple pairs that satisfy P . Notice that a relation
instance of size |r| generates tuple pairs: (t0, t0), (t0, t1), ..., (t|r|, t|r|). Function
(1) below returns a unique identifier λ for a given pair of tuples (tμ, tν) of r.
Bit vector B holds 1 at position λ only if λ corresponds to a pair of tuples that
satisfy P , otherwise B holds 0.

λ(tμ, tν , r) = (|r| μ) + ν (1)

Example 2. Consider the predicate P5 : tx.Manager = ty.Manager, and the
relation employees from Sect. 1. In the sample, Predicate P5 is satisfied by the fol-
lowing tuple pairs: (t0, t3) and (t3, t0). From Function (1), considering the size of
the instance |empolyees| = 4, with λ(t0, t3, employees) and λ(t3, t0, employees)
we get tuple pairs identifiers λ = 3 and λ = 12. These λ are the indexes for
which the bit vector B5, holds true.

4.2 Building Bit Vectors

Before describing the strategies to efficiently obtain indexes λ, we add some
remarks regarding the possible forms of predicates.
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Predicates involve one or two attributes, conventionally {A1} and {A1, A2};
and can be defined for two, (tx, ty), or one tuple, (tx, tx). We denote Pα and Pβ

to distinguish between two-tuple and single-tuple predicates, respectively. Let
Pwo be a predicate with the operator wo, wo ∈ W : {=, �=, <,≤, >,≥}. Hence,
Pw1

α : tx.A1 = ty.A1 exemplify a two-tuple equality predicate on attribute {A1},
Pw2

β : tx.A1 �= tx.A2 exemplify a single-tuple inequality predicate on attributes
{A1, A2}, and so on. To ease notation for (in)equality predicates, when o = 1
and o = 2, we assume ̂Pα ≡ Pw1

α , ˜Pα ≡ Pw2
α and ̂Pβ ≡ Pw1

β , ˜Pβ ≡ Pw2
β .

Logical operations are enough to set some of the bit vectors, but they require
auxiliary bitmasks to prevent bit vectors B from holding incorrect values. Let
exponentiation denote bit repetition, e.g., 103 = 1000. A bitmask maskst =
(z1, ..., z|r|), where zn = 10|r|, helps operations on single-tuple predicates as
they are not related to pair of tuples (tμ, tν) if tμ �= tν . Similarly, a bitmask
masktt = (z1, ..., z|r|), where zn = 01|r|, helps operations on two-tuple predicates
as they are not related to pair of tuples (tμ, tν) if tμ = tν .

Next, we describe four strategies that arrange the set of bit vectors B asso-
ciated with the predicate space P. Every B ∈ B is filled with 0’s at the start.

1. Predicates Involving One Categorical Attribute. Consider a predicate
of the form ̂Pα : {tx.A1 = ty.A1}, and its associated bit vector ̂Bα. Given an
entry 〈k, l〉 of A1 where |l| > 1, permutations of two elements taken from l

represent tuple pairs (tμ, tν) that satisfy ̂Pα. From Function (1), these permu-
tations generate tuple pair identifiers λ at which bit vector ̂Bα is set to one,
i.e, ̂Bα,λ ← 1. Figure 2b illustrates some tuple pairs arranged for employees.
For entry 〈Jim, {0, 3}〉 from attribute Manager, tuple pairs (0, 3) and (3, 0) do
satisfy a two-tuple equality predicate involving the attribute. The above process
repeats for every entry of A1.

Consider a predicate ˜Pα : {tx.A �= ty.A}, and its associated bit vector ˜Bα.
Observe that ˜Bα is the logical complement of ̂Bα. Therefore, ˜Bα derives from a
disjunction (∨) followed by an exclusive-or operation (⊕) : ˜Bα ← ( ˜Bα∨masktt)⊕
̂Bα.

2. Predicates Involving Two Categorical Attributes. Suppose that we
want to find associations from attribute values of Name to attribute values
of Manager in employees. Entries 〈Jim, {2}〉 of Name and 〈Jim, {0, 3}〉 of
Manager generate an equality association, which is represented by the Cartesian
product {(2, 0), (2, 3)}. Formally, consider an entry 〈k1, l1〉 taken from attribute
A1 and a list of tuple identifiers l2 such that l2 ← Search(A2, k1). Cartesian
products l1 × l2 represent tuple pair identifiers (tμ, tν) that either satisfy a pred-
icate ̂Pα : {tx.A1 = ty.A2} or ̂Pβ : {tx.A1 = tx.A2}. Given λ corresponding to
(tμ, tν) ∈ l1 × l2: if tμ �= tν then ̂Bα,λ ← 1; otherwise, ̂Bβ,λ ← 1. The above
process runs for every entry of A1.

Computing ˜Bα ← ( ˜Bα ∨ masktt) ⊕ ̂Bα solves ˜Pα. As for ˜Pβ , it is sufficient
to compute ˜Bβ ← ( ˜Bβ ∨ maskst) ⊕ ̂Bβ .



BFASTDC: A Bitwise Algorithm for Mining Denial Constraints 61

3. Predicates Involving One Numerical Attribute. Numerical attributes
additionally require predicates with the operators {<,≤, >,≥}. Given an entry
〈k1, l1〉 in A1, the set L2 such that L2 ← Predecessors(A1, k1) and lists of
tuple identifiers l2 ∈ L2, the Cartesian product of every l1 × l2 represent tuple
pairs (tμ, tν) that satisfy a predicate with the less than operator, Pw3

α . The tuple
pair identifiers λ for which Bw3

α holds one come from the products generated for
every entry from A1.

Bit vectors ̂Bα and ˜Bα are set using permutations (strategy one). The predi-
cates with the remaining operators are solved from ̂Bα and Bw3

α . Predicate with
less than or equals operator is given by: Bw4

α ← (Bw3
α ∧ ̂Bα), with greater than:

Bw5
α ← Bw4

α , and greater than or equals: Bw6
α ← (Bw5

α ∧ ̂Bα).

4. Predicates Involving Two Numerical Attributes. Bit vectors for single
and two-tuple predicates { ̂Bα, ˜Bα, ̂Bβ , ˜Bβ} are set using Cartesian products from
attributes A1 and A2 (strategy two). In the same spirit, a slight modification
on strategy three is sufficient to set order predicates involving two attributes.
Cartesian products l1 × l2 are generated such that 〈k1, l1〉 is taken from A1 and
each l2 ∈ L2 is taken from Predecessors(A2, k1). These products generate
tuple pair identifiers λ that either satisfy Bw3

α or Bw3
β . The logical operations

described earlier are applied on { ̂Bα, ˜Bα, Bw3
α , ̂Bβ , ˜Bβ , Bw3

β } to solve the remain-
ing predicates.

4.3 Fitting Bit Vectors into Memory

The length of bit vectors grows as a function of the relation instance size. A single
bit vector would occupy 400 Mb for a relation with 20 k tuples. To avoid running
out of memory and to handle large relation instances, BFASTDC splits B into
smaller chunks: B =

∑

s∈S bs. The number of chunks is given by |S| = �|r|2 /ω�,
where ω defines a maximum chunk size. The chunk size ω is related to the amount
of available memory and bounds the range that chunk bs operates.

Let bs be a chunk being evaluated in turn s. Assume that a list of tuple pair
identifiers Λ = {λ1, ..., λc, ..., λ|Λ|}, λc < λc+1, acknowledges Bλc

to be true. The
only portion of B in memory is bs, so λc can be used to set bs,λc

only if it is
in the range covered by bs. If not, list Λ is skipped and the last λc used in Λ
is marked. The list Λ can be iterated from λc+1 in the next time it is acquired
because tuple pair identifier λc will never be in the range of subsequent chunks
bs+1. Figure 3a illustrates tuple pair identifiers on setting bit chunks. For better
visualization, it considers only a subset of the predicate space P of Fig. 1.

4.4 Assembling the Evidence Set

Each bit vector B ∈ B represents the set of tuple pairs that satisfy a predicate
P . Conversely, each element in the evidence set, E ∈ Er, is the satisfied predicate
set of a pair of tuples. Our algorithm uses the same DFS strategy as FASTDC
to search for minimal covers, hence, we need to transpose B into Er.
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Fig. 3. Evidence set generation: (a) Fill chunks of size ω = 8; (b) Transpose chunks
to buffer of size ρ = 4; (c) Insert the buffer content into evidence set and update the
predicate sets counters (denoted by the {}+c notation).

Consider i = 0, ..., |P|, chunks of bit vectors B1 = {b1,1, ..., b1,S}, ..., B|P| =
{b|P|,1, ..., b|P|,S}, and B = {B1, ..., B|P|}. Chunks bi,s are transposed all at once
(see Fig. 3). The evidence set is built by inserting satisfied predicate sets Qtμ,tν

into set Er (see Fig. 3c). We can assume that Er = {Qλ | ∀λ ∈ r} because λ is a
unique identifier for pair of tuples tμ, tν ∈ r. If bi,s,λ = 1, then Pj ∈ Qλ. Notice
that BFASTDC only need to iterate over bi,s at indices λ that are set to true.

There are ω satisfied predicate sets Q to insert into Er at each turn s. Given,
1 < ρ < ω, we have found that using a buffer holding ρ elements Q saves memory
and decreases overall running time. If bi,s,λ = 1, and λ is out of the buffer range,
we skip iteration bi,s until the next round (similarly to chunks range scheme). At
this stage, the predicate set counters of Er are updated for further approximate
discovery. Figure 3b illustrates a buffer operation.

4.5 Implementation Details

Hash-based dictionaries group entries of categorical attributes. Building them is
linear since insertions on hash-based dictionaries are constant in time. Lookup
operations are also performed in constant-time. BFASTDC uses sorted arrays to
group entries of numerical attributes because they support operations {<,≤, >,
≥}. Given a numerical entry 〈k, l〉, k and l are stored separately, into position
h of two different arrays. A numerical entry is realigned by pairing both arrays
with the same index h. For sorting, we have adapted the Quicksort algorithm
to return the list of tuple identifiers for each distinct attribute value. Numerical
entries are sorted according to k, which allows BFASTDC to use binary search1.
Finally, chunks and buffers are implemented as simple bitsets.

1 We have adapted binary search for procedure Predecessors(Aj , k).
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5 Experimental Study

In this section, we present our experimental study of BFASTDC. We compare
BFASTDC with FASTDC to evaluate the scalability of our algorithm in the
number of tuples and predicates. We also evaluate the performance of the algo-
rithms on discovering approximate and constants DCs. Finally, we evaluate the
effects that different sizes of chunks and buffers produce on the execution of
BFASTDC.

5.1 Experimental Setup

Implementation and Hardware. We implemented FASTDC and BFASTDC
using Java programming language version 1.8. The algorithms use the same
implementations of predicate space building and minimal cover search. To per-
form the experiments, we used a machine with a 3.4 GHz Core i7, 8 MB of L3
cache, 8 GB of memory, running Linux. The algorithms run in main memory
after dataset loading.

Datasets and Predicate Space. We used both synthetic and real-life
datasets2: Tax and Stock. Tax is a synthetic compilation of personal informa-
tion that includes fifteen attributes to represent addresses and tax-records. Stock
gathers data from historical S&P 500 stocks in the form of a relation with seven
attributes. We used Tax and Stock in our experiments because these datasets
have already been used to evaluate DC discovery [6]. With regard to predicate
spaces, we defined single and two-tuple predicates on: categorical attributes using
operators {=, �=}; numerical attributes using operators {=, �=, <,>,≤,≥}. We
defined predicates involving two different attributes provided that the values of
the two attributes were in the same order of magnitude.

5.2 Results and Discussion

In the first four experiments, we fixed chunk and buffer size of BFASTDC to
4000 kb and 12 kb, respectively. These parameters are discussed in the fifth
experiment. Furthermore, we report the average runtime of five runs for each
experiment. We consider a running time limit of 48 h for all runs.

Exp-1: Scalability in the Number of Tuples. We varied the number of
tuples from 10,000 to 1,000,000 for Tax, and from 10,000 to 122,000 for Stock.
Keeping the size of the predicate spaces constant for both datasets (|P| = 50),
we measured the running time in seconds of FASTDC and BFASTDC. Figure 4
shows their scaling behavior (Y axis are in log scale). The running time of both
algorithms increases in a quadratic trend as we add more tuples in their input.
However, the running time for BFASTDC were at least one order of magnitude

2 Available at: http://da.qcri.org/dc/.

http://da.qcri.org/dc/
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Fig. 4. Scalability of BFASTDC and FASTDC in the number of tuples.

smaller than the running time for FASTDC. To process 400,000 tuples of Tax
(see Fig. 4a), FASTDC took a little more than 2656 min. In contrast, BFASTDC
processed the same input in approximately 110 min; an improvement ratio of
approximately 24 times. FASTDC was not able to process more than 400,000
tuples of Tax within the running time limit. In turn, BFASTDC processed the
entire Tax dataset (one million tuples) in approximately 16 h. BFASTDC was
also faster than FASTDC when running over Stock (see Fig. 4b). It processed
the full dataset in approximately 47 min, while FASTDC took more than 12 h to
reach completion.

Exp-2: Scalability in the Number of Predicates. Fixing the algorithms
input on the first 20,000 tuples of Tax and Stock, we varied the number of pred-
icates from 10 to 60. The attributes for which predicates were added to the
predicate spaces were chosen at random. As shown in Fig. 5 (Y axis are in log
scale), the running time of the algorithms increases exponentially w.r.t. the num-
ber of predicates. In addition, the BFASTDC running time improvements over
FASTDC degrades when the search for minimal covers includes larger predicate
spaces.

Exp-3: Approximate DC Discovery. For this experiment, we kept the num-
ber of tuples and the size of predicate space constant (|r| = 20, 000 and |P| = 50)
for both datasets. We gradually increased the approximation levels ε from 10−6

to 2 × 10−5. Figure 6 shows the running time for the approximate versions of
BFASTDC and FASTDC (Y axis are in log scale). Despite their small improve-
ments, the running time for both algorithms, for either Tax or Stock, remains
in their original order of magnitude provided that only approximation levels dif-
fer. Indeed, varying the approximation levels did not impact on the algorithms’
running time as much as varying the number of tuples or predicates did.

Exp-4: Constant DC Discovery. We used the same number of tuples and
predicate space size as we did in experiment three. Then, we gradually increased
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Fig. 5. Scalability BFASTDC and FASTDC in the number of predicates.

the frequency threshold τ from 0.1 to 0.5. Figure 7 shows the running time that
each algorithm took to discover constant DCs (Y axis are in log scale). The
algorithms are sensitive to threshold τ . For Tax, smaller thresholds τ resulted
in longer running times. As for Stock, FASTDC and BFASTDC returned within
virtually the same running time because there were no constant predicates to be
considered by the variant portion of the algorithms.

Fig. 6. Approximate DC discovery. Fig. 7. Constant DC discovery.

Exp-5: BFASTDC Parameters. We report this experiment using only Tax
dataset because the same behavior and very similar parameters were seen for
Stock. Fixing |P| = 50, and |r| = 100, 000, we varied chunk size ω from 250 kb to
64,000 kb, and buffer size ρ from 5 kb to 19 kb. Figure 8 shows that the running
time does not improve as we rashly increase the size of chunks or buffers. For
example, configurations where ω < 10000 kb and ρ < 14 kb produced better
results if compared to configurations with higher values. The best setting was
ω = 4000 kb and ρ = 12 kb.

To better understand this result, we monitored the cache activities in the
evidence set building phase of BFASTDC. Table 3 shows some ratios between
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the monitoring of BFASTDC in its best setting and BFASTDC running in two
extreme settings. The setting with bigger ω and ρ suffers from L1 cache invali-
dation (i.e., chunks are bigger than the cache line leading to cache misses). But,
we observe an inflection point when accessing the last level cache (LLC): big-
ger chunks need less concurrent access with less cache pollution. Therefore, we
observe a sweet-spot where BFASTDC can be cache-efficient.

Fig. 8. Effect of different chunk/buffer sizes on running time.

Table 3. Cache behavior of the evidence set building phase of BFASTDC.

Chunk (ω) and buffer (ρ) sizes LLC misses L1 misses Running time

Baseline: ω = 4000 kb, ρ = 12 kb 1 1 1

Low extreme: ω = 250 kb, ρ = 5kb 2.868 0.621 1.577

High extreme: ω = 64000 kb, ρ = 19 kb 1.445 2.104 2.322

Discussion. Our experiments confirm our earlier hypothesis: there is no need to
check every predicate for every pair of tuples. With its attribute values organiza-
tion, BFASTDC tracks bit vectors only for tuple pairs that do satisfy predicates.
The bitwise representation of predicate satisfaction makes it possible to use logi-
cal operations, which are optimized in all modern CPU architectures. Such oper-
ations are cache-dependent because bit vectors are packed into processor words
for processing. That is why there was an inflection point in the last experiment
where the bigger the chunk and buffer sizes were, the worse the cache usage, and,
therefore, the higher the running time. Experiment one demonstrates the effec-
tiveness of BFASTDC in building the evidence set and the deep impact it had on
the overall DC discovery performance. The improvements were seen in the sub-
sequent experiments: BFASTDC was faster than FASTDC in approximate and
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constant DC discovery. Because of the exponential nature of the DFS used for
minimal cover search, the two algorithms did not scale well with the number of
predicates. Future studies could investigate not only algorithmic improvements
for this phase, but how approximate discovery fits in there.

6 Conclusions

We presented BFASTDC, a bitwise, instance-driven algorithm for mining min-
imal DCs from relational data. BFASTDC improves the evidence set building
phase of FASTDC based on two key principles: (i) it combines tuple identifiers
from related values and avoids testing every pair of tuples on every predicate,
and (ii) it exploits the implication relation between predicates to operate at bit
level. BFASTDC was up to 24 times faster than FASTDC in our experimental
study. In addition, BFASTDC is able to work with noisy datasets when it is mod-
ified to discover approximate and constant DCs. For those reasons, we believe
BFASTDC can be a valuable part of DC-dependent tools. Future research should
improve minimal covers search and evaluate the quality of the discovered DCs
on real use cases.
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Abstract. Data provides the basis for emerging scientific and inter-
disciplinary data-centric applications with the potential of improving
the quality of life for the citizens. However, effective data-centric appli-
cations demand data management techniques able to process a large
volume of data which may include sensitive data, e.g., financial trans-
actions, medical procedures, or personal data. Managing sensitive data
requires the enforcement of privacy and access control regulations, par-
ticularly, during the execution of queries against datasets that include
sensitive and non-sensitive data. In this paper, we tackle the prob-
lem of enforcing privacy regulations during query processing, and pro-
pose BOUNCER, a privacy-aware query engine over federations of RDF
datasets. BOUNCER allows for the description of RDF datasets in terms
of RDF molecule templates, i.e., abstract descriptions of the properties
of the entities in an RDF dataset and their privacy regulations. Further-
more, BOUNCER implements query decomposition and optimization
techniques able to identify query plans over RDF datasets that not only
contain the relevant entities to answer a query, but that are also regulated
by policies that allow for accessing these relevant entities. We empirically
evaluate the effectiveness of the BOUNCER privacy-aware techniques
over state-of-the-art benchmarks of RDF datasets. The observed results
suggest that BOUNCER can effectively enforce access control regulations
at different granularity without impacting the performance of query pro-
cessing.

1 Introduction

In recent years, the amount of both open data available on the Web and pri-
vate data exchanged across companies and organizations, expressed as Linked
Data, has been constantly increasing. To address this new challenge of effective
c© Springer Nature Switzerland AG 2018
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and efficient data-centric applications built on top of this data, data manage-
ment techniques targeting sensitive data such as financial transactions, medical
procedures, or various other personal data must consider various privacy and
access control regulations and enforce privacy constraints once data is being
accessed by data consumers. Existing works suggest the specification of Access
Control ontologies for RDF data [5,12] and their enforcement on centralized or
distributed RDF stores (e.g., [2]) or federated RDF sources (e.g., [8]). Albeit
expressive, these approaches are not able to consider privacy-aware regulations
during the whole pipeline of a federated query engine, i.e., during source selec-
tion, query decomposition, planning, and execution. As a consequence, efficient
query plans cannot be devised in a way that privacy-aware policies are enforced.

In this paper, we introduce a privacy-aware federated query engine, called
BOUNCER, which is able to enforce privacy regulations during query processing
over RDF datasets. In particular, BOUNCER exploits RDF molecule templates,
i.e., abstract descriptions of the properties of the entities in an RDF dataset
in order to express privacy regulations as well as their automatic enforcement
during query decomposition and planning. The novelty of the introduced app-
roach is (1) the granularity of access control regulations that can be imposed;
(2) the different levels at which access control statements can be enforced (at
source level and at mediator level) and (3) the query plans which include phys-
ical operators that enforce the privacy and data access regulations imposed by
the sources where the query is executed. The experimental evaluation of the
effectiveness and efficiency of BOUNCER is conducted over the state-of-the-art
benchmark BSBM for a medium size RDF dataset and 14 queries with different
characteristics. The observed results suggest the effective and efficient enforce-
ment of access control regulations during query execution, leading to minimal
overhead in time incurred by the introduced access policies.

The remainder of the article is structured as follows. We motivate the privacy-
aware federated query engine BOUNCER using a real case scenario from the
medical domain in Sect. 2. In Sect. 4, we introduce the BOUNCER access policy
model and in Sect. 5 we formally define the query decomposition and query
planning techniques applied inside BOUNCER and present the architecture of
our federated engine. We perform an empirical evaluation of our approach and
report on the evaluation results in Sect. 6. Finally, we discuss the related work
in Sect. 7 and conclude with an outlook on future work in Sect. 8.

2 Motivating Example

We motivate our work using a real-world use case from the biomedical domain
where data sources from clinical records and genomics data have been inte-
grated into an RDF graph. For instance, Fig. 1 depicts two RDF subgraphs or
RDF molecules [7]. One RDF molecule represents a patient and his/her clinical
information provided by source (S1), while the other RDF molecule models the
results of liquid biopsy available in a research institute (S2). The privacy policy
enforced at the hospital data source states that projection (view) of values is
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Fig. 1. Motivating Example. Federation of RDF data sources S1 and S2. (a) An RDF
molecule representing a lung cancer patient; thicker arrows correspond to controlled
properties. (b) An RDF molecule representing the results of a liquid biopsy of a patient.
Servers at the hospital can perform join operations.

not permitted. Properties name, date of birth, and address of a patient (thicker
arrows in Fig. 1) are controlled, i.e., query operations are not permitted. Further-
more, it permits a local join operation (on premises of the hospital data server)
of properties, such as ex:mutation aa - peptide sequence changes that are stud-
ied for a patient, ex:targetTotal - percentage of circulating tumor DNA in
the blood sample of liquid biopsy, ex:egfr mutated - whether the patient has
mutations that lead to EGFR over-expression, and ex:smoking - whether the
patient is a smoker or not. Suppose a user requires to collect the Pubmed ID,
mutation name, the genomic coordinates of the mutation and accession num-
bers of the genes associated with non-smoking lung cancer patients whose liquid
biopsy has been studied for somatic mutations that involve EGFR gene amplifi-
cation (over-expression). Figure 2a depicts a SPARQL query that represents this
request; it is composed of 11 triple patterns. The first five triple patterns are
executed against S1 while the last six triple patterns are evaluated over S2.

Existing federated query engines are able to generate query plans over these
data sources. Figure 2b shows a query execution plan generated by FedX [11]
federated query engine for the given query. FedX decomposes the query into
two subqueries that are sent to each data source. FedX uses a nested loop
join operator to join results from both sources. This operator pushes down the
join operation to the data sources by binding the join variables of the right
operand of the operator with values extracted from the left operand. First,
triple patterns from t1−t5 are executed on S1, extracting values for the vari-
ables ?mutation aa, ?lbiop, ?targetTotal, and ?patient. Then, the shared
variable, ?mutation aa, is bound and the triple patterns t6−t11 are executed
over S2. However, executing this plan yields no answer since the privacy-policy of
the hospital does not allow projection of values from the first subquery. Figure 2c
shows the query execution plan generated by ANAPSID [1] federated query
engine. ANAPSID creates a bushy plan where join operation is performed using
GJoin operator (special type of symmetric hash join operator). This operator
executes the left and right operands and makes join on the federated engine. In
order to check whether the results returned from the subqueries on the left and
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Fig. 2. Motivating Example. (a) A SPARQL query composed of four star-shaped sub-
queries accessing controlled and public data from S1 and S2. (b) FedX generates a plan
with two subqueries. (c) ANAPSID decomposed the query into three subqueries. (d)
MULDER identifies a plan with four star-shape subqueries. None of the query plan
respects privacy policies of S1 and S2.

right operand can be joined, the values of shared variables from both operands
have to be checked by ANAPSID, which requires extracting all values for all
variables in both sources. This ignores the privacy policy enforced which yields
no answer for the given query. The MULDER [7] federated query engine gen-
erates a bushy plan and decomposes the query by identifying matching RDF
Molecule Templates (PRDF-MTs) as a subquery, as shown in Fig. 2d. PRDF-
MT is a template that represents a set of RDF molecules that share the same
RDF type (rdf:type). MULDER assigns nested hash join operator to join triple
patterns t3−t5 associated with Patient PRDF-MT and triple patterns t1−t2
that are associated with Liquid Biopsy PRDF-MT. Like in FedX, this operator
extracts values for join and projection variables from the left operand, and then
binds them to the same variables of the right operand. Like FedX and ANAP-
SID plans, the MULDER plan also ignores the privacy policy enforced at the
hospital data source, which would yield an empty query answer. All of these
federated engines fail to answer the query, because they ignore the privacy pol-
icy of the data sources during query decomposition as well as query execution
plan generation (e.g., wrong join ordering). Also, MULDER ignores the privacy
policy of the hospital during query decomposition and splits the triple patterns
from this source. This leads to trying to extract results on the federation system
which is not possible because of the restrictions enforced by the hospital. In addi-
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tion to the join order problem, ANAPSID selects a wrong join operator which
requires data from S1 to be projected for the restricted properties, i.e., t1−t5. In
this paper, we present BOUNCER a privacy-aware federated query engine able
to identify plans that respect the above-mentioned privacy and access control
policies.

3 Problem Statement and Proposed Solution

In this section, we formalize the problem of privacy-aware query decomposition
over a federation of RDF data sources. First we define a set of privacy-aware
predicates that represent the type of operations that can be performed over an
RDF dataset according to the access regulations of the federation.

Definition 1 (Privacy-Aware Operations). Given a federated query engine
M, a federation F of RDF datasets D, and a dataset Di in D. Let pij be an RDF
property with domain the RDF class Cij. The set of operations to be executed by
M against F is defined as follows:

• join local(Di, pij, Cij) - this predicate indicates that the join operation on
property pij can be performed on the dataset Di.

• join fed(Di, pij, Cij) - this predicate indicates that the join operation on
property pij can be performed by M. The truth value of join fed(Di, pij, Cij)
implies to the truth value of join local(Di, pij, Cij).

• project(Di, pij, Cij) - this predicate indicates that the values of the property
pij can be projected from dataset Di. The truth value of project(Di, pij, Cij)
implies to the truth value of join fed(Di, pij, Cij).

Definition 2 (Access Control Theory). Given a federated query engine M,
a set of RDF datasets D = {D1, . . . , Dn} of a federation F . An Access Control
Theory is defined as the set of privacy-aware operations that can be performed
on property pij of RDF class Cij over dataset Di in D.

The access control theory for the federation described in our running example
of Fig. 2a can be defined as a conjunction of the following operations:

• join local(s1, ex:mutation aa, Liquid Biopsy),
• join local(s1, ex:biopsy, Patient), project(s2, ex:located in, Mutation),
• join local(s1, ex:targetTotal, Liquid Biopsy), project(s2, ex:acc num, Gene),
• join local(s1, ex:smoking, Patient), join local(s1, ex:egfr mutated, Patient),
• project(s2, ex:mutation aa, Mutation), project(s2, ex:gene name, Gene),
• project(s2, ex:mutation loci, Mutation), project(s2, ex:mentioned in, Muta-

tion).

Note that the RDF properties :name, :gender, :address, and :birthdate of the
Patient RDF class do not have operations defined in the access control theory.
In our approach this fact indicates that these properties are controlled and any
operation on these properties performed by the federated engine is forbidden.
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Property 1. Given a property pij of an RDF class Ci from a dataset Di in a fed-
eration F and an access control theory T . If there is no privacy-aware predicate
in T that includes pij , then pij is a controlled property and no federation engine
can perform operations over pij against Di.

A basic graph pattern (BGP) in a SPARQL query is defined as a set of
triple patterns {t1, . . . , tn}. A BGP contains one or more triple patterns that
involve a variable being projected from the original SELECT query. We call
these triple patterns projected triple patterns, denoted as PTP = {t1, . . . , tm}
such that PTP ⊆ BGP . A BGP includes at least one star-shaped subquery
(SSQ), i.e., BGP = {SSQ1, . . . , SSQn}. A star-shaped subquery is a set of
triple patterns that share the same subject variable or object [13]. Further-
more, an SSQ may contain zero or more triple patterns that involve a variable
which is being projected from the original SELECT query. We call these triple
patterns projected triple patterns of an SSQ, denoted as PTS = {t1, . . . , tk}
where PTSi ⊆ SSQi. Let PRJ be a set of triple patterns that involve a vari-
able being projected from the original SELECT query, then projected triple
patterns of a BGP , is a subset of PRJ , i.e., PTP ⊆ PRJ and a projected
triple pattern of SSQi is a subset of PTP , i.e., PTSi ⊆ PTP . For example, in
our running example, there is only one BGP , BGP1 = {t1, . . . , t11}, for which
projected variables belong to triple patterns, PRJ = {t6, t7, t8, t11}. Projected
triple patterns of BGP1 are the same as PRJ , PTPBGP1 = {t6, t7, t8, t11}, since
there is only one BGP . Furthermore, BGP1 can be clustered into four start-
shaped subqueries, SSQsBGP1 = {SSQ1={t1−t2}, SSQ2={t3−t5}, SSQ3={t6−t9},
SSQ4={t10−t11}}. Out of four SSQs of BGP1, only the last two SSQs have
triple patterns that are also in the projected triple patterns, i.e., PTSSSQ1 = H,
PTSSSQ2 = H,PTSSSQ3 = {t6, t7, t8}, PTSSSQ4 = {t11}.

Property 2. Given a SPARQL query Q such that a variable ?v is associated
with a property p of a triple pattern t in a BGP and ?v is projected in Q.
Suppose an access control theory T regulates the access of the datasets in D of
the federation F . A federation engine M accepts Q iff there is a privacy-aware
operation project(Di, p, C) in T for at least an RDF dataset Di in D.

A privacy-aware query decomposition on a federation is defined. This for-
malization states the conditions to be met by a decomposition in order to be
evaluated over a federation by enforcing their access regulations.

Definition 3 (Privacy-Aware Query Decomposition). Let BGP be a basic
graph pattern, PTP a set of projected triple patterns of a BGP , T an access
control theory, and D = {D1, . . . , Dn} a set of RDF datasets of a federation
F . A privacy-aware decomposition P of BGP in D, γ(P |BGP,D, T, PTP ), is
a set of decomposition elements, Φ = {φ1, . . . , φk}, such that φi is a four-tuple,
φi = (SQi, SDi, PSi, PTSi), where:

• SQi is a subset of triple patterns in BGP , i.e., SQi ⊆ BGP , and SQi �= H,
such that there is no repetition of triple patterns, i.e., If ta ∈ SQi, then
!∃ta ∈ SQj : SQj ⊂ BGP ∧ i �= j,
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• SDi is a subset of datasets in D, i.e., SDi ⊆ D, and SDi �= H,
• PSi is a set of privacy-aware operations that are permitted on triple patterns

in SQi to be performed on datasets in SDi and PSi ⊆ T , and PSi �= H,
• PTSi is a set of triple patterns in SQi that contains variables being projected

from the original SELECT query, i.e., PTSi ⊆ SQi ∧ PTSi ⊆ PTP ,
• The set composed of SQi in the decompositions φi ∈ Φ corresponds to a

partition of BGP and
• The selected RDF datasets are able to project out the attributes in the project

clause of the query, i.e., ∀ta ∈ SQi : ta ∈ PTP , then project(Da, paj , Caj) ∈
PSi where ta = (s, paj , o), Da ∈ SDi, and SQi ∈ φi.

After defining what is a decomposition of a query, we state the problem of
finding a suitable decomposition for a query and a given set of data sources.

Privacy-Aware Query Decomposition Problem. Given a SPARQL query
Q, RDF datasets D = {D1, . . . ,Dm} of a federation F , and access control
theory T . The problem of decomposing Q in D restricted by T is defined as
follows. For all BGPs, BGP = {t1, . . . , tn} in Q, find a query decomposition
γ(P |BGP,D, T, PTP ) that satisfies the following conditions:

• The evaluation of γ(P |BGP,D, T, PTP ) in D is complete according to the
privacy-aware policies of the federation in T . Suppose D∗ represents the max-
imal subset of D where the privacy policies of each RDF dataset Di ∈ D∗

allow for projecting and joining the properties from Di that appear in
Q1. Then the evaluation of BGP in D∗ is equivalent to the evaluation of
γ(P |BGP,D, T, PTP ) and the following expression holds:

[[BGP]]D∗ = [[γ(P |BGP,D, T, PTP )]]D

• The cost of executing the query decomposition γ(P |BGP,D, T, PTP ) is min-
imal. Suppose the execution time of a decomposition P ′ of BGP in D is
represented as cost(γ(P ′|BGP,D, T, PTP )), then

γ(P |BGP,D, T, PTP ) = argmin
γ(P ′|BGP,D,T,PTP )

cost(γ(P ′|BGP,D, T, PTP ))

To solve this problem, we present BOUNCER, a federated query engine able
to identify query decompositions for SPARQL queries and query plans that effi-
ciently evaluate SPARQL queries over a federation. Two definitions are presented
for a query plan over a decomposition. The next two functions are presented in
order to facilitate the understanding of the definition of a query plan.

Definition 4 (The property function prop(*)). Given a set of triple pat-
terns, TPS, the function prop(TPS) is defined as follows:

prop(TPS) = {p | (s, p, o) ∈ TPS ∧ p is constant}
1 Predicates project(Di, pij , Cij), join fed(Di, pij , Cij) and join local(Di, pij , Cij)

are part of T for all properties in triple patterns in Q that can be answered by
Di.
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Definition 5 (The variable function var(*)). Given a privacy-aware decom-
position, Φ, the function var(Φ) is defined inductively as follows:

1. Base case: Φ = {φ1}, then var(Φ) = {?x | (s, p, o) ∈ SQ1, where φ1 =
(SQ1, SD1, PS1, PTS1), ?x = s ∧ s is a variable ∨ ?x = o ∧ o is a variable}

2. Inductive case: Let Φ1 and Φ2 be disjoint decompositions such that Φ =
Φ1 ∪ Φ2 then, var(Φ) = var(Φ1) ∪ var(Φ2).

Definition 6 (A Valid Plan over a Privacy-Aware Decomposition).
Given a privacy-aware decomposition γ(P |BGP,D, T, PTP ): Φ = {φ1, . . . , φn},
a valid query plan, α(Φ), is defined inductively as follows:

1. Base Case: If only one decomposition φ1 belongs to Φ, i.e., Φ = {φ1},
the plan unions all the service graph patterns over the selected RDF sources.
Thus, α(Φ) = UNIONdi∈SD1(SERV ICE di SQ1) is a valid plan2,3, where:

• φ1 = (SQ1, SD1, PS1, PTS1) is a valid privacy-aware decomposition;
• All the variables projected in the query have the permission to be projected,

i.e., ∀pi1 ∈ prop(PTS1), project(Di, pi1, Ci1) ∈ PS1.
2. Inductive Case: Let Φ1 and Φ2 be disjoint decompositions such that Φ =

Φ1 ∪ Φ2. Then, α(Φ) = (α(Φ1) ∗ α(Φ2)) is a valid plan, where:
(a) α(Φ1) and α(Φ2) are valid plans.
(b) The join variables appear jointly in the triple patterns of Φ1 and Φ2, i.e.,

joinV ars = var(Φ1) ∩ var(Φ2).
(c) J is a set of joint triple patterns involving join variables in BGP :

• J = {t|variable(t) ⊆ joinV ars, (t ∈ Φ1(SQ) ∨ t ∈ Φ2(SQ))}
• Φ1(SQ) = {SQi|∀φi ∈ Φ1, φi = (SQi, SDi, PSi, PTSi)}, and
• Φ2(SQ) = {SQj |∀φj ∈ Φ2, φj = (SQj , SDj , PSj , PTSj)}.

(d) The operator * is a JOIN operator, i.e., α(Φ) = (α(Φ1) JOIN α(Φ2)) is a
valid plan, iff ∀pij ∈ prop(J ), join fed(Di, pij , Cij) ∈ (Φ1(PS) ∩Φ2(PS)),
Φ1(PS) = {PSi|∀φi ∈ Φ1, φi = (SQi, SDi, PSi, PTSi)}, and Φ2(PS) =
{PSj |∀φj ∈ Φ2, φj = (SQj , SDj , PSj , PTSj)}.

(e) The operator * is a DJOIN operator, i.e., α(Φ) = (α(Φ1) DJOIN α(Φ2))
is a valid plan iff ∀pij ∈ prop(J ), join fed(Di, pij , Cij) ∈ Φ1(PS) and
join local(Di, pij , Cij) ∈ Φ2(PS)

4.

Next, we define the BOUNCER architecture and the main characteristics of the
query decomposition and execution tasks implemented by BOUNCER.

4 BOUNCER: A Privacy-Aware Engine

Web interfaces provide access to RDF datasets, and can be described in terms
of resources and properties in the datasets. BOUNCER employs privacy-aware
RDF Molecule Templates for describing and enforcing privacy policies.

2 For readability, UNIONdi∈SD+i represents SPARQL UNION operator.
3 SERV ICE corresponds to the SPARQL SERVICE clause.
4 DJOIN- is a dependent JOIN [14].
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Fig. 3. BOUNCER Architecture. BOUNCER receives a SPARQL query and outputs
the results of executing the SPARQL query over a federation of SPARQL endpoints. It
relies on PRDF-MT descriptions and privacy-aware policies to select relevant sources,
and perform query decomposition and planning. The query engine executes a valid
plan against the selected sources.

Definition 7 (Privacy-Aware RDF Molecule Template(PRDF-MT)).
A privacy-aware RDF molecule template (PRDF-MT) is a 5-tuple=<WebI, C,
DTP, IntraL, InterL>, where:

• WebI – is a Web service API that provides access to an RDF dataset G via
SPARQL protocol;

• C – is an RDF class such that the triple pattern (?s rdf:type C) is true in G;
• DTP – is a set of triples (p, T, op) such that p is a property with domain C

and range T, the triple patterns (?s p ?o) and (?o rdf:type T) and (?s rdf:type
C) are true in G, and op is an access control operator that is allowed to be
performed on property p;

• IntraL – is a set of pairs (p,Cj) such that p is an object property with domain
C and range Cj, and the triple patterns (?s p ?o) and (?o rdf:type Cj) and
(?s rdf:type C) are true in G;

• InterL – is a set of triples (p,Ck,SW) such that p is an object property with
domain C and range Ck; SW is a Web service API that provides access to
an RDF dataset K, and the triple patterns (?s p ?o) and (?s rdf:type C) are
true in G, and the triple pattern (?o rdf:type Ck) is true in K.

Figure 3 depicts BOUNCER architecture. Given a SPARQL query, the source
selection and query decomposition component solves the problem of identifying
a privacy-aware query decomposition; they select PRDF-MTs for subqueries
(SSQs) by consulting PRDF-MT metadata store and the access control evaluator
component. The source selection and decomposition component is privacy-aware
decomposition; it is given to the query planning component for creating a valid
plan, i.e., access policies of the selected data sources should be respected. The
valid plan is executed in a bushy-tree fashion by the query execution.
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5 Privacy-Aware Decomposition and Execution

This section presents the privacy-aware techniques implemented by BOUNCER.
They rely on the description of the RDF datasets of a federation in terms of
privacy-aware RDF molecule templates (PRDF-MTs) to identify query plans that
enforce data access control regulations. More importantly, these techniques are
able to generate query execution plans whose operators force the execution of
queries at the dataset sites in case data cannot be transferred or accessed.

5.1 Privacy-Aware Source Selection and Decomposition

The BOUNCER privacy-aware source selection and query decomposition is
sketched in Algorithm 1. Given a BGP in a SPARQL query Q, BOUNCER
first decomposes the query into star-shaped subqueries (SSQs), (Line 2). For
instance, our running example query, in Fig. 2a, is decomposed into four SSQs,
as shown in Fig. 4, i.e., SSQs around the variables ?lbiop, ?patient, ?cmut,
and ?gene, respectively. The first SSQ (denoted ?lbiop-SSQ) has two triple
patterns, t1–t2, the second SSQ (?patient-SSQ) is composed of three triple

Fig. 4. Example of Privacy-Aware Decompositions. Decompositions for SPARQL query
in the motivating example. Nodes represent SSQs and colors indicate datasets where
they are executed; edges correspond to join variables. (a) Initial query decomposed into
four SSQs. (b) Decomposition result where the subqueries ?lbiop-SSQ and ?patient-
SSQ are composed into a single subquery to comply with the privacy policy of data
source S1, while ?cmut-SSQ and ?gene-SSQ are also composed to push down the join
operation to the data source S2. (Color figure online)

Fig. 5. Example of Privacy-aware RDF Molecule Templates (PRDF-MTs). Two
PRDF-MTs for the SPARQL query in the motivating example. According to the pri-
vacy regulations the properties :name, :birthdate, and :addresss are controlled; they
do not appear in the PRDF-MTs.
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Algorithm 1. Privacy-Aware Query Decomposition: BG - Basic Graph Pattern,
Q - Query, PRMT - Access-aware RDF Molecule Templates
1: procedure Decompose(BGP , Q, PRMT )
2: SSQs ← getSSQs(BGP ) � Partition the BGP to SSQs
3: RES ← selectSource(PRMT, PRMT ) � RES=[(SSQ, PRMT, DataSource)]
4: A ← getAccessPolicies(RES); Φ ← [ ]; DR ← { } � access control statements
5: for (SSQ, RMT, p, ds, pred) ∈ A do
6: if p ∈ Query.PRJ ∧ pred ! = project(ds, p, RMT.type) then return [ ]
7: DR[SSQ][PTS].append(t) | t = (s, p, o) ∧ t ∈ SSQ | p ∈ Query.PRJ
8: DR[SSQ][SD].append(ds) ∧ DR[SSQ][PS].append(pred)
9: end for

10: for (SSQi, SDi, PSi, PTSi) ∈ DR do
11: φi = (SQi, SDi, PSi, PTSi) | SQi ← SSQi

12: if join local() ∈ PSi then � If SSQi contains restricted property
13: for (SSQj , SDj , PSj , PTSj) ∈ DR do
14: if SDi ∩ SDj ı H then
15: φi.extend(SSQj , SDj , PSj , PTSj)
16: DR.remove((SSQj , SDj , PSj , PTSj)) ∧ done ← True
17: end for
18: if NOT done then return [ ]
19: end if
20: Φ.append(φi)
21: end for
22: return Φ � decomposed query
23: end procedure

patterns, t3–t5, the third SSQ (?cmut-SSQ) includes four triple patterns, and
the fourth SSQ (?gene-SSQ) is composed of two triple patterns, t10–t11 (Fig. 5).

Figure 4a presents an initial decomposition with the selected PRDF-MTs for
each SSQs. The subquery ?patient-SSQ is joined to the subquery ?lbiop-SSQ
via ex:biopsy property. Similarly, ?cmut-SSQ is joined to ?gene-SSQ via the
ex:located in property. Given the set of properties in each SSQ and the joins
between them, BOUNCER finds a matching PRDF-MT for each SSQs (Line
3), i.e., it matches the subqueries ?patient-SSQ, ?lbiop-SSQ, ?cmut-SSQ, and
?gene-SSQ to the PRDF-MTs Patient, Liquid Biopsy, Mutation, and Gene,
respectively. Once the PRDF-MTs are identified for the SSQs, BOUNCER ver-
ifies the access control policies associated with them (Line 4). A subquery SSQ
associated with an PRDF-MT(s) that grants the project() permission to all
of its properties is called Independent SSQ ; otherwise, it is called Dependent
SSQ. An SSQ in a SPARQL query Q is called dependent iff a property of at
least one triple pattern in SSQ is associated with the privacy-aware operation
join local(). On the other hand, an SSQ is independent iff the privacy-aware
operation project() is true for the properties of the triple patterns in SSQ.

If the value of the controlled property is in the projection list, i.e., if the
property of a triple pattern in an SSQ have join local() or join fed() pred-
icate, then the decomposition process exits with empty result (Line 6). Once
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the SSQs are associated with PRDF-MTs, the next step is to merge the SSQs
with the same source and push down the join operation to the data source.
To comply with access control policies of a dataset, i.e., when the properties of
an SSQ have only the join local() permission, the join operation with this
SSQ should be done at the data source. Hence, if two SSQs can be executed at
the same source, then BOUNCER decomposes them as a single subquery (SQ)
(Lines 10–21). This technique may also improve query execution time by per-
forming join operation at the source site. Figure 4b shows a final decomposition
for our running example. ?lbiop-SSQ and ?patient-SSQ are merged because
they are dependent and the join operation can be executed at the source.

5.2 BOUNCER Privacy-Aware Query Planning Technique

Algorithm 2 sketches the BOUNCER privacy-aware query planing technique.
Given a privacy-aware decomposition Φ of a query Q, BOUNCER finds a valid
plan that respects the privacy-policy of the data sources. For each subquery in
φi a service-graph pattern is created (Lines 4 and 6) and the SPARQL UNION
operator is used whenever the subquery can be executed over more than one data
source. Then, BOUNCER selects another subquery, φj that is joinable with φi

(Line 5). If φi is composed of dependent SSQ(s) (resp., independent SSQ(s))
and φj is composed of an independent SSQ(s) (resp., dependent SSQ(s)), then a
dependent join operator (DJOIN) is selected (Lines 9–12). If both φi and φj are
merged of an independent SSQ(s), then any JOIN operator can be chosen (Lines
13–14). Finally, otherwise, an empty plan is returned indicating that there is no
valid plan for the input query (Line 16).

Algorithm 2. Query Planning over Privacy-Aware Decomposition: Φ - Privacy-
Aware query decomposition, Q - SELECT query
1: procedure makePlan(Φ, Q)
2: α ← []
3: for φi ∈ Φ do
4: σ1 ← UNIONdi∈SDi∧SDi∈φi(SERV ICE di SQi)
5: for φj ∈ Φ | φi �= φj ∧ var(SQi) ∩ var(SQj) ı H do � If joinable
6: σ2 ← UNIONdj∈SDj (SERV ICE dj SQj)
7: J ← { t | vari(t) ⊆ [var(SQi) ∩ var(SQj)] ∧ t ∈ [SQi ∪ SQj ]}
8: ρ ← prop(J ) � Properties of join variables
9: if ∃join local() ∈ PSi ∧ ∀predp∈ρ ∈ PSj | predp∈ρ ⇒ join fed() then

10: α.append((σ2 DJOIN σ1)); joined ← True � Dependent JOIN
11: if ∃join local() ∈ PSj ∧ ∀predp∈ρ ∈ PSi | predp∈ρ ⇒ join fed() then
12: α.append((σ1 DJOIN σ2)); joined ← True � Dependent JOIN
13: if ∀predp∈ρ ∈ [PSi ∪ PSj ] | predp∈ρ ⇒ join fed() then
14: α.append((σ1 JOIN σ2)); joined ← True � Independent JOIN
15: end for
16: if ∃join local() ∈ PSi ∧ NOT joined then return [ ] � No valid plan
17: end for
18: return α
19: end procedure
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6 Empirical Evaluation

We study the efficiency and effectiveness of BOUNCER. First, we assess the
impact of access-control policies enforcement and BOUNCER is compared to
ANAPSID, FedX, and MULDER. Then, the performance of BOUNCER is eval-
uated. We study the following research questions: (RQ1) Does privacy-aware
enforcement employed during source selection, query decomposition, and plan-
ning impact query execution time? (RQ2) Can privacy-aware policies be used
to identify query plans that enhance execution time and answer completeness?

Fig. 6. Decomposition and Execution Time. BOUNCER decomposition and planning
are more expensive than baseline (MULDER), but BOUNCER generates more efficient
plans and overall execution time is reduced.

Benchmarks: The Berlin SPARQL Benchmark (BSBM ) generates a dataset of
200 M triples and 14 queries; answer size is limited to 10,000 per query.

Metrics: (i) Execution Time: Elapsed time between the submission of a query
to an engine and the delivery of the answers. Timeout is set to 300 s. (ii)
Throughput: Number of answers produced per second; this is computed as the
ratio of the number of answers to execution time in seconds.

Implementation: BOUNCER privacy-aware techniques are implemented in
Python 3.5 and integrated into the ANAPSID query engine. The BSBM dataset
is partitioned into 8 parts (one part per RDF type) and deployed on one machine
as SPARQL endpoints using Virtuoso 6.01.3127, where each dataset resides in a
dedicated Virtuoso docker container. Experiments are executed on a Dell Pow-
erEdge R805 server, AMD Opteron 2.4 GHz CPU, 64 cores, 256 GB RAM.

Experiment 1: Impact of Access Control Enforcement. The impact of
privacy-aware processing techniques is studied, as well as the overhead on source
selection, decomposition, and execution. In this experiment, the privacy-aware
theory enables all the operations over the properties of the federation, i.e.,
all the operations are defined for each property and dataset. MULDER and



82 K. M. Endris et al.

BOUNCER are compared; Fig. 6 reports on decomposition, planning, and exe-
cution time per query. Both engines generate the same results and BOUNCER
consumes more time in query decomposition and planning. However, the overall
execution time is lower in almost all queries. These results suggest that even there
is an impact on query processing, BOUNCER is able to exploit privacy-aware
polices, and generates query plans that speed up query execution.

Experiment 2: Impact of Privacy-Aware Query Plans. The privacy-
aware query plans produced by BOUNCER are compared to the ones gen-
erated by state-of-the-art query engines. In this experiment, the privacy-aware
theory enables local joins for Person, Producer, Product, and ProductFeature,
and projections of the properties of Offer, Review, ProductType, and Vendor.
Figure 7 reports on the throughput of each query engine. As observed, the query
engines produced different query plans which allow for high performance. How-
ever, many of these plans are not valid, i.e., they do not respect the privacy-aware
policies in the theory. For instance, ANAPSID produces bushy tree plans around
gjoins; albeit efficient, these plans violate the privacy policies. FedX and MUL-
DER are able to generate some valid plans–by chance– but fail in producing
efficient executions. On the contrary, BOUNCER generates valid plans that in
many cases increase the performance of the query engine. Results observed in
two experiments suggest that efficient query plans can be identified by exploiting
the privacy policies; thus, RQ1 and RQ2 can be positively answered.

Fig. 7. Efficiency of Query Plans. Existing engines are compared based on throughput.
ANAPSID plans are efficient but no valid. FedX and MULDER generate valid plans
(by chance) but some are not efficient. BOUNCER generates both valid and efficient
plans and overall execution time is reduced.

7 Related Work

The data privacy control problem has received extensive attention by the
Database community; approaches by De Capitani et al. [6] and Bater et al. [3]
are exemplars that rely on an authority network to produce valid plans. Albeit
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relevant, these approaches are not defined for federated systems; thus, the tasks
of source selection and query decomposition are not addressed. BOUNCER also
generates valid plans, but being designed for SPARQL endpoint federations, it
also ensures that only relevant endpoints are selected to evaluate these valid
plans. The Semantic Web community has also explored access control models
for SPARQL query engines; RDF named graphs [5,8,12] and quad patterns [9]
are used to enforce access control policies. Most of the work focuses on the
specification of access control ontologies and enforcement on RDF data [5,12]
stored in a centralized RDF store, while others explore access control specifi-
cation and enforcement on distributed RDF stores [2,4] and federated query
processing [8,10] scenarios. Costabello et al. [5] present SHI3LD, an access con-
trol framework for RDF stores accessed on mobile devices; it provides a pluggable
filter for generic SPARQL endpoints that enforces context-aware access control
at named graph level. Kirane et al. [9] propose an authorization framework that
relies on stratified Datalog rules to enforce access control policies; RDF quad pat-
terns are used to model permissions (grant or deny) on named graphs, triples,
classes, and properties. Ubehauen et al. [12] propose an access control approach
at the level of named graphs; it binds access control expressions to the context of
RDF triples and uses a query rewriting method on an ontology for enabling the
evaluation of privacy regulations in a single query. SAFE [8] is designed to query
statistical RDF data cubes in distributed settings and also enables graph level
access control. BOUNCER is a privacy-aware federated engine where policies
are defined over RDF properties of PRDF-MTs; it also enables access control
statements at source and mediator level. More important, BOUNCER gener-
ates query plans that both enforce privacy regulations and speed up execution
time.

8 Conclusion and Future Work

We presented BOUNCER, a privacy-aware federated query engine for SPARQL
endpoints. BOUNCER relies on privacy-aware RDF Molecule Templates
(PRDF-MTs) for source description and guiding query decomposition and plan
generation. Efficiency of BOUNCER was empirically evaluated, and results
suggest that it is able to reduce query execution time and increase answer com-
pleteness by producing query plans that comply with the privacy policies of the
data sources. In future work, we plan to integrate additional Web access inter-
faces, like RESTful APIs, and empower PRDF-MTs with context-aware access
policies.
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Abstract. Minimising information loss on anonymised high dimensional
data is important for data utility. Syntactic data anonymisation algo-
rithms address this issue by generating datasets that are neither use-
case specific nor dependent on runtime specifications. This results in
anonymised datasets that can be re-used in different scenarios which
is performance efficient. However, syntactic data anonymisation algo-
rithms incur high information loss on high dimensional data, making
the data unusable for analytics. In this paper, we propose an optimised
exact quasi-identifier identification scheme, based on the notion of k-
anonymity, to generate anonymised high dimensional datasets efficiently,
and with low information loss. The optimised exact quasi-identifier iden-
tification scheme works by identifying and eliminating maximal par-
tial unique column combination (mpUCC) attributes that endanger
anonymity. By using in-memory processing to handle the attribute selec-
tion procedure, we significantly reduce the processing time required. We
evaluated the effectiveness of our proposed approach with an enriched
dataset drawn from multiple real-world data sources, and augmented
with synthetic values generated in close alignment with the real-world
data distributions. Our results indicate that in-memory processing drops
attribute selection time for the mpUCC candidates from 400s to 100s,
while significantly reducing information loss. In addition, we achieve a
time complexity speed-up of O(3n/3) ≈ O(1.4422n).

1 Introduction

High dimensional data holds the advantage of enabling a myriad of data analyt-
ics operations. Yet, the growth in amounts of data available has also increased
the possibilities of obtaining both direct and correlated data to describe users to
a highly fine-grained degree. Data shared with data analytics service providers
must therefore be privacy preserving to protect against de-anonymisation inci-
dents [2,7,33,34,42], and usable to generate correct query results [1].

In contrast to their semantic counterparts, syntactic data anonymisation
algorithms such as, k-anonymity, l-diversity, and t-closeness, are better for high
c© Springer Nature Switzerland AG 2018
S. Hartmann et al. (Eds.): DEXA 2018, LNCS 11029, pp. 85–100, 2018.
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dimensional data anonymisation because the anonymised datasets are not
use-case specific or reliant on runtime specifications. The generated syntac-
tic anonymised datasets can be reused for several purposes, which is perfor-
mance efficient. Yet, studies of syntactic anonymisation algorithms show that
the anonymisation problem is NP-hard [8,24,29], and the anonymised data is
vulnerable to semantics-based attacks [23,26,38,43]. Furthermore, existing syn-
tactic data transformation techniques like Generalisation, Suppression, and Per-
turbation incur high levels of information loss when applied to high dimensional
datasets, which impacts negatively on query processing and on the quality of
data analytics results. Semantic anonymisation algorithms, like differential pri-
vacy, alleviate information loss and de-anonymisations [4,6,9], but are designed
for pre-defined use cases where knowledge of the composition of required dataset
is known before runtime. Pre-processing large high dimensional datasets on a
per-query basis impacts negatively on performance. Furthermore, postponing
data anonymisation to runtime can enable colluding users to run multiple com-
plimentary queries to return datasets that when combined, provide informa-
tion to enable partial or even complete de-anonymisation of the original dataset
[4,6,9,18]. Kifer et al. [18] address this problem with “non-interactive” differen-
tial privacy in which user queries are statistically evaluated apriori to identify
and prevent collusions, but the performance issue remains.

In this paper, we propose an optimised exact quasi-identifier identification
scheme, based on the notion of k-anonymity, to generate anonymised high dimen-
sional datasets efficiently. The reason is that using a combination of quasi-
identifiers and sensitive attributes protects against de-anonymisation. The opti-
mised exact quasi-identifier identification scheme is based on optimisation tech-
niques for the exponential and W[2]-complete search for quasi-identifiers [5], and
works by prefiltering maximal partial unique column combination (mpUCC) can-
didates, to eliminate attributes that endanger anonymity irrespective of the use
case scenario. We reduce the time complexity of the anonymisation algorithm
by using in-memory processing to parallelise the attribute selection procedure.
We evaluated the effectiveness of our proposed approach, based on an enriched
dataset drawn from multiple real-world data sources and augmented with syn-
thetic values generated in close alignment with the real-world data distributions.
Our results indicate that for 80 columns on average, in-memory processing drops
attribute selection time for the mpUCC candidates from 400s to under 100s.
In addition, we achieve a theoretical speed-up of O(3n/3) ≈ O(1.4422n) which
proves to be much faster in practice due to the prefiltering of candidates but at
the same time still of exact nature.

The rest of the paper is structured as follows. We discuss general related work
on data anonymisation in Sect. 2. In Sect. 3, we provide some background details
on k-anonymisation focusing on how quasi-identifiers are identified, and why
applying data transformation techniques such as Generalisation, and Suppression
is inefficient on high dimensional data. In Sect. 4, we describe our optimised exact
quasi-identifier identification scheme, and proceed in Sect. 5 to discuss results
from our experiments using in-memory applications. We offer conclusions and
directions for future work in Sect. 6.
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2 Related Work

Syntactic data anonymisation algorithms such as k-anonymity [37], l-diversity
[26], and t-closeness [23] have been studied quite extensively to prevent disclo-
sures of sensitive personal data. In order to achieve data anonymisation syntactic
data anonymisation algorithms rely on a variety of data transformation methods
that include generalisation, suppression, and perturbation. On the basis of these
works, one could classify methods of data transformation for anonymisation into
two categories namely, randomisation and generalisation.

Randomisation algorithms alter the veracity of the data, by removing strong
links between the data and an individual. This is typically achieved either by
noise injections, permutations, or statistical shifting to alter the data set for
anonymity [16]. For instance, in differential privacy, this is done by determining
at the runtime of a query, how much noise injections to add to the resulting
dataset in order to ensure the anonymity in each case [9]. Additionally, dif-
ferential privacy uses the exponential mechanism to release statistical informa-
tion about a dataset without revealing private details of individual data entries
[27]. Furthermore, the Laplace mechanism for perturbation, supports statistical
shifting in differential privacy, by employing controlled random distribution sen-
sitive noise additions [10,20]. It is worth noting here that the discretized version
[14,25] is known as matrix mechanism because both sensitive attributes and
quasi-identifiers are evaluated on a per-row basis during anonymisation [22].

By contrast, generalisation algorithms modify dataset values according to a
hierarchical model where each value progressively loses uniqueness as one moves
upwards in the hierarchy. Several generalisation algorithms have been used effec-
tively in combination with k-anonymity, l-diversity, as well as t-closeness. In k-
anonymity the concept is to place each person in the data set together with at
least k−1 similar data records, such that there is no possibility of distinguishing
between them. This is done by assimilating the k − 1 nearest neighbours based
on their describing attributes through generalisation and suppression [37]. Gen-
eralisation is vulnerable to homogeneity and background knowledge attacks [26],
which l-diversity alleviates by considering the granularity of sensitive data rep-
resentations to ensure a diversity of a factor of l for each quasi-identifier within
a given equivalence class (usually a size of k). Further extensions in the form
of t-closeness, handle skewness and background knowledge attacks by leveraging
on the relative distributions of sensitive values both in individual equivalence
classes and in the entire dataset [23]. In all three anonymisation algorithms,
and their extensions [3,29], generalisation and suppression are used to support
data transformation [13]. Perturbation is conceptually similar to generalisation
but instead of building groups or clusters based on attribute similarity with-
out falsifying the data, perturbation modifies the actual attribute value to the
closest similar findable value. This involves introducing an aggregated value or
using a similar value in which only one value is modified instead of several to
build clusters. Finding such a value is processing intensive, because all newly
created values must be checked iteratively. Further work on data transforma-
tion for anonymity appears in the data mining field, with work on addressing
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privacy constraints in publishing anonymised datasets [12,40,41]. These meth-
ods focus on data mining tasks in specific application areas with well-defined
privacy models and constraints. This is the case particularly when merging var-
ious distributed data sets to ensure privacy in each partition [45]. As mentioned
before, these methods are not suited to high dimensional datasets because they
operate on a per-usecase basis.

Adaptations based on a Secure Multi-party Computing (SMC) protocol have
been proposed as a flexible approach on top of k-anonymity, l-diversity and
t-closeness as well as heuristic optimisation to anonymise distributed and sepa-
rated data silos in the medical field [19]. Furthermore, to address scalability chal-
lenges of large-scale high dimensional distributed anonymisation that emerge in
the healthcare industry, Mohammed et al. [30] propose LKC-privacy to achieve
privacy in both centralized and distributed scenarios promising scalability for
anonymising large datasets. LKC-privacy works on the premise that acquiring
background knowledge is nontrivial and therefore limits the length of quasi-
identifier tuples to a predefined size. While one can argue about the practically
of this approach, the main concern is the fact that LKC-privacy violates the basic
anonymity requirements of publishing datasets in a privacy-preserving manner.
Other works use a MapReduce technique based on the Hadoop distributed file
system (HDFS) to boost computation capacity [46], which still does not address
the issue of transforming the datasets to guarantee anonymity for high dimen-
sional data where sensitivity is an added concern. Handling large numbers of
entity describing attributes (hundreds of attributes), in a performance efficient
and privacy preserving manner remains to be addressed.

3 Inefficiency of k-anonymising High Dimensional Data

In this section, we explain why standard k-anoymisation data transformation
techniques like generalisation and suppression are inefficient on high dimensional
data. This is to pave the way for describing our proposed approach in Sect. 4.

3.1 Notation and Definitions

Anonymity is the quality of lacking the characteristic of distinction. This is
indicated through the absence of outstanding, individual, or unusual features,
that separate an individual from a set of similarly characterised individuals. For
example, we say that a dataset is k anonymous (2 ≤ k ≤ n, where n ∈ Z+) if
and only if for all tuples in a given dataset, each the quasi-identifier of each tuple
is indistinguishable from at least k − 1 other tuples. Expanding this definition
to high dimensional data, we define the following terms.

Definition 1. Feature
A feature f is a function f : E −→ A mapping the set of entities E =

{e1, . . . , em} to a set A of all possible realizations of an attribute or attribute com-
bination forming new single attributes. Additionally, F = {f1, . . . , fn} denotes
a feature set.
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We define self-contained anonymity which captures the idea of anonymity of
individual records or a dataset, as follows:

Definition 2. Self-contained Anonymity
Let E be a set of entities. A snapshot S of E is said to be self-containing

anonymous or sanitized, if no family F = {F1, . . . , Fm} of feature sets uniquely
identifies one original entity or row.

Similar to Terrovitis [39], we do not distinguish between sensitive and non-
sensitive attributes. This for two reasons, first, by observation of deanonymisa-
tion attacks (homogeneity, similarity, background knowledge, . . . ) we note that
sensitive attributes alone are not the only basis for their success; second, defin-
ing an exhaustive set of sensitive and non-sensitive attributes is impractical for
high dimensional datasets where user behaviours exhibit unique patterns that
increase with the volumes of data collected on the individual.

3.2 High Dimensional Quasi-Identifier Transformation

In high dimensional datasets, generalisation and suppression are not efficient
data transformation procedures for anonymisation [1]. The reason for this is that
when the number of quasi-identifier attributes is very large, most of the data
needs to be suppressed and generalised to achieve k-anonymity. Furthermore,
methods such as k-anonymity are highly dependent on spatial locality in order
to be statistically robust. This results in poor quality data for data analytics
tasks. Example 1, helps to explain this point in some more depth.

Example 1. The data in Table 1a represents cases of surgery at a given hospital,
with quasi-identifier “Job, Age, Sex”. By generalisation and suppression Table 1a
can be transformed to obtain the 2-anonymous Table 1b. If we consider that
Table 1a were to be expanded at some point to include 10 new attributes in the
quasi-identifier of say, “blood-type”, “disease”, “disease-date”, “Medication”,
“Eye-Colour”, “Blood-Pressure”, “Deficiencies”, “Chronic Issues”, “Weight”,
and “Height”; one could deduce that generalising and suppressing values in such
a large high dimensional dataset requires searching through all the different pos-
sible quasi-identifier combinations that can result in sensitive data exposure. In
fact, as Aggrawal et al. [1] point out, preventing sensitive information exposure
requires evaluating an exponential number of combinations of attribute dimen-
sions in the quasi-identifier to prevent precise inference attacks.

We now present our time efficient approach to transforming quasi-identifier
attributes to ensure adherence to k-anonymity in high dimensional datasets.

4 Optimised Exact Quasi-Identifier Selection Scheme

Our proposed optimised exact quasi-identifier selection scheme works as an in-
memory application for fast quasi-identifier transformation for large high dimen-
sional dataset anonymisation. As a first step, we identify and eliminate 1st class
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Table 1. Examples given a surgery list

identifiers, which are typically standalone attributes such as “user IDs” and
“phone numbers”. We then select 2nd class identifiers to ensure anonymity and
minimal information loss.

4.1 Identifying 1st Class Identifiers

In selecting 1st class identifiers, we do not distinguish between sensitive and
non-sensitive attributes because, classifications of sensitive and non-sensitive
attributes are the primary cause of semantics-based de-anonymisations. Fur-
thermore, growing attribute numbers in high dimensional datasets, make using
sensitive attribute classifications to support anonymisation is trivial since behav-
ior patterns are easily accessible. Instead we use 1st class identifiers to decide
which attribute values to transform to reduce the number of records we elim-
inate from the anonymised dataset. This reduces the level of information loss
and ensures anonymity. We identify 1st class identifiers on the basis of two cri-
teria namely, attribute cardinality and classification thresholds. More formally,
we define a 1st class identifier as follows:

Definition 3. 1st class identifiers
Let F be a set of features F = {f1, . . . , fn}, where each feature is a function

fi : E −→ A mapping the set of entities E = {e1, . . . , em} to a set A of real-
izations of fi. A feature fi is called a 1st class identifier, if the function fi is
injective, i.e. for all ej , ek ∈ E : fi(ej) = fi(ek) =⇒ ej = ek.

To find attributes fulfilling the 1st class identifier requirement, each individual
attribute has to be evaluated by counting the unique values with respect to all
other entries combined with a SQL GROUP BY statement. These attributes are
characterised by a high cardinality and entropy as follows:

Definition 4. Cardinality
The cardinality c ∈ Q of a column or an attribute is: c = number of unique rows

total number of rows .

Definition 5. Entropy (Kullback-Leibler Divergence)
Let p and q denote discrete probability distributions. The Kullback-Leibler

divergence or relative entropy e of p with respect to q is: e =
∑

i p(i) · log(p(i)q(i) ).
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First we compute the cardinality c and mark all columns as 1st class identifiers
where the cardinality threshold is c > 0.33, meaning that at least every third
entry is unique. This is used as a heuristic and can be configured as desired. The
1st class identifiers are suppressed from the dataset so that no direct and bijective
linkages from the dataset to the original entities remain. However, one is still
able to combine several attributes for re-identification. In the following section,
we propose a method of identifying and removing these attribute combinations.

4.2 Identifying of 2nd Class Identifiers

We use 2nd class identifier candidates as a further evaluation step to ensure self-
contained data anonymity. This is done by identifying the sets of attribute value
candidates that violate the anonymity by being unique throughout the entire
data set. More formally, we define 2nd class identifiers as follows:

Definition 6. 2nd class identifier
Let F = {f1, . . . , fn} be a set of all features and B := P(F ) = {B1, . . . , Bk}

its power set, i.e. the set of all possible feature combinations.
A set of selected features Bi ∈ B, is called a 2nd class identifier, if Bi iden-

tifies at least one entity uniquely and all features fj ∈ Bi are not 1st class
identifiers.

Assessing 2nd class identifiers is similar to finding candidates for a primary key or
(maximal partial) unique column combinations (mpUCC) in the data profiling
field. Unique column combinations (UCC) are tuples of columns which serve
as identifier across the entire dataset, however, maximal partial UCC can be
understood as identifiers for (at least) one specific row. This means one searches
for the UCC for each specific row (maximal partial). We evaluate all possible
combinations of columns in terms of forming the anonymised dataset, as follows:
C(n, r) =

(
n
r

)
= n!

(r!(n−r)!) where n is the population of attributes and r the subset
of n. In considering 2nd class identifiers of all lengths, r must equal all potential
lengths of subsets of attributes. We express this using the following equation:
C2(n) =

∑n
r=1

(
n
r

)
=

∑n
r=1

n!
(r!(n−r)!) = 2n − 1. For each column combination,

we apply an SQL GROUP BY statement on the data set for the particular
combination and count the number of entries for each group. If there is just one
row represented for one value group, this combination may serve as mpUCC.
Group statements are highly efficient in modern in-memory platforms, since
through their column-wise storage and reverted indices these queries do not
need to be run over the entire data set.

Even without the maximal partial criteria, and only considering unique col-
umn combinations, we note that identifying 2nd class identifiers is a NP-complete
problem similar to the hidden subgroup problem (HSP) [17]. In fact, more specif-
ically the problem is W[2]-complete which is not a fixed parameter tractable
problem (FPT) [5]. This implies that there is no exact solution better than of
polynomial time complexity since the number of combinations of attributes for
evaluation increases exponentially [5,15,28]. As such in the next section we look
at how to optimise the search strategy.



92 N. J. Podlesny et al.

4.3 Search Optimisation

As depicted in Fig. 1 evaluating 2n combinations of attributes is not scalable
to large datasets so, instead of searching for all possible combinations with all
lengths for each row (hereinafter referred to as maximal partial unique column
combinations (mpUCC)), we limit the search to unique column combinations
(mpmUCC) [31]. Practically, one needs to only find the minimal 2nd class iden-
tifier to prevent re-identification (see Fig. 1). We define a Minimal 2nd Class
Identifier as follows.

Fig. 1. Maximal partial minimal unique column combinations tree

Definition 7. Minimal 2nd class identifier
A 2nd class identifier Bi ∈ P(F ) is called minimal, if there is no combination

of features Bj ⊂ Bi that is also a 2nd class identifier.

Example 2. Imagine a data set describing medical adherence and the drug intake
behavior of patients. After potentially identifying first name, age and street name
as 2nd class identifier tuple, it is clear to the reader that any additional attribute
to this tuple is still a 2nd class identifier. However, a minimal 2nd class identifier
contains just the minimal amount of attributes in the tuple which are needed to
serve as quasi-identifier (maximal partial minimal UCC).

Therefore, the search in one branch of the search tree can be stopped as
soon as a minimal 2nd class identifier is found. This is similar to Papenbrock et
al.’s [31] approach to handling maximal partial UCCs. Such processing improves
computation time dramatically since all super-sets can be neglected. First test-
ing reveals that most mpmUCCs appear in the first third of the search tree but
at most in the first half which still requires, due to the symmetry of the binomial
coefficient, 2n

2 = 2n−1 combinations to be processed and evaluated. The symme-
try and combination distribution of the binomial coefficients can be delineated
by arranging the binomial coefficients to form a Pascal’s triangle where each
Pascal’s triangle level corresponds to a n value. So, in reducing the layers and
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Fig. 2. Appearances of 2nd class identifier

number of combinations, we still have exponential growth. We do this by filter-
ing the set of combinations beforehand to avoid any exponential and inefficient
growth.

In the exact search for mpUCCs, the risk of compromise for each identifier
type needs to be considered. As such, we prefilter column combinations by eval-
uating cardinality based features like the sum of their cardinality (see Fig. 2a) or
its mean value (see Fig. 2b) against given thresholds. Given the observed distri-
bution of tuple sizes regarding their elements expressed, more tuples imply more
filtering at given a threshold. If no combinations are left for evaluation after fil-
tering while the tuple length, that is up for evaluation, is incomplete with regard
to the re-arranging of the binomial coefficients or while not all tree branches are
covered by the already found minimal 2nd class identifiers, we decrease these
thresholds successively. Having found a mpmUCC, we need to double-check its
neighbors illustrated by Fig. 1. If no sibling or parent neighbor is an (min-
imal) identifier, we can stop the search for this branch.

4.4 In-Memory Applications as a Booster for 2nd Class Identifier
Selections

To determine 2nd class identifiers maximal partial minimal unique column com-
binations (mpmUCC) are identified with the SQL GROUP BY statement. The
GROUP BY is costly in traditional database systems but has the advantage
of detecting mpmUCCs as well as the exact rows affected by each individual
mpmUCC. This is key factor in transforming the dataset flawlessly and effi-
ciently. Column wise databases with dictionary encoding run very efficient and
fast group by statements, in comparison to traditional database benchmarks. In
column-wise data storage, a GROUP BY statement does not have to read the
entire dataset but rather the corresponding row saved. Additional reverse indices
accelerate the access to each row further.

By handling over the task and execution of GROUP BY from the actual
application to a database system, reliability and performance is gained. Vertical
scaling can handle hundreds or thousands of cores in parallel without negatively
impacting complexity, which is an advantage when executing several statements
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in parallel or in close sequence. When evaluating hundreds of thousands or mil-
lions of column combinations, the GROUP BY statements can be executed in
parallel and L1–L3 caching is highly efficient.

Combining these key items, column wise, reverse indices, dictionary encoding
and vertical scaling, GROUP BY statements and therefore identifying mpmUCC
is highly scalable and efficient. Having a toolkit to identify mpmUCC gives us the
possibility to remove all unique tuples - no matter how many attributes or which
type or content they are. By removing all unique tuples, only “duplicated” ones
remain which follow the original k-anonymity idea and provide sound anonymi-
sation and therefore trustworthy data privacy. The main issue of all incidents
presenting in the introduction has been, that some unique attribute combina-
tion survive the anonymisation process and may be abused for de-anonymisation.
This is not possible anymore.

There are benchmarks1 to prove that in-memory databases like HANA are
up to 53% faster than the competition [11,21,32].

5 Evaluation and Results

Our experiments were conducted on a 16x Intel(R) Xeon(R) CPU E5-2697 v3 @
2.60 GHz and 32.94 GB RAM machine, running an SAP HANA database in com-
bination with an in-memory application based on Python2. The implementation
platform used is the “GesundheitsCloud” application3. Our dataset was com-
prised of semi-synthetic data with 109 attributes and 1M rows that are divided
into chunks of 100000 for running the benchmark multiple times with the same
settings. The results are then averaged to reduce potential external noise. These
real-world data include disease details and disease-disease relations, blood type
distribution, drug as well as SNP and genome data and relations. The sources
ranges from different data sets as part of publications [35,36,47], as well as offi-
cial government websites like medicare.gov4, US Food & Drug Administration5,
NY health data6, Centers for Medicare & Medicaid Services7, and many more.
A list of all data sources is publicly available at github.com8.

In processing 1st class identifiers, we need to loop over each existing attribute,
group by the related column and count the rows with the same value. The sum
of entities having a group count of 1 decides on its classification as 1st class
identifier. Including the possibility of noise, we consider a column or attribute
as a 1st class identifier, if at least 70% of its values are unique. As a conse-
quence, attributes identified as 1st class identifiers are disregarded from further
1 http://www-07.ibm.com/au/hana/pdf/S HANA Performance Whitepaper.pdf.
2 https://www.python.org/download/releases/3.0/.
3 http://news.sap.com/germany/gesundheit-cloud/.
4 https://www.medicare.gov/download/downloaddb.asp.
5 https://www.fda.gov/drugs/informationondrugs/ucm142438.htm.
6 https://health.data.ny.gov/browse?limitTo=datasets&sortBy=alpha.
7 https://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/codes.

html.
8 https://github.com/jaSunny/MA-enriched-Health-Data.

http://www-07.ibm.com/au/hana/pdf/S_HANA_Performance_Whitepaper.pdf
https://www.python.org/download/releases/3.0/
http://news.sap.com/germany/gesundheit-cloud/
https://www.medicare.gov/download/downloaddb.asp
https://www.fda.gov/drugs/informationondrugs/ucm142438.htm
https://health.data.ny.gov/browse?limitTo=datasets&sortBy=alpha
https://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/codes.html
https://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/codes.html
https://github.com/jaSunny/MA-enriched-Health-Data
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processing and dropped from the dataset. We then consider 2nd class identifiers.
Figure 3a shows the actual number of minimal 2nd class identifiers available in
the dataset, while Fig. 3b illustrates the evolution of the score for untreated data.
Minor non-linear jumps can be explained by untreated 1st class identifiers that
are characterised by a large number of unique values and thus large cardinality.
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Fig. 3. Characteristics of the evaluation dataset

5.1 2nd Class Identifier Selection

Figure 4 shows the execution time required to identify all minimal 2nd class
identifiers in comparison to the number of attributes in the quasi-identifier. The
data points for each specific approach were fitted with quartic, cubic, quadratic,
linear, and log curves to show the evolution of identification time over the num-
ber of present columns (attributes). Here one data point represents the time
required to evaluate the entire dataset. For each x-wise step, an additional col-
umn is introduced in the dataset to visualize the time complexity. The optimis-
ing minimal 2nd class identifiers (mpmUCC) results in O(2n−1) (see Fig. 4c).
When only assessing filtered combinations, the results are illustrated and fitted
in Fig. 4b. Further, Fig. 4d presents a direct comparison between all identification
approaches where the effect of optimisation is clearly distinct.

5.2 Use Case Walk Through

This subsection provides an example of orchestrated transformation approaches
for a predefined real-world use case provided by a large pharmaceutical company.
Typical use cases involve finding drug-to-drug, gene-to-drug, drug-to-disease or
disease-to-disease relationships using regression. We use the Hayden Wimmer
and Loreen Powell approach [44] to investigate the effects of different trans-
formations on such use cases. An optimal treatment composition is created by
using a weighted brute force approach to transform the dataset for anonymity.
In this case the time complexity is represented through an exponential interval
and the decision criterion is the data score achieved for the sanitized dataset.
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Fig. 4. Execution time for identifying all minimal 2nd class identifiers

For numerical values with a coverage of less than 50%, perturbation is used, and
with more than 15% generalisation. For non-numerical values with a coverage of
less than 50% suppression is used and in all other instances compartmentation
as preferred treatment. For comparison, the same logistic regression function
is applied to both the original, and sanitized dataset. The following case pro-
vides influencing factors for DOID:3393, namely “coronary artery disease” where
plaque conglomerates along the inner walls of an arteries reducing the blood
supply to cardiac muscles9. In feature selection for logistic regression, we deter-
mine height, age, blood type, weight, several single-nucleotide polymorphisms
(SNPs) markers, and drug intake as interesting. Table 2 specifies the attribute
coefficients as weights for influencing the probability of suffering coronary artery
disease. From the original dataset, one notes that the patients age, weight and
height are important factors for predicting DOID:3393. As well, blood type, drug
intake, and coronary artery disease, are correlated. When perturbation or sup-
pression are used for anonymisation, the coefficients shifts toward one feature.
Compartmentation keeps most of the features, by re-weighting. The composition
of weights performs the best with deviations of 10% to 20%.

This proves that information loss can be minimised without making sig-
nificant compromises on privacy by combining existing (exact) anonymisation
techniques. Since are no unique tuples from the original dataset, the likelihood
of homogeneity and background knowledge attacks is significantly reduced.

9 https://medlineplus.gov/coronaryarterydisease.html.

https://medlineplus.gov/coronaryarterydisease.html
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Table 2. Logistic regression coefficients as scaled weights for the given attributes as
features

Attribute Original
coefficients

Composition
coefficients

Compartmentation
coefficients

Perturbation
coefficients

Suppression
coefficients

Age 100.00 100 32.99 0 0.05

Centimeters 49.44 37.48 100 100 6.8

drug 0 63.38 0 4.3 0 100

BloodType 33.96 8.82 45.06 0 0.05

Kilograms 50.53 62.29 24.25 0 0

snp 0 0 0 0 0 0

drug 2 0 0 6.4 0 0

6 Conclusions

Existing work has focused on optimising existing techniques based on prede-
fined use cases through greedy or heuristic algorithms which is not adequate
for high dimensional large datasets. In this paper, we have presented a hybrid
approach for anonymising high dimensional datasets and presented results from
experiments conducted with health data. We showed that this approach reduces
the algorithmic complexity when asynchronous, use case agnostic processing is
applied to the data. Additionally, we eliminate the risk of de-anonymisation
by symmetric, interaction-based validations of resulting anonymous datasets
because no unique attribute tuples remain. The W[2]-complete search for unique
column combinations as quasi-identifiers endangering the complete anonymity
of a dataset given the exponential and impractical computation efforts was stud-
ied for processing high dimensional data sets faster with cubic time complexity
or exponentially at a stretching factor of 0.0889926. An optimal composition
process was evaluated based on several metrics to limit increasing data quality
loss (information loss) with increasing attributes in a data set. The source code,
detailed implementation documentation and dataset are publicly available at
github.com10,11.

The current implementation for searching for 2nd class identifiers is based on
the central processing unit (CPU), however, it would be interesting to evaluate
the gains of using graphics processing units (GPU). Also, studying the effect of
decoupling attributes is important for more diverse use cases besides the ones
studied in this paper.

10 https://github.com/jaSunny/MA-Anonymization-ETL.
11 https://github.com/jaSunny/MA-enriched-Health-Data.

https://github.com/jaSunny/MA-Anonymization-ETL
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Abstract. In addition to maximizing the revenue, retailers also aim at diver-
sifying product offerings for facilitating sustainable revenue generation in the
long run. Thus, it becomes a necessity for retailers to place appropriate itemsets
in a limited k number of premium slots in retail stores for achieving the goals of
revenue maximization and itemset diversification. In this regard, research efforts
are being made to extract itemsets with high utility for maximizing the revenue,
but they do not consider itemset diversification i.e., there could be duplicate
(repetitive) items in the selected top-utility itemsets. Furthermore, given utility
and support thresholds, the number of candidate itemsets of all sizes generated
by existing utility mining approaches typically explodes. This leads to issues of
memory and itemset retrieval times. In this paper, we present a framework and
schemes for efficiently retrieving the top-utility itemsets of any given itemset size
based on both revenue as well as the degree of diversification. Here, higher
degree of diversification implies less duplicate items in the selected top-utility
itemsets. The proposed schemes are based on efficiently determining and
indexing the top-k high-utility and diversified itemsets. Experiments with a real
dataset show the overall effectiveness and scalability of the proposed schemes in
terms of execution time, revenue and degree of diversification w.r.t. a recent
existing scheme.

Keywords: Utility mining � Top-utility itemsets � Diversification
Itemset placement � Retail

1 Introduction

In retail application scenarios, the placement of items on retail store shelves consid-
erably impacts sales revenue [1–5]. A retail store contains premium slots and non-
premium slots. Premium slots are those that are easily visible as well as physically
accessible to the customers e.g., slots nearer to the eye or shoulder level of the
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customers; the others are non-premium slots. Furthermore, we are witnessing the trend
of mega-sized retail stores, such as Walmart Supercenters, Dubai Mall and Shinsegae
Centumcity Department Store (Busan, South Korea). Since these mega stores occupy
more than a million square feet of retail floor space [23], they typically have multiple
blocks of premium slots of varying sizes across the different aisles of the retail store.

For facilitating sustainable long-term revenue earnings, retailers not only need to
maximize the revenue, but they also require to diversify their product offerings (item-
sets). The issue of investigating approaches for diversifying retail businesses with the
objective of long-term revenue sustainability is an active area of research. Research
efforts are being made to improve diversification for real-world retail companies by
collecting data about sales, customer opinions and the views of senior managers [6–8].
Hence, we can intuitively understand that diversification is critical for the long-term
sustainability of businesses. As a single instance, if a retailer fails to diversify and
focuses on the sales of only a few products, it may suffer huge revenue losses in case
the sales of those products suddenly drop significantly. This is because consumer
demand for different products is largely uncertain, volatile and unpredictable because it
depends upon a wide gamut of external factors associated with the macro-environment
of business. Examples of such factors include sudden economic downturn in the
market, socio-cultural trends (e.g., trend towards healthier food choices), legal and
regulatory changes (e.g., pulling products off retail store shelves due to public health
concerns) and so on.

Regarding revenue maximization, during peak-sales periods, strategic item place-
ment decisions significantly impact retail store revenue [24]. For example, the largest
US retail chains witness about 30% of their annual sales during the Christmas season,
and they see a good percentage of their annual sales during days such as Black Friday
[24]. In such peak periods, items in the premium slots sell out quickly due to a very
large number of customers. This makes it imperative for the store manager to decide
quickly which high-revenue itemsets to re-stock and place in a relatively limited
number of premium slots of different sizes across the numerous aisles of a large retail
store.

Notably, diversification can cause some short-term losses in revenue for the retailer
because its focus becomes spread over a larger number of products as opposed to
focusing on the sales of only a few products that it specializes in selling. Thus, there is
a trade-off between retail store revenue and the degree of diversification. However, as
evidenced by the works in [6–8], short-term revenue losses due to diversification is
generally a small price to pay for the benefits of long-term sustainable revenue
earnings.

Efforts in data mining [4, 5] have focused on extracting the knowledge of frequent
itemsets based on support thresholds by analyzing the customers’ transactional data.
Utility mining approaches [12–20] have also been proposed to identify the top-utility
itemsets by incorporating the notion of item prices in addition to support. Utility
mining aims at finding high-utility itemsets from transactional databases. Here, utility
can be defined in terms of revenue, profits, interestingness and user convenience,
depending upon the application. Utility mining approaches focus on creating repre-
sentations of high-utility itemsets [13], identifying the minimal high-utility itemsets
[14], proposing upper-bounds and heuristics for pruning the search space [15, 16] and
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using specialized data structures, such as the utility-list [17] and the UP-Tree [19], for
reducing candidate itemset generation overheads. However, they do not consider
itemset diversification i.e., there could be duplicate (repetitive) items in the selected
top-utility itemsets. (Duplicate items occur in the selected top-utility itemsets as each
itemset is preferred by different groups of customers.) Moreover, given utility and
support thresholds, the number of candidate itemsets of all sizes generated by them
typically explodes, thereby leading to issues of memory and itemset retrieval times.

In this paper, we investigate the placement of itemsets in the premium slots of large
retail stores for achieving diversification in addition to revenue maximization. Our key
contributions are a framework and schemes for efficiently retrieving the top-utility
itemsets of any given size based on both revenue and the degree of diversification.
Here, higher degree of diversification implies less duplicate items in the selected top-
utility itemsets. The proposed schemes are based on efficiently determining and
indexing the top-k high-utility and diversified itemsets. Instead of extracting all of the
itemsets of different sizes, only the top-k high-utility itemsets corresponding to dif-
ferent itemset sizes are extracted. These extracted itemsets are organized in our pro-
posed kUI (k Utility Itemset) index for quickly retrieving top-utility itemsets of
different sizes. By setting an appropriate value of k, we can restrict the number of
candidate itemsets to be extracted, thereby avoiding candidate itemset explosion.

Overall, we propose three schemes, namely Revenue Only (RO), Diversification
Only (DO) and Hybrid Revenue Diversification (HRD). The RO scheme aims at
greedily maximizing the revenue of the retailer by selecting the top-k high revenue
itemsets of different retailer-specified sizes to be placed in the retail store’s premium
slots, but it does not consider diversification. In contrast, the DO scheme selects the
top-k itemsets for maximizing the degree of diversification, but it does not consider
revenue maximization. Finally, HRD is a hybrid scheme, which selects the top-k
itemsets based on both revenue and the degree of diversification. The HRD scheme also
defines the notion of a revenue window to limit the revenue loss due to diversification.

Our experimental results using a relatively large real dataset demonstrate that the
proposed schemes could be used for efficiently determining top-utility and diversified
itemsets without incurring any significant revenue losses due to diversification. The
remainder of this paper is organized as follows. Section 2 reviews related works, while
Sect. 3 discusses the context of the problem. Section 4 presents the proposed frame-
work and the schemes. Section 5 reports the results of the performance evaluation.
Finally, Sect. 6 concludes the paper with directions for future work.

2 Related Work

Several research efforts [9–11] have addressed the problem of association rule mining
by determining frequent itemsets primarily based on support. As such, they do not
incorporate any notion of utility. Furthermore, they use the downward closure property
[9] i.e., the subset of a frequent itemset should also necessarily be frequent.

Given that the downward closure property is not applicable to utility mining, utility
mining approaches [12–20] have been proposed for extracting high-utility patterns. The
work in [12] discovers high-utility itemsets by using a two-phase algorithm, which
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prunes the number of candidate itemsets. Moreover, it discusses concise representations
of high-utility itemsets and proposes two algorithms, namely HUG-Miner and GHUI-
Miner, to mine these representations. The work in [13] proposes a representation of
high-utility itemsets called MinHUIs (minimal high-utility itemsets). MinHUIs are
defined as the smallest itemsets that generate a large amount of profit. The work in [15]
proposes the EFIM algorithm for finding high-utility itemsets. For pruning the search
space, it uses two upper-bounds called sub-tree utility and local utility. Moreover, the
work in [16] discusses the EFIM-Closed algorithm for discovering closed high-utility
itemsets. It uses upper-bounds for utility as well as pruning strategies.

Furthermore, the work in [17] proposes the HUI-Miner algorithm for mining high-
utility itemsets. It uses a data structure, designated as the utility-list, for storing utility
and other heuristic information about the itemsets, thereby enabling it to avoid
expensive candidate itemset generation as well as utility computations for many can-
didate itemsets. The work in [18] proposed the CHUI-Miner algorithm for mining
closed high-utility itemsets. In particular, the algorithm is able to compute the utility of
itemsets without generating candidates. The work in [19] proposes the Utility Pattern
Growth (UP-Growth) algorithm for mining high-utility itemsets. In particular, it keeps
track of information concerning high-utility itemsets in a data structure called the
Utility Pattern Tree (UP-Tree) and uses pruning strategies for candidate itemset gen-
eration. The work in [20] aims at finding the top-K high-utility closed patterns that are
directly related to a given business goal. Its pruning strategy aims at pruning away low-
utility itemsets.

Notably, none of the existing utility mining approaches [12–20] consider diversi-
fication when determining the top-utility itemsets of any given size. Hence, it is possible
for the same items to repeatedly occur across the selected top-utility itemsets, thereby
hindering retail business diversification and sustainable long-term revenue generation.
Moreover, they are not capable of efficiently retrieving top-utility itemsets of varying
given sizes. This is because almost all of the approaches generate a huge number of
candidate high-utility itemsets of different sizes and then select the itemsets of a given
size. Therefore, they suffer from efficiency and flexibility issues when trying to extract
high-utility itemsets of a given size. This limits their applicability to building practically
feasible applications for determining the placement of itemsets in large retail stores.

As part of our research efforts towards improving itemset placements in retail
stores, our work [25] has addressed the problem of determining the top-utility itemsets
when a given number of retail slots is specified as input. However, the work in [25]
does not consider the important issue of diversification. Thus, the problem addressed in
this paper is fundamentally different from that of the problem in [25].

A conceptual model of diversification for apparel retailers was proposed in [8]. The
study in [8] also explored the nature of diversification within a successful apparel
retailer in the UK and concluded that diversification benefits retailers by giving them a
long-term sustainable competitive advantage over other retailers. Moreover, the study
in [7] used sales data of 246 large global retail stores from different countries; its results
show that retailers with a higher degree of product category diversification had better
retail sales volumes. The study in [6] also reached similar conclusions regarding the
benefits of diversification by exploring the retail diversification strategies of ten UK
retailers through in-depth interviews with the senior management of these retailers.
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3 Context of the Problem

Consider a finite set ϒ of m items {i1, i2, i3, …, im}. We assume that each item of set ϒ
is physically of the same size i.e., each item consumes an equal amount of space e.g.,
on the shelves of the retail store. Moreover, we assume that all premium slots are of
equal size and each item consumes only one slot. Each item ij of set ϒ is associated
with a price qj and a frequency of sales (support) rj. We define the net revenue NRi of
the ith item ij as the product of its price and support i.e., NRi = (qi * ri). We define an
itemset of size k as a set of k distinct items {i1, i2,.., ik}, where each item is an element
of set ϒ. We use revenue as an example of a utility measure. We shall use the terms
revenue, net revenue and utility interchangeably. Net revenue of a given itemset is
defined below:

Definition 1: The net revenue of any given itemset is computed as the support of the
itemset multiplied by the sum of the prices of the items in that itemset.

Now we discuss the notion of diversification. There could be duplicate (repetitive)
items in the selected top-utility itemsets as each itemset is preferred by different groups
of customers. We conceptualize the degree of diversification w of selected top-utility
itemsets as the ratio of the number of unique items across these itemsets to the total
number of items in these itemsets (including duplicate items). w is defined as follows:

Definition 2: Degree of diversification w of any given k itemsets is the number of
unique items across all of the k itemsets divided by the total number of items in these k
itemsets.

Given k itemsets {A1, A2, …, Ak}, the value of w is computed as follows:

w ¼
Sk

i¼1 Ai

�
�
�

�
�
�

Pk
i¼1 Aij j

ð1Þ

In Eq. 1, 0 < w � 1. Since there is at least one unique item across all of the k
itemsets, the minimum value of w would always exceed 0. w can be at most 1 when all
the items across all of the k itemsets are unique; this is the highest possible degree of
diversification. Higher values of w imply more diversification. As we shall see, w can
be used as a lever to achieve diversification without incurring significant revenue loss.

Fig. 1. Computation of Net Revenue (NR) and degree of diversification (W)
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Figure 1 shows the prices (q) of the items (A to I) and also depicts five itemsets
with their support r. The net revenue (NR) of the itemset {A, D} = 6 * (7 + 1) i.e., 48.
Similarly, the net revenue of itemset {A, C, G, I} = 3 * (7 + 6 + 5 + 3) i.e., 63.
Moreover, observe how w is computed for three itemsets {A, D}, {A, C, G} and {A, B,
C, G, H}.

4 Proposed Framework and Schemes

In this section, we first discuss the basic idea of the proposed framework followed by
three schemes for efficiently determining the top-utility and diversified itemsets.

4.1 Basic Idea

Transactional data of retail customers provides rich information about the purchase
patterns (itemsets) of customers. Given support and utility thresholds, it is possible to
extract utility patterns from a transactional database. However, as utility measures do
not support downward closure property, we would need to exhaustively check all the
patterns to identify the utility patterns; at low support or utility values, the number of
patterns explodes. Given the limited number of premium slots, we restrict the extrac-
tion of itemsets to only a limited number k of itemsets of each size for efficient pruning.

Regarding diversification, retailers need to expose their customers to more diver-
sified itemsets to sustain long-term revenue earnings. As discussed earlier, diversifi-
cation implies less duplicate items in the selected top-utility itemsets. A given retail
store has a relatively limited number of premium slots on which the eye-balls of most
customers would be likely to fall. The issue is to determine the high-utility itemsets and
propose a mechanism to replace some of these high-utility itemsets with diverse
itemsets without significantly degrading the utility. Such high-utility and diversified
itemsets can then be placed in the premium slots. For example, a typical user buys
itemsets (bundled together) such as {p1, p2, p3}, {p1, p2}, {p1, p3} and {p2, p3};
suppose all of these are high-utility itemsets. Now if we were to place all of these high-
utility itemsets in the premium slots, these itemsets would occupy 9 premium slots.
Since premium slots essentially ensure good visibility to items and are limited in
number, we could just place the itemset {p1, p2, p3} to occupy 3 premium slots and
populate the other premium slots with items (of comparable utility) albeit other than p1,
p2 and p3. This would avoid duplication of the items placed in the premium slots and in
effect, expose customers to a more diversified set of items, while maintaining com-
parable utility from the perspective of the retailer. Thus, the idea allows for the efficient
determination of top-utility itemsets to occupy the premium slots and enables recom-
mendations to the retailer about the possible high-utility and diverse itemsets for
placing in the premium slots.

To identify itemsets to occupy the premium slots, we propose an efficient approach
to identify top-k itemsets of different sizes and an indexing scheme, designated as the
kUI index. Furthermore, we propose a diversification scheme to maximize the degree of
diversification of the top-k itemsets. Overall, we propose three schemes, namely Rev-
enue Only (RO), Diversification Only (DO) and Hybrid Revenue Diversification
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(HRD). RO selects the top-k high-revenue itemsets without considering diversification.
DO maximizes the degree of diversification of the top-k itemsets. HRD combines RO
and DO to determine top-utility and diversified itemsets.

4.2 Revenue Only (RO) Scheme

RO aims to determine the top-k high-revenue itemsets of any given size k to occupy the
premium slots. Since utility measures do not follow the downward closure property, a
brute-force approach would be to extract all the possible itemsets and then determine the
top-k high-revenue itemsets. However, this would be prohibitively expensive because
the candidate number of itemsets would explode and also lead to memory issues.

RO extracts and maintains only the top-k high-revenue itemsets for different itemset
sizes as opposed to maintaining all the itemsets concerning different itemset sizes. We
first extract the top-k high-revenue itemsets of size 1. Based on these itemsets of size 1,
we extract the top-k high-revenue itemsets of size 2. Thus, we progressively extract the
itemsets of subsequently increasing sizes. The extracted itemsets are organized in the
form of the kUI (k Utility Itemset) index, where each level corresponds to itemsets of a
specific size k. Given a query for determining the top-k high-revenue itemsets of a
specific size k, the kth level of the kUI index is examined for quick retrieval of itemsets.

By extracting and maintaining only the top-k itemsets, RO restricts the number of
candidate itemsets that need to be computed and subsequentlymaintained for building the
next higher level of the index. The value of k is specified by the retailer. If k is set to be
high, some of the top-k itemsets would possibly have low revenue. However, if the value
of k is set too low, we may miss some itemsets with relatively high revenue. The value of
k is essentially application-dependent; we leave the determination of the optimal value of
k to future work. Now we discuss the kUI index and how to build it for use by RO.

(i) Description of kUI Index: kUI is a multi-level index, where each level concerns a
given itemset size. At the kth level, the kUI index stores the top-η high-revenue itemsets
of itemset size k. From these top-η itemsets, the top-k itemsets will be retrieved
depending upon the query, hence k < η. We set the value of η based on application
requirements such that queries will never request for more than the top-η itemsets. Each
level corresponds to a hash bucket. For indexing itemsets of N different sizes, the index
has N hash buckets i.e., one hash bucket per itemset size. Hence, a query for finding the
top-k high revenue itemsets of a given size k traverses quickly to the kth hash bucket
instead of traversing through all the hash buckets corresponding to k = {1, 2,…, k − 1}.

Now, for each level k in the kUI index, the corresponding hash bucket contains a
pointer to a linked list of the top-η itemsets of size k. The entries of the linked list are of
the form (itemset, r, q, NR), where itemset refers to the given itemset under consid-
eration. Here, r is the support of itemset, while q refers to the total price of all the items
in itemset. NR is the product of r and q, as discussed earlier in Sect. 3 (see Defini-
tion 1). Additionally, at each level of the index, the value of the degree of diversification
w (computed based on Eq. 1 in Sect. 3) is stored for the itemsets of that level. The
entries in the linked list are sorted in descending order of the value of NR to facilitate
quick retrieval of the top-k itemsets of a given size k. In case of multiple itemsets having
the same value of NR, the ordering of the itemsets is performed in an arbitrary manner.
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Figure 2 depicts an illustrative example of the kUI index. Observe how the itemsets
(e.g., {O}, {A}) of size 1 correspond to level 1 of the index, the itemsets of size 2 (e.g.,
{N, H}, {M, H}) correspond to level 2 of the index and so on. Notice how the itemsets
are ordered in descending order of NR. Observe how the value of the degree of diver-
sification w is maintained for the itemset size corresponding to each level of the index.

(ii) Building the kUI Index: Given the transactional database with item price values
and threshold values of support, price and utility, the intuition is that items (or itemsets)
with high utility (i.e., with either high support or high price) are potential candidates to
be indexed under the kUI indexing scheme. First, for itemset size k = 1, we select only
those items, whose revenue is equal to or above a given revenue threshold. The purpose
of the revenue threshold is to ensure that low-revenue items (or itemsets) are efficiently
pruned away from the index. Then we sort the selected items in descending order of
their values of revenue and insert the top-η items into level 1 of the index. Next, we list
all the combinations of the itemsets of size 2 for the items in level 1 and select only
those itemsets, whose revenue is equal to or exceeds a specific revenue threshold.
Among these itemsets, the top-η high-revenue itemsets are now inserted into level 2 of
the index. Then, for creating itemsets of size 3, we list all the possible combinations of
the items in level 1 of the kUI index and the itemsets in level 2 of the index. Among
these itemsets of size 3, we select only the top-η high-revenue itemsets whose revenue
exceed a given revenue threshold; then these selected itemsets are inserted into level 3.

In general, for creating level k of the index (where k > 2), we create itemsets of size
k by combining the items from level 1 of the index and the itemsets from level (k − 1)
of the index. Thus, when we build the kth level of the index (where k > 2), only η items
from level 1 and η itemsets from level (k − 1) need to be examined for creating all the
possible combinations of itemsets that are candidates for the kth level of the index.
Notably, the value of η is only a small fraction of the total number of possible
items/itemsets; this prevents the explosion in the total number of itemsets that need to
be examined for building the next higher level of the index. If we were to examine all
the possible combinations corresponding to itemsets of size 1 and itemsets of size
(k − 1) for building the kth level of the index, total number of combinations to be
examined would explode.

Algorithm 1 depicts the creation of the kUI index. Lines 1–11 show the building of
the first level of the index i.e., for itemset size of 1. In Lines 1–3, the entire set ϒ of all
the items is sorted in terms of support, and only those items whose support value is
above mean support µr are selected into set A. Here, the value of µr is computed as the
sum of all the support values across all the items divided by the total number of items.

Fig. 2. Illustrative example of the kUI Index
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Similarly, in Lines 4–6, only those items, whose price is above the mean price µq, are
selected into set B. The value of µq is computed as the sum of all the price values
across all the items divided by the total number of items. The rationale for selecting
items with either high support or high price is to ensure that the selected items have
relatively high revenue. The same items may exist in both set A and set B. Such
duplicates are removed by taking the union of these two sets (see Line 7). As Lines 8–
11 indicate, only the top-η items, whose net revenue either equals or exceeds the
threshold revenue THNR, are selected and inserted into the first level (i.e., level L1) of
the index. Here, THNR = (µNR + (a/100) * µNR), where µNRis the mean revenue value
across all the items in the union set i.e., it is the total revenue of all the items in the
union set divided by the total number of items in that set. The parameter a is
application-dependent and its value lies between 0 and 100. The purpose of the
parameter a is to act as a lever to limit the number of items satisfying the revenue
threshold criterion in order to effectively prune away low-revenue items from the index.

Lines 12–18 indicate how the intermediate levels (i.e., level 2 to the maximum level
N) of the kUI index are built one-by-one. In Line 13, observe how the ith level of the
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index is created by examining all the possible combinations of itemsets from level 1
and level (i − 1) of the index. In Line 14, all the duplicate itemsets are removed. Then
in Lines 15–18, for the given level of the index, we select the top-η itemsets whose net
revenue is above the value of THNR; then these top-η itemsets are inserted into that
level.

4.3 Diversification Only (DO) Scheme

Although RO achieves revenue maximization, the top-utility itemsets extracted by RO
can contain duplicates. Intuitively, there would be likely to be other itemsets with
comparable revenue, but containing different items. By replacing some of the top-
revenue itemsets extracted using RO with other itemsets, we can improve the degree of
diversification in the premium slots. Thus, the idea of DO is to extract and maintain
more than k itemsets in the kUI index so that there are opportunities for replacing some
of the top-k itemsets with itemsets of comparable revenue, but containing more
diversified items.

In the illustrative example of Fig. 3, we have selected level 3 of the example kUI
index (see Fig. 2 on Page 7) to explain the notion of diversification, while determining
the top-k itemsets of size 3. For k = 3, the itemsets selected by RO are {A, M, K}, {N,
H, A}, {K, A, N} and {K, A, G}; these itemsets are sorted in descending order of
revenue. Now DO will additionally consider the itemsets {O, N, G}, {K, A, C}, {O, N,
K} and {A, N, O} for replacing some of the itemsets selected by RO. Here, the lowest-
revenue itemset {K, A, G} is replaced by {O, N, G} to improve the degree of diver-
sification w from 0.50 to 0.58. Then the next lowest-revenue itemset {K, A, N} is
replaced by {K, A, C} to further improve the value of w from 0.58 to 0.66 and so on.

Fig. 3. Illustrative example for the proposed schemes
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4.4 Hybrid Revenue Diversification (HRD) Scheme

RO maximizes the revenue without considering diversification, while DO maximizes
the degree of diversification without taking into account the revenue. In general, there
is a trade-off between the goals of revenue maximization and diversification. In other
words, if we attempt to maximize the revenue, the degree of diversification will
degrade and vice versa. Thus, in practice, we require a scheme, which takes into
account both revenue and diversification. In particular, the scheme should be capable of
improving the degree of diversification without incurring any significant revenue loss.
By combining the advantages of both RO and DO, we design a hybrid scheme, des-
ignated as Hybrid Revenue Diversification (HRD) scheme. HRD uses the notion of a
revenue window to limit the revenue loss due to diversification.

Now let us refer again to Fig. 3 to explain the proposed HRD scheme. Revenue
(loss) window RL is computed as, RL = (NRL – a % NRL), where NRL is the Net
Revenue across the itemsets in level 3 of the index, while a is a parameter that acts as a
lever to control the revenue loss due to diversification. In this example, we use a = 5.
As in the example for DO, under HRD, the lowest-revenue itemset {K, A, G} is
replaced by {O, N, G} to improve the degree of diversification w from 0.50 to 0.58.
However, in contrast with DO, for HRD, the next lowest-utility itemset {K, A, N}
cannot be replaced by {K, A, C} for further improving the degree of diversification due
to the constraint of revenue loss arising from diversification being upper-limited by the
revenue (loss) window.

5 Performance Evaluation

This section reports the performance evaluation. We have implemented the proposed
schemes and the reference scheme [14] in Java. Our experiments use the real-world
ChainStore dataset, which we obtained from the SPMF open-source data mining
library [21]. The dataset has 46,086 items and the number of transactions in the dataset
is 1,112,949. The dataset contains utility values; hence, we have used those utility
values in our experiments. Table 1 summarizes the parameters of the performance
study. From Table 1, observe that we set the parameter a, which controls the revenue
threshold, to 30% for all our experiments. We set the total number η of top high-utility
items per level of the index to 200. We set the number k of queried top high-utility
items per level of the index to 20 as the default. We also set the queried itemset size k to
4 as the default.

Table 1. Parameters of performance evaluation

Parameter Default Variations

Revenue threshold (a) 30%
Total top high-utility items per level of the index (η) 200
Queried top high-utility items per level of the index (k) 20 40, 60, 80, 100
Queried itemset size (k) 4 2, 6, 8, 10
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As reference, we adapted the recent MinFHM scheme [14]. Given a transactional
database with utility information and a minimum utility threshold (min_utility) as input,
MinFHM outputs a set of minimal high-utility itemsets having utility no less than that
of min_utility. By scanning the database, the algorithm creates a utility-list structure for
each item and then uses this structure to determine upper-bounds on the utility of
extensions of each itemset. We adapted the MinFHM scheme as follows. First, we use
the MinFHM scheme to generate all the itemsets across different itemset sizes (k).
Second, from these generated itemsets, we extracted all the itemsets of a specific size
e.g., k = 4. Third, from these extracted itemsets of the given size, we randomly selected
any k itemsets as the query result. We shall henceforth refer to this scheme as
MinFHM.

Performance metrics are index build time (IBT), execution time (ET), memory
consumption (MC), net revenue (NR) and the degree of diversification (w). IBT is the
time required to build the kUI index. ET is the average execution time of a query
concerning the determination of the top-k itemsets of any given user-specified size.
ET ¼ 1

Nc

PNc
q¼1 ðtf � toÞ, where to is the query-issuing time, tf is the time of the query

result reaching the query-issuer, and NC is the total number of the queries. MC is the
total memory consumption of a given scheme for building its index. Given a query, the
query result comprises k itemsets. NR is the total revenue of all these k itemsets.
NR ¼ Pk

j¼1 Rj, where Rj is the revenue of the jth itemset. Finally, the degree of
diversification w for the retrieved top-k high-utility itemsets is computed as discussed
in Eq. 1.

5.1 Performance of Index Creation

Figure 4 depicts the performance of index creation using the real ChainStore dataset.
The results in Figs. 4(a) and (b) indicate that the index build time (IBT) and memory
consumption (MC) increases for all the schemes with increase in the number L of the
levels in the index. This occurs because building more levels of the index requires more
computations as well as memory space. Our proposed schemes incur significantly
lower IBT and MC than that of MinFHM because MinFHM needs to generate all of the
itemsets across different itemset sizes (k). In contrast, our schemes restrict the gener-
ation of candidate itemsets by considering only the top-k itemsets in a given index level
for building the next higher levels of the index. DO incurs higher IBT and MC than RO
because it needs to examine more number of itemsets for its itemset replacement
strategy to improve the degree of diversification. IBT for HRD lies between that of RO
and DO in terms of both IBT and MC because its notion of revenue window limits the
number of itemsets to be examined for replacement as compared to that of DO.

The results in Fig. 4(c) indicate the degree of diversification provided by the dif-
ferent schemes at different levels of the index. Observe that the degree of diversification
w increases for both DO and HRD essentially to their itemset replacement strategies.
However, beyond a certain limit, w reaches a saturation point for both DO and HRD
because of constraints posed by the transactional dataset. HRD provides lower values of
w than that of DO because of the notion of the revenue loss window, which limits the
degree of diversification in case of HRD. On the other hand, RO and MinFHM show
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considerably lower values of w because they do not consider diversification. In case of
RO and MinFHM, the value of w decreases with increase in the number of levels of the
index (until the saturation point of w is reached due to the constraints posed by the
transactional data) because their focus on utility thresholds further limit the degree of
diversification as the number of levels in the index (i.e., itemset sizes) increases. In other
words, both RO and MinFHM only consider the high-utility itemsets as the number of
levels in the index is increased, thereby increasing the possibility for items getting
repeated in the selected itemsets and consequently, degrading the value of w.

5.2 Effect of Variations in k

Figure 5 depicts the effect of variations in k. The results in Fig. 5(a) indicate that as k
increases, all the schemes incur more execution time (ET) because they need to retrieve
a larger number of itemsets. The proposed schemes outperform MinFHM in terms of
ET due to the reasons explained for Fig. 4. DO incurs higher ET w.r.t. RO because
unlike RO, it also needs to perform itemset replacements for improving the degree of
diversification in the selected top-k itemsets. HRD incurs lower ET than that of DO
since it replaces a lower number of itemsets as compared to DO for diversification
purposes due to its revenue loss window limit.

The results in Fig. 5(b) indicate that all the schemes show higher values of net
revenue (NR) with increase in k. This occurs because as k increases, more itemsets are
retrieved as the query result for each of the schemes; an increased number of retrieved
itemsets imply higher values of NR. RO shows much higher values of NR w.r.t. DO,

(a) Index Build Time         (b) Memory Consumption       (c) Degree of Diversification 

Fig. 4. Performance of index creation

(a) Execution Time                 (b) Net Revenue                (c) Degree of Diversification

Fig. 5. Effect of variations in k
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HRD andMinFHM because RO is able to directly select the top-k high-revenue itemsets
from its index. DO provides lower NR than that of RO because it trades off revenue to
improve the degree of diversification. HRD provides higher NR than DO because its
degree of diversification is upper-limited by the revenue loss window. MinFHM pro-
vides the lowest value of NR among all schemes because from among the itemsets (of
the given size) exceeding the utility threshold, it randomly selects the k itemsets.

The results in Fig. 5(c) indicate the degree of diversification provided by the dif-
ferent schemes for different values of k. The degree of diversification w increases (until
the saturation point is reached) for both DO and HRD essentially to their itemset
replacement strategies, as explained for the results in Fig. 4(c). HRD provides lower
values of w than that of DO because its notion of revenue loss window restricts the
degree of diversification in case of HRD. RO and MinFHM show considerably lower
values of w with increase in k because as k increases, they continue to select high-utility
itemsets that contain a higher number of duplicate items. This degrades the value of w
due to the same items possibly occurring repeatedly in the selected top-utility itemsets.

5.3 Effect of Variations in k

Figures 6 depict the results when we vary the queried itemset size k. The results in
Fig. 6(a) indicate that as k increases, all the schemes incur more execution time
(ET) because of the increased sizes of the retrieved itemsets. The proposed schemes
outperform MinFHM in terms of ET due to the reasons explained for Fig. 5(a) i.e.,
MinFHM first needs to generate all of the itemsets across different itemset sizes before
it can extract itemsets of a given queried size k. In contrast, RO can quickly determine
the itemsets of any given size k by directly traversing to the corresponding level of the
kUI index. DO incurs higher ET than that of RO because it performs itemset
replacements for improving diversification, as explained for the results in Fig. 5(a).
Since HRD has a revenue loss window limit, it performs a lower number of itemset
replacements as compared to that of DO; hence, it incurs lower ET than that of DO.

The results in Fig. 6(b) indicate that all the schemes show higher values of net
revenue (NR) with increase in the itemset size k because larger-sized itemsets contain
more items and therefore, more revenue. RO outperforms the other schemes in terms of
NR because DO and HRD lose some revenue to improve diversification, while
MinFHM randomly selects from the top-utility itemsets. Furthermore, the results in
Fig. 6(c) can be explained in the same manner as the results in Fig. 5(c).

(a) Execution Time        (b) Net Revenue               (c) Degree of Diversification

Fig. 6. Effect of variations in k
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6 Conclusion

Retailers typically aim not only at maximizing the revenue, but also towards diversi-
fying their product offerings for supporting sustainable long-term revenue generation.
Hence, it becomes critical for retailers to place appropriate itemsets in a limited number
of premium slots in retail stores for achieving both revenue maximization as well as
itemset diversification. While utility mining approaches have been proposed for
extracting high-utility itemsets to support revenue maximization, they do not consider
itemset diversification. Moreover, they also suffer from the drawback of candidate
itemset explosion. This paper has presented a framework and schemes for efficiently
retrieving the top-utility itemsets of any given itemset size based on both revenue and
the degree of diversification. The proposed schemes efficiently determine and index the
top-k high-utility itemsets and additionally use itemset replacement strategies for
improving the degree of diversification. Our experiments with a large real dataset show
the overall effectiveness of the proposed schemes in terms of execution time, revenue
and degree of diversification w.r.t. a recent existing scheme. In the near future, we plan
to explore the relevant issues pertaining to the cost-effective integration of the proposed
schemes into the existing systems of retail businesses.
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Abstract. Understanding the factors affecting financial products is
important for making investment decisions. Conventional factor analysis
methods focus on revealing the impact of factors over a certain period
locally, and it is not easy to predict net asset values. As a reasonable
solution for the prediction of net asset values, in this paper, we pro-
pose a trend shift model for the global analysis of factors by introducing
trend change points as shift interference variables into state space mod-
els. In addition, to realize the trend shift model efficiently, we propose
an effective trend detection method, TP-TBSM (two-phase TBSM), by
extending TBSM (trend-based segmentation method). The experimental
results validate the proposed model and method.

Keywords: Factor analysis · State space model · Trend detection

1 Introduction

Recently, the Japanese government introduced the NISA (NIPPON Individual
savings account) system, which encourages people to shift from savings to invest-
ments. Approximately 70% of the balance in NISA accounts is invested in invest-
ment trusts. Investment trust products are very popular and many people begin
investing with investment trusts, because trust products do not require thorough
knowledge of investments unlike stocks and bonds. However, there are too many
similar trust products, which make determining appropriate ones for investments
difficult. Revealing the factors that can be used to distinguish trust products is
a considerable solution to support decisions on trust investments [3,6].

In order to support investment by considering various factors that affect the
NAV (net asset value) of investment trust products, research on factor analysis
has been conducted. For example, methods for quantitatively analyzing factors
affecting investment trust products have been proposed. They analyze invest-
ment trust products by using text data such as monthly reports and numeric
data such as NAVs of investment trusts. However, they attempt to analyze fac-
tors to explain the current situation, and they cannot be applied for predictions.
In addition, some researchers report that introducing the notation of trends into
a state space model is useful to improve the performance of factor analysis. How-
ever, to the best of our knowledge, there is scant work on effectively detecting
c© Springer Nature Switzerland AG 2018
S. Hartmann et al. (Eds.): DEXA 2018, LNCS 11029, pp. 119–133, 2018.
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trends and analyzing factors from the global viewpoint (i.e., analyzing factors
from a long-term perspective including multiple trends), which could help predict
NAVs.

In this paper, we propose a trend shift model for the global analysis of factors
by introducing trend change points as shift interference variables into state space
models. In addition, to realize the trend shift model efficiently, we propose an
effective trend detection method, TP-TBSM (two-phase TBSM), by extending
TBSM (trend-based segmentation method).

The major contributions of this paper can be summarized as follows.

– We enable factor analysis across trends using a trend shift model (Sect. 3.1)
and improve the accuracy of mid-term prediction (Sect. 4).

– We enable to detect flexible trends while reducing the dependence on param-
eters using TP-TBSM (Sect. 3.2). The experimental results demonstrate that
TP-TBSM is superior to conventional methods (Sect. 4).

2 Related Work

2.1 Financial Analysis with Text Data

In order to obtain information that cannot be attained using only numerical
data, many studies have analyzed text data. These studies have demonstrated
outstanding results in forecasting field and market understanding [1–3].

Bollen et al. [1] proposed a method to predict the stock price by detecting
the mood on Twitter. They achieved an accuracy of 86.7% in predicting the
daily fluctuations in the closing values of the DJIA, and reducted the mean
average percentage error more than 6%. Mahajan et al. [2] attempted to extract
topics on the background of financial news using Latent Dirichlet Allocation, and
discovered the topic that highly affected stock price by estimating the correlation
between them. They also predicted a rise and fall in the market using extracted
topics, and the average accuracy was 60%. Awano et al. [3] attempted to extract
factors using the sentence structure of a monthly report on investment trust
products, and developed a visualization system to support understanding of
investment trust products.

These studies demonstrate that incorporating text data analysis could
improve the market analysis. In this study, we use factors extracted from a
monthly report of investment trust products by using the existing methods [6].

2.2 Financial Analysis with Time Series Data

Various time series analysis methods are used to study financial products and
market analysis. Among them, the state space model is often used because it
can flexibly build a model tailored to the purpose by incorporating various
factors [4–6].

Bräuning et al. [4] used the state space model to analyze the effects of various
factors on macroeconomic variables, and proposed a method to predict future
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values of the macroeconomic changes of the United States. Ando et al. [5] pro-
posed a method to analyze point of sales data, which is important in marketing,
using the state space model. Onishi et al. [6] quantitatively analyzed factors
affecting NAV using the state space model. They extracted macro factors and
micro factors from monthly reports and news, and used them in combination
with numerical data such as NAV to determine the degree of influence of each
factor. They concluded that considering trends could improve the accuracy.

Many other studies focused on the analysis of trends. Suzuki et al. [7]
improved the accuracy of long-term prediction with non-linear prediction meth-
ods by handling trend change points. The shortcut prediction method proposed
in [7] yields good results in predicting trend change points.

Chang et al. [8] proposed a method called intelligent piecewise linear repre-
sentation (IPLR) for maximizing trading profit. IPLR detects a trend change
point and uses it to convert time series data into a trading signal such as buying
or selling. Using optimal parameters to maximize the profit learned in the neu-
ral network, it achieves better profit than rule-based transactions. Jheng-Long
et al. [9] predicted buying and selling timings by using a method called TBSM
together with support vector regression.

These studies show that consideration of trends and the state space model
are useful for factor analysis. However, the existing trend detection methods
require the specification of appropriate parameters, which is a difficult task.

3 Methodology

In this section, we first introduce a trend shift model for the global analysis of
factors. Subsequently, we describe our TP-TBSM method, which detects trends
automatically to realize the trend shift model efficiently.

3.1 Trend Shift Model

Generally, time series data such as stock prices are non-stationary time series
whose mean and variance fluctuate with time. Therefore, it is necessary to deal
with trends for analysis of such time series data. Onishi et al. [6] handled trends
by delimiting data at the trend change point and constructing a state space
model within it. However, as the analysis has been completed in each trend,
it is not useful for future prediction. In this study, we propose a state space
model incorporating the detected trend change points as slope shift interference
variables. Hereafter, this model will be referred to as a trend shift model.

Assuming that the time of the i-th trend change point is τ , the slope shift
interference variable can be defined as follows.

zi,t =

{
0 t ≤ τ

t − τ t > τ
(1)

where zi,t is a variable whose value increases with time changing from τ . By
obtaining the regression coefficient of this variable, the slope of the trend can be
estimated.
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By extending the state space model proposed in [6], the trend shift model
incorporating the slope shift interference variable is described as follows.

yt = μt + Σiαi,tzi,t + Σkβk,txk,t + Σmλm,twm,t + εt (2)

εt ∼ NID(0, σ2
ε ) (3)

μt+1 = μt + ξt (4)

ξt ∼ NID(0, σ2
ξ ) (5)

αi,t+1 = αi,t, βk,t+1 = βk,t, λm,t+1 = λm,t (6)

where yt is the logarithm value of NAV at time t. μt represents irregular vari-
ations. xk,t denotes the logarithmic value of a macro variable factor k, such as
the exchange rate. wm,t denotes a macro interference factor m, such as policy
announcement; it is 0 until the event occurs, and becomes 1 after the event
occurs. The parameters σ2

ε , σ2
ξ , β, λ are learned by using maximum likelihood

estimations. The regression coefficients β and λ quantitatively represent the
degree of influence of each factor.

3.2 TP-TBSM

We propose TP-TBSM, a method to detect trends effectively to realize the trend
shift model by extending TBSM [9].

TBSM segments time series data into three kinds of trends i.e., rising, falling,
and stagnating using three parameters and the point farthest from a linear func-
tion. An Example is shown in Fig. 1. In the second trend Fig. 1(a), the point
where the distance from the straight line representing the trend becomes the
maximum is determined. If the distance d exceeds the parameter δd, this point
is set as a change point. If the variation is small around the change point, it is
segmented into three trends (Fig. 1(b)). This judgment is made based on whether
the point is included in the rectangle of X thld and Y thld. The second trend
in (a) is segmented into three trends in (b).

(a) Detect change points (b) Detect stagnating trend

Fig. 1. TBSM (d: Distance from straight line, X thld: Parameter of the length of trend,
Y thld: Parameter of the magnitude of variation)
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Fig. 2. Trend Error e(t) of trend (ts, te)

Table 1. Symbols in TP-TBSM

Symbol Description

y(t) Time series data

(ts, te) Trend represented by a combination of points ts and te

f(t) Linear function representing a trend line

e(t) Distance between y(t) and f(t)

C Set of trend change points

ci The i-th element of C

E Set of trends whose trend error is large

δt Parameter of the size of the minimum trend. Needs to be set

δd Parameter of the magnitude of e(t). Calculated by the algorithms

δe Parameters related to trend error. Calculated by the algorithms

It is difficult to determine appropriate parameters according to time series
data. Therefore, we propose TP-TBSM, which relaxes the dependency on param-
eters. We introduce the concept of trend error, and recursively detect trends by
reducing the trend error (Fig. 2).

A trend error is an average value of distance between each data point and a
trend line (which can be represented by a linear function). The trend line is a
straight line connecting the start and end points of the trend. The trend error
is a measure showing the distance of the points from the trend line. The trend
error is calculated as follows.

TE(y(t), ts, te) =
Σte

t=tse(t)
te − ts

(7)

e(t) = |f(t) − y(t)| (8)

where ts and te are the start and end points of a trend respectively, y(t) is a
value of time series data, and f(t) is a linear function representing a trend line.
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Algorithm 1. TP-TBSM
Input: y(t),δt

Output: C

1: C = {1, n}
2: E = {(1, n)}
3: repeat
4: if not first iteration then
5: E = Evaluation(C, Y )
6: end if
7: Cold = C

8: for (ts, te) ∈ E do
9: if te − ts < 2δt then

10: Go to the next trend, because the trend length is short
11: else
12: dmax = max e(t) in the interval [ts + δt, te − δt]
13: δd = dmax

14: C = C ∪ Segmentation(y(t), δt, δd, ts, te)
15: end if
16: end for
17: until Cold = C

18: return C

In this study, a trend is considered good if TE(y(t), ts, te) is small. e(t) is
the distance between the real point y(t) and the corresponding point f(t) on the
trend line.

As shown in Algorithm 1, the proposed method detects trends by alternately
repeating two phases: evaluation and segmentation. The evaluation phase is
shown in Algorithm 2, and the segmentation phase is shown in Algorithm3.
After describing these two phases, the algorithm of TP-TBSM will be explained.
The symbols commonly used in the algorithms are listed in Table 1.

In the evaluation phase, we determine trends, which should be further seg-
mented by considering their trend errors.

Step 1: Calculate the trend error for each trend and set the parameter δe as
their average value (Line: 2–5).

Step 2: A trend whose trend error is larger than δe is subject to segmentation
(Line: 6–10).

In the segmentation phase, we segment trends, as follows.

Step 1: Determine the point whose distance to the trend line is the maximum.
Such a point is a candidate for a trend change point. We are considering
the interval [start + δt, end − δt] to ensure that the length of the trend is
greater than or equal to the parameter δt to avoid segments that are too short
(Line 1).



Global Analysis of Factors by Considering Trends to Investment Support 125

Algorithm 2. Evaluation
Input: C

Output: E

1: E = ∅
2: for i = 1 : p do // p: Number of trends
3: e list[i] = TE(y(t), ci, ci+1) // e list: List of length p
4: end for
5: δe = Average(e list)
6: for i = 1 : p do
7: if e list[i] > δe then
8: E = E ∪ (ci, ci+1)
9: end if

10: end for
11: return E

Step 2: Determine whether to segment by using the parameter δd (Line 2).
Step 3: Check whether there is a stagnating trend around the trend change

point. A stagnating trend indicates that the value variation in the trend is
small.

(1) As preparation for the checking, we construct a list H consisting of
points whose values are close to that of the candidate trend change point
(Line 3–8).

(2) If H is sufficiently long, and more than half of the points in H have a
value close to that of the candidate trend change point, we conclude that
a stagnating trend exists, and thereafter divide the current trend into
three sub-trends including a stagnating trend (Line 9–13).

(3) If no stagnating trend exists, we simply segment the current trend into
two sub-trends using the (candidate) trend change point (Line 15–17).

The TP-TBSM algorithm is shown in Algorithm1.

Step 1: The start and end points of the time series data are considered as
the initial trend change points, and the trend line connecting these points is
considered as the initial trend (Line 1–2).

Step 2: An evaluation phase is performed. A trend with large trend error is
selected and placed in the set E (Line 4–6).

Step 3: The length of the trends in E is examined. If the trend length is shorter
than 2δt, we do not perform further segmentation for this trend to avoid
trends shorter than δt (Line 8–10).

Step 4: If segmentation is possible, δd for segmentation is determined, and the
segmentation phase is performed. The parameter δd is set to the maximum
distance to the trend line (Line 11–16).

Step 5: Steps 2–4 are repeated until the result does not change (Line 17).
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Algorithm 3. Segmentation
Input: y(t), δt, δd, (ts, te)
Output: C

1: dmax = max e(t) in the interval [ts + δt, te − δd]. Let td be that time
2: if (dmax ≥ δd) then
3: p = 0 // p :Number of points included in H
4: for ti = (td − δt) : (td + δt) do
5: if |y(ti) − y(td)| < δd

2 then
6: H[p] = i, p = p+1 // H :Point list for a stagnating trend
7: end if
8: end for
9: if (H[p] − H[1] > δt) and (p > H[p]−H[1]

2 ) then
10: ca = Segmentation(y(t), δt, δd, ts,H[1])
11: cb = {H[1],H[k]}
12: cc = Segmentation(y(t), δt, δd,H[k], te)
13: return {ca, cb, cc}
14: else
15: ca = Segmentation(y(t), δt, δd, ts, td)
16: cc = Segmentation(y(t), δt, δd, td, te)
17: return {ca, cc}
18: end if
19: end if
20: return {ts, te}

Figure 3 shows an example of detecting trends by using TP-TBSM. In
Fig. 3(a), each trend is evaluated using trend error. The trend error of the second
trend is large. In Fig. 3(b), the point where e(t) becomes maximum is detected
as the trend change point. In Fig. 3(c), it is verified whether there is a stagnation
trend. There is no stagnation trend in this instance. In Fig. 3(d), segmentation
is performed. This process is repeated to detect trends.

4 Experiments

First, we evaluate the usefulness of the trend shift model by comparing the trend
shift with the basic state space models. Second, we construct trend shift models
with different trend detection methods to evaluate our TP-TBSM method.
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(a) Evaluation Phase (b) Change points detection

(c) Stagnating trend estimation (d) Segmentation Phase

Fig. 3. TP-TBSM

4.1 Outline of the Experiment

We used the data set collected by Onishi et al. [6] consisting of 13 trust products
from January 4, 2016 to October 31, 2016. The data for the last 20 days are
used for testing mid-term predictions, and the other data are used for learning.
The 20 days will be about a month’s worth of data excluding days with no NAV
data such as Saturdays and Sundays. The parameter δt used to detect trends
using TP-TBSM was also set as 20 days. We used the macro and micro factors
extracted using the existing method [6].

As the state space model assumes that the standardized prediction error is
independent and normal, we analyzed 13 trust products with each model and
used only 11 products for further analysis. These 11 products satisfied the Ljung–
Box test and the Shapiro–Wilk test with the significance level 5%.

4.2 Evaluation Measures

Average Error of Mid-term Prediction. State space models are rarely used
for prediction and are often used for factor analysis. Therefore, the focus is often
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on how much data can be reproduced for evaluations. However, in investment
trust products, accuracy of prediction is also important, and we propose a global
analysis model that could be used for prediction. Therefore, in this study, the
average error of mid-term prediction is used for the evaluation of the model.
However, as the regression components are included in the model, it is necessary
to use the observed data with respect to them, and hence, this prediction is
closer to completion than pure prediction.

AIC (Akaike Information Criterion). In addition to the mid-term predic-
tion error, the Akaike information criterion (AIC) is used for the model eval-
uation. Let L be the maximized log-likelihood, r be the number of unknown
parameters, q be the number of initial points in a diffuse initial state, and n be
the number of points; the AIC in time series is expressed as follows.

AIC =
−2L + 2(q + r)

n
(9)

AIC is penalized by the number of parameters that must be estimated for maxi-
mum log likelihood. As the likelihood of the time series is based on the one-step
prediction error, the model with small AIC is a simple one with the high accuracy
of the one-step prediction.

4.3 Baseline Methods

Models Used for Comparison with the Trend Shift Model. We compare
our trend shift model with the following existing models.

– Local model proposed in [6]. It is a model with Σiαi,tzi,t removed from
equation (2).

– Linear model is a variation of the local linear trend model [10], which
extends the local model by introducing a slope term. In short, the linear
model modifies Eq. (3) of the trend shift model as follows.

μt+1 = μt + νt + ξt, ξt ∼ NID(0, σ2
ξ ) (10)

νt+1 = νt (11)

– Trend model is also a variation of the local linear trend model [10]. In the
trend model, Eq. (3) is modified as follows.

μt+1 = μt + νt (12)

νt+1 = νt + ξt, ξt ∼ NID(0, σ2
ξ ) (13)

Comparative Method for TP-TBSM. To evaluate TP-TBSM, we construct
trend shift models with different trend detection methods: our TP-TBSM and the
dynamic programming (DP) method [6]. The method of detecting trends using
DP was used by Onishi [6]. For each trend, the DP method prepares a straight
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line connecting the boundary points of the trend, and calculates the root mean
square error by comparing with the NAV. The DP method dynamically changes
the trend points to minimize the error. It is necessary to determine the number
of trends.

4.4 Results and Discussion

Trend Shift Model. The local model, linear model, trend model, and trend
shift model (TP-TBSM) are compared. As presented in Table 2, the average
error of the mid-term prediction of the trend shift model is the smallest for eight
out of 11 products. This indicates that the trend shift model could accurately
estimate the influence coefficient of the factors.

In addition, the prediction errors of the local and linear models are larger for
most products. These models do not fully consider the influence of trends. The
error variation of the trend model is large. This is because the value of the slope
term expressing the trend is largely influenced by the immediately preceding
value in the trend model.

As presented in Table 3, the local model exhibits the lowest AIC value for all
the products and the linear model exhibits the second lowest value. It is thought
that AIC has become smaller because simple random walk is used for these two.
Overfittings are caused by random walks. Further details are provided in the
case study.

Upon comparing the trend model with the trend shift model, it can be
observed that the trend shift model shows a smaller AIC value for eight out
of 11 products, and it can be concluded that the trend shift model is a better
model than the trend model.

Table 2. Average error of mid-term prediction

Product Local Linear Trend Trend shift

1 0.0121257 0.0123519 0.0360227 0.00760425

2 0.01692213 0.01192982 0.02064795 0.00807945

3 0.0263603 0.0187761 0.01338155 0.0096469

4 0.0091394 0.01260265 0.0132246 0.0095815

5 0.02357305 0.0224242 0.01857475 0.01863415

6 0.01534265 0.0147249 0.0112846 0.0217712

7 0.019291 0.0176646 0.0425186 0.01261265

8 0.01504885 0.02040415 0.027809 0.00924125

9 0.0211324 0.01933145 0.03037835 0.01348215

10 0.01992795 0.01959765 0.0345798 0.012273

11 0.01532515 0.01736685 0.0213364 0.00893415
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Table 3. AIC

Product Local Linear Trend Trend Shift

1 −4.052401 −3.969067 −3.764244 −3.814294

2 −4.212589 −4.127697 −3.918999 −3.968967

3 −3.723839 −3.644144 −3.416982 −3.509882

4 −3.730298 −3.64922 −3.416481 −3.584658

5 −3.365685 −3.284338 −3.0366 −3.217069

6 −4.281146 −4.194311 −4.109473 −3.82778

7 −4.076699 −3.991273 −3.76433 −3.830447

8 −3.960386 −3.876909 −3.623052 −3.839674

9 −4.133614 −4.047846 −3.821848 −3.887454

10 −4.133536 −4.047639 −3.820015 −3.744925

11 −4.193313 −4.1072 −3.888612 −3.868926

TP-TBSM. The results (average error of mid-term predication and AIC) of
the trend shift models constructed based on DP and TP-TBSM are compared.
The parameter δt of TP-TBSM was set to 5, 0, 15, and 20.

As presented in Table 5, the model based on TP-TBSM achieved better
results in terms of AIC than the model based on DP. The number of trends
in DP is fixed at 9, whereas TP-TBSM detects different numbers of trends.

As presented in Table 4, the smaller the parameter δt, the better the result
of the mid-term prediction. In addition, the prediction error of TP-TBSM is
smaller than that of DP for almost all the products. In short, the TP-TBSM
method could flexibly determine the number of trends and achieve better results
in terms of AIC and prediction error.

Case Study. We discuss the effect of the trend shift model on the product 11.

Table 4. Average error of mid-term prediction. “error” denotes the failed prediction.

Product DP TP-TBSM(5) TP-TBSM(10) TP-TBSM(15) TP-TBSM(20)

1 0.015405445 0.00886747 0.006761714 0.008439111 0.00760425

2 0.018084755 0.009292621 0.007683202 0.009119887 0.00807945

3 0.013712115 0.07039487 0.01172114 0.009646895 0.009646895

4 0.01047508 error 0.009581494 0.009581494 0.009581494

5 0.017375915 0.01237681 0.01863413 0.01863413 0.01863413

6 error error 0.02571607 0.02795278 0.0217712

7 0.007685725 0.01445365 0.01199136 0.01452575 0.01261265

8 0.0199715 0.008097168 0.0091934 0.01072543 0.00924125

9 error error 0.01348301 0.007741808 0.01348215

10 0.012518285 0.006099533 0.006322822 0.0131806 0.012273

11 0.009192925 0.006014863 0.00893464 0.01202038 0.00893415



Global Analysis of Factors by Considering Trends to Investment Support 131

Table 5. AIC. “error” denotes the failed prediction.

Product DP TP-TBSM(5) TP-TBSM(10) TP-TBSM(15) TP-TBSM(20)

1 −3.580444 −3.716145 −3.817783 −3.818378 −3.814294

2 −3.686648 −3.966148 −3.970557 −3.971028 −3.968967

3 −3.26868 −2.658826 −3.451055 −3.509882 −3.509882

4 −3.245881 error −3.584658 −3.584658 −3.584658

5 −2.816559 −2.669863 −3.217069 −3.217069 −3.217069

6 error error −3.593841 −3.787913 −3.82778

7 −3.495332 −3.817393 −3.831919 −3.832069 −3.830447

8 −3.387825 −3.485216 −3.775669 −2.899403 −3.839674

9 error error −3.674589 −3.805849 −3.887454

10 −3.586449 −3.27506 −3.484745 −3.861185 −3.744925

11 −3.681659 −3.26022 −3.871297 −3.712011 −3.868926

Fig. 4. Mid-term prediction for product 11; local model: blue, linear model: yellow,
trend model: green, trend shift model (TP-TBSM): red (Color figure online)

The prediction of the middle term is shown in Fig. 4. The average error of
the trend shift model using TP-TBSM is the smallest one among all the models.
From this figure, it can be observed that the trend shift model can successfully
estimate the trend. Local models and linear models do not change much since
the start of prediction.

Discuss overfittings caused by random walks. μt of each model is shown in
Fig. 5. As μt varies owing to random walk, larger variation of μt indicates that
the change of NAV is random and we could not estimate the influence degrees
of factors.

In the local model and linear model, μt significantly varies every day. In the
trend model, this level term fluctuates smoothly, and hence, it is different from
the change of NAV of local and linear models. Therefore, the influence of μt

becomes small, and the variation by chance decreases. In the trend shift model,
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(a) Local Model (b) Linear Model

(c) Trend model (d) Trend Shift Model

Fig. 5. Difference in μt by model

the variation of μt is suppressed, and we may conclude that the trend shift model
could reduce the effects of chance to yield better results of factor analysis.

5 Conclusion and Future Work

In this paper, we proposed a trend shift model by incorporating the trend change
points into a state space model in order to quantitatively analyze factors affect-
ing the NAV and predict future NAVs. To realize the trend shift model, we
also proposed a trend detection model, i.e., TP-TBSM. In the TP-TBSM, by
repeating the evaluation and segmentation phases, it is possible to reduce the
dependence on the parameter, as compared with the conventional method, and
to detect the trend more flexibly. The trend shift model enables global anal-
ysis across trends. From the experimental results, we observed that the trend
shift model incorporating the change point detected using TP-TBSM has higher
prediction accuracy than the baseline. We will carry out further extensive exper-
iments to validate and improve our model. We also plan to extend the TP-TBSM
method to multiple time series data. Another future work is to compare multiple
products to support investment.
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Abstract. This paper presents a highly efficient aggregation query pro-
cessing method for large-scale multidimensional data. Recent develop-
ments in network technologies have led to the generation of a large
amount of multidimensional data, such as sensor data. Aggregation
queries play an important role in analyzing such data. Although rela-
tional databases (RDBs) support efficient aggregation queries with
indexes that enable faster query processing, increasing data size may
lead to bottlenecks. On the other hand, the use of a distributed key-value
store (D-KVS) is key to obtaining scale-out performance for data inser-
tion throughput. However, querying multidimensional data sometimes
requires a full data scan owing to its insufficient support for indexes. The
proposed method combines an RDB and D-KVS to use their advantages
complementarily. In addition, a novel technique is presented wherein data
are divided into several subsets called grids, and the aggregated values
for each grid are precomputed. This technique improves query processing
performance by reducing the amount of scanned data. We evaluated the
efficiency of the proposed method by comparing its performance with
current state-of-the-art methods and showed that the proposed method
performs better than the current ones in terms of query and insertion.

Keywords: Multidimensional data · Aggregation query
RDB · Distributed KVS

1 Introduction

In scenes including business activities, various types of data, such as product
purchase data or sensor data, are generated. Accumulating and analyzing such
data leads to obtaining new findings, and online analytical processing (OLAP)
[1] is a type of such analysis. In OLAP, data are treated as multidimensional.
Such data can be organized on a hypercube or a data cube. An analysis process
is converted to an operation on the data cube, which is key to efficiently handle
multidimensional data in OLAP.
c© Springer Nature Switzerland AG 2018
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In addition to this background, the rapid developments in network technology
have led to an increase in the number of devices that are connected to the
Internet and generation of multidimensional data. A large amount of data is
generated from the backbone of what has been called the Internet of Things
(IoT). Hence, analyzing the sensor data generated by IoT devices has gained
prominence. One of the most useful operations that enable the analysis is an
aggregation query. There are various challenges to compute such aggregation
queries. Since sensor data are generated continuously and frequently, the data
store must offer high insertion throughput and compute the aggregation queries
by efficiently managing multidimensional data.

Several studies have focused on these challenges [2–5]. Nishimura et al. [6]
proposed MD-HBase, which handles multidimensional data efficiently in a key-
value store only with a one-dimensional index. The key idea behind MD-HBase is
to transform multidimensional data into one-dimensional data by using a space-
filing curve, which is embedded into the key-value store.

In this paper, we consider the combined advantages of current data stores,
i.e., relational databases (RDBs) and distributed key-value stores (D-KVSs).

– RDBs [7] are widely used as reliable data stores in many applications. They
are equipped with state-of-the-art features, such as indexes to manage com-
plex data efficiently, transactions to protect data, and SQL to search data with
complex query conditions. Multidimensional exact match queries and range
queries can be processed efficiently using the indexes. However, despite the
number of studies on distributed and parallel databases [8,9], RDBs do not
provide good scale-out performance owing to their complex query processing
capabilities such as strict transaction, indexes, and SQL.

– A key-value store (KVS) [10–13] is a simplified table-type database in which
a tuple, called “row”, consists of two attributes: key and value. Compared
with an RDB, the data structure of a KVS is relatively simple. Thus, it is
easy to decentralize data over several servers by horizontal partitioning, which
is also called distributed KVS (D-KVS). In addition, most D-KVSs do not
support transactions, rich query languages, and complex indexes, which adds
to the bottleneck in database systems. These restrictions enable a D-KVS
to provide good scale-out performance. In contrast to this advantage, most
D-KVSs support an index only on a key. Therefore, it is difficult to execute
flexible and complex queries because of the costs incurred in carrying out a
full data scan over a large amount of data.

We also consider a precomputation technique, such as a materialized view,
to reduce the computation cost required to process a multidimensional query.
Using this technique, some aggregation queries can efficiently be evaluated with
partial precomputed aggregation results. For example, consider a data set D
that is divided into three blocks B1, B2, and B3. The sum of D, sum(D), can
be obtained by adding partial summation values such as sum(D) = sum(B1) +
sum(B2) + sum(B3). We only have to add the three partial sum values of these
blocks by calculating and storing them in advance. Therefore, we can significantly
reduce the cost of scanning data D.

Based on the above discussion, we propose an efficient multidimensional data
store for a large amount of data by middleware that combines an RDB and



136 Y. Watari et al.

D-KVS. The proposed data store also enables the precomputation of partial
aggregation results for efficient processing and optimizing multidimensional
queries.

The proposed data store has two key properties. First, the raw data are
stored in a D-KVS and their corresponding multidimensional indexes are stored
in an RDB. The D-KVS offers high insertion throughput and the RDB provides
efficient management of complex data by indexes. This approach provides better
maintainability of the software of the data store because of the middleware
that controls them only with their APIs. Second, the multidimensional space is
divided into subspaces, which are called grids. For each grid, partial aggregation
values, such as sum, max, min, and number of data, are precomputed for efficient
aggregation query processing.

The remainder of the paper is organized as follows: Sect. 2 describes related
work. In Sect. 3, the problem of executing aggregate operations for multidimen-
sional data is formulated. Next, in Sect. 4, the proposed method for improving
aggregation query processing performance is described. In Sect. 5, we discuss
our evaluation experiments and results. Finally, we conclude the findings of this
work in Sect. 6.

2 Related Work

There are many indexes for handling multidimensional data. Z-order curve [14]
and Hilbert curve [15] are space-filling curves that convert multidimensional
data into one-dimensional data. These curves can be used as multidimensional
indexes by giving the converted value to a one-dimensional index. Tree struc-
tures, such as R-tree [16], quadtree [17] and k-d tree [18], are also commonly
used for multidimensional indexes.

A k-d tree [18] is a binary search tree constructed by dividing a multidimen-
sional space in a top-down manner. This division is conducted by a hyperplane
that is perpendicular to an axis; the axis is chosen cyclically. There are several
approaches to choose division points: using the median or mean value of data and
center value of the hyperrectangle. Using the median value enables the k-d tree
to become well balanced. The problem is that the computation cost of obtaining
the median value is relatively high; however, the mean value can be calculated
easily. Thus, the mean value is often used instead. We call this division mean-
value-division. On the other hand, if the center value of the hyperrectangle is
chosen, the shape of each node of the k-d tree can be kept uniform. We call this
division center-division.

Multidimensional indexes including a k-d tree have been used in RDBs, but
recent studies involved applying them to D-KVSs, such as MD-HBase [6]. MD-
HBase is an improved version of HBase, which can conduct multidimensional
range queries efficiently. MD-HBase transforms the multidimensional data into
one-dimensional data by the Z-order curve [14], which is a space-filling curve. The
transformation can be attained by assigning numbers in the order through which
the curve passes. The numbers obtained are used as keys in an HBase table. In
addition, MD-HBase splits the multidimensional space into several regions by
a k-d tree and holds the minimum and maximum key values of each region
as an index. When executing multidimensional range queries, MD-HBase finds
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the minimum and maximum values of the key range for a given query then
conducts a range scan on HBase. At this instance, MD-HBase skips scanning
some regions that do not intersect with the range of the query. This optimization
skips unnecessary data scans of such regions.

MD-HBase requires the modification of the complex code in HBase to con-
struct an index embedded in HBase. Applying the same approach to other D-
KVSs is cumbersome, and its implementation and maintenance costs are quite
high. In contrast, the proposed method does not require the building of a new
index layer in the D-KVS. It uses only the APIs provided by an RDB and D-
KVS, in which the indexes are automatically and consistently maintained by the
RDB. In other words, the implementation and maintenance costs of the proposed
method can be suppressed; thus, it achieves high sustainability. In a previous
study [19], MD-HBase was extended to optimize the data scan. However, the
query pattern must be known in advance.

Instead of MD-HBase, it is possible to use MapReduce [20] as a framework
for managing large-scale data. In MapReduce, we have only to define map and
reduce steps. Combining them makes it possible to easily implement highly paral-
lelized processing. In addition to text processing, MapReduce can also be applied
to aggregate operations on sensor data. SpatialHadoop [21] extends Hadoop for
spatial data. It constructs multidimensional indexes such as grid, R-tree, and
R+-tree. The index constructions are executed with MapReduce. Hence, it han-
dles with static data or a snapshot of data, while the proposed method can
handle dynamically and continuously generated data. MapReduce and Spatial-
Hadoop are based on batch process, which leads to longer response time. In
contrast, the proposed method achieves efficient aggregation query processing in
both response time and throughput.

3 Problem Formulation

In our study, we assume that data are a set of points in multidimensional space.
The domain of the data is called a data space D (∈ R

n), where n is the dimen-
sionality of the data and D is a hyperrectangle, i.e., D is expressed by a Cartesian
product as follows: D = [s1, e1] × [s2, e2] × · · · × [sn, en], where si and ei denote
the start and end points in the i-th dimension of the hyperrectangle, respectively.

We consider a partially computable aggregation operation for multidimen-
sional data. This operation can be defined as follows:

Definition 1 (Partially computable aggregation operation). Given a query
range Q (Q ⊆ D) and an aggregation operation f(Q), which calculates an aggre-
gation value for data within Q, f is partially computable if and only if there
exists a function c that satisfies f(Q) = c(f(G1), f(G2), . . . , f(Gm)). Here, Q is
divided into hyperrectangles G1, G2, . . . , and Gm; in other words, the following
formulae hold:

∀i �= j (Gi ∩ Gj) = ∅, and
⋃

i=1,...,m

Gi = Q.

Examples of partially computable aggregation operations are sum, count,
average, minimum, and maximum; cardinality is not a partially computable
aggregation operation.
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Fig. 1. Architecture of proposed data store

Our goal is to efficiently execute a partially computable aggregation operation
for the data contained in a region Q (Q ⊆ D), where Q is a hyperrectangle.

4 Proposed Method

In this section, we present an outline of our approaches for the proposed data
store, which is illustrated in Fig. 1. The presented approaches reduce the amount
of data to be scanned, as follows:

1. The data space is split into several hyperrectangles, which are called grids
(the left side in Fig. 1). This split follows the algorithm of the k-d tree.

2. A partial aggregation value for each grid is precomputed.
3. Given a query (shown as a dashed line in Fig. 1), scans of the data in grids

that are entirely contained in the query, are omitted because the aggregation
values of such grids have already been computed. This optimization reduces
the amount of data to be scanned.

For example, when we calculate the sum over the query range shown as a
dashed line in Fig. 1, we first get the partial aggregation values of grids 00110
and 00111, assuming that they are 12 and 15. These values can be obtained
quickly because they have already been precomputed. Then, the data contained
in grid 000 are scanned and summed up, say, it is 5. Finally, the result is found
by adding these three values, i.e., 12 + 15 + 5 = 32.

As described in Sect. 1, the key feature of our method is using the advantages
of both an RDB and D-KVS. There are three types of data required for our
method:

– metadata of grids including their locations, sizes, and IDs;
– raw data; and
– partial aggregation values.

The size of metadata is not significantly large unless the grid size is extremely
small. However, to answer a query, the number of grids that intersect with the
query range must be enumerated, which is a challenging problem. To address
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this problem, we store the metadata in an RDB with indexes. Compared to the
frequency of data insertion, grid split occurrences are relatively low. Therefore,
it is reasonable to adopt the replication for the indexes, since the metadata are
not frequently updated.

The size of raw data could be significantly large. When handling with sen-
sor data, raw data and partial aggregation values must be updated frequently
because such data are continuously generated. Therefore, these data should be
stored in a scalable D-KVS, which can execute high insertion throughput.

By using the advantages of an RDB and D-KVS complementarily, we can
address the challenges to handle a large amount of multidimensional data. In
this study, we adopted PostgreSQL [22] as an RDB and HBase [23] as a D-KVS.
Note that the proposed method can be implemented using any RDB and D-KVS.

4.1 Grid Splitting

As shown in Fig. 1, grid splitting follows the algorithm of the k-d tree. When the
number of data entries in a grid exceeds a certain threshold, the grid is divided
based on a cyclically selected axis. Let this threshold be Nthreshold. The division
is executed recursively until the number of data entries in the grid is less than
the grid size (Nsize). Note that Nsize ≤ Nthreshold always holds, which means that
the number of data entries in the grid is allowed to exceed Nsize. As a result, the
frequency of grid splitting can be suppressed. We use mean-value-division and
center-division as a division strategy for the k-d tree.

4.2 System Architecture

With our method, the data are stored in both an RDB and D-KVS. The archi-
tecture of our data store consists of three parts: database, buffer, and middle-
ware, which are illustrated in Fig. 1. The database part stores three types of
data—metadata of grids, raw data, and partial aggregation values. The buffer
part temporarily keeps the data to be stored in the database, so that insertion
throughput can be improved. The middleware accepts queries and controls the
database and the buffer through their APIs for query processing.

When inserting new data, some partial aggregation values must be updated
in the grids associated with them. Moreover, a grid must be split if the number
of data entries in a grid becomes larger than Nthreshold. Grid splitting is executed
with mutual exclusion because all data must be consistent even when multiple
clients simultaneously insert data into the same grid. If clients directly insert data
into the database part, this costly mutual exclusion results in the degradation
of data insertion throughput. To avoid this problem, clients insert data into the
buffer part temporarily. Since clients do not update the database part, no mutual
exclusion is needed. Moreover, the buffer is organized with the D-KVS to provide
scalable insertion throughput.

Aggregation queries related to data in the buffer do not return accurate val-
ues because partial aggregation values are not precomputed. Therefore, such
data must quickly be moved into the database part; this operation is referred to
as a merge operation. The merge operation is controlled by the middleware and
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executed on the D-KVS servers in parallel. If the merge operation is faster than
the case in which clients directly insert data into the database part, aggrega-
tion queries can return accurate results more quickly. The details of the merge
operation are described in the next section.

4.3 Insert and Merge Operations

The algorithm of insertion is very simple. As described in Sect. 4.2, when a client
inserts data, the data are simply inserted into an HBase table, which works as
the buffer.

The merge operation is executed on multiple servers in parallel. It can cause
grid splitting and updating of partial aggregation values. Figure 2 shows the flow
of the merge operation, where three servers, A, B, and C, are under the merge
process. Each server is responsible for merging the data based on the assigned
key prefix, which uniquely maps the server to the process.

RDB D-KVS

Database part

D-KVS

Buffer part

(1) Retrieve data

(2) Look up grid ID
(Thin arrow)

(3) Copy data
(Thick arrow)

Server 
A

Server 
B

Server  
C

Sum and count
of the axis

Division
point (average)

Sum and count
of the axis

Division
point (average)

Fig. 2. Merge operation: numbers in figure correspond to those in Algorithm 1

The algorithm for the merge operation is as follows.

Algorithm 1. Merging data
1. Retrieve the data associated with a server from the buffer.
2. On PostgreSQL, search the grid ID to which the data obtained in step 1

belong.
3. Copy the data obtained in step 1 into the HBase table while adding the grid

ID to its key prefix. Execute grid splitting if necessary.
4. Delete the data obtained in step 1 from the buffer.
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In step 3, if the total number of data entries in the database part and buffer
exceeds Nthreshold, grid splitting is initiated. This split process is operated by
several servers in parallel as follows. First, the master role is assigned to an
arbitrary server (in Fig. 2, B is the master). The master receives the informa-
tion used to determine the division point from other servers. After the division
point is calculated by the master, it notifies others of the division point. Finally,
the master updates partial aggregation values in HBase and the metadata in
PostgreSQL while maintaining consistency by a transaction in an RDB.

Note that the master can cause a bottleneck when a large number of grids
have to be split. However, this master role for each grid can be migrated to a
different server to avoid a bottleneck because split processes for different grids
can work independently.

4.4 Query

Given a query range Q (⊆ D), the aggregation query of the data within Q is
processed by the middleware as follows1.

Algorithm 2. Querying Q

1. Find all grids that intersect with Q by using the grid information table in
PostgreSQL. Let G be a set of the obtained grids. Check if each grid range is
completely included in Q.

2. Combine the partial aggregation results of the grids in G that are completely
included in the query (grids 00110 and 00111 in Figure 1).
These partial aggregation values can be obtained quickly because they are
stored in HBase.

3. Scan all data in the grids in G that are partially included in the query range
and aggregate the values within Q (grid 000 in Figure 1).
We conduct a prefix scan with row keys.

4. Combine the results obtained in steps 2 and 3.

5 Experimental Evaluations

We conducted experiments to evaluate the proposed method.
In some experiments, we compared the proposed method to an open source

implementation of MD-HBase2. We improved its original implementation for
support of higher dimensionality and better insertion and query performance.

The experiments we conducted are as follows. We compared the insertion
throughput among the proposed and current methods (Sect. 5.2). We then eval-
uated query performance (Sects. 5.3 and 5.4). Finally, we measured throughput
with mixed read/write workloads (Sect. 5.5). In some experiments, we compared
1 Our implementation uses a custom filter in HBase for a prefix scan in Step 3 of

Algorithm 2, which efficiently extracts the data contained within the given query
range.

2 https://github.com/shojinishimura/Tiny-MD-HBase.

https://github.com/shojinishimura/Tiny-MD-HBase
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the proposed method to PostgreSQL-only and HBase-only schemes to clarify the
effectiveness of combining them in the proposed method.

All experiments were conducted on a cluster with 16 PCs, each of which
was equipped with an Intel Core i7-3770 CPU (3.4 GHz), 32 GB of memory,
and a 2-TB HDD, running HBase 1.2.0 under CentOS 6.7. 13 PCs out of 16
operated as region servers. HBase stored data over the region servers. In addition,
PostgreSQL 9.6.1 was installed on the 13 PCs, which were configured as a multi-
standby replication setup.

5.1 Dataset

We used the following two datasets in our experiments.

SFB Data (Moving Objects in San Francisco Bay Area Data, 22
Million). We generated 22,352,824 points of moving objects in the San Fran-
cisco Bay Area using a network-based generator [24]. Each data entry has two
attributes – latitude and longitude. We call such data SFB data.

Indoor Sensor Data (100 Million). We collected 2,032,918 data entries from
indoor environmental sensors between January 14, 2010 and April 11, 2014. Each
entry consists of 16 attributes. We extracted the entries from original data for
3 years from 2011 to 2013. Given the insufficient size of the data, we generated
pseudo data by replicating the existing data by a factor of 70, giving rise to 100
million data entries from 2011 to 2031. We call the pseudo data indoor sensor
data.

5.2 Evaluation of Insertion Throughput

To compare the insertion performance of the proposed method relative to those
of MD-HBase, PostgreSQL, and HBase, we inserted SFB data into these systems
and measured their throughputs. We used the data because they were close to
large and frequently generated data with sensor devices such as automobiles.
Note that the insertion throughput with the proposed method was calculated
based on the elapsed time from when the client started inserting until the merge
process finished.

We configured one PC in the cluster as a client for inserting data. During
insertion, we varied the grid size Nsize with the proposed method and MD-
HBase as follows: Nsize = 50, 125, 250, 500, 1000, 2000, 4000, 8000, 16000, 32000.
The grid size in MD-HBase represents the number of data entries in a bucket
used for determining the threshold for splitting. We set Nthreshold = Nsize × 10.
In addition, we used mean-value-division as a division strategy of the k-d tree.

Results. Figure 3 shows the results of insertion throughputs. Due to space lim-
itations, we plotted some of the results. The numbers for the proposed method
and MD-HBase represent the grid size Nsize. The results indicate that the pro-
posed method achieved higher throughput than MD-HBase and PostgreSQL for
any grid size. It improved by 16.4x–39.8x and 4.0x–12.4x compared to MD-HBase
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Fig. 3. Insertion throughput
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Fig. 4. Query throughputs while varying selectivity

Table 1. Average time lags in merge process

Nsize 50 125 250 500 1000 2000 4000 8000 16000 32000

Time lag (s) 86.8 39.7 32.9 36.2 34.1 32.0 22.4 24.0 22.0 23.7

and PostgreSQL, respectively. Note that this comparison might be overstated
because the MD-HBase we used was not sufficiently optimized in terms of inser-
tion. In contrast, the throughput of the proposed method was lower than that
of HBase, which was up to around 0.4x. The merge process caused this lower
insertion throughput.

We now examine this effect in more detail. There is a time lag from when data
are inserted into the buffer until they are merged in the database part. Table 1
lists the average time lags. The time lag reached 22–87 s. In the merge process,
an additional data access occurred since data are read from the buffer and writ-
ten back to the database. This access caused a drop in insertion throughput.
Improving the merge process to reduce time lag is a future task. We discuss the
effect of the time lag on query processing in Sect. 5.5.

5.3 Evaluation of Query Throughput

We evaluated the query performances for the proposed method and other meth-
ods (MD-HBase, PostgreSQL, HBase, and MapReduce). We inserted indoor sen-
sor data into these systems and conducted the four-dimensional range queries to
measure the throughput. These data are suitable for evaluating query process-
ing performance in high dimensional data since they have many attributes. The
queries were randomly generated so that their selectivity would become 0.001,
0.01, 0.1, 1, and 10%. They were issued from 120 clients simultaneously while
varying selectivity.

With the proposed method, we used both mean-value-division and center-
division as the division strategies for the k-d tree and set the grid size Nsize to the
following values: Nsize = 50, 125, 250, 500, 1000, 2000, 4000, 8000, 16000, 32000,
and 64000. Also, the grid sizes in MD-HBase were Nsize = 8000, 16000, 32000,
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Table 2. Ratios in throughput of proposed to other methods

Proposed (mean-value-division) Proposed (center-division)

MD-HBase 3.2x–21.0x 3.5x–23.2x

PostgreSQL 1.0x–3.0x 1.1x–3.5x

HBase 3.8x–23.2x 4.1x–25.6x

HBase (MapReduce) 38.9x–241.3x 42.2x–266.3x

Table 3. Ratios of throughput of proposed method w/ precomputing to proposed one
w/o precomputing

Selectivity 0.001% 0.01% 0.1% 1% 10%

Mean-value-division 1.0 1.0 1.0 1.1 2.4

Center-division 1.0 1.1 1.1 1.3 3.4

64000, 128000, 256000, 512000, and 1024000. These values were selected as those
that demonstrate the highest query processing performance of each method
based on preliminary experiments.

Results. Figure 4 depicts the query performance results. The note “no-
precomputing” indicates that the precomputation of aggregation values was not
available. In other words, this evaluation was for testing for simple range queries.
We plotted only the best cases while changing grid sizes.

Table 2 describes the improvement rate of the throughputs. The proposed
method exhibited significantly higher throughput than MD-HBase, HBase, and
MapReduce. Even for PostgreSQL, the proposed method in center-division
exhibited higher performance at any selectivity. Furthermore, Fig. 4 illustrates
that simple range query performance of the proposed method is superior to or
the same as the other methods.

Now we discuss the effects of reusing precomputed aggregation values. Table 3
shows the improvement in throughputs by reusing them. The throughput of
center-division at 10% of selectivity increased 3.4x by using the precomputed
values, while there was no increase at low selectivity. With the proposed method,
the number of grids completely included in a query range must be large to
execute queries efficiently. Such a number is proportional to the volume of the
query range, which is an when we consider a range query as an n-dimensional
hypercube whose side length is a. On the other hand, the amount of data to
be scanned, which is related to execution time, depends on the number of grids
partially included in the query range. This is proportional to the surface area of
the query range, which is 2nan−1. Hence, it is possible to reduce the data to be
scanned for a large query range. Therefore, the proposed method could obtain
high throughput under 10% of selectivity.

This claim is also supported in Table 4, which shows various statistics for the
proposed method. Skipped data indicates the data that are selected by the query
but do not need to be scanned, i.e., they exist in a grid completely included by a
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Table 4. Statistics for various selectivity ratios

Selectivity 0.001% 0.01% 0.1% 1% 10%

(a) 1,042 10,449 104,490 1,044,327 10,445,637

(b) Mean-value-division 135,024 298,488 872,584 1,704,079 3,705,552

Center-division 93,874 224,273 646,822 1,583,853 2,444,884

(c) Mean-value-division 0 0 0 294,998 8,169,864

Center-division 6 40 1,912 368,445 9,200,398

(b)/(a) Mean-value-division 129.63 28.57 8.35 1.63 0.35

Center-division 90.12 21.46 6.19 1.52 0.23

(c)/(a) Mean-value-division 0.00 0.00 0.00 0.28 0.78

Center-division 0.01 0.00 0.02 0.35 0.88

(a) # of selected data entries, (b) # of scanned data entries, (c) # of skipped data
entries.

Table 5. Grid sizes that demonstrate highest throughput with proposed method

Selectivity 0.001% 0.01% 0.1% 1% 10%

Mean-value-division 4000 4000 8000 2000 2000

Center-division 4000 4000 8000 4000 2000

given query range. The “(b)/(a)” in Table 4 represents the ratio of the number
of data entries in the grids which are partially included in a given query range
to that of selected data entries. Similarly, the “(c)/(a)” indicates the ratio in
the completely included case. Although 88% entries of the selected data did
not require scanning when the selectivity was 10% in the center-division, we
could not reduce the amount of data to be scanned at 0.001% of selectivity.
In addition, the ratio “(b)/(a)” was much larger than 1. This means that the
proposed method scanned a considerable amount of data which were not related
to the query result.

In summary, increasing query range, the precomputing technique in the pro-
posed method works more effectively and improves query processing perfor-
mance.

Finally, we evaluated the effect of grid size and grid division strategy on query
processing performance. Table 5 lists grid sizes that demonstrate the highest
throughput. These sizes are in the range from 2000 to 8000. The best grid size
for indoor sensor data is considered to be about 4000, although the best one
cannot be obtained in advance.

In this experiment, we used mean-value-division and center-division as divi-
sion strategies. From the above results, center-division yielded better perfor-
mance. From “(c)/(a)” in Table 4, center-division can avoid scan more efficiently
than mean-value-division. This caused the difference in throughput. Center-
division keeps the shape of grids uniform compared with mean-value-division.
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5.4 Evaluation of Insertion Throughput with Varying
Dimensionality

We examined how much the query processing performance of the proposed
method is affected by dimensionality.

In this experiment, we used indoor sensor data, and inserted them into the
proposed system by varying the dimensionality from n = 2 to 16. We executed
several queries on the data while varying the selectivity, i.e., 0.001, 0.01, 0.1, 1,
and 10%. In the experiment, we created an index on the first k attributes in
indoor sensor data when the dimensionality was n = k.

Results. Figure 5 illustrates the results of this experiment. The vertical axis of
the figure is log scale. An increase in the dimensionality had a negative impact
on query throughput. As discussed in Sect. 5.3, the amount of scanned data is
considered to be proportional to the surface area of the query range, which is
2nan−1 under n-dimensional space when we assume the query as a hypercube.
Hence, the query performance is adversely affected by an increase in dimension-
ality. This theoretical analysis matches the results in Fig. 5.

The reuse of precomputed aggregation values is effective only when dimen-
sionally is low or selectivity is high. In addition to the inefficiency in the low-
selectivity case discussed in Sect. 5.3, we analyzed the reasons the throughputs
decrease in higher dimensional cases. The amount of data to be scanned is pro-
portional to 2knan−1 when we assume that the query is a hypercube. This value
is obtained by multiplying the surface area of the query by the side length of
a grid k. The ratio of this value to the query volume is 2knan−1/an = 2kn/a,
which becomes larger as n increases. Thus, it becomes difficult to reuse the
precomputed aggregation values in high dimensional data space.
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5.5 Evaluation with Mixed Read/Write Workload

This section evaluates the throughput of read/write mixed workloads. We com-
pared the throughputs of the proposed method, PostgreSQL, and HBase by
changing the write ratio, which indicates the ratio of write operations to the
entire operations. In this experiment, one operation denoted either one aggre-
gation query (read) or insertion of one record (write). Therefore, the data size
handled by a read operation is much larger than that by a write one. These
operations were issued from multiple clients simultaneously.

In the experiment, we first inserted indoor sensor data. After that, 120 clients
simultaneously issued operations at a specified write ratio, and its throughput
was measured. With the proposed method, we set the grid size Nsize to 4000,
where the highest performance was expected according to Table 5.

Results. Figure 6 shows the results of this experiment. The proposed method
exhibited higher throughput than PostgreSQL and HBase at most selectivity
ranges and write ratios. In particular, the throughput was superior to that of
PostgreSQL in all cases and significantly higher than that of HBase, except for
when the write ratio was extremely high.

These results proved that the objective of this research, i.e., using an RDB
and D-KVS complementarily, was sufficiently achieved. Focusing only on the
results of PostgreSQL and HBase, the RDB (PostgreSQL) had higher throughput
at a lower write ratio. It can handle complicated data efficiently by an index. In
contrast, the D-KVS (HBase) exhibited superior performance at a higher write
ratio because it can efficiently handle data insertion. The proposed method took
advantage of both, which led to higher throughput.

We should note that there was a time lag between insertion and merge pro-
cess. However, the adverse effects on query processing due to the time lag were
sufficiently suppressed since the results indicated that the proposed method
exhibited higher performance than the current methods even when the write
ratio was low. Some applications require aggregation queries even to the recently
inserted data. Such data might temporarily be stored in the buffer part and can
properly be aggregated by our method. However, such aggregation processing to
the buffer can cause slower response time than that only to the database.

6 Conclusion

We proposed a novel method for efficient aggregation query processing for large-
scale multidimensional data. The proposed method combines an RDB and D-
KVS with middleware, so that the advantages of both data stores can be used
complimentarily. This method can also reduce the amount of data to be scanned
on query processing by using the precomputed aggregation values.

We implemented our method using PostgreSQL and HBase, and evaluated
the insertion and query performances by comparing it to PostgreSQL, HBase,
and MD-HBase which is an existing multidimensional data store. The experi-
mental results indicated that the proposed method exhibited the highest query
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throughput. The insertion throughput was also much higher than PostgreSQL
and MD-HBase. In addition, the evaluation with the mixed read/write work-
loads showed that the proposed method was superior to PostgreSQL and HBase
at any write ratio. These results obviously proved that the proposed method
could utilize both an RDB and D-KVS sufficiently. We also investigated the
behavior of the proposed method with various dimensional data. An increase
in dimensionality resulted in a decrease in query throughput. The decrease was
more prominent for queries with higher selectivity.

For future work, we will attempt to improve query performance for higher
dimensional data owing to the challenges faced in using precomputed aggregation
values. Besides, the estimation of the best parameters, such as grid sizes, for a
given dataset is one of the most important challenges for the future.
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Abstract. Linked Data has become a valuable source of factual records.
However, because of its simple representations of records (i.e., a set of
triples), learning representations of entities is required for various appli-
cations such as information retrieval and data mining. Entity representa-
tions can be roughly classified into two categories; (1) interpretable rep-
resentations, and (2) latent representations. Interpretability of learned
representations is important for understanding relationship between two
entities, like why they are similar. Therefore, this paper focuses on the
former category. Existing methods are based on heuristics which deter-
mine relevant fields (i.e., predicates and related entities) to constitute
entity representations. Since the heuristics require laboursome human
decisions, this paper aims at removing the labours by applying a graph
proximity measurement. To this end, this paper proposes RWRDoc, an
RWR (random walk with restart)-based representation learning method
which learns representations of entities by weighted combinations of min-
imal representations of whole reachable entities w.r.t. RWR. Comprehen-
sive experiments on diverse applications (such as ad-hoc entity search,
recommender system using Linked Data, and entity summarization) indi-
cate that RWRDoc learns proper interpretable entity representations.

Keywords: Entity representation learning
Random walk with restart · Linked data · Entity search
Entity summarization

1 Introduction

As Linked Data [3] consists of factual records about entities in RDF (Resource
Description Framework) [1] where each record is called triple, 〈subject, predicate,
object〉, which expresses relationship between two entities or property of an
entity, entity representation is crucial for various applications on Linked Data.
Examples of the applications include ad-hoc entity search [18] and entity sum-
marization [4,7,23], which directly utilize entity representations. Recommender
systems with knowledge graph [2,13,16] and information retrieval with enti-
ties [19,22] are examples of other applications which indirectly utilize entity rep-
resentations. Entity representations of existing methods can be roughly classified
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into two categories; (1) interpretable representations, and (2) latent representa-
tions. Interpretability of learned representations is important for understanding
relationship between two entities, like why they are similar. Therefore, this paper
focuses on the former category of entity representations.

Basic idea of existing interpretable entity representations is that an entity
is described by closely related texts and entities. One of the simplest entity
representation is to include directly connected texts in Linked Data, e.g., literals
of rdfs:label and rdfs:comment. Fielded documentation technique [14] is an
extended idea of the simplest method, which heuristically selects informative
predicates and consider texts at their objects are more important to be included
into the representations. Moreover, the fielded documentation approaches can
be extended from single predicates (e.g., rdfs:label) to a sequence of multiple
predicates (e.g., (dbo:birthPlace, rdfs:label)).

Although existing interpretable entity representation learning methods are
considerably reasonable approaches, there are two major concerns: (1) Determin-
ing appropriate sequences of predicates (or fields) is cumbersome. (2) There is no
evidential proximity for reasonable lengths of predicate sequences. Large varieties
of vocabularies make the determination harder. Therefore, to include descriptive
texts in the “neighbouring” entities is an extended idea of the first. However,
defining neighbouring entities is not straightforward. Shorter hops could be rea-
sonable choices, but there is no evidence for the number of hops (or proximity).

This paper tackles with the aforementioned concerns by exploiting random
walk with restart (RWR) [24,26] as a proximity measurement between entities.
Taking random walk into account is an idea to introduce random sampling of
surrounding entities with respect to reachability. Simple random walk takes all
reachable entities into account by random jump, however, closer entities should
be more relevant. Therefore, “with restart” characteristics (which occasionally
stops random walk and restart from source vertices) is adequate to realize this.

Based on the idea above, this paper proposes an RWR-based entity represen-
tation learning, RWRDoc for entities on Linked Data (introduced in Sect. 2).
RWRDoc is a three-step method: (1) minimal entity representation for obtain-
ing self-descriptive contents of entities, (2) RWR to measure proximities between
entities, and (3) learning representations of entities as weighted combination of
minimal representations of all entities with respect to the proximities.

RWRDoc is a beneficial approach comparing with the existing work in terms
of generality, effectiveness, and interpretability. RWRDoc is not dependent on
any heuristics of fields, therefore, it is a general approach which is applicable for
any dataset of Linked Data. Experimental evaluations indicate the applicability
of RWRDoc for various applications of entity representations including ad-hoc
entity search, entity summarization, and recommender systems (Sect. 3).

Contributions

– This paper proposes RWRDoc, a random walk with restart based inter-
pretable entity representation learning which takes minimal representations
of all reachable entities into account according with RWR-based proximities.
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– RWRDoc is non-heuristic approach unlike existing works, that is, RWRDoc
does not require human assistances such as pre-defined sequences of predicates
with importance metrics and proximity constraints.

– This paper demonstrates the effectiveness and interpretability of RWR-
Doc by testing on various applications in the experiments.

2 RWRDoc: RWR-Based Documentation

RWRDoc is a random walk with restart (RWR)-based entity representation
learning method. Basic idea of RWRDoc is, for an entity, entities with high
proximity to the entity are highly relevant and descriptive to the entity. For
example, Toyotomi Hideyoshi1 who is a Japanese general in the Sengoku period
who is known as a general who launches the invasions of the Joseon dynasty2.
However, description of him represented by dbo:abstract does not include the
historical fact, furthermore, other texts reachable within one predicate do not
contain it as well. The fact is reachable from his entry through dbo:subject and
contents in dbo:Japanese invasions of Korea (1592-98), and the fact is not
reachable from most of other entities. It is not reasonable to say dbo:subject
predicate is always important since it includes broader kinds of facts. This sug-
gests reachability-based proximity is appropriate.

RWRDoc regards Linked Data dataset as a data graph G defined as follows:

Definition 1 (Data Graph). Given Linked Data dataset, data graph G is a
graph G = (V,E), where set V = R ∪ L ∪ B of vertices are union of set R of
entities, set L of literals, and set B of blank nodes, and set E ⊆ V × P × V of
labeled edges between vertices with predicates in P as labels. �

This paper regards all resources represented by URIs (Uniform Resource Iden-
tifier) in Linked Data dataset as entities, thus they are included in R.

RWR [24] is a random walk-based reachability calculation method. RWR
assigns reachability values from starting vertex to each vertex. Therefore, RWR
vector zu of entity u (which is a vector of length |R|) is calculated as follows:

zu = d · zu · A + (1 − d) · s
where A is a |R| × |R| adjacency matrix which represents network composed on
entities R, s is a vector with length |R| for restart that only item corresponding
with u is 1, 0 otherwise, and d is a dumping factor (d is experimentally set to
0.4). A is derived from an induced subgraph G′ of the data graph G. G′ = (R,E′)
is consists of set R ⊆ V of entities as vertices and set E′ ⊆ R×R of edges which
are links between entities in R regardless of predicates.

In this paper, representation xu of entity u (which is |W |-length vector, where
W is a vocabulary set) is defined as a linear combination of minimal representa-
tions (each of them is represented by mv where v ∈ R which is also |W |-length
1 http://dbpedia.org/resource/Toyotomi Hideyoshi.
2 http://dbpedia.org/resource/Japanese invasions of Korea (1592-98).

http://dbpedia.org/resource/Toyotomi_Hideyoshi
http://dbpedia.org/resource/Japanese_invasions_of_Korea_(1592-98)
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Fig. 1. RWRDoc overview: RWR-based representation generation of entity u. To make
representation xu of u, minimal representations (mv1 . . .mv6 and mu) of reachable
vertices (v1 . . . v6) are combined with respect to RWR scores (drawn by thickness of
dashed arrows).

vector) of entities (including u) with respect to proximity scores from u. Figure 1
depicts the idea, that entities are represented as vertices u and v1, v2, . . . , v6,
and corresponding minimal representations are associated with vertices (dotted
lines). For entity u in the figure, representation xu of u is the weighted summa-
tion of the minimal representations of entities where each weight is expressed by
thickness of dashed arrows. The following provide formal definitions of minimal
entity representation (Definition 2) and entity representation (Definition 3).

Definition 2 (Minimal Entity Representation). Minimal representation
mv of entity v ∈ R is a |W |-length vector of terms on literals within one hop. �

In this paper, the minimal entity representation of an entity is a TFIDF
vector based on texts within one predicate away. Note that RWRDoc does not
necessarily require TFIDF vectors, any vector representation is acceptable if their
dimensions are shared among entities. Firstly, the following SPARQL query is
executed to obtain texts of entities.

SELECT ?entity ?vals
WHERE {? entity ?p ?vals.

FILTER isLiteral (?vals ).}

Listing 1. SPARQL query for getting texts for each entity.

Secondly, the texts for entities compose bags of words, and TFIDF vectors for
entities are calculated using them as follows:

mv =
(
tf(t, v) · idf(t, R)

)
t∈W
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Algorithm 1. RWRDoc
Input: G = (V, E): LD dataset
Output: X: Learned Representation Matrix
1: Minimal Representation Matrix M, RWR Matrix Z
2: G′ ← DataGraph(G) � Prepare data graph G′ for RWR computation.
3: for v ∈ R do
4: M[v] ← TFIDF(v, G) � Calculate TFIDF vector for entity v.
5: Z[v] ← RWR(v, G′) � Calculate RWR for source entity v.
6: end for
7: X = Z · M

where R is a set of entities and W is a vocabulary set. tf(t, v) is a term frequency
of term t in the bag of words of v and idf(t, R) is an inverse document frequency
of t over all bags of words of entities R.

Entity representation xu of entity u is represented as linear combination of
representations of entities. xu =

∑
v∈R zu,v · mv where zu,v ∈ zu is a proximity

value from u to v. To simplify the computation, let M be a minimal represen-
tation matrix, which is a |R| × |W | matrix and each row corresponds with the
minimal representation mv of entity v. Therefore, the linear combination above
can be rewritten as xu = zu ·M. Consequently, entity representation xu of entity
u is defined as follows:

Definition 3 (Entity Representation). Entity representation xu of entity u
is represented as linear combination of representations of entities as follows:

xu = zu · M
where zu is an RWR vector of u and M is a minimal representation matrix. �

Let Z be an RWR matrix, which is a |R| × |R| matrix where each row corre-
sponds with RWR vector zv from entity v. Then, entity representation learning
process can be represented as matrix multiplication of Z and M. Let X be an
entity representation matrix, which is the result of the multiplication, that is,
X = Z · W. Consequently, X is a |R| × |W | matrix where each row corresponds
with entity representation xu of entity u as calculated in Definition 3.

Algorithm 1 summarizes the procedure of RWRDoc for a given LOD dataset
G. The first step of the algorithm (line 2) prepares the data graph G′ from G.
Then, the next step computes a minimal representation mv and an RWR vector
zv for each entity v, and they are stored into corresponding matrices (i.e., M for
minimal representations and Z for RWR vectors). Finally, representation matrix
X is computed from Z and M. RWRDoc Implementation in this paper employs a
TFIDF vectorizer in scikit-learn3 and, for calculating RWR, TPA algorithm [26]
which is a quick calculation of approximate RWR values.

3 http://scikit-learn.org/stable/modules/generated/sklearn.feature extraction.text.
TfidfVectorizer.html.

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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3 Experimental Evaluation

Experimentation of this paper attempts to investigate generality, effectiveness
and interpretability of RWRDoc. Generality stands for its applicability to vari-
ous applications related with entity documentation including entity documents
themselves and document-based entity similarity. Effectiveness stands for qual-
ities on the applications comparing with baseline approaches and the state-of-
the-art. Interpretability stands for user-understandability of the learned repre-
sentations comparing with a näıve baseline.

The application scenarios in this experiment are as follows: ad-hoc entity
search (Sect. 3.1), recommender system with entities (Sect. 3.2), and entity sum-
marization (Sect. 3.3). Ad-hoc entity search tests the expressive power of RWR-
Doc for keyword search. Recommender system with entities checks capability
of RWRDoc for entity similarity. Entity summarization observes interpretabil-
ity of representations from RWRDoc. Each applications uses DBpedia 2015 10
dataset4 as Linked Data dataset. Testing datasets and competitors are explained
in the individual sections.

3.1 Ranking Quality on Ad-hoc Entity Search

Ad-hoc entity search [18] is a task for finding entities in Linked Data for given
keyword queries. Basic strategy is to design vector representations of entities and
queries, then find similar entities in terms of the representations with queries. To
measure the similarities as discussed in information retrieval communities, vari-
ous approaches have been applied to the ad-hoc entity search task, for example,
BM25, language modeling, and fielded extensions of them.

RWRDoc is a representation learning method of entities and it is expected
to have widely expressive information from reachable entities, therefore, more
accurate search results are expected. To examine this expectation, this exper-
iment compares RWRDoc-based ad-hoc entity search with the state-of-the-art
presented in a representative benchmark, DBpedia-Entity v2 [8]5.

This paper follows the evaluation methodology in the benchmark, each ad-
hoc entity search method is evaluated by their ranking quality. For given queries,
each method returns ranked lists of entities, and with the gold standard in the
benchmark, the lists are evaluated by NDCG (normalized discounted cumulative
gain) [9] for top-10 and top-100 results. NDCG measures how the given ranking
is close to ideal ranking, formal definition of NDCG is as follows:

DCGk =
k∑

i=1

2reli − 1
log2(i + 1)

(1)

NDCGk =
DCGk

IDCG
(2)

4 http://downloads.dbpedia.org/2015-10/.
5 https://github.com/iai-group/DBpedia-Entity.

http://downloads.dbpedia.org/2015-10/
https://github.com/iai-group/DBpedia-Entity
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NDCG is based on DCG calculated as Eq. 1 where k is a rank position and reli
is a true relevance score of i-th entity in the ranking (i.e., 1 for relevant and 0
for non-relevant in this experiment). Then, NDCG for p is calculated as Eq. 2
where IDCG is calculated as the ideal ranking, that is, all relevant entities are
on the top of the ranking. To rank entities with RWRDoc, similarities between
entities and queries are calculated by standard cosine similarity.

Table 1 displays the results of ad-hoc entity search task. Note that results for
the state-of-the-arts are quoted from the benchmark paper [8], since experimental
settings are identical to this paper. The results are divided into five sections
which indicate results for four different types of queries (i.e., ‘SemSearch ES’ for
named entity queries, ‘INEX-LD’ for keyword queries, ‘ListSearch’ for queries
seeking a list of entities, and ‘QALD-2’ for natural language questions) and
an overall result (‘Total’). Besides, for each type of queries, there are two sub-
sections @10 and @100, respectively. In the table, the best scores for each column
are highlighted as bold and underlined. Additionally, RWRDoc, has a Residual
row which represents the residual from the second best if RWRDoc is the best
or the best if RWRDoc is not.

Table 1. Ad-hoc entity search results. Model indicates task types of queries, and top-
k indicates the selected k values (10 or 100). Each cell contains an NDCG value for
corresponding condition. For each column, the best score is boldface and underlined,
and the proposed method has residual from the best if it is not the best or the second
best if it is.

Model SemSearch ES INEX-LD ListSearch QALD-2 Total

top-k @10 @100 @10 @100 @10 @100 @10 @100 @10 @100

BM25 0.2497 0.4110 0.1828 0.3612 0.0627 0.3302 0.2751 0.3366 0.2558 0.3582

PRMS 0.5340 0.6108 0.3590 0.4295 0.3684 0.4436 0.3151 0.4026 0.3905 0.4688

MLM-all 0.5528 0.6247 0.3752 0.4493 0.3712 0.4577 0.3249 0.4208 0.4021 0.4852

LM 0.5555 0.6475 0.3999 0.4745 0.3925 0.4723 0.3412 0.4338 0.4182 0.5036

SDM 0.5535 0.6672 0.4030 0.4911 0.3961 0.4900 0.3390 0.4274 0.4185 0.5143

LM + ELR 0.5554 0.6469 0.4040 0.4816 0.3992 0.4845 0.3491 0.4383 0.4230 0.5093

SDM + ELR 0.5548 0.6680 0.4104 0.4988 0.4123 0.4992 0.3446 0.4363 0.4261 0.5211

MLM-CA 0.6247 0.6854 0.4029 0.4796 0.4021 0.4786 0.3365 0.4301 0.4365 0.5143

BM25-CA 0.5858 0.6883 0.4120 0.5050 0.4220 0.5142 0.3566 0.4426 0.4399 0.5329

FSDM 0.6521 0.7220 0.4214 0.5043 0.4196 0.4952 0.3401 0.4358 0.4524 0.5342

BM25F-CA 0.6281 0.7200 0.4394 0.5296 0.4252 0.5106 0.3689 0.4614 0.4605 0.5505

FSDM+ELR 0.6563 0.7257 0.4354 0.5134 0.4220 0.4985 0.3468 0.4456 0.4590 0.5408

RWRDoc 0.5877 0.7215 0.4189 0.5296 0.4119 0.5845 0.3346 0.5163 0.4348 0.5643

Residual −6.86% −0.42% −2.05% 0% −1.33% +7.03% −3.43% +5.49% −2.57% +1.38%

The table indicates that RWRDoc performs the best in the total perfor-
mance for top-100 ranking, however, earlier rankings (i.e., top-10) are 2.57%
worse on average than the second best. This indicates that RWRDoc brings up
relevant entities from out of top-100 to top-100, therefore, top-100 ranking results
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by RWRDoc have more relevant entities than others. Consequently, RWRDoc
increase recall but lack of ranking capability.

Finding 1. RWR-based entity representation learning is effective to collect rele-
vant terms for each entity from surrounding entities. However, in order to obtain
higher ranking quality, similarity computations and ranking functions should
take more sophisticated approaches.

3.2 Accuracy on Recommender Systems

Linked Data is expected to be auxiliary information to improve recommender
systems [2,13]. Linked Data provides semantic relationships between entities
such as music artists in a similar genre. Semantic relationships can be a help to
estimate users’ preferences which do not appear on rating information.

Basic idea of existing works [2,13] is that users prefer entity e1 if they like
another entity e2 which is semantically similar to e1. For this experiment, one
baseline (TFIDF) and two representative methods (PPR [13] and PLDSD [2])
are selected as competitors. TFIDF models each entity as a minimal representa-
tion (Definition 2) and calculates semantic similarities between entities by cosine
similarity between representations. PPR measures semantic similarities between
entities by personalized PageRank. In particular, PPR first calculates personal-
ized PageRank vector for each entity, then calculates cosine similarity between
vectors of entities as semantic similarity. Note that dumping factor of PPR is set
to the same value as RWRDoc for fair comparison. PLDSD measures semantic
similarities by heuristic measurements based on commonalities of neighbours.
PLDSD is an extension from LDSD [16] which measures semantic similarities by
commonalities of neighbours, PLDSD extends LDSD by propagating scores in
neighbouring entities.

In order to incorporate RWRDoc into recommender systems, learned repre-
sentations are used for measuring semantic similarities between entities. Specifi-
cally, for each pair of entities, semantic similarity of them is calculated by cosine
similarity of their representations.

This experiment examines whether entity representations by RWRDoc can
measure semantic similarities of entities by applying to a recommendation task.
This paper utilizes the HetRec 2011 dataset6 which includes users’ listening list
of artists on Last.FM. In order to incorporate Linked Data, this experiment uses
a mapping7 [15] of artists to DBpedia entities. Since recommender system is
typically modeled as ranking problem, this experiment evaluates RWRDoc and
the baseline methods by ranking measurement NDCG (Eq. 2).

Figure 2 displays the evaluation result of recommender systems. The figure
represents NDCG for top-k recommended artists by the comparing methods.
Lines are corresponding with average NDCG scores of the methods. Dotted line
indicates PPR, dashed line indicates PLDSD, dash-dot line indicates TFIDF,

6 https://grouplens.org/datasets/hetrec-2011/.
7 http://sisinflab.poliba.it/semanticweb/lod/recsys/datasets/.

https://grouplens.org/datasets/hetrec-2011/
http://sisinflab.poliba.it/semanticweb/lod/recsys/datasets/
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Fig. 2. Recommendation result. Lines represent average NDCG at k: dotted line indi-
cates personalized PageRank (PPR), dashed line indicates PLDSD, dash-dot line indi-
cates TFIDF, and solid line indicates the proposed method (RWRDoc). RWRDoc is
superior to PPR and TFIDF and comparable with PLDSD. In the earlier items in the
list, RWRDoc have higher quality but, in the later items, PLDSD have higher quality.

and solid line indicates the proposed method (RWRDoc). RWRDoc is, on aver-
age, superior to PPR and TFIDF and comparable with PLDSD.

The figure indicates that RWRDoc is superior to TFIDF and PPR and com-
parable with PLDSD. This results mean that RWRDoc provides richer seman-
tic representations of entities than TFIDF and PPR, and the representations
contribute to increase recommendation quality. While, RWRDoc is comparable
with PLDSD, for the earlier recommend items, RWRDoc have more relevant
items than PLDSD but for the later items, PLDSD have more relevant items.
This indicates that semantic similarities based on RWRDoc entity representa-
tion is not always better than PLDSD which calculates semantic similarities by
fully utilizing semantic information on Linked Data such as labels of predicates.
Therefore, RWRDoc still leaves space to improving representation or similarity
computation method for incorporating semantic information into account.

Finding 2. RWR-based representation learning is better performing than both
of text-only representation (i.e., TFIDF) and topology-only representation (i.e.,
PPR). This ensures that RWR-based representation learning provides richer
entity representations. On the other hand, in terms of similarity and ranking
capability, RWR-based representation leaves space to improve.

3.3 Qualitative Evaluation on Entity Summarization

Entity summarization [4,7,23] is a task to describe entities in a human-readable
format. Successful summary of an entity is that human judges can determine
what the entity is from the summary.

This experiment attempts to show interpretability of representations which
are expected to have richer vocabularies than näıve method. To show this, this
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paper compares RWRDoc with TFIDF vectorization of surrounding texts (which
is identical with minimal entity representation in Definition 2). Unfortunately,
RWRDoc is not directly comparable with existing entity summarization meth-
ods [4,7,23], because RWRDoc provides weighted term vectors as representa-
tions while the existing summarization-dedicated methods provide richer for-
mats. These methods summarize entities by attributed texts which are derived
from predicates and surrounding texts, and note that these methods have higher
expressiveness than RWRDoc (to deal with such summarization of RWRDoc is a
promising future direction). Consequently, this paper showcases, for each entity,
a top-k list of terms in descending order of weights in the representation of the
entity as its entity summary. k is set to 30 in this experiment.

To measure the goodness of entity summaries, this paper asks human judges
whether terms in summaries are relevant enough to determine what are the
entities. In this experiments, five voluntary human judges who are four males
and one female, are in 22 to 25 y.o., and are majoring computer sciences in
master courses. Every summary is checked by three judges and terms which are
judges as relevant by two or more judges are regarded as relevant to the entity.
Based on the judgements, RWRDoc-based summary and a baseline are evaluated
in terms of precision@k (Eq. 3) which evaluates how many relevant terms are in
a top-k list.

Precision@k =
|{relevant items in k}|

k
(3)

Figure 3(a) showcases evaluation result of entity summarization. Lines indi-
cates average precision@k for the comparing methods (solid line represents RWR-
Doc and dashed line represents TFIDF) and error bars indicate standard devia-
tions. The figure indicates that RWRDoc achieves significantly better accuracy
than TFIDF, especially in terms with high scores.

The reason why RWRDoc is superior to TFIDF is that relevant terms but
not included in the minimal representations are at the top of the summaries
by RWRDoc. This means that minimal representations of closer entities include
descriptive facts related to the entity. Therefore, the number of relevant terms
in each entity summary by RWRDoc is larger than that by TFIDF. To ensure
this, Fig. 3(b) displays the average number of relevant terms in summaries with
error bars for standard deviations. As expected, the number of relevant terms in
summaries is larger for RWRDoc. Therefore, RWRDoc summaries entities with
larger vocabularies.

To show differences of summaries by RWRDoc with those by TFIDF, Table 2
shows two examples of top-10 terms in RWRDoc documentations and TFIDF
representations. Here, two examples are selected: one is Hideyoshi Toyotomi
(see footnote 1) and the other is Nagoya city, Japan8. Table 2(a) is the top-10
term list of the former and Table 2(b) is that of the latter. The tables include
relevance judgements beside the terms in Rel. columns, and shaded terms are
only appearing either top-30 term lists of RWRDoc or TFIDF. Since RWRDoc

8 http://dbpedia.org/resource/Nagoya.

http://dbpedia.org/resource/Nagoya
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Fig. 3. Entity summarization results, comparison between the proposed method
(RWRDoc) and the baseline method (TFIDF). (a) average (lines) and standard devia-
tions (error bars) of scores of top-k terms in summaries. (b) average (bars) and standard
deviations (error bars) of the numbers of relevant terms. RWRDoc performs better than
TFIDF and provide more relevant terms than TFIDF.

incorporates not only representations of surrounding entities but also those of
further entities, entity representations by RWRDoc hold terms not in term lists
in TFIDF. For Table 2(a), the numbers of relevant terms are comparable but the
top-2 terms only appear in the entity representation of RWRDoc. For Table 2(b),
the number of relevant terms of RWRDoc is larger than that of TFIDF, and there
are four relevant terms only appearing in RWRDoc.

RWRDoc entity representations in Table 2 include relevant facts which are
not described in the 1-hop neighouring texts. For the first example, Hideyoshi
Toyotomi was a samurai in the Sengoku period in Japan and he stayed at the
Momoyama castle. Table 2(a) indicates that both RWRDoc and TFIDF include
the fact which is explained in his description of DBpedia. RWRDoc representa-
tion includes another fact which is not included in the TFIDF representation,
that is, he launches the invasions of the Joseon dynasty. This is not directly writ-
ten in his description of DBpedia but written in the relevant DBpedia entity (see
footnote 2). The latter example, Nagoya city, is a city located in Aichi prefec-
ture in Chubu region in Japan. In addition to the fact, RWRDoc documentation
in Table 2(b) includes terms related to Chunichi Doragons which is a Japanese
professional baseball team based in Nagoya, which mascot character is called
Doala.

The results of this experiment indicate that RWRDoc successfully incor-
porates representations of reachable entities not only surrounding entities. The
number of relevant vocabularies increases two or more within 30-term summaries
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Table 2. Result samples of entity summarization. Each table shows top-10 terms in the
summaries by RWRDoc and TFIDF. Each term is associated with relevance judgement
(� for relevant) in Rel. column beside it. Shaded terms are appearing only in top-30
terms by either RWRDoc or TFIDF. (a) showcases terms for Hideyoshi Toyotomi and
(b) lists terms for Nagoya city, Japan. For (a), the numbers of relevant terms are
comparable but the top-2 terms only appear in the entity representation of RWRDoc.
For (b), the number of relevant terms of RWRDoc is larger than that of TFIDF, and
there are four relevant terms only appearing in RWRDoc.

than TFIDF. As the number of relevant terms increases, RWRDoc achieves more
appropriate summaries than TFIDF.

Finding 3. Incorporating reachable minimal representations of reachable enti-
ties increases the chance to include relevant facts into the representaitons of
entities. RWR helps to give terms in relevant facts higher weights.

3.4 Remarks: Pros and Cons

Pros: RWRDoc successfully incorporates related facts for entities into entity
representations by integrating minimal entity representations in terms of a
graph proximity measurement, RWR. Entity representations by RWRDoc are
richer representations, therefore, recall of ad-hoc entity search, accuracy of
recommendation task, and quality of entity summarization are (not always
significant but) better than baselines.

Cons: RWRDoc fails to incorporate relationship information between entities,
since RWRDoc does not take predicate labels into account for representation
learning. This is the main reason that RWRDoc cannot clearly outperform
PLDSD in recommendation tasks. These experimental facts indicate that
RWRDoc should take semantic relationships between entities into consider-
ation. For similarity computations and ranking capabilities, RWRDoc seems
to be not sufficient as shown in ad-hoc entity search task.
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4 Related Work

Entity documentation in this paper is equivalent to representation learning of
entities on Linked Data. Representation learning is a large research area rang-
ing from vector space modeling, to deep learning based representation learning
(a.k.a. graph and word embedding). Vector space modeling [14,21] is a major
representation learning in ad-hoc entity search. For more complicated tasks such
as question answering, more modern approach [5] employs deep learning tech-
nique to learn representations of entities.

4.1 Vector Space Model-Based Approaches

Vector space model-based representation learning is inspired from information
retrieval techniques. TFIDF vectorization in Sect. 2 is one of vector space mod-
eling. In attributed documents domain, fielded extension is an effective method,
which can differentiate importances of attributes (for example, in Web page
vectorization, words in title are more important than those in body). Fielded
extension of entity representation is also studied [14]. Kotov [11] has provided a
good overview of existing entity representations and entity retrieval models.

Existing vector space model-based approaches are reasonable, but they suf-
fer from determination of importances of attributes (i.e., predicates in Linked
Data). Fielded extension is known to outperform basic vector space modeling,
but in order to apply fielded extension version of vector space modeling, the
importances of predicates must be determined in advance. However, in Linked
Data, determining importances of predicates is troublesome, because there are
large number of predicates in Linked Data [10].

4.2 Deep Learning-Based Approaches

As deep learning techniques become popular, they are applied for various applica-
tions, in particular to Linked Data, network embedding [6,17] is an application of
deep learning techniques. Network embedding is to vectorize vertices in a network
based on topology of the network. Network embedding is a powerful technique
that it achieves higher performance in various applications such as link predic-
tion and vertex classification. Afterward, extending researches [12,25] have been
including textual attributive information of vertices into network embedding.
This extension enriches network embeddings more semantically meaningful.

Although deep learning-based techniques are powerful, there are two major
drawbacks; one is human-understandability of learnt representations and com-
putational costs. The embedded space is a latent space, therefore, dimensions of
the space are not human understandable. Thus, learnt representations of enti-
ties are indeed not human understandable. Deep learning-based approach for
RDF [20] is not exceptional to this, that is, it lacks the understandability of
learned entities.
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4.3 Advantages of RWRDoc

One of the most important feature of RWRDoc is parameter-free learning
algorithm. It incorporates all reachable entities with respect to RWR scores,
therefore, it does not suffer from the problem of setting different importances on
predicates. Experimental evaluations in Sect. 3 show that RWRDoc is superior
or comparable with fully-tuned heuristic vector space modeling approaches.

RWRDoc does not suffer from drawbacks on Sect. 4.2. Documentation of
RWRDoc is human understandable because features are terms occurring in
any description of entities. Furthermore, weights for terms in documentations
properly indicate the relevancy of the terms to the entities, therefore, as shown
in Sect. 3.3, the documentations can still work as summaries of entities. More-
over, the documentation algorithm of RWRDoc include RWR computation and
TFIDF computation. The larger the number of vertices on Linked Data, the
larger computation cost is required for RWRDoc, however, the cost is still not
as large as that of deep learning algorithms.

5 Conclusion and Future Direction

This paper proposes RWRDoc, a simple and parameter-free entity documenta-
tion method. It combines representations of reachable entities in a linear com-
bination manner. It employs random walk with restart (RWR) as a weighting
method, because RWR frees parameter settings for weighting schemes. Since
RWRDoc is a general purpose entity documentation method, experimental eval-
uation showcases its generality as well as pros and cons. Due to its rich rep-
resentation of RWRDoc, it can perform well on various tasks comparing with
the reasonable baselines. However, RWRDoc is still not significantly superior
to the state-of-the-art on several tasks, since the state-of-the-art incorporate
richer contents (e.g., predicate types) into account. This indicates that taking
full advantage of Linked Data is the future direction of RWRDoc. A possible
direction is that RWR can be performed on an ObjectRank manner [10] which
differentiates transitivity probabilities on predicates for random walk.
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Abstract. Knowledge graphs encode semantics that describes entities
in terms of several characteristics, e.g., attributes, neighbors, class hier-
archies, or association degrees. Several data-driven tasks, e.g., rank-
ing, clustering, or link discovery, require for determining the relatedness
between knowledge graph entities. However, state-of-the-art similarity
measures may not consider all the characteristics of an entity to deter-
mine entity relatedness. We address the problem of similarity assessment
between knowledge graph entities and devise GARUM, a semantic sim-
ilarity measure for knowledge graphs. GARUM relies on similarities of
entity characteristics and computes similarity values considering simulta-
neously several entity characteristics. This combination can be manually
or automatically defined with the help of a machine learning approach.
We empirically evaluate the accuracy of GARUM on knowledge graphs
from different domains, e.g., networks of proteins and media news. In the
experimental study, GARUM exhibits higher correlation with gold stan-
dards than studied existing approaches. Thus, these results suggest that
similarity measures should not consider entity characteristics in isolation;
contrary, combinations of these characteristics are required to precisely
determine relatedness among entities in a knowledge graph. Further, the
combination functions found by a machine learning approach outperform
the results obtained by the manually defined aggregation functions.

1 Introduction

Semantic Web and Linked Data communities foster the publication of large
volumes of data in the form of semantically annotated knowledge graphs. For
example, knowledge graphs like DBpedia1, Wikidata or Yago2, represent general
domain concepts such as musicians, actors, or sports, using RDF vocabularies.

1 http://dbpedia.org.
2 http://yago-knowledge.org.
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Additionally, domain specific communities like Life Sciences and the financial
domain, have also enthusiastically supported the collaborative development of
diverse ontologies and semantic vocabularies to enhance the description of knowl-
edge graph entities and reduce the ambiguity in such descriptions, e.g., the Gene
Ontology (GO) [2], the Human Phenotype Ontology (HPO) [10], or the Financial
Industry Business Ontology (FIBO)3. Knowledge graphs encode semantics that
describe entities in terms of several entity characteristics, e.g., class hierarchies,
neighbors, attributes, and association degrees. During the last years, several
semantic similarity measures for knowledge graph entities have been proposed,
e.g., GBSS [15], HeteSim [22], and PathSim [24]. However, these measures do
not consider all the entity characteristics represented in a knowledge graph at
the same time in a aggregated fashion. The importance of precisely determining
relatedness in data-driven tasks, e.g., knowledge discovery, and the increasing
size of existing knowledge graphs, introduce the challenge of defining semantic
similarity measures able to exploit all the information described in knowledge
graphs, i.e., all the characteristics of the represented entities.

We present GARUM, a GrAph entity Regression sUpported similarity
Measure. GARUM exploits knowledge encoded in characteristics of an entity,
i.e., ancestors or hierarchies, neighborhoods, associations, or shared information,
and literals or attributes. GARUM receives a knowledge graph and two entities
to be compared. As a result, GARUM returns a similarity value that aggre-
gates similarity values computed based on the different entity characteristics;
a domain-dependent aggregation function α combines similarity values specific
for each entity characteristic. The function α can be either manually defined
or predicted by a regression machine learning approach. The intuition is that
knowledge represented in entity characteristics, precisely describes entities and
allows for determining more accurate similarity values.

We conduct an empirical study with the aim of analyzing the impact of con-
sidering entity characteristics in the accuracy of a similarity measure over a
knowledge graph. GARUM is evaluated over entities of three different knowl-
edge graphs: The first knowledge graph describes news articles annotated with
DBpedia entities; and the other two graphs describe proteins annotated with the
Gene Ontology. GARUM is compared with state-of-the-art similarity measures
with the goal of determining if GARUM similarity values are more correlated to
the gold standards. Our experimental results suggest that: (i) Considering all
entity characteristics allow for computing more accurate similarity values; (ii)
GARUM is able to outperform state-of-art approaches obtaining higher values
of correlation; and (iii) Machine learning approaches are able to predict aggre-
gation functions that outperform the manually functions defined by humans.

The remainder of this article is structured as follows: Sect. 2 motivates our
approach using a subgraph from DBpedia. Section 3 describes GARUM and
Sect. 4 summarizes experimental results. Related work is presented in Sect. 5,
and finally, Sect. 6 concludes and give insights for future work.

3 https://www.w3.org/community/fibo/.

https://www.w3.org/community/fibo/
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Fig. 1. Motivating Example. Two subgraphs from DBpedia. The above graph describes
swimming events and entities related to these events, while the other graph represents
a hierarchy of the properties in DBpedia.

2 Motivating Example

We motivate our work with a real-world knowledge graph extracted from DBpe-
dia (Fig. 1); it describes swimming events in olympic games. Each event is related
to other entities, e.g., athletes, locations, or years, using different relations or
RDF properties, e.g., goldMedalist or venue. These RDF properties are also
described in terms of the RDF property rdf:type as depicted in Fig. 1. Relat-
edness between entities is determined based on different entity characteristics,
i.e., class hierarchy, neighbors, shared associations, and properties.

Consider entities Swimming at the 2012 Summer Olympics - Women’s
100m backstroke, Swimming at the 2012 Summer Olympics - Women’s 4x100m
freestyle relay, and Swimming at the 2012 Summer Olympics - Women’s 4x100m
medley relay. For the sake of clarity we rename them as Women’s 100m back-
stroke, Women’s 4x100m freestyle, and Women’s 4x100m medley relay, respec-
tively. The entity hierarchy is induced by the rdf:type property, which describes
an entity as instance of an RDF class. Particularly, these swimming events are
described as instances of the OlympicEvent class, which is at the fifth level of
depth in the DBpedia ontology hierarchy. Thus, based on the knowledge encoded
in this hierarchy, these entities are highly similar. Additionally, these entities
share exactly the same set of neighbors that is formed by the entities Emily See-
bohm, Missy Franklin, and London Aquatic Centre. However, the relations with
Emily Seebohm and Missy Franklin are different. Women’s 4x100m freestyle and
Women’s 100m backstroke are related with Emily Seebohm through properties
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goldMedalist and silverMedalist, respectively, and with Missy Franklin through
properties bronzeMedalist and goldMedalist. Nevertheless, Women’s 4x100m
medley relay is related with Missy Franklin through the property bronzeMedalist,
and with Emily Seebohm through olympicAthlete. Considering only the entities
in these neighborhoods, they are identical since they share exactly the same
set of neighbors. However, whenever properties labels and the property hierar-
chy are considered, we observe that Women’s 4x100m freestyle and Women’s
100m backstroke are more similar since in both events Missy Franklin and
Emily Seebohm are medalists, while in Women’s 4x100m medley relay only
Missy Franklin is medalist. Furthermore, swimming events are also related with
attributes through datatype properties. For the sake of clarity, we only include
a portion of these attributes in Fig. 1. Considering these attributes, 84 ath-
letes participated in Women’s 4x100m medley relay, while only 80 participated
in Women’s 4x100m freestyle. Finally, the node degree or shared information
is different for each entity in the graph. Entities with a high node degree are
considered abstract entities, while others with low node degree are considered
specific. For instance, in Fig. 1, the entity London Aquatic Centre has five inci-
dent edges, while Emily Seebohm has four edges and Missy Franklin has only
three incident edges. Thus, the entity London Aquatic Centre is less specific than
Emily Seebohm, which is also less specific than Missy Franklin.

According to these observations, the similarity between two knowledge graph
entities cannot be estimated only considering one entity characteristic. Hence,
combinations of them may have to be taken into account to precisely determine
relatedness between entities in a knowledge graph.

3 Our Approach: GARUM

We propose GARUM, a semantic similarity measure for determining relatedness
between entities represented in knowledge graphs. GARUM considers the knowl-
edge encoded in entity characteristics, e.g., hierarchies, neighborhoods, shared
information, and attributes to accurately compute similarity values between enti-
ties in a knowledge graph. GARUM calculates values of similarity for each entity
characteristic independently and combines these values to produce an aggregated
similarity value between the compared entities. Figure 2 depicts the GARUM
architecture. GARUM receives as input a knowledge graph G and two enti-
ties e1, e2 to be compared. Entity characteristics of the compared entities are
extracted from the knowledge graph and compared as isolated elements.

Definition 1. Knowledge graph. Given a set of entities V , a set of edges E,
and a set of property labels L, a knowledge graph G is defined as G = (V,E,L).
An edge corresponds to a triple (v1, r, v2), where v1, v2 ∈ V are entities in the
graph, and r ∈ L is a property label.

Definition 2. Individual similarity measure. Given a knowledge graph G =
(V,E,L), two entities e1 and e2 in V , and an entity characteristic EC of e1
and e2 in G, an individual similarity measure SimEC(e1, e2) corresponds to a
similarity function defined in terms of EC for e1 and e2.
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Fig. 2. The GARUM Architecture. GARUM receives a knowledge graph G and two
entities to be compared (red nodes). Based on semantics encoded in the knowledge
graph (blue nodes), GARUM computes similarity values in terms of class hierarchies,
neighborhoods, shared information and the attributes of the input entities. Generated
similarity values, Simhier, Simneigh, Simshared, Simattr, are combined using a function
α. The aggregated value is returned as output. (Color figure online)

The hierarchical similarity Simhier(e1, e2) or the neighborhood similarity
Simneigh(e1, e2) are examples of individual similarity measures. These individ-
ual similarity measures are combined using an aggregation function α. Next, we
describe the four considered individual similarity measures.

Hierarchical Similarity: Given a knowledge graph G, a hierarchy is induced
by a set of hierarchical edges HE = {(vi, r, vj)|(vi, r, vj) ∈ E ∧ Hierarchical(r)}.
HE is a subset of edges in the knowledge graph whose property labels refer to
a hierarchical relation, e.g., rdf:type, rdfs:subClassOf, or skos:broader. Generally,
every relation that presents an entity as a generalization (ancestor) or an speci-
fication (successor) of another entity is a hierarchical relation. GARUM relies on
existing hierarchical distance measures, e.g., dtax [1] and dps [16] to determine
the hierarchical similarity between entities; it is defined as follows:

Simhier(e1, e2) =
{

1 − dtax(e1, e2)
1 − dps(e1, e2)

(1)

Neighborhood Similarity: The neighborhood of an entity e ∈ V is defined
as the set of relation-entity pairs N(e) whose entities are at one-hop distance of
e, i.e., N(e) = {(r, ei)|(e, r, ei) ∈ E). With this definition of neighborhood, we
can consider the neighbor entity and the relation type of the edge at the same
time. GARUM uses the knowledge encoded in the relation and class hierarchies
of the knowledge graph to compare two pairs p1 = (r1, e1) and p2 = (r2, e2).
The similarity between two pairs p1 and p2 is computed as Simpair(p1, p2) =
Simhier(e1, e2) · Simhier(r1, r2). Note that Simhier can be used with any entity of
the knowledge graph, regardless of it is an instance, a class or a relation. In order
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to maximize the similarity between two neighborhoods, GARUM combines pair
comparisons using the following formula:

Simneigh(e1, e2) =

|N(e1)|∑
i=0

max
px∈N(e2)

Simpair(pi, px) +
|N(e2)|∑
j=0

max
py∈N(e1)

Simpair(pj , py)

|N(e1)| + |N(e2)|
(2)

In Fig. 1, the neighborhoods of Women’s 100m backstroke and Women’s
4x100m freestyle are {(venue, London Aquatic Centre), (silverMedalist, Emily
Seebohm), (goldMedalist, Missy Franklin)} and {(venue, London Aquatic Cen-
tre), (goldMedalist, Emily Seebohm), (bronzeMedalist, Missy Franklin)}, respec-
tively. Let Simhier(e1, e2) = 1 − dtax(e1, e2). The most similar pair to (venue,
London Aquatic Centre) is itself and with similarity value of 1.0. The most
similar pair to (silverMedalist, Emily Seebohm) is (goldMedalist, Emily See-
bohm) with a similarity value of 0.5. This similarity value is result of the prod-
uct between Simhier(Emily Seebohm, Emily Seebohm), whose result is 1.0, and
Simhier(goldMedalist, silverMedalist), whose result is 0.5. Similarly, the most sim-
ilar pair to (goldMedalist, Missy Franklin) is (bronzeMedalist, Missy Franklin)
with a similarity value of 0.5. Thus, the similarity between neighborhoods
of Women’s 100m backstroke and Women’s 4x100m freestyle is computed as
Simneigh = (1+0.5+0.5)+(1+0.5+0.5)

3+3 = 4
6 = 0.667.

Shared Information: Beyond the hierarchical similarity, the amount of infor-
mation shared by two entities in a knowledge graph can be measured examining
the human use of such entities. Two entities are considered to share information
whenever they are used in a corpus similarly. Considering the knowledge graph as
a corpus, the information shared by two entities x and y is directly proportional
to the amount of entities that have x and y together in their neighborhood, i.e.,
the co-occurrences of x and y in the neighborhoods of the entities in the knowl-
edge graph. Let G = (V,E,L) be a knowledge graph and e ∈ V an entity in the
knowledge graph. The set of entities that have e in their neighborhood is defined
as Incident(e) = {ei|(ei, r, e) ∈ E}. Then, GARUM computes the information
shared by two entities using the following formula:

Simshared(e1, e2) =
|Incident(e1) ∩ Incident(e2)|
|Incident(e1) ∪ Incident(e2)| , (3)

The values depends on how much informative or specific are the compared
entities. For example, an entity representing London Aquatic Centre is included
in several neighborhoods in a knowledge graph like DBpedia. This means that
London Aquatic Centre is not a specific entity. This is reflected in the denomina-
tor of Simshared. Thus, abstract or non-specific entities require a greater amount
of co-occurrences in order to obtain a high value of similarity. In Fig. 1, entities
Emily Seebohm, Missy Franklin, and London Aquatic Centre have incident edges.
London Aquatic Centre have five incident edges, while Emily Seebohm and Missy
Franklin have four and three, respectively. Emily Seebohm and Missy Franklin
co-occurs in three neighborhoods. Thus, Simshared returns a value of 3

4 = 0.75.
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London Aquatic Centre is included in five neighborhoods in sub-graph showed
in Fig. 1. However, it is included in the neighborhood of each sport event located
in this venue in the full graph of DBpedia.

Attributes: Entities in knowledge graphs are related with other entities
and with attributes through datatype properties, e.g., temperature or protein
sequence. GARUM considers only shared attributes, i.e., attributes connected
to entities through the same datatype property. Given that attributes can be
compared with domain similarity measures, e.g., SeqSim [23] for genes or Jaro-
Winkler for strings, GARUM does not rely on a specific measure to compare
attributes. Depending on the domain, users should choose a similarity measure
for each type of attribute. Figure 1 depicts the entity representing Women’s
4x100m medley relay ; it has attributes competitors and games, while Women’s
4x100m freestyle has only the attribute competitors. Thus, Simattr between these
entities only considers the attribute competitors.

Aggregation Functions: GARUM combines four individual similarity mea-
sures and returns a similarity value that aggregates the relatedness among two
compared entities. The aggregation function can be manually defined or com-
puted by a supervised machine learning algorithm like a regression algorithm. A
regression algorithm receives a set of input variables or predictors and an output
or dependent variable. In the case of GARUM, the predictors are the individual
similarity measures, i.e., Simhier, Simneigh, Simshared and Simattr. The dependent
variable is defined by a gold standard similarity measure, e.g., a crowd-funded
similarity value. Thus, a regression algorithm produces as output a function
α : Xn → Y , where Xn represents the predictors and Y corresponds to the
dependent variable. Hence, GARUM is defined in terms of a function α:

GARUM(e1, e2) = α(Simhier,Simneigh,Simshared,Simattr) (4)

Depending on the regression type, α can be a linear or a non-linear combination
of the predictors. In both cases and regardless the used regression algorithm,
α is computed by minimizing a loss function. In the case of GARUM, the loss
function is the mean squared error (MSE) defined as follows:

MSE =
1
n

n∑
i=1

(Ŷi − Yi)2, (5)

Y is a vector of n observed values, i.e., gold standard values, and Ŷ is a vector of
n predictions, i.e., Ŷ corresponds to results of the computed function α. Hence,
the regression algorithm implemented in GARUM learns from a training dataset
how to combine the individual similarity measures by means of a function α,
such that the MSE among the results produced by α and the corresponding gold
standard (e.g., SeqSim, ECC) is minimized. However, gold standards are usually
defined for annotation sets, i.e., sets of knowledge graph entities, instead of for
pairs of knowledge graph entities. CESSM [18], and Lee50 [13] datasets are good
examples of this phenomenon, where real world entities (proteins or texts) are
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(a) Combination function for input matrices. For each
matrix a 10-positions vector with the corresponding den-
sity value is generated. GT represents the ground truth.

(b) Workflow of the supervised regression algorithm

Fig. 3. Training Phase of the GARUM Similarity Measure. (a) Training workflow using
a regression algorithm; (b) Transformation of the input matrices into an aggregated
value representing the combination of similarity measures

annotated with terms from ontologies, e.g., the Gene Ontology or the DBpedia
ontology. Thus, the regression approach receives as input two sets of knowledge
graph entities as showed in Fig. 3(b). Based on these sets, a similarity matrix
for each individual similarity measure is computed. The output represents the
aggregated similarity value computed by the estimated regression function α.
Classical machine learning algorithms have a fix number of input features. How-
ever, the dimensions of the matrices depend on the cardinality of the compared
sets. Hence, the matrices cannot be directly used, but a transformation to a fixed
structure is required. Figure 3(a) introduces the matrix transformation. For each
matrix, a density histogram with 10 bins is created. Thus, the input dimensions
are fixed to 10×|Individual similarity measures|. In Fig. 3(b), the input consists
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of an array with 40 features. Finally, the transformed data is used to train the
regression algorithm. This algorithm learns, based on the input, how to combine
the value of the histograms to minimize the MSE with respect to the ground
truth (i.e., GT in Fig. 3(a)).

4 Experimental Results

We empirically evaluate the accuracy of GARUM in three different knowledge
graphs. We compare GARUM with state-of-the-art approaches and measure
the effectiveness comparing our results with available gold standards. For each
knowledge graph, we provide a manually defined aggregation function α, as well
as the results obtained using Support Vector Machines as supervised machine
learning approach to compute the aggregation function automatically.

Research Questions: We aim at answering the following research questions:
(RQ1) Does semantics encoded in entity characteristics improve the accuracy of
similarity values between entities in a knowledge graph? (RQ2) Is GARUM able
to outperform state-of-the-art similarity measures comparing knowledge graph
entities from different domains?

Datasets. GARUM is evaluated on three knowledge graphs: Lee504, CESSM-
20085, and CESSM-20146. Lee50 is a knowledge graph defined by Paul et al. [15]
that describes 50 news articles 8 (collected by Lee et al. [13]) with DBpedia
entities. Each article has a length among 51 and 126 words, and is described
on average with 10 DBpedia entities. The similarity value of each pair of news
articles has been rated multiple times by humans. For each pair, we consider
the average of human rates as gold standard. CESSM-2008 [18] (see footnote 5)
and CESSM-2014 (see footnote 6) consist of proteins described in a knowledge
graph with Gene Ontology (GO) entities. CESSM-2008 contains 13,430 pairs
of proteins from UniProt with 1,039 distinct proteins, while the CESSM 2014
collection comprises 22,302 pairs with 1,559 distinct proteins. The knowledge
graph of CESSM-2008 contains 1,908 distinct GO entities and the graph of 2014
includes 3,909 GO entities. The quality of the similarity measures is estimated by
means the Pearson’s coefficient with respect to three gold standards: SeqSim [23],
Pfam [18], and ECC [5] (Table 1).

Implementation. GARUM is implemented in Java 1.8 and Python 2.7; as
machine learning approaches, we used the support vector regression (SVR)
implemented in the scikit-learn library7 and a neural network of three layers
implemented with the Keras8 library, both in Python. The experimental study

4 https://github.com/chrispau1/SemRelDocSearch/blob/master/data/Pincombe ann
otated xLisa.json.

5 http://xldb.di.fc.ul.pt/tools/cessm/index.php.
6 http://xldb.fc.ul.pt/biotools/cessm2014/index.html.
7 http://scikit-learn.org/stable/index.html.
8 https://keras.io/.

https://github.com/chrispau1/SemRelDocSearch/blob/master/data/Pincombe_annotated_xLisa.json
https://github.com/chrispau1/SemRelDocSearch/blob/master/data/Pincombe_annotated_xLisa.json
http://xldb.di.fc.ul.pt/tools/cessm/index.php
http://xldb.fc.ul.pt/biotools/cessm2014/index.html
http://scikit-learn.org/stable/index.html
https://keras.io/
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Table 1. Properties of the knowledge graphs used during the evaluation.

Datasets Comparisons Ontology

CESSM 2008 13,430 Gene Ontology

CESSM 2014 22,302 Gene Ontology

Lee50 1,225 DBpedia

was executed on an Ubuntu 14.04 64 bits machine with CPU: Intel(R) Core(TM)
i5-4300U 1.9 GHz (4 physical cores) and 8 GB RAM. To ensure the quality and
correctness of the evaluation, both datasets are split following a 10-cross fold
validation strategy. Apart from the machine learning based strategy, since enti-
ties (proteins and documents) are described with ontology terms from the Gene
ontology or the DBpedia ontology, we manually define two aggregation strate-
gies. Let A ⊆ V and B ⊆ V be set of knowledge graph entities. In the first
aggregation strategy, we maximize the similarity value of sim(A, B) using the
following formula:

sim(A,B) =
|A|∑

i=0
max
ex∈B

GARUM(ei, ex)+
|B|∑

j=0
max
ex∈A

GARUM(ej , ex)

|A|+ |B|

In the second aggregation strategy, we perform a 1-1 maximum matching imple-
mented with the Hungarian algorithm [11], such that each knowledge graph
entity ei in A is matched with one and only one knowledge graph entity ej in B;
the following formula of sim(A, B) is maximized:

sim(A,B) =

2 · ∑
(ei,ej)∈1-1 Matching

GARUM(ei, ej)

|A| + |B|
The first aggregation strategy is used in knowledge graphs Lee50, while the

1-1 matching strategy is used in CESSM-2008 and CESSM-2014.

4.1 Lee50: News Articles Comparison

We compare pairwise the 50 news articles included in Lee50, and consider the
knowledge encoded in the hierarchy, the neighbors, and the shared information.
Knowledge encoded in attributes is not taken into account. Particularly, we
define the aggregation function α(e1, e2) as follows:

α(e1, e2) =
Simhier(e1, e2) · Simshared(e1, e2) + Simneigh(e1, e2)

2
(6)

where Simhier = 1 − dtax.
Results in Table 2 suggest that GARUM outperforms the evaluated similarity

measures in terms of correlation. Though dps obtains alone better results than
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dtax, its combination with the other two individual similarity measures delivers
worse results. Further, we observe that the aggregation function obtained by the
SVR and NN approaches outperforms the manually defined aggregation function.

Table 2. Comparison of Similarity Measures. Pearson’s coefficient of similarity mea-
sures on the Lee et al. knowledge graph [13]; highest values in bold

Similarity
measure

Pearson’s
coefficient

LSA [12] 0.696

SSA [7] 0.684

GED [20] 0.63

ESA [6] 0.656

dps [16] 0.692

dtax [1] 0.652

GBSSr=1 [15] 0.7

GBSSr=2 [15] 0.714

GBSSr=3 [15] 0.704

GARUM 0.727

GARUM SVR 0.73

GARUM NN 0.74

4.2 CESSM: Protein Comparison

CESSM knowledge graphs are used to compare proteins based on their asso-
ciated GO annotations. GARUM considers the hierarchy, the neighborhoods,
and the shared information as entity characteristics. In this knowledge graph,
the different characteristics are combined automatically by SVR and with the
following manually defined function:

α(e1, e2) = Simhier(e1, e2) · Simneigh(e1, e2) · Simshared(e1, e2),

where Simhier = 1 − dtax.
Table 3 reports on the correlation between state-of-the-art similarity mea-

sures and GARUM with the gold standards ECC, Pfam, and SeqSim on CESSM
2008 and 2014. The correlation is measured with the Pearson’s coefficient. The
top-5 values are highlighted in gray, and the highest correlation with respect to
each gold standard is highlighted in bold. We observe that GARUM SVR and
GARUM are the most correlated measures with respect to the three gold stan-
dard measures in both versions of the knowledge graph, 2008 and 2014. However,
GARUM SVR obtains the highest correlation coefficient in CESSM 2008, while
GARUM NN has the highest correlation coefficient for SeqSim in 20149.
9 Due to the lack of training data GARUM could not be evaluated in CESSM 2014

with ECC and Pfam.
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Table 3. Comparison of Similarity Measures. Pearson’s correlation coefficient between
three gold standards and eleven similarity measures of CESSM. The Top-5 correlations
are highlighted in gray, and the highest correlation with respect to each gold standard
is highlighted in bold. The similarity measures are: simUI (UI), simGIC (GI), Resnik’s
Average (RA), Resnik’s Maximum (RM), Resnik’s Best-Match Average (RB/RG),
Lin’s Average (LA), Lin’s Maximum (LM), Lin’s Best-Match Average (LB), Jiang
& Conrath’s Average (JA), Jiang & Conrath’s Maximum (JM), Jiang & Conrath’s
Best-Match Average (JB). GARUM SVR and NN could not be executed for ECC and
Pfam in CESSM 2014 due to lack of training data.

Similarity 2008 2014
measure SeqSim ECC Pfam SeqSim ECC Pfam

GI [17] 0.773 0.398 0.454 0.799 0.458 0.421
UI [17] 0.730 0.402 0.450 0.776 0.470 0.436
RA [19] 0.406 0.302 0.323 0.411 0.308 0.264
RM [21] 0.302 0.307 0.262 0.448 0.436 0.297
RB [3] 0.739 0.444 0.458 0.794 0.513 0.424
LA [14] 0.340 0.304 0.286 0.446 0.325 0.263
LM [21] 0.254 0.313 0.206 0.350 0.460 0.252
LB [3] 0.636 0.435 0.372 0.715 0.511 0.364
JA [8] 0.216 0.193 0.173 0.517 0.268 0.261
JM [21] 0.234 0.251 0.164 0.342 0.390 0.214
JB [3] 0.586 0.370 0.331 0.715 0.451 0.355
dtax [1] 0.650 0.388 0.459 0.682 0.434 0.407
dps [16] 0.714 0.424 0.502 0.75 0.48 0.45
OnSim [26] 0.733 0.378 0.514 0.774 0.455 0.457
IC-OnSim [25] 0.779 0.443 0.539 0.81 0.513 0.489
GARUM 0.78 0.446 0.539 0.812 0.515 0.49
GARUM SVR 0.86 0.7 0.7 0.864 - -
GARUM NN 0.85 0.6 0.696 0.878 - -

5 Related Work

Several similarity measures have been proposed in the literature to determine the
relatedness between knowledge graph entities; they exploit knowledge encoded
in different entity characteristics in the knowledge graph including: hierarchies,
length and amount of the paths among entities, or information content.

The measures dtax [1] and dps [16] only consider hierarchies of a knowledge
graph during the comparison of knowledge graph entities. These measures com-
pute similarity values based on the relative distance of entities to their lowest
common ancestor. Depending on the knowledge graph, different relation types
may represent hierarchical relations. In OWL ontologies owl:subClassOf and
rdf:type are considered the main hierarchical relations. However, in some knowl-
edge graphs such as DBpedia [4], other relations like dct:subject, can be also
regarded as hierarchical relations. PathSim [24] and HeteSim [22] among others
consider only the neighbors during the computation of the similarity between
two entities in a knowledge graph. They compute the similarity between two
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entities based on the number of existing paths between them. The similarity
value is proportional to the number of paths between the compared entities.
Unlike GARUM, PathSim and HeteSim do not distinguish between relation
types and consider all relation types in the same manner, i.e., knowledge graphs
are regarded as pairs G = (V,E), where edges are not labeled. GBSS [15] con-
siders two of the identified entity characteristics: the hierarchy and the neigh-
bors. Unlike PathSim and HeteSim, GBSS distinguishes between hierarchical
and transversal relations10; they also consider the length of the paths during
the computation of the similarity. The similarity between two entities is directly
proportional to the number of paths between these entities. Shorter paths have
higher weight during the computation of the similarity. Unlike GARUM, GBSS
does not take into account the property types that relate entities with their
neighbors.

Information Content based similarity measures rely on specificity and hier-
archical information [8,14,19]. These measures determine relatedness between
two entities based on the Information Content of their lowest common ancestor.
The Information Content is a measure to represent the generality or specificity
of a certain entity in a dataset. The greater the usage frequency, the more gen-
eral is the entity and lower is the respective Information Content value. Con-
trary to GARUM, these measures do not consider knowledge encoded in other
entity characteristics like neighborhood. OnSim and IC-OnSim [25,26] compare
ontology-based annotated entities. Though both measures rely on neighborhoods
of entities and relation types, they require the execution of an OWL reasoner to
obtain inferred axioms and their justifications. These justifications are taken into
account for determining relatedness of two annotated entities. Thus, OnSim and
IC-OnSim can be costly in terms of computational complexity. The worst case
for the classification task with an OWL2 reasoner is 2NEXP-Time [9]. GARUM
does not make use of justifications, which reduces significantly the execution
time and allows for its use in non-OWL graphs.

6 Conclusions and Future Work

We define GARUM a new semantic similarity measure for entities in knowledge
graphs. GARUM relies on knowledge encoded in entity characteristics to com-
pute similarity values between entities and is able to determine automatically
aggregation functions based on individual similarity measures and a supervised
machine learning algorithm. Experimental results suggest that GARUM is able
to outperform state-of-the-art similarity measures obtaining more accurate simi-
larity values. Further, observed results show that the machine learning approach
is able to find better combination functions than the manually defined functions.

In the future, we will evaluate the impact of GARUM in data-driven tasks
like clustering or search and in to enhance knowledge graph quality, e.g., link
discovery, knowledge graph integration, and association discovery.

10 Transversal relations correspond to object properties in the knowledge graph.
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Abstract. Cyber-Physical Systems (CPSs) are engineered systems that
result from the integration of both physical and computational compo-
nents designed from different engineering perspectives (e.g., mechanical,
electrical, and software). Standards related to Smart Manufacturing (e.g.,
AutomationML) are used to describe CPS components, as well as to facil-
itate their integration. Albeit expressive, smart manufacturing standards
allow for the representation of the same features in various ways, thus
hampering a fully integrated description of a CPS component. We tackle
this integration problem of CPS components and propose an approach
that captures the knowledge encoded in smart manufacturing standards
to effectively describe CPSs. We devise SemCPS, a framework able to
combine Probabilistic Soft Logic and Knowledge Graphs to semantically
describe both a CPS and its components. We have empirically evalu-
ated SemCPS on a benchmark of AutomationML documents describing
CPS components from various perspectives. Results suggest that Sem-
CPS enables not only the semantic integration of the descriptions of CPS
components, but also allows for preserving the individual characteriza-
tion of these components.

1 Introduction

The Smart Manufacturing vision aims at creating smart factories on top of the
Internet of Things, Internet of Services, and Cyber-Physical Systems (CPSs).
This vision is currently supported by various initiatives worldwide, including the
“Industrie 4.0” activities in Germany [2], the “Factory of the Future” initiative
in France and UK [27], the “Industrial Internet Consortium” in the USA as well
as the “Smart Manufacturing” effort in China [19].
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CPSs are complex mechatronic systems, e.g., robotic systems or smart
grids [28], and are designed according to various engineering perspectives, e.g.,
specifications of a conveyor system usually comprise mechanical, electrical, and
software viewpoints. The final design of a CPS includes the characteristics of the
CPS specified in each perspective.

However, perspectives are defined independently and conflicting specifica-
tions of the same characteristics may exist [15], e.g., a software perspective may
specify safety functions of a conveyor system than are not considered in the elec-
trical viewpoint. These particularities in a perspective may generate semantic
heterogeneity. Consequently, one of the biggest challenges for the realization of
a CPS is the integration of these perspectives based on the knowledge encoded
in each of them [3,20,21], i.e., the semantic integration of these perspectives.

Perspectives enclose core characteristics of the CPS that need to be rep-
resented in the integrated design, e.g., descriptions of a robot system’s inputs
and outputs and its main functionality; these characteristics correspond to hard
knowledge facts. In addition, properties individually modeled in each perspec-
tive, as well as the resolution of the corresponding heterogeneity issues that may
be caused, should be part of the final design according to how consistent they
are with respect to the rest of the perspectives. These features are uncertain
in the integrated CPS, e.g., safety issues expressed in the electrical perspective
may also be included in the software perspective and vice versa. Such properties
that are totally or partially covered by other perspectives can be modeled as soft
knowledge facts in the integrated design.

Semantic heterogeneity issues that may occur in an integrated CPS have been
characterized before [4,17]. Further, a number of approaches have been defined
for solving such integration problems [11,21,28]. Although existing approaches
support the integration of CPS perspectives based on the resolution of semantic
heterogeneity issues, none of them is able to distinguish hard and soft knowledge
facts during integration.

We devise SemCPS, a rule-based framework that relies on Probabilistic Soft
Logic (PSL) for capturing the knowledge encoded in different CPS perspectives
and for exploiting this knowledge to enable a semantic integration of CPS per-
spectives. SemCPS includes weighted rules representing the conditions to be met
by hard and soft knowledge facts. It relies on uncertain knowledge graphs [6,13]
where edges are annotated with weights to represent the knowledge of different
views and to integrate this knowledge into a final design.

We evaluated the effectiveness of SemCPS in a benchmark of real-world
based CPS perspectives described using documents of the AutomationML stan-
dard. Experimental results suggest that SemCPS accurately identifies integrated
characteristics of CPSs while preserving the main individual characterization and
description of the components.

The contributions of this paper are in particular:

– Formal definitions of CPS uncertain knowledge graphs and the problem of
integrating CPS perspectives into a CPS uncertain knowledge graph;
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Fig. 1. Motivating Example. Description of a conveyor belt. (a) A simple Cyber-
Physical System (CPS) resulting from a multi-disciplinary engineering design. (b) The
representation of the CPS according to its mechanical, electrical, and software per-
spectives; the CPS is defined in terms of various components and attributes in each
perspective. (c) Alternatives integrate perspectives and describe final CPS designs.
Each perspective solves the data integration problem differently. (Color figure online)

– SemCPS, a PSL-based framework to capture knowledge encoded in CPS
perspectives and solve semantic heterogeneity among CPS perspectives; and

– An empirical evaluation of the effectiveness of SemCPS on a testbed of var-
ious perspectives describing CPSs.

The rest of the paper is structured as follows: Sect. 2 motivates the prob-
lem of integrating CPS perspectives. Section 3 provides background information
and introduces the terminology relevant to our approach. Section 4 defines CPS
uncertain knowledge graphs and details the integration problem tackled in this
paper. Section 5 presents the SemCPS framework, followed by its empirical eval-
uation presented in Sect. 6. Section 7 summarizes related work, before Sect. 8
concludes the paper and gives an outlook to future work.

2 Motivating Example

The engineering process in smart manufacturing environments combines various
expertise for designing and developing a CPS, in particular skills in mechan-
ical, electrical, and software engineering. As a result, diverse perspectives are
generated for the same CPS; they may suffer of semantic heterogeneity issues
caused by overlapped or inconsistent designs [22]. The goal of this collaborative
design process is to produce a final design where overlapping and inconsistencies
are minimized and semantic heterogeneity issues are solved [23–25]. The final
design has to respect the original intent of the different perspectives; it also has
to ensure that all knowledge encoded in each perspective is captured during the
integration process.

Figure 1a illustrates a CPS described from different perspectives. Each per-
spective is defined according to an expert understanding of the domain; different
elements, e.g., components, attributes, and relations may be used to describe the
same CPS in each perspective. Figure 1b presents three perspectives of the CPS
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shown in Fig. 1a; they share some elements, e.g., Belt, Motor, and Roller. On
the other hand, Drive and Motor Control Unit are only included in the soft-
ware and the electrical perspectives, respectively. Elements that appear in all
the perspectives should be included in the final integrated design of a CPS; they
correspond to hard knowledge facts. Moreover, some elements are not part of
all the perspectives, e.g., the aforementioned Drive and Motor Control Unit,
causing that the granularity of the description of elements like Belt varies in
these designs. These elements are uncertain in the final design and can be con-
sidered as soft knowledge facts.

Figure 1c outlines alternative integrated CPS designs. In Alternative 1, all
the elements from three given perspectives are included: Motor and Roller are
related to Drive, while Motor Control Unit is only related to Belt. Further-
more, because Drive is related to Belt, Motor, and Roller are also related to
Belt. The granularity description of Belt is compatible with the software and
electrical perspectives, while the properties present in all the perspectives are
preserved. In contrast, neither Alternative 2 nor Alternative 3 describe elements
at the same level of granularity. Therefore, Alternative 1 seems to be most com-
plete according to the specifications of this CPS design; however, uncertainty
about the membership of elements like Drive and Motor Control Unit should
be modeled. The approach we present in this work relies on knowledge graphs and
allows for the representation and integration of these three alternative designs,
as well as for the selection of Alternative 1 as the final integrated design.

3 Background

A huge variety of standards, covering different aspects of smart manufacturing,
are utilized to describe CPSs. For example, OPC UA [10] is used to describe the
communication of CPSs, while PLCOpen [9] and AutomationML (AML) [8] are
used for CPS programming and design, respectively. Despite the heterogeneous
landscape of standards in the context of smart manufacturing, they share the
commonality of containing information models to represent knowledge about the
CPS and its lifecycle, from its creation until the end of its productive life. These
models capture knowledge about main properties of a CPS from a particular
perspective; it is represented in documents according to the specifications of the
standards, e.g., using XML-based languages that includes terms representing
main concepts of smart manufacturing standards, such as CPS attributes, com-
ponents, relations, and datatypes. Semantic heterogeneity is caused by different
viewpoints involved in CPS design, i.e., how equivalent and different concepts
for the same CPS are expressed [15].

Several authors [4,17,30] have characterized forms of semantic heterogene-
ity that may occur in a CPS design: (M1) Value processing: Attributes and
relations are modeled differently, e.g., using different datatypes. (M2) Gran-
ularity: Components modeled at various levels of detail. (M3) Schematic
differences: Components and attributes are differently related. (M4) Condi-
tional mappings: Relations between components and attributes exist only if
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Fig. 2. Uncertain KGs for CPS final design. Uncertain KGs are built based on the
alternatives of the motivating example. They combine hard (D) and soft (U) knowledge
facts; (a), (b) and (c) represent alternative integrated designs. (Color figure online)

certain conditions are met. (M5) Bidirectional mappings: Relations between
components and attributes may be bidirectional. (M6) Grouping and aggre-
gation: Using different relations, components and attributes can be grouped and
aggregated in various ways. (M7) Restrictions on values: Different restric-
tions on the possible values of the attributes of a component are implemented.

4 Problem Statement and Solution

In this section, CPS uncertain knowledge graphs are defined. Then, the problem
of integrating CPS perspectives is presented as an inference problem on uncertain
knowledge graphs. PSL framework provides a practical solution to this problem.

4.1 CPS Knowledge Graphs

A knowledge graph is defined as a labeled directed graph encoded using the RDF
data model [12]. Given sets I and V that correspond to URIs identifying elements
in a CPS document and terms from a CPS standard vocabulary, respectively;
furthermore, let L be a set of literals. A CPS Knowledge Graph G is a 4-tuple
〈I, V, L,G〉, where G is a set of triples of the form (s, p, o) ∈ I × V × (I ∪ L).
Given two CPS knowledge graphs G1 = 〈I, V, L,G1〉, G2 = 〈I, V, L,G2〉 the
entailment for G1 |= G2 is defined as the standard RDF entailment G1 and
G2 [12], i.e., G1 |= G2. Chekol et al. [6] have shown that knowledge graphs can
be extended with uncertainty; the maximum a-posteriori inference process from
Markov Logic Networks (MLNs) is used to compute the interpretation of the
triples in an uncertain KG that minimizes the overall uncertainty. Similarly, we
define a CPS Uncertain Knowledge Graph as a knowledge graph where each fact
is annotated with a weight in the range [0, 1]; weights represent uncertainty
about the membership of the corresponding facts to the knowledge graph, i.e.,
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soft knowledge facts. Moreover, we devise an entailment relation between two
CPS uncertain knowledge graphs; this relation allows for deciding when a CPS
uncertain knowledge graph covers the hard and soft knowledge facts of the other
knowledge graph. Formally, given L, I, and V , three sets of literals, URIs iden-
tifying elements in a CPS document, and terms in a CPS standard vocabulary,
respectively. A CPS Uncertain Knowledge Graph Gu is a 5-tuple 〈I, V, L,D,U〉:
– D is an RDF graph of the form (s, p, o) ∈ I × V × (I ∪ L). D represents a set

of hard knowledge facts.
– U is an RDF graph where triples are annotated with weights. U is a set of
soft knowledge facts, defined as follows:

U = {(t, w) | t ∈ I × V × (I ∪ L) and w ∈ [0, 1]}
– τ(U) is the set of triples in U , with τ(U) ∩ D = ∅, i.e.,

τ(U) = {t | (t, w) ∈ U}.

Example 1. Figure 2b shows an Uncertain Knowledge Graph Gu1 for Alterna-
tive 1 in Fig. 1c. Edges between blue nodes represent hard knowledge facts in
D, while soft knowledge facts are modeled as edges between green nodes in U .
Elements in the perspectives in Fig. 1b correspond to hard knowledge facts, e.g.,
elements stating that Motor and Roller are related to Belt. Also, the relation
between Motor Control Unit and Belt is only included in one perspective; the
corresponding element corresponds to a soft knowledge fact in U .

The semantics of a CPS uncertain KG Gu is defined in terms of the probabil-
ity distribution of the values of weights of the triples in Gu. As defined by Chekol
et al. [6], the weights of the triples in Gu are characterized by a log-linear proba-
bility distribution. For any CPS Uncertain Knowledge Graph G∗

u over the same
sets I, V , and L, i.e., G∗

u = 〈I, V, L,D∗, U∗〉 the probability of G∗
u is as follows:

P (G∗
u) =

⎧
⎪⎨

⎪⎩

1
Z exp

(
∑

{(ti,wi)∈U :D∗∪τ(U∗)|=ti}
wi

)

if D∗ ∪ τ(U∗) |= D

0 otherwise
(1)

Z is the normalization constant of the log-linear probability distribution P.

Example 2. Consider the CPS uncertain KGs depicted in Fig. 2; they represent
alternate integrated designs in Fig. 1c. In Fig. 2a, we present a CPS uncertain KG
Gu where all the elements present in the three perspectives are included in the
knowledge graph D, i.e., they correspond to hard knowledge facts; additionally,
the knowledge graph U includes uncertain triples representing soft knowledge
facts; weights denote how many times a fact is represented in the three per-
spectives. For example, the relation between Drive and Belt is only included in
one out of three perspectives, so, the weight is 0.3. This KG can be seen as a
complete integrated design of the CPS. Furthermore, uncertain KGs in Figs. 2b
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and c represent alternate integrated designs; the probability of these KGs with
respect to the one in Fig. 2a is computed following Eq. 1. Figure 2b presents a KG
with the highest probability; it corresponds to Alternative 1 in the motivating
example where the majority of the facts in the KG are also in KG in Fig. 2a.

Definition 1. Let Gu = 〈I, V, L,D,U〉 be a CPS uncertain knowledge graph.
The entailment for any G∗

u = 〈I, V, L,D∗, U∗〉 G∗
u |=u Gu holds if P(G∗

u) > 0.

Example 3. Consider again the CPS uncertain KGs presented in Fig. 2, because
the probability of the uncertain KGs in Figs. 2b and c with respect to the KG in
Fig. 2a is greater than 0.0, we can say that the entailment relation is met, i.e.,
G1

u |=u Gu, G2
u |=u Gu, and G3

u |=u Gu.

SemCPS

Integrated CPS
Design

CPS
Knowledge 

Capture

CPS Uncertainty 
KG Generation

Integrated CPS 
Design 

Generation

Probabilistic Soft Logic RULES

CPS Knowledge Graph

Perspective #1

Perspective #3

Perspective #2

G = < I, V, L, G > Gu = < I, V, L, D, U >

Threshold (τ) 

Fig. 3. The SemCPS Architecture. SemCPS receives documents describing a Cyber-
Physical System (CPS) from various perspectives; they are represented in standards
like AML. SemCPS outputs a final design document describing the integration of the
perspectives, a Knowledge Graph (KG). (1) Input documents are represented as a KG
in RDF. (2) A rule-based system is used to identify heterogeneity among the perspec-
tives represented in KG. (3) A rule-based system is utilized to solve heterogeneity and
produced the final integrated CPS design.

4.2 Problem Statement

Integrating CPS perspectives corresponds to the problem of identifying a CPS
Uncertain KG G∗

u where the probability distribution with respect to the complete
integrated design Gu is maximized. This problem optimization is follows:

argmax
G∗
u|=uGu

(P (G∗
u))

Example 4. Consider the CPS uncertain KGs shown in Fig. 2a. An optimal solu-
tion of integrating CPS perspectives is the CPS uncertain KG in Fig. 2b; this
KG represents Alternative 1 which according to Prinz [24], is the most complete
representation of the CPS perspectives described in Fig. 1b.
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4.3 Proposed Solution

As shown by Chekol et al. [6], solving the maximum a-posteriori inference process
required to compute the probability of an uncertain KG is NP-hard in general.
In order to provide a practical solution to this problem, we propose a rule-
based system that relies on PSL to generate uncertain KGs that correspond
to approximate solutions to the problem of integrating CPS perspectives. PSL
[1,16] has been utilized as the probabilistic inference engine in several integration
problems, e.g., knowledge graphs [26] and ontology alignment [5]. PSL allows for
the definition of rules with an associated non-negative weight that captures the
importance of a rule in a given probabilistic model. A PSL model is defined using
a set of weighted rules in first-order logic, as follows:

SemSimComp(B,A) ∧ Rel(B, Y ) ⇒ Rel(A, Y ) | 0.9 (2)

SemCPS includes a set of PSL rules capturing the conditions to be met
by a CPS Uncertain KG that solves the integration of CPS perspectives. For
example, Rule 2 generates new elements in an integrated design assuming that
semantically similar components are related to same attributes. Further, Rule 3
determines semantic similarity of components.

Component(A) ∧ Component(B) ∧ hasRefSem(A,Z)∧
hasRefSem(B,Z) ⇒ SemSimComp(A,B) | 0.8 (3)

The PSL program receives as input facts representing all the elements in the
perspectives to be integrated, as well as their semantic references. Then, Rules 2
and 3 determine that Drive is a sub component of Belt, and that Belt is related
to the same elements that Drive, i.e., Motor and Roller are related to Belt.
Based on the weights of these rules, these facts have a high degree of membership
to the integrated design. Similarly, rules are utilized for determining that Motor
Control Unit is related to Belt in the integrated design. The PSL program
builds the uncertain KG in Fig. 2b maximizing the probability distribution with
respect to the complete integrated design in Fig. 2a.

5 The SemCPS Framework

We present SemCPS, a framework to integrate different perspectives of a CPS.
Figure 3 depicts the architectural components of SemCPS. SemCPS receives as
input a set of documents describing a CPS in a given smart manufacturing stan-
dard and a membership degree threshold ; the output is a final integrated design
of the CPS. SemCPS builds a CPS knowledge graph G = 〈I, V, L,G〉 to capture
the knowledge encoded in the CPS documents. Then, the PSL program is used to
solve the heterogeneity issues existing among the elements in the different CPS
perspectives; a CPS uncertain knowledge graph G∗

u = 〈I, V, L,D∗, U∗〉 repre-
sents an integrated design of the CPS. Finally, the membership degree threshold
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is used to select the soft knowledge facts from G∗
u that in conjunction with the

hard knowledge facts in D∗ are part of the final integrated design.

Capturing Knowledge Encoded in CPS Documents. The CPS Knowledge
Capture component receives as inputs documents in a given standard containing
the description of the perspectives of a CPS design (cf. Sect. 2). Next, these
documents are automatically transformed into RDF, by following the semantics
encoded in the corresponding standard vocabulary. To this end, a set of XLST-
based mapping rules are executed in the Krextor [18] framework to create an
RDF KG using a CPS vocabulary. Consequently, the output of this component
is G, a KG comprising the input data in RDF.

Generating a CPS Uncertain Knowledge Graph. The CPS Uncertain
KG Generation component creates, based on the input KG, the hard and soft
knowledge facts, i.e., the uncertain KG. To achieve this goal, SemCPS relies
on the PSL rules described in Fig. 3. Next, all facts with degree of membership
equal to 1.0 correspond to hard knowledge facts. The rest generated during the
evaluation of the rules correspond to soft knowledge facts.

Generating a Final Integrated CPS Design. The Final Integrated CPS
Design Generation component utilizes a membership degree threshold to select
the facts in the CPS uncertain KG. Facts with scores below the value of the
threshold are removed while the rest will be part of the final integrated design.

6 Empirical Evaluation

We empirically study the effectiveness of SemCPS in the solution of the problem
of integrating CPS perspectives. The goal of the experiment is to analyze the
impact of: (1) the number of heterogeneity on the effectiveness of SemCPS; and
(2) the size of CPS perspectives on the efficiency of SemCPS. Particularly, we
assess the following research questions:

(RQ1) Does the type of heterogeneity among the perspectives of a CPS impact
on the effectiveness of SemCPS?

(RQ2) Does the size of the perspectives of a CPS affect the effectiveness of
SemCPS?

(RQ3) Does the degree of membership threshold impact on the effectiveness of
SemCPS?

We compare SemCPS with the Expressive and Declarative Ontology Align-
ment Language (EDOAL) [29] and the Linked Data Integration Framework
(SILK) [32]. Both frameworks allow for representing correspondences between
the entities of different ontologies and instance data by means of rules. With
the goal to compare both approaches, we created rules in EDOAL and SILK
to solve heterogeneity issues between CPS perspectives1. For both frameworks,

1 https://github.com/i40-Tools/Related-Integration-Tools.

https://github.com/i40-Tools/Related-Integration-Tools
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SPARQL queries are generated based on their rules. These queries are then exe-
cuted on top of the CPS perspectives after their conversion to RDF. To the best
of our knowledge, real-world publicly benchmarks in the industry domain are not
available. Moreover, many of the smart manufacturing standards are not even
publicly accessible. This complicates the access to a full benchmark of real-world
CPS documents. To address this issue, we define a generator of CPS perspec-
tives. The generator creates CPS perspectives representing real-world scenarios
and allow for the empirical evaluation of SemCPS.

6.1 CPS Document Generator

The CPS Document generator2 produces different perspectives of a seed real-
world CPS3; generated perspectives include combinations of seven semantic het-
erogeneity described in [17]. Based on a Poisson distribution, a value between
one and seven is selected; it simulates the number of heterogeneity that exist
in each perspective. The parameter λ of the Poisson distribution indicates the
average number of heterogeneity among perspectives; λ is set to two and sim-
ulates an average of 16 heterogeneity pair-wise perspectives. Thus, generated
perspectives include components, attributes, and relations which are commonly
included in real-world AutomationML documents4.

Table 1. Testbed Description. Minimal and maximal configurations (Config.) in terms
of number of elements, relations, heterogeneity, and document size

Config. # Elements # Relations # M1–M7 Size (KB)

Minimal 20 8 1 5.7

Maximal 600 350 7 116.2

6.2 Experiment Configuration

Testbeds. We considered a testbed with 70 seed CPS, and two perspectives per
CPS. Each perspective has in average 200 elements related using 100 relations;
furthermore, in average three heterogeneity occur between the two perspectives
of a CPS. Table 1 summarizes the features of the evaluated CPS perspectives. As
Table 1 shows, the testbed comprises a variety of elements, relations, and het-
erogeneity with the aim of simulating real-world CPS designs. Gold Standard.
The Gold Standard includes uncertain knowledge graphs–Gu–corresponding to
complete integrated designs of CPS perspectives in the testbed.

2 https://github.com/i40-Tools/CPSDocumentGenerator.
3 Source: Drath, GMA 6.16.
4 https://raw.githubusercontent.com/i40-Tools/iafCaseStudy/master/IAF AMLMod

el journal.aml.

https://github.com/i40-Tools/CPSDocumentGenerator
https://raw.githubusercontent.com/i40-Tools/iafCaseStudy/master/IAF_AMLModel_journal.aml
https://raw.githubusercontent.com/i40-Tools/iafCaseStudy/master/IAF_AMLModel_journal.aml
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Metrics. A final integrated design denoted by G∗
u, describes the output of Sem-

CPS (cf. Fig. 3), i.e., facts annotated with uncertainty values lower than the
degree of membership threshold are removed. The complete integrated design
denoted by Gu, corresponds to a CPS uncertain KG in the Gold Standard. We
evaluate SemCPS in terms of the following metrics: Precision is the frac-
tion of the cardinality of the final integrated design produced by SemCPS
(denoted by G∗

u) and the cardinality of the complete integrated design (denoted
by Gu). Recall is the fraction of the cardinality of the complete integrated design
(denoted by Gu) and the cardinality of the final integrated design (denoted by
G∗

u). F-Measure (F1) is the harmonic mean of Precision and Recall (Table 2).

Table 2. Metrics of precision and recall.

Precision =
|G∗

u| ∩ |Gu|
|G∗

u| Recall =
|G∗

u| ∩ |Gu|
|Gu|

Implementation. The generator and SemCPS are implemented in Java 1.8.
SemCPS also uses PSL 1.2.1. Experiments were run on a Windows 8 machine
with an Intel I7-4710HQ 2.5 GHz CPU and 16 GB 1333 MHz DDR3 RAM.
Results can be reproduced by using the generator along with data for the exper-
iments5; SemCPS is publicly available6.

Table 3. Experiment 1: SemCPS Effectiveness on different types of heterogeneity.
SemCPS exhibits the best performance for the increasing number of heterogeneity, i.e.,
from M1 to M7, e.g., EDOAL and SILK

H SemCPS EDOAL SILK

Precision Recall F1 Precision Recall F1 Precision Recall F1

M1 0.93 0.93 0.93 0.8 0.28 0.42 0.85 0.28 0.42

M1–M2 0.88 0.86 0.87 0.8 0.4 0.45 0.82 0.31 0.45

M1–M3 0.93 0.95 0.94 0.81 0.46 0.59 0.76 0.46 0.57

M1–M4 1.0 0.61 0.76 0.8 0.59 0.68 0.67 0.54 0.63

M1–M5 0.96 0.94 0.95 0.88 0.57 0.69 0.85 0.57 0.68

M1–M6 0.93 0.93 0.93 0.82 0.65 0.73 0.72 0.64 0.68

M1–M7 0.92 0.96 0.94 0.79 0.62 0.69 0.79 0.62 0.69

Impact of the Type of Heterogeneity. To answer RQ1, the perspectives of
70 CPSs are considered; the membership degree threshold is set to 0.5. SemCPS

5 https://github.com/i40-Tools/HeterogeneityExampleData/tree/master/Automatio
nML.

6 https://github.com/i40-Tools/SemCPS.

https://github.com/i40-Tools/HeterogeneityExampleData/tree/master/AutomationML
https://github.com/i40-Tools/HeterogeneityExampleData/tree/master/AutomationML
https://github.com/i40-Tools/SemCPS
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is executed in seven iterations. During an iteration i where 1< i <7, the two
perspectives of each of the 70 CPS have only heterogeneity of type Mi; Table 3
reports on the effectiveness of SemCPS for each iteration in terms of the average
of Precision, Recall and F1. These observed results (cf. Table 3) suggest that
the behavior of SemCPS is slightly affected by heterogeneity types. Overall,
SemCPS exhibits highest values of precision and F1 than EDOAL and SILK.
Therefore, these results suggest that SemCPS is able to identify alternatives that
represent and integrate the majority of the facts in the evaluated perspectives.

Table 4. Experiment 2: SemCPS Effectiveness on based on the size of CPS perspec-
tives. SemCPS exhibits the best performance for the increasing number of elements in
perspectives, e.g., EDOAL and SILK

Elements SemCPS EDOAL SILK

Precision Recall F1 Precision Recall F1 Precision Recall F1

30 0.96 1.0 0.98 0.97 0.70 0.81 0.97 0.70 0.81

60 0.97 1.0 0.98 0.97 0.48 0.64 0.97 0.48 0.64

180 1.0 0.9 0.95 0.88 0.91 0.88 0.86 0.91 0.89

210 1.0 0.78 0.87 0.87 0.77 0.81 0.87 0.77 0.81

600 1.0 0.95 0.98 0.95 0.96 0.96 0.95 0.96 0.96

Impact of the Size of CPS Perspectives. To assess RQ2, sizes of two
perspectives of a seed CPS are changed; the experiment is run in five iterations.
In iteration one, 30 elements are included in each perspective; then 60, 180, 210,
and 600 elements are considered in the next iterations. For this experiment, the
membership degree threshold is set to 0.5. EDOAL and SILK are executed on
top of the same CPS perspectives documents. Table 4 reports on the effectiveness
of SemCPS, EDOAL, and SILK in terms of the average of precision, recall, and
F1; results suggest that SemCPS outperforms the compared frameworks. With
an exception, i.e., when 210 elements are considered, SemCPS seems not to be
impacted by the number of elements.

Impact of the Degree of the Membership Threshold. To evaluate RQ3,
SemCPS is executed five times with a variation in the membership degree thresh-
old from 0.5 up to 0.9. For each perspective, 210 elements are considered. As
shown in Fig. 4, precision is not affected whereas recall decreases up to approx-
imately 0.75 in the last threshold, i.e., 0.9. The membership degree threshold
has lowered the performance since in every execution where the threshold is
incremented, more soft knowledge facts are excluded from the final integrated
design G∗

u; thus lowering recall. These results suggest that the membership degree
threshold impacts on the performance of SemCPS. Note that more soft knowl-
edge facts are removed from G∗

u whenever the values of the membership degree
threshold increase. Consequently, the completeness of the results is negatively
impacted and lower values of recall are observed.
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Fig. 4. Membership degree of threshold.

Overall, the observed behavior of the evaluated frameworks provides evidence
about the quality of the data integration solution implemented by SemCPS.

7 Related Work

Recently, there has been a large amount of research investigating the integra-
tion of CPS [31], as well as the use of semantic technologies for the resolu-
tion of semantic heterogeneity in related scenarios [14]. BI et al. [3] present
MSCIM, a Mechatronics System Common Information Model to support the
multi-disciplinary design in the CPS scenario. MSCIM relies on XML and XML
Web services technologies to leverage the integration. Further, MSCIM utilizes
the wrapper integration approach in a very generic level. Lüder et al. [20] describe
a manual approach for the CPS information integration by means of Automa-
tionML. Chen et al. [7] develop a framework for the integration of the design
of CPS; requirements for each one of the disciplines involved are character-
ized, as well as the representation of constraints among disciplines. In [25], a
method for integration of mechatronic objects design is proposed; the method
combines advantages of bottom and top down approaches into a hybrid app-
roach. Kovalenko and Euzenat [17] investigate ontology matching techniques to
execute identification and integration of data in this context. A survey of existing
languages for realizing this task is presented; furthermore, EDOAL is proposed
for tackling the problem of semantic matching of the semantic heterogeneity for
engineering documents. Sabou et al. [21] describe a semantic web-based method
for data integration in multi-disciplinary engineering. The work is based on the
design of a Hydro Power Plant, which is considered as a CPS. The semantics
of each local data source is presented using a hybrid ontology model. Moreover,
a generic ontology and three local ontologies representing data from three engi-
neering perspectives are defined. The above mentioned approaches have poten-
tial to solve specific integration problems for CPS documents. However, isolated
problems are tackled, and a general method capable of producing a final CPS
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integrate design considering the uncertain nature of CPS design have not been
developed. On the contrary, SemCPS combines PSL and Semantic Web tech-
nologies to effectively integrate CPS documents.

8 Conclusions and Future Work

This paper presents SemCPS, a framework for enabling the seamless integration
of descriptions of cyber-physical systems in knowledge graphs. SemCPS com-
bines Probabilistic Soft Logic and semantic technologies to accurately capture the
knowledge that characterizes different types of semantic heterogeneity in CPS
documents. Results of the empirical evaluation suggest that SemCPS is able to
effectively solve the problem of integrating CPS perspectives by using Uncertain
Knowledge Graphs of smart manufacturing related standards such as Automa-
tionML. In general, SemCPS exhibits better performance than EDOAL and
SILK when it is executed with an increasing number of semantic heterogeneity
types and when an increasing number of elements are added. Finally, the effec-
tiveness of SemCPS seems to be impacted for higher values of the membership
degree threshold. In the future, we envision to improve SemCPS by including
the semantics of OWL in combination with PSL rules. Further, we plan to extend
SemCPS to integrate documents combining information models of more than
one smart manufacturing standard like OPC UA and AutomationML.
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15. Jirkovský, V., Obitko, M., Maŕık, V.: Understanding data heterogeneity in the
context of cyber-physical systems integration. IEEE Trans. Ind. Inform. 13(2),
660–667 (2017)

16. Kimmig, A., Bach, S., Broecheler, M., Huang, B., Getoor, L.: A short introduction
to Probabilistic Soft Logic. In: Proceedings of the NIPS Workshop on Probabilistic
Programming: Foundations and Applications, pp. 1–4 (2012)

17. Kovalenko, O., Euzenat, J.: Semantic matching of engineering data structures. In:
Biffl, S., Sabou, M. (eds.) Semantic Web Technologies for Intelligent Engineering
Applications, pp. 137–157. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-41490-4 6

18. Lange, C.: Krextor - an extensible XML→RDF extraction framework. In: Scripting
and Development for the Semantic Web (SFSW). CEUR Workshop Proceedings,
vol. 449, Aachen, May 2009

19. Li, Q., Jiang, H., Tang, Q., Chen, Y., Li, J., Zhou, J.: Smart manufacturing stan-
dardization: reference model and standards framework. In: Ciuciu, I., et al. (eds.)
OTM 2016. LNCS, vol. 10034, pp. 16–25. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-55961-2 2
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Abstract. The growing number of cloud service providers has led to
an exploding number of functionally similar cloud services, with a
wide range choices of non-functional properties (NFPs). Thus, select-
ing services based on NFPs becomes of significant importance. Current
approaches assume that a cloud service provider offers a single service
per functionality, therefore, they do not perform well in the real-life set-
ting where each cloud service provider offers different service plans. In
contrast, in this paper, we propose an approach to select top-k cloud ser-
vices that is built taking into account the real-life setting. Our approach
combines the trust, determined by the reputation of the provider, and
the QoS. We present different algorithms for processing such selection
queries and evaluate them through a set of experiments.

Keywords: Cloud service selection · QoS · Trust · Reputation

1 Introduction

Cloud services are designed to provide easy and scalable access to applications,
resources and services, and are fully managed by cloud service providers. Exam-
ples of cloud services include cloud storage, cloud backup, cloud hosting and
cloud accounting services.

As cloud services are so widely used among individuals and businesses, cloud
providers are competing with each other to offer similar services at different
prices and performance levels, i.e., non-functional properties (NFPs). Hence,
selecting services based on NFPs becomes of significant importance. NFPs of
a cloud service mainly contain QoS (e.g., price and storage size) and users’
feedbacks, determining the reputation of its provider, for trust concerns; i.e.,
the reputation of a provider represents a general opinion about how good its
provided services have been rated. In other words, reputation is considered as a
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collective measure of trustworthiness as illustrated by the following statement:
“I trust you because of your good reputation” [7].

To illustrate this point, assume the existence of a cloud service search engine
that is connected to a large number of cloud service providers. In a typical
scenario, a user provides the type of the requested cloud service, subsequently,
the search engine issues a query to the different providers in order to get the
possible service plans. Then, the user selects the desired service. After use, he/she
provides a rating, which is used to determine the reputation of the provider.
However, as cloud service providers proliferate, the selection task would be very
painful for the user. Therefore, a sophisticated cloud service search engine needs
to identify the best candidates.

Table 1. A sample provided cloud storage services

Provider Reputation Service Price ($) Storage size (GB)

p1 0.9 s11 20 2000

s12 35 4000

p2 0.8 s21 20 2500

s22 35 4000

p3 0.7 s31 30 1000

s32 35 2000

s33 40 3000

p4 0.6 s41 40 2000

s42 45 3000

s43 50 4500

p5 0.4 s51 20 3000

s52 30 4000

s53 35 5000

Obviously, the perfect cloud service, i.e., service that dominates the other
services on all NFPs, is seldom found because of the trade-offs offered by the
providers. Roughly speaking, the more you pay, the more you get. Table 1 illus-
trates this with an example of a set of cloud service providers offering various
cloud storage services. In this example, each provider has its own reputation,
and provides different service plans. For instance, provider p1 offers services s11
and s12. The services are specified with their cost and storage size. Observe that
regarding the trust, the services advertised by provider p1 are the most favorable,
while under QoS, provider p5 offers the most interesting service plans. However,
more often, users put almost the same emphasis on trust and QoS [16]. While
some approaches combining the trust and QoS for cloud service selection exist;
e.g., [9,16], they are not designed to the real-life setting for two main reasons.
First, they assume that a provider can offer only a single service per function-
ality. Second, they suppose that the advertised QoS does not change over time.
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As a consequence, the reputation is naturally assigned to the service, and not
to the provider. However, in real-life setting, each cloud service provider offers
different service plans to reach a maximum number of customers. In addition,
the advertised QoS may vary over time for different reasons (e.g., for economic
purposes). Thus, it makes better sense to assign the reputation to the provider,
and not to its services. As a result, these approaches do not perform well in the
real-life setting.

For such a critical issue, industry cloud service search engines, such as
Cloudwards1, follow another direction to help potential users find their desired
cloud services, usually by identifying the top-k providers based on their repu-
tation (e.g., average rating). Users are then required to probe the service plans
advertised by the providers to find their desired services. However, this task
remains painful for users.

To effectively deal with this problem, it is imperative to provide the results
in a useful form. In this paper, we propose a method for retrieving the top-k
cloud service plans, instead of the top-k cloud service providers.

Processing such a top-k query over the real-life setting is challenging, since
the cloud service search engine has to interact with the different cloud service
providers at query time as the advertised QoS may vary over time. Various
algorithms are proposed to process top-k queries; see [6] for a survey. The most
popular is Threshold Algorithm (TA) proposed by Fagin et al. [2]. Unfortunately,
these algorithms are not designed for cloud service search engines. In fact, as we
will see, an adaptation of TA do not perform well. In this paper, we propose a
novel strategy to efficiently retrieve the top-k cloud services. We also present a
naive algorithm and an adaptation of TA, and compare these techniques through
a set of experiments.

To sum up, the main contributions of our work are the following:

– We introduce and formally define the problem of top-k cloud services in the
real-life setting;

– We develop an adaptation of TA for computing the top-k cloud services and
propose a more efficient algorithm;

– We perform an experimental study to evaluate the efficiency of these algo-
rithms.

The remainder of this paper is organized as follows. In Sect. 2, we formally
define the problem of top-k cloud services. Then, in Sect. 3, we describe the
top-k cloud services query processing algorithms, and evaluate them in Sect. 4.
In Sect. 5, we present related work. Finally, Sect. 6 concludes the paper.

2 Problem Definition

In this section, we present our terminology, and define the problem of top-k
cloud services. For reference, Table 2 gives the used notation.

1 https://www.cloudwards.net.

https://www.cloudwards.net
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Table 2. Notation

Symbol Description

P, pi Set of providers, provider

Si, sij Set of services provided by pi, service provided by pi

Q, qk Set of QoS parameters, QoS parameter

dom(qk) Domain of qk

q−k , q+k Lower bound of dom(qk), upper bound of dom(qk)

sij .qk Value of sij on qk

sij .qk′ Normalized value of sij .qk

sr(pi) Reputation score of pi

sq(sij) QoS score of sij

sg(sij) Global score of sij

pi.q
�
k The best value of qk

pi.q
�
k′ Normalized value of pi.q

�
k

smax
q (pi) Maximal attainable QoS score of services offered by pi

smax
g (pi) Maximal attainable global score of services offered by pi

Given a set of cloud service providers P = {p1, p2, . . . , pn}, where each
provider pi offers a set of cloud services Si = {si1, si2, . . . , simi

} defined on a
set of QoS parameters Q = {q1, q2, . . . , qd}. The domain of each QoS parameter
qk is dom(qk). We use q−

k and q+k to denote respectively the lower bound and
the upper bound of dom(qk) and sij .qk to denote the value of service sij on QoS
parameter qk.

Further, assume that each provider pi has a reputation score according to the
historical invocations of its provided services. The reputation score of a provider
pi can be calculated as:

sr(pi) = 1/u
u∑

�=1

ri� (1)

Where u is the total number of evaluator users for provider pi, and ri� rep-
resents the rating of user � on provider pi.

Now, given a cloud service sij , its QoS score is defined as follows:

sq(sij) =
d∑

k=1

wk × sij .qk′ (2)

Where wk is the weight associated to QoS parameter qk, such as wk ∈ [0, 1]
and

∑d
k=1 wk = 1 and sij .qk′ is the normalized value of sij .qk. The normalization

is done as follows. For negative QoS parameters, i.e., the higher the value, the
lower the quality (e.g., price), the values are normalized according to Eq. 3. For
positive QoS parameters, i.e., the higher the value, the higher the quality (e.g.,
storage size), the values are normalized according to Eq. 4.
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sij .qk′ =

⎧
⎨

⎩

q+
k − sij .qk

q+
k − q−

k

if q+k − q−
k �= 0

1 if q+k − q−
k = 0

(3)

sij .qk′ =

⎧
⎨

⎩

sij .qk−q−
k

q+
k −q−

k

if q+k − q−
k �= 0

1 if q+k − q−
k = 0

(4)

Consequently, the global score of a cloud service sij aggregating these scores
is defined as follows2:

sg(sij) = λ × sr(pi) + (1 − λ) × sq(sij) (5)

Where the parameter λ determines the trade-off between the two factors
trust and QoS.

The result of a top-k cloud services query is the ranked list of the k cloud
services with the highest global scores; we break ties arbitrarily for simplicity
and ease of presentation.

We are now ready to state the problem of top-k cloud services.

Problem Statement. Given a set of cloud service providers P =
{p1, p2, . . . , pn}, where each provider pi offers a set of cloud services Si =
{si1, si2, . . . , simi

} defined on a set of QoS parameters Q = {q1, q2, . . . , qd}, and
a requested cloud service specified by a set of weights W = {w1, w2, . . . , wd} on
Q and an emphasis factor λ. Return the top-k cloud services according to their
global scores.

Table 3. Services’ scores

sij sr(pi) sq(sij) sg(sij)

s11 0.9 0.7 0.80

s12 0.6 0.75

s21 0.8 0.75 0.775

s22 0.6 0.70

s31 0.7 0.4 0.55

s32 0.4 0.55

s33 0.4 0.55

s41 0.6 0.3 0.45

s42 0.3 0.45

s43 0.35 0.475

s51 0.4 0.8 0.6

s52 0.7 0.55

s53 0.7 0.55

2 Our model and associated algorithms can handle other scoring functions of sr(pi),
sq(sij) and sg(sij).
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3 Computing the Top-k Cloud Services

In this section, we present algorithms for computing the top-k cloud services.
Specifically, in Sect. 3.1, we present a naive but expensive approach. Then, in
Sect. 3.2, we adapt TA to our context. Finally, in Sect. 3.3, we introduce our
novel algorithm for computing efficiently the top-k cloud services.

To show the flow of these algorithms, consider in the following a top-3 query,
with emphasis factor λ = 0.5 (i.e., trust and QoS have the same emphasis), and
assume that the weights of price and storage size parameters are 0.6 and 0.4,
respectively. Table 3 shows the services of our example and their corresponding
scores. Observe that the top-3 services are s11, s21 and s12 (in the right order).

3.1 The Naive Algorithm

A naive strategy to compute the top-k cloud services is to interact with each
provider pi in P to get its different service plans Si, calculating their corre-
sponding scores, and finally returning the k services with the highest scores.
The pseudocode of this algorithm is depicted in Algorithm 1. Notice, however,
that this algorithm is time consuming since it needs to interact with all providers
and compute the scores of all services.

Algorithm 1. NA
Input : set of providers P; set of weights W; emphasis factor λ;
Output: top-k cloud services R;

1 foreach pi ∈ P do
2 Si ← get service plans from pi;
3 foreach sij ∈ Si do
4 compute sg(sij);

5 R ← compute top-k services;
6 return R;

Applying NA on our example, the scores of all services will be computed and
services s11, s21 and s12 will be returned.

3.2 The Threshold Algorithm Adaptation

Our first approach to compute the top-k cloud services is an adaptation of TA [2].
The algorithm is based on the following property.

Lemma 1. Consider a top-k cloud services query and assume that at some point
in time a set of k services are retrieved. Suppose that a provider pi has a rep-
utation score sr(pi) such as λ · sr(pi) + 1 − λ is lower or equal than the global
score of every retrieved service. Then, the services provided by pi are not part of
the top-k services.
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Proof. Let sij ∈ Si. As sq(sij) ≤ 1, it holds that sg(sij) ≤ λ · sr(pi) + 1 − λ.
Then, since λ · sr(pi) + 1 − λ is lower or equal than the global score of every
retrieved service, sg(sij) is lower or equal than the global score of every retrieved
service. Hence, sij is not part of the top-k services – recall that we break ties
arbitrarily.

Lemma 1 provides a termination condition. In fact, to exploit this property,
we maintain the list of the providers sorted in non-ascending order of their
reputation scores. Then, if the property holds for a given provider pi, it also holds
for the providers located after pi, i.e., services offered by pi and those offered by
the providers that are located after pi are not part of the top-k services.

Algorithm 2. TAA
Input : set of providers P sorted in non-ascending order of reputation score; set

of weights W; emphasis factor λ;
Output: top-k cloud services R;

1 smin
g ← 0;

2 foreach pi ∈ P do
3 t ← λ · sr(pi) + 1 − λ;

4 if |R| = k ∧ t ≤ smin
g then

5 break;
6 else
7 Si ← get service plans from pi;
8 foreach sij ∈ Si do
9 compute sg(sij);

10 if sg(sij) > smin
g then

11 if |R| = k then
12 remove the worst service from R;
13 insert sij into R;

14 update smin
g ;

15 else
16 insert sij into R;

17 return R;

Algorithm 2 presents the pseudocode of the Threshold Algorithm Adaptation
(TAA). The algorithm maintains the list of the providers sorted in non-ascending
order of the reputation scores, and uses two variables: smin

g which stores the
minimal global score of the top-k services discovered so far, and a threshold t
which determines the termination condition. Initially, smin

g is set to 0 (line 1); t
does not need to be initialized. Then, the algorithm iterates over the providers
(loop in line 2). At each step, the threshold t is updated according to the current
provider pi as avowed in Lemma 1 (line 3). If the termination condition is reached
(line 4) then the algorithm breaks out of for-loop (line 5) and returns the result
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set R (line 17); otherwise, TAA interacts with the provider pi to get its different
service plans Si (line 7), and iterates over Si (loop in line 8) for computing the
scores of each service sij ∈ Si (line 9) and updates (or fills) the current top-k
services set R (lines 10–16). If all providers are examined (i.e., the termination
condition is not reached) the result set R is returned (line 17).

Applying TAA on our example, the scores of the services provided by p1, p2,
p3 and p4 will be computed and services s11, s21 and s12 will be returned. The
scores of the services provided by p5 will not be computed as 0.4 ·0.5 + 0.5 = 0.7
is lower than sg(s12) = 0.75, i.e., the termination condition will be reached.

3.3 The Double Threshold Algorithm

Hereafter, we present a novel algorithm called Double Threshold Algorithm
(DTA) for computing the top-k cloud services. This algorithm leads to efficient
executions by minimizing the number of computed scores. In fact, the key ideas
of DTA are: (1) the use of the termination condition, previously described, and
(2) the definition of upper bounds for the global scores of the services of each
provider, so as the number of computed scores will be minimized.

Given a provider pi ∈ P and a QoS parameter qk ∈ Q. Let pi.q
�
k be the best

value of qk proposed by pi, i.e., pi.q
�
k = minsij∈Si

sij .qk for negative QoS param-
eters and pi.q

�
k = maxsij∈Si

sij .qk for positive QoS parameters. For instance, the
best values of the price and the storage size regarding provider p3 are 30 and
3000 respectively.

Then, we define the maximal attainable QoS score of any service provided
by pi as:

smax
q (pi) =

d∑

k=1

wk × pi.q
�
k′ (6)

Where wk is the weight associated to QoS parameter qk and pi.q
�
k′ is the

normalized value of pi.q
�
k. The normalization is done as follows. For negative

QoS parameters, the values are normalized according to Eq. 7. For positive QoS
parameters, the values are normalized according to Eq. 8.

pi.q
�
k′ =

⎧
⎨

⎩

q+
k − pi.q

�
k

q+
k − q−

k

if q+k − q−
k �= 0

1 if q+k − q−
k = 0

(7)

pi.q
�
k′ =

⎧
⎨

⎩

pi.q
�
k − q−

k

q+
k − q−

k

if q+k − q−
k �= 0

1 if q+k − q−
k = 0

(8)

Consequently, the maximal attainable global score of any service provided
by pi is defined as follows:

sg(pi)max = λ × sr(pi) + (1 − λ) × smax
q (pi) (9)

Table 4 shows the maximal attainable QoS scores and the maximal attainable
global scores of any service provided by each provider of our example.

DTA is based on Lemma 1 and the following key property.
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Table 4. Maximal attainable scores

pi sr(pi) smax
q (pi) smax

g (pi)

p1 0.9 0.90 0.90

p2 0.8 0.90 0.85

p3 0.7 0.60 0.65

p4 0.6 0.55 0.575

p5 0.4 1.00 0.70

Lemma 2. Consider a top-k cloud services query and suppose that at some
point in time a set of k services are retrieved. Consider a provider pi such as
the maximal attainable global score of any of its services sg(pi)max is lower or
equal than the global score of every retrieved service. Then, the services provided
by pi are not part of the top-k services.

Proof. It is apparent since k services with higher global scores are retrieved so
far – recall that we break ties arbitrarily.

Lemma 2 helps minimize the number of computed scores. In fact, if this
property holds for a given provider pi. It is unnecessary to compute the scores
of the services provided by pi.

DTA is presented in Algorithm 3. As TAA, DTA maintains the list of the
providers sorted in non-ascending order of the reputation scores. DTA, uses
three variables: smin

g which stores the minimal global score of the top-k services
discovered so far, a threshold tp (for providers) which determines the termination
condition, and a threshold ts (for services) to exploit Lemma 2. Initially, smin

g

is set to 0 (line 1); tp and ts do not need to be initialized. Then, the algorithm
iterates over the providers (loop in line 2). At each step, the threshold tp is
updated according to the current provider pi as avowed in Lemma 1 (line 3). If
the termination condition is reached (line 4) then the algorithm breaks out of
for-loop (line 5) and returns the result set R (line 21); otherwise, DTA interacts
with the provider pi to get its different service plans Si (line 7) and ts is set
to the maximal attainable global score of any service provided by pi (line 8) in
order to exploit Lemma 2. In fact, if the condition in line 9 is satisfied then Si is
discarded (line 10) since every service that belongs to Si is not part of the top-k
services according to Lemma 2; otherwise, DTA iterates over Si (loop in line 12)
for computing the scores of each service sij ∈ Si (line 13) and updates (or fills)
the current top-k services set R (lines 14–20). If all providers are examined (i.e.,
the termination condition is not reached) the result set R is returned (line 21).

Applying DTA on our example, the scores of the services provided by p1
and p2 will be computed. The scores of the services provided by p3 and p4 will
not be computed since smax

g (p3) = 0.65 and smax
g (p4) = 0.575 are lower than

sg(s12) = 0.75. Then, services s11, s21 and s12 will be returned. The scores of
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Algorithm 3. DTA
Input : set of providers P sorted in non-ascending order of reputation score; set

of weights W; emphasis factor λ;
Output: top-k cloud services R;

1 smin
g ← 0;

2 foreach pi ∈ P do
3 tp ← λ · sr(pi) + 1 − λ;

4 if |R| = k ∧ tp ≤ smin
g then

5 break;
6 else
7 Si ← get service plans from pi;
8 ts ← compute sg(pi)

max;

9 if |R| = k ∧ ts ≤ smin
g then

10 discard Si;
11 else
12 foreach sij ∈ Si do
13 compute sg(sij);

14 if sg(sij) > smin
g then

15 if |R| = k then
16 remove the worst service from R;
17 insert sij into R;

18 update smin
g ;

19 else
20 insert sij into R;

21 return R;

the services provided by p5 will not be computed as 0.4 · 0.5 + 0.5 = 0.7 is lower
than sg(s12) = 0.75, i.e., the termination condition will be reached.

4 Experimental Evaluation

In this section, we evaluate the performance of the algorithms presented in
Sect. 3.

Because real datasets are limited for evaluating extensive settings, we imple-
mented a dataset generator. The providers and their offered services are gen-
erated following three distributions: (1) correlated, where the reputation of the
providers and the QoS parameters of their offered services are positively cor-
related, i.e., a good reputation of a given provider increases the possibility of
good QoS values of its offered services; (2) independent, where the reputation of
the providers and the QoS values of their offered services are assigned indepen-
dently; and (3) anti-corretaled, where the reputation of the providers and the
QoS parameters of their offered services are negatively correlated, i.e., a good
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Table 5. Parameters and examined values

Parameter Values

Number of providers (n) 10K, 50K, 100K, 500K, 1M

Number of services per provider (m) 30, 40, 50, 60, 70

Number of QoS parameters (d) 5, 6, 7, 8, 9

Number of requested services (k) 10, 20, 30, 40, 50

Emphasis factor (λ) 0.1, 0.3, 0.5, 0.7, 0.9
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reputation of a given provider increases the possibility of bad QoS values of its
offered services.

The involved parameters and their examined values are summarized in
Table 5. In all experimental setups, we investigate the effect of one parameter,
while setting the remaining ones to their default values, shown bold in Table 5.

The algorithms were implemented in Java, and all experiments were con-
ducted on a 3.0 GHz Intel Core i7 processor with 8 GB RAM, running Windows.

Varying n: In the first experiment, we study the impact of n. The results are
shown in Fig. 1. As expected, when the n increases, the performance of all algo-
rithms deteriorates since more providers and services have to be evaluated.
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Varying m: In second experiment, we investigate the effect of m. Figure 2
shows the results of this experiment. The execution time of the three algorithms
increases with the increase of m as more services have to be evaluated.

Varying d: In the next experiment, we consider the impact of d. The results are
depicted in Fig. 3. The execution time of all algorithms increases as d increases
since more time is required to computed the QoS scores of the services.

Varying k: In this experiment, we investigate the effect of k. Figure 4 shows
the results of this experiment. As k increases, the execution time of the three
algorithms increases, since all algorithms need to retrieve more services.

Varying λ: In the last experiment, we study the effect of λ. Figure 5 depicts the
results of this experiment. Contrary to the other parameters, the performance of
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NA remains stable, while TAA and DTA run faster with higher λ, since NA need
to compute all scores, which is not affected by λ, while the termination condition
used by both TAA and DTA is sensible to λ. Indeed, when λ increases, the global
scores of services are dominated by the reputation of their providers. Thus, the
termination condition is reached earlier.

Overall, the results indicate that DTA consistently outperforms both NA and
TAA. In other words, the results clearly demonstrate that the optimization tech-
niques employed by DTA significantly save the cost of computing. In addition,
observe that in contrast to NA and TAA, DTA runs faster on anti-correlated
datasets. This is because, in anti-correlated datasets providers with good rep-
utation are more likely to offer services with bad QoS values. Therefore, the
maximal attainable global scores of their provided services will be bad. Hence,
more providers will be discarded.

5 Related Work

With the proliferation of cloud service providers and cloud services over the web,
the problem of cloud service selection has received much attention in recent years.

Optimization-based approaches are proposed. In [1], the authors develop a
dynamic programming algorithm for selecting cloud storage service providers
that maximize the amont of surviving data, subject to a fixed budget. In [15],
the authors develop a greedy algorithm for cloud service selection. The algo-
rithm is based on a B+-Tree, which indexes cloud service provider and encodes
services and user requirements. Zheng et al. propose in [18] a personalized QoS
ranking prediction framework for cloud services based on collaborative filtering.
By taking advantage of the past usage experiences of other users, their approach
identifies and aggregates the preferences between pairs of services to produce
a ranking of services. He et al. propose in [5] the use of integer programming,
skyline and greedy techniques to help SaaS developers determine the optimal
services. In [10], the authors propose a decision model for discrete dynamic
optimization problems in cloud service selection to help organization identify
appropriate cloud services by minimizing costs and risks.

Some approaches are based on simple aggregating functions. Zeng et al. pro-
pose in [17] algorithms for cloud service selection. The algorithms are based on
a utility function, which determines the trade-off between the minimized cost
and the maximized gain. In [9], the authors present a reputation-based frame-
work for SaaS service rating and selection. The proposed service rating allows
feedbacks from users. A reputation derivation model is also proposed to aggre-
gate feedbacks into a reputation value. A selection algorithm based on a ranking
function that aggregates the quality, cost, and reputation parameters is designed
to assist customers in selecting the most appropriate service. In [14], the authors
propose an effective service selection middleware for cloud environment. The
service selection is based on ELECTRE; many parameters such as, service cost,
trust, scalability, etc. are considered. Martens et al. propose in [11] a community
platform, which assists companies and users to select appropriate cloud services.
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Users have the option of evaluating individual services. The authors introduce
a model for the quality assessment of cloud services. The model measures the
distance between the cloud service and the user requirements in order to indicate
the degree of compliance with the user requirements. The degree of compliance
is computed as a weighted average function.

Other approaches use Analytic Hierarchy Process (AHP) and Analytic Net-
work Process (ANP) techniques. Godse and Mulik propose in [4] an approach for
ranking SaaS services based on AHP. The relative importance of service param-
eters is weighted by aggregating user preferences and domain experts’ opinions.
Garg et al. propose in [3] an AHP-based framework for ranking cloud service
according to a number of performance parameters defined by the Cloud Services
Measurement Initiative Consortium (CSMIC) [13]. In [8], the authors propose an
AHP-based ranking method for IaaS and SaaS services. The QoS parameters are
layered and categorized based on their influential relations. Mapping rules are
defined in order to get the best service combination of IaaS and SaaS. In [12],
the authors propose an ANP-based framework for IaaS service selection. The
framework is based on a comprehensive parameters catalogue, which differenti-
ates cloud infrastructures in a variety of dimensions: cost, benefits, opportunities
and risks.

However, as mentioned in Sect. 1, these approaches are not designed to the
real-life settings contrary to our work.

6 Conclusion

In this paper, we addressed the issue of finding top-k cloud services in the real-life
setting. We formally defined the problem and studied its characteristics. We then
presented a naive algorithm and showed how to adapt TA so that it can handle
the problem of top-k cloud services in the real-life setting, and also proposed a
novel algorithm. Our experimental evaluation demonstrated that our algorithm
produces the best execution time for various parameter and a variety of dataset
distributions.

As a future work, we intend to consider the case where the query involves
multiple users, e.g., the department heads of a university that would like to
obtain a software license of a cloud-based data analytics service.
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Abstract. The cloud provides users and companies with powerful capa-
bilities to store and process their data in third-party data centers. How-
ever, the privacy of the outsourced data is not guaranteed by the cloud
providers. One solution for protecting the user data is to encrypt it before
sending to the cloud. Then, the main problem is to evaluate user queries
over the encrypted data.

In this paper, we consider the problem of answering top-k queries over
encrypted data. We propose a novel system, called BuckTop, designed
to encrypt and outsource the user sensitive data to the cloud. BuckTop
comes with a top-k query processing algorithm that is able to process
efficiently top-k queries over the encrypted data, without decrypting the
data in the cloud data centers.

We implemented BuckTop and compared its performance for process-
ing top-k queries over encrypted data with that of the popular thresh-
old algorithm (TA) over original (plaintext) data. The results show the
effectiveness of BuckTop for outsourcing sensitive data in the cloud and
answering top-k queries.

Keywords: Cloud · Sensitive data · Top-k query

1 Introduction

The cloud allows users and companies to efficiently store and process their data
in third-party data centers. However, users typically loose physical access control
to their data. Thus, potentially sensitive data gets at risk of security attacks, e.g.,
from employees of the cloud provider. According to a recent report published by
the Cloud Security Alliance [4], security attacks are one of the main concerns
for cloud users.

One solution for protecting user sensitive data is to encrypt it before sending
to the cloud. Then, the challenge is to answer user queries over encrypted data.
A naive solution for answering queries is to retrieve the encrypted database
from the cloud to the client, decrypt it, and then evaluate the queries over
plaintext (non encrypted) data. This solution is inefficient, because it does not
take advantage of the cloud computing power for evaluating queries.

In this paper, we are interested in processing top-k queries over encrypted
data in the cloud. A top-k query allows the user to specify a number k, and the
c© Springer Nature Switzerland AG 2018
S. Hartmann et al. (Eds.): DEXA 2018, LNCS 11029, pp. 218–231, 2018.
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system returns the k tuples which are most relevant to the query. The relevance
degree of tuples to the query is determined by a scoring function.

Top-k query processing over encrypted data is critical for many applications
that outsource sensitive data. For example, consider a university that outsources
the students database in a public cloud, with non-trusted nodes. The database
is encrypted for privacy reasons. Then, an interesting top-k query over the out-
sourced encrypted data is the following: return the k students that have the
worst averages in some given courses.

There are many different approaches for processing top-k queries over plain-
text data. One of the best known approaches is TA (threshold algorithm) [8] that
works on sorted lists of attribute values. TA can find efficiently the top-k results
because of a smart strategy for deciding when to stop reading the database.
However, TA and its extensions assume that the attribute values are available
as plaintext, and not encrypted.

In this paper, we address the problem of privacy preserving top-k query pro-
cessing in clouds. We first propose a basic approach, called OPE-based, that uses
a combination of the order preserving encryption (OPE) and the FA algorithm
for privacy preserving top-k query processing.

Then, we propose a complete system, called BuckTop, that is able to effi-
ciently evaluate top-k queries over encrypted data, without decrypting them in
the cloud. BuckTop includes a top-k query processing algorithm that works on
the encrypted data, and returns a set that is proved to contain the encrypted
data corresponding to the top-k results. It also comes with an efficient filtering
algorithm that is executed in the cloud and removes most of the false positives
included in the set returned by the top-k query processing algorithm. This fil-
tering is done without needing to decrypt the data in the cloud.

We implemented BuckTop, and compared its response time over encrypted
data with a baseline algorithm and with TA over original (plaintext) data. The
experimental results show excellent performance gains for BuckTop. For exam-
ple, the results show that the response time of BuckTop over encrypted data is
close to TA over plaintext data. The results also illustrate that more than 99.9%
of the false positives can be eliminated in the cloud by BuckTop’s filtering algo-
rithm.

The rest of this paper is organized as follows. Section 2 gives the problem def-
inition. Section 3 presents our basic approach for privacy preserving top-k query
processing. Section 4 describes our BuckTop system and its algorithms. Section 5
reports performance evaluation results. Section 6 discusses related work, and
Sect. 7 concludes.

2 Problem Definition

In this paper, we address the problem of processing top-k queries over encrypted
data in the cloud.

By a top-k query, the user specifies a number k, and the system should return
the k most relevant answers. The relevance degree of the answers to the query
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is determined by a scoring function. A common method for efficient top-k query
processing is to run the algorithms over sorted lists (also called inverted lists)
[8]. Let us define them formally.

Let D be a set of n data items, then the sorted lists are m lists L1, L2, . . . , Lm,
such that each list Li contains every data item d ∈ D in the form of a pair
(id(d), si(d)) where id(d) is the identification of d and si(d) is a value that
denotes the local score (attribute value) of d in Li. The data items in each list
Li are sorted in descending order of their local scores. For example, in a relational
table, each sorted list represents a sorted column of the table where the local
score of a data item is its attribute value in that column.

Let f be a scoring function given by the user in the top-k query. For
each data item d ∈ D an overall score, denoted by ov(d), is calculated by
applying the function f on the local scores of d. Formally, we have ov(d) =
f(s1(d), s2(d), . . . , sm(d)). The result of a top-k query is the set of k elements
that have the highest overall scores among all elements of the database. Like
many previous works on top-k query processing (e.g., [8]), we assume that the
scoring function is monotonic.

The sorted lists model for top-k query processing is simple and general. For
example, suppose we want to find the top-k tuples in a relational table according
to some scoring function over its attributes. To answer such query, it is sufficient
to have a sorted (indexed) list of the values of each attribute involved in the
scoring function, and return the k tuples whose overall scores in the lists are the
highest.

For processing top-k queries over sorted lists, two modes of access are usually
used [8]. The first is sorted (sequential) access that allows us to sequentially
access the next data item in the sorted list. This access begins with the first
item in the list. The second is random access by which we look up a given data
item in the list.

In this paper, we consider the honest-but-curious adversary model for the
cloud. In this model, the adversary is inquisitive to learn the sensitive data
without introducing any modification in the data or protocols. This model is
widely used in many solutions proposed for secure processing of the different
queries [13].

Let us now formally state the problem which we address. Let D be a database,
and E(D) be its encrypted version such that each data c ∈ E(D) is the ciphertext
of a data d ∈ D, i.e., c = Enc(d) where Enc() is an encryption function. We
assume that the database E(D) is stored in one node of the cloud.

Given a number k and a scoring function f , our goal is to develop an algo-
rithm A, such that when A is executed over the database E(D), its output
contains the ciphertexts of the top-k results.

3 OPE-Based Top-k Query Processing Approach

In this section, we propose an approach, called OPE-based, that uses a com-
bination of the order preserving encryption (OPE) [1] and the FA algorithm
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[7] for privacy preserving top-k query processing. Our main contribution, called
BuckTop, is presented in the next section.

Let us first explain how the local scores are encrypted. With the OPE-based
approach, the local scores (attribute values) in the sorted lists are encrypted
using the order preserving encryption technique. We also use a determinis-
tic encryption method for encrypting the ID of data items. The deterministic
encryption generates the same ciphertexts for two equal inputs. This allows us
to do random access to the encrypted sorted lists by using the ID of data items.

After encrypting the data IDs and local scores in each sorted list, the lists
are sent to the cloud.

Let us now describe how top-k queries can be answered in the cloud over
the encrypted data. Given a top-k query Q with a scoring function f , the query
is sent to the cloud. Then, the cloud uses the FA algorithm for processing Q
as follows. It continuously performs sorted access in parallel to each sorted list,
and maintains the encrypted data IDs and their encrypted local scores in a set
Y . When there are at least k encrypted data IDs in Y such that each of them
has been seen in each of the lists, then the cloud stops doing sorted access to
the lists. Then, for each data item d involved in Y , and each list Li, the cloud
performs random access to Li to find the encrypted local scores of d in Li (if it
has not been seen yet). The cloud sends Y to the user machine which decrypts
the local scores of each item d ∈ Y , computes their overall scores, and find the
final k items with the highest overall scores.

Theorem 1. Given a top-k query with a monotonic scoring function, the OPE-
based approach returns a set that includes the encrypted top-k elements.

Proof. Let Y be the set of data items, which have been seen by top-k query
processing algorithm in some lists before it stops. Let Y ′ ⊆ Y be set of data
items that have been seen in all lists. Let d′ ∈ Y ′ be the data item whose overall
score among the data items in Y ′ is the minimum. In each list Li, let s′

i be the
real (plaintext) local score of d′ in Li.

We show that any data item d, which has not been seen by the algorithm
under sorted access, has an overall score that is less than or equal to that of d′. In
each list Li, let si be the plaintext local score of d in Li. Since d has not been seen
by the top-k query processing algorithm, and the encrypted data items in the lists
are sorted according to their initial order, we have si ≤ s′

i, for 1 ≤ i ≤ m. Since,
the scoring function f is monotonic, then we have f(s1, . . . , sm) ≤ f(s′

1, . . . , s
′
m).

Thus, the overall score of d is less than or equal to that of d′. Therefore, the set
Y contains at least k data items whose overall scores are greater than or equal
to that of the unseen data d. �

4 BuckTop System

In this section, we present our BuckTop system. We first describe the architecture
of BuckTop, and introduce our method for encrypting the data items and storing
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them in the cloud. Afterwards, we propose an algorithm for processing top-k
queries over encrypted data, and an algorithm for filtering the false positives in
the cloud.

4.1 System Architecture and Data Encryption

The architecture of BuckTop system has two main components:

– Trusted client. It is responsible for encrypting the user data, decrypting
the results and controlling the user accesses. The security keys used for data
encryption/decryption are managed by this part of the system. When a query
is issued by a user, the trusted client checks the access rights of the user. If
the user does not have the required rights to see the query results, then her
demand is rejected. Otherwise, the query is transformed to a query that can
be executed over the encrypted data.
For example, suppose we have a relation R with attributes att1, att2, . . . , attm,
and the user issues the following query:
SELECT * FROM R ORDERED BY f(att1, . . . , attm) LIMIT k;
This query is transformed to:
SELECT * FROM E(R) ORDERED BY F (E(att1), . . . , E(attm)) LIMIT k;
where E(R) and E(atti) are the encrypted name of the relation R and the
attribute atti respectively.
Note that the trusted client component should be installed in a trusted loca-
tion, e.g., the machine(s) of the person/organization that outsources the data.

– Service provider. It is installed in the cloud, and is responsible for storing
the encrypted data, executing the queries provided by the trusted client, and
returning the results. This component does not keep any security key, thus
cannot decrypt the encrypted data in the cloud.

Let us now present our approach for encrypting and outsourcing the data
to the cloud. As mentioned before, the trusted client component of BuckTop is
responsible for encrypting the user databases. Before encrypting a database, the
trusted client creates sorted lists for all important attributes, i.e., those that may
be used in the top-k queries. Then, each sorted list is partitioned into buckets.
There are several methods for partitioning a sorted list, for example dividing the
attribute domain of the list to almost equal intervals or creating buckets with
equal sizes [9]. In the current implementation of our system, we use the latter
method, i.e., we create buckets with almost the same size where the bucket size
is configurable by the system administrator.

Let b1, b2, . . . , bt be the created buckets for a sorted list Lj . Each bucket
bi has a lower bound, denoted by min(bi), and an upper bound, denoted by
max(bi). A data item d is in the bucket bi, if and only if its local score (attribute
value) in the list Lj is between the lower and upper bounds of the bucket, i.e.,
min(bi) ≤ sj(d) < max(bi).

We use two types of encryption schemes (methods) for encrypting the data
itme ids and the local scores of the sorted lists: deterministic and probabilis-
tic. With the deterministic scheme, for two equal inputs, the same ciphertexts
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(encrypted values) are generated. We use this scheme to encrypt the ID of the
data items. This allows us to have the same encrypted ID for each data item in
all sorted lists.

The probabilistic scheme is used to encrypt the local scores (attribute values)
of data items. With the probabilistic encryption, for the same plaintexts different
ciphertexts are generated, but the decryption function returns the same plaintext
for them. Thus, for example if two data items have the same local scores in a
sorted list, their encrypted scores may be different. The probabilistic encryption
is the strongest type of encryption.

After encrypting the data IDs and local scores of each list Li, the trusted
client puts them in their bucket (chosen based on the local score). Then, the
trusted client sends the buckets of each sorted list to the cloud. The buckets are
stored in the cloud according to their lower bound order. However, there is no
order for the data items inside each bucket, i.e., the place of the data items inside
each bucket is chosen randomly. This prevents the cloud to know the order of
data items inside the buckets.

4.2 Top-k Query Processing Algorithm of BuckTop

The main idea behind top-k query processing in BuckTop system is to use the
bucket boundaries to decide when to stop reading the encrypted data from the
lists.

Given a top-k query Q including a number k and a scoring function f . To
answer Q, the following top-k processing algorithm is executed by the service
provider component of BuckTop:

1. Let Y be an empty set;
2. Perform sorted access to the lists:

2.1. Read the next bucket, say bi, from each list Li (starting from the head of
the list);

2.2. For each encrypted data d contained in the bucket bi:
2.2.1. Perform random access in parallel to the other lists to find the

encrypted score and the bucket of d in all lists;
2.2.2. Compute a minimum overall score for d, denoted by min ovl(d),

by applying the scoring function on the lower bound of the buckets
that contain d in different lists. Formally, min ovl(d) = f(min(b1),
min(b2), . . . ,min(bm)), where bi is the bucket involving d in the list
Li.

2.2.3. Store the encrypted ID of d, its encrypted local scores, and its min ovl
score in the set Y.

2.3. Compute a threshold TH as follows: TH = f(min(b′
1),min(b′

2), . . . ,
min(b′

m)), where b′
i is the last bucket seen under sorted access in the

Li, for 1 < i < m. In other words, TH is computed by applying the
scoring function on the lower bounds of the last seen buckets in the lists.

2.4. If the set Y contains at least k encrypted data items having minimum
overall scores higher than TH, then stop. Otherwise, go to Step 2.1.
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When the top-k query processing algorithm stops, the set Y includes the
encrypted top-k data items (see the proof below). This set is sent to the trusted
client that decrypts its contained data items, computes the overall scores of the
items, removes the false positives (i.e., the items that are in Y but not among
the top-k results), and returns the top-k items to the user.

The following theorem shows that the output of BuckTop top-k query pro-
cessing algorithm contains the encrypted top-k data items.

Theorem 2. Given a top-k query with a monotonic scoring function f , the
output of BuckTop top-k query processing algorithm contains the encrypted top-
k results.

Proof. Let Y be the output of the BuckTop top-k query processing algorithm,
i.e., the set that contains all the encrypted data items seen under sorted access
when the algorithm ends. We show that each data item d that is not in Y
(d /∈ Y ), has an overall score that is less than or equal to the overall score of
at least k data items in Y . Let si be the local score of d in the list Li. Let
b′
i be the last bucket seen under sorted access in the list Li, i.e., when the

algorithm ends. Since d is not in Y , it has not been seen under sorted access
in the lists. Thus, its involving buckets are after the buckets seen under sorted
access by the algorithm. Therefore, we have si < min(b′

i) for 1 ≤ i ≤ m, i.e.,
the local score of d in each list Li is less than the lower bound of the last
bucket read under sorted access in Li. Since the scoring function is monotonic,
we have f(s1, . . . , sm) < f(min(b′

1),min(b′
2), . . . ,min(b′

m)) = TH. Thus, the
overall score of d is less than TH. When the algorithm stops, there are at least
k data items in Y whose minimum overall scores are greater than or equal to
TH. Thus, their overall scores are at least TH. Therefore, their overall scores are
greater than or equal to that of the data item d.

In the set Y returned by the top-k query processing algorithm of BuckTop,
in addition to the top-k results there may be false positives. Below, we propose
a filtering algorithm to eliminate most of them in the cloud, without decrypting
the data items. As shown by our experimental results, our filtering algorithm
eliminates most of the false positives (more than 99% in the different tested
datasets). This improves significantly the response time of top-k queries, because
the eliminated false positives do not need to be communicated to the trusted
client and should not be decrypted by it.

In the filtering algorithm, we use the maximum overall score, denoted by
max ovl of each data item. This score is computed by applying the scoring
function on the upper bound of the buckets involving the data item in the lists.
The algorithm proceeds as follows:

1. Let Y ′ ⊆ Y be the k data items in Y that have the highest minimum overall
scores (min ovl) among the items contained in Y .

2. Let dmin be the data item that has the lowest min ovl score in Y ′.
3. For each item d ∈ Y
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3.1. Compute the maximum overall score of d, i.e., max ovl(d), by applying
the scoring function on the upper bound of the buckets involving d in the
lists. Formally, let max(bi) be the upper bound of the bucket involving d
in the list Li. Then, max ovl(d) = f(max(b1),max(b2), . . . ,max(bm)).

3.2. If the maximum overall score of d is less than or equal to the mini-
mum overall score of dmin, then remove d from Y . In other words, if
max ovl(d) ≤ min ovl(dmin) ⇒ Y = Y − {d}.

Let us prove that the filtering algorithm works correctly. We first show that
the minimum overall score of any data item d, i.e. min ovl(d), which is computed
based on the lower bound of its buckets, is less than or equal to its overall score.
We also show that the maximum overall score of d, i.e. max ovl(d), is higher
than or equal to its overall score.

Lemma 1. Given a monotonic scoring function f , the minimum overall score
of any data item d is less than or equal to its overall score.

Proof. The minimum overall score of a data item d is calculated by applying
the scoring function on the lower bound of the buckets in which d is involved.
Let bi be the bucket that contains d in the list Li. Let si be the local score of d
in Li. Since d ∈ bi, its local score is higher than or equal to the lower bound of
bi, i.e. min(bi) ≤ si. Since f is monotonic, we have f(min(b1), . . . ,min(bm)) ≤
f(s1, . . . , sm). Therefore, the minimum overall score of d is less than or equal to
its overall score. �

Lemma 2. Given a monotonic scoring function f , the maximum overall score
of any data item d is greater than or equal to its overall score.

Proof. The proof can be done in a similar way as Lemma1. �
The following theorem shows that the filtering algorithm works correctly, i.e.,

the removed data are only false positives.

Theorem 3. Any data item removed by the filtering algorithm cannot belong to
the top-k results.

Proof. The proof can be done by considering the fact that any removed data
item d has a maximum overall score that is lower than the minimum overall
score of at least k data items. Thus, by using Lemmas 1 and 2, the overall score
of d is less than or equal to that of at least k data items. Therefore, we can
eliminate d. �

A security analysis of the BuckTop system is provided in [15].

5 Performance Evaluation

In this section, we evaluate the performance of BuckTop using synthetic and real
datasets. We first describe the experimental setup, and then report the results
of our experiments.
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5.1 Experimental Setup

We implemented our top-k query processing system and performed our tests on
real and synthetic datasets. As in some previous work on encrypted data (e.g.,
[13]), we use the Gowalla database, which is a location-based social networking
dataset collected from users locations. The database contains 6 million tuples
where each tuple represents user number, time, user geographic position, etc.
In our experiments, we are interested in the attribute time, which is the second
value in each tuple. As in [13], we decompose this attribute into 6 attributes
(year, month, day, hour, minute, second), and then create a database with the
following schema R(ID, year, month, date, hour, minute, second), where ID is the
tuple identifier. In addition to the real dataset, we have also generated random
datasets using uniform and Gaussian distributions.

We compare our solution with the two following approaches:

– OPE : this is the OPE-based solution (presented in Sect. 3) that uses the order
preserving encryption for encrypting the data scores.

– TA over plaintext data: the objective is to show the overhead of top-k query
processing by BuckTop over encrypted data compared to an efficient top-k
algorithm over plaintext data.

In our experiments, we have two versions of each database: (1) the plaintext
database used for running TA; (2) the encrypted database used for running
BuckTop and OPE.

In our performance evaluation, we study the effect of several parameters: (1)
n: the number of data items in the database; (2) m: the number of lists; (3) k: the
number of required top items; (4) bsize: the number of data items in the buckets
of BuckTop. The default value for n is 2M items. Unless otherwise specified, m
is 5, k is 50, and bsize is 20. In our tests, the default database is the synthetic
uniform database.

In the experiments, we measure the following metrics:

– Cloud top-k time: the time required by the service provider of BuckTop in
the cloud to find the set that includes the top-k results, i.e., the set Y .

– Response time: the total time elapsed between the time when the query is
sent to the cloud and the time when the k decrypted results are returned to
the user. This time includes the cloud top-k time, the filtering, and the result
post-processing in the client (e.g., decryption).

– Filtering rate: the number of false positives eliminated by the filtering algo-
rithm in the cloud.

We performed our experiments using a node with 16 GB of main memory
and Intel Core i7-5500 @ 2.40 Ghz as processor.

5.2 Effect of the Number of Data Items

In this section, we compare the performance of TA over plaintext data with
BuckTop and OPE over encrypted data, while varying the number of data items,
i.e., n.
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Figure 1 shows how cloud top-k time evolves, with increasing n, and the other
parameters set as default values described in Sect. 5.1. The cloud top-k time of
all approaches increases with n. But, OPE takes more time than the two other
approaches, because it stops deeper in lists, and thus reads more data.

Figure 2 shows the total response time of BuckTop, OPE and TA while vary-
ing n, and the other parameters set as default values. Note that the figure are is
in logarithmic scale. TA does not need to decrypt any data, so its response time
is almost the same as its cloud time. The response time of BuckTop is slightly
higher than its cloud top-k time, as in addition to top-k query processing it per-
forms the filtering in the cloud and also needs to decrypt at least k data items.
We see that the response time of OPE is much higher than its cloud top-k time.
The reason is that OPE returns to the trusted client a lot of false positives, which
should be decrypted, and removed from the final result set. But, this is not the
case for BuckTop as its filtering algorithm removes almost all the false positives
in the cloud (see the results in Sect. 5.5), thus there is no need to decrypt them.
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Table 1. False positive elimination by our filtering algorithm over different datasets

Database size (M) 1 2 3 4 5 6
Rate of eliminated false positives 100% 100% 100% 99.99% 99.99% 100%

A: over Uniform dataset
Database size (M) 1 2 3 4 5 6
Rate of eliminated false positives 99.98% 99.99% 99.99% 99.99% 99.99% 99.99%

B: over Real dataset
Database size (M) 1 2 3 4 5 6
Rate of eliminated false positives 99.94% 99.96% 99.97% 99.98% 99.98% 99.98%

C: over Gaussian dataset

5.3 Effect of k

Figure 3 shows the total response times of BuckTop with increasing k, and the
other parameters set as default values. We observe that with increasing k the
response time increases. The reason is that Bucktop needs to go deeper in the
lists to find the top-k results. In addition, increasing k augments the number
of data items that the trusted client needs to decrypt (because at least k data
items are decrypted by the trusted client).

5.4 Effect of Bucket Size

Figure 4 reports the response time of BuckTop when varying the size of buckets,
and the other parameters set as default values. We observe that the response
time increases when the bucket size increases. The reason is that the top-k query
processing algorithm of Bucktop reads more data in the lists, because the data
are read bucket by bucket. In addition, increasing the bucket size increases the
number of false positives to be removed by the filtering algorithm, and eventually
decrypting the none eliminated false positives in the client side.

5.5 Effect of the Filtering Algorithm

BuckTop’s filtering algorithm is used to eliminate/reduce the false positives in
the cloud. We study the filtering rate by increasing the size of the dataset. For
the uniform synthetic dataset, the results are shown in Table 1A. For datasets
with up to three million data items, the filtering method eliminates 100% of the
false positives, and the cloud returns to the trusted client only the k data items
that are the result of the query. For larger datasets, BuckTop filters up to 99.99%
of the false positives. By using the Gaussian dataset, we obtain the results shown
in Table 1C. We see that around 99.94% of false positives are eliminated.

Over the real dataset, Table 1B shows the filtering rate. We observe that
the filtering algorithm eliminates 99.99% of false positives. Thus, the filtering
algorithm is very efficient over all the tested datasets. However, there is a little
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difference in the filtering rate for different datasets because of the local score
distributions. For example, in the Gaussian distribution, the local scores of many
data items are very close to each other, thus the filtering rate decreases in this
dataset.

6 Related Work

In the literature, there has been some research work to process keyword queries
over encrypted data, e.g., [2,17]. For example [2,17] propose matching techniques
to search words in encrypted documents. However, the proposed techniques can-
not be used to answer top-k queries. There have been also some solutions pro-
posed for secure kNN similarity search, e.g., [3,5,6,14,19]. The problem is to find
k points in the search space that are the nearest to a given point. This problem
should not be confused with the top-k problem in which the given scoring func-
tion plays an important role, such that on the same database and with the same
k, if the user changes the scoring function, then the output may change. Thus,
the proposed solutions proposed for kNN cannot deal with the top-k problem.

The bucketization technique (i.e., creating buckets) has been used in the
literature for answering range queries over encrypted data, e.g., [9,10,16]. For
example, in [10], Hore et al. use this technique, and propose optimal solutions
for distributing the encrypted data in the buckets in order to guarantee a good
performance for range queries.

There have been access pattern attacks against range query processing meth-
ods that use the bucketization technique, e.g. [11]. The main idea is to utilize
the intersection between the results of the queries and also some background
knowledge to guess the bucket boundaries. However, these attacks are not valid
for our approach, because there is no range in our queries. In our system, the
main plaintext information in the queries is k (i.e., the number of asked top
tuples), and this information is not usually useful to violate the privacy of users.

In [12], Kim et al. propose an approach for preserving the privacy of data
access patterns during top-k query processing. In [18], Vaidya et al. propose a
privacy preserving method for top-k selection from the data shared by individuals
in a distributed system. Their objective is to avoid disclosing the data of each
node to other nodes. Thus their assumption about the nodes is different from
ours, because they can trust the node that stores the data (this is why the data
are not encrypted), but in our system we trust no node of the cloud.

Meng et al. [20] propose a solution for processing top-k queries over encrypted
data. They assume the existence of two non-colluding nodes in the cloud, one of
which can decrypt the data (using the decryption key) and execute a TA-based
algorithm. Our assumptions about the cloud are different, as we do not trust
any node of the cloud.

7 Conclusion

In this paper, we proposed a novel system, called BuckTop, designed to encrypt
sensitive data items, outsource them to a non-trusted cloud, and answer top-k
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queries. BuckTop has a top-k query processing algorithm that is executed over
encrypted data, and returns a set containing the top-k results, without decrypt-
ing the data in the cloud. It also comes with a powerful filtering algorithm that
eliminates significantly the false positives from the result set.

We validated our system through experimentation over synthetic and real
datasets. We compared its response time with OPE over encrypted data, and
with the popular TA algorithm over original (plaintext) data. The experimental
results show excellent performance gains for BuckTop. They illustrate that the
overhead of using BuckTop for top-k processing over encrypted data is very low,
because of efficient top-k processing and false positive filtering.

Acknowledgement. The research leading to these results has received funding from
the European Union’s Horizon 2020 - The EU Framework Programme for Research
and Innovation 2014–2020, under grant agreement No. 732051.
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Abstract. Index plays a very important role in cloud storage systems,
which can support efficient querying tasks for data-intensive applica-
tions. However, most of existing indexing schemes for data centers focus
on one specific topology and cannot be migrated directly to the other
networks. In this paper, based on the observation that server-centric data
center networks (DCNs) are recursively defined, we propose pattern vec-
tor, which can formulate the server-centric topologies more generally and
design R2-Tree, a scalable two-layer indexing scheme with a local R-Tree
and a global R-Tree to support multi-dimensional query. To show the effi-
ciency of R2-Tree, we start from a case study for two-dimensional data.
We use a layered global index to reduce the query scale by hierarchy and
design a method called Mutex Particle Function (MPF) to determine
the potential indexing range. MPF helps to balance the workload and
reduce routing cost greatly. Then, we extend R2-Tree indexing scheme
to handle high-dimensional data query efficiently based on the topology
feature. Finally, we demonstrate the superior performance of R2-Tree in
three typical server-centric DCNs on Amazon’s EC2 platform and vali-
date its efficiency.

Keywords: Data center network · Cloud storage system
Two-layer index

1 Introduction

Nowadays, cloud storage systems such as Google’s GFS [7], Amazon’s
Dynamo [4], Facebook’s Cassandra [2], have been widely used to support data-
intensive applications that require PB-scale or even EB-scale data storage across
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thousands of servers. However, most of the existing indexing schemes for cloud
storage systems do not support multi-dimensional query well.

To settle this problem, a load balancing two-layer indexing framework was
proposed in [18]. In two-layer indexing scheme, each server will: (1) build indexes
in its local layer for the data stored in it, and (2) maintain part of global indexing
information which is published by the other servers from their local data.

Based on the two-layer indexing framework, many efforts focus on how to
divide the potential indexing range and how to reduce the searching cost. Early
researches are mainly focused on Peer-to-Peer (P2P) networks such as RT-
CAN [17], while later researches gradually turn to data center networks (DCNs)
such as FT-INDEX [6], RT-HCN [12], etc. However, most of researches only
focus on one specific network. The design lacks expandability and usually only
suits one kind of network. Due to the differences in topology, it is always hard
to migrate a specific indexing scheme from one network to another.

In this paper, we first propose a pattern vector P to formulate the topologies.
Most of the server-centric DCN topologies are recursively defined and a high-level
structure is scaled out from several low-level structures by connecting them in a
well-defined manner. Pattern vector fully exploits the hierarchical feature of the
topology by using several parameters to represent the expanding method. The
raise of the pattern vector makes the migration of the indexing scheme feasible
and is the cornerstone of generalization.

Then we introduce a more scalable two-layer indexing scheme for the server-
centric DCNs based on P . We design a novel indexing scheme called R2-Tree
where a local R-Tree is used to support query for multi-dimensional local data
and a global R-Tree helps to speed up the query for global information. We start
from two-dimensional indexing. We reduce the query scale by hierarchy through
building global indexes with a layered structure. The hierarchical design prevents
repeated query process and achieve better storage efficiency. We also propose a
method called Mutex Particle Function (MPF) to disperse the indexing range
and balance the workload. Furthermore, we extend R2-Tree to high-dimensional
data space. Based on the hierarchy feature of the topology, we assign each level
of the topology to be responsible for one dimension of the data. To handle data
whose dimension is higher than the levels of the topology, we use Principal Com-
ponent Analysis (PCA) to reduce the dimension. Besides, we design a mapping
algorithm to select the nodes in local R-trees as public indexes and publish them
on the global R-Trees of corresponding servers.

We evaluate the performance of range and point query for R2-Tree on
Amazon’s EC2. We build two-layer indexes on 3 typical server-centric DCNs:
DCell [10], Ficonn [13], HCN [11] with both two-dimensional and high-
dimensional data and evaluate the query performance. Besides, by comparing
the query time with RT-HCN [12], we show the technical advancement of our
design.

The rest of the paper is organized as follows. The related work will be intro-
duced in Sect. 2. Section 3 introduces the pattern vector to generalize the server-
centric architectures. We elaborate the procedure of building two-layer index
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and the algorithm in Sect. 4 and depict the query processing in Sect. 5. Section 6
exhibits the experiments and the performance of our scheme. Finally, we draw
a conclusion of this paper in Sect. 7.

2 Related Work

Data Center Network. Our work aims to construct a scalable, load-balance,
and multi-dimensional two-layer indexing on data center networks (DCNs). The
underlying topologies of DCN can be roughly separated into two categories. One
is the tree-like switch-centric topologies where switches are used for intercon-
nection and routing like the Fat-Tree [1], VL2 [8], Aspen Tree [16], etc. The
other one is the server-centric topology, in which the servers are not only used to
store the data, but also perform the interconnecting and routing function. Typ-
ical server-centric topologies include data centers such as HCN [11], DCell [10],
FiConn [13], Dpillar [14], and BCube [9]. Server-centric architectures are mostly
recursively defined structures. Our work exploits this hierarchical feature and
put forward a pattern vector which can generalize the server-centric topologies.

Two-Layer Indexing. Two-layer indexing [18] maintains two index layers
called local layer and global layer to increase parallelism and support efficient
query for different data attributes. Given a query, the server will first search its
global index to locate the servers which may store the data and then forward
the query. The servers which receive the forwarded query will search their local
index to retrieve the queried data. Early two-layer index works focus on P2P
network, like RT-CAN [17] and the DBMS-like indexes [3]. Subsequently with
the rapid development of DCNs, a universal U2-Tree [15] is proposed for switch-
centric DCNs. Apart from that, RT-HCN [12] for HCN and an indexing scheme
for multi-dimensional data for BCube [5] are both efficient indexing schemes
for server-centric DCNs. Their works are mostly confined to a certain topology.
With the generalized pattern vector, we design a highly extendable and flexible
indexing scheme which can suit most of the server-centric DCNs.

3 Recursively Defined Data Center

Server-centric DCN topologies have a high degree of scalability, symmetry, and
uniformity. Most of the server-centric DCNs are recursively defined, which means
that a high-level structure grows from a fixed number of low-level structures
recursively. This kind of topologies has a favorable feature to design layered
global index. However, due to the diversity of different kinds of topologies, with
different number of Network Interface Card (NIC) ports for switches and connec-
tion methods, it is hard to migrate a specific indexing scheme from one topology
to another. Thus, finding a general pattern for server-centric topologies is of
great significance for constructing a scalable indexing scheme. We observe that
the scaling out of the topology obeys some certain rules. The ratio of avail-
able servers which are actually used for expansion is fixed for every specific
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Table 1. Symbol description

Sym. Description Sym. Description

h Total height of the structure nai Number of servers available to expand

k Port number of mini-switch nui Number of servers actually used to expand

α Expansion factor (≤1) pirj potential indexing range of server j

β Connection method denoter gi Number of STi−1 in STi (g0 = 1)

STi A level-i structure qi Position of the meta-block in level-i

mbr Minimum bounding rectangle ai Position of the server in level-i

topology. In this section, we propose a pattern vector P to as a high-level rep-
resentation to formulate the topologies. For clarity, we summarize the symbols
in Table 1. Besides, we also show in Fig. 1 some typical server-centric topologies
with the given pattern definition, including HCN [11], DCell [10], Ficonn [13]
and BCube [5].

Fig. 1. Typical server-centric topologies represented by pattern vector P

To formulate the topology completely and concisely, 4 parameters are chosen
for pattern vector. In the bottom right of Fig. 1(a), we show the basic building
block, which contains a mini-switch and 4 servers. The port number of mini-
switches which defines the basic recursive unit is denoted as k while the number
of levels in the structure which defines the total recursive layers is denoted as h.
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Thus, in Fig. 1(a), k = 4, h = 2. Besides, the recursively scaling out rule for each
topology is defined by the expansion factor and the connection method denoter,
which are denoted as α and β and are explained in Definitions 1 and 2.

Definition 1 (Expansion factor). Expansion factor α defines the utilization
rate of the servers available for expansion. It can be proved that for every server-
centric architecture, α is a constant and different server-centric architectures
will have different α, which is given by: α = �nui/nai�.
To explain, we use the symbol STi to represent the level-i structure. When STi

scales out to STi+1, we define nai as the number of available servers in STi that
could be used for expansion, while we will use part of them for real expansion, and
the total number of those used servers are defined as nui. Naturally, nai ≥ nui.
We notice that for each topology, the ratio of servers used for expansion and
available servers is surprisingly fixed. Therefore, we can denote a parameter α as
�nui/nai� to depict the expansion pattern for each topology abstractly, which
satisfies 0 < α ≤ 1. For example, in Fig. 1(a), every time when HCNi grows to
HCNi+1, α = 3

4 , since three of four available servers will be used for topology
expansion.

Definition 2 (Connection method denotor). Connection method denotor
β defines the connection method of servers, where β = 1 means the connection
type is server-to-server-via-switch, like BCube in Fig. 1(d); and β = 0 means the
connection type is server-to-server-direct, like DCell in Fig. 1(b).

Definition 3 (Pattern vector). A server-centric topology can be uniformly
represented using a Pattern vector P = 〈k, h, α, β〉, where k is the port number
of mini-switches, h is the number of the total level, α is the expansion factor and
β represents the connection method.

To practice, let us first define gi+1 as the number of STi’s in the next recursive
expansion STi+1. Obviously, gi can be calculated by: gi = α · nai−1 + 1. Then
take an eye on Fig. 1 again. Each of the subgraph exhibits a topology with
h = 2. According to their different expansion rules, we can easily calculate
the corresponding pattern vector values. Actually we can use pattern vector to

Fig. 2. A new-defined server-centric topology, P = 〈3, 3, 1
3
, 0〉



R2-Tree: An Efficient Indexing Scheme for Server-Centric DCNs 237

construct brand new server-centric topologies, which could provide similar QoS
service as other members in the server-centric family. For example in Fig. 2, for
a given Pattern Vector P = 〈3, 3, 1

3 , 0〉, we can depict a new server-centric DCN.

4 R2-Tree Construction

When we use a pattern vector to depict any server-centric topologies generally,
we can design a more scalable two-layer indexing scheme for efficient query pro-
cessing requirements. We name this novel design as R2-Tree, as it contains two
R-Trees for both local and global indexes. A local R-Tree is an ideal choice for
maintaining multi-dimensional data in each server and a global R-Tree helps
to speed up the query in the global layer. In this section, we first discuss the
hierarchical indexing design for two-dimensional data as an example, and then
extend it to multi-dimensional version.

4.1 Meta-block, Meta-server and Representatives

Hierarchical global indexes design can avoid repeated query and achieve bet-
ter storage efficiency. To build a hierarchical global layer, we divide the
two-dimensional indexing space into h + 1 levels of meta-blocks, defined as
Definition 4.

Definition 4 (Meta-block). Meta-blocks are a series of abstract blocks which
are used to stratify the global indexing range. For a topology with P = 〈k, h, α, β〉,
the meta-blocks can be divided into h + 1 levels.

For a recursively defined structure with pattern vector P = 〈k, h, α, β〉, we divide
the total range in each dimension into gh parts, where gh is the number of STh−1

in STh, and we can get gh
2 meta-blocks on level-(h-1). Similarly, we divide the

range in each dimension of meta-blocks in the second level into gh−1 parts and
for each meta-block in second level, we get gh−1

2 lower level blocks in the next
layer. In this way, we can know that in the level-0, there are

∏h
i=1 gi

2 meta-
blocks. Thus, the total number of meta-blocks is given by Eq. (1):

Total =
h∑

j=1

h∏

i=j

gi
2 + 1 (1)

Each meta-block is assigned an (h + 1)-tuple [qh, qh−1, . . . , q1, q0] in which qi
represents the meta-block’s position in level-i. For example in the left part of
Fig. 3, the level-0 block at the top left corner is assigned with [0, 0, 0], while
the level-1 block at the top left corner is assigned with [1, 0, 0]. To simplify the
partition and search progress, we merge the (h + 1)-tuple of each meta-block as
a code ID named mid, which can be calculated by Eq. (2).

midh =
h∑

i=0

⎛

⎝qi ×
i∏

j=0

gj
2

⎞

⎠ (2)
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Figure 3 is an example for such range division process. Here in the left sub-
graph, the lowest level meta-blocks are coded as 0, 1, . . . , 143 and the second
level meta-blocks are coded as 144, 153, . . . , 279. The highest level meta-block
which covers the whole space is coded as 288.

Now we need to assign some representative servers in charge of each meta-
block from a server-centric DCN structure.

Fig. 3. Mapping meta-blocks to meta-servers

Definition 5 (Meta-server). For each level-i structure STi, we can also
denote it using pattern vector as STi = 〈k, i, α, β〉, which can be an excellent
representative to manage several corresponding meta-blocks, so it is also named
as meta-server.

Respectively, the right part of Fig. 3 shows a Ficonn2 topology (P = 〈4, 2, 1
2 , 0〉).

ST2 denotes the meta-server in level-2 while ST1 is the level-1 meta-server and
ST0 is the level-0 meta-server. Figure 3 also shows a mapping scheme to map
the meta-blocks to the meta-servers. At level-i, there are gi STi’s, gi

2 meta-
blocks, so we map gi meta-blocks to each STi. For each STi, we hope to select
meta-blocks sparsely, so we formulate a Mutex Particle Function (MPF) to com-
plete this task, motivated by mutex theory in physics. The mapping function will
be described in Sect. 4.2.

Figure 3 illustrates this mapping rule thoroughly. The meta-block in the first-
layer is mapped to the first-layer meta-server (ST2). Since ST2 contains 4 second-
layer meta-server (ST1), the first-layer meta-block contains 42 second-layer meta-
blocks. Therefore each ST1 is in charge of 4 second-layer meta-blocks. Similarly,
each meta-block which is mapped to the first ST1 can be divided into 32 parts
and be mapped to the third-layer meta-server (ST0) accordingly. After mapping
meta-blocks to meta-servers, as meta-servers are just virtual nodes, we should
select physical servers as representatives of meta-servers.

Definition 6 (Meta-server representative). To achieve fast routing process,
we select the connecting servers between STi−1’s as the representatives of STi.
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Algorithm 1. Mutex Particle Function (MPF)
Input: A meta-server STi

Output: Si: a set of meta-blocks which are mapped to meta-server STi

1 Si = {∅};
2 Select a meta-block in this layer randomly and add it into Si, and set the

centroid of this mapped set as the center of this node;

3 while |Si| <
∏h

j=i+1 gj do

4 From the set of the non-mapped meta-blocks, select one whose centroid is
mostly far away from the centroid of the mapped set. Add this node into
the mapped set of this meta sever, and re-calculate the centroid of the
mapped set;

In Fig. 3, the grey nodes are the representatives for ST0 and the black nodes are
the representatives for ST1. Selecting representatives in this method guarantees
that the query in the upper layer of the meta-blocks can be forwarded to the
lower layer in the least number of hops, and more than one representative to a
meta-server guarantees a degree of redundancy.

4.2 Mutex Particle Function

Once the queries appear intensively in a certain area, all the nearby meta-blocks
will be searched at a high frequency. Therefore, a carefully designed mapping
scheme is needed to balance the request load. We propose Mutex Particle Func-
tion (MPF) in this subsection. As its name illustrated, we regard the meta-blocks
assigned to the same meta-server as the same kind of particles and like mutual
exclusion of charges, same kind of particles should be mutually exclusive with
each other. That means in two-dimensional space, the distance between the same
kind of meta-blocks should be as far as possible. Every time we select a meta-
block to a meta-server, we choose the furthest one from the centroid of the
meta-blocks which have been chosen. Algorithm 1 describes MPF in detail.

4.3 Publishing Local Tree Node

In the process of building R2-Tree indexes, we first build local R-Tree for every
server based on their local data. Then to better locate the servers, information
about local data and the corresponding server will be published to global index
layer. We first select the nodes to be published from the local R-Trees, which
starts from the second layer of local R-Tree to the end layer where all the nodes
are leaf nodes. For the layer before the end layer, we select the nodes which have
no published ancestors with a certain probability to publish. For the end layer,
we publish all the nodes whose ancestors have not been published. In this way,
we guarantee the completeness of the publishing scheme. Moreover, we make
sure that the nodes in the higher layer have a higher possibility to be published
so to reduce the storage pressure in global index layer. After the selection of
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the local R-Tree node, we find the minimum potential indexing range of a meta-
server which covers this selected node exactly. Then, we publish the local R-Tree
node to the corresponding representatives in the format of (mbr, ip), where mbr
is the minimum bounding rectangle of the local R-Tree node, and ip means the
ip address of the server where this node is stored. For each server, it will build a
global R-Tree based on all the R-Tree nodes published to it. Global R-Tree can
accelerate the speed in searching global indexes and forward the query.

4.4 Multi-dimensional Indexing Extension

The R2-Tree indexing scheme can also be extended to multi-dimensional space.
In our design, multi-dimensional indexing takes advantage of the recursive fea-
ture of the topologies to divide the hypercube space and let one level of the
structure be in charge of one dimension. In this paper, we will not discuss cir-
cumstance where the data dimension is extremely high like image data. This may
be solved by LSH-based algorithms, but it is another story from our bottleneck-
avoidable two-layer index framework.

Potential Index Range. For a server-centric DCN structure with h levels, we
can construct an (h + 1)-dimensional indexing space. If the dimension of the
data exceeds h + 1, methods like principle component analysis (PCA) can be
applied to reduce the index dimension. We assign one level of the structure to
maintain the global information in one dimension. Since the number of parts
in each dimension should be equal to the number of the lower layer structures
STi−1 in STi which is denoted by gi, we divide the indexing space in dimension i
into gi parts (k for dimension 0) and every STi−1 in this level will be responsible
for one of them. Figure 4 shows the indexing design in detail.

4.5 Potential Indexing Range

As we have mapped several meta-blocks to a meta-server, the potential index-
ing range of a meta-server is the sum of ranges of those meta-blocks. Taking
uniformly distributed data as an example, since there are

∏h
j=i+1 gj

2 meta-
blocks in level-i, the two-dimension boundary ([l0, u0], [l1, u1]) can be divided
into

∏h
j=i+1 gj segments for each dimension in level-i. The range of the highest

level meta-block is pirh = ([l0, u0], [l1, u1]). The range of meta-blocks for each
dimension is given by:

piri0 =
[

li0 + (qi mod gi+1) × ui0 − li0
gi+1

, li0 + (qi mod gi+1 + 1) × ui0 − li0
gi+1

]

piri1 =
[

li1 + (�qi ÷ gi+1�) × ui1 − li1
gi+1

, li1 + (�qi ÷ gi+1� + 1) × ui1 − li1
gi+1

]

(3)
In Eq. (3), the subscript of pir means the level of the meta-block and 0 means
the first dimension while 1 means the second dimension. ui and li represent
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the boundary of the higher level meta-block which just covers it, qi means the
position of meta-block in level-i and i satisfies 0 ≤ i < h.

If data is not uniformly distributed, we use the Piecewise Mapping Function
(PMF) [19] method to balance the skew data. The goal of PMF is partitioning
the data evenly into some buckets. We use the cumulative mapping to evenly
divide the data into buckets by using hash function.

Fig. 4. Potential indexing range of HCN2 (Color figure online)

In HCN2, with P = 〈4, 2, 3
4 , 0〉 which is shown in Fig. 4, the potential index-

ing range of each server is represented by the purple cuboid. The servers in the
level-0 structure will be combined together and ST0 will manage the potential
indexing range represented by the blue long cuboid. The level-1 structure ST1

consists of 4 ST0’s and will manage the green cuboid consisting of 4 blue cuboids.
At the highest level, the data space it manages will be the whole red cuboid.

Suppose the indexing space is bounded by B = (B0, B1, . . . , Bh), and Bi is
[li, li + wi], i ∈ [0, h], the potential range of server s is pir(s). Similar to meta-
blocks, each meta-server is also assigned an (h+1)-tuple [ah, ah−1, . . . , a1, a0] in
which ai represents the meta-block’s position in level-i.

Lemma 1. For a server s which is represented by tuple [ah, ah−1, ah−2, . . . , a0],
its potential indexing range of pir is:

pir (s) = pir ([ah, ah−1, . . . , a0])

=
([

l0 + a0
w0

k
, l0 + (a0 + 1)

w0

k

]
, . . . ,

[

lh + ah
wh

gh
, lh + (ah + 1)

wh

gh

])

(4)

Publishing Scheme. Each server builds its own local R-tree to manage the
data stored in it. Meanwhile, every server will select a set of nodes Nk =
{N1

k , N2
k , . . . , Nn

k } from its local R-tree to publish them into the global index.
Similar to the two-dimension situation, the format of the published R-tree node
is (mbr, ip). ip records the physical address of server and mbr represents the
minimum bounding rectangle of the R-tree node. For each selected R-tree node,
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we will use center and radius as the criteria for mapping. We set a threshold
named Rmax, to compare with the given radius. Given an R-tree node to be
published, we first calculate the center and radius. Then, the node will be pub-
lished to the server whose potential index range covers the center. If radius is
larger than Rmax, the node will be published to those servers whose potential
indexing range intersects with the R-tree node range.

5 Query Processing

5.1 Query in Two-Dimensional Space

Point Query. The point query is processed in two steps: (1) The first step
happens among the meta-servers to locate the servers which may possibly store
the data. The query point Q(x0, x1) will be first forwarded to the nearest level-
h level representative which represents the largest meta-block. Then the query
will be forwarded to level-(h-1) representative with corresponding meta-block
whose potential indexing range covers Q. The process goes on until the query is
forwarded to a level-0 structure. All the representatives which receive the query
will search their global R-Trees and forward the query to local servers. (2) In
the second step, the servers will search their local R-Trees and return the result.
In all, only (h + 1) representatives will be searched in total.

Figure 5 shows a point query example in the global R-Tree on the same
topology shown in Fig. 3. Traditionally, we need to perform the query in all
servers in the DCN. However, if the hierarchical global indexes are used, we only
need to perform query in much fewer servers. For example, for the point query
represented by the purple node, the querying process will go through the global
index from Level2 to Level0 with 3 representatives, and then the query will be
forwarded to the servers who possibly store the result. Therefore, from this case,
we can see the effectiveness of this indexing scheme.

Fig. 5. An example of the point query process in R2-Tree

Range Query. The range query is similar to point query which is also a two-
step processing. Given a range query R([ld0 , ud0 ], [ld1 , ud1 ]), as the same as the
processing in point query, we begin query from the largest meta-server to the
smallest meta-server which can just cover the range R and then the forwarded
servers will search their local R-Trees to find the data. The only difference is
that in point query the smallest meta-server must be a physical server.
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5.2 Query in High-Dimensional Space

Point Query. The point query is a two-step processing. Given a point query
Q(x0, x1, x2, . . . , xd), we first create a super-sphere centered at Q with radius
Rmax. We search all the servers whose potential indexing range intersects with
the super-sphere. To increase query speed, we forward the query in parallel. After
getting the R-tree nodes which cover the point query, we forward the query to
the servers which contain these nodes locally.

Range Query. The range query R([ld0 , ud0 ], . . . , [ldh
, udh

]) will be sent to all
the servers whose potential indexing range intersects with range query R. These
servers will search their global indexes and find the corresponding R-Tree nodes.
The query will be forwarded to those local servers. The cost of range query is
less than directly broadcasting to all the servers.

6 Experiments

To validate R2-Tree indexing scheme, we choose three existing server-centric
data center network topologies including DCell (P = 〈4, 2, 1, 0〉), Ficonn
(P = 〈4, 2, 1

2 , 0〉), HCN (P = 〈4, 2, 3
4 , 0〉) to test the performance of our indexing

scheme with them on the platform of Amazon’s EC2. We implement our R2-Tree
in Python 2.7.9. We use in total 64 instance computers. Each of them has two-
core 2.4 GHz Intel Xeon E5-2676v3 processor, 8 GB memory and 8 GB EBS stor-
age. The bandwidth is 100 Mbps. The scale of the DCN topologies ranges from
level-0 to level-2. The experiments involve 3 two-dimensional datasets: (1) Uni-
form 2d which follows uniform distribution, (2) Zipfian 2d which follows zipfian
distribution, and (3) Hypsogr which is a real dataset obtained from the R-Tree
Portal1 and one uniform three-dimensional datasets. The detailed information
of our experiments is shown in Table 2.

Table 2. Experiment settings

Parameter Values

DCN topologies DCell, Ficonn, HCN

Structure level 0, 1, 2

Dimensionality 2, 3

Distribution Uniform, Zipfian, Real

Uniform datasets Uniform 2d, Uniform 3d

Skew datasets Zipfian 2d, Hypsogr

Query method Point query, range query, centralized point query

Our experiments are conducted as follows. For each DCN topology, we gen-
erate 2, 000, 000 data points for each server. We execute 500 point queries and
1 http://chorochronos.datastories.org/?q=node/21.

http://chorochronos.datastories.org/?q=node/21


244 Y. Lin et al.

100 range queries and record the total query time as the metric for each dataset.
Additionally, to test the effectiveness of the Mutex Particle Function, we also per-
form centralized 500 point queries where all the query are confined to a certain
area of the whole data space. By comparing the query time with RT-HCN [12],
we show the superiority of our global R-Tree design. Besides, by counting the
hop number for each point query and the average number of global indexes, we
explain a trade-off between the query time and the storage efficiency.

In R2-Tree, we propose hierarchical global indexes for two-dimensional data
and divide the potential indexing range evenly for three-dimensional data. In
Fig. 6, we show the point query performance of R2-Tree in three different
datasets. Since it is impossible to manipulate hundreds of thousands of servers in
the experiments and a certain number of servers will be representative enough,
the server number of DCell scales from 4 to 20, while the server number of
Ficonn scales from 4 to 12 and 12 to 48, and for HCN, the server number
scales from 4 to 16 and from 16 to 64. The two parallel columns represent the
query time for the normal point query and the centralized point query respec-
tively when the server number and the type of dataset are fixed. Based on the
result that the query time for the centralized and non-centralized point query is
close to each other when the other parameters are fixed, we show that the Mutex
Particle Function balances the request load effectively.

Fig. 6. Point query performance

We observe from Fig. 6 that the query time increases as the DCN structure
scales out. By counting the global indexes stored in representatives in different
levels, we notice an unbalance of the global information. The representatives in
higher level tend to store more global indexes because they have larger potential
indexing range. Since most of the chosen-to-published R-Tree nodes are from
upper layer, the minimum bounding boxes are larger and will be more likely
to be mapped to the meta-blocks which have larger potential indexing range.
Nonetheless, in this way, we achieve higher storage efficiency since we do not
need to store a lot of global information in each server. Besides, the global
R-Tree helps to alleviate this bottleneck to a great extent. Among the three
different datasets, we can see that the query time is the shortest for Uniform
dataset and longest for Zipfian dataset.
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Fig. 7. Range query performance

The range query in Fig. 7 also shows a same tendency of query time increase
as the structure scales out. From the comparison of query time between different
topologies, we find that for the same level number and the same kind of dataset,
DCell performs the best while Ficonn performs the worst. We calculate the
number of hops among the servers for a point query to explain the inner reason.
In Fig. 8, we can see that the number of hops increases as the structure scales
out. For the same level structure, the number of hops for DCell is the least and
the hop number for Ficonn is the largest. This can be explained by expansion
factor α easily. Figure 9 explains the trade-off between query time and storage
space clearly. Larger α means that the connection between servers is more com-
pact, and the number of physical hops will reduce and therefore achieve better
time efficiency. However, the store efficiency will decrease correspondingly since
each server stores more global information in different levels. By Comparing the
query hop numbers for 2D and 3D data in Fig. 8, we can see the efficiency for
the hierarchical global indexing design. Since the potential indexing range is of
different size, we only publish the tree node to the just-cover meta-block. This
mechanism avoids the repeated query effectively, and therefore reduce the total
query time. Besides, in Fig. 10, we compare the query time of R2-Tree to RT-
HCN [12]. Global R-Tree accelerates the global query and PMF helps to balance
the request load. Therefore, R2-Tree shows superiority over RT-HCN [12].

Fig. 8. Hop number Fig. 9. Trade-off Fig. 10. Comparisons
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7 Conclusion

In this paper, we propose an indexing scheme named R2-Tree for multidimen-
sional query processing which can suit most of the server-centric data center
networks. To better formulate the topology of server-centric DCNs, we propose
a pattern vector P through analyzing the recursively-defined feature of these
networks. Based on that, we present a layered mapping method to reduce query
scale by hierarchy. To balance the workload, we propose a method called Mutex
Particle Function to distribute the potential indexing range. We prove theoreti-
cally that R2-Tree can reduce both query cost and storage cost. Besides, we take
three typical server-centric DCNs as examples and build indexes on them based
on Amazon’s EC2 platform, which also validates the efficiency of R2-Tree.
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DBMS-like indexes in the cloud. Proc. VLDB Endow. 4(11), 702–713 (2011)

4. Decandia, G., et al.: Dynamo: Amazon’s highly available key-value store. In:
SOGOPS, pp. 205–220 (2007)

5. Gao, L., Zhang, Y., Gao, X., Chen, G.: Indexing multi-dimensional data in modular
data centers. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H.
(eds.) DEXA 2015. LNCS, vol. 9262, pp. 304–319. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-22852-5 26

6. Gao, X., Li, B., Chen, Z., Yin, M.: FT-INDEX: a distributed indexing scheme for
switch-centric cloud storage system. In: ICC, pp. 301–306 (2015)

7. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. In: SOSP, pp.
29–43 (2003)

8. Greenberg, A., et al.: VL2: a scalable and flexible data center network. In: ACM
SIGCOMM Computer Communication Review, pp. 51–62 (2009)

9. Guo, C., et al.: BCube: a high performance, server-centric network architecture
for modular data centers. ACM SIGCOMM Comput. Commun. Rev. 39(4), 63–74
(2009)

10. Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: DCell: a scalable and fault-
tolerant network structure for data centers. ACM SIGCOMM Comput. Commun.
Rev. 38(4), 75–86 (2008)

11. Guo, D., Chen, T., Li, D., Li, M., Liu, Y., Chen, G.: Expandable and cost-effective
network structures for data centers using dual-port servers. IEEE Trans. Comput.
62(7), 1303–1317 (2013)

12. Hong, Y., Tang, Q., Gao, X., Yao, B., Chen, G., Tang, S.: Efficient R-tree based
indexing scheme for server-centric cloud storage system. IEEE Trans. Knowl. Data
Eng. 28(6), 1503–1517 (2016)

13. Li, D., Guo, C., Wu, H., Tan, K.: FiConn: using backup port for server intercon-
nection in data centers. In: INFOCOM, pp. 2276–2285 (2009)

https://doi.org/10.1007/978-3-319-22852-5_26
https://doi.org/10.1007/978-3-319-22852-5_26


R2-Tree: An Efficient Indexing Scheme for Server-Centric DCNs 247

14. Liao, Y., Yin, D., Gao, L.: DPillar: scalable dual-port server interconnection for
data center networks. In: ICCCN, pp. 1–6 (2014)

15. Liu, Y., Gao, X., Chen, G.: A universal distributed indexing scheme for data centers
with tree-like topologies. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R.,
Decker, H. (eds.) DEXA 2015. LNCS, vol. 9261, pp. 481–496. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-22849-5 33

16. Walraed-Sullivan, M., Vahdat, A., Marzullo, K.: Aspen trees: balancing data center
fault tolerance, scalability and cost. In: CoNEXT, pp. 85–96 (2013)

17. Wang, J., Wu, S., Gao, H., Li, J., Ooi, B.C.: Indexing multi-dimensional data in a
cloud system. In: SIGMOD, pp. 591–602 (2010)

18. Wu, S., Wu, K.L.: An indexing framework for efficient retrieval on the cloud. IEEE
Comput. Soc. Data Eng. Bull. 32(1), 75–82 (2009)

19. Zhang, R., Qi, J., Stradling, M., Huang, J.: Towards a painless index for spatial
objects. ACM Trans. Database Syst. 39(3), 19 (2014)

https://doi.org/10.1007/978-3-319-22849-5_33


Time Series Data



Monitoring Range Motif on Streaming
Time-Series

Shinya Kato(B), Daichi Amagata, Shunya Nishio, and Takahiro Hara

Department of Multimedia Engineering Graduate School of Information Science
and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, Japan

kato.shinya@ist.osaka-u.ac.jp

Abstract. Recent IoT-based applications generate time-series in a
streaming fashion, and they often require techniques that enable environ-
mental monitoring and event detection from generated time-series. Dis-
covering a range motif, which is a subsequence that repetitively appears
the most in a time-series, is a promising approach for satisfying such a
requirement. This paper tackles the problem of monitoring a range motif
of a streaming time-series under a count-based sliding-window setting.
Whenever a window slides, a new subsequence is generated and the old-
est subsequence is removed. A straightforward solution for monitoring a
range motif is to scan all subsequences in the window while computing
their occurring counts measured by a similarity function. Because the
main bottleneck is similarity computation, this solution is not efficient.
We therefore propose an efficient algorithm, namely SRMM. SRMM is
simple and its time complexity basically depends only on the occurring
counts of the removed and generated subsequences. Our experiments
using four real datasets demonstrate that SRMM scales well and shows
better performance than a baseline.

Keywords: Streaming time-series · Motif monitoring

1 Introduction

Motif discovery is one of the most important tools for analyzing time-series [20].
Given a time-series t, its range motif is a subsequence that appears the most in t,
i.e., a range motif is a frequently occurring subsequence [6,17]. As an example,
in Fig. 1, we illustrate subsequences (red ones) which are repetitively appear
in a streaming time-series of greenhouse gas emission [12], and the left most
red subsequence is the current range motif. (We measure the similarity between
subsequences by z-normalized Euclidean distance, thus the value scale in this
figure is not a problem.) In this paper, we address the problem of monitoring a
range motif (motif in short) of a streaming time-series, because recent IoT-based
applications generate time-series in a streaming fashion [13].

Application Examples. It is not hard to see that this problem has a wide
range of applications. For example, assume that a sensor device measures a sen-
sor value and sends it to a server periodically, which constitutes a streaming
c© Springer Nature Switzerland AG 2018
S. Hartmann et al. (Eds.): DEXA 2018, LNCS 11029, pp. 251–266, 2018.
https://doi.org/10.1007/978-3-319-98809-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98809-2_16&domain=pdf
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Fig. 1. An example of subsequences (red ones) which are repetitively appear and dis-
covered in a streaming time-series of greenhouse gas emission [12]. We measure the
similarity between subsequences by z-normalized Euclidean distance (that corresponds
to Pearson correlation), and the current motif is the left most red subsequence. (Color
figure online)

time-series. Assume further that a domain expert monitors the time-series, and
if its motif changes as time passes, he/she can analyze some underlying phe-
nomenon and form a hypothesis, e.g., sensor values have correlation with not
only environmental but also temporal factors. Another example is event detec-
tion. Consider that we monitor the current motif and store it every minute. If the
current motif is very different from the one obtained at the same time yesterday
or we have a significant difference between the current and the previous motifs,
it can be expected that there is an anomaly event.

Technical Overview. The above applications require monitoring the current
motif in real-time while considering only recent data. We therefore employ a
count-based sliding window setting, which considers only the most recent w data,
and propose an efficient algorithm, namely SRMM (Streaming Range Motif Mon-
itoring). When a given window slides, a new data is inserted into the window
and the oldest data is removed from the window. That is, a new subsequence sn,
which contains the new data, is generated and the oldest one se, which contains
the oldest data, is removed. A simple approach for updating the current motif,
which is used as a baseline algorithm in this paper, is to scan all subsequences
while comparing them with sn and se. This can obtain the exact frequency
count (the number of other subsequences that are similar to sn and/or se) but
incurs an expensive computational cost. SRMM avoids unnecessary computation
by focusing on subsequences that can be the motif. The main idea employed in
SRMM is to leverage PAA (Piecewise Aggregate Approximation) [7] and kd-tree
[2]. This idea brings a technique which upper-bounds the frequency count of sn

with a light-weight cost, and enables pruning the exact frequency count com-
putation. Even if we cannot prune the computation, we do not need to scan all
subsequences. Actually, the upper-bounding collects a candidate of subsequences
that may be similar to sn. SRMM therefore needs to compare sn only with the
candidate subsequences.
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Contributions. We summarize our contributions below.

– We address, for the first time, the problem of range motif (a subsequence that
repetitively appears the most) monitoring on a streaming time-series under
a count-based sliding window setting.

– We propose SRMM to efficiently update the current motif when a given win-
dow slides. SRMM is simple and efficient, and its time complexity is basically
O(log(w − l) + mn + me), where l is a given subsequence size and mn and
me are the upper-bound frequency counts of new and removed subsequences,
respectively.

– We conduct experiments using four real datasets, and the results demonstrate
that SRMM scales well and the performance of SRMM is better than that of
the baseline.

Organization. We provide a preliminary in Sect. 2 and review some related
works in Sect. 3. We present SRMM in Sect. 4 and introduce our experimental
results in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Preliminary

2.1 Problem Definition

A streaming time-series t is an ordered set of real values, which is described
as t = (t[1], t[2], ...), where t[i] is a real value. Because we are interested in an
underlying pattern in t, we below define subsequence of t.

Definition 1 (Subsequence). Given t and a length l, a subsequence of t, which
starts at p is sp = (t[p], t[p + 1], ..., t[p + l − 1]).

For ease of presentation, let sp[x] be the x-th value in sp. To observe how many
similar subsequences sp have in t (i.e., the occurring count of sp), we use Pearson
correlation, which is a basic function to measure the similarity between time-
series [10,15].

Definition 2 (Pearson correlation). Given two subsequences sp and sq

with length l, their Pearson correlation ρ(sp, sq) is

ρ(sp, sq) = 1 − ‖ŝp, ŝq‖2
2l

. (1)

We have ρ(sp, sq) ∈ [−1, 1]. Note that ‖ŝp, ŝq‖ computes the Euclidean distance
between ŝp and ŝq, and

ŝp[i] =
sp[i] − μ(sp)

σ(sp)
,

where μ(sp) and σ(sp) are the average and the variation of (sp[1], sp[2], ..., sp[l]),
respectively. Now we see that ŝp is the z-normalized version of sp, and Pearson
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correlation can be converted to the z-normalized Euclidean distance d(·, ·) =
‖·, ·‖, i.e., from Eq. (1),

d(ŝp, ŝq) =
√

2l(1 − ρ(sp, sq)). (2)

It is trivial that the time complexity of computing Pearson correlation is O(l).
We next define subsequences which are similar to sp.

Definition 3 (Similar subsequence). Given sp, sq, and a threshold θ, we
say that sq (sp) is similar to sp (sq) if

ρ(sp, sq) ≥ θ ⇔ d(ŝp, ŝq) ≤
√

2l(1 − θ). (3)

It can be easily seen that sp and sp+1 can be similar to each other, but such a pair
is not interesting to obtain a meaningful result. Such overlapping subsequences
are denoted by trivial matched subsequences [5,17].

Definition 4 (Trivial match). Given sp, its trivial matched subsequences sq

satisfy that p − l + 1 ≤ q ≤ p + l − 1. Sp denotes the set of trivial matched
subsequences of sp.

Now we consider the occurring count of sp, score(sp) in other words.

Definition 5 (Score). Given t, l, and θ, the score of a subsequence sp ∈ t is
defined as:

score(sp) = |{sq | sq ∈ t, ρ(sp, sq) ≥ θ, sq /∈ Sp}|. (4)

Here, many applications including the ones in Sect. 1 care only recent data
[8,14]. Hence, as with existing works that study streaming time-series [4,9], we
employ a count-based sliding window setting, which monitors only the most
recent w values. That is, a streaming time-series t in the window is represented
as t = (t[i], t[i + 1], ..., t[i + w − 1]) where t[i + w − 1]) is the newest value, and
there are (w − l + 1) subsequences in the window when l is given. When the
window slides, we have a new subsequence which consists of the most recent l
values. At the same time, the oldest value is removed from the window, so the
oldest subsequence expires. We would like to monitor the subsequence of t with
the maximum score in this setting. Let S be the set of all subsequences in a
given widow with size w, and formally, our problem is:

Definition 6 (Range motif monitoring problem). Given t, l, θ, and w,
the problem in this paper is to monitor the current range motif s∗ that satisfies

s∗ = arg max
s∈S

score(s).

If the context is clear, range motif is called motif simply.
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2.2 Baseline Algorithm

Because this is the first work that tackles this problem, we first provide a naive
solution that can monitor the exact result. Section 1 has already introduced
the solution, which updates the scores of all subsequences in the window by
comparing them with the expired and new subsequences, whenever the window
slides. As mentioned earlier, there are (w − l + 1) subsequences in the window
and each score computation requires O(l) time. Therefore, the time complexity
of this solution is O((w − l)l).

We can intuitively see that, for a subsequence, comparing it with all subse-
quences incurs redundant computation cost, because the subsequence is inter-
ested only in its similar subsequences. To remove such a redundant cost, we
propose a technique that efficiently identifies subsequences whose scores need to
be updated.

3 Related Work

We introduce existing works that tackle the problem of motif discovery. It is
important to note that the term motif is sometimes used in different meaning,
as claimed in [6]. The first definition of motif is the same as that in this paper. On
the other hand, some works, e.g., [10,14,15], use motif as the closest subsequence
pair in a time-series. In this section, if referred literatures study the problem of
discovering the closest subsequence pair, we say that it is pair-motif discovery
problem.

3.1 Pair-Motif Discovery Problem

This problem suffers from its quadratic time complexity w.r.t. the number of sub-
sequences, thus it is not trivial to make exact algorithms scale well. Literature
[15] first proposed an exact algorithm MK that exploits triangle inequality. MK
selects some subsequences as reference points, and utilize them to obtain upper-
bound distances when it compares a given subsequence and another one. How-
ever, its time complexity is still quadratic. To scale better, [10] proposed Quick-
Motif algorithm. Quick-Motif builds an subsequence index in online to reduce
the number of subsequence comparisons. Its experiments show that Quick-Motif
significantly outperforms MK. Recently, an offline index approach, called Matrix
Profile, was proposed in [21,22]. For all subsequences, this index maintains the
distances to other subsequences with the largest similarity. This index makes an
online pair-motif discovery algorithm fast [22].

The above studies consider static time-series. The first attempt to monitor
the pair-motif is performed in [14]. For each subsequence, the algorithm proposed
in [14] maintains its nearest neighbor and reverse nearest neighbor subsequences
to deal with the pair-motif update. Literature [8] has optimized a data structure
for pair-motif monitoring and the algorithm proposed in [8] outperforms the
algorithm of [14].
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3.2 Range-Motif Discovery Problem

Patel et al. proposed an approximate algorithm to discover a range motif effi-
ciently [17]. In this algorithm, each subsequence is converted to a string sequence
by SAX [11]. Similar to this algorithm, Castro and Azevedo proposed a range
motif discovering algorithm [3] that employs iSAX [19]. Both SAX and iSAX
approximate a given time-series, thus the discovered motif is not guaranteed to
be exact. Some probabilistic algorithms are proposed in [5,20], and again, this
approach does not guarantee the correctness. Literature [6] proposed a learning-
based motif discovery algorithm. This algorithm requires pre-processing step,
thus is hard to be applied in streaming setting. The above literatures consider
only a static time-series.

Although [1] considers a streaming time-series, it aims to discover a rare sub-
sequence that has some similar subsequences but with some very low probability.
The algorithm proposed in [1] also employs approximate approaches (SAX and
Bloom filter). [16] also considers a streaming time-series, but this literature con-
siders a distance between subsequences under SAX representation. As can be
seen above, the existing works basically consider approximate solutions. In this
paper, we provide an exact solution for efficient motif monitoring.

4 SRMM: Streaming Range Motif Monitoring

We first note that the score of each subsequence in the window increases at
most one when the window slides, which can be seen from Definition 5 and
the property of count-based sliding window. This observation suggests that the
current motif does not change frequently and the score of the new subsequence
often does not reach score(s∗).

Let sn be the new subsequence, and if we can know that score(sn) <
score(s∗) with a light-weight cost, we can efficiently monitor the exact motif. To
achieve this, we propose a technique that obtains an upper-bound of score(sn)
efficiently and prunes unnecessary exact score computation. We introduce this
technique in Sect. 4.1. Recall that the oldest subsequence is removed from the
window, which makes the scores of some subsequences decrease by one. This
may affect s∗. SRMM can efficiently identify the subsequences whose scores may
decrease, which is described in Sect. 4.2. Finally, We elaborate the overall algo-
rithm of SRMM and provide its time complexity in Sect. 4.3.

4.1 Upper-Bounding

First, we obtain an upper-bound of Pearson correlation between sn and s ∈ S,
which corresponds to a lower-bound of the z-normalized distance (see Eq. (2)).
We use PAA [7], a dimensionality reduction algorithm, to achieve this. Recall
that a subsequence sp is represented as (sp[1], sp[2], ..., sp[l]). This implies that
it can be regarded as a point on an l-dimensional space R

l, i.e., a subsequence
is an l-dimensional point.
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Given a dimensionality φ < l, PAA transforms an l-dimensional point into
a φ-dimensional point. Let ŝφ

p be the transformed ŝp. Each value of ŝφ
p is

described as

ŝφ
p [i] =

φ

l

l
φ (i+1)−1∑

j= l
φ i

ŝp[j].

PAA has the following lemma.

Lemma 1 [7]. Given two subsequences ŝp and ŝq, we have
√

l

φ
dist(ŝφ

p , ŝφ
q ) ≤ dist(ŝp, ŝq). (5)

From PAA, we can obtain a lower-bound of the Euclidean distance between
ŝp and ŝq, i.e., an upper-bound of ρ(sp, sq) in O(φ) time. If

√
l
φdist(ŝφ

p , ŝφ
q ) >√

2l(1 − θ), sq is not similar to sp (see Definition 3), thus we can safely prune
the exact distance computation between ŝp and ŝq. Given ŝn, an upper-bound

of score(sn) can be obtained if we compute
√

l
φdist(ŝφ

n, ŝφ
p ) for ∀sp ∈ S\Sn.

However, this approach is still expensive, incurs O(φ(w − l)) time, and sn is

interested only in sp such that
√

l
φdist(ŝφ

n, ŝφ
p ) ≤ √

2l(1 − θ). To obtain such sp

efficiently, we employ a kd-tree [2], which is a binary tree for an arbitrary dimen-
sional space. The behind idea of employing a kd-tree is that kd-tree supports
efficient data insertion, deletion, and range query processing.

Assume that all transformed subsequences in the window are indexed by a kd-
tree. Now we see that sp, such that

√
l
φdist(ŝφ

n, ŝφ
p ) ≤ √

2l(1 − θ), is obtained

by a range query where the query point is ŝφ
n and the distance threshold is√

2φ(1 − θ). Then we have the following theorem.

Theorem 1. Assume that we have a new subsequence sn, a distance threshold√
2l(1 − θ), and a kd-tree that maintains all subsequences, except the l most

recent ones, which are transformed by PAA. A range query on the kd-tree, where
its query point and a distance threshold respectively are ŝφ

n and
√

2φ(1 − θ),
returns Sin

n which is a set of transformed subsequences ŝφ
p such that dist(ŝφ

n, ŝφ
p ) ≤√

2φ(1 − θ). Let |Sin
n | = mn, and we have mn ≥ score(sn).

Proof. We want sp that satisfies
√

l
φdist(ŝφ

n, ŝφ
p ) ≤ √

2l(1 − θ), which can be

seen from Lemma 1. This inequality derives dist(ŝφ
n, ŝφ

p ) ≤ √
2φ(1 − θ). Next, the

l most recent subsequences can be trivial matched subsequences of sn, thereby
they are not necessary to compute score(sn). Theorem 1 therefore holds. �

Example 1. Figure 2 illustrates a set of transformed subsequences where φ = 2,
i.e., they are 2-dimensional points. To obtain an upper-bound score of sn, we
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Fig. 2. An example of upper-bounding of score(sn), where φ = 2. The red point is
sn and mn = 3, since there are three points within the circle centered at ŝφ

n with the
radius

√
2φ(1 − θ). (Color figure online)

set
√

2φ(1 − θ) as a distance threshold and execute a range query centered at
ŝφ

n (the red point). As a query answer, we have three (black) points, which are
efficiently retrieved by using a kd-tree, and we have mn = 3.

Theorem 1 provides the following corollary.

Corollary 1. If score(s) ≥ mn where s ∈ S\{sn}, sn cannot be the current
motif, thus we can safely prune the exact computation of score(sn).

Due to Theorem 1, we do not index the l most recent subsequences by a kd-
tree. Here, the time complexity of a range query on a kd-tree is O(log n + m)
where n and m are the cardinalities of data in the kd-tree and of data satisfying
the distance threshold. The time complexity of the upper-bounding is hence
O(log(w − l) + mn), and we have (log(w − l) + mn) � w.

4.2 Identifying the Subsequences Whose Scores Can Decrease

When the window slides, the oldest subsequence expires, which makes the scores
of some subsequences decrease. One may consider that a range query centered at
the expired subsequence can solve this score updates. However, such a duplicate
evaluation is not efficient. We overcome this problem by utilizing two lists for
each subsequence sp, similar list SLp and possible similar list PLp.

Definition 7 (Similar list). The similar list of sp, SLp, is a set of tuples
of subsequence identifier q and ρ(sp, sq), i.e., SLp = {〈q, ρ(sp, sq)〉 | sq ∈
S\Sp, ρ(sp, sq) ≥ θ}.
Definition 8 (Possible similar list). The possible similar list of sp, PLp,
is a set of identifiers of subsequences sq such that dist(ŝφ

p , ŝφ
q ) ≤ √

2φ(1 − θ),
sq /∈ Sp, and 〈q, ·〉 /∈ SLp.

In a nutshell, when we compute an upper-bound score of sp by a range query,
we add q, such that dist(ŝφ

p , ŝφ
q ) ≤ √

2φ(1 − θ), into PLp. We also add p into
PLq. In addition, when we compute ρ(sp, sq), we remove q (p) from PLp (PLq),
and if ρ(sp, sq) ≥ θ, we update SLp and SLq. Now we have two lemmas.
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Algorithm 1. SRMM (expiration case)
Input: se: the expired subsequence
Output: s∗

temp: a temporal motif
1 Delete ŝφ

e from kd-tree, f ← 0
2 for ∀p ∈ SLe do
3 SLp ← SLp\〈e, ·〉
4 if sp = s∗ then
5 f ← 1

6 for ∀p ∈ PLe do
7 PLp ← PLp\{e}
8 if s∗ = se then
9 f ← 1, s∗ ← ∅

10 s∗
temp ← s∗

11 if f = 1 then
12 for ∀sp ∈ S such that |SLp| + |PLp| ≥ score(s∗

temp) do
13 s∗

temp ← Motif-Update(sp, s∗
temp)

Lemma 2. |SLp| + |PLp| ≥ score(sp).

Lemma 3. The subsequences sq, whose scores can decrease due to the expiration
of se, satisfy that q ∈ PLe or 〈q, ·〉 ∈ SLe.

Both Lemmas 2 and 3 can be proven by Definitions 7 and 8. Now we see from
Lemma 3 that SLq and PLq can be updated in O(1) time, so its total update
time is O(|SLe| + |PLe|).

4.3 Overall Algorithm

We present the detail of SRMM, which exploits the techniques introduced in
Sects. 4.1 and 4.2. When the window slides, we first deal with the expired sub-
sequence and obtains a temporal motif s∗

temp. After that, we verify whether the
new subsequence can be s∗.

Dealing with Expired Subsequence se. Algorithm 1 details how SRMM deals
with the expired subsequence. Given the expired subsequence se, SRMM deletes
ŝφ

e from the kd-tree, which is done in O(log(w − l)) time, and sets a flag f = 0
(line 1). Then, according to Lemma3, SRMM deletes {e} and 〈e, ·〉 from all PLp

and SLp such that p ∈ PLe or 〈p, ·〉 ∈ SLe (lines 2–9). Note that if score(s∗)
decreases or s∗ = se, we set f = 1. Last, if f = 1, the current motif can be
changed. From Lemma 2, we see the subsequences sp which can be the motif
have to satisfy |SLp| + |PLp| ≥ score(s∗

temp). SRMM therefore computes the
exact scores of such sp and obtains a temporal motif s∗

temp (line 13), through
Motif-Update(sp, s

∗
temp), which is introduced later.

We next confirm that the obtained temporal motif is really the current motif
or the new subsequence can be the current motif.
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Algorithm 2. SRMM (insertion case)
Input: sn: the new subsequence, s∗

temp: a temporal motif
Output: s∗: the current motif

1 Compute ŝφ
n by PAA

2 Insert ŝφ
n−l to kd-tree

3 SLn ← ∅

4 PLn ← Range-Search(ŝφ
n,

√
2φ(1 − θ))

5 for ∀p ∈ PLn do
6 if sp = s∗

temp then
7 Compute ρ(sp, sn)
8 if ρ(sp, sn) ≥ θ then
9 SLp ← SLp ∪ 〈n, ρ(sp, sn)〉, SLn ← SLn ∪ 〈p, ρ(sp, sn)〉

10 PLn ← PLn\{p}
11 else
12 PLp ← PLp ∪ {n}
13 if |SLp| + |PLp| ≥ score(s∗

temp) then
14 s∗

temp ← Motif-Update(sp, s∗
temp)

15 if |SLn| + |PLn| ≥ score(s∗
temp) then

16 s∗ ← Motif-Update(sp, s∗
temp)

17 else
18 s∗ = s∗

temp

Dealing with New Subsequence sn. Algorithm 2 illustrates how SRMM
updates the current motif. SRMM first obtains ŝφ

n by PAA and inserts ŝφ
n−l into

the kd-tree (lines 1–2). Note that sn−l is the most recent subsequence that does
not overlap with sn. (Recall that our kd-tree does not maintain the l most recent
transformed subsequences.) Then SRMM sets SLn = ∅ and obtains PLn by a
range query, as explained in Sect. 4.1 (lines 3–4). For ∀p ∈ PLn, PLp also needs
to be updated. If sp = s∗

temp, SRMM computes ρ(sp, sn) to obtain score(sp), and
then updates SLp, SLn, and PLn (lines 6–10). On the other hand, if sp �= s∗

temp,
PLp is updated and SRMM checks whether |SLp|+|PLp| ≥ score(s∗

temp) or not.
In the case where it is true, SRMM executes Motif-Update(sp, s

∗
temp) and updates

s∗
temp if necessary (line 14). Last, if |SLn| + |PLn| ≥ score(s∗

temp), SRMM exe-
cutes Motif-Update(sn, s∗

temp) to verify the current motif (line 15–16). Otherwise,
we can guarantee that s∗

temp is now s∗ (line 18).

Speeding Up Verification. In Motif-Update(sn, s∗
temp), we confirm whether or

not ρ(sn, s∗
temp) ≥ θ, update their similar and possible similar lists, and replace

s∗
temp if necessary. We see that updating similar and possible similar lists requires

O(1) time, so if we can relieve the confirmation cost, the motif verification cost
is reduced. We achieve this by using the following theorem.
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Theorem 2. When sn, sp where p ∈ PLn, sq where q ∈ PLn ∧ 〈q, ρ(sp, sq)〉 ∈
SLp, and θ are given, we have ρ(sn, sq) ≥ θ if dist(ŝn, ŝp) + dist(ŝp, ŝq) ≤√

2l(1 − θ).

Proof. Recall that dist(·, ·) is the z-normalized Euclidean distance. Therefore,
from triangle inequality and Eq. (3), Theorem 2 holds. �

Recall that if |SLn| + |PLn| ≥ score(s∗
temp), we need to compute score(sn).

We accelerate this verification, i.e., Motif-Update(sn, s∗
temp) by exploiting The-

orem 2. As a reference subsequence, we utilize sp which is the nearest neigh-
bor to sn, in the φ-dimensional space, among a set of subsequences sp′ such
that p′ ∈ PLn and SLp′ �= ∅. Note that sp is obtained during Range-

Search(ŝφ
n,

√
2φ(1 − θ)). First, we compute dist(ŝn, ŝp). Then, for ∀q ∈ PLn,

we compute dist(ŝn, ŝp) + dist(ŝp, ŝq) if 〈q, ·〉 ∈ SLp. If we have dist(ŝn, ŝp) +
dist(ŝp, ŝq) ≤ √

2l(1 − θ), we do not need to compute dist(ŝn, ŝq). Therefore,
we compute dist(ŝn, ŝq) only in cases where we have dist(ŝn, ŝp)+dist(ŝp, ŝq) >√

2l(1 − θ) or 〈q, ·〉 /∈ SLp.

Time Complexity. As mentioned earlier, inserting/removing a transformed
subsequence into/from the kd-tree incurs O(log(w−l)) time. Algorithm 1 requires
at least O(log(w − l) + me) time, where me = |SLe| + |PLe|. Also, Algorithm 2
requires at least O(log(w − l) + mn) time. Recall that mn is the cardinality
of returned (transformed) subsequences by Range-Search(ŝφ

n,
√

2φ(1 − θ)). If we
compute the exact score of sp, O(l|PLp|) time is required, since we need to scan
PLp and each Pearson correlation computation incurs O(l) time. Let S′ be a
set of subsequences whose exact scores are computed when the window slides.
The total time complexity of SRMM is O(log(w − l) + me + mn +

∑
S′ l|PLp|).

It is important to note that |S′| is very small practically. For example, in our
experiments, |S′| ≤ 1 on average. If we consider a polylogarithmic factor, i.e.,
log(w−l), can be seen as a constant, the time complexity of SRMM is dependent
only on the upper-bound scores of the expired and new subsequences in practice.

5 Experiment

This section introduces our experimental results. We evaluated SRMM and the
baseline algorithm introduced in Sect. 2.2. All experiments were conducted on
a PC with 3.4 GHz Core i7 CPU and 16 GB RAM, and all the algorithms were
implemented in C++.

5.1 Setting

In the following setting, we measured the average update time per a slide of the
window.

Datasets. We used four real datasets.
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– Google-CPU [18]: this time-series is a merged sequence of CPU usage rate of
machines in Google compute cells, and its length is 133,902.

– Google-Memory [18]: this time-series is a merged sequence of memory usage
of machines in Google compute cells, and its length is 133,269.

– GreenHouseGas [12]: this is a time-series of green house gas concentrations
with length 100,062.

– RefrigerationDevices1: this is a sequence of energy consumption of a refriger-
ator, and its length is 270,000.

Parameters. Table 1 summarizes the parameters used in the experiments and
bold values are default values. We set φ = l

2 , and when we investigate the impact
of a given parameter, the other parameters are fixed.

Table 1. Configuration of parameters

Parameter Values

Motif length, l 50, 100, 150, 200

Window-size, w [×1000] 5, 10, 15, 20

Threshold, θ 0.75, 0.8, 0.85, 0.9, 0.95
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Fig. 3. Impact of l

1 http://timeseriesclassification.com/index.php.

http://timeseriesclassification.com/index.php
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5.2 Result

Varying l. We first investigate the impact of motif length, and Fig. 3 shows the
result. We see that the update time of the baseline algorithm linearly increases,
as l increases. This is reasonable since its time complexity is O((w − l)l). On
the other hand, SRMM is not sensitive to l. As l increases, we need more time
to compute Pearson correlation. However, for fixed θ, me and mn decrease as
l increases. For a large l, we tend to have a long distance between two subse-
quences, i.e., their Pearson correlation tends to be low. Hence, it becomes difficult
for subsequences to be similar to other ones, which is the reason why me and
mn decrease. SRMM therefore has a stable performance even when l varies. This
scalability is a good advantage against the baseline, and SRMM is up to 24.5
times faster than the baseline.

Varying w. We next investigate the impact of window size. As can be seen from
Fig. 4, we have a very similar result to that in Fig. 3. The time complexity of
the baseline is linear to w, so this result is also straightforward. A difference is
that the update time of SRMM also increases. As w increases, the score of each
subsequence tends to be larger, i.e., me and mn become larger. SRMM therefore
needs longer update time when w is large.
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Fig. 4. Impact of w

Varying θ. Finally, we report the impact of threshold, and the result is shown
in Fig. 5. Because the baseline algorithm scans all subsequences in the window
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Fig. 5. Impact of θ

whenever the window slides, θ does not affect the performance of the baseline.
On the other hand, the update time of SRMM decreases as θ increases. From
Eq. (3), we see that the distance threshold becomes shorter as θ increases. Range
queries in SRMM therefore report less subsequences. In other words, me and mn

also decrease, which provides the result in Fig. 5.
We can see that SRMM incurs longer update time than the baseline when θ =

0.75. We observed that there are many similar subsequences for each subsequence
in RefrigerationDevices when θ is small. In such cases, we cannot prune the exact
score computation and the upper-bounding can be overhead. Note that many
applications require a motif that has highly correlated subsequences, and as
Figs. 5(a)–(d) show, SRMM can update the motif quite fast when θ is large.

6 Conclusion

Due to the trend that recent IoT-based applications generate streaming time-
series, analyzing time-series in real-time becomes more important. This paper
addressed the problem of monitoring a range motif (a subsequence which appears
repetitively the most in a given time-series), for the first time. As an efficient
solution to this problem. we proposed SRMM. This algorithm can avoid unnec-
essary score computation by exploiting Piecewise Approximate Aggregation and
kd-tree. The results of our experiments using four real datasets show the effi-
ciency and scalability of SRMM.

In this paper, we considered an one-dimensional time-series. Recently, a
device is becoming to have multiple sensors and can generate a multi-dimensional



Monitoring Range Motif on Streaming Time-Series 265

time-series. As a future work, we plan to address the range motif monitoring of
a multi-dimensional streaming time-series.
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Abstract. As the volume of time series data being accumulated is likely
to soar, time series compression has become essential in a wide range of
sensor-data applications, like Industry 4.0 and Smart grid. Compressing
multiple time series simultaneously by exploiting the correlation between
time series is more desirable. In this paper, we present MTSC, a novel
approach to approximate multiple time series. First, we define a novel
representation model, which uses a base series and a single value to rep-
resent each series. Second, two graph-based algorithms, MTSCmc and
MTSCstar, are proposed to group time series into clusters. MTSCmc

can achieve higher compression ratio, while MTSCstar is much more
efficient by sacrificing the compression ratio slightly. We conduct exten-
sive experiments on real-world datasets, and the results verify that our
approach outperforms existing approaches greatly.

1 Introduction

Recent advances in sensing technologies have made possible, both technologi-
cally and economically, the deployment of densely distributed sensor networks.
In many applications, such as IoT, Smart city and Industry 4.0, thousands or
even millions of sensors are deployed to monitor the physical environment. More-
over, more and more applications tend to archive these data over a few years
enabling people to do historical comparison and trend analysis [5]. To minimize
the overhead of storing, managing and sharing these sensor data, therefore, we
must apply smart approximation schemes that significantly reduce the data size
without compromising the monitoring and analysis abilities [10]. For many use-
ful data mining tasks, such as analyzing and forecasting resource utilization,
anomaly detection, and forensic analysis, the compressed data must guarantee
a given maximum (L∞) decompression error [6].

An individual sensor’s measurements can be thought of as a time series.
Researchers have proposed many techniques to compress the single time series,
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such as DFT, APCA, PLA and DWT [10]. While in many applications, the
time series are correlated with each other [6]. For example, the temperature
measurements monitored by the closely-located weather stations will fluctuate
together. Other examples include, but not limited to, the stock price of the same
category and air quality of adjacent regions. Compressing time series individually
without considering the correlation will incur much redundant storage.

Inspired from this observation, some works have been proposed to com-
press multiple sensor series simultaneously [4,6,14]. They collectively approx-
imate multiple series while reducing redundant information. As a pioneer work,
SBR [4] groups similar time series into clusters and approximates series of the
same cluster with a common base series. However SBR requires similar series
to be statically grouped together before running the algorithms, which makes
it unsuitable for long time series. Moreover it guarantees the L2 error bound
instead of L∞, that is, SBR cannot guarantee the error bound in every single
time point.

GAMPS is the first work to compress multiple time series guaranteeing the
L∞ error bound. It utilizes a dynamic grouping scheme to group series in different
time windows. Within each group of series, it approximates each series based on
a common base and a reference series, and compresses both of them with the
APCA representation [7]. However the compression quality of GAMPS is inferior
to single series compression algorithms, such as APCA, in many cases [10].

In this paper, we propose a new framework to compress multiple time series,
named Multiple Time Series Compressing (MTSC). Firstly, we define a novel
representation model, which uses a base series and a single value to represent
each series within a cluster. Different from GAMPS, which uses two series to
approximate a raw series, our model incurs much less storage cost. The core
of our approach is the grouping strategy which groups time series into as few
clusters as possible. Two graph-based algorithms, MTSCmc and MTSCstar,
are proposed. MTSCmc can achieve higher compression ratio, while MTSCstar

is much more efficient by sacrificing the compression ratio slightly. We conduct
extensive experiments on multiple real-world datasets, which show that our app-
roach has higher compression ratio than existing approaches in most cases.

The rest of the paper is organized as follows. Preliminary knowledge is intro-
duced in Sect. 2. Section 3 introduces our compression model and theoretical
foundation. Sections 4 and 5 describe the MTSCmc and MTSCstar algorithms
respectively. The experimental results are presented in Sect. 6 and we discuss
related work in Sect. 7. Finally, Sect. 8 concludes the paper.

2 Preliminaries

Let S = {S1, S2, · · · , SN} be a set of N time series with equal length n. Si is
the i-th time series, consisting of a sequence of values at time point from 1 to n,
denoted as Si = {si(t)|t = 1, 2, · · · , n}. The subsequence of Si is a continuous
subset of the values, denoted as Si(l, r) = {si(t), t = l, l + 1, · · · , r}.

We produce an approximate representation of S, denoted as Δ. It takes a
more concise form, from which, we can reconstruct series of S within the error
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bound. Let αi be the reconstructed series of Si. In this paper, we utilize L∞
norm (maximum) error. Formally, the error of our approximation for S is

E(Δ) = max
1≤i≤N

max
1≤t≤n

|si(t) − αi(t)|

which is the maximum difference between the raw series and its representation.
The multiple time series compressing problem is defined as follows. Given a

set of series S and an error threshold ε, find the representation Δ such that (1)
E(Δ) ≤ ε and (2) the storage size of Δ is as small as possible. In this case, we
say series Si can be represented by αi within the maximal error ε (1 ≤ i ≤ N).

2.1 APCA Representation

There exists many approaches to approximating single time series under L∞
error bound. Based on the experimental results of [10], we know that Adaptive
Piecewise Constant Approximation [7] (APCA) outperforms other approaches
in most cases. Therefore, we use it to compress the single time series in our
approach. Here we introduce it briefly.

Given a series S and an error bound ε, it approximates S by splitting it into k
disjoint segments and representing each segment with a single value. Specifically,
the form of APCA is C = {(ci, ti), 1 ≤ i ≤ k}, where ti is the right endpoint of
the i-th segment, and ci is the representation value of it. The difference between
ci and any value of this segment must be not larger than ε.

3 Compression Model and Algorithm Overview

In this section, we present our representation model, and then give the theoretical
foundation of our approach.

3.1 Representation Model

First, we give the single-window model, which approximates each series as a
whole. Then we extend it to the multi-window model, which splits S into some
disjoint windows, and represents each window with the single-window model.

Single-Window Model. Given the set of time series, S = {S1, S2, · · · , SN}, the
representation model, denoted as δ = (C,B,O), is as follows,

– We dispatch the series in S into disjoint clusters, C = {C1, C2, · · · , C|C|},
each of which contains at least one time series. We use Sj ∈ Ci to indicate
that time series Sj belongs to cluster Ci.

– Each cluster Ci has a corresponding base series, denoted as Bi, which rep-
resents the shape of all series in cluster Ci. The second parameter of δ,
B = {B1, B2, · · · , B|C|}, is the set of base series.
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– Each series Sj in Ci can be approximately represented by the combination
of the base series Bi and a single value. We call this value as offset value,
and denote it as oj . That is, for Sj ∈ Ci, αj(t) = Bi(t) + oj , such that
|αj(t)−sj(t)| ≤ ε (1 ≤ t ≤ n). The third parameter of δ, O = {o1, o2 · · · , oN},
is the set of offset values.

Note that based on the base series, we can represent each series with just
a single offset value. Therefore, our goal is to find as few as clusters which can
represent all series in S, in order to achieve high compression ratio.

Multi-window Model. The physical environment changes over time, so one series
cluster that is optimal at time t may not be optimal in other time. Especially
when archiving data over long durations, we expect trends to change. Based on
this observation, we extend the single-window model to the multiple one.

Formally, let the window length, denoted as w, be a user-specified thresh-
old. We split the whole time line into m = � n

w � number of disjoint windows,
(W1,W2, · · · ,Wm). Accordingly, S is split into m number of windows, denoted
as (S1,S2, · · · ,Sm). Si is composed of subsequences of all series in the i-th
window, that is, Si = {Sj((i−1)∗w +1, i∗w), 1 ≤ j ≤ N}. To ease the descrip-
tion, we indicate the subsequence of series Sj in the i-th window as Si

j . That is,
Si
j = Sj((i−1)∗w+1, i∗w). For each Si, we can obtain a single-window model,

denoted as δi, which contains Ci, Bi and Oi respectively. The multi-window
model is the set of m single-window models, denoted as Δ = (δ1, δ2, · · · , δm).

3.2 Theoretical Foundation

Here we establish a formal theoretical foundation for our approach. As core, we
propose a condition under which a set of series can be represented by a base
series guaranteeing the L∞ error bound. We first define the series similarity.

Definition 1 (ε-Similar). Given two series X = {xi} and Y = {yi} where
1 ≤ i ≤ n, we call X and Y are ε-similar if it holds that max |xi − yi| ≤ ε.

Given a set of series S = (S1, S2, · · · , SN ), where Si = {si(t), t = 1, 2, · · · , n}.
We construct a base series, B = {b(t), t = 1, 2, · · · , n}, as follows. For time
point t, let mint and maxt be the minimum and maximum values of all si(t)’s
(1 ≤ j ≤ n). We compute b(t) = 1

2 (mint + maxt). B has the following property,

Lemma 1. Given a set of series S = (S1, S2, · · · , SN ). If any pair of series
in S are 2ε-similar, the base series B can represent all series in S within the
maximum error ε.

Proof. We just need to prove that for any series Sj (1 ≤ j ≤ N), it holds that
|sj(t) − b(t)| ≤ ε where t = 1, 2, · · · , n. From the definition of B, we can obtain

mint − 1
2
(mint + maxt) ≤ si(t) − b(t) ≤ maxt − 1

2
(mint + maxt)
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After simple transformation, we obtain the following inequality

|si(t) − b(t)| ≤ 1
2
|maxt − mint|

due to |maxt − mint| ≤ 2ε, So we can get that |si(t) − b(t)| ≤ ε. ��
The key problem is how to group series into as few clusters as possible, each

of which satisfies Lemma 1. In this paper, we propose two graph-based algo-
rithms, MTSCmc and MTSCstar. We take time series as the vertexes, and the
“similarity” of time series as edges to build the graph, and use different tech-
niques to group the series into clusters. MTSCmc can achieve higher compression
ratio but is more time consuming. In contrast, MTSCstar is much more time
efficient while slightly sacrificing the compression ratio. Furthermore, the base
series introduced above has the same length of the series. To further improve the
compression ratio, we propose a new form of base series with less storage cost.

4 The MTSCmc Algorithm

In this section, we present the first algorithm, MTSCmc, which represents S
with the multi-window model. MTSCmc processes Si sequentially. In different
windows, it groups the series with two alternative strategies. We first introduce
the series grouping strategies (Sect. 4.1), and then discuss how to generate the
base series for each cluster (Sect. 4.2).

4.1 Series Grouping Strategies

In MTSCmc, we solve the series grouping problem with two graph-based
approaches, mc-grouping and inc-grouping. Next we introduce them in turn.

Mc-grouping. Assume we group series in window Si = {Si
1, S

i
2, · · · , Si

N}. First
of all, we transform all subsequences by removing the shifting offset, so that each
transformed subsequence has 0 as the mean value. Specifically, suppose the mean
value of Si

j is μi
j , we transform each value sj(t) (t ∈ Wi) into sj(t) − μi

j . We
denote the transformed subsequence as Ŝi

j and the new value as ŝj(t). Then we
construct an undirected graph, Gi = (Vi, Ei). Vi contains N number of vertexes,
in which vertex vj corresponds to series Sj . The distance between two vertexes
vj and vj′ is the maximal difference of all time points in Wi. That is,

D(j, j′) = max
t∈Wi

|ŝj(t) − ŝj′(t)|

Edge e(j, j′) exists in Ei if D(j, j′) ≤ 2ε. We call graph Gi as 2ε-similar graph.
It is worth noting that in any two windows, say Gi and Gi′ , it always holds

that Vi = Vi′ , while Ei and Ei′ may be different, because two series may be
2ε-similar in some windows, but not in others. After Gi is obtained, we group
the series with a maximum clique based algorithm. Later, we use series Sj and
vertex vj interchangeably.
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Definition 2 (Maximum Clique). Let G be an undirected graph. A clique
refers to a complete subgraph, in which there exists an edge between any pair of
vertexes. The maximum clique contains more vertexes than any other cliques.

The maximum clique problem is a well-known NP-Hard problem. Due to its
wide range of applications, many methods are proposed to solve it [8,11]. Here
we use the fast deterministic algorithm [11]. The algorithm searches the clique
in a certain order, and also uses some pruning strategies to speedup the process.

We use a greedy algorithm to group all series in Gi. Specifically, we first find
the maximum clique from Gi, and take all series in it as the first cluster Ci

1.
Then we update Gi by deleting the vertexes in Ci

1, as well as edges connecting
to at least one vertex in Ci

1. In the second round, we find the maximum clique
in the current Gi, and take series in it as Ci

2. This process continues until Gi

doesn’t contain any edge. In this case, if Gi still contains some vertexes, we take
each of them as a cluster, called as individual cluster. That is, Ci is composed of
some clusters with multiple series, and some individual clusters.

Fig. 1. An example of mc-grouping and inc-grouping

Figure 1(a) shows an example of mc-grouping on Gi, which contains 7 ver-
texes. Suppose ε is set to 1. Figure 1(a) also shows all edges, each of which is
labeled with the distance between two vertexes. It can be seen that C1 con-
tains two cliques (Ci

1 = {v1, v2, v3, v4}, Ci
2 = {v5, v6}) and one individual cluster

Ci
3 = {v7}.

Inc-grouping. Mc-grouping can achieve high quality clusters, because it always
finds the maximum clique. However, it is time consuming due to the high cost of
maximum clique mining algorithm. To make it more efficient, we propose another
grouping strategy, named inc-grouping. In many applications, it is often that the
similarity relationship between series will last for some consecutive windows. In
this case, the series clusters of adjacent windows will be similar accordingly.
Based on this observation, instead of grouping the series from scratch in each
window, inc-grouping strategy inherits the clusters from the previous window,
and adjusts them according to the edges of the current window. As a special
case, if Ei is exactly same as Ei−1, we can directly take Ci−1 as Ci.
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Now, we introduce the detail of inc-grouping. Suppose we have obtained
Ci−1 = {Ci−1

1 , Ci−1
2 , · · · , Ci−1

p }, and turn to process Si. Initially, we compute
Ŝi
j ’s (1 ≤ j ≤ N) and Gi = 〈Vi, Ei〉. Then, we construct Ci as follows. First, we

generate a subgraph of Gi, denoted as G′ = 〈V ′, E′〉, in which, V ′ has the same
vertexes as Ci−1

1 and e(j, j′) ∈ E′ if vj ∈ V ′, vj′ ∈ V ′ and e(j, j′) ∈ Ei.
If G′ is a clique in Gi, we directly take it as Ci

1. Otherwise, we transform
it into a clique by removing some vertexes. We first select the vertex with the
minimal degree, say v, in G′ to delete. Here the degree of a vertex is the number
of edges connecting to it in G′. After deleting v and all edges connecting to it,
we check whether the current G′ is a clique. If it is the case, we take current
G′ as Ci

1, and v as an individual cluster. Otherwise, we repeatedly select the
vertex with the minimal degree in G′ to delete. We continues this process until
G′ becomes a clique or it only includes a set of isolated vertexes. In the latter,
we take all these vertexes in G′ as individual clusters.

Once Ci
1 is obtained, we use the same approach to construct Ci

2 based on
Ci−1

2 . Again, we obtain a clique which is a shrinking version of Ci−1
2 and some

individual clusters. In the extreme case, all vertexes in Ci−1
2 will become indi-

vidual clusters. We iterate this process until all cliques in Ci−1 are processed.
As the last step, we try to insert individual series into these new cliques.

Figure 1(b) and (c) illustrate the inc-grouping for Gi+1. First, we adapts Ci
1

to generate Ci+1
1 . Since e(v1, v4) doesn’t occur in Ei+1, We delete v1 firstly. The

rest vertexes form a clique in Gi+1. So either Ci+1
1 = {v2, v3, v4} and v1 becomes

an individual cluster. Next, we process Ci
2 = {v5, v6}. Because e(v5, v6) ∈ Ei+1,

Ci+1
2 is {v5, v6}, as shown in Fig. 1(b). Finally, we check whether v1 and v7 can

be inserted into Ci+1
1 or Ci+1

2 . In this case, v1 can be added into Ci+1
2 , since

both e(1, 5) and e(1, 6) exist in Ei+1. Figure 1(c) shows the final Ci+1.

Put Them Together. Now we introduce how to combine mc-grouping and inc-
grouping systematically. Initially, for the first window W1, we first construct G1,
and then use mc-grouping to obtain C1. Next, we process S2. After obtaining G2,
we check how difference between G1 and G2. We use the ratio of changed edges
to measure the difference. If the difference between G2 and G1 doesn’t exceed
the user-specified threshold, σ, we use inc-grouping to compute C2. Otherwise,
we use mc-grouping. This process continues until all windows are processed.

4.2 Base Series and Offset Value

Once clusters C in a window is obtained, we need to compute base series for each
cluster. Section 3.2 gives a simple format of the base series. However, its length is
same as the subsequences. To further reduce the storage cost, we propose a more
concise form of base series, which can still guarantees L∞ error bound. Similarly
with the APCA representation, each base series has the form as follows,

B =
(〈bv1, br1〉, 〈bv2, br2〉, · · ·, 〈bv|B|, br|B|〉

)
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where bri is the right endpoint of the i-th segment and bvi is a value to represent
it. That is, B splits the time window into |B| number of segments, and the i-th
segment is [bri−1 + 1, bri]. The value of |B| may differ for different clusters.

Given a cluster C, the base series B can be computed by sequentially scanning
subsequences in C. To ease the description, we assume cluster C is in window
W1, so the first time point is 1 and the last one is w1. The first segment, Seg1,
is initialized as [1, 1]. We visit all |C| number of values, ŝj(1)’s (Sj ∈ C), and
obtain the minimum and maximum ones in them, denoted as min1 and max1

respectively. We use MIN and MAX to represent the minimum and maximum
values in the current segment, which are initialized as min1 and max1. Next, we
visit all values ŝj(2)’s, and obtain min2 and max2. If adding time point t = 2
into Seg1 doesn’t make |MAX − MIN | > 2ε, we extend segment Seg1 to [1, 2],
and update MAX and MIN if necessary. We sequentially check the next time
points until we meet the first time point, say k, adding which into Seg1 will make
|MAX − MIN | > 2ε. In this case, we set br1 = k − 1 and bv1 = MAX+MIN

2 .
Then we initialize Seg2 = [k, k] and setting MAX = maxk and MIN = mink.
This process continues until time point w is met. The correctness of the base
series can be proved by the following lemma.

Lemma 2. Base series B can represent all series in C within maximal error ε.

Proof. For the i-th entry of B, 〈bvi, bri〉, (1 ≤ i ≤ |B|), we need to prove |bvi(t)−
s(t)| ≤ ε, where t ∈ [bri−1 + 1, bri]. Let MIN and MAX be the minimum and
maximum values in Segi, it holds that bvi = MAX+MIN

2 and |MAX − MIN | ≤
2ε. For all t ∈ [bri−1 + 1, bri], it can be inferred that

MIN ≤ mint ≤ s(t) ≤ maxt ≤ MAX

Similar to the proof of Lemma 1, we can get |bvi(t) − s(t)| ≤ ε. ��

Fig. 2. Base series Fig. 3. MTSCstar

Figure 2 illustrates it with an example. At each time point, we show the
value range. For example, at t = 7, min7 and max7 are 0.7 and 1.5 respectively.
1 Indeed, for window Wi, the first time point is (i−1)∗w +1 and the last one is i∗w.
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Seg1 = [1, 3], because MAX −MIN = 3.5−1.5 ≤ 2. Seg1 cannot include t = 4,
because in this case, MAX − MIN = 3.5 − 0.5 = 3 > 2. Seg2 = [4, 7], because
MAX − MIN = 2 − 0.5 = 1.5 < 2.

For any series Sj in cluster C of window Wi, we set the offset value oj as the
mean value μi

j . As for the individual clusters, we represent each individual series
with APCA, and take it as the base series. In this case, the offset value is 0.

5 The MTSCstar Algorithm

In this section, we present the second algorithm MTSCstar, whose compression
quality is slightly lower than that of MTSCmc, but has much higher efficiency.

The only difference between MTSCstar and MTSCmc is the series grouping
strategy. MTSCstar still uses the multi-window representation model, and it
utilizes the same strategy for all windows. For window Si = {Si

j , 1 ≤ j ≤ N},
we transform series by removing the shifting offset, and obtain Ŝi = {Ŝi

j , 1 ≤
j ≤ N}. Then we compute Gi = 〈Vi, Ei〉, in which each vertex vj corresponds
to series Sj (1 ≤ j ≤ N). An edge e(j, j′) ∈ Ei if Ŝi

j and Ŝi
j′ are ε-similar. So

the graph is the ε-similar graph.
Different with MTSCmc, which groups series by finding cliques, in

MTSCstar, we find star-shape subgraphs. Formally,

Definition 3 (Star-Shape Subgraph). G = 〈V,E〉 is a star-shape subgraph,
if there exists one vertex v in V , so that for any other vertex v′ in V , e(v, v′) ∈ E.

We can prove that a star-shape subgraph in ε-similar graph is a clique sub-
graph in 2ε-similar graph with the following lemma.

Lemma 3. Let G = 〈V,E〉 be the 2ε-similar graph and G′ = 〈V,E′〉 be the
ε-similar graph of the same window. Any star-shape subgraph in G′ corresponds
to a clique in G.

Proof. Suppose SG is a star-shape subgraph of G′, and va (∈ SG) connects to
all other vertexes in SG. To prove that vertexes of SG can form a clique in G,
we only need to prove that any pair of vertexes in SG is 2ε-similar. Based on
the definition of va, it and any vertex in SG are 2ε-similar. Next we consider
any two other vertexes vb and vc in SG. It holds that

D(a, b) = max
t∈W

|ŝa(t) − ŝb(t)| ≤ ε and D(a, c) = max
t∈W

|ŝa(t) − ŝc(t)| ≤ ε

that means for all time points t’s, we have

|ŝa(t) − ŝb(t)| ≤ ε and |ŝa(t) − ŝc(t)| ≤ ε

So that |ŝb(t) − ŝc(t)| ≤ 2ε. The distance between vb and vc satisfies

D(b, c) = max
t∈W

|ŝb(t) − ŝc(t)| ≤ 2ε

So SG will be a clique in 2ε-similar graph G. ��
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The advantage of using ε-similar graph is that it is much easier to find star-
shape subgraphs than finding cliques. We use a greedy approach to split the
graph into a set of star-shape subgraphs (or clusters), and possibly, some indi-
vidual clusters. Firstly, we select the vertex in G with the highest degree. This
vertex and all vertexes connecting to it form the first (and also the maximum)
star-shape subgraph in G. Then we update G by removing these vertexes as well
as all related edges. Next, we still find the vertex of the highest degree from G,
and combine it with all vertexes connecting to it to generate the second star-
shape subgraph. This process continues until G doesn’t contain any edge. At
last, all remainder individual vertexes form a set of individual clusters.

The time complexity of grouping is O(N2), which is lower than that of gen-
erating the graph. So unlike MTSCmc which uses inc-grouping to improve the
efficiency, MTSCstar deals with all windows with the above grouping strategy.
For each cluster, we generate the base series as the same approach as MTSCmc.

Figure 3 illustrates the grouping strategy of MTSCstar for window Wi. The
edges are the subset of edges in Fig. 1(a), that is, it only contains edges for
ε-similar vertex pairs (ε = 1). Those edges whose weight is larger than 1 are
removed. We first choose vertex v1 with largest degree 2 and get a cluster Ci

1 =
{v1, v2, v4}. Then we construct the second cluster Ci

2 = {v5, v6}. The remaining
individual vertexes from two individual clusters Ci

3 = {v3} and Ci
4 = {v7}.

6 Experiments

In this section, we evaluate the performance of proposed algorithms by com-
paring with three approaches, GAMPS, APCA and PLA [9]. GAMPS aims for
multiple series, while APCA and PLA are single-series compression approaches
that outperform others [10]. For PLA, we use the state-of-the-art algorithm,
mixed-PLA [9]. All algorithms are implemented in Java and all experiments are
conducted on a 4-core (3.5 GHz) Intel Core i5 desktop with 16 GB memory.

6.1 Datasets

To make fully comparison between algorithms, we use three real-world datasets.

– Gas dataset. It is the Gas Sensor Array Drift Dataset from popular UCI repos-
itory, which is collected by 16 chemical sensors used to detect concentrations
of 6 kinds of gases [1]. It contains 100 series of length 3,600.

– Google Cluster dataset. It records activities of jobs consisting of many tasks
executing on a data center over a seven-hour period [13]. It extracts CPU and
memory usage for each task, and contains 2,090 time series of length 74.

– Temperature dataset. It collects the temperature values of 719 climate sta-
tions in China [2]. For each station, the temperature is monitored from 1960
to 2012, one value per day. The length of each time series is 19,350.

To make the results on different datasets consistent, we use the relative error
threshold ε, which is the fraction of the difference between the maximum and
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minimum values in the each dataset. The particular parameters of GAMPS
are set according to the authors’ recommendation. The splitting fraction is set
to 0.4ε for base series. GAMPS also splits time series into disjoint windows.
The initial window length is set as 100, and the lengths of the next windows
are adjusted dynamically according to the fluctuation of series correlation. In
MTSC algorithm, the default window length w is set as 100, and the rate of
change between two adjacent windows, σ, is set as 0.01.

6.2 Compression Ratio

As traditional time series compression algorithms, we define the compression
ratio as the ratio between the size of the original dataset and that of the com-
pressed one. Formally, suppose each series value is a 32-bit float number, then
the storage cost of the raw time series S is 32 × N × n.

Our representation model contains three parts, C, B and O. For the cluster
C, each series indicates its cluster ID with a 32-bit integer, so the storage cost
of C is 32 × N . The storage cost of B depends on the number of segments for
each base series. For each segment, we use two 32-bit values to store bv and br
respectively. Assume the number of segments in Bi

j is |Bi
j |, so a base series needs

64 × |Bi
j | bits to store. Each offset value is represented as a 32-bit value, and so

the store cost of O for each window is 32×N . In summary, if we have m number
of windows, the total cost of compressed series is

∑m
i=1(64×N +64×∑|Ci|

j=1 |Bi
j |).

From above, we know the compression ratio mainly depends on two factors,
the number of clusters and the storage cost of base series.

6.3 Influence of Error Threshold ε

We test the influence of the error threshold ε on the compression ratio and the
runtime. Experiments are conducted on all three datasets. Figure 4 shows the
results. The length of series in Cluster dataset is 74, which is less than the default
window size (100), so we use the single-window model.

Figure 4(a), (b) and (c) show the results of compression ratio. It can be
seen that both MTSCmc and MTSCstar have higher compression ratio than
APCA, PLA and GAMPS in most cases. When ε becomes larger, the com-
pression ratios of all approaches increase accordingly. However, the increasing
is much more obvious in our approaches. Although GAMPS also exploits the
correlation between similar series, we can see that its performance is even worse
than APCA and PLA. The reason is that GAMPS splits ε into two parts, one
for base series and the other for ratio signals. This mechanism makes GAMPS
needs more cluster and segments, which causes higher storage cost. Finally, as we
analyzed, the compression ratio of MTSCmc is slightly higher than MTSCstar,
due to the maximal clique based approach can use fewer clusters to cover all
series.

Figure 4(d), (e) and (f) show the efficiency results. Since APCA and PLA
need only one scan to get all segments of each series, they are more efficient and



278 N. Pan et al.

0.01 0.02 0.03 0.04 0.05
0

20

40

C
om

pr
es

si
on

 ra
tio

APCA PLA GAMPS MC Star

0.01 0.02 0.03 0.04 0.05
0

10

20

30

C
om

pr
es

si
on

 ra
tio

APCA PLA GAMPS MC Star

0.01 0.02 0.03 0.04 0.05
0

10

20

30

C
om

pr
es

si
on

 ra
tio

APCA PLA GAMPS MC Star

(a) Cluster (b) Temperature (c) Gas

0.01 0.02 0.03 0.04 0.05
100

102

104

Ti
m

e 
(m

s)

APCA PLA GAMPS MC Star

0.01 0.02 0.03 0.04 0.05
102

104

106

108

Ti
m

e 
(m

s)
APCA PLA GAMPS MC Star

0.01 0.02 0.03 0.04 0.05
101

102

103

104

Ti
m

e 
(m

s)

APCA PLA GAMPS MC Star

(d) Cluster (e) Temperature (f) Gas

Fig. 4. Compression ratio and time comparison

the runtime doesn’t change greatly as ε varies. The running time of MTSCmc

demonstrates different trends in three datasets, because it depends on multiple
factors, such as number of vertexes and density of the graph. In the Temperature
dataset, both the clique size and number of vertexes in cliques become larger as
ε increases, which consumes more time searching maximum cliques. Moreover,
we find that the searching process in a dense graph is faster than that in a sparse
one. The pruning strategy in the maximum clique problem reduce the time to
find a clique in the dense graph. When ε exceeds 0.03, the graphs of the Cluster
and Gas datasets become very dense, leading to the decrease of the runtime.

Comparing to MTSCmc, MTSCstar is much more efficient and is more stable
as ε increases, because the complexity of series grouping in MTSCstar is lower
than that of MTSCmc and is less sensitive to the structure of the graph. The
running time of GAMPS is highest among all algorithms. It spends most of time
to solve the facility location problem which is an NP complete. Though GAMPS
uses an approximative algorithm to solve it, it’s still not efficient enough.

6.4 The Number of Clusters vs. ε

As shown in Sect. 6.2, the number of clusters has great impact on the compres-
sion ratio. Therefore, in this experiment, we investigate the number of clusters
in MTSCmc, MTSCstar and GAMPS. The average number of clusters for all
windows is shown in Fig. 5. Moreover, we also show the corresponding compres-
sion ratio simultaneously. The numbers of clusters are shown as bars and the
corresponding compression ratio as lines.

It can be seen that as ε increases, the number of clusters in both MTSCmc

and MTSCstar decreases gradually. The reason is that more pairs of series are
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Fig. 5. The number of clusters vs. ε

ε-similar and can be clustered together. In consequence, all series are covered
by less clusters. The number of clusters in MTSCmc is larger than that of
MTSCstar, which causes higher compression ratio of MTSCmc. In contrast, the
number of clusters in GAMPS stays stable in both datasets, which explains why
the compression ratio of GAMPS does not increase significantly as ε increases
in Fig. 4. Note that when ε = 0.01, although the number of clusters in GAMPS
is smaller than that of our algorithms on Temperature dataset, its compression
ratio is still lower than ours, because the offset of GAMPS is still a series while
it is a single value in our approaches.

6.5 Influence of the Number of Series N

In this experiment, we investigate the influence of the number of series, N , on
the performance of our approaches. We randomly extract 100 to 600 number
of series from Temperature dataset. The error threshold ε is set to 0.05. Both
compression ratio and runtime are compared, and the results are shown in Fig. 6.
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Fig. 6. Influence of the number of series N

In Fig. 6(a), as N increases, the compression ratio of our approach increases
greatly. Those of APCA and PLA stay stable because they compress each single
series individually. The interesting phenomenon is that the compression ratio
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of GAMPS also doesn’t increase. To analyze the reason, we show the num-
ber of clusters of both our approaches and GAMPS in Fig. 6(b). We can see
that the number of clusters in GAMPS increases dramatically while those of
MTSCmc and MTSCstar increase slightly, which verifies that both MTSCmc

and MTSCstar do better in exploiting the correlation between multiple series
than GAMPS. In Fig. 6(c), the runtime of all algorithms increases as N increases.
Among them, APCA, PLA and MTSCstar consume less time than MTSCmc

and GAMPS.

6.6 Influence of the Window Length

In both MTSCmc and MTSCstar, series are split into fixed-length windows. In
this experiment, we investigate the impact of window length. We conduct the
experiments on Gas dataset and the error threshold ε is set as 0.02.

In Fig. 7, the compression ratio of MTSCmc and MTSCstar decreases grad-
ually as w changes from 50 to 250. When w increases, the number of series
pairs satisfying 2ε-similar will decrease. In consequence, more clusters are needed
to represent all series. On the other hand, the runtime of both MTSCmc and
MTSCstar decreases, because less windows need to be processed.
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6.7 Mc-grouping vs. Inc-grouping

In this section, we compare the performance of mc-grouping and inc-grouping.
Moreover, we also investigate the influence of σ. The experiments are conducted
on Temperature dataset. Results are shown in Figs. 8 and 9.

The parameter σ is to measure the change between two graphs of adjacent
windows. When σ is set to 0, we use mc-grouping to process all windows, because
none of the windows can use clusters of the previous windows. From Figs. 8 and
9, we can see that as σ increases, the compression ratio decreases slightly while
the runtime goes down about 30% to 60%. The reason behind is that more
windows use the inc-grouping strategy, which is much more efficient than mc-
grouping. So, it is a trade-off, larger σ means higher efficiency while lower one
means higher compression ratio.
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7 Related Work

To reduce the cost of storing large quantities of time series, many compression
techniques are proposed [10], which can be divided into two categories, lossless
and lossy compression. Most of lossless compression are based on byte stream
and have no semantics, such as LZ78 [15]. In an in-memory time series database
Gorilla [12] of Facebook, a variable length encoding is used. Time series are
compressed by removing the redundant information in the byte-level.

Lossy compression represents time series using well-established approxima-
tion models. Moreover the lossy compression is orthogonal to the lossless encod-
ing. There are a lot of work on lossy compression of time series. [10] gives a nice
survey about this topic. Most approaches are tailored to the single series, such
as Adaptable Piecewise Constant Approximation (APCA) [7], Piecewise Linear
Approximation (PLA) [9] and Chebyshev Approximations (CHEB) [3].

On the other hand, some approaches compress multiple time series by exploit-
ing the correlation between series, such as Grouping and AMPlitude Scaling
(GAMPS) [6], Self-Based Regression (SBR) [4] and RIDA [14], among which,
only GAMPS can guarantee the L∞ error bound, others are based on L2 error,
which is less desirable than L∞ in terms of time series compression.

GAMPS [6] groups series and approximates series in each group with base and
ratio series together. To deal with the fluctuation of data correlation, it dynami-
cally split series into variable windows and compress subsequence in each window
sequentially. Although both series and ratio series of GAMPS can be stored with
less cost, the compression ratio may be not satisfactory, GAMPS splits ε into
two parts, one for base series and the other for ratio signals. This mechanism
makes GAMPS needs more clusters and segments, which causes higher storage
cost. Time series clustering is an embedded task in our approach, and there exist
many techniques of clustering time series [5]. However, they cannot be applied
in our approach due to the different clustering target.

8 Conclusion and Future Work

In this paper, we propose a new framework to compress multiple time series.
We first propose a new representation model. Then two graph-based algorithms,
MTSCmc and MTSCstar, are proposed to compress multiple series. Moreover,
a concise form of base series is used to further improve the compression quality.
Experimental results show that our approach outperforms existing ones greatly.

In the future, we aim to extend the mechanism of fixed-length window to
dynamic window lengths, to leverage the data characteristics.
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1 Introduction

In recent years, the primary media for information propagation have been shift-
ing to online media, such as social networks, search engines, web portals, etc. A
vast number of studies have been conducted to analyze the event disseminations
comprehensively on single medium [11,12,23]. In fact, an event is less likely to be
captured only by single platform, and popular events are usually disseminated
on multiple media.

We model the event dissemination trends as Event Popularity Time Series
(EPTS) at any given temporal resolution. Inspired by the observation that the
diversity of the media and their mutual influences cause the EPTSs to be tem-
porally warped, we seek to identify the alignment between pairwise EPTSs to
support deeper analysis.

We propose a novel scheme called DancingLines to depict event popularity
from pairwise media and quantitatively analyze the popularity trends. Danc-
ingLines facilitates cross-platform event popularity analysis with two innova-
tive models, TF-SW (Term Frequency with Semantic Weight) and ωDTW-CD
(ωeighted Dynamic Time Warping with Compound Distance).

TF-SW is a semantic-aware popularity quantification model based on
Word2Vec [16] and TextRank [15]. The model first discards the words unrelated
to certain events; then utilizes semantic and lexical relations to get similarity
between words and highlights the semantically related ones with a contribu-
tive words selection process. Finally based on similarity, TextRank gives us the
importance of each word, then the popularity of a certain event. EPTSs gener-
ated by TF-SW are able to capture the popularity trend of a specific event at
different temporal resolutions.

ωDTW-CD is a pairwise EPTSs alignment model using an extended Dynamic
Time Warping method. It generates sequence of matches between temporally
warped EPTSs.

Experimental results on eighteen real-world datasets from Baidu, the most
popular search engine in China, and Weibo, Chinese version of Twitter, validate
the effectiveness and applicability of our models. We demonstrate that TF-SW is
in accordance with real trends and sensitive to burst phases, and that ωDTW-CD
successfully aligns EPTSs. The model not only gives an excellent performance,
but also shows superior robustness. In all, DancingLines has broad application
potentials to reveal knowledge of various aspects of cross-platform events and
social media.

The rest of this paper is organized as follows. In Sect. 2, related work is
discussed. In Sect. 3, we define the problem. In Sect. 4, we introduce the overview
of DancingLines. The two models TF-SW and ωDTW-CD are discussed in
details respectively in Sects. 5 and 6. Section 7 verifies DancingLines on real-
world datasets from Weibo and Baidu. Finally, we conclude the paper in Sect. 8.
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2 Related Work

Event Popularity Analysis. Many researches [1,10,19,22] have focused on
event evolution analysis for a single medium. The event popularity was evalu-
ated by hourly page view statistics from Wikipedia in [1]. [10] chose the density-
based clustering method to group the posts in social text streams into events and
tracked the evolution patterns. Breaking news dissemination is studied via net-
work theory based propagation behaviors in [13]. [22] proposed a TF-IDF based
approach to analyze event popularity trends. In all, network-based approaches
usually have high computational complexity, while frequency-based methods are
usually less accurate on reflecting the event popularity.

Cross-Platform Analysis. From a cross-platform perspective, existing
researches focus on topic detection, cross-social media user identification, cross-
domain information recommendation, etc. [2] selected Twitter, New York Times
and Flickr to represent multimedia streams, and provided an emerging topic
detection method. An attempt, trying to combine Twitter and Wikipedia to do
first story detection, was discussed in [18]. [26] proposed an algorithm based
on multiple social networks like Twitter, and Facebook to identify anonymous
identical users. The relationship between social trends from social network and
web trends from search engine are discussed in [5,9]. Recently, a good prediction
of social links between users from aligned networks using sparse and low rank
matrix is well discussed in [24]. However, few studies have been conducted for
popularity analysis from cross-platform perspective.

Dynamic Time Warping. DTW is a well-established method for similarity
search between time series. Originating from speech pattern recognition [20],
DTW has been effectively implemented in many domains [5]. Recently, remark-
able performance on time series classification and clustering by combining KNN
classifiers have been achieved in [4,14]. The well-known Derivative DTW is pro-
posed in [8]. Weighted DTW [7] was designed to penalize high phase differences.
In [21], the side effect of endpoints which tends to disturb the alignments dra-
matically in time series is confirmed and an improvement for eliminating such
issue is proposed. We are inspired by these related works when designing our
own DTW based model for aligning EPTSs.

3 Problem Formulation

3.1 Event Popularity Quantification

We start from dividing the time span T of an event into n periods, which is deter-
mined by the time resolution, each stamped with ti, T = 〈t1, · · · , tn〉. A record is
a set of words preprocessed from datasets, such as a post from social networks or
a query from search engines. Then, we use the notation wi

k to represent, within
time interval ti, the kth word in a record. The notation Ri

j = {wi
1, w

i
2, · · · , wi

|Ri
j |}

is the jth record within time interval ti. An event phase, corresponded to ti and
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denoted as Ei, is a finite set of words, and each word is from a related record
Ri

j . As a result Ei =
⋃

j Ri
j .

We can now introduce the prototype of our popularity function pop(·). For a
given word wi

k ∈ Ei, the popularity of the word wi
k is defined as

pop(wi
k) = fre(wi

k) · weight(wi
k), (1)

where fre(wi
k) is the word frequency of wi

k within ti. The weight function,
weight(wi

k), for a word within ti, is the kernel we solve in the TF-SW part
and is the key to generate event popularity. In this work, we propose a weight
function not only utilizing the lexical but also semantic relationships. Details
about how to define the weight function is discussed in Sect. 5.

Once we get popularity of word wi
k within ti, the popularity of an event phase

Ei, pop(Ei), can be generated by summing up all words’ popularity,

pop(Ei) =
∑

wk
i ∈Ei

pop(wi
k). (2)

We regard the pair (ti, pop(Ei)) as a point on X-Y plane and get a series of
points, formalizing a curve on the plane to reflect the dissemination trend of an
event E .

To compare the curves from different media, a further normalization is
employed,

pop(Ei) =
pop(Ei)∑

1≤k≤n

pop(Ek)
. (3)

After the normalization, the popularity trend of an event on a single medium
is represented by a sequence, denoted as E = 〈pop(E1), · · · , pop(En)〉, which is
defined as Event Popularity Time Series.

3.2 Time Series Alignment

Two EPTSs generated from two platforms of an event E are now comparable
and can be visualized in a same X-Y plane as Fig. 1, which shows normalized
EPTSs of Event Sinking of a Cruise Ship generated from Baidu and Weibo.
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Fig. 1. Normalized EPTSs, Sinking of a Cruise Ship (Color figure online)
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A Chinese cruise ship called Dongfang Zhi Xing sank into Yangtze River on the
night of June 2, 2015 and the following process lasted for about 20 days. X-axis
in Fig. 1 represents time and Y-axis indicates the event popularity. If we shifted
the orange EPTS, generated from Weibo, to the right for about 4 units, we would
notice the blue one approximately overlaps the orange one. This phenomenon
indicates a temporal warp, which means the trend features are similar, but there
exists time differences between EPTSs.

According to Fig. 1, EPTSs are temporally warped. For example, entertain-
ment news tends to be disseminated on social networks and can easily draw
extensive attention, but its dissemination on serious media like Wall Street Jour-
nal is very limited. Another interesting feature is the time differences between
EPTSs, the degree of temporal warp, which reveals events’ preferences to media.
Alignments of EPTSs are quite suitable to reveal such interesting features.

Two temporally-warped EPTSs of an event E from two media A and B, are
denoted as E ∗ = 〈pop(E∗

1 ) · · · , pop(E∗
n)〉, where E ∗ represents either E A or E B.

A match mk between EA
i and EB

j is defined as mk = (i, j). Distance between
two matched data points is denoted as dist(mk) or dist(i, j).

There is one problem, twist, existing when there are two matches mk1 =
(i1, j1), mk2 = (i2, j2) with i1 < i2, but j1 > j2. The reason why there cannot
be twist is that time sequence and the evolution of events cannot be reversed.

EPTS alignment aims to find a series of twist-free matches M =
{m1, · · · ,m|M |} for two E A and E B that every data point from an EPTS has
at least one counterpoint from the other one, and the cumulative distance is the
minimum. An intuitive thinking about an optimal alignment is that it should
be a feature-to-feature one and differences between aligned EPTSs should be as
small as possible. The minimum cumulative distance satisfy these two require-
ments. The key of alignments is to define a specific, precise, and meaningful
distance function dist(·) for our task, which will be fully discussed in Sect. 6.3.

4 Scheme Overview of DANCINGLINES

The overview of DancingLines is illustrated in Fig. 2. We first preprocess the
data, then implement the TF-SW and ωDTW-CD models, and finally apply our
scheme to real event datasets.

Data Preprocessing is applied on the raw data and has three steps. First
of all, in Data-Formatting step, we filter out all irrelevant characters, such as
punctuation, hyper links, etc. Secondly, Stopword-Removal step cleans frequently
used conjunctions, pronouns and prepositions. Finally, we split every record into
words through Word-Segmentation step.

TF-SW is a semantic-aware popularity quantification model based on
Word2Vec and TextRank to generate EPTSs at certain temporal resolutions.
This model is established by three steps. First of all, a cut-off mechanism is pro-
posed to filter the unrelated words. Secondly, we construct TextRank graph to
calculate the relative importance for the remaining words. Finally, a synthesized
similarity calculation is defined for the edge weights in TextRank graph. We find
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Fig. 2. The overview of DancingLines Scheme

that only the words with both high semantic and lexical relations with other
ones truly determine the event popularity. For that, a conception contributive
words is defined and will be discussed in Sect. 5.

ωDTW-CD is a pairwise EPTSs alignment model derived from DTW. In
this model, we innovatively define three distance function for DTW, event phase
distance distE (·), derivative distance distD (·), and Euclidean vertical line dis-
tance distL (·). Based on these three distance function, a compound distance is
generated. A temporal weight coefficient is also introduced into the model for
improving the alignment results. We further introduce these in detail in Sect. 6.

5 Semantic-Aware Popularity Quantification Model
(TF-SW)

5.1 Filtering Unrelated Words

Since the number of distinct words for an event can be thousands of hundreds and
there are tons of them actually not related to the event at all, it is too expensive
to take them all into account. We propose a cut-off threshold mechanism to
eliminate these unrelated noisy words and significantly reduce the complexity of
whole scheme.

In fact, natural language corpus approximately obey the power law distribu-
tion and Zipf’s Law [17]. Denoting r as the frequency rank of a word in a corpus
and f as the corresponded word’s frequency, then

f = H · r−α, (4)

where α and H are feature parameters for a specific corpus.
Since the words with high frequency is the necessary but not sufficient con-

dition for those words to really reflect the actual event trends, an interesting
question that where the majority of distribution of r lies is raised. For any
power law with exponent α > 1, the median is well defined [17]. That is, there
is a point r1/2 that divides the distribution in half so that half the measured
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values of r lie above r1/2 and half lie below. In our case, r as rank, its minimum
is 1, and the point is given by

∫ ∞

r1/2

f dr =
1
2

∫ ∞

rmin

f dr ⇒ r1/2 = 21/(α−1)rmin = 21/(α−1). (5)

Emphasis should be placed on the words that rank ahead of r1/2, and the
words within the long tail which are occupied by noise should be discarded. Thus
cut-off threshold can now be defined as

th = H · r−α
1/2 =

1
2

· H · 21/(1−α) (6)

Through this filter, we dramatically reduce the whole complexity of the
scheme. For Event AlphaGO, the words we need to consider for Baidu reduce
from thousands to around 40 and the ones for Weibo reduce to about 350, so
the complexity has been reduced by at least 3 orders of magnitude.

5.2 Construction of TextRank Graph

After filtered through threshold, the remaining words are regarded as the rep-
resentative words that do matter in quantifying the event popularity. However,
for the remaining words, the importances are still obscure. They cannot just be
naively presented by words’ frequency, as a result we introduce TextRank [15]
into our scheme.

For our task here, vertex in TextRank algorithm stands for a word that has
survived the frequency filter in Sect. 5.1 and we use undirected edges in TextRank
instead of directed edges in PageRank, since the relationships between words are
bidirectional.

Inspired by the idea of TextRank, we further need to define the weights
of edges in the graph described above. We introduce a conception similarity
between words wi and wj , denoted as sim (wi, wj) for the edges’ weights.

However, we notice that there exist some words which passed the first filter
but having negative similarity with all the other remaining words, which means
these words are semantically far away from the topic of events. This phenomenon,
in fact, indicates the existence of paid posters who post a large number of unre-
lated messages especially on social networks. To address this problem, we focus
on the really related words and define a conception contributive words, denoted
as

Ci = {wi
j ∈ Ei | ∃wi

k ∈ Ei, sim(wi
k, wj

k) > 0} (7)

and C =
⋃

Ci. It is worth pointing out that this another filter-like process does
not increase any computational complexity and we just do not establish edges
when their weights are less than zero, then the non-contributive words will be
discarded.

We construct a graph for each event phase Ei, where vertices represent the
words and edges refer to their similarity sim(wi, wj). We run the TextRank
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algorithm on the graphs and then get the real importance of each contributive
word, TR(wi). The formula for TextRank is defined as

TR(wi) =
1 − θ

|C | + θ ·
∑

j→i

sim(wi, wj)∑

k→j

sim(wk, wj)
· TR(wj), (8)

where the factor θ, ranging from 0 to 1, is the probability to continue to random
surf follow the edges, since the graph cannot be a perfect graph and face potential
dead-ends and spider-straps problem in practice. According to [15], θ is usually
set to be 0.85. |C | represents the number of all contributive words, and j → i
refer to words that is adjacent to word wi.

5.3 Similarity Between Words

In our view, similarity between words are contributed by their semantical and
lexical relationships and these two parts will be discussed in this subsection.

First of all, to quantify words’ semantic relationships, we adopt
Word2Vec [16] to map word wk to vector wk. To comprehensively reflect the
event characteristics, we integrate two corpora, an event corpus R from our
datasets and a supplementary corpus extracted from Wikipedia with a broad
coverage of events (denoted as Wikipedia Dump, or D for short), to train our
Word2Vec models. For a word wk, the corresponding word vectors are wR

k and wD

k

respectively. Both event-specific and general semantic relations between words
wi and wj are extracted and composed by

sem(wi, wj) = β · wR

i · wR

j

‖wR

i ‖ · ‖wR

j ‖ + (1 − β) · wD

i · wD

j

‖wD

i ‖ · ‖wD

j ‖ , (9)

where β is related to the two corpora and determines which one and to what
extent we would like to emphasize.

Secondly, we consider the lexical information and integrate the string simi-
larity so that we can combine the

sim(wi, wj) = γ · sem(wi, wj) + (1 − γ) · str(wi, wj), (10)

where we introduce a parameter γ to make our model general to different lan-
guages. For example, words that look similar are likely to be related in English,
while this likelihood is fairly limited for languages like Chinese. We adopt the
efficient cosine string similarity as

str(wi, wj) =

∑

cl∈wi∩wj

num(cl, wi) · num(cl, wj)
√ ∑

cl∈wi

num(cl, wi)2 ·
√ ∑

cl∈wj

num(cl, wj)2
, (11)

where num(cl, wi) means counts of character cl in word wi.
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5.4 Definition of Weight Function

Since the sum of vertices’ TextRank values for a graph is always 1 regardless
of the graph scale, the TextRank value tends to be lower when there are more
contributive words within the time interval. Therefore, a compensation factor
within each event phase Ei is multiplied to the TextRank values, and the weight
function weight(·) for contributive words is finally defined as

weight(wi
j) =

TR(wi
j)

|Ci| ·
∑

wi
k∈Ei

fre(wi
k). (12)

Recalling that in our scheme, the event popularity pop(Ei) is the sum of
popularity of all words, for the consistency of Eq. (1), we make the weight
function for the non-contributive words identically equal to zero. Then for all
words, popularity can be calculated through Eq. (1). For each event phase Ei,
according to Eq. (2), we can generate the event popularity within ti and EPTSs
through Eq.(3).

6 Cross-Platform Analysis Model (ωDTW-CD)

6.1 Classic Dynamic Time Warping with Euclidean Distance

We find that, with only the global minimum cost considered, classic DTW with
Euclidean distance may provide results suffering from far-match and singularity
problems when aligning pairwise cross-platform EPTSs.

Far-Match Problem. Classic DTW disregards the temporal range, which may
lead to “far-match” alignments. Since the EPTSs of an event from different
platforms keep pace with the event’s real-world evolution, alignment of EPTSs’
data points that are temporally far away is against the reality. Thus, classic
method should be more robust and Euclidean Distance is not ideal enough for
EPTS alignment.

Singularity Problem. Classic DTW with Euclidean distance is vulnerable to
the “singularity” problem elaborated in [8], where a single point in one EPTS is
unnecessarily aligned to multiple points in another EPTS. These singular points
will generate misleading results for further analysis.

6.2 Event Phase Distance

Recalling Eq. (7) that all the contributive words for an event phase Ei are
denoted as Ci and C is a set of all contributive words for an event E on single
medium, we can utilize the similarity between the contributive word sets Ci to
match those event phases. To quantify this similarity, we propose our event phase
distance measure. Distance between EA

i and EB
j is denoted as distE (i, j).

Since C for different platforms are probably not identical, let the general
C ′ = CA ∪ CB . Then, each word list Ci can be intuitively represented as a
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one-hot vector zi ∈ {0, 1}|C ′|, where each entry of vectors indicates whether
corresponding contributive word exists in word list Ci. However, problem arises
when calculating the similarity between these very sparse vectors, especially
when the event corpus is of a large scale and there are huge amount of data
points in EPTSs. To address this problem, we leverage SimHash [3], adapted
from locality sensitive hashing (LSH) [6], to hash the very sparse vectors to small
signatures while preserving the similarity among the words.

According to [3], s projection vectors r1, r2, · · · , rs are selected at random
from the |C ′|-dimensional Gaussian distribution. A projection vector rl is actu-
ally a hash function that hashes a one-hot vector zi generated from Ci to a
scalar −1 or 1. s projection vectors hash the original sparse vector zi to a small
signature ei, where ei is an s-dimensional vectors with entries equal to −1 or 1.
Sparse vectors zA

i and zB
j can be hashed to eA

i and eB
j and the distance between

these two points can be calculated by

distE (i, j) = 1 − eA
i · eB

j

‖eA
i ‖ · ‖eB

j ‖ . (13)

The dimension of short signatures, s, can be used to tune the accuracy we
want to remain versus the low complexity. If we want to dig some subtle infor-
mation in a high temporal resolution, say half an hour, we should increase s to
get more accuracy, while if we just want to have a glimpse of the event, a small
s is reasonable.

6.3 The ωDTW-CD Model

To more comprehensively measure the distance between data points from two
EPTSs, a ωeighted DTW method with Compound Distance (ωDTW-CD) is
proposed to balance temporal alignment and shape-matching. ωDTW-CD tries
to synthesize trend characters, Euclidean vertical line distance, and event phase
distance all together and this overall distance is measured by compound distance
distC (i, j),

dist (i, j) = distC (i, j) + ωi,j . (14)

We regard the difference between estimated derivative of EPTS points,
distD (i, j), as the trend characters distance. According to [8], distD (i, j) gener-
ated by

distD (i, j) =
∣
∣D(EA

i ) − D(EB
j )

∣
∣ , (15)

where the estimated derivative D(x) is calculated through

D(x) =
xi − xi−1 + xi+1−xi−1

2

2
. (16)

As stated in [8], this estimate is simple but robust to trend characters com-
pared to other estimation methods. The compound distance distC (i, j) is gen-
erated by

distC (i, j) = 3

√
distE (i, j) · distL (i, j) · distD (i, j), (17)
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where distE (i, j) is the event phase distance and distL (i, j) is the Euclidean
vertical line distance between data points EA

i , EB
j defined as distL (i, j) = |EA

i −
EB

j |. For the purpose of flexibility [7], we introduce a sigmoid-like temporal
weight

ωi,j =
1

1 + e−η(|i−j|−τ)
. (18)

The temporal weight is actually a special cost function for the alignment in
our task. It has two parameters, η and τ , to generalize for many other events
and languages. Parameter η decides the overall penalty level, which we can tune
for different EPTSs. Factor τ is a prior estimated time difference, having the
same unit as the temporal resolution we choose, between two platforms based
on the natures of different medias.
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Fig. 3. Visualization of ωDTW-CD, Sinking of a Cruise Ship

A visualization is showed in Fig. 3a and it gives a direct way to know how the
data points from EPTSs are aligned. The links in the figure represent matches.
The lead-lag stripes [25] in Fig. 3b show a more obvious way to know matches.
The X-axis represents time and the stripes’ vertical width indicates the event
popularity in that day. We can find that after the Event Sinking of a Cruise
Ship happens, the Weibo platform captured and propagated the topic faster
than Baidu did in the beginning and then more people started to search on the
Baidu for more information so the popularity on Baidu rose.

7 Experiments

7.1 Experiment Setup

Datasets. Our experiments are conducted on eighteen real-world event datasets
from Weibo and Baidu, covering nine most popular events that occurred from
2015 to 2016. All the nine events covered in our datasets have provoked intensive
discussions and gathered widespread attention. In addition, they are both typical
events in distinct categories including disasters, high-tech stories, entertainment
news, sports and politics. The detailed information of our datasets is listed in
Table 1.
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Table 1. Overall information of the datasets

No. Event name # of records (k) Size (MB)

Weibo Baidu Weibo Baidu

1© Sinking of a Cruise Ship 308.45 1560.4 320.59 401.48

2© Chinese Stock Market Crash 701.71 420.40 578.77 74.14

3© AlphaGo 838.12 2337.3 654.89 406.83

4© Leonardo DiCaprio, Oscar Best Actor 2569.5 730.82 1788.9 139.52

5© Kobe Bryant’s Retirement 3655.3 2300.9 2274.8 403.69

6© Huo and Lin Went Public with Romance† 1535.2 1615.2 1027.1 289.98

7© Brexit Referendum 957.16 2160.4 715.51 392.32

8© Pokémon Go 936.38 3652.2 695.90 625.87

9© The South China Sea Arbitration 7671.0 7815.3 5918.2 1451.9

Implementation and Parameters. We implement CBOW when doing
Word2Vec [16]. The parameters involved in TF-SW are set to be β = 0.7, with
γ = 0.02 considering the nature of Chinese language, that there are many dif-
ferent characters but almost no meaning changes on words. The factor for Tex-
tRank is set to be θ = 0.85 by convention. Without specification, we set each
time interval to be 1 day. The corresponding parameters for the sigmoid-like
temporal weight are set as η = 10, τ = 2.

7.2 Verification of TF-SW

To evaluate the effectiveness of TF-SW, we compare the EPTS generated by our
model with the EPTSs by other two baselines, naive frequency and TF-IDF [22].
All the EPTSs generated by Naive Frequency and TF-IDF are normalized in the
same way as TF-SW through Eq. (3). Based on the three generated EPTSs, we
present a thorough discussion and comparison to validate our TF-SW model.

Accuracy. We pick up the peaks in EPTSs and backtrack what exactly hap-
pened in reality. An event is always pushed forward by series of “little” events
and we call them sub-events, which are reflected as peaks in EPTS figures.

In the Event Capsizing of a Cruise Ship, the real-world event evolution
involves four key sub-events. On the night of June 1, 2015, the cruise ship sank
in a severe thunderstorm. Such a shocking disaster raised tremendous public
attention on June 2. On June 5, the ship was hoisted and set upright. A mourn-
ing ceremony was held on June 7, and on June 13, total 442 deaths and only 12
survivors were officially confirmed, which marked the end of the rescue work.

The EPTS generated by TF-SW shows four peaks, which is illustrated in
Fig. 4. All these peaks are highly consistent with the four key sub-events in real
world, while the end of rescue work on June 13 is missed by approaches based
on Naive Frequency and TF-IDF. In conclusion, TF-SW model shows the ability
to track the development of events precisely.
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Fig. 4. Sinking of a Cruise Ship, Weibo
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Sensitivity to Burst Phases. Compared with the baselines, our model are
more sensitive to the burst phases of an event, as is shown in Fig. 5, especially
on data points 07/06, 07/08, and 07/11. The event popularity on these days are
larger than those obtained by Naive Frequency and TF-IDF. In another word,
the EPTSs generated through TF-SW rises faster, more significant in peaks,
and are more sensitive to breaking news which enables the model to capture the
burst phases more precisely. From three EPTSs of TF-SW with different th, it
is shown that TF-SW is more sensitive to the burst of events with a higher th
value, as is shown by the data point 07/06.

An event whose EPTS rises fast at some data points possesses the potential
to draw wider attention. It is reasonable for a popularity model not only to
depict the current state of event popularity, but also take the potential future
trends into consideration. In this way, a quick response to the burst phases of an
event is more valuable for real-world applications. This advantage of our model
can lead to a powerful technique for first story detection on ongoing events.

Superior Robustness to Noise. To verify whether our model can effectively
filter out noisy words, we further implement an experiment on a simulated cor-
pus. We first extract 50K Baidu queries with the highest frequency in the corpus
of Event Kobe’s Retirement and make them as the base data for a 6-day simu-
lated corpus. Then we randomly pick noisy queries from Internet that are not
relevant to Event Kobe’s Retirement at all. The amount of noisy queries is listed
in Table 2.

Table 2. Number of noisy records added to each day

Day 1 2 3 4 5 6

# (k) 0.000 1.063 2.235 3.507 4.689 6.026

Since each day’s base data are identical, a good model is supposed to filter
noisy queries out and generate an EPTS with all identical data points, which
form a horizontal line in X-Y plane. EPTSs generated by TF-SW, Naive Fre-
quency and TF-IDF are shown in Fig. 6. It is shown that TF-SW successfully
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filters out the noise and generates the EPTS which is a horizontal line and cap-
tures the real event popularity, while the other two methods Naive Frequency
and TF-IDF are obviously effected by the noisy queries and generate EPTSs
that cannot accurately reflect the event popularity.

Fig. 6. EPTSs on the simulated corpus

7.3 Verification of ωDTW-CD

To demonstrate the effectiveness of ωDTW-CD, we compare it with seven dif-
ferent DTW extensions listed below.

– DTW is the DTW method with Euclidean distance.
– DDTW [8] is the Derivative DTW which replaces the Euclidean distance with

the difference of estimated derivatives of the data points in EPTSs.
– DTWbias & DDTWbias are the extended DTW and DDTW respectively with

a bias towards the diagonal direction.
– ωDTW & ωDDTW are the temporally weighted DTW and DDTW, where

the sigmoid-like temporal weight defined by Eq. (18) is introduced to the cost
matrices.

– DTW-CD is a simplification of wDTW-CD that implements only distC with-
out temporal weight ω.

Singularity. Fig. 7 visualizes the results generated by ωDTW and our proposed
model. Classic DTW and DTWbias severely suffer the problem of singularity.
Compared with ωDTW, ωDTW-CD presents better and more stable perfor-
mance when aligning the time series with sharp fluctuations. In general, our
model is capable of avoiding the singularity problem by involving the derivative
differences.

Far-Match. Considering the fact that the time difference between two aligned
sub-event can barely exceed two days, far-match exists in the alignment gener-
ated by DDTWbias and DTW-CD in Fig. 8, but not in our results in Fig. 3a.
Thus, the sigmoid-like temporal weight introduced to our model helps avoid the
far-match problem.
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Fig. 7. Alignment results of 2 methods, AlphaGo. One data point is categorized as a
singular point if it is matched to more than 4 points from the other EPTS.

Fig. 8. Alignment results of 2 methods, Sinking of a Cruise Ship

Overall Performance. All the comparison results on the eighteen real-world
datasets are illustrated in Fig. 9, where each color corresponds to a method, each
method are ranked respectively for each event, and methods with higher grades
are ranked on the top. Results facing singularity or far-match are marked by red
boxes. The performances are graded under the following criteria. The grades are
given to show the relative performances among different methods only regarding
one event. The method that does not suffer from singularity or far-match has
higher grades than the one that does. The methods giving same alignment results
are further graded considering their complexity.

Fig. 9. Ranking visualization of grades for 10 methods on nine real-world events. (Color
figure online)
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In comparison with existing variants of DTW as well as the reduced ver-
sion of our method, ωDTW-CD achieves improvements on both performance
and robustness on alignment generation and successfully conquers the prob-
lem of singularity and far match. Results shows that the event phase distance,
estimated derivative difference, and the sigmoid-like temporal weight simulta-
neously contribute to the performance enhancement of ωDTW-CD. Moreover,
with parameter η and τ , our model is flexible to different temporal resolutions
and to events of distinct popularity features. In Fig. 9, ωDTW-CD1 corresponds
to η = 5, τ = 3.2. η = 10, τ = 2 is for ωDTW-CD2. η = 5, τ = 2.2 is
for ωDTW-CD3. The results show the strong ability of ωDTW-CD to handle
specific events.

8 Conclusion

In this paper, we quantify and interpret event popularity between pairwise text
media with an innovative scheme, DancingLines. To address the popularity
quantification issue, we utilize TextRank and Word2Vec to transform the corpus
into a graph and project the words into vectors, which are covered in TF-SW
model. To furthermore interpret the temporal warp between two EPTSs, we
propose ωDTW-CD to generate alignments of EPTSs. Experimental results on
eighteen real-world event datasets from Weibo and Baidu validate the effective-
ness and applicability of our scheme.
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Abstract. With the rapid expansion of communication data, research
about analyzing social networks has become a hotspot. Finding the short-
est path (SP) in social networks can help us to investigate the potential
social relationships. However, it is an arduous task, especially on large-
scale problems. There have been many previous studies on the SP prob-
lem, but very few of them considered the peculiarity of social networks.
This paper proposed a community structure based method to acceler-
ate answering the SP problem of social networks during online queries.
We devise a two-stage strategy to strike a balance between offline pre-
computation and online consultations. Our goal is to perform fast and
accurate online approximations. Experiments show that our method can
instantly return the SP result while satisfying accuracy constraint.

Keywords: Shortest path · Social network · Community structure

1 Introduction

Social network analysis is aimed at quantifying social networks and discovering
the latent relationships among social actors, in which social networks can be
modeled as a weighted graph G = (V,E), where vertices in V represent social
entities (such as individuals or organizations), edges in E represent relationships
between entities. And the closer the two entities are connected, the greater the
weight of the edge. Finding the SP in social graphs can help to analyzing social
networks, such as information spreading performance and recommendation sys-
tems. However, finding the exact SP cannot be adopted for real-world massive
networks, especially in online applications where the distance must be provided
in a few milliseconds. Thus, this paper focuses on finding a path with a relatively
minimum cost in a very short time.

Social networks are often complex and possess some special properties [5]:
(i) community property, which is also referred to as the small-world property.
Connections between the vertices in a community are denser and closer than
connections with the rest of the network. (ii) scale-free, there can be a large
variety of vertices degrees. (iii) six degrees of separation, the interval between
c© Springer Nature Switzerland AG 2018
S. Hartmann et al. (Eds.): DEXA 2018, LNCS 11029, pp. 303–319, 2018.
https://doi.org/10.1007/978-3-319-98809-2_19
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any two social individuals will not exceed six hops. The SP problem has been
studied for many years, most are two-stage methods recently [2,6–17,21,22],
which provide a tradeoff among space, preprocessing time, querying time, and
accuracy. However, rarely are they particularly designed for social networks.

Due to the community property of social networks, we can focus on the con-
nections between communities when searching the SP between two entities. In
addition, we distinguish vertices’ roles in community. There is a group of peo-
ple who serve as bridges to connect people inside and outside the community,
are denoted as interface vertices. For example, in Fig. 1, the number on each
edge indicates the edge length, which is the distance between two vertices. If
{v1, v2, v3, v6, v7} want to visit {v9, v10, v11, v12}, they must go through interface
vertices {v4, v5, v8}. {v8} is a special class of interface vertices, which belongs to
both communities, is denoted as hub vertex. Besides, outlier vertex {v1} must
go through its only neighbor {v2} to access other vertices. In the following, we
pay attention to interface vertices which play crucial roles in SP. Chang et al.
[1] develop a pSCAN method for scalable structural graph clustering, which dis-
tinguishes the different roles of the vertices in the community. However, pSCAN
is designed for unweighted graph. Since edge’s weight between two vertices can
indicate the closeness between two entities, and can reveal more information for
social networks, research on weighted graph is more suitable for social networks.
Thus this paper develops wSCAN based on pSCAN: we fix the computation
method of the structural similarity for every pair of adjacent vertices.

Fig. 1. Different roles of vertices in two adjacent communities

In this paper, we propose a method to find the shortest path based on com-
munities (SPBOC) with two phases: preprocessing and online querying. During
the preprocessing step, we construct a sketch of the graph, which is defined as
the super graph SG. Specifically, each community in graph G corresponds to a
super vertex in SG, and the relationship between communities corresponds to a
super edge in SG. At query time, given two vertices s, t ∈ G, we first find the
SP between the super vertices that contain s and t respectively. Then the search
can narrow down to all the vertices contained by the super vertices on this path.
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Our primary contributions are summarized as follows.

1. We propose the concept of super graph in social network, which is based
on the result of clustering the original graph, but much smaller scale. In
order to cluster weighted social networks, we propose a fast structural clus-
tering method wSCAN. What’s more, during preprocessing we: (i) compute
the shortcuts between all pairs of interface vertices within a super vertex,
(ii) estimate the distances between adjacent super vertices, and (iii) attach
labels to each super vertex, so that at query time, we can find out the reach-
ability and the SP between any two super vertices in O(1), and then only
focus on the interface vertices of all the super vertices on the SP.

2. We present an approximate SP approach for social networks. This paper
draws conclusions from two observations. For two vertices in the same com-
munity, SP can be found within the community. For two vertices in different
communities, the shortest distance can be estimated by the shortest distance
between the communities. By the aid of the pretreatment, the result can be
returned in O(nconlogncon), where O(ncon) is the size of a single community.

3. We propose three optimizations of which the first one is to reduce the error
rate and the next two are to accelerate the query. At query time we: (i) expand
the SP in SG to include the neighbors within one hop for each super vertex,
(ii) deal with oversized and isolated communities after clustering, (iii) prune
some vertices by predicting the distance towards the target. Pruning can
reduce the analysis of many vertices that have little chance to be on the SP.

4. We conduct extensive empirical studies on real social networks and synthetic
graphs. Experiments show that SPBOC shows a good mediation between pre-
computation and online query. It can greatly trim the search vertices range
and answer SP queries very effectively in social networks, especially after the
optimizations. According to the statistical analysis, our algorithm performs
better on datasets with more obvious community nature.

The remainder of this paper is organized as follows. We briefly review related
work in Sect. 2. Section 3 introduces some general definitions used in this paper,
and discuss some observations and corollaries. We describe our algorithms in
Sect. 4 and the optimization techniques in Sect. 5. In Sect. 6, we present our
experiments results, and finally reach a conclusion in Sect. 7.

2 Related Work

The traditional Dijkstra algorithm [3] can solve the SP problems in O(n2), or
O(nlogn+m) when using Fibonacci heap. Bidirectional search [4] is an improve-
ment based on Dijkstra, which reduces the time complexity to O(n2/8) by start-
ing from both the source and the target. These methods do not have any pre-
treatment, makes it hard to work very well for large-scale social networks.

Afterwards, stimulated by the demands of applications, a lot of impres-
sive algorithms have been proposed. Most of these studies use pre-processing
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strategies to speed up queries, and they can be roughly divided into three cate-
gories: The first one is landmark-based methods [6–9,17,22], they select several
vertices as landmarks, which can be used to estimate the distance between any
two vertices in the graph. However, the global landmark selection tends to fail
to accurately estimate distances between close pairs, and the local landmark
selection has a poor scalability because of the extremely large space require-
ment. Particularly, [22] accelerate queries by using the small-world property of
complex networks, however, it is designed only for unweighted graphs.

The second one is label-based methods [10–12,21], which attaches additional
information to vertices or edges. Based on the information, the query decides
how to prioritize or prune vertices. These kind of methods can be very fast, but
they cannot handle billion-scale networks owing to the huge index size.

The third one is hierarchy-based methods [2,13–16], which constructs the
hierarchical structure of the graph. Then the SP query can be answered by
searching only a small part of the auxiliary graph. According to different appli-
cation scenarios, it can be further divided into the following three categories:
(i) road networks [13,14], which is based on the natural characteristics of the
road networks and is not applicable to other networks, (ii) general networks
[15,16], which constructing data structure that allows retrieval of a distance esti-
mate for any pair of vertices in O(1). However, the properties of social networks
cannot be exploited by common algorithmic techniques, (iii) social networks [2],
Gong et. al. in [2] suggests that when the distance between clusters is much
longer than the distance between vertices within the cluster, the latter can be
ignored. However, [2] is very sensitive to the community property of the datasets,
and has to restore the super graph to the original after finding the SP in the
super graph, which makes it take a long time to return results on large-scale
datasets.

3 Preliminaries

In this section we first list symbols and terms we use in this paper and their
corresponding meanings in Table 1, and then present some observations and
corollaries. Given a weighted graph G, we transform the weight function ω(e)
into a length function �(e) for each edge e, as shown in Table 1. Finding the SP
in G is to find the path with the minimum sum of �(e) for all edges on the path.
In the following, we refer s, t to be the two particular vertices that we aim to
find the SP within G, and let svs and svt be the communities that contain s, t
respectively.

For example, in Fig. 1, con(sv1) = {v1, v2, v3, v4, v5, v6, v7, v8}, bel(v1) =
{sv1}, con(sv1, sv2) = {(v8, v8), (v4, v10), (v5, v10)}, int(sv1, sv2) = {v4, v5, v8},
int(sv2, sv1) = {v8, v10}, hub(sv1, sv2) = {v8}, out(sv1) = {v1}.

Observation 1: The shortest distance between two vertices in adjacent com-
munities, is equal to the distance from two vertices to their interface vertices,
respectively, plus the distance between interface vertices. For example, in Fig. 1,
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Table 1. Notation

Terms, symbols Meaning

G = (V,E) Original social graph, where V is the set of vertices and E is the set of edges

n The number of vertices |V|
m The number of edges |E|
(u, v) ∈ E The edge between vertice u and v, where u, v ∈ V

ω(e) The nonnegative weight function for edge e

�(e) The length function for edge e, �(e) = max{ω(e1), ..., ω(em)} + 1 − ω(e)

SG = (SV, SE) Super graph generated based on the clustering result of G,

where SV is the set of super vertices and SE is the set of super edges

n̂ The number of super vertices |SV|
m̂ The number of super edges |SE|
con(sv) The set of vertices belong to sv, where sv ∈ SV

bel(v) The set of communities that v belongs to, where v ∈ V

con(sv1, sv2) The set of edges connect sv1 and sv2, where sv1, sv2 ∈ SV

�(sv1, sv2) The length function for super edge (sv1, sv2), where sv1, sv2 ∈ SV

int(sv1, sv2) The set of interface vertices from sv1 to sv2. If (u, v) ∈ con(sv1, sv2),

bel(u) = {sv1}, bel(v) = {sv2}, then u ∈ int(sv1, sv2), v ∈ int(sv2, sv1)

hub(sv1, sv2) The set of intersections of con(sv1) and con(sv2)

out(sv) The set of vertices ∈ con(sv), whose degree is 1

ncon The average number of vertices in a single super vertex

nint The average number of interface vertices in a single super vertex

pG(s, t) pG(s, t) =< s, u1, u2, ..., u�, t >, a path between s and t in G,

where {u1, u2, ..., u�} ∈ V and {(s, u1), (u1, u2), ..., (u�, t)} ∈ E

PG(s, t) The set of all paths from s to t in G

dG(s, t) The length of the path with the minimum sum of �(e)s from s to t in G

spG(s, t) A path whose length is equal to dG(s, t) from s to t

SPG(s, t) The set of paths whose length is equal to dG(s, t) from s to t

pSG(svs, svt) pSG(svs, svt) =< svs, sv1, sv2, ..., sv�, svt >, a path between svs and svt in SG

where {sv1, sv2, ..., sv�} ∈ SV and {(svs, sv1), (sv1, sv2), ..., (sv�, svt)} ∈ SE

dSG(svsS, svt) The length of the path with the minimum sum of �(se)s from svs to svt in SG

spSG(svs, svt) A path whose length is equal to dSG(svs, svt) from svs to svt

dG(v3, v12) = min{dG(v3, v4)+dG(v4, v10)+dG(v10, v12), dG(v3, v5)+dG(v5, v10)+
dG(v10, v12), dG(v3, v8)+dG(v8, v8)+dG(v8, v12)}. Consequently, dG(v3, v12) can
be indicated as the minimum combination of three phases: dG(v3, int(sv1, sv2)),
dG(int(sv1, sv2), int(sv2, sv1)), and dG(int(sv2, sv1), v12). Therefore, we need to
focus on interface vertices to find the SP between vertices within adjacent com-
munities.

Observation 2: The lengths of edges within the community are much smaller
than the edges between the communities. As we said, connections between the
vertices in a community are denser and closer than connections with the rest of
the network. In other words, the edges within communities have higher weights
and lower lengths than edges between communities. For example, in Fig. 1,
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dG(v7, v9) = dG(v7, v5)+dG(v5, v10)+dG(v10, v9) = 0.5+15+0.1 ≈ 15. The dis-
tance between communities can be used to represent the whole distance.

Corollary 1. For two vertices in the same community, the shortest path can be
found within the community.

Proof. According to Observation 2, the distance between communities is much
larger than the distance between vertices inside the community, which means
the shortest path between two vertices in the same community is unlikely to
cross the long distance between communities. Therefore, when it comes to two
vertices in the same community, we argue that the search scope can be narrowed
down to this community instead of the whole graph.

Corollary 2. For two vertices in different communities, the shortest distance
can be estimated by the shortest distance between the two communities.

Proof. Let us suppose that spG(s, t) =< s, u, t >, where u ∈ V, and u, s, t are
in different communities svu, svs, svt respectively. According to Observation 2,
dG(s, t) = dG(s, u)+dG(u, t) ≈ dSG(svs, svu) + dSG(svu, svt). The shortest path
between s and t can be estimated by the sum of the distances between the
participating communities.

Furthermore, in order to find spG(s, t), we firstly need to find spSG(svs, svt).
Suppose spSG(svs, svt)=< svs, sv1, sv2, ..., sv�, svt >, where {sv1, sv2, ..., sv�} ∈
SV, then the shortest distance between s and t can be estimated as:
dG(s, t) ≈ dSG(svs, sv1) + dSG(sv1, sv2) + ... + dSG(sv�, svt) = dSG(svs, sv1) +
∑�−1

i=1 dSG(svi, svi+1) + dSG(sv�, svt). Consequently, we think that spSG(S, T )
can help us find spG(s, t).

4 Our Approach

In this section, we will introduce our approach in detail on the basis of pre-
vious observations and corollaries. SPBOC is a two-stage strategy which seeks
the best balance between scalability (preprocessing time and space) and query
performance (query time and precision).

A. Preprocessing Phase
In this phase, we generate the super graph SG = (SV,SE). To be specific, we
(i) divide the graph into communities using structural clustering method. After
clustering, we consider each community as a super vertex, and the connections
between two super vertices as a super edge. Besides, (ii) for u, v ∈ int(sv),
sv ∈ SV, we compute the shortcuts between u and v, (iii) for svi, svj ∈ SV, we
estimate �(svi, svj), and (iv) for each sv ∈ SV, attach labels to sv. Next, we will
show our implementation methods in detail.

Structural Clustering Method for Weighted Graph: wSCAN
pSCAN [1] is a state-of-the-art graph clustering method, which is based on

the idea that vertices in the same community are more structural similar than the
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rest of the graph. For each vertex v adjacent to u, they compute the structural
similarity σ(u, v) between u and v in Eq. 1.

σ(u, v) =
|N [u]

⋂
N [v]|

√
d[u] · d[v]

(1)

where N [u] is the structural neighborhood of u, N [u] = {v ∈ V|(u, v) ∈ E}, and
d[u] is the degree of u, d[u] = |N [u]|. There shows a weighted graph in Fig. 2,
the number on each edge marks its weight. For vertex v2, N [v2] = {v4, v5, v6},
d[v2]=3. σ(v1, v2)=3/

√
3 ∗ 6=0.71. Similarly, σ(v1, v3) = 0.71.

Fig. 2. An example weighted graph Fig. 3. Estimate dG(v1, v2), dG(v1, v3)

Apparently, pSCAN does not consider edges’ weights when calculating
σ(u, v). In a weighted graph, for a common neighbor w ∈ N [u] ∩ N [v], the
weights between w and u, v are denoted by ω(u,w), ω(v, w), respectively. The
larger value of ω(u,w) and ω(v, w), the higher σ(u, v); the less difference value
between ω(u,w) and ω(v, w), the higher σ(u, v). In summary, if there are many
common neighbors between u and v, which are closely connect to both u and v,
then u,v have a great probability to be in the same community. Hence we pro-
pose a new method wSCAN based on pSCAN, in which we modify the formula
for calculating the structural similarity between two vertices, as shown in Eq. 2.

σ(u, v) =

∑
w∈N [u]∩N [v]((ω(u,w) + ω(v, w)) · φw(u, v))

d[u] + d[v]
(2)

φw(u, v) = 1 − |ω(u,w) − ω(v, w)
ω(u,w) + ω(v, w)

| (3)

where φw(u, v) evaluates the different between ω(u,w) and ω(v, w), as shown in
Eq. 3. The closer w is to the middle of two vertices, the larger φw(u, v). d[u] is the
sum of the weights of edges between u and its neighbors, d[u] = {∑

ω(u, v)|v ∈
N [u]}. For each w ∈ N [u]

⋂
N [v], σ(u, v) takes into account the value of the reci-

procity and weight, and is normalized at last. When we use wSCAN to compute
the structural similarity in Fig. 2, σ(v1, v2)= (30+30+30)/(45+45.3)=0.997,
σ(v1, v3)=(0.2+0.2+0.2)/(45+45.3)= 0.007, obviously, v1 and v2 are more likely
to be in same community than v1 and v3. After clustering, we convert the weight
function ω(e) into a length function �(e), to further process the subsequent anal-
ysis. Note that a larger ω(u, v) means a closer connection between u and v,
resulting in a less distance between u and v, as indicated by �(e) in Table 1.
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Estimation for All Pairs of Interface Vertices: Shortcuts
For all sv ∈ SV, the time complexity to compute the exact SPs between all

interface vertices within sv is O(n̂n2
connint), which is very expensive. Besides, the

difference among edges within a community is not much. So given s, t ∈ int(S),
we expand from s, t to neighbors until the intersection, as Eq. 4. Since we do not
update the SP based on the newly added shortcuts, we can quickly return the
estimation in O(n̂nconnint).

dG(s, t) =

{
dG(s, u) + dG(u, v) + dG(v, t), u ∈ N [s], v ∈ N [t]
dG(s, u) + dG(u, t), u ∈ N [s] ∩ N [t]

(4)

For example, in Fig. 3, the number on each edge indicates the distance
between two vertices. N [v1] = {v4, v5}, N [v2] = {v3}, N [v3] = {v2, v4},
N [v1] ∩ N [v3] = {v4}, so dG(v1, v3) = dG(v1, v4) + dG(v3, v4) = 0.7 + 0.5 =
1.2, dG(v1, v2) = dG(v1, v4) + dG(v3, v4) + dG(v2, v3) = 0.7 + 0.5 + 0.4 = 1.6.

Estimation for Length Function Between Adjacent Super Vertices
The length function of super edge directly impacts spSG(svs, svt), from where

we search spG(s, t). A good estimation of �(svs, svt) should reflect the estimated
distance between any two vertices in svs and svt, thereby improve the result’s
precision. We propose several length functions as below.

– SHORTEST: Let �(svs, svt) = d∗
G(e) ≤ dG(e), for edges e ∈ con(svs, svt).

– LONGEST: Let �(svs, svt) = d∗
G(e) ≥ dG(e), for edges e ∈ con(svs, svt).

– CENTRAL: The above methods do not consider the distance inside the com-
munity. Therefore, we think �(svs, svt) can be approximated as the average
distance from internal vertices to their interface vertices, respectively, plus
the average distance between communities’ interface vertices. Furthermore,
in order to simplify the process, we select a representative central vertex from
each set of interface vertices — landmark. In this paper, we simply use a land-
mark to replace the interface vertices while calculating. Finally, CENTRAL
calculates the length function in Eq. 5:

�(svs, svt) = avg(dG(s, lsvs,svt
)+dG(lsvs,svt

, lsvt,svs
)+avg(dG(t, lsvt,svs

) (5)

CB(u) =
∑

s,t,u∈V

ηst(u)
ηst

(6)

where s ∈ con(svs) and s /∈ out(svs), t ∈ con(svt) and t /∈ out(svt). lsvs,svt

is the vertex with the highest betweenness centrality in int(svs, svt), and has
not been chose as a landmark before. The betweenness centrality of the vertex
u is defined as CB(u) [17], where ηst denotes the number of SPs from s to
t, and ηst(u) denotes the number of SPs from s to t that u lies on. A higher
CB(u) indicates more SPs pass through u.

Attach to Each Super Vertex: Two Labels
Reachability label Lre(sv): Given two vertices s and t, a reachability query

asks whether there exists a path between s and t in G. We can judge the
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reachability between svs and svt instead, because wSCAN can ensure that ver-
tices are reachable to each other within the community. Therefore, we perform
the Breadth-First-Search on SG, and attach Lre(svi) = Ci to svi in the closure
Ci. At query time, if there exists Lre(svs) = Lre(svt), then s and t can reach
each other. For example, in Fig. 4, Lre(sv1) = Lre(sv2) =. . . = Lre(sv4) =C1,
Lre(sv5) = Lre(sv6) =. . . = Lre(sv9) =C2, so the vertices in sv1 can reach ver-
tices in {sv1, sv2, sv3, sv4}, but cannot reach vertices in {sv5, sv6, sv7, sv8, sv9}.

Shortest path label Lsp(sv): According to six degrees of separation, any two
vertices can establish a contact within six hops. Thus, for each super vertex
sv ∈ SG, we only calculate the SPs between sv and the neighbors within three
hops, then the join of two super vertices can cover the SPs between any pairs
of vertices inside them. The SP from svs to svt is denoted by Lsp(svs, svt). At
query time, we can find the SP between any two super vertices in O(1) as Eq. 7.
For example, in Fig. 5, Lsp(sv1, sv9) = {9, < sv1, sv3, sv4, sv9 >}, Lsp(sv5, sv9)
= {5, < sv5, sv6, sv8, sv9 >}, Lsp(sv1)

⋂
Lsp(sv5) = {sv9}, spSG(sv1, sv5) =

spSG(sv1, sv9) + spSG(sv5, sv9) = < sv1, sv3, sv4, sv9, sv8, sv6, sv5 >.

dG(svs, svt) = min
svi∈Lsp(svs)

⋂
Lsp(svt)

{dG(svs, svi) + dG(svt, svi)} (7)

Quick Response to Graph Updates
Social networks update very fast, corresponding to the insertion/deletion of

vertices and edges in the social graphs. Instead of performing the preprocessing
step all over again, we can quickly adjust the preprocessing results against the
update. For insert operation, given a new vertex u and its new edges ∈ G,
we: (i) let ni denote the number of vertices whose structure is similar to u in
community svi. If ni ≥ μ, add u to contain(svi), and add u to int(svi, svj) if
u directly connects to a vertex in svj ; (ii) update shortcuts within community
svi according to u; (iii) if u ∈ int(svi, svj), and v = lsvs,svt

, let ηu,ηv denote the
number of the shortcuts which u,v lie on, respectively. If ηu > ηv, let u replace
v and be the new lsvs,svt

; (iv) recompute �(svi, svj) according to u.
For the vertex u need to be deleted, there are the following adjustments: (i)

for each super vertex sv ∈ bel(u), remove u from con(sv) and int(sv); (ii) for
each vertex v ∈ N [u], remove the edge (u, v) from E, remove u from N [v] and
check whether the role of v is affected; (iii) remove the shortcuts which u lies
on; (iv) if u = lsvs,svt

, reselect the landmark and recompute �(svi, svj).

Fig. 4. Reachability labels Fig. 5. 3-hops Shortest path labels
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B. Online Querying Phase
In Algorithm 1 we describe the online query method. Given two vertices s, t ∈

G, Sets and Sett are the set of super vertices that contain s and t respectively
(line 1). We each take one from Sets and Sett in turn, are denoted by sv1 and
sv2 (line 2). There are two situations: (i) if s and t are in the same community,
then we search spG(s, t) within sv1(sv2) (line 3–4); (ii) if s and t are in different
communities, we verify if there exists a path between s and t by using reachability
labels, then we add them to the set of candidates if the answer is true (line 5–6).
Next, we enumerate each pair of candidates {sv1, sv2} from Setcon, and seek
spSG(svs, svt) with the minimum cost using shortest path labels (line 7–10).
Finally, we search spG(s, t) based on the vertices in spSG(svs, svt) (line 11).

Specifically, for s,t in the same community, we use a modified bidirectional
search when finding spG(s, t). For each vertex u in the priority queue, we use
the minimum sum of dG(u, li) and dG(t, li) as the estimation of dG(u, t) (li ∈
LS =< l1, l2, . . . , lx >). Then, instead of ordering vertices by their distance
from s, vertices are ordered by their distance from the s plus this estimation.
As a result, we can direct the search towards the target and save unnecessary
computations.

Algorithm 1. SPBOC
Input: Original graph G = (V,E), super graph SG = (SV,SE), s, t ∈ G

Output: spG(s, t)
1 Sets ← belong(s), Sett ← belong(t), Setcon ← ∅;
2 for each sv1 ∈ Sets, sv2 ∈ Sett do
3 if sv1=sv2 then
4 return spG(s, t) ← use bidirectional Dijkstra algorithm with landmarks;

5 else if Lre(sv1)=Lre(sv2) then
6 Setcon ← {sv1, sv2};

7 minCost ← ∞
8 for each sv1, sv2 ∈ Setcon do
9 if (dSG(sv1, sv2) ← min{Lsp(sv1)

⋂
Lsp(sv2)}) < minCost then

10 minCost ← dG(sv1, sv2), spSG(svs, svt) ← spSG(sv1, sv2) ;

11 return spG(s, t) ← FindShortestPathBetweenCommunities(s,t,spSG(svs, svt));

Algorithm 2. FindShortestPathBetweenCommunities(s,t,spSG(svs, svt))
Input: s,t,spSG(svs, svt)
Output: spG(s, t)

1 SPTillNow ← shortest path from s to V Set0
2 for i=1; i<2*(spSG(svs, svt).size-2); i++ do
3 SPTillNow ← CalculateNeighbor(V Seti, SPT illNow);

4 return spG(s, t) ← Calculate shortest path between SPTillNow and t;
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Next, we will focus on the situation when two vertices are in different com-
munities. In order to clarify, we will explain the algorithm in Fig. 6. The vertices
in Fig. 6 are all interface vertices except for s and t. According to Observation 1,
dG(s, t) can be indicated as the minimum combination of three phases: (i) the
distance from s to interface vertices: dG(s, int(svs, sv1)), (ii) the distance from t
to interface vertices: dG(int(svt, sv2), t)), (iii) the distance between interface ver-
tices: dG(int(svs, sv1), int(svt, sv2)). The first two phrases can be transformed to
the SP problems within the community. Thus we only focus on the SP between
interfaces vertices on spSG(sv1, sv2).

In Fig. 6, spSG(svs, svt) =< svs, sv1, sv2, svt >. We use V Set to record the
collection of all interface vertices sets, such as V Set0 = int(svs, sv1) = {s, v1},
V Set1 = int(sv1, svs) = {v2, v3, v4},...,V Set5 = int(svt, sv2) = {v11}. Since we
have already estimated the shortcuts between interface vertices within a com-
munity, we divide the search processing into parts and progressively calculate
the SP from s to the vertices in V Seti in i-increasing order. For each vertex
v ∈ V Seti, u ∈ V Seti−1, spG(s, v) = min{ spG(s, u) + spG(u, v) }. Suppose the
number of super vertices on spSG(sv1, sv2) is c, we can get the SP till V Set2c−1

in O(cnint) for simple sum and compare operations among interface vertices.
Therefore, Algorithm 2 starts from s and calculates the SP till all vertices in

V Set0 (line 1). Then, for each interface vertices set V Seti ∈ V Set, we compute
the SP till V Seti, and record it in SPTillNow (line 2–3). Finally, SPTillNow
stores the SP from s to interface vertices that svt. The problem transforms to a
SP problem within the community (line 4). We describe in Algorithm 3 about
how to calculate SP till vertices in V Seti+1 based on SPTillNow.

SPTillNow records the SPs till the vertices in V Seti−1 (i ≥ 1). For each
vertex v ∈ V Seti, we maintain a minCost and a minPath to record the current
shortest distance and SP from vertices in V Seti−1 to v (line 1–2). If the sum of
dG(s, u) and dG(u, v) is smaller than minCost, then we replace minCost with
dG(s, u) plus dG(u, v), and also update minPath with the corresponding path
(line 3–5). Finally, we add a new SP record about v to SPNew (line 6).

Algorithm 3. CalculateNeighbor(V Seti, SPT illNow)
Input: V Set(i), SPT illNow
Output: SPNew

1 for each v ∈ V Set(i) do
2 minCost ← ∞, minPath ← null
3 for each u ∈ SPTillNow do
4 if dG(s, u)+dG(u, v) < minCost then
5 minCost ← dG(s, u) + dG(u, v); minPath ← spG(s, u) + spG(u, v);

6 add < v,minPath : minCost > to SPNew;

7 return SPNew;
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Fig. 6. Finding SP between s and t Fig. 7. 1-hop expansion

C. Complexity Analysis
The time complexity of preprocessing is O(m1.5 + n̂nconnint + n̂m̂). Here,

O(m1.5) is related to clustering the graph using wSCAN. O(n̂nconnint) is for
estimating shortcuts within a community. And O(n̂m̂) is for computing labels
for super vertices. We need extra O(mn + m̂n2

con/4) if using the CENTRAL
method to estimate the length function for super edges. The time complexity of
online querying is O(nconlogncon). The space complexity of index is O(m̂ + n̂2)
for preserving the super graph and labels.

5 Optimization Techniques

In this section, in order to improve the precision and the speed of querying, we
propose the following three optimization techniques.

A. Expand the SP tree
According to six degrees of separation of social networks, the average dis-

tance between vertices is usually very small. Thus if we expand the SP in
SG to include the neighbors within one hop for each super vertex, we can
improve the precision of result. Next, we will explain this process in Fig. 7,
where level(svi) indicates the number of steps from the source. For example,
level(svs)=0, level(sv1)=1, level(sv2)=2, and level(sv3)=3. For each super ver-
tex svi ∈ spSG(svs, svt) except for the both ends, we execute 1-hop expansion
and add the neighbors to the same level with svi. After that, level(svs)=0,
level(sv1)=level(sv3)=level(sv4)=1, level(sv2) = level(sv5)=2, level(svt)=3.
For all super vertices in the same level, we regard the whole as a new super
vertex.

B. Community Size Balancing
The communities after clustering may not be satisfying: some contain only

one vertex and some contain too many vertices. Consider two extreme situations:
(i) each vertex is a super vertex, (ii) all vertices belong to a very large super
vertex. In both cases, our approach is invalid and is equivalent to the traditional
Dijkstra. Thus, we need to avoid isolated and oversized communities: (i) for an
isolated community sv, where there is only one vertex v ∈ sv, we add v to the



Community Structure Based Shortest Path Finding for Social Networks 315

neighbor’s community whose structure most similar to v, (ii) for the oversized
community sv, we use re-cluster the vertices in sv, and divide sv into several sub-
communities according to the closeness between vertices, so as to avoid excessive
number of vertices in each community.

C. Prune during SP Query
We propose an optimization technique to prune some vertices by predicting

the distance towards the target, so as to reduce the analysis of many vertices
that may not be on the SP and accelerate online query.

Lemma 1. Given s, t, u ∈ G, svs,svt,svu are the super vertices that contain
s,t and u, respectively. Let LD(svu, svt) and SD(svu, svt) denote the estimate
distance between svt and svu using LONGEST and SHORTEST. For u, v ∈ svu,
we prune u if there exists dG(s, u) − dG(s, v) > LD(svu, svt) − SD(svu, svt).

Proof. First of all, if dG(s, u)+dG(s, u) > dG(v, t)+dG(s, v), then u is definitely
not on spG(s, t). Instead of compute the real distance from u, v to t, we use
a simple replacement. There are multiple paths from svu to svt, if u uses a
shortest one and still longer than v use a longest one, then u cannot be on the
shortest path. We use SD(svu, svt)/LD(svu, svt) to indicate the longest/shortest
one, so dG(s, u) − dG(s, v) > LD(svu, svt)−SD(svu, svt) ≥ dG(v, t) − dG(u, t) ⇔
dG(s, u) − dG(s, v) > LD(svu, svt) − SD(svu, svt).

6 Experiment

We try to evaluate the following aspects through experiments: the tradeoff among
preprocessing time, querying time, index space and accuracy, and the effect
of our optimization methods. We ran all experiments on a computer with an
Intel 1.9GHz CPU, 64GB RAM, and Linux OS. We evaluate the performance of
algorithms on both real and synthetic graphs as shown in Table 2. First four of
them lists the real-world datasets which can be found at the Stanford Network
Analysis Platform1 and DBLP2. Enron and DBLP are weighted graphs, others
are unweighted graphs. We also evaluate the algorithms on LFR benchmark
graphs [18] which can automatically generate undirected weighted graphs. We
vary the size of graphs and the clustering coefficient c̄ to meet out demands.

Eval-I: Compare wSCAN with pSCAN and SLPA
We compare our wSCAN algorithm with the pSCAN [1] and SLPA [19], and

evaluate the communities quality after graph clustering. Modularity [20] of a
community network is a measure of how well a community network is divided,
denoted by Q. The larger the Q, the better the cluster method. Its ranges is
(0,1), and the calculation method for weighted graphs is defined as follows:

Q =
1

2m

∑

u,v

(ω(u, v) − d[u] · d[v]
2m

)δ(u, v) (8)

1 http://snap.stanford.edu/.
2 http://dblp.dagstuhl.de/xml/.

http://snap.stanford.edu/
http://dblp.dagstuhl.de/xml/
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Fig. 8. (Eval-I) Q after clustering

Table 2. Statistics of graphs (d̄: average degree,
c̄: clustering coefficient)

Graph |V| |E| d̄ c̄

CA-GrQc 5,242 14,496 6.46 0.530

Enron 33,692 183,831 10.91 0.497

EnAll 265,214 420,045 1.58 0.067

DBLP 1,482,029 10,615,809 7.16 0.561

LFR1 1,000 77,80 15.56 0.752

LFR2 10,000 77,330 15.47 0.169

LFR3 10,000 75,262 15.05 0.754

LFR4 100,000 468,581 9.371 0.745

LFR5 500,000 2,241,850 9.406 0.725

where δ(u, v) is 1 when vertices u and v belong to the same community, otherwise
it equals to 0. The result can be seen in Fig. 8. wSCAN performs better on
weighted graph, but not suitable for unweighted graphs such as CA-GrQc.

Eval-II: Evaluate the Effect of Optimization Techniques
In Fig. 9, we evaluate the effect of optimization A by comparing the error rate

as Eq. 9, where d̂i is the estimated shortest distance and di is the shortest distance
computed by Dijkstra. And in Fig. 10, we evaluate the effect of optimizations
B, C by comparing the online processing time. Experiments carry out on four
datasets with each N pairs of vertices (N=500). In specific, we evaluate the
following algorithms:

– SPBOC*: the approach discussed in Sect. 4 (using CENTRAL).
– SPBOC-A: the SPBOC* approach with the optimization technique A.
– SPBOC-B: the SPBOC* approach with the optimization technique B.
– SPBOC-C: the SPBOC* approach with the optimization technique C.
– SPBOC: the SPBOC* approach with all optimization techniques.

appr = (
N∑

i=1

d̂i − di

di
)/N (9)

In Fig. 9, it can be seen that error rate decreases significantly with SPBOC-A
because of 1-hop expansion. In Fig. 10, the querying time of SPBOC* is several
times larger than SPBOC-B, because that the number of isolated communi-
ties and the size of oversized communities are significantly reduced after the
adjustment. Besides, the queries can be further accelerated with optimization
technique C as a result of pruning useless vertices. The combination of all opti-
mization techniques yields a powerful method — SPBOC, whose processing time
is orders of magnitude faster than the approach without optimizations. To sum
up, the optimization techniques can improve the query performance.

Eval-III: Compare SPBOC with Other SP Algorithms
In this set of experiments, we evaluate the performance on preprocessing time,

querying time, index space as well as the error rate. In particular, SPBOC1 and
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Fig. 9. (Eval-II) Evaluate optimization A Fig. 10. (Eval-II) Optimizations B, C

Fig. 11. (Eval-III) Compare overall performance

SPBOC2 use SHORTEST and CENTRAL methods in estimating length between
super vertices, respectively. And we compare them with two-stage methods: ALT
[6], REAL [13], LLS [8] and SPCD [2] by querying SP on four datasets with each
N pairs of vertices (N=500). SPCD tries to find spG(s, t) among the TopK SPs
in SG. In this paper, we compare the SPCD method with K = 1. Among them,
ALT, REAL are for exact SP and LLS, SPCD are for approximate SP.

In Fig. 11, QT/PT is short for querying time/preprocessing time. It can
be seen that the error rate with SPBOC1 is lower than SPBOC2 on synthetic
graphs, and has the reverse effect on real social networks. This is because the c̄
of these synthetic graphs is very high, and graphs with high c̄ can reveal obvious
small-world property. However, the real datasets often fail to achieve such strong
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community property, so it is more suitable to use CENTRAL which takes the
distance inside the community into account. The Fig. 12 illustrates the tradeoff
between the disk space and the query time on a logarithmic scale. The closer
the algorithm is from the origin, the better the overall performance of the algo-
rithm. The advantage of SPBOC in EuAll is not obvious because of the low c̄.
In general, (i) SPBOC can strike the best balance between scalability and query
performance among all methods, (ii) CENTRAL are more suited to real social
networks than SHORTEST, (iii) SPBOC performs better on the graphs which
show a strong community property than other graphs.

Fig. 12. (Eval-III) Tradeoff between querying time and disk space

7 Conclusion

In this paper, we developed a new SP algorithm for social network based on com-
munity structure. We proposed a new structural clustering method for weighted
social graph. We made a super graph based on the community structure of the
original graph so as to narrow down the scale of searching. To improve the per-
formance of our approach, we further proposed three optimization techniques
to improve the query performance. Experiments show that our approach can
strike the balance between scalability and query performance, and return an
approximate shortest path with allowed accuracy in very short time.
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Abstract. Link stability detection has been an important and long-
standing problem within the link prediction domain. However, it has
often been overlooked as being trivial and has not been adequately dealt
with in link prediction. In this paper, we present an innovative method:
Multi-Variate Vector Autoregression (MVVA) analysis to determine link
stability. Our method adopts link dynamics to establish stability confi-
dence scores within a clique sized model structure observed over a period
of 30 days. Our method also improves detection accuracy and representa-
tion of stable links through a user-friendly interactive interface. In addi-
tion, a good accuracy to performance trade-off in our method is achieved
through the use of Random Walk Monte Carlo estimates. Experiments
with Facebook datasets reveal that our method performs better than
traditional univariate methods for stability identification in online social
networks.

Keywords: Link stability · Graph theory · Online social networks
Hamiltonian Monte Carlo (HMC)

1 Introduction

The far reaching social media today contains a rich set of problems that are
relationally focused. Some of which include but are not limited to: Exponen-
tially increasing data privacy intrusions on a yearly trend [29]; Rising number of
internet suicides from online depression [27,29]; Account poisoning and hacking
[26,29]; Terrorism and security breaches [26,29]; Information warfare and cyber
attacks [29].

From a structural viewpoint, popular networks like Google, Facebook, Twit-
ter, Youtube, etc. are often used as social and affective means to express
c© Springer Nature Switzerland AG 2018
S. Hartmann et al. (Eds.): DEXA 2018, LNCS 11029, pp. 320–335, 2018.
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exchanges and dominance of evolving human ties [26]. This is often done through
rich expanses of emotional and sentimental fidelities which fluctuate over topic
drifts [26]. Stable links are defined as relations (both benevolent and malevolent)
where emotional flux remains relatively high through social evolution [28,29].

Detecting stable links within online social networks is important in many
real-life applications. For example, stable links can specifically be applied to
analyze and solve interesting problems like detecting a disease outbreak within
a community, controlling privacy in networks, detecting fraud and outliers, iden-
tifying spam in emails, etc [14]. Identifying stable relations within a social circle
as structural pillars of a community is also very important in abating cyber
attacks from occuring.

Link stability is a specific problem of link prediction that has been oftentimes
overlooked as trivial. Although it shares the same set of domain challenges as
link prediction, it does not predict future relations that may occur due to infer-
ences from present observations. Instead, it ranks links shared between actors
according to their structural importance to a community by their stability index
scores.

There are several major limitations in the study of link stability in literature.
First, many existing detection methods use the static node mechanism which fails
to consider the intrinsic feature dynamics in the detection process. Additionally,
most approaches are tailored to the use of a specific network in question and
are not adaptable to more generalized social platforms. Furthermore, stable link
identification is a largely unexplored area of research development without a
structured framework of approach. This paper will make scientific contributions
to enhance the current detection capabilities of stable links to preserve struc-
tural integrity within a community and safeguard against detrimental effects of
harmful, unstable external social influences.

In this paper, we will present our MVVA (Multi-Variate Vector Auto-
regression) model for link stability detection, which is developed to encompass
the multi-variate feature aspects of links in a single regression model. Its objec-
tive function bridges the gap between temporality and stability metrics. The
scientific contribution of our work involves the following:

1. Our method bridges the gap between temporality and stability of links in
online social networks. As an improvement to conventional static node and
neighbor link occurrence methods, our approach is able to handle dynamic
link features efficiently in the “prediction” process;

2. An innovative Hamiltonian Monte Carlo estimator is developed to help the
MVVA model scale up to increasing dimensionality as the data volume grows
arbitrarily large;

3. Experiment results show that the MVVA is able to offer a good modeling of
the ground truth growth distribution of stable links within a Facebook clique
with a good accuracy performance.

The rest of the paper is organized as follows. Section 2 presents a brief outlook
and overview of related work and literature reviews. Section 3 elaborates on the
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implemented methodologies and theoretical frameworks. Section 4 presents the
results and discusses the analysis of the graphs and figures. Section 5 summarizes
and concludes with a short indication of the future direction for the research work
on link stability within the domain of structural integrity of OSNs and SISs.

2 Related Work

Social Network Analysis (SNA) has a long history based on key foundational
principles of similarity. It has long been postulated that similar relationships
between actors contain crucial information about social structure integrity [13].
The paradigm of link dynamics and their impact on structure is a question most
social models struggle with solving. Furthermore, this has recently been made
more complicated with the emergence of Heterogeneous Networks (HNs) and
Social Internetworking Scenarios (SIS). In this section, we briefly review the
state-of-the-art techniques and approaches of research done in two major areas
of stable community and stable link detection.

2.1 Stable Community Detection

A community is intuitively recognized by strong internal bonds and weak exter-
nal connections. The measure of strength in connectivity is usually represented
by quantity over quality of connections within a group. These measures there-
fore, represent relational densities of varying scales. Thus, most clearly defined
communities are often characterized by dense intra-community relationships and
sparse intercommunity links at node edges [6,16]. However, similar classical tech-
niques suffer from several drawbacks because the detected community structure
will not remain stable over time [17]. Detection of stable communities requires
the identification of stable links to serve as core structures of influence upon
which a group of actors establishes online relations around [7].

In [23], a proposed framework to detect stable communities was developed.
This was achieved by enriching the structure with mutual relationship estima-
tions of observed links. In their study, link reciprocity estimation of backward
edges and link stability scores were first established. The focus was given to
detecting the presence of mutual links by preserving the original strength of
backward edges, which scales better with longer time observable windows. Sta-
ble communities are then discovered using the enriched graphical representation
containing link stability information. This was done through a correlation of
persistence probability (repeated time existence/occurrence) of each community
and its local topology.

In [4], Charkraborty et al. studies how results from community detection
algorithms change when vertex orderings stay invariant. By stabilizing the rank-
ing of vertices, they show that the variation of community detection results can
be significantly reduced. Using the node invariance technique, they define con-
stant communities as regions over which the structure remains constant over
different perturbations and community detection algorithms over time.
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2.2 Stable Link Detection

In [24], the authors suggest an activity-based approach to establish the strength
(stability) of a social link. In contrast to friendship structures, their approach
centers around a common disregarded aspect of activity networks. They argue
that over time, social links can grow stronger(stable) or weaker(unstable) as a
measure of social transaction activities. The study involves an observation of the
evolutionary nature of link activities on Facebook. Their findings indicate that
link prediction tasks relying on link occurrences as baseline metrics of measure-
ments are inaccurate. As their results show, links in an activity network tend
to fluctuate rapidly over time. Furthermore, the authors explain that decay-
ing strength(stability) of ties correlate to decreasing social activity as the social
network ages.

The study in [25] presents an overview of how links and their correspond-
ing structures are being perceived from common link mining tasks. Such tasks
include object ranking, group detection, collective classification, link prediction
and subgraph discovery. The authors argue that these techniques address the dis-
covery of patterns and collections of Independent Identically Distributed (I.I.D.)
instances. Their methods are focused around finding patterns in data by exploit-
ing and explicitly modeling time-aware links among data instances. In addition,
their paper contribution presents some of the more common research pathways
into applications which are emerging from the fast-growing field of link mining
like [22].

In summary, detecting stable links is an important aspect of many inference
and prediction tasks which online applications use all the time [1,3]. Community
detection and link prediction are concerned with identifying correlated distribu-
tions from a social scene [19]. These distributions can then be used as measures
for decision support and recommendation systems [20].

3 Our Method

In this section, we detail our method for detecting stable links. The core of
our model is developed from a regressional technique and was later refined to
integrate with a stochastic approach for the cross-validation of accuracy and
performance within a small Facebook clique.

3.1 Multi-variate Vector Autoregression

The time series regression technique was chosen as the main approach to compute
the stability index of links within a network. For small-scale datasets, vector
regression methods (VAR) offer a very simple yet elegant means of analysis.
Time series regressions are very simple and direct approaches. They are most
often used in two forms to solve problems from a topological perspective. The
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first of these are the reduced (primary) form used in forecasting while the second
is the structural (extended) form used in structural analysis.

In our work, we have adopted the structural framework as one of the core
methods of approach towards identifying stability in links. Structural regressions
have the ability to benchmark relational behavior against known dynamic models
in the social scene. It can also be used to investigate the response to disruptive
surprises. Such social disruptions often occur as shocks from world events (e.g.
The Brexit from the E.U., etc.).

A multiple linear regression model essentially extends the single regression
model by considering multiple independent variable relationships to estimate the
state of a dependent variable. MVVA extends this principle further by correlating
the multi-linear regression relationships through time. Given a series of past
dependent observables Yτ , one can predict the unobserved dependent variable
at the current time Yt from the following mathematical formula:

Yt = B0 +
m,t−n∑

n=0,τ=0

(GnYτ + ετ ) (1)

where B0 is the array of residual constants and ετ is the error vector with zero
variance co-variance.

Under the MVVA model which we have proposed, the six chosen variables
of our study have been identified to be pivotal contributors of link stability.
These identifications were studied from correlations, scatter plots and simple
regressions between independent and dependent observables. It allows useful
interpretation of observed relational behaviors which can be used for a variety
of other tasks as well.

The stability matrix at time t is calculated from the predicted contributions
of the six independent variables used in our study. We define the Stability index
from Node Feature Similarity as N(S)t, Cumulative Frequency as F (Q)t, Sen-
timent as I(S)t, Trust as R(S)t, Betweenness as B(S)t and Transactions as
W (S)t. Thus, the stability contribution matrix St of all the six features is given
as: St = [N(S)t, F (Q)t, I(S)t, R(S)t, B(S)t,W (S)t]T .

From a structural perspective, the model we have developed follows the fol-
lowing mathematical formulation:

ASt = β0 +
p∑

τ=1

(βτSt−τ ) + Ut (2)

where A is the restricted correlation matrix between the endogenous variables
(dynamic feature stability contributions) identified through its past variations.
β0 and βτ are structural parameters estimated through the method of Ordinary
Least Squares (OLS). Hence, βτ = A ∗ Gτ . Finally, Ut are the time-independent
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disruptions caused by unsettling world events. This is derived from the (linear)
system of equations as:

a11N(S)t + a12F (Q)t + a13I(S)t + a14R(S)t + a15B(S)t + a16W (S)t =

β10 + β11N(S)t + β12F (Q)t + β13I(S)t + β14R(S)t + β15B(S)t + β16W (S)t + UN(S)t

a21N(S)t + a22F (Q)t + a23I(S)t + a24R(S)t + a25B(S)t + a26W (S)t =

β20 + β21N(S)t + β22F (Q)t + β23I(S)t + β24R(S)t + β25B(S)t + β26W (S)t + UF (Q)t

.

.

.

a61N(S)t + a62F (Q)t + a63I(S)t + a64R(S)t + a65B(S)t + a66W (S)t =

β60 + β61N(S)t + β62F (Q)t + β63I(S)t + β64R(S)t + β65B(S)t + β66W (S)t + UW (S)t

In its primary form,

St = Ct +
m,t−n∑

τ=1

GτSτ + εt (3)

where, Ct = A−1 ∗ β0, Gτ = A−1 ∗ βτ and the residual errors εt = A−1 ∗ Ut.
The number of independence restrictions imposed on the correlation matrix A

is simply the difference between the unknown and known elements obtained from
the variance co-variance matrix of the errors, E(εtε

′
t) = Σε. For the symmetric

matrix of our model, A = AT , which is n2−n
2 .

We define the feature rate coupling ratio wt as the weighted impulse responses
due to the structural disruptions on the endogenous feature observables. Each
dynamic link feature response includes the effect of specific disruptions on one
or more of the variables in the social system - at first occurrence t, and in
subsequent time frames, t + 1, t + 2, etc.

The feature rate coupling ratio is thus given as:

n∑

τ=1

wUτ
=

n∑

τ=1

(ẇUτ−1 ∗ [FUτ
− FUτ−1 ]) (4)

where ẇUτ−1 is the first derivative response lag, which measures the momentum
vector of social activity and FUτ

and FUτ−1 are endogeneous feature observable
vectors at current and lag time frames respectively.

Then, we can express our structural autoregressive model in a vector sum of
social disruptions as:

Si
t = μ +

k∑

i=0

wt,iSt,i (5)

where Si
t is the stability matrix (with each feature element in i indicating how

stable each link is). wt,i is the feature rate coupling ratio at time t and St,i is the
stability contribution; both across i endogeneous feature observables. Finally, μ
is the impulse residual constant.
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The MVVA model is not without its drawbacks. The complexity of the OLS
problem involving a Cholesky decomposition of matrix M is at least O(C2N),
where N is the sample data size and C is the total number of features. By
direct inference, MVVA entropies to the squared growth in network complexity.
Furthermore, two additional problems may arise as complexity of the social
network grows; i.e. overfitting and multi-collinearity.

To overcome the above problems, we explore the Hamiltonian Monte Carlo
(HMC) as an important extension to address the limitations of MVVA from a
stochastic perspective for link stability detection. Since the social network we
obtain from the repositories of common crawl contains missing links and partial
information, stochastic estimations are used to measure the accuracy and reli-
ability of our experimental MVVA results [12]. Additionally, HMC models are
powerful samplers of potential energy distributions and its partial derivatives -
which are representative of online social structures [29]. This means that over-
fitting and multi-collinearity will be tackled through high acceptance ratios [29].
Furthermore, the complexity per transition is O(GN). Where G is the gradient
cost of the exact model which scales linearly with data and N is the number of
steps [5].

3.2 Hamiltonian Monte Carlo

The condition that full form adaptive MCMC methods satisfy is:
∑

x

T (x′ ← x)P (x) = P (xi) (6)

For a good sample x from the distribution P(x). x′ is the next step-wise sample
from x. The Hamiltonian Monte Carlo extends the sampling efficiency of pos-
teriors made by MCMC, through the use of Hamiltonian dynamics [8]. As an
energy-based method, it is postulated that the sum total of all energies within
a closed link-dynamics based system is conserved [10].

Hence, for every feature identified in the belief state graph G, its stabil-
ity index score can be correlated to vector positional (static, potential) energy
function eH(G) for any combinational variant of the graph g ∈ G [15]. The
Hamiltonian dynamics recognizes that a single form of energy cannot exist alone
because it has to be conserved. Therefore, wherever potentials are the effects,
the kinetics are the casuals [8]. By introducing another variable which isn’t our
main information of interest, we are able to conserve this “relational energy”
within the closed social belief system [11]. This can be identified as the tran-
sitional tensor (moving, kinetic) energy function e−vT v/2 between the different
features and their states, such that this joint distribution is given as:

P (x, v) ∝ e−E(x)e−vT v/2 = e−H(x,v) (7)

where P (x, v) is the conditional state transition probability between energy vec-
tors x and v.
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Firstly, the Leapfrog integration L(ε,M) is performed M times with an arbi-
trarily chosen step size ε. This means that L(ζ) is the final resulting state from
M steps from the HMC dynamics with predefined step size ε. The next state
transition step is given as:

ζ(t,1) =
k∑

n=1

Lnζ(t,0) with probability πn
L(ζ(t,0)) (8)

It is probabilistically defined as a Markov transition on its own [5]. The state
transition momentum vector resulting from the secondary added accountable
term for kinetic energy is then further corrupted by Gaussian noise so that
there are uncertainties during the transition of the states [9]. This is important
because the non-deterministic nature of the momentum during transitions allow
for proposals from current states onto new and further displaced states.

The randomization operator R(β) mixes Gaussian noise determined by β ∈
[0, 1] into the velocity vector given as:

R(β) = x, v′ (9)

v′ = v
√

1 − β + nβ (10)

where n is drawn from a normal distribution:

n ∼ N(0, I) (11)

The transition probabilities are then chosen as:

πLa(ζ) = min

{
πLb(ζ),∑

b≤a
p(FLa(ζ))

p(ζ) (1 − ∑
b≤a πLb(FLa(ζ)))

}

Which satisfies the reversibility of the Markov Chain fixed positional transitional
vector.

4 Experimental Results

In this section, we present the setup and results of our experimental evaluations
on both MVVA and HMC algorithms.

4.1 Experimental Setup

The dataset chosen for this study was crawled from Facebook and obtained
from the repository of the Common Crawl (August 2016). It includes the follow-
ing relational features between any two arbitrary nodes: The Cumulative Fre-
quency of the type of wall posts, the sentiment of the content in context of the
post (Neutral, Positive, Somewhat Positive, Mildly Positive, Negative, Somewhat
Negative, Mildly Negative), the Node-betweenness Feature Similarity (Roles and
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Proximity metrics), the Trust Reciprocity Index (Similar in quantization to Sen-
timent Index) and the number of posts at defined quantized Unix time sample
space as a measure of link virility. In this study, the Node Feature Similarity
Index is used as a performance benchmark against multivariate analysis.

The experiments were conducted on our Multi-Variate Vector Auto-
Regression Model on undirected small world topologies with a clique size of
20–100 nodes. A subset of nodes (<10) was first chosen for this study as the
defining seed community. Then, this chosen community was allowed to grow to
a maximum size of 1019 nodes by adjoining nodes to establish new relationships.

The links in the network are tagged based on their Stability Index (SI) scores.
Stable links are labeled with SI scores higher than or equal to 80, while Neutral
links are labeled with SI scores in the range of [50, 80), the slightly unstable
links are labeled with SI scores in the range of [30, 50) and the unstable links are
labeled with SI scores in the range of [0, 30) respectively. The new and existing
links which are SI score labeled (satisfying their respective threshold conditions)
were then subsequently evaluated for their Aggregated Link Stability Index over
time at every sample (whenever social transactions were captured by the crawler
across posts) based on the variate features discussed above. The aggregated link
stability index is calculated as:

AGt =
k,m∑

i,E=0

Si,E
t (12)

where AGt is the aggregated link stability index of the topograph at time instant
t and Si,E

t is the feature i stability index of edge E in the network.
The prediction error is given simply as:

et = |Yt − Ft| (13)

where et is the Aggregated Stability Index Prediction error, Yt is the observed
Aggregated Stability Index at time t - this is given by the HMC Stability State
Index values after a 100 times iteration over the samples of the 5 multivariates.
Ft is the predicted Stability Index based on both the MVVA model and the
univariate (Similarity Index) regression model.
The scaled error across the two different datasets is given by the equation as:

ε =
et

1
n−1

∑n
i=2 |Yi − Yi−1|

(14)

where εt is the absolute scale free error of the predicted data set Ft against the
observed dataset Yt. n is the number of sampled forecasts. The Mean Absolute
Scaled Error (MASE) of a distribution plot Q is given as:

MASE(Q) =
k∑

t=0

εt

k
(15)
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4.2 Link Stability Evaluation for MVVA

In our experiment, the link growth comparison is conducted between the uni-
variate node based Common Neighbor (CN) feature and our univariate features
(which includes Similarity Index as well). As seen in Fig. 2, by considering the
dynamics of the relational features within those established links in the multi-
variate time regression process we have proposed, our Multivariate Link Stability
Index outperformed the CN-Node Similarity based Stability Index by over twice
the score of the traditional metric used in the link prediction process with an
AUC of 0.87 by comparison to the latter’s AUC of 0.46; which is a tremendous
improvement in terms of efficacy. The number of labeled links of the fully evolved
topograph at the end of 30 days and the calculated aggregated stability index are
given in Tables 1 and 2. Figure 1 shows the growth distribution of the stability
index scores of links within a Facebook clique for a period of 30 days. The exper-
iment was done using the MVVA autoregressive algorithm for both univariate
and multivariate modes of calculation, of the dataset acquired from Facebook.
It measures the aggregate stability scores accumulated within the clique against
the time - which has been normalized to fit into the scale window of the plot.

(a) Univariate Similarity Model (b) Multivariate Similarity Model

Fig. 1. Topograph of univariate similarity based stability index (left) and Topograph
of the multivariate stability index (right)

4.3 MVVA Accuracy Evaluation

Based on Fig. 2, Tables 1 and 2, it can be seen that stable link detection accuracy
using our model has been vastly improved by 78.29% with 3184 links being
detected as stable in the univariate analysis; and only a similar 694 links detected
in the multivariate analysis. Furthermore, with only 694 links identified as stable
in the Multivariate Analysis, the aggregated scores of the topology are 2.34
times higher than the Univariate Analysis; suggesting a noticable improvement in
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Fig. 2. Link stability index comparison over time: both scales (Stability Index Scores
and Unix Time) have been normalized to fit into the plot frame window.

Table 1. Tabulation of the number of identified labeled
links for both univariate and multivariate regression
analysis

Type of link Univariate Multivariate Score range

Stable 3184 694 >80

Neutral 5257 7782 50-79

Somewhat stable 35 0 30-49

Unstable 0 0 0-29

Table 2. 30-day nor-
malized aggregated
stability index

Multivariate 1835

Univariate 783

terms of efficacy - making our model far more reliable than traditional univariate
methods throughout the prediction process.

4.4 Prediction Error Evaluation

The prediction error results can be summarized in Table 3. As can be seen from
Fig. 4, the error score index εt grows over time for the univariate regression
analysis, whereas the error score index εt of the MVVA model which we proposed
decreases over time. Additionally, as can be seen from Table 3, the MASE score
for the MVVA model improves both the In-Sample and Out-Sample prediction
accuracy of the underlying stability index distribution for the Facebook clique
over the 30-day time frame by 8.3 times more than the MASE score for the
conventional univariate regression model.

4.5 HMC Results and Evaluation

Figure 3 shows good (small) autocorrelations between the training data of fea-
tures in most sets, although there are some sets which present spurious/biased
information where a Gaussian distributed and noise-corrupted momentum sam-
pled model could not correlate well to with respect to log distributions of its
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Fig. 3. Graph of sentiment autocorrelation against the number of gradient iterations
for predictive (β = 1) and randomized (β = 0.15) momentum vectors of HMC for 10
burn in data sets of the similarity feature from the Facebook wall posts.

Table 3. Tabulation of Mean Squared Errors (MASE) of both multivariate and uni-
variate analysis at the end of the 30-day clique evolution period.

MVVA Univariate

In Out In Out

MASE 0.074268 0.0944732 0.616677 0.572323

Fig. 4. Error score εt comparison over time between MVVA and the univariate regres-
sion models.

momenta and positional gradients. However, it can be seen that from more burn
in data samples and more randomized (corrupted by noise - β = 0.1) momenta
sampling behavior, the performance of the gradient autocorrelation improves
during the learning phase of our HMC implementation.

Figure 5 is a posterior sample of Sentiment index scores. The horizontal axis
reflects the normalized time which has elapsed during the process and is also
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Fig. 5. Plot of posterior sentiment feature state samples.

directly proportional to the number of iterations progressed through this window
(as displayed on the graphs).

Figures 6, 7, 8 and 9 show progressively how the random walk proposed dis-
tribution converges towards the actual distribution of the Stability Index data
set from a fixed point condition (the very first initial feature belief state at t = 0)
being held constant. Figure 9 is the Monte Carlo approximation for the actual 30-
day aggregated stability index distribution repeated over Hamiltonian dynamics
for 100 cycles. It shows a good convergence towards our MVVA model; which
reflects very closely to the actual growth of aggregated stability index over time
- as opposed to univariate (similarity feature) based link stability prediction.

Fig. 6. Link stability index comparison
over time with HMC iterated over 10
times for posterior states of the 5 mul-
tivariates (Time Delta, Frequency, Simi-
larity, Sentiment, Trust).

Fig. 7. Link stability index comparison
over time with HMC iterated over 50 times
for posterior states of the 5 multivariates
(Time Delta, Frequency, Similarity, Senti-
ment, Trust).
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Fig. 8. Link stability index comparison
over time with HMC iterated over 80
times for posterior states of the 5 mul-
tivariates (Time Delta, Frequency, Simi-
larity, Sentiment, Trust).

Fig. 9. Link stability index comparison
over time with HMC iterated over 100 times
for posterior states of the 5 multivariates
(Time Delta, Frequency, Similarity, Senti-
ment, Trust).

5 Conclusion

In conclusion, the Multivariate model (MVVA) which we have proposed for the
detection and identification of stable links works well and is far more superior
to univariate models or models which consider only static node based features
and link temporality. Our system has been tested on a small Facebook clique
which was evolving. This dynamic growth can now be better understood and
comprehended through the existence of stable links as other seed clusters form
around it. However, the tighter, more stringent constraints of a small world model
used in this study should not be overlooked. In larger hyper-graphical models,
where boundaries fall apart due to sheer volume distributions of scattered data,
a larger scope of stochastic lemmas surrounding both high complexities and large
volumes of social features have to be re-discovered [21].

Some advantages of our methods and experimentation include a strongly con-
nected network with a firm belief structure and sufficient access to new infor-
mation being made readily available during the data mining process. However,
in larger dimensional frameworks where the constraints of such structure break
down and data is made even wider and more sparse, deep learning knowledge
discovery methods like Monte Carlo estimates and the DNNs are powerful vari-
ations which can be used for online social prediction and inference tasks [18].
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Abstract. The past few decades have witnessed the booming of social
networks, which leads to a lot of researches exploring information dissem-
ination. However, owing to the insufficient information exposed before
the outbreak of the cascade, many previous works fail to fully catch
its characteristics, and thus usually model the burst process in a rough
manner. In this paper, we employ survival theory and design a novel sur-
vival perspective Early Pattern detection model for Outbreak Cascades
(in abbreviation, EPOC), which utilizes information both from the static
nature and its later diffusion process. To classify the cascades, we employ
two Gaussian distributions to get the optimal boundary and also provide
rigorous proof to testify its rationality. Then by utilizing both the sur-
vival boundary and hazard ceiling, we can precisely detect early pattern
of outbreak cascades at very early stage. Experiment results demonstrate
that under three practical and special metrics, our model outperforms
the state-of-the-art baselines in this early-stage task.

Keywords: Early-stage detection · Outbreak cascade
Survival theory · Cox’s model · Social networks

1 Introduction

The rapid development of modern technology has changed the lifestyles to a
large extent compared to a few years ago. Every day millions of people express
ideas and interact with friends through online platforms like Twitter and Weibo.
On these platforms, registered users are able to tweet short messages (e.g., up
to 140 characters in Twitter), and others who are interested in it will give likes,
comments, or more commonly, retweets. Such retweeting would potentially dis-
seminate and further spread information to a large number of users, which forms
a cascade [1]. While the cascade grows larger and get more individuals involved,
a sudden burst will definitely arrive, which we call a spike. As a matter of fact,
detecting and predicting the burst pattern of a cascade, especially at early stage,
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Fig. 1. Samples of cascade diffusion on Twitter

attract lots of attention in various domains: meme tracking [2], stock bubble
diagnosis [3], and sales prediction [4], etc.

However, to fully understand the burst pattern of cascades ahead of time
will meet three major challenges. First and foremost, due to the deficiency of
available information and its disorder nature at early stage [5], one can hardly
catch distinguishing signs on whether a cascade will break out. The second
challenge stems from the significantly distinct life span of different cascades [6],
which makes it tough to extract typical features. Worse still, this distinctiveness
makes it hard for researchers to set suitable observation time, owing to the
variety of life spans. The third challenge is that the burst pattern of cascades
usually follows a quick rise and fall law [7], which lasts a few minutes but causes
magnificent influence. In this situation, the correlations between the history and
the near future can be hardly characterized by traditional models.

Shown in Fig. 1(a), we plot the diffusion process of seven real-world cascades
from Twitter. We can see that @Cascade2 shares almost the same pattern with
@Cascade1 before it outbreaks at time t0, which means that it is hard for us to
catch the distinguishing signs using the early information. As the second chal-
lenge states, @Cascade1∼7 represent different life span at early stage. While
@Cascade6 ends its diffusion, @Cascade3 is just about to start propagation,
and it still enlarges even at the end of observation. The third challenge can
be vividly described in Fig. 1(b), where we focus on @Cascade2 and plot how
it is retweeted. Figure 1(b) shows that @Cascade2 experiences a mild propaga-
tion when it appears, but after time t0, it goes through two large retweeting
spikes (sudden falls in survival curve ploted in Fig. 1(c)), and the final amount
of retweeting explodes to about 1600 during the burst period. These three core
challenges motivate us to design a model that can handle this quick rise and fall
pattern, characterize different cascades uniformly, and detect the burst pattern
as early as possible.

Motivated by the study of death in biological organisms, in this paper, we
regard the diffusion of cascades as the growing process of biological organisms.
Since Cox’s model is widely used to characterize the life span of biological organ-
isms, here we adopt Cox’s model with the knowledge of cascades, transforming
the burst detection task into diagnosis of cascade life table, and then we build
a survival perspective Early Pattern detection model for Outbreak Cascades, in
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abbreviation, EPOC. Though previous work [8] has also tried Cox’s model, their
work is mainly based on unsubstantiated observations as well as only taking one
feature into consideration, which does not address the above challenges at all.

In our EPOC, to consider the influential factors from different perspectives,
we harness three features from each cascade (retweet sequence, follower number
sequence, and original timestamp) to capture the effectiveness of temporal infor-
mation [9], the influence of involved users [10], and the dynamics of user activity
[11]. Then, to study the distinctiveness of cascades’ life span, we train an effective
Cox’s model and employ two Gaussian distributions to fit the survival probability
of viral and non-viral cascades at different time point respectively, and obtain-
ing a survival boundary between the viral and the non-viral, which is further
proven to be well-defined theoretically. Finally, as the static and dynamic nature
of cascade diffusion are both important indicators of cascade virality, we jointly
consider survival probability and hazard rate, which considerably enhances our
model’s performance in handling the quick rise and fall pattern. We then employ
three special metrics (K-coverage, Cost, Time ahead) to compare EPOC with
two basic machine learning methods (LR, SVR) and three powerful baselines
published in recent literatures (PreWhether [12], SEISMIC [10], SansNet [8]) on
two large real-world datasets: Twitter and Weibo. Experiment results show that
EPOC outperforms these five methods in burst pattern detection at very early
stage.

Our main contributions are summarized as:

– We adopt survival theory and establish a powerful burst detection model
EPOC for cascade diffusion, which can handle the quick rise-and-fall pattern
as well as the significantly distinct life span of cascades at the early stage.

– We utilize both static and dynamic information from cascades, obtain a
dimidiate boundary with two Gaussian distributions, and then novelly use
the burst pattern to help predict the popularity of an online content.

– We adopt three special metrics and conduct extensive experiments on two
large real-world data sets (Twitter and Weibo). The results show that EPOC
gives the best performance comparing with five state-of-the-art approaches.

The remainder of the paper is organized as follows. Some common notions
of survival theory and the basic Cox’s model are introduced in Sect. 2. The
design of our proposed model EPOC is specified in Sect. 3. We evaluate and
analyze our model on Twitter and Weibo in Sect. 4. We review several related
works in Sect. 5. Finally, we conclude our work and highlight the possible future
perspectives in Sect. 6.

2 Survival Analysis and Cox’s Model

In this section, we give some definitions about survival theory in social networks.
Initially, when a user shares the content with her set of friends, several of these
friends share it with their respective sets of friends, and a cascade of resharing
can develop [13]. Once the size of this cascade grows above a certain threshold
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ρ, we call it goes viral, and otherwise non-viral. To quantitively describe these
statues of cascade diffusion, we introduce survival function and hazard function
respectively in Definitions 1 and 2.

Definition 1. (Survival Function): let S(t) ∈ (0, 1) denote the survival proba-
bility of cascade subject to time t, i.e., at time t, cascade has the probability of
S(t) to be non-viral, where S(t) is naturally monotonic decreasing with time t.

Definition 2. (Hazard Function): let h(t) ∈ (0,∞) denote the hazard rate of
cascade at time t on the condition that it survives until time t ,i.e., h(t) is the
negative derivative of survival probability −dS(t)

dt to the survival function S(t),
specifically given by the following formula,

h(t) = −dS(t)
dt

· 1
S(t)

. (1)

Since Cox’s survival model was proposed [14], it has been widespread used
in the analysis of time-to-event data with censoring and covariates [15]. In this
work, we use Cox’s proportional hazard model with time-dependent covariates
(also called Cox-extended model) to characterize the association between early
information and the cascade statues (viral or non-viral).

Basic Model: For cascades i = 1, 2, · · · , n, they share the same baseline hazard
function denoted as h0(t), and Xi(t) = {x

(i)
1 , x

(i)
2 , · · · , x

(i)
m } denotes the feature

vector of the ith cascade, where h0(t) does not depend on each Xi(t) but only on
t. β = {β1, β2, · · · , βm} is the parameter vector of our hazard model. We specify
the hazard function of ith cascade as follows,

hi(t) = h0(t) · exp
(
βT Xi(t)

)
. (2)

Because the model is proportional, i.e., given ith and jth cascade, the relative
hazard rate λi,j can be concretely given by,

λi,j =
hi(t)
hj(t)

=
h0(t) · exp

(
βT Xi(t)

)

h0(t) · exp
(
βT Xj (t)

) =
exp

(
βT Xi(t)

)

exp
(
βT Xj (t)

) (3)

where β is the parameter vector, Xi(t) and Xj (t) are respectively the feature
vectors of ith and jth cascade. From Eq. (3), it is easy to conclude that the
baseline hazard does not play any role in relative hazard rate λi,j , i.e., the model
is also a semi-parametric approach. Therefore, instead of considering the absolute
hazard function, we only care about the relative hazard rate of cascades, which
only concerns parameter vector β. Then we use Maximum Likelihood Estimation
to get parameter vector β. We denote ith cascade time-to-event as ti, and assume
that 0 < t1 < t2 < · · · < tn. The Cox’s partial likelihood is given by,

L(β) =
n∏

i=1

(
hi(ti)∑n

j=i hj(ti)

)δi

=
n∏

i=1

⎛
⎝ exp

(
βT Xi(ti)

)

∑n
j=i exp

(
βT Xj(ti)

)
⎞
⎠

δi

, (4)
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where δi means whether the data from ith cascade is censored, i.e., if the event
happens to ith cascade, then δi equals to 1, and otherwise 0. Then the log-partial
likelihood of parameter vector β can be calculated as,

log L(β) =
n∑

i=1

δi

⎡
⎣βT Xi(ti) − log

⎛
⎝

n∑
j=i

exp
(
βT Xj(ti)

)
⎞
⎠

⎤
⎦ , (5)

maximizing the log-partial likelihood by solving equation d log L(β)
dβ = 0, then we

can get the numerical estimation of parameter vector β using Newton method.

3 EPOC: Detecting Early Pattern of Outbreak Cascades

Based on the basic model stated previously, in this section, we combine the Cox’s
model with our knowledge of cascades, and make it suitable to handle the task
of detecting the early pattern of outbreak cascades. Here we regard cascades
as complex dynamic objects that pass through successive stages as they grow.
During this process of growth, the survival probability and the hazard rate of
cascades will change dynamically. The high survival probability and low hazard
rate suggest that cascades are unlikely to be viral in the future, while the low
survival probability as well as high hazard rate imply the opposite. In this sense,
we introduce the survival boundary and the hazard ceiling to help accomplish
this challenging task at very early stage.

Feature Selection: As is stated previously, the effectiveness of temporal infor-
mation, the influence of involved users, and the dynamics of user activity are
all powerful indicators of the cascade statues. Therefore, in this experiment, we
utilize three features accordingly: timestamp of each retweet, number of followers
of every user involved in the cascade, and timestamp of the first tweet.

3.1 Survival Boundary: A Static Perspective

To detect the early pattern of outbreak cascades, firstly, we characterize the
survival functions of all cascades. Shown in Fig. 2(a), the red lines represent
the survival functions of viral cascades, and the blue lines show the non-virals’.
Then we are supposed to divide the estimated survival functions of all cascades
into two classes (viral and non-viral). In other word, we need to find a survival
boundary. As is illustrated in Fig. 2(b), the red dashed line separates the two
categories of blue (non-viral cascades) and red (viral cascades).

Previous works [16] have demonstrated that at a fixed observing time t, the
distribution of survival probability of different cascades obeys Gaussian distri-
bution. Based on this knowledge, we employ two random variables: f t

v (for viral
cascades) and f t

n (for non-viral cascades) subject to time t, which satisfy the
Gaussian. Formally, we specify this assumption in Definition 3.

Definition 3. For any Given time t, we have f t
v ∼ N (μt

v, σt
v) and f t

n ∼
N (μt

n, σt
n), where μt

v, σt
v and μt

n, σt
n are the parameters of Gaussian distribution

for viral and non-viral cascades subject to time t.
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Fig. 2. Survival functions and survival boundary (Color figure online)

Based on Definition 3, for a given time t, the survival probability of viral and
non-viral cascades can be respectively characterized as f t

v and f t
n. Therefore,

the task to find the optimal survival boundary is to give the suitable separation
between two Gaussian distributions.

Definition 4. (Survival Boundary): for any given time t, assume the survival
boundary to be S∗(t), which is given by the following formula,

∫ S∗(t)

−∞

1√
2πσt

v

exp
(

− (x − μt
v)2

2σt
v
2

)
dx =

∫ +∞

S∗(t)

1√
2πσt

n

exp
(

− (x − μt
n)2

2σt
n
2

)
dx.

(6)
Then the optimal survival boundary can be calculated as S∗(t) = μt

vσt
n +μt

nσt
v

σt
v +σt

n
.

Fig. 3. Survival frequency and survival boundary at time t (Color figure online)

As is shown in Fig. 3(a), given time t, we plot the frequency histograms of
survival probabilities of both viral and non-viral cascades (blue bars represent
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non-viral ones, and red bars represent viral ones). Then we use two Gaussian
distribution curves f t

v and f t
n to fit these two histograms. Next, to simplify our

problem, we employ the cumulative distribution function of f t
v and f t

n, respec-
tively denoted as F t

v(s) and F t
n(s), specifically we have,

F t
v(s) = P (S < s) =

∫ s

−∞

1√
2πσt

v

exp
(

− (x − μt
v)2

2σt
v
2

)
dx, (7a)

F t
n(s) = P (S > s) =

∫ +∞

s

1√
2πσt

n

exp
(

− (x − μt
n)2

2σt
n
2

)
dx. (7b)

Finally, we plot F t
v(s) and F t

n(s) in Fig. 3(b), and the x-coordinate of the only
intersection S∗(t) is the optimal survival boundary subject to time t.

3.2 Well-Definedness of Survival Boundary

In order to make the problem more complete and rigorous, in this subsection,
we mainly discuss the monotonicity of the survival boundary, which is given in
Definition 4, i.e., we will prove that the optimal survival boundary is itself a
survival function.

In fact, during the observation period, we conclude three solid facts. First
of all, the survival probabilities of both viral and non-viral cascades are natu-
rally monotonic decreasing with time t, so the average survival probabilities of
both cascades are also monotonic decreasing. Besides, non-viral cascades intu-
itively possess a higher survival probability, thus the average survival probability
for non-viral cascades μt

n is reasonably larger than that of viral ones μt
v. Fur-

ther more, real-word data shows that the survival probability range of non-viral
cascades appears to be more dynamic and uncertain, which means its relative
fluctuation of standard deviation σt

n is also larger than σt
v. Formally, we specify

these three conclusions in Lemma 1.

Lemma 1. For any given time t, μt
v, σt

v and μt
n, σt

n respectively represent the
average survival probability and its standard deviation of viral and non-viral cas-
cades. Given time t′ > t, we have

{
μt

v ≥ μt′
v

μt
n ≥ μt′

n

, μt
n ≥ μt

v,
σt′

n − σt
n

σt
n

≥ σt′
v − σt

v

σt
v

, ∀ 0 < t < t′. (8)

Based on Definition 4 and Lemma 1, we given detailed proof that the optimal
survival boundary is itself a survival function.

Theorem 1. The optimal survival boundary S∗(t) is monotonic decreasing with
time t, i.e., S∗(t) is also a survival function. Formally, we have

S∗(t) ≥ S∗(t′), ∀ 0 < t < t′, (9)
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Proof. For ∀ 0 < t < t′, we have

S∗(t) − S∗(t′) =
μt

nσt
v + μt

vσt
n

σt
n + σt

v

− μt′
nσt′

v + μt′
v σt′

n

σt′
n + σt′

v

=
(μt

n − μt′
v )σt

vσt′
n + (μt

v − μt′
n )σt

nσt′
v + (μt

v − μt′
v )σt

nσt′
n + (μt

n − μt′
n )σt

vσt′
v

(σt
n + σt

v)(σt′
n + σt′

v )

≥ (μt
v − μt′

v )σt
vσt′

n + (μt
n − μt′

n )σt
vσt′

n + (μt
v − μt′

v )σt
nσt′

n + (μt
n − μt′

n )σt
vσt′

v

(σt
n + σt

v)(σt′
n + σt′

v )
≥ 0,

(10)
according to Lemma 1. We can easily conclude that S∗(t) ≥ S∗(t′).

3.3 Hazard Ceiling: A Dynamic Perspective

As is defined in Definition 2, hazard function is specifically denoted as h(t) =
−dS(t)

dt · 1
S(t) , we can easily monitor the hazard function h(t) of a cascade when

given its survival function S(t).
To detect the early pattern of outbreak cascades, many previous works usu-

ally ignore the underlying arrival process of retweets, instead, they only consider
the relationship between the static size of cascade and a predefined threshold
[6,17], then determine whether the cascade is suffering a burst period. However,
before the static size of a cascade accumulates to a certain threshold, its burst
pattern can be exactly uncovered from dynamic information, such as the hazard
function h(t) in this problem. Intuitively, we conclude that if at a certain time
t0, the hazard function h(t) of a cascade suddenly rises above a hazard ceiling α,
in other word, h(t0) > α, we deem that the burst period of this cascade begins.

Fig. 4. Hazard functions and hazard ceiling (Color figure online)

However, instead of utilizing a fix threshold, we employ the baseline haz-
ard function with a 5% hazard-tolerant interval as hazard ceiling (illustrated in
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Fig. 4), since intuitively the characteristics of cascades may vary a lot during the
diffusion process. In Fig. 4, the hazard ceiling is drawn in red dash line with a
grey hazard-tolerant interval, and the red solid line and blue solid line respec-
tively denote the hazard functions of a viral cascade and a non-viral cascade.
We can clearly conclude that the blue line never exceeds hazard ceiling α, and
the red line exceeds α and its hazard-tolerant interval at thazard. Therefore, we
deem that at thazard, this cascade goes viral and starts to burst.

3.4 Incorporation of Two Techniques

In this subsection, we conclude our method and integrate survival boundary and
hazard ceiling. The whole process of EPOC is shown in Algorithm 1.

Algorithm 1. Algorithm of EPOC
Input: training data D, test data D′, threshold ρ, hazard ceiling α.
Output: status vector V , detect time T .

1 Set labels for each cascade from D using threshold ρ ;
2 Train a Cox’s model C with time-dependent data D ;
3 Initialize survival function set as S ;
4 foreach d in D do
5 estimate the survival function Sd(t) of d using C ;
6 add Sd(t) to S;

7 Train an optimal survival boundary S∗ with S ;
8 foreach d′ in D′ do
9 estimate the survival function Sd′(t) and hazard function hd′(t) of d′ ;

10 if Sd′(t) firstly falls down below S∗(t) at time t0 then
11 add 1 to S ;
12 if hd′(t) firstly rises up above α at time t1 then
13 add min{t0, t1} to T ;
14 else
15 add t0 to T ;

16 else
17 add 0 to S ;
18 add none to T ;

19 return S and T .

In Algorithm 1, Line1∼Line3 is the initialization, and especially we train the
Cox’s model with time-dependent features in Line2. Then the optimal survival
boundary is estimated in Line4∼Line7, after that, we detect the burst pattern
between Line8 and Line18 using both survival probability and hazard rate.

4 Experiments

In this section, we conduct comprehensive experiments to verify our model in
early pattern detection of outbreak cascades. Firstly, we describe the data sets
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(Twitter and Weibo) and five comparative state-of-the-art baselines in detail.
Then we conduct our experiments as well as providing corresponding analysis.

4.1 Data Sets

We implement our model EPOC on two large real-world data sets: Twitter and
Weibo. Twitter is one of the most famous social platforms in the world with
annually 0.5 billion users. We densely crawl the tweets that contains hashtags
with Twitter search API. In our experiments, a cascade is considered to consist of
all tweets with the same hashtag. Another large dataset Weibo is from an online
resource1. However, different from Twitter, due to the sparsity of hashtags in
Weibo, a cascade is defined by the diffusion of a single microblog. More detailed
information of two data sets can be found in Table 1.

Table 1. Data sets information

Data set # of cascades Type Range Year Size (GB)

Twitter 166,076 Hashtag Aug.13th–Sep.10th 2017 3.827

Weibo 300,000 Microblog Sept.28th–Oct.29th 2012 1.426

4.2 Experiment Setting

For our model implementation, we need to specify some settings. Because large
cascades are rare [13], in this paper, we set threshold for viral and non-viral
cascades to be 95 percentile in both Twitter and Weibo, where a larger size will
be regarded as viral cascade, and otherwise non-viral. As cascades are formed
by large resharing activities and can potentially reach a large number of people
[13], we only consider the cascades with a tweet count larger than 50 in Twitter
and filter out the remains. As for Weibo, the out line is set to be 80.

In the outset of our experiments, we randomly divide each data set into two
parts, 80% of the cascades is employed as training data, and the remaining one-
fifth as test data. As for the hazard ceiling, in this paper, we use the baseline
hazard function as ceiling and set 5% as the hazard-tolerant interval.

4.3 Baselines

From previous literatures, we select a variety of approaches from different per-
spectives to compare our EPOC: traditional machine learning methods, Bayesian
methods, survival methods, and time series methods.

– Linear Regression (LR): Linear regression is a simple and feasible way to
characterize the relationship between variables and final result. In this paper,
we divide the observation time into twelve time periods, then implement LR
with L1 regularization based on different time periods, utilizing the observed
information to predict whether or when a cascade goes viral.

1 arnetminer.org/Influencelocality.
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– Support Vector Regression (SVR): As is widely used in various areas, SVR is
a powerful regression model. We use SVR with Gaussian kernel as a baseline
to predict whether a cascade will go viral or even burst in the near future.
More detailed implementation of SVR is similar to linear regression.

– PreWhether [12]: From a Beyassian perspective, PreWhether is one of the
pioneers in social content prediction, which utilizes three temporal features
(sum, velocity, and acceleration) to infer the content ultimate popularity. In
our experiments, we also use the same time period manner to implement
PreWhether.

– SEISMIC [10]: SEISMIC is a point process based time series model, which
takes individual’s influence into consideration. Since the model itself is
designed to predict the popularity of single tweets in social networks, we
extend it to suit our goals of cascades’ burst pattern detection.

– SansNet [8]: SansNet is a network-agnostic approach proposed in recent lit-
erature, which also regards the burst detection task as a judgement of viral
and non-viral. This method shows its detection performance using only the
time series information of a cascade.

4.4 Burst Pattern Detection

Burst or Not: To detect the early pattern of outbreak cascades, we primarily
divide this problem into two steps. Firstly, we detect whether a cascade will
outbreak based on the observed information. Since large cascades are arguably
more striking [13], in this classification task, we employ two special metrics: k-
coverage and Cost. k-coverage mainly focuses on those cascades with a very large
size. Specifically, it is calculated by n

k , (k ≥ n), where k is the number of the
largest cascades being concentrated on, and n denotes the number of cascades we
successfully detect from the top-k viral cascades. Here in this work, n equals 50.
Cost (more precisely called sensitive cost) is a targeted metric, which is selected
to handle the problem of unequal-cost. If a viral cascade (like a rumor [1]) is
classified to be non-viral, it will cost a lot when this cascade gets larger and
causes a big trouble. On the contrary, if we misclassify a non-viral cascade, it
only costs some additional labor. Cost is specified in Eq. (11),

Cost =
FNR × p × CostFN + FPR × (1 − p) × CostFP

p × CostFN + (1 − p) × CostFP
, (11)

where FNR is the false negative rate, FPR is the false positive rate, p is the
proportion of viral cascades in all cascades, CostFN and CostFP are entries in
cost matrix. We also specify the cost matrix in Table 2.

Performance Analysis. The results of burst detection are aggregated in Table 3
and the underlined numbers show the best results. One can see that in gen-
eral, our EPOC performs relatively better than five baselines in terms of both
k-coverage and Cost. LR also shows great performance in k-coverage on Weibo,
and it works much better than SVR and SEISMIC, which means that the L1
regularization comes into effect. As a probabilistic model, PreWhether gives a
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Table 2. Unequal-cost matrix

Real class Detected class

Viral Non-viral

Viral CostTP = 0 CostFN = 5

Non-viral CostFP = 1 CostTN = 0

slightly poor detection result due to the assumption that all the features are
independent. Though less effective than EPOC, SansNet outperforms all the
other baselines in this classification task, since SansNet only employs one fea-
ture from cascades. However, it is plausible to note that SansNet gives stable
k-coverage and Cost results in both Twitter and Weibo, which indicates that
survival perspective models are suitable in this scenario.

Table 3. Result of burst detection on Twitter

LR SVR PreWheter SEISMIC SansNet EPOC

Twitter k-coverage 0.7781 0.5969 0.7490 0.5188 0.8275 0.8471

Cost 0.1032 0.0998 0.0956 0.1677 0.0776 0.0701

Weibo k-coverage 0.6805 0.4918 0.6512 0.4589 0.7720 0.7784

Cost 0.0951 0.1229 0.1271 0.1581 0.0961 0.0881

Change of Observation Periods. To explore the connection between observing
period and the performance of methods, we conduct experiments on Twitter with
six time periods from 0.5 to 3 h and organize the results in Fig. 5. Intuitively, the
performances of EPOC and five baselines improve gradually as the observing
period increases. We can clearly see that EPOC performs the best with a pretty
high k-coverage at about 87% and a pretty low cost at around 0.068. Besides,
it is worth noticing that SEISMIC is far behind other approaches no matter
in k-coverage or in Cost, which suggests that time series model depends on a
relatively longer observing period, and can not do a good job the burst detection
task at early stage.

Time Ahead (Similar to EPA from [8]): Further, we try to figure out how
early we can detect the outbreak cascades with EPOC. As [13] states, it is a
pathological task to estimate the final size of a cascade if only given a short initial
portion, since almost all cascades are small. Besides, comparing with getting the
final size of a cascade, it is more meaningful and practical to detect how early
a cascade will break out. Therefore, in this experiment of Twitter and Weibo,
we only probe into the early pattern of outbreak cascades, and mainly focus
on absolute time ahead, which is the interval between the predicted burst time
tpredict and the actual burst time tactual. Specifically during the experiments,
if tactual ≥ tpredict, we record as tactual − tpredict, and otherwise, 0. Also, we
consider the relative time ahead, which is given by tactual − tpredict

tactual
or 0.
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Fig. 5. k-Coverage and cost under different observing periods on Twitter

Fig. 6. Absolute and relative time ahead on Twitter and Weibo

Performance Analysis. Figure 6 illustrates the corresponding experiment results
on Twitter and Weibo. We conclude that all the methods have a similar rank in
terms of absolute time ahead and relative time ahead. SansNet and our EPOC
steadily keep a leading role in this regression task at about 38.75% and 40.12%
respectively ahead of the actual burst time in Twitter. PreWhether and LR
work mildly, and they can successfully predict the occurrence of burst, when
the diffusion process of cascades only goes on about two thirds. Though SVR
possesses much better performance than the poorest SEISMIC, it falls behind
comparing with other baselines, which suggests that the notion of support vector
may not be applicable in this problem.

5 Related Work

In recent years, social networks have successfully attracted researchers’ attention,
and plenty of achievements have been made in the past few decades, especially
when it comes to the study of information cascades, including the prediction of
cascade size, how the cascade grows and disseminates, etc.

5.1 Information Cascade and Social Networks

The study of information cascades has been going for a long time, and it is
of great use in many applications, such as meme tracking [2], stock bubble
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diagnosis [3], and sales prediction [4]. The literature concerning cascade in social
networks can be divided into three categories. The first category lays on user level
prediction. One of the pioneers is Iwata et al. [18], they propose a Bayesian infer-
ence model with stochastic EM algorithm, trying to discover the latent influence
among online users. [19] also utilizes user-related features to help social event
detection. Additionally, some other researchers also analyze the topology, since
structural feature is said to be one of the predictors of cascade size [13]. PageR-
ank of retweeting graph is taken into consideration [20], while [21] utilizes the
number of directed followers as one of the important infectors. Another signif-
icant category is temporal features. Many experimental results, such as [9,10],
reveal that temporal features are the most effective type of indicators. To depict
the connection between early cascade and its final state, both [5,12] propose
Bayesian networks with temporal information. Other temporal information, like
mean time and maximum time interval, has also been considered [9].

5.2 Outbreak Detection and Modeling

Burst or outbreak, defined as “a brief period of intensive activity followed by
long period of nothingness” [6], is a common phenomenon during the diffusion
of social content, which is worthy of studying and may bring benefits to modern
society. Existing works probing into cascades mainly focus on prediction of its
future popularity [5,12,20] or final aggregate size [10,13]. However, how to detect
the burst pattern of large cascade in early stage remains an intriguing problem.
Recently, based on the transformation of time window, Wang et al. [6] proposes
a classification model to predict the burst time of cascade. Unfortunately, their
approach acquires laborious feature extraction, and the traditional classifiers
they used can hardly take the best use of the features. [17] implements a logistic
model, which considers all the nodes as cascade sensors. Just as bad, when the
number of nodes in networks turns to be billions, the implementation of this
method will be particularly difficult.

In this work, adopting survival theory, we can exactly overcome these draw-
backs from the perspective of cascade dynamics. Other researchers also employ
survival models to understand the burst of cascades. SansNet is proposed in
[8], predicting whether and when a cascade goes viral. This approach utilizes
only the size of cascades as feature, making it weak to apply to multiply cases,
since the features of an author [22] and the inherent network [13] are sometimes
more important than features from cascade itself [22]. Another drawback of this
approach is that the survival curve cannot totally reveal the status of cascades.

6 Conclusion and Perspectives

In social networks, detecting whether and when a cascade will outbreak is a
non-trivial but beneficial task. In this paper, we novelly employ survival theory,
proposing a survival model EPOC to detect the early pattern of outbreak cas-
cades. We extract both dynamic and static features from cascades and utilize
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Gaussian distributions to characterize their survival probabilities, then accom-
panied with hazard rate, we successfully detect the burst pattern of cascades at
very early stage. Extensive experiment shows that our EPOC outperforms five
state-of-the-art methods in this practical task.

As future work, firstly we will mainly concentrate on how to choose a better
standard baseline for hazard ceiling, and more experiment observation might
be made. Then, we will consider more influential and relevant features or try
another suitable survival theory based model. Finally, we hope that our work
will pave ways to richer and deeper understanding of cascades.
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Abstract. Querying temporal relational databases is a challenge for
non-expert database users, since it requires users to understand the
semantics of the database and apply temporal joins as well as tempo-
ral conditions correctly in SQL statements. Traditional keyword search
approaches are not directly applicable to temporal relational databases
since they treat time-related keywords as tuple values and do not
consider the temporal joins between relations, which leads to missing
answers, incorrect answers and missing query interpretations. In this
work, we extend keyword queries to allow the temporal predicates, and
design a schema graph approach based on the Object-Relationship-
Attribute (ORA) semantics. This approach enables us to identify tem-
poral attributes of objects/relationships and infer the target temporal
data of temporal predicates, thus improving the completeness and cor-
rectness of temporal keyword search and capturing the various possible
interpretations of temporal keyword queries. We also propose a two-level
ranking scheme for the different interpretations of a temporal query, and
develop a prototype system to support interactive keyword search.

1 Introduction

Temporal relational databases enable users to keep track of the changes of data
and associate a time period to the temporal data to indicate its valid time period
in the real world. Then users can retrieve information by specifying the time
period (e.g. find patients who have fever in 2015), or the temporal relationship
between the time periods of temporal data (e.g. find patients who have cough
and fever on the same day). While such queries can be written precisely in
SQL statements, it is a challenge for non-expert database users to write the
statements correctly since it requires users to understand the temporal database
schema well, associate the temporal conditions to the appropriate temporal data,
and apply temporal joins between multiple relations.
c© Springer Nature Switzerland AG 2018
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Keyword queries over relational databases free users from writing compli-
cated SQL statements and has become a popular search paradigm. However,
introducing temporal periods in keyword queries may lead to the problems of
(a) missing answers, (b) missing interpretations and (c) incorrect answers if the
temporal periods are not handled properly, as we will elaborate.

Missing Answers. This issue arises because traditional keyword search engines
treat time-related keywords as tuple values. Figure 1 shows a hospital database
that records the temperature and symptoms of patients, salary of doctors, and
the dates that patients consult doctors. Suppose we issue a keyword query
{Patient cough 2015-05-10} to find patients who have cough on 2015-05-10. Tra-
ditional keyword search engine will retrieve patient p1 since tuple t31:<p1,
cough, 2015-05-10,2015-05-13> in relation PatientSymptom matches the DATE
keyword “2015-05-10”. Patient p2 is not returned as an answer even though
tuple t34:<p2, cough, 2015-05-07,2015-05-11> indicates that p2 has a cough on
2015-05-10. This is because p2 does not have a tuple matching “2015-05-10” in
PatientSymptom.

The work in [9] first adapts relational keyword search to temporal relational
database by allowing keywords to be constrained by time periods, and temporal
predicates such as BEFORE and OVERLAP between keywords. As such, their
method will check if “2015-05-10” is contained within the time period of patients’
symptom and retrieve both patients p1 and p2.

Patient

Pid Pname Gender

t11 p1 Smith Male

t12 p2 Green Male

t13 p3 Alice Female

PatientSymptom

Pid Symptom Symptom
_Start

Symptom
_End

t31 p1 cough 2015-05-10 2015-05-13

t32 p1 fever 2015-05-11 2015-05-13

t33 p1 cough 2015-06-03 2015-06-07

t34 p2 cough 2015-05-07 2015-05-11

t35 p2 fever 2015-07-13 2015-07-15

t36 p3 headache 2015-10-19 2015-10-23

Consult

Pid Did Consult_Date

t71 p1 d1 2015-05-12

t72 p1 d2 2015-05-13

t73 p1 d1 2015-05-15

t74 p2 d1 2015-05-12

t75 p2 d2 2015-07-13

t76 p3 d1 2015-10-21

Clinic

Cid Cname

t41 c1 Internal Medicine

t42 c2 Cardiology 

PatientTemperature

Pid Temperature Temperature
_Date

t21 p1 36.7 2015-05-10

t22 p1 39.2 2015-05-11

t23 p1 36.3 2015-06-04

t24 p2 36.7 2015-05-07

t25 p2 38.8 2015-07-13

t26 p3 37.2 2015-10-21

DoctorSalary

Did Salary Salary
_Start

Salary
_End

t61 d1 8,000 2000-01-01 2004-12-31

t62 d1 10,000 2005-01-01 2012-12-31

t63 d1 12,000 2013-01-01 2016-12-31

t64 d2 8,000 2005-01-01 Now

t65 d2 10,000 2010-01-01 Now

Doctor

Did Dname Doctor
_Start

Doctor
_End Cid

t51 d1 Smith 2000-01-01 2016-12-31 c1

t52 d2 George 2005-01-01 now c2

t53 d3 John 2010-01-01 now c2

Fig. 1. Example hospital database.

Missing Interpretations. This issue arises because the work in [9] assume
that a time condition (temporal predicates and time periods) is always asso-
ciated with the nearest keyword in the query. This may miss other possi-
ble interpretations and their answers to the query. For example, the keyword
query {PatientDoctorDURING [2015-01-01,2015-01-31]} has two possible inter-
pretations depending on the user search intention:
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– find patients who consult doctor during January 2015,
– find patients who consult doctor who work in hospital during January 2015.

By assuming that the time condition “DURING [2015-01-01,2015-01-31]” is
associated with the nearest keyword “Doctor” that matches the relation name
Doctor with a valid time period [Doctor Start,Doctor End] indicating the work
period of doctor in the hospital, the work in [9] will only return answers for the
second interpretation, and miss answers for the first interpretation which is more
likely the user search intention.

Incorrect Answers. This issue arises when the time periods in a join operation
are not handled correctly, in other words, there is no support for temporal join.
Consider the query {Patient temperature fever DURING [2015-05-01,2015-05-31]}
to find the temperature of patients who had a fever during May 2015. This
requires a temporal join (joining two records if their keys are equal and their time
periods intersect [5]) of the relations PatientSymptom and PatientTemperature.
The expected result is 39.2, obtained by joining tuples t22 and t32, which gives the
temperature of patient p1 who had a fever during May 2015. The work in [9] only
applies the time condition to the nearest keyword “fever” without considering
the intersection of time periods during the join operation. Then tuples t21 and
t23 are also joined with tuple t32, adding temperatures 36.7 and 36.3 to the
results, which are incorrect because they are not associated with the fever that
p1 had in May 2015.

In this work, we generalize the syntax for temporal keyword queries to include
basic keywords and temporal keywords. We design a semantic approach to pro-
cess complex temporal keyword queries involving temporal joins, taking into
consideration the various ways a time condition can be applied. We use an
Object-Relationship-Mixed (ORM) schema graph to capture the semantics of
objects, relationships and attributes in the temporal databases. With this, we
can generate a set of initial query patterns to capture the interpretations of the
basic keywords of a query. Then we infer the target time period of the temporal
predicate and generate temporal constraints to capture the different interpreta-
tions of temporal keywords including an interpretation involving temporal join.
We propose a two-level ranking scheme for the different interpretations of a
temporal query, and develop a prototype system to support interactive keyword
search over a temporal database. Finally, a set of SQL statements is generated
from the user-selected query patterns with the temporal constraints translated
into temporal joins or select conditions correctly. Experiments on two datasets
show the effectiveness of our proposed approach to handle complex temporal
keyword queries and retrieve relevant results.

2 Related Work

Methods for keyword search over temporal databases [9,13] can be extended
from existing relational keyword search methods which can be broadly classified
into data graph [3,6,8,10,16] and schema graph [2,7,11,12,14,15] approaches.
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The former models a database as a graph where each node represents a tuple
and each edge represents a foreign key-key reference, and an answer to a key-
word query is a minimal connected subgraph (Steiner tree) containing all the
keywords. The latter models a database as a graph where each node represents
a relation and each edge represents a foreign key-key constraint, and a keyword
query is translated into a set of SQL statements. All these works do not dis-
tinguish the Object-Relationship-Attribute (ORA) semantics in the database,
which leads to incomplete and meaningless results. They also do not handle
time-related keywords properly and do not support temporal joins between rela-
tions, which leads to missing answers and missing interpretations as we have
highlighted.

[9] extends keyword queries with temporal predicates and focuses on keyword
query efficiency utilizing a data graph approach. However, this work applies the
temporal predicate to the nearest keyword in the query and does not consider
temporal joins between relations, which leads to missing interpretations and
incorrect answers. [13] extends the solution in [8] to improve the efficiency of
keyword query over temporal graphs. This work does not handle queries with
implicit time period (see Sect. 4), and also suffers from missing interpretations.
Futher, without considering the ORA semantics, both works [9,13] also have the
problem of missing answers and returning incomplete and meaningless results.

The works in [17,18] distinguish the ORA semantics and extend keyword
queries with meta-data to reduce the ambiguity of keyword queries, and retrieve
user intended information and meaningful results. Our work builds upon these
works and focuses on identifying the temporal relations in a temporal database
and infers the target temporal period of the temporal predicate in the database.

3 Preliminaries

Temporal databases support transaction time and valid time. Here, we focus
on valid time which can be a closed time period or a time point. Besides aug-
menting keyword queries with temporal predicates and time periods, users can
explicitly indicate their search intention with metadata keywords that match
relation/attribute names to reduce the ambiguity of queries.

Definition 1. A temporal keyword query Q = {k1 · · · kn} is a sequence of basic
and temporal keywords with syntax constraints.

A basic keyword is

– a data-content keyword that matches a tuple value, or
– a metadata keyword that matches a relation name or an attribute name.

A temporal keyword is

– a time period expressed as a closed time period [s, e] or time point [s], or
– a temporal predicate such as AFTER, DURING [1].

The syntax constraints are

– the first keyword k1 and the last keyword kn cannot be a temporal predicate,
– time periods must be adjacent to a temporal predicate,
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– for a temporal predicate ki, previous keyword ki−1 and next keyword ki+1

cannot be temporal predicates, and ki−1 and ki+1 cannot both be time periods.

Basic keywords specify what information users care about, while temporal key-
words provide time condition on the information. Temporal predicates are
based on [1] and Table 1 gives their mathematical meanings. Syntax constraints
imposed on the keywords ensure meaningful temporal keyword queries, e.g., it
does not make sense to have a temporal predicate AFTER as the first keyword
of a query, and it is meaningless to have a temporal predicate with two time
operands.

Table 1. Mathematical meaning of temporal predicates

Temporal predicate Meaning Temporal predicate Meaning

[s1, e1] BEFORE [s2, e2] e1 < s2 [s1, e1] AFTER s1 > e2

[s1, e1] MEETS [s2, e2] e1 = s2 [s1, e1] MET BY [s2, e2] s1 = e2

[s1, e1] DURING [s2, e2] s1 > s2 ∧ e1 < e2 [s1, e1] CONTAINS [s2, e2] s1 < s2 ∧ e1 > e2

[s1, e1] STARTS [s2, e2] s1 = s2 ∧ e1 < e2 [s1, e1] STARTED BY [s2, e2] s1 = s2 ∧ e1 > e2

[s1, e1] FINISHES [s2, e2] s1 > s2 ∧ e1 = e2 [s1, e1] FINISHED BY [s2, e2] s1 < s2 ∧ e1 = e2

[s1, e1] EQUAL [s2, e2] s1 = s2 ∧ e1 = e2 [s1, e1] INTERSECT [s2, e2] s1 � e2 ∧ e1 � s2

[s1, e1] OVERLAPS [s2, e2] s1 < s2∧s2 <

e1 < e2

[s1, e1] OVERLAPPED BY [s2, e2] e1 > e2∧s2 <

s1 < e2

A database can be represented using an Object-Relationship-Mixed (ORM)
schema graph G = (V,E). Each node u ∈ V is an object/relationship/mixed
node comprising of an object/relationship/mixed relation and its compo-
nent relations. An object (or relationship) relation captures the single-valued
attributes of objects (or relationships). Multivalued attributes are captured in
component relations. A mixed relation contains information of both objects and
many-to-one relationships. Two nodes u and v are connected by an undirected
edge (u, v) ∈ E if there exists a foreign key-key constraint from the relations
in u to those in v. Figure 2 shows the ORM schema graph for the database in
Fig. 1. Note that an ORM node can have multiple relations, e.g., node Patient
contains object relation Patient and component relations PatientSymptom and
PatientTemperature.

ClinicConsultPatient Doctor

Legend:
v Relationship Nodev Object Node

Mixed Nodev

Fig. 2. ORM schema graph of Fig. 1

Based on the ORM schema graph, we can generate a set of query patterns to
capture the possible interpretations of the query basic keywords. Details of pat-
tern generation process are in [17]. We illustrate the key ideas with an example.
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Example 1 (Query Patterns). Consider the query {Smith cough} which contains
basic keywords Smith and cough. The keyword Smith matches some tuple value
in relation Patient, while keyword cough matches some tuple value in component
relation PatientSymptom (see Fig. 1). These relations are mapped to the Patient
node in the ORM schema graph in Fig. 2. Based on the matches, we generate
the query pattern in Fig. 3(a) which shows an annotated Patient object node.

Another interpretation which finds patients who have a cough and consult
doctor Smith is shown in Fig. 3(b). This is because the keyword Smith also
matches tuple values in the Doctor relation. �

Patient
Pname = Smith;

Symptom = cough

Patient
Symptom = coughConsult     Doctor

Dname = Smith

(a) Query pattern P1 (b) Query pattern P2

Fig. 3. Query patterns for query {Smith cough}

4 Temporal Query Interpretations

A keyword query that has only basic keywords can be interpreted using the
traditional keyword search. However, in temporal databases, we have another
interpretation involving temporal join.

Recall that a query pattern P has a set of object/relationship/mixed nodes.
We identify the set of temporal relations S with respect to P that will be involved
in a temporal join. A relation R is a temporal relation if it has a time period
R[A.Start, A.End] or a time point R[A.Date]. Here, we also represent a time
point R[A.Date] as a time period R[A.Date,A.Date].

For each node u ∈ P , we add the temporal relation R ∈ u to S if R is
the object/relationship/mixed relation of u, or if R is matched by some query
keywords. If |S| > 1, then P has two interpretations. The first interpretation
does not consider the temporal aspect of relations in P , i.e., no temporal join
or null temporal constraint. The second interpretation involves a temporal join
between all the temporal relations R1, R2, · · · , Rm in S, indicated by a temporal
constraint that restricts the temporal objects, relationships and attributes in P
to the same time periods:

R1[A1.Start, A1.End] INTERSECT R2[A2.Start, A2.End] INTERSECT

· · · Rm[Am.Start, Am.End]

In other words, we can generate a set of temporal constraints for each query
pattern. One query pattern with one temporal constraint forms one complete
interpretation of a keyword query.

Example 2 (Temporal constraints). Figure 4 shows a query pattern P3 for the
query {Patient coughDoctor}. Keyword Doctor matches the name of the tempo-
ral relation Doctor in Doctor node, while keyword cough matches some tuple
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values in the temporal relation PatientSymptom in Patient node. The set of
temporal relations S = {Doctor, Consult, PatientSymptom}. Table 2 shows the
temporal constraints generated to interpret P3. One interpretation has a null
temporal constraint TC11 and finds patients who had a cough and consulted a
doctor without any consideration of time. Another interpretation has a tempo-
ral constraint TC12 and finds patients who consulted a doctor when they had a
cough, which requires temporal joins of the relations in S. �

Patient
Symptom = coughConsult     Doctor

Fig. 4. Query pattern P3

Table 2. Temporal constraints for {Patient coughDoctor} w.r.t. P3 in Fig. 4

TC11 null

TC12 Doctor[Doctor Start,Doctor End] INTERSECT Consult[Consult Start,Consult End]
INTERSECT PatientSymptom[Symptom Start,Symptom End]

On the other hand, when a query has temporal keywords, there is always some
temporal predicate TP and the time period may be explicit or implicit.

Queries with Explicit Time Period. Consider the query {Patient cough
Doctor DURING [2015-01-01,2015-12-31]} which has a temporal predicate
DURING with an explicit time period [2015-01-01,2015-12-31] forming a time
condition. A query pattern for this query is shown in Fig. 4, which can be gener-
ated without considering the temporal keywords. We can apply the time condi-
tion “DURING [2015-01-01,2015-12-31]” to the underlying temporal relations
associated with this query pattern in several ways, leading to different inter-
pretations of the query. Table 3 shows all possible interpretations of the time
conditions in the form of temporal constraints. Some example interpretations
include:

1. (TC23) Apply time condition to temporal relation Consult to find patients
who had a cough and consulted a doctor during this period.

2. (TC24) Apply time condition to temporal relation PatientSymptom to find
patients who had a cough during this period and consulted a doctor.

The above interpretations assume the traditional join between the relations
that matches the basic query keywords. An additional interpretation is obtained
when we apply the time condition after performing a temporal join of the rela-
tions. This will find patients who had a cough (during this period) and they
consulted a doctor (during this period) who worked in a clinic during this period
(TC26).
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All the interpretations without temporal join can be obtained by applying
the time condition to each temporal relation in a query pattern P . Note that
these include temporal component relations in P which are not matched by
query keywords, e.g., TC22 and TC25 in Table 3. The interpretation involving
temporal join is obtained by identifying the set of temporal relations S in P that
are involved in the temporal join and applying the time condition to restrict the
temporal objects, relationships and attributes in P to the same time periods.

Table 3. Temporal constraints for query {Patient coughDoctorDURING [2015-01-01,
2015-12-31]} w.r.t query pattern P3 in Fig. 4.

TC21 Doctor[Doctor Start,Doctor End] DURING [2015-01-01,2015-12-31]

TC22 DoctorSalary[Salary Start,Salary End] DURING [2015-01-01,2015-12-31]

TC23 Consult[Consult Start,Consult End] DURING [2015-01-01,2015-12-31]

TC24 PatientSymptom[Symptom Start,Symptom End] DURING [2015-01-01,2015-12-31]

TC25 PatientTemperature[Temperature Start,Temperature End] DURING [2015-01-01,2015-12-31]

TC26 (Doctor[Doctor Start,Doctor End] INTERSECT Consult[Consult Start,Consult End]

INTERSECT PatientSymptom[Symptom Start,Symptom End])

DURING [2015-01-01,2015-12-31]

Queries with Implicit Time Period. Consider the query {PatientDoctor
AFTER cough} which has a temporal predicate AFTER with no explicit time
period. The keyword cough matches the temporal relation PatientSymptom, and
the time period for this query is derived from the tuples that match the keyword
cough. A query pattern for this query is the same as P3 in Fig. 4, since these two
queries have the same set of basic keywords. Depending on where we apply the
time condition, AFTER cough, to the underlying temporal relations associated
with this query pattern, we have a number of interpretations, including:

1. (TC31) Apply the time condition to temporal relation Doctor to find patients
who consulted a doctor who worked in a clinic after the patient had a cough.

2. (TC33) Apply the time condition to temporal relation Consult to find patients
who consulted a doctor after the patient had a cough.

Note that since a patient could consult doctor several times after s/he had a
cough, we may have a set of time periods to consider for the time condition
AFTER cough. Here we take the time period with the earliest start time, i.e.,
the nearest consultation after a patient has cough. Again, these interpretations
assume the traditional join between the relations that match the basic keywords
in the query. We have an additional interpretation when we apply the time
condition after performing a temporal join of the relations (TC35). Table 4 shows
the temporal constraints obtained. Since the temporal relation PatientSymptom
(matched by keyword cough) is already in the time condition and there is no
other keywords matches this relation, we will not apply the time condition to
this relation and not include it in the temporal join.



Analyzing Temporal Keyword Queries for Interactive Search 363

Table 4. Temporal constraints for query {PatientDoctor AFTER cough} w.r.t. query
pattern P3 in Fig. 4.

TC31 Doctor[Doctor Start,Doctor End] AFTER

PatientSymptom[Symptom Start,Symptom End]

TC32 DoctorSalary[Salary Start,Salary End] AFTER

PatientSymptom[Symptom Start,Symptom End]

TC33 Consult[Consult Start,Consult End] AFTER

PatientSymptom[Symptom Start,Symptom End]

TC34 PatientTemperature[Temperature Start,Temperature End]

AFTER PatientSymptom[Symptom Start,Symptom End]

TC35 (Doctor[Doctor Start,Doctor End] INTERSECT Consult[Consult Start,Consult End] )

AFTER PatientSymptom[Symptom Start,Symptom End]

Details of the temporal constraints generation is given in [4]. A special case
occurs when the keywords before and after a temporal predicate matches the
same relation, e.g., query {PatientDoctor fever AFTER cough} has both keywords
fever and cough matching the same temporal relation PatientSymptom. Figure 5
shows the corresponding query pattern. We have one interpretation where we
apply the temporal predicate to the temporal relation PatientSymptom to find
patients who consulted a doctor and had a fever after a cough (TC41), and
another interpretation where we apply the temporal predicate after performing
a temporal join of the relations (TC42). Table 5 shows the constraints obtained.

Patient
Symptom1=fever
Symptom2=cough

ConsultDoctor

Fig. 5. Query pattern for {PatientDoctor fever AFTER cough}.

Table 5. Temporal constraints for query {PatientDoctor fever AFTER cough} w.r.t.
query pattern in Fig. 5.

TC41 PatientSymptom1[Symptom Start,Symptom End] AFTER
PatientSymptom2[Symptom Start,Symptom End]

TC42 (Doctor[Doctor Start,Doctor End] INTERSECT Consult[Consult Start,Consult End]
INTERSECT PatientSymptom1[Symptom Start,Symptom End]) AFTER

PatientSymptom2[Symptom Start,Symptom End]

5 Ranking Temporal Query Interpretations

We have discussed how a temporal keyword query can have multiple query pat-
terns, and each pattern can have multiple temporal constraints depending on
how the temporal predicate is applied to the underlying temporal relations.
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In this section, we describe a two-level ranking mechanism where the first level
ranks query patterns without considering the temporal constraints, and the sec-
ond level ranks the temporal constraints within each query pattern.

For the first level ranking, we adopt the approach in [18]. This work identifies
the target and value condition nodes in a query pattern P . A target node specifies
the search target of the query, typically the node that matches the first query
keyword, while a value condition node is annotated with the attribute value
conditions. Query patterns are ranked based on their number of object/mixed
nodes and the average number of object/mixed nodes between the target and
value condition nodes. Patterns with fewer object/mixed nodes and a smaller
average number of object/mixed nodes between target and value condition nodes
are ranked higher. Equation (1) gives the scoring function for this first level
ranking.

score1(P ) =
1

N ∗
∑

v∈V

count(u, v, P )
|V |

(1)

where u is the target node, V is the set of value condition nodes, count(u, v, P )
is the total number of object/mixed nodes in the path connecting two nodes u
and v in P , and N is the number of object and mixed nodes in P .

The query {Smith cough} has two query patterns P1 and P2 (see Fig. 3),
and P1 is ranked higher than P2. The Patient node in P1 is both a value
condition node and a target node, with count(Patient, Patient, P1) = 1 and
score1(P1) = 1

1 ∗ 1 = 1. For pattern P2, Doctor and Patient nodes are value
condition nodes, and Doctor node is the target node since the first keyword
Smith matches doctor’s name. We have count(Doctor, Patient, P2) = 2 and
score1(P2) = 1

2∗ 2+ 1
2

= 1
3 .

For the second level ranking, we compute a score for each temporal constraint
TC of a query pattern P . The temporal constraint with temporal join is ranked
the highest since it involves all the temporal relations related to the query.
Note that there is at most one temporal constraint with temporal join with
respect to one query pattern. For the temporal constraints without temporal
join, we first identify the time condition node in the query pattern with respect
to this constraint. A time condition node contains the temporal relation that
the time condition is applied to. There is only one time condition node for
each temporal constraint without temporal join. Here, we count the number of
object/mixed nodes between target node and time condition node in the query
pattern, and rank temporal constraint with smaller number of object/mixed
nodes between target node and time condition node higher. Equation (2) gives
the ranking function:

score2(TC,P ) =

{
2 if TC has temporal join

1

count(u,w, P ) otherwise (2)
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where u ∈ P is the target node, w ∈ P is the time condition node w.r.t temporal
constraint TC. The maximum score for a temporal constraint without temporal
join is 1. Temporal constraint with temporal join has a score of 2 so that it is
always ranked highest among all constraints.

Note that when the query only contains basic keywords, there are at most
two temporal constraints generated (recall Example 2). In this case, we rank the
temporal constraint with temporal join first, followed by the null constraint.

Example 3 (Second-Level Ranking). Consider query {Patient coughDoctor
DURING [2015-01-01,2015-12-31]} and its temporal constraints in Table 3 w.r.t.
the query pattern P3 in Fig. 4. TC26 has a score of 2 since it involves a tempo-
ral join. TC21 to TC25 have no temporal join, and we compute their scores by
counting the number of object/mixed nodes between target node Patient and the
time condition node for each constraint. Both TC21 and TC22 have a score of
1
2 since the time condition nodes is Doctor and count(Patient,Doctor, P3) = 2.
TC23 has a score of 1 since the time condition node is node Consult and
count(Patient, Consult, P3) = 1. TC24 and TC25 have a score of 1 since
count(Patient, Patient, P3) = 1. �

6 Generating SQL Statements

Finally, we generate a set of SQL statements based on the query patterns and
their temporal constraints to retrieve results from the database.

We first consider the query pattern and generate the SELECT, FROM and
WHERE clause according to [17]. The SELECT clause includes the attributes
of the target node and the FROM clause includes the relations of every node
in P . The WHERE clause joins the relations in the FROM clause based on the
foreign key-key constraints and translates attribute value condition such as A =
value into a selection condition “contains(Ru.A, value)”. The SQL statement
for the query pattern in Fig. 4 for the query {Patient coughDoctorDURING [2015-
01-01,2015-12-31]} is as follows. Note that the FROM clause includes relation
PatientSymptom since it is matched by keyword cough.

1 SELECT P.*

2 FROM Doctor D, Consult C, Patient P, PatientSymptom PS

3 WHERE D.Did=C.Did AND C.Pid=P.Pid AND P.Pid=PS.Pid

4 AND contains(PS.Symptom,“cough”)

Next, we consider the temporal constraints of the query pattern. For each
temporal constraint of the form of “R[A.Start, A.End] TP [s, e]” where [s, e]
is an explicit time period, we translate the temporal predicate TP into a set
of comparison operators between [A.Start, A.End] and [s, e] based on Table 1.
For example, we translate TC24 in Table 3 to the following conditions in the
WHERE clause:

“PS.Symptom Start>2015-01-01 AND PS.Symptom End<2015-12-31”

For each temporal constraint involving temporal joins, e.g., TC26 in Table 3,
we first translate the temporal predicate INTERSECT into a set of comparison
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operator between its adjacent time periods according to Table 1. Then we apply
the temporal predicate with time period, like “TP [s, e]”, to one of time peri-
ods involved in the temporal join. For example, TC26 in Table 3 is translated
into conditions as follows, in which lines 5-6 indicate temporal joins and line 7
indicates the temporal predicate with time period.

5 D.Doctor Start � C.Consult Date AND D.Doctor End � C.Consult Date AND

6 C.Consult Date � PS.Symptom End AND C.Consult Date � PS.Symptom Start AND

7 PS.PatientSymptom Start > ‘2015-01-01’ AND PS.PatientSymptom End < ‘2015-12-31’

7 PowerQT System Prototype

Given the inherent ambiguity of keyword queries, we propose to generate various
interpretations of the query based on all possible matching of basic keywords
and apply the temporal predicate to the different temporal relations. However,
it is difficult for users to find the correct interpretation of their query. As such,
we design a prototype system called PowerQT to allow interactive keyword
search over a temporal database. PowerQT also includes our two-level ranking
mechanism to rank the generated query interpretations, which facilitate users to
choose the interpretation that best captures their search intention.

Query 
Analyzer

Query Pattern
Generator

Query Pattern
Ranker (1st level)

TC 
Generator

TC Ranker
(2nd level)

SQL 
Generator

Temporal
Database

Basic 
keywords Query patterns

Selected 
query patterns

Query pattern with 
temporal constraints

SQL
statements

Temporal keywords

Keyword Query Results

Select interpretations
of basic keywords

Select intended
query patterns

Select intended 
temporal constraints

Fig. 6. Architecture of PowerQT

Figure 6 shows the main components of PowerQT . Given a keyword query
Q, the Query Analyzer distinguishes the basic keywords and temporal keywords
in Q. Each basic keyword may have different interpretations as they may have
different matches, e.g. keyword Smith could be a patient’s name or a doctor’s
name. We allow users to choose the intended interpretations of each basic key-
word. Then the Query Pattern Generator generates a set of query patterns based
on the selected interpretations of each basic keyword. This reduces the number
of query patterns generated. The Query Pattern Ranker uses the first level rank-
ing scheme to rank the generated query patterns for the user to choose. For each
selected query pattern, the Temporal Constraint (TC) Generator analyzes the
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temporal relations and the temporal keywords to generate a set of temporal con-
straints that depict how the time condition is handled. The Temporal Constraint
(TC) Ranker uses the second level ranking scheme to rank the temporal con-
straints within each query pattern for the user to choose. Finally, we generate
SQL statements to retrieve the answers to Q. Note that the answers are grouped
by the query interpretations.

This interactive process allows users to consider the interpretations of the
basic keywords and temporal keywords separately, and users will not be over-
whelmed by too many interpretations.

8 Evaluation

We evaluate the expressive ability of our proposed approach (PowerQT ) and
compare it with the method in [9] (ATQ) which does not consider multiple
temporal relations involved in the query and support temporal join. We use the
following datasets in our evaluation.

1. Basketball dataset1. It contains information about NBA players, teams and
coaches from 1946 to 2009. We modify the schema to create time period
attributes (from and to) based on the original time point attribute (year) to
make it a temporal database.

2. Employee dataset2. It contains the job histories of employees, as well as the
department where the employees have worked from 1985 to 2003.

Table 6 shows the schema of these two datasets. A temporal relation is indi-
cated by a superscript T . The DATE type attributes are in italics.

Table 6. Dataset schemas

Basketball Employee

Team(tid, location, name) Department(deptno, dname)

Coach(cid, name) Employee(empno, ename, gender)

PlayerT (pid, name, position, weight, college, EmployeeTitleT (empno, from, title, to)

first season, last season) EmployeeSalaryT (empno, from, salary, to)

PlayerSeasonT (pid, year , game, point) WorkforT (empno, from, deptno, to)

TeamSeasonT (tid, year , won, lost) ManageT (deptno, from, empno, to)

PlayForT (pid, tid, from, to)

CoachForT (cid, from, tid, to)

Table 7 shows the 3 types of queries we designed for each dataset: (a) queries
without time constraint, (b) queries with explicit time period, and (c) queries
with implicit time period. We evaluate whether PowerQT and ATQ are able to
retrieve the correct answers with respect to the user search intention.

1 https://github.com/briandk/2009-nba-data/.
2 https://dev.mysql.com/doc/employee/en/.

https://github.com/briandk/2009-nba-data/
https://dev.mysql.com/doc/employee/en/
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Table 7. Queries for Basketball (B) and employee (E) datasets

Type I Queries. These queries do not contain any time constraint, i.e., no
explicit temporal predicate or time period (see Table 7(a)). Queries B1 and E1

do not involve temporal join, and both PowerQT and ATQ retrieve the correct
results by matching the query keywords to the database tuples.

Queries B2 ∼ B3 and E2 ∼ E3 involve temporal join and only PowerQT could
retrieve the correct results. Take for example query B2. PowerQT retrieves the
correct results by applying temporal join over the temporal relations PlayerSea-
son, PlayFor and CoachFor which ensures that only the point history of players
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who were coached by “Pat Riley” are retrieved. However, ATQ uses the stan-
dard join over these temporal relations and also returns the players’ point history
when they were coached by other coaches.

Type II Queries. These are queries with explicit time period (see Table 7(b)).
Queries B4 and E4 involves only one temporal relation, and both PowerQT and
ATQ retrieve the correct results by applying the time period to this relation.
However, queries B5 ∼ B6 and E5 ∼ E6 involve multiple temporal relations, and
only PowerQT retrieves the correct results for them. This is because ATQ does
not apply temporal join between relations.

Take for example query B5. PowerQT retrieves the correct results by car-
rying out a temporal join over the temporal relations PlayFor and CoachFor,
and applying the time condition “OVERLAPS [1990, 2000]” to the result of
the temporal join. This ensures that we find the coaches for “Magic Johnson”
from 1990 to 2000. In contrast, ATQ associates the time period separately to
the relations PlayFor and Coachfor, and returns incorrect results, e.g., “Randy
Pfund” is not a correct result since he coached the team “Los Angeles Lakers”
from 1992 to 1993, while “Magic Johnson” played for this team only on 1990
and 1995, indicating that Randy did not coach “Magic Johnson” from 1990 to
2000.

Type III Queries. These are queries with implicit time period (see Table 7(c)).
Both PowerQT and ATQ could retrieve correct results for queries B7 ∼ B8 and
E7 ∼ E8 since the target relations of the temporal predicate are easily found by
matching the adjacent keywords.

However, for queries B9 and E9, only PowerQT could retrieve the correct
results, and no answers are returned by ATQ. This is because ATQ is unable
to interpret the temporal predicate in these queries since the keywords adjacent
to the temporal predicate match non-temporal relations. In contrast, PowerQT

interprets the temporal predicate over the query pattern generated by match-
ing the basic keywords, which finds the temporal relationship relations as the
operands of the temporal predicate correctly.

Take for example query B9. The keywords “Cavaliers” and “Suns” match the
relation Team which is not a temporal relation. PowerQT is able to identify the
temporal relation PlayFor involved in the generated query pattern as the target
relation of temporal predicate MEETS. Thus it is able to retrieve the players
who played for team “Cavaliers” then playing for team “Suns”.

In summary, we have shown that PowerQT is able to retrieve the correct
answers for all given queries in each dataset, while ATQ is able to return correct
results for some of the queries. There are two reasons why PowerQT performs
better than ATQ. First, PowerQT handles the basic keywords and temporal
keywords separately, which enable us to identify temporal relations involved in
a keyword query which is not explicitly specified by the users, e.g., queries N9

and E9. Second, by analyzing the temporal relations involved in a query pattern,
PowerQT is able to handle keyword queries that require temporal join between
relations, which is not considered in ATQ, e.g., queries N5 and E5. Besides
these two reasons, there is another advantage of PowerQT over ATQ. PowerQT
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helps users to reduce the multiple interpretations of one keyword query into
some interpretations which match their search intention based on the interactive
search and the two-level ranking mechanism. However, ATQ returns the results
of all possible interpretations of one keyword query, which requires additional
work on the user’s part to filter out the results.

9 Conclusion

In this work, we have studied the problem of evaluating keyword query with tem-
poral keywords (temporal predicate and time period) over temporal relational
databases. Existing works do not consider temporal join and the multiple inter-
pretations of temporal keywords, which leads missing answers, missing query
interpretations, and incorrect answers. We addressed these problems by consid-
ering the Object-Relationship-Attribute semantics of the database to identify
the temporal attributes of objects/relationships and infer the target temporal
data of temporal predicates. After generating an initial set of query patterns, we
can infer the target time period of the temporal predicate and generate temporal
constraints to capture the different interpretations of a temporal keyword query.
We have also developed a two-level ranking scheme and a prototype system
to support interactive keyword search. Evaluation of queries over two datasets
demonstrate the expressiveness and effectiveness of the proposed approach.
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Abstract. Domains for spatial and temporal data are often multigran-
ular in nature, possessing a natural order structure defined by spatial
inclusion and time-interval inclusion, respectively. This order structure
induces lattice-like (partial) operations, such as join, which in turn lead
to join rules, in which a single domain element (granule) is asserted to
be equal to, or contained in, the join of a set of such granules. In general,
the efficient representation of such join rules is a difficult problem. How-
ever, there is a very effective representation in the case that the rule is
bigranular ; i.e., all of the joined elements belong to the same granularity,
and, in addition, complete information about the (non)disjointness of all
granules involved is known. The details of that representation form the
focus of the paper.

1 Introduction

In a multigranular attribute, the domain elements are related by order-like and
even lattice-like operations, leading to a much richer family of integrity con-
straints than is found in the traditional monogranular setting. The ideas are
best illustrated via example. Let Rsumb〈APlc, ATim, BBth〉 be the schema in which
the spatial attribute APlc identifies certain geographical areas of Chile, the tem-
poral attribute ATim identifies intervals of time, and the thematic attribute BBth

has numerical values representing the number of births. A tuple of the form
〈p, t, b〉 denotes that in the region defined by p, for the time interval defined by
t, the number of births was b. An example instance for this schema is shown in
Fig. 1. Think of the two tables of that figure to be part of a single relation; the
division is for expository reasons, as well as to conserve space. In that instance,
for domain elements (called granules) of APlc, the suffix prv identifies the name
as that of a province, rgn identifies a region, cmn identifies a county, while
urb identifies a metropolitan area. For ATim, Y2017Qx denotes quarter x of year

2017, while Y2017 represents the entire year. Such a multigranular schema and
instance may arise, for example, when data of varying granularities of space and

c© Springer Nature Switzerland AG 2018
S. Hartmann et al. (Eds.): DEXA 2018, LNCS 11029, pp. 372–389, 2018.
https://doi.org/10.1007/978-3-319-98809-2_23
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APlc ATim BBth

Los Lagos rgn Y2017Q1 b1
Osorno prv Y2017Q1 b2

Llanquihue prv Y2017Q1 b3
Chiloé prv Y2017Q1 b4
Palena prv Y2017Q1 b5

Puerto Montt cmn Y2017Q1 b6
Puerto Varas cmn Y2017Q1 b7

Gran Puerto Montt urb Y2017Q1 b8

APlc ATim BBth

B́ıoB́ıo rgn Y2017 b′
1

B́ıoB́ıo rgn Y2017Q1 b′
2

B́ıoB́ıo rgn Y2017Q2 b′
3

B́ıoB́ıo rgn Y2017Q3 b′
4

B́ıoB́ıo rgn Y2017Q4 b′
5

Fig. 1. Multigranular relational instance

time are integrated, into a single schema, with respect to the same thematic
attribute (here BBth).

It is clear that the ordinary functional dependency (FD) {APlc, ATim} → BBth

is expected to hold. However, there are also several other natural dependen-
cies, induced by the structure of the multigranular domains. Each of the four
listed provinces is contained in the region Los Lagos, expressed formally as
Osorno prv � Los Lagos rgn, Llanquihue prv � Los Lagos rgn, Chiloé prv �
Los Lagos rgn, and Palena prv � Los Lagos rgn. Similarly, both counties, as
well as the metropolitan area of Gran Puerto Montt, are contained in the
province Llanquihue; Puerto Montt cmn � Llanquihue prv , Puerto Varas cmn �
Llanquihue prv , and Gran Puerto Montt urb � Llanquihue prv . For the tem-
poral domain, each of the quarters of 2017 is contained in the entire year:
Y2017Qx � Y2017 for x ∈ {1, 2, 3, 4}. Since the number of births is mono-
tonic with respect to region size and time-interval size, these conditions in turn
lead to the constraints bi ≤ b1 for i ∈ {2, 3, 4, 5}, bi ≤ b3 for i ∈ {6, 7, 8}, and
b′
i ≤ b′

1 for i ∈ {2, 3, 4, 5}.
More is true, however. The region Los Lagos is composed exactly of the four

provinces listed, without any overlap, written as the disjoint-join equality rule
(r-LLr) below.

Los Lagos rgn =
⊔
⊥ {Osorno prv , Llanquihue prv ,Chiloé prv ,Palena prv}

(r-LLr)

Specifically, the symbol
⊔

means that the four provinces cover the region
completely, while the embedded ⊥ means that the join is disjoint ; that is,
that the regions do not overlap. This leads to the spatial aggregation constraint∑5

i=2 bi = b1. Additionally, the metropolitan area of Gran Puerto Montt lies
entirely within the combined areas of the counties Puerto Montt and Puerto
Varas, leading to the disjoint-join subsumption rule (r-Llp) shown below, and
consequently the spatial aggregation constraint b8 ≤ b6 + b7.

Gran Puerto Montt urb �
⊔
⊥ {Puerto Montt cmn,Puerto Varas cmn} (r-Llp)
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Such aggregation constraints arise in the same fashion for temporal multi-
granular attributes, such as ATim. For example, the disjoint-join equality rule
(r-YQ2017) shown below holds, leading to the temporal aggregation constraint∑5

i=2 b′
i = b′

1.

Y2017 =
⊔
⊥ {Y2017Q1 ,Y2017Q2 ,Y2017Q3 ,Y2017Q4} (r-YQ2017)

Aggregation constraints arising from join rules, as illustrated by the examples
above, are instances of TMCDs or thematic multigranular comparison dependen-
cies, which are developed in detail in [8], including a notion of tolerance which
replaces absolute equality with an approximate one (to account for differences
arising from rounding and measurement errors). In order to enforce such TMCDs,
it is first of all essential to know which ones hold. This, in turn, requires a means
to determine which disjoint-join rules hold. Although a formal semantics and
inference mechanism for such rules is developed in [8], it is quite resource expen-
sive to enforce all TMCDs by identifying the associated join rules via direct
inference. The focus of this paper is the development of a compact and efficient
representation for certain types of join rules which occur frequently in practice.

Key to these results are the observation that the granules of a multigranular
attribute may be partitioned naturally into so-called granularities (hence the
term multigranular) of disjoint members, as illustrated in Fig. 2 for both space
and time. Arrows of the form G1 −� G2 represent the basic refinement order
of granularities, in the sense that for every granule g1 of granularity G1 there
is a granule g2 of granularity G2 with g1 � g2. Inline, this typically written
G1 ≤ G2. Thus, every county is contained in a (unique) province, every province
is contained in a (unique) region, and every region is contained in Chile. Similarly,
every metropolitan area is contained in a region, (although not necessarily in a
single province.)

�=Chile

Region

Province

NatlPark

MetroArea

CityCounty
(Comuna)

�
�

� �

�

�

Year

Quarter

Month

Week

Day

�
�

�

�

Fig. 2. Granularity hierarchies for Chile and for time



Implicit Representation of Bigranular Rules for Multigranular Data 375

In support of the representation of rules, there are two additional binary
relations on granularities which are of fundamental importance, equality join
order, denoted �, and subsumption join order, denoted �. G1 � G2 holds just
in case every granule g2 of granularity G2 is the (necessarily disjoint) join of
some granules of granularity G1; i.e., if g2 =

⊔
⊥ S holds for some finite set S of

granules of G2. As can be seen in Fig. 2, with the symbol � embedded in a line
indicating that this relation holds between the granularities which it connects,
this condition characterizes many practical situations. As a concrete example,
Province � Region, with (r-LLp) a specific instance of a join rule arising from
it. Similarly, for the time hierarchy, (r-YQ2017) is a specific instance of a rule
arising from Quarter � Year.

The main result of this paper regarding � may be summarized as follows.
Let NRel〈G1,G2〉 denote the relation which identifies pairs 〈g1, g2〉 of granules from
〈G1, G2〉 (i.e., with g1 of granularity G1 and g2 of granularity G2) which are not
disjoint. Then, it must be the case that S = {g2 | 〈g1, g2〉 ∈ NRel〈G1,G2〉}; in other
words, S must be exactly the set of all granules of g2 which are not disjoint from
g1. As a specific example, to identify those provinces which lie in Los Lagos rgn,
it is only necessary to retrieve {g | 〈Los Lagos rgn, g〉 ∈ NRel〈Region,Province〉}; no
complex inference procedure is necessary. In assessing this solution, it must be
remembered that knowledge about granules, including subsumption, disjoint-
ness, and join, is specified via statements. There is the possibility that a given
assertion is unresolvable; i.e., it is not possible to establish that it is true or it
is false. (See Summary 2.7 for details.) What is remarkable about this result is
that no such unresolvability can occur for 〈G1, G2〉 disjointness. For G1 � G2 to
hold, it must be the case that for any pair 〈g1, g2〉 of granules of 〈G1, G2〉, it is
the case that the disjointness of 〈g1, g2〉 is resolvable.

This idea applies also, subject to an additional condition, when subsump-
tion replaces equality. G1 � G2 holds just in case every granule of G1 is sub-
sumed by the join of some granules in G2; i.e., if g2 � ⊔

⊥ S holds for some finite
set S of granules of G2. This is illustrated in particular by rule (r-Llp), as an
instance of County � MetroArea. Of course, G1 � G2 always implies G1 � G2,
but this example shows that the converse need not hold. The additional con-
dition which must be imposed is that the join be resolved minimal, meaning
that if any element is removed from the join set, the assertion becomes resolv-
ably false. In other words, both Gran Puerto Montt urb 	� Puerto Montt cmn and
Gran Puerto Montt urb 	� Puerto Varas cmn must follow from the rules. In this
case, to determine the counties in which Gran Puerto Montt urb lies, it is only
necessary to retrieve {g | 〈Gran Puerto Montt urb, g〉 ∈ NRel〈County,MetroArea〉}.

To clarify the terminology, a join rule g =
⊔
⊥ S is bigranular if every granule

in S is of the same granularity G2. (Since granules of the same granularity are
disjoint, it must be the case that the granularity G1 of g is different from that
of the members of S, hence the term bigranular.) Thus, any rule arising from
the application of a condition of the form G1 � G2 or G1 � G2 is necessarily
bigranular.
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The representations developed above are termed implicit, since a rule of the
form g =

⊔
⊥ S or g � ⊔

⊥ S is represented by a way to recover S from the
appropriate NRel〈-,-〉. In the remainder of this paper, the details of how and why
this method of representing of join rules works are developed.

The paper is organized as follows. Section 2 provides necessary details of the
multigranular framework developed in [8]. Section 3 develops the general ideas of
minimality for join rules, while Sect. 4 contains the main results of the paper on
the representation of bigranular join rules. Finally, Sect. 5 contains conclusions
and further directions.

2 Multigranular Attributes and Their Semantics

The results of this paper are based upon the formal model of multigranular
attributes, as developed in [8]. It is thus appropriate to begin with a summary
of that framework. Although [7] covers similar material, it is of a preliminary
nature, so the reader is always referred to [8] for clarification of details. For ter-
minology and notation regarding logic, consult [11], while for issues surrounding
order structures, including posets, see [3]. For basic concepts surrounding the
relational model, see [9].

Notation 2.1 (Special mathematical notation). X1 � X2 (resp. X1 ⊆f X2

denotes that X1 is a proper (resp. finite) subset of X2. The cardinality of the
set X is denoted Card(X).

Overview 2.2 (Constrained granulated attribute schemata). In the ordi-
nary relational model with SQL used for data definition, several attributes may
use the same data type. For example, two distinct attributes may be declared
to be of the same type VARCHAR(10). Similarly, in the multigranular model, sev-
eral distinct attributes may be declared to be of the same type. Such a type
is called a constrained granulated attribute schema, or CGAS, and is a triple
S = (Glty〈S〉,GrAsgn〈S〉,Constr±〈S〉) in which Glty〈S〉 is a poset of granular-
ities and GrAsgn〈S〉 is a granule assignment, both elaborated in Summary 2.3
below, while Constr±〈S〉 is a unified set of constraints, elaborated in Summary 2.5
below.

Summary 2.3 (Granularities and granules). A granularity poset for the
CGAS S is an upper-bounded poset Glty〈S〉 = (Glty〈S〉,≤Glty〈S 〉,�Glty〈S 〉); that
is, it is poset with a greatest element �Glty〈S〉. The two diagrams of Fig. 2 repre-
sent the specific granularity posets for S replaced by C and T, respectively, with
G1 ≤Glty〈C〉 G2 (resp. G1 ≤Glty〈T〉 G2) iff there is an arrow of the form G1 −� G2

in the associated diagram. In that which follows, S will be used to represent
a general CGAS, while C (for Chile) and T (for time) will be used to repre-
sent, respectively, the spatial and the temporal schema whose granularities are
depicted in Fig. 2.

A granule assignment GrAsgn〈S〉 = (Gnle〈S〉,ΠGnle〈S〉) for S extends the
idea of a domain assignment for an ordinary relational attribute, in the sense
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that it assigns (with one exception) every granule to a granularity. Gnle〈S〉 =
(Granules〈S〉,�S ,�S ,⊥S ) is the (bounded) granule preorder, while ΠGnle〈S〉 =
{Granules〈S|G〉 | G ∈ Glty〈S〉} is a partition of Granules�⊥〈S〉 = Granules〈S〉 \
{⊥S} that identifies which granules are assigned to which granularities. The
bottom granule ⊥S (the least element of the preorder Gnle〈S〉) is not a member
of Granules〈S|G〉 for any granularity G, while the top granule �S (the greatest
element of the preorder Gnle〈S〉) lies in Granules〈S|�Glty〈S〉〉.

The orders of granularities and granules are closely related. Specifically, for
granularities G1 and G2, G1 ≤Glty〈S〉 G2 iff for every g1 ∈ Granules〈S|G1〉, there is
a g2 ∈ Granules〈S|G2〉 with the property that g1 �S g2. Since Gnle〈S〉 is only a
preorder, distinct granules may be equivalent, in the sense that g1 �S g2 �S g1.
Write [g1]Gnle〈S〉 to denote the equivalence class of g1; thus, with g1, g2 as above,
g2 ∈ [g1]Gnle〈S〉 and [g1]Gnle〈S〉 = [g2]Gnle〈S〉 . To avoid problems, the special
notation g1

id= g2 will be used to mean that g1 and g2 are the same granule,
with the meaning of g1 = g2 deferred until Summary 2.5, when semantics are
discussed. With this in mind, further conditions may be stated. First of all,
the top granularity �Glty〈S〉 is the only one which may contain equivalent but
not identical granules. It contains the top granule �S (the greatest element of
the poset Gnle〈S〉), as well as any granule equivalent to it. For example, in
the CGAS C, [�C ]Gnle〈C〉 = [Chile]Gnle〈C〉 (see Fig. 2). Otherwise, non-identical
granules of the same granularity may not be equivalent, and they furthermore
must have the bottom granule as GLB (greatest lower bound). More precisely,
if g1 and g2 are of the same non-�Glty〈S〉 granularity, and g1 	 id= g2, then both
([g1]Gnle〈S〉 	= [g2]Gnle〈S〉) and (GLBGnle〈S〉〈{g1, g2}〉 = ⊥S) hold.

Summary 2.4 (Semantics of granules). A granule structure σ = σ =
(Dom〈σ〉,GnletoDomσ) for the granule assignment GrAsgn〈S〉 provides set-based
semantics. Dom〈σ〉 is a (not necessarily finite) set, called the domain of σ, and
GnletoDomσ : Granules〈S〉 → 2Dom〈σ〉 is a function which assigns to each gran-
ule a subset of the domain. In this assignment, granule subsumption translates
to set inclusion (g1 �S g2 implies GnletoDomσ(g1) ⊆ GnletoDomσ(g2)), gran-
ule disjointness translates to empty intersection (if g1 and g2 are of the same
granularity with g1 	 id= g2, then GnletoDomσ(g1) ∩ GnletoDomσ(g2) = ∅); equiva-
lent granules have identical semantics ((GnletoDomσ(g1) = GnletoDomσ(g2)) ⇔
[g1]Gnle〈S〉 = [g2]Gnle〈S〉); and the bottom granule maps to the empty set
(GnletoDomS(⊥S) = ∅).

As already mentioned in Sect. 1, for a spatial attribute such as C, a natural
granular structure might be σChile, the subset of the real plane R × R represent-
ing Chile, with GnletoDomσChile

(g) exactly the geographic region corresponding
to granule g. While such a structure is mathematically correct, it involves an
enormous amount of detail, much more than is necessary in many cases. It is for
this reason that the semantics of a multigranular attribute is modelled not by
a single granular structure, but rather by any such structure which satisfies the
constraint, or rules, of the schema, as defined in Summary 2.5 below. For a more
complete explanation, see [8, Sect. 3.6].
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Summary 2.5 (Rules). In [8, Sect. 3], general constraints for GGASs and their
semantics are developed extensively. In this paper, only those constraint types
which are used in the theory developed here are sketched.

The primitive basic rules over the CGAS S, denoted, PrBaRules〈S〉 are of
the following two forms.

(pjrule-i) A subsumption join rule is of the form (g �S

⊔
S

S) for {g} ∪ S ⊆
Granules�⊥〈S〉. The elemental subsumption rule (g1 �S g2), with g1, g2 ∈
Granules�⊥〈S〉, is shorthand for (g1 �S

⊔
S

{g2}).
(psrule-ii) A basic disjointness rule is of the form (

�

S
{g1, g2} = ⊥S) for g1, g2 ∈

Granules�⊥〈S〉 and [g1]S 	= [g2]S .

Extending the notion of semantics of Summary 2.4 to PrBaRules〈S〉, a gran-
ule structure σ for S is a model of the subsumption rule (g �S

⊔
S

S) if
GnletoDomσ(g) ⊆ ⋃

s∈S GnletoDomσ(s), while σ is model of the basic disjoint-
ness rule (

�

S
{g1, g2} = ⊥S) if GnletoDomσ(g1) ∩ GnletoDomσ(g2) = ∅. For

Φ ⊆ PrBaRules〈S〉, ModelsS〈Φ〉 denotes the collection of all models of Φ.
For any CGAS S, the built-in rules BuiltInRules〈S〉 are those which are

satisfied by every granular structure σ for S. These include the subsumption rule
(g1 �S g2) whenever g1 �S g2 holds,1 as well as

�

S
{g1, g2} = ⊥S whenever

g1 	 id= g2 are of the same granularity.
A complex rule is a conjunction of primitive basic rules. Write Conjuncts〈ϕ〉

to denote the set of conjuncts of the complex rule ϕ. Thus, if ϕ = ϕ1∧ϕ2∧ . . . ∧ϕk,
then Conjuncts〈ϕ〉 = {ϕ1, ϕ2, . . . , ϕk}. The most important kind of complex rules
are the complex join rules:

(cjrule-i) An equality join rule is of the form (g =
⊔

S
S), for {g} ∪ S ⊆

Granules�⊥〈S〉. Its definition in terms of primitive basic rules is

ConjunctsS〈(g =
⊔

S
S)〉 = {(g �S

⊔
S

S)} ∪ {(gi �S g) | gi ∈ S}.

(cjrule-ii) A disjoint-join subsumption rule, written as (g �S

⊔
⊥

S
S) for {g}∪S ⊆

Granules�⊥〈S〉, is defined in terms of primitive basic join rules as
ConjunctsS〈(g �S

⊔
⊥

S
S)〉 =

Conjuncts〈(g �S

⊔
S

S)〉 ∪ {(
�

S
{g1, g2} = ⊥S) | gi, gj ∈ S and gi 	 id= g2}.

(cjrule-iii) A disjoint-join equality rule, written as (g =
⊔
⊥

S
S) for {g} ∪ S ⊆

Granules�⊥〈S〉 is defined in terms of primitive basic join rules as

ConjunctsS〈(g =
⊔
⊥

S
S)〉 =

ConjunctsS〈(g =
⊔

S
S)〉 ∪ ConjunctsS〈(g �S

⊔
⊥

S
S)〉.

For convenience, a complex rule will be represented by its set of conjuncts.
Thus, every complex rule is a regarded as a finite nonempty set of primitive
basic rules.
1 �S is the granule preorder defined in the granule assignment GrAsgn〈S〉 (see Sum-

mary 2.3) while �S is the general subsumption relation used to define rules. For
g1, g2 ∈ Granules〈S〉, it is always the case that g1 �S g2 implies (g1 �S g2)). The
converse is not required to hold, although in practice it usually does.
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For simplicity, the example rules in Sect. 1 were presented without
qualifying subscripts on the operators. Using the notation for specific
granular attributes introduced in Summary 2.3, for example, rule (r-Llp)
should be written more properly as Gran Puerto Montt urb �C

⊔
⊥

C{Puerto Montt cmn,Puerto Varas cmn}. It is assumed that the reader will add
these qualifying symbols, as necessary.

Summary 2.6 (Negation of rules). It is also necessary to work with nega-
tions of primitive basic rules over the CGAS S; the most important example is
negation of disjointness; for g1, g2 ∈ Granules�⊥〈S〉, write (

�

S
{g1, g2} 	= ⊥S)

to mean ¬(
�

S
{g1, g2} = ⊥S). Similarly, (g1 	�S g2) means ¬(g1 �S g2)

and (g1 	�S S) means ¬(g1 �S S). The set of all negations of primitive
basic rules is denoted NegPrBaRules〈S〉. The granule structure σ is a model
of ψ = ¬ϕ ∈ NegPrBaRules〈S〉, iff it is not a model of ϕ; i.e., ModelsS〈ψ〉 is the
collection of all granule structures which do not lie in ModelsS〈ϕ〉.

For Φ,Φ′ ⊆ PrBaRules〈S〉, define Not〈Φ〉 = {(¬ϕ) | ϕ ∈ Φ}. Thus,
NegPrBaRules〈S〉 = Not〈PrBaRules〈S〉〉.

Finally, it is convenient to combine positive and negated rules into one
set. Define AllPrBaRules〈S〉 = PrBaRules〈S〉 ∪ NegPrBaRules〈S〉. For Φ ⊆
AllPrBaRules〈S〉, ModelsS〈Φ〉 =

⋂{ModelsS〈ϕ〉 | ϕ ∈ Φ}.

Summary 2.7 (Satisfiability and Resolvability). Continuing with S a
CGAS, for ϕ ∈ AllPrBaRules〈S〉 and Φ ⊆ AllPrBaRules〈S〉, define seman-
tic entailment Φ |=S ϕ to mean that ModelsS〈Φ〉 ⊆ ModelsS〈ϕ〉, and for
Φ′ ⊆ AllPrBaRules〈S〉, Φ |=S Φ′ to mean that ModelsS〈Φ〉 ⊆ ModelsS〈Φ′〉. In
other words, Φ imposes stronger constraints than does Φ′. ϕ (resp. Φ) is satisfiable
(or consistent) if it has a model; i.e., ModelsS〈ϕ〉 	= ∅ (resp. ModelsS〈Φ〉 	= ∅).

Let Φ ⊆ AllPrBaRules〈S〉 and ϕ ∈ PrBaRules〈S〉. Say that ϕ is resolvable
from Φ, written Φ |=±S ϕ, if one of Φ |=S ϕ or else Φ |=S ¬ϕ holds. In other
words, the truth value of ϕ is determined by Φ; either ϕ is true in every model
of Φ, or else ϕ is false in every model of ϕ.

The set PrBaRules〈S〉 has the property of admitting Armstrong models [6],
in the precise sense that for any consistent Φ ⊆ PrBaRules〈S〉, there is a
model which satisfies only those members of Φ. This means that members of
NegPrBaRules〈S〉 whose negations are not entailed by Φ may be added to Φ in
any combination while retaining satisfiability. See [8, Sects. 3.15–3.20] for details.

Finally, Constr±〈S〉 ⊆ AllPrBaRules〈S〉 is a consistent set of rules, represent-
ing the set of constraints of S, as first identified in Overview 2.2. In [8] this set
is represented as a pair 〈Constr(S), cwa〈S〉〉, with Constr(S) the positive con-
straints and cwa〈S〉 those to be negated; Constr±〈S〉 = Constr(S)∪Not〈cwa〈S〉〉
provides the equivalence of notation.

3 Minimality of Join Rules

Roughly, a join rule is minimal if removing any of the joined granules results in
a rule which is no longer a consequence of the constraints. In this section, this
idea of minimality is developed formally.
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Context 3.1 (CGAS). Unless stated specifically to the contrary, for the
remainder of this paper, let S = (Glty〈S〉,GrAsgn〈S〉,Constr±〈S〉) denote an
arbitrary CGAS.

Notation 3.2 (Components of join rules). There are four variants of join
rule over S, identified in (pjrule-i) and (cjrule-i)–(cjrule-iii) of Summary 2.5,
collectively denoted JRules〈S〉. A join rule over S is thus a statement of the
form (g �

⊔
? S) with � ∈ {=, �S}, and

⊔
? ∈ {⊔

S
,
⊔
⊥

S
}, for g ∈ Granules�⊥〈S〉,

and S ⊆ Granules�⊥〈S〉 nonempty. Using terminology borrowed from logic, g is
called the head of the rule while S is called the body, denoted by Head〈ϕ〉 and
Body〈ϕ〉, respectively, for ϕ ∈ JRules〈S〉. In addition, CompOp〈ϕ〉 ∈ {=, �S}
denotes the operator of the rule, and JoinOp〈ϕ〉 ∈ {⊔

S
,
⊔
⊥

S
} denotes the join

operation of the rule. In other words, CompOp〈ϕ〉 is just � and JoinOp〈ϕ〉 is
just

⊔
?

S
, as defined above. The new notation is introduced in order to be able

to parameterize these items in terms of the underlying rule ϕ. Thus, ϕ may be
written, somewhat cryptically, as (Head〈ϕ〉 CompOp〈ϕ〉 JoinOp〈ϕ〉 Body〈ϕ〉).
Definition 3.3 (Primitive reduction and minimality of join rules). The
primitive reduction of ϕ ∈ JRules〈S〉 by Z ⊆ Body〈ϕ〉, denoted PrReduct〈ϕ : Z〉,
is obtained by removing the members of Z from Body〈ϕ〉, and by replacing,
if necessary, equality with subsumption as the comparison operator. Formally,
PrReduct〈ϕ : Z〉 is the rule ϕ′ ∈ JRules〈S〉 with Body〈ϕ′〉 = Body〈ϕ〉 \ Z and
JoinOp〈ϕ〉 =

⊔
S

, while Head〈ϕ′〉 and CompOp〈ϕ′〉, remain unchanged from ϕ.
If Body〈ϕ′〉 is a proper subset of Body〈ϕ〉; i.e., Body〈ϕ′〉 � Head〈ϕ〉, then ϕ′

is called a proper primitive reduction of ϕ. For example, letting ϕ be the rule
(r-LLr) of Sect. 1, with Z = {Osorno prv ,Chiloé prv},

PrReduct〈ϕ : Z〉 = (Los Lagos rgn �C

⊔
C
{Llanquihue prv ,Palena prv}).

ϕ ∈ JRules〈S〉 is minimal (for S) if for no proper primitive reduction ϕ′ of
ϕ is it the case that Constr±〈S〉 |=S ϕ′. More formally, ϕ is minimal if for no
nonempty Z ⊆ Body〈ϕ〉 is it the case that Constr±〈S〉 |=S PrReduct〈ϕ : Z〉. In
other words, if any nonempty subset of the body is removed, the resulting rule is
no longer a consequence of Constr±〈S〉. ϕ is resolved minimal (for S) if for every
nonempty Z ⊆ Body〈ϕ〉 it is the case that Constr±〈S〉 |=S ¬PrReductS〈ϕ : Z〉.
Put another way, if any element of the body is removed, and the comparison
operator is replaced by subsumption, the rule becomes false. If ϕ is minimal
but not resolved minimal, then it is called unresolved minimal. Both forms of
minimality may be characterized by the removal of single elements from the
body. Define the primitive reduction set of ϕ, denoted RedSet〈ϕ〉, to be

{PrReductS〈ϕ : {h}〉 | h ∈ Body〈ϕ〉} ifCard(Body〈ϕ〉) ≥ 2,
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and to be ∅ otherwise. For example, letting ϕ again be (r-LLr),

RedSet〈ϕ〉 = {(Los Lagos rgn �C

⊔
C
{Osorno prv , Llanquihue prv ,Chiloé prv}),

(Los Lagos rgn �C

⊔
C
{Osorno prv , Llanquihue prv ,Palena prv}),

(Los Lagos rgn �C

⊔
C
{Osorno prv ,Chiloé prv ,Palena prv}),

(Los Lagos rgn �C

⊔
C
{Llanquihue prv ,Chiloé prv ,Palena prv})}.

For ϕ to be minimal, no element of RedSet〈ϕ〉 may be implied by the constraints,
while to be resolved minimal, the negation of every such element must be so
implied. This is formalized by the following, whose proof is immediate.

Observation 3.4 (Removing single elements suffices). Let ϕ ∈ JRules〈S〉
with Constr±〈S〉 |=S ϕ.

(a) ϕ is minimal iff for no ψ ∈ RedSet〈ϕ〉 does Constr±〈S〉 |=S ψ hold.
(b) ϕ is resolved minimal iff Constr±〈S〉 |=S Not〈RedSet〈ϕ〉〉.
Proposition 3.5 (Disjoint equality join implies resolved minimality).
A disjoint equality join rule ϕ for which Constr±〈S〉 |=S ϕ is resolved minimal.

Proof. Writing ϕ as (g =
⊔
⊥

S
S), according to Summary 2.5, it has the represen-

tation ConjunctsS〈ϕ〉 =
(g �S

⊔
S

S)∪{(s �S g) | s ∈ S}∪{(
�

S
{s, s′} = ⊥S) | s, s′ ∈ S ands 	 id= s′} in

terms of primitive basic rules. Now, let σ ∈ ModelsS〈Constr±〈S〉〉 and choose
any s ∈ S. Since σ(s) 	= ∅, σ(s) ∩ σ(s′) = ∅ for all s′ ∈ S \ {s}, and
σ(g) =

⋃{σ(s′′) | s′′ ∈ S}, it follows that σ(g) �
⋃{s′′ ∈ S | s′′ 	 id= s}.

Since σ is an arbitrary model of Constr±〈S〉, it follows that Constr±〈S〉 |=S

¬(g �S S \ {s}) = ¬PrReductS〈ϕ : {s}〉. Finally, since s is arbitrary, the proof
follows from Observation 3.4(b). ��
Discussion 3.6 (Subsumption join and minimal rules). In view of Propo-
sition 3.5, (r-LLr) is automatically resolved minimal. This is clear, since if any
of the provinces are removed from the body, the subsumption will fail. However,
this idea does not extend to subsumption join. For example, any metropolitan
area of Chile lies within the join of all counties; e.g.,

(Gran Puerto Montt urb �C

⊔
⊥
C

Granules〈C|County〉).

This rule is not even unresolved minimal; there are only two counties with which
Gran Puerto Montt is not disjoint. Thus, resolved minimality must be asserted
explicitly for a rule such as (r-Llp) of Sect. 1.

Definition 3.7 (Resolved-minimal join rules). For any ϕ ∈ JRules〈S〉,
define RMinSet〈ϕ〉 = Not〈RedSet〈ϕ〉〉, and define the resolved minimization of ϕ
to be ResMin〈ϕ〉 = ConjunctsS〈ϕ〉 ∪ RMinSet〈ϕ〉. In light of Observation 3.4(b),
RMinSet〈ϕ〉 consists of exactly those constraints necessary to make ϕ a resolved
minimal join rule. For ϕ set to (r-Llp) of Sect. 1,

ResMin〈ϕ〉 = {¬(Gran Puerto Montt urb �C Puerto Montt cmn),
¬(Gran Puerto Montt urb �C Puerto Varas cmn)}
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Just as the basic join symbol
⊔

S
is embellished with ⊥ to yield

⊔
⊥

S
to indicate

disjoint join, it is also useful to embellish the symbol to indicate resolved minimal
joins. More precisely, for any type of join rule ϕ identified in Notation 3.2, replac-
ing

⊔
S

by
⊔rmin

S
, or

⊔
⊥

S
by

⊔
⊥
rmin

S
, denotes its resolved minimization. For this paper,

the concrete case of interest is the resolved-minimal disjoint subsumption join
rule (g �S

⊔
⊥
rmin

S
S), shorthand for ConjunctsS〈(g �S

⊔
⊥

S
S)〉 ∪ RMinSet〈(g �S⊔

⊥
S

S)〉. Formally, the resolved-minimal disjoint equality join rule (g =
⊔
⊥
rmin

S
S),

shorthand for ConjunctsS〈(g =
⊔
⊥

S
S)〉 ∪ RMinSet〈(g =

⊔
⊥

S
S)〉, is also used,

but in view of Proposition 3.5, every disjoint equality join rule is resolved mini-
mal, so the property is redundant. The set of all rules which are of one of these
resolved forms is called the resolved minimal join rules, denoted RMJRules〈S〉.
ϕ ∈ RMJRules〈S〉 has JoinOp〈ϕ〉 ∈ {⊔rmin

S
,
⊔
⊥
rmin

S
} but is otherwise syntactically

identical to a rule in JRules〈S〉. As a concrete example, to express that it is
resolved minimal, (r-Llp) may be rewritten as

Gran Puerto Montt urb �C

⊔
⊥
rmin

C
{Puerto Montt cmn,Puerto Varas cmn} (r-Llp′)

4 Bigranular Join Rules and Their Representation

In this section, the main results of the paper, on the implicit representation of
multigranular join rules, are developed.

Definition 4.1 (Granularity pairs). A granularity pair over S is an ordered
pair 〈G1, G2〉 ∈ Glty〈S〉 × Glty〈S〉 with G1 	= G2.

Context 4.2 (Granularity names and granularity pairs). For the remain-
der of this section, unless stated specifically to the contrary, let G1, G2, G3 ∈
Glty〈S〉. In particular, 〈G1, G2〉 and 〈G2, G3〉 are granularity pairs.

Definition 4.3 (Join-order properties of granularity pairs). The notions
of equality-join order and subsumption-join order, introduced informally in
Sect. 1, are formalized as follows.

(ej-ord) 〈G1, G2〉 has the equality-join order property, written G1 �S G2, if

(∀g2 ∈ Granules〈S|G2〉)(∃S ⊆f Granules〈S|G1〉)
(Constr±〈S〉 |=S (g2 =

⊔
S

S)).

(sj-ord) 〈G1, G2〉 has the subsumption-join order property, written G1 �S G2, if
(∀g2 ∈ Granules〈S|G2〉)(∃S ⊆f Granules〈S|G1〉)

(Constr±〈S〉 |=S (g2 �S

⊔rmin

S
S)).

While the join in these rules is not explicitly disjoint, in applications to bigranular
rules (Definition 4.6), it will always be disjoint (Proposition 4.7).
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Observation 4.4 (Equality join implies subsumption join). If G1 �S G2

holds, then so too does G1 �S G2.

Proof. Equality is a special case of subsumption, and equality join is always
minimal (Proposition 3.5). ��
Definition 4.5 (Biresolvability and equiresolvability). In order to char-
acterize these order properties in terms of simpler ones, several new notions
are essential. Local resolvability (for disjointness, subsumption, or both) char-
acterizes resolvability at a fixed g2 ∈ Granules〈S|G2〉, while full resolvability
characterizes the corresponding property for all such g2. Formally, given g2 ∈
Granules〈S|G2〉, the pair 〈G1, G2〉 is locally disjointness resolvable (resp. locally
subsumption resolvable) at g2 if for every g1 ∈ Granules〈S|G1〉, Constr±〈S〉 |=±S

(
�

S
{g1, g2} = ⊥S) (resp. Constr±〈S〉 |=±S (g1 �S g2)). If 〈G1, G2〉 is locally

disjointness resolvable (resp. locally subsumption resolvable) for every g2 ∈
Granules〈S|G2〉, then it is called fully disjointness resolvable (resp. fully sub-
sumption resolvable). Call 〈G1, G2〉 locally biresolvable at g2 (resp. fully bire-
solvable) if it is both locally disjointness resolvable and locally subsumption
resolvable at g2 (resp. both fully disjointness resolvable and fully subsumption
resolvable).

The pair 〈G1, G2〉 is equiresolvable if subsumption and nondisjointness
resolve equivalently. More formally, 〈G1, G2〉 is equiresolvable at g2 if, for every
g1 ∈ Granules〈S|G1〉, Constr±〈S〉 |=S (g1 �S g2) holds iff Constr±〈S〉 |=S

(
�

S
{g1, g2} 	= ⊥S) holds; and Constr±〈S〉 |=S (g1 	�S g2) holds iff

Constr±〈S〉 |=S (
�

S
{g1, g2} = ⊥S) holds. Call 〈G1, G2〉 fully equiresolvable

if it is equiresolvable at each g2 ∈ Granules〈S|G2〉.
Definition 4.6 (Bigranular join rules). A join rule ϕ is of type 〈G1, G2〉 if
Head〈ϕ〉 ∈ Granules〈S|G1〉 and Body〈ϕ〉 ⊆ Granules〈S|G2〉. Such a rule is also
called bigranular.

Proposition 4.7 (Bigranular implies disjoint). If a join rule ϕ is bigranu-
lar, then it is disjoint; i.e., JoinOp〈ϕ〉 ∈ {⊔⊥

S
,
⊔
⊥
rmin

S
}.

Proof. Distinct granules of the same granularity are disjoint; in particular, the
granules of Body〈ϕ〉 have that property. ��

The main characterization result for resolved minimality, in its most general
form, is presented next.

Proposition 4.8 (Characterization of resolved minimality). Let ϕ be a
minimal join rule of type 〈G1, G2〉 with the property that Constr±〈S〉 |=S ϕ. The
following three conditions are then equivalent.

(a) 〈G1, G2〉 is locally disjointness resolvable at Head〈ϕ〉.
(b) ϕ is resolved minimal.
(c) Body〈ϕ〉 =

{g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (
�

S
{g1,Head〈ϕ〉} 	= ⊥S)}.
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Proof. (a) ⇒ (c): Regardless of whether or not (a) holds,

{g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (
�

S

{g1,Head〈ϕ〉} 	= ⊥S)} ⊆ Body〈ϕ〉,

since distinct elements of Granules〈S|G1〉 must be disjoint. If (a) holds, then
every g′

1 ∈ Granules〈S|G1〉 \
{g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (

�

S
{g1,Head〈ϕ〉} 	= ⊥S)}

must have the property that Constr±〈S〉 |=S (
�

S
{g′

1,Head〈ϕ〉} = ⊥S), by the
very definition of local disjoint resolvability. Clearly, such a granule is not needed
in Body〈ϕ〉. Hence (c) holds.

(c) ⇒ (b): Assume that (c) holds. For any g′
1 ∈ Body〈ϕ〉, it is clear that

Constr±〈S〉 |=S ¬PrReduct〈ϕ : {g′
1}〉, since there is no way that (Head〈ϕ〉 �S

Body〈ϕ〉 \ {g′
1}) can hold, owing to the disjointness of distinct granules of G1.

Hence ϕ is resolved minimal.
(b) ⇒ (a): Assume that ϕ is resolved minimal. Then for any g′

1 ∈
Body〈ϕ〉, Constr±〈S〉 |= ¬(PrReduct〈ϕ : {g′

1}〉). Since distinct granules of G1

are disjoint, this implies that Constr±〈S〉 |=S (
�

S
{g′

1,Head〈ϕ〉} 	= ⊥S).
On the other hand, let g′′

1 ∈ Granules〈S|G1〉 \ Body〈ϕ〉. If Constr±〈S〉 	|=S

(
�

S
{g′′

1 ,Head〈ϕ〉} = ⊥S), then there must be a model σ of Constr±〈S〉 for
which σ ∈ ModelsS〈(�

S
{g′′

1 ,Head〈ϕ〉} 	= ⊥S)〉 also. In that case, owing to the
disjointness of distinct granules of G1, it would necessarily be the case that
g′′
1 ∈ Body〈ϕ〉, a contradiction. Hence it must be the case that Constr±〈S〉 |=S

(
�

S
{g′′

1 ,Head〈ϕ〉} = ⊥S), and so 〈G1, G2〉 is locally disjointness resolvable at
Head〈ϕ〉, as required. ��

The above result provides in particular a succinct characterization of the
subsumption join order � in terms of subsumption join rules. Notice that, in
contrast to the case for �, resolved minimality must be asserted explicitly.

Theorem 4.9 (Characterization of subsumption join order). Let
〈G1, G2〉 be a granularity pair. The following conditions are equivalent.

(a) G1 �S G2.
(b) For each g2 ∈ Granules〈S|G2〉,
g2 �S

⊔
⊥
rmin

S
{g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (

�

S
{g1, g2} 	= ⊥S)},

and this is the only possibility for a resolved minimal rule ϕ with

Head〈ϕ〉 = g2 andBody〈ϕ〉 ⊆ Granules〈S|G1〉.
Furthermore, if either (a) or (b) holds, then 〈G1, G2〉 is both fully biresolvable
and fully equiresolvable.

Proof. Follows directly from Proposition 4.8 using Definition 4.3(sj-ord). ��
For the special case of equality join, the results of Proposition 4.8 may be

refined as follows, establishing resolved minimality, local biresolvability and
equiresolvability, as well as characterization of the body in terms of both sub-
sumption and nondisjointness.
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Proposition 4.10 (Resolved minimality for equality join). Let ϕ be an
equality-join rule of type 〈G1, G2〉 with the property that Constr±〈S〉 |=S ϕ. The
following properties then hold.

(a) ϕ is resolved minimal.
(b) 〈G1, G2〉 is locally biresolvable as well as locally equiresolvable at Head〈ϕ〉.
(c) Body〈ϕ〉 = {g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (g1 �S Head〈ϕ〉)}

= {g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (
�

S
{g1,Head〈ϕ〉} 	= ⊥S)}.

Proof. Part (a) follows immediately from Proposition 4.7, Proposition 3.5, and
Proposition 4.8(b), whereupon the equality of the first and third expressions of
(c) follows from Proposition 4.8(c). To complete the proof, it suffices to note
that, by the very definition of disjoint-join equality rule (Summary 2.5(cjrule-
iii)), (g �S Head〈ϕ〉) for every g ∈ Body〈ϕ〉. Since granules of G1 are pair-
wise disjoint, and since Head〈ϕ〉 =

⊔
S
Body〈ϕ〉, is follows that no granule

g ∈ Granules〈S|G1〉 \ Body〈ϕ〉 can have the property that (g �S Head〈ϕ〉).
Hence, the remaining equality of (c) holds, from which (b) then follows directly.

��
A characterization of equality join order �, similar to that of Theorem 4.9

but expanded to include subsumption, may now be established.

Theorem 4.11 (Characterization of equality-join order). Let 〈G1, G2〉 be
a granularity pair. The following conditions are equivalent.

(a) G1 �S G2.
(b) For each g2 ∈ Granules〈S|G2〉,

g2 =
⊔
⊥
rmin

S
{g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (g1 �S g2)}

=
⊔
⊥
rmin

S
{g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (

�

S

{g1, g2} 	= ⊥S)},

and this is the only possibility for a minimal rule ϕ with

Head〈ϕ〉 = g2 andBody〈ϕ〉 ⊆ Granules〈S|G1〉.

Furthermore, if either (a) or (b) holds, then 〈G1, G2〉 is both fully biresolvable
and fully equiresolvable.

Proof. Follows directly from Proposition 4.10 using Definition 4.3(ej-ord). ��
Discussion 4.12 (Consequences of the characterizations). The main
thrust of the results developed so far in this section is that even though there
may be many granule structures which are models for the constraints associated
with G1 �S G2 and G1 �S G2, all of these models agree on which granules of
G1 are and are not disjoint from granules of G2. Furthermore, this disjointness
information is sufficient to recover completely the join rules. This information is
represented via the relation nondisjointness relation NRelS:〈-,-〉, as introduced in
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Sect. 1. The corresponding relation SRelS:〈-,-〉 for subsumption is similarly used,
as its special properties will prove to be useful in the representation of rules
associated with �S. The formalization of these ideas are found in Definition 4.13
and Theorem 4.14 below.

Definition 4.13 (The fundamental relations of a granularity pair).
Define the nondisjointness relation for 〈G1, G2〉 as

NRelS:〈G1,G2〉 = {〈g1, g2〉 ∈ Granules〈S|G1〉 × Granules〈S|G2〉 |
Constr±〈S〉 |=S (

�

S
{g1, g2} 	= ⊥S)}.

Similarly, define the subsumption relation for 〈G1, G2〉 as
SRelS:〈G1,G2〉 = {〈g1, g2〉 ∈ Granules〈S|G1〉 × Granules〈S|G2〉 |

Constr±〈S〉 |=S (g1 �S g2)}.
Note that if 〈G1, G2〉 is fully equiresolvable (Definition 4.5), in particular if

G1 �S G2 (Theorem 4.11), then NRelS:〈G1,G2〉 = SRelS:〈G1,G2〉.
The main theorem for implicit representation is the following.

Theorem 4.14 (Representation of bigranular join rules using funda-
mental relations)

(a) If G1 �S G2 holds, then for every g2 ∈ Granules〈S|G2〉 and every S ⊆f

Granules〈S|G1〉,
Constr±〈S〉 |=S (g2 �S

⊔
S

S) iff {g1 | 〈g1, g2〉 ∈ NRelS:〈G1,G2〉} ⊆ S.

In particular,

Constr±〈S〉 |=S (g2 �S

⊔
⊥
rmin

S
S) iff S = {g1 | 〈g1, g2〉 ∈ NRelS:〈G1,G2〉}.

(b) If G1 �S G2 holds, then for every g2 ∈ Granules〈S|G2〉 and every S ⊆f

Granules〈S|G1〉, Constr±〈S〉 |=S (g2 =
⊔

S
S) iff

S = {g1 | 〈g1, g2〉 ∈ NRelS:〈G1,G2〉} = {g1 | 〈g1, g2〉 ∈ SRelS:〈G1,G2〉}.

Proof. The proof follows immediately from Theorems 4.9 and 4.11. ��
Discussion 4.15 (Equality-join order is transitive). It is easy to see that
the equality-join order relation is transitive. More precisely, if G1 �S G2 and
G2 �S G3 both hold, then so too does G1 �S G3. This follows immediately
from the first equality of Theorem4.11(b) and the fact that the subsumption
relation �S is transitive. To illustrate the utility of this observation via example,
referring to the hierarchy to the left in Fig. 2, since both Province �C Region and
County �C Province, it is also the case that County �C Region, and, furthermore,

SRelC:〈County,Region〉 = SRelC:〈County,Province〉 ◦ SRelC:〈Province,Region〉,

with ◦ denoting relational composition. Thus, it is not necessary to represent all
pair of the form Gi �S Gj , but rather only a base set, from which the others
may be obtained via transitivity. In both diagrams of Fig. 2, the edges labelled
with � identify such base sets.

This transitivity property is not shared by the subsumption-join order rela-
tion �S, as is easily verified by example.
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Discussion 4.16 (Implementation of bigranular constraints via implicit
representation). A PostgreSQL-based system, providing multigranular fea-
tures, is under development at the University of Concepción. Called MGDB,
it is based upon the theory of [8], employing further the ideas elaborated in this
paper. MGDB supports neither detailed spatial models (based upon regions in
R2) nor the detailed spatial operations described in [4]. Rather, it is a relational
extension which supports multigranular attributes. A main feature is support
for basic spatial relationships, such as nondisjointness, subsumption, and join,
without the need for an elaborate R2 model. A second feature is that spatial and
temporal attributes are both recaptured using the same underlying formalism.

Currently, MGDB is implemented via additional relations on top of an ordi-
nary relational schema. Thus, each multigranular attribute S is represented as
an ordinary attribute, together with additional relations which recapture its spe-
cial properties. In particular, for each such attribute and each granularity pair
〈G1, G2〉, the relations NRelS:〈G1,G2〉 and SRelS:〈G1,G2〉 are stored, either funda-
mentally or as views (see below for more detail), to the extent that the associated
information is known. In addition, there is a special ternary relation GrPrPropS,
with a tuple of this relation of the form 〈G1, G2, c〉, with c a code which identifies
the relationship between the granularities G1 and G2. The code may represent
combinations of G1 ≤S G2, G1 �S G2, and G1 �S G2, as well as other rela-
tionships not covered in this paper. Given a granule g2 ∈ Granules〈S|G2〉, and
a request to determine which granules of G1 are related to it via a join rule
which is a consequence of a bigranular property, it is only necessary to look in
GrPrPropS to determine the type of join rule (e.g., equality or subsumption),
and then to determine the body via a lookup, in NRelS:〈G1,G2〉, which granules
of G1 form the body of that rule. Since the rules are recovered via retrieval
of the appropriate tuples in these relations, and not directly as formulas, the
representation is termed implicit.

For economy, some of the relations of the form DRelS:〈G1,G2〉 and SRelS:〈G1,G2〉
are implemented as views. For example, if either of G1 ≤S G2 or G1 �S G2 holds,
then DRelS:〈G1,G2〉 and SRelS:〈G1,G2〉 are the same relation, so only one need be
stored explicitly. Likewise, SRelS:〈G1,G3〉 = SRelS:〈G1,G2〉 ◦ SRelS:〈G2,G3〉 if either
of G1 ≤S G2 ≤S G3 or G1 �S G2 �S G3 holds, so SRelS:〈G1,G3〉 may then be
represented as a view defined by relational join. This means that relationships
such as equality join, as sketched in Discussion 4.15, require virtually no addi-
tional storage for representation. While a tuple of the form 〈G1, G3, c〉 must be
present in GrPrPropS, no additional space is required to represent SRelS:〈G1,G3〉
or NRelS:〈G1,G3〉.

A substantial superset of the hierarchies shown in Fig. 2, including electoral
as well as administrative subdivisions of Chile in the spatial case, forms the core
of the test database. All such data are obtained from publicly available sources.
This spatial hierarchy is very rich in granularity pairs related by �C and �C.
Time intervals, as illustrated in the rightmost hierarchy of Fig. 2, form part of
the test database as well. The system will be discussed in more detail in a future
paper.
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Discussion 4.17 (Relationship to other work). An extensive literature
comparison for the general multigranular framework used in this paper may
be found in [8, Sect. 6]. Only literature relevant to the topics of this paper which
are not developed in [8] are noted here. A fairly extensive presentation of gran-
ular relationships may be found in [1], including in particular the equality join
relation �, there called groups into, as well as the combination of ordinary gran-
ularity order ≤ and equality join �, there called partitions. It does not cover
the subsumption join relation �. Although [1] is specifically about the time
domain, many of the concepts presented there apply equally well to spatial and
other domains. This is reinforced not only by the work of this paper, but also
by papers such as [2,10], which apply the concepts of [1] to the spatial domain.
In addition, [12] provides a development of the equality-join operator � for the
spatial domain, there denoted |=. Reference [5] provides further insights into the
multigranular framework within the context of time granularity.

5 Conclusions and Further Directions

A method for representing bigranular join rules implicitly in a multigranular
relational DBMS has been developed. As such rules occur frequently in practice,
the technique promises to prove central to an implementation. Indeed, they have
already been used in an early implementation of the system MGDB.

There are two main avenues for future work. First, the main reason that
the techniques of this paper were developed is that direct implementation of
join rules proved too inefficient in practice. While most rules are bigranular,
there are often some which are not. One topic of future work is to find a way
to integrate the methods of this paper with representation of non-bigranular
rules, in a way which preserves the efficacy of the implementation. A second and
very major topic is to extend MGDB with its own query language and interface.
Currently, MGDB is a testbed for ideas, but to be useful as a stand-alone system,
it must be augmented to have its own query language and interface, so that the
implementation of the multigranular features is transparent to the user.
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Abstract. With the popularity of mobile devices and the develop-
ment of geo-positioning technology, location-based services (LBS) attract
much attention and top-k spatial keyword queries become increasingly
complex.It is common to see that clients issue a query to find a restaurant
serving pizza and steak, low in price and noise level particularly.However,
most of prior works focused only on the spatial keyword while ignoring
these independent numerical attributes.

In this paper we demonstrate, for the first time, the Attributes-
Aware Spatial Keyword Query (ASKQ), and devise a two-layer hybrid
index structure called Quad-cluster Dual-filtering R-Tree (QDR-Tree).
In the keyword cluster layer, a Quad-Cluster Tree (QC-Tree) is built
based on the hierarchical clustering algorithm using kernel k-means to
classify keywords.In the spatial layer, for each leaf node of the QC-Tree,
we attach a Dual-Filtering R-Tree (DR-Tree) with two filtering algo-
rithms, namely, keyword bitmap-based and attributes skyline-based fil-
tering. Accordingly, efficient query processing algorithms are proposed.

Through theoretical analysis, we have verified the optimization
both in processing time and space consumption. Finally, massive exper-
iments with real-data demonstrate the efficiency and effectiveness of
QDR-Tree.

Keywords: Top-k spatial keyword query · Skyline algorithm
Keyword cluster · Location-based service

1 Introduction

With the growing popularity of mobile devices and the advance in geo-positioning
technology, location-based services (LBS) are widely used and spatial keyword
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query becomes increasingly complex. Clients may have special requests on
numerical attributes, such as price, in addition to the location and keywords.

Example 1. Consider some spatial objects in Fig. 1(a), where dots represent spa-
tial objects such as restaurants, whose keywords and three numerical attributes
are listed in Fig. 1(b). Dots with the same color own similar keywords, e.g., red
dots share keywords about food. The triangle represents a user issuing a query
to find a nearest restaurant serving pizza and steak with low level in price, noise,
and congestion. At a first glance, o8 seems to be the best choice for the close
range, while o1 surpasses o8 in the numerical attributes obviously. This common
situation shows that such complex queries deserve careful treatment.

Fig. 1. A set of spatial objects and a query (Color figure online)

Extensive efforts have been made to support spatial keyword query. How-
ever, prior works [7,9,15] mainly focused on the keywords of spatial objects but
neglected or failed to distinguish independent numerical attributes. Recently,
Sasaki [16] schemed out SKY R-Tree which incorporates R-tree with skyline
algorithm to deal with the numerical attributes. However, it does not work well
for multi keywords, which reduces their usage for various applications. Liu [10]
proposed a hybrid index structure called Inverted R-tree with Synopses tree
(IRS), which can search many different types of numerical attributes simultane-
ously. However, the IRS-based search algorithm requires providing exact ranges
of attributes which is a heavy and unnecessary burden to the users. What’s more,
the exact match in in attributes can also lead to few or no query results to be
returned.

Correspondingly, in this paper, we named and studied, for the first time,
the attributes-aware spatial keyword query (ASKQ). This complex query needs
to take location proximity, keywords’ similarity, and the value of numerical
attributes into consideration, that is respectively, the Euclidean spatial distance,
the relevance of different keywords, and the integrated attributes of users’ pref-
erence. Obviously the ASKQ has wide apps in the real world.
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Tackling with the ASKQ in Example 1, common search algorithms [7,9,15]
ignoring numerical attributes may retrieve finally o1, o5, o8 indiscriminately, and
SKY R-Tree-based algorithm may return o4 as one of results, and IRS-Tree-
based algorithm may retrieve no objects when the query predicate is set as “price
< 0.3 & noise < 0.3 & congestion < 0.4”. Apparently, none of these algorithms
can satisfy the users’ need. These gaps motivate us to investigate new approaches
that can deal with the ASKQ efficiently.

In this paper, we propose a novel two-layer index structure called Quad-
cluster Dual-filter R-Tree (QDR-Tree) with query processing algorithms. In the
first layer we deal with keyword specifically. Considering numbers of keywords
share the similar semanteme and clients tend to query objects of the same class,
we cluster and store the keywords in a Quad-Cluster Tree (QC-Tree) by hier-
archical clustering algorithm using kernel k-means clustering [6]. With keyword
relaxation operation and Cut-line theorem to avoid redundance, QC-Tree can
balance search time and space cost well.

In the second layer we deal with spatial objects with numerical attributes.
At each leaf node of the first layer, a Dual-filter R-Tree (DR-Tree) is attached
according to two filtering algorithms, namely, keyword bitmap-based filtering
and attributes skyline-based filtering, which effectively reduce the false positives.

Moreover, we also propose a novel method to measure the relevance of one
spatial object with the query keywords. We measure the similarity of different
keywords from both textual and semantic aspects. For the latter one, the term
vectors that are obtained by word2vec [12] are applied to represent every key-
words, and therefore, the similarity can be quantified. Note that both queries
and spatial objects usually own several keywords, a bitmap of keywords is used
to measure the relevance between two lists of keywords lightly and efficiently.

Table 1 compares the current index with QDR-Tree in three aspects. Appar-
ently, QDR-Tree outperform existing methods in tackling with the ASKQ, and
can achieve great improvements in query processing time and space consump-
tion. This will be demonstrated in both theoretical and experimental analysis.
Massive experiments with real-data also confirm the efficiency of QDR-Tree.

Table 1. Comparisons among current indexes and QDR-tree

Index From Location proximity Muti-keywords Fuzzy attributes

IR-Tree TKDE (2011) [9] � � �

IL-Quadtree ICDE (2013) [18] � � �

SKY R-Tree DASFAA (2014) [16] � � �

IRS-Tree TKDE (2015) [10] � � �

QDR-Tree DEXA (2018) � � �

To sum up, the main contributions of this paper are summarized as follows:

– We formulate the attributes-aware spatial keyword query, which takes spatial
proximity, keywords’ similarity and numerical attributes into consideration.
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– We design a novel hybrid index structure, i.e., QDR-Tree which incorporates
Quad-Cluster Tree with Dual-filtering R-Trees and accordingly propose the
query processing algorithm to tackle the ASKQ.

– We propose a novel method to measure the relevance of one spatial objects
with query keywords based on word2vec and bitmap of keyword.

– We conduct an empirical study that demonstrates the efficiency of our algo-
rithms and index structures for processing the ASKQ on real-world datasets.

The rest of the paper is organized as follows. Section 2 reviews the related
works. Section 3 formulates the problem of ASKQ. Section 4 presents the QDR-
Tree. Section 5 introduces the query processing algorithm based on the QDR-
Tree. Three baseline algorithms are proposed in Sect. 6 and considerable exper-
imental results are reported. Finally, Sect. 7 concludes the paper.

2 Related Work

Existing works concerning the ASKQ include spatial keyword search, keyword
relevance measurement, and the skyline operator.

Spatial Keyword Search. There are many studies on spatial keyword search
recently [7,17,18]. Most of them focus on integrating inverted index and R-tree to
support spatial keyword search. For example, IR2-tree [7] combines R-trees with
signature files. It preserves objects spatial proximity, which is the key to solve
spatial queries efficiently, and can filter a considerable portion of the objects that
do not contain all the query keywords. Thus it significantly reduces the number
of objects to be examinated. SI-index [18] overcomes IR2-trees’ drawbacks and
outperform IR2-tree in query response time significantly. [17] proposes inverted
linear quadtree, which is carefully designed to exploit both spatial and keyword-
based pruning techniques to effectively reduce the search space.

Keyword Relevance Measurement. The traditional measurement on key-
word relevance includes textual and semantic relevance. The textual relevance
can be computed using an information retrieval model [2,4,5]. They are all TF-
IDF variants essentially sharing the same fundamental principles. The seman-
tic relevance is measured by many methods. [13,14] apply the Latent Dirichlet
Allocation (LDA) model to calculate the topic distance of keywords. Gao [3]
proposed an efficient disk-based metric access method which achieves excellent
performance in the measurement of keywords’ similarity.

The Skyline Operator. The skyline operator deals with the optimization prob-
lem of selecting multi-dimension points. A skyline query returns a set of points
that are not dominated by any other points, called a skyline. It is said that a
point oi dominates another point oj if oi is no worse than oj in all dimensions
of attributes and is better than oj at least in one dimension. Borzsonyi et al.
[1] first introduced the skyline operator into relational database systems and
introduced three algorithms. Geng et al. [11] propose a method which combines
the spatial information with non-spatial information to obtain skyline results.
Lee [8] et al. focused on two methods about multi-dimensional subspace skyline
computation and developed orthogonal optimization principles.



394 X. Zang et al.

3 Problem Statement

Given an geo-object dataset O in which each object o is denoted as a tuple 〈λ,
K, A〉, where o.λ is a location descriptor which we assume is at a two dimen-
sional geographical space and is composed of latitude and longitude, o.K is the
set of keywords, and o.A represents the set of numerical attributes. Without loss
of generality, we assume the attributes o.ai in o.A are numeric attributes and
normalize each o.ai ∈ [0, 1]. We assume that smaller values of these numercial
attributes, e.g., price and noise, are preferable. As for other numerical attributes’
values which are better if higher, such as the rating and health score, we con-
vert them decreasingly as o.ai = 1 − o.ai. The query q is represented as a
tuple 〈λ,K,W 〉, where q.λ and q.K represent the location of the user and the
required keywords respectively, and q.W represents the set of weight for dif-
ferent numerical attributes and user’s different preference on these attributes.
∀q.wi ∈ q.W, q.wi ≥ 0 (i = 1, . . . , |q.W |) and

∑|q.W |
i=1 q.wi = 1. The reason for

assigning weight to each attribute instead of qualifying exact range of attributes
is to prepare for the fuzzy query on numerical attributes. In order to elaborate
the QDR-Tree , we firstly define the keyword distance and the keyword cluster
as follows.

Definition 1 (Keyword Distance). Given two keywords k1, k2, their keyword
distance, denoted as d(k1, k2), includes both textual distance and semantic dis-
tance. The textual similarity between two keywords is denoted as dt(k1, k2) which
is measured by the Edit Distance. The semantic distance between two keywords
denoted as ds is measured by the Euclidean distance of the term vector gener-
ated by word2vec. With a parameter δ(∈ [0, 1]) controlling their relative weights,
Eq. (1) describes the formulation of d(k1, k2).

d(k1, k2) = δdt(k1, k2) + (1 − δ)ds(k1, k2) (1)

Definition 2 (Keyword Cluster). A keyword cluster (Ci) is formed by simi-
lar keywords. The cluster diameter is defined as the maximum keyword distance
within the cluster. One keyword can be allocated into the cluster if the diameter
after adding it does not exceed the threshold τ , i.e. ∀ki, kj ∈ Ci, d(ki, kj) < τ .
Each cluster has a center object denoted as Ci.cen. All the keyword clusters (Ci)
make up the set of keyword clusters (C).

Definition 3 (Attributes-Aware Spatial Keyword Query). Given a geo-
object set O and the attributes-aware spatial keyword query q, the result includes
a set of Topκ(q),1 Topκ(q) ⊂ O, |Topκ(q)| = κ and ∀oi, oj : oi ∈ Topκ(q), oj ∈
O − Topκ(q), it holds that score(q, oi) ≤ score(q, oj).

As for the evaluation function, score(q, o) in Definition 3, it is composed of three
aspects, including the location proximity, the keywords similarity, and the value
of numerical attributes, and will be discussed at large in the Sect. 5.

1 Hereafter, Top-k is denoted as Top-κ to avoid confusion with the k-means algorithm.
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4 QDR-Tree

In this section, we introduce a new hybrid index structure QDR-Tree, which is
a new indexing framework for efficiently processing the ASKQ. The QDR-Tree
can be divided into two layers, the keyword cluster layer and the spatial layer
where the QDR-Tree can be split up into two sub-trees, named as Quad-Cluster
Tree (QC-Tree) and Dual-filtering R-tree (DR-Tree) respectively.

4.1 Keyword Cluster Layer

The keyword cluster layer deals with keyword search with both textual and
semantic similarities. Neither appending an R-Tree to each keyword with a huge
space redundancy, nor just clustering all keywords into k groups with a high
false positive ratio during query search, QC-Tree smartly splits keyword set into
hierarchical levels and link them by a Quad-Tree.

To improve the searching efficiency, we propose a new hierarchical quad clus-
tering algorithm based on the kernel k-means [6]. Compared with the tradi-
tional k-means clustering, kernel k-means will have better clustering effect even
the samples do not obey the normal distribution and is more suitable to clus-
ter the keywords. Moreover, different from the common clustering, hierarchical
clustering can form a meaningful relationship between different clusters, which
is helpful to allocate a new sample and decrease the cost of misallocation. After
the clustering process finishs, a quad-cluster tree (QC-Tree) is used to arrange
all of these clusters, which is the core composition of the keyword cluster layer.
In Algorithm 1, the critical part is applying the kernel k-means to each key-
word cluster per level, with k fixed as 4. Furthermore, when the diameter of the
keyword cluster is smaller than the τcluster, the duplication operation is executed,
which is presented in Algorithm 2 and will be discussed later.

Algorithm 1. Hierarchical quad clustering algorithm
Input: keyword set K, cluster number k
Output: Quad-Cluster Tree: Tqc

1 Tqc.add(K)
2 Insert K into a priority queue U /* instert as a set */

3 while U �= ∅ do
4 S ← U .Pop() /* pop the whole set */

5 {S1,S2,S3,S4} ← KernelkMeans (k, S) /* k=4 by default */

6 foreach Si ∈ {S1, S2, S3, S4} do
7 if Si.diameter < τcluster then
8 Duplication (S1,S2,S3,S4)
9 else

10 insert Si in to U
11 Tqc.add(Si) /* Si are children of S */
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Algorithm 2. Duplication
Input: Four keyword sets: S1,S2,S3,S4

Output: Duplicated keyword sets: S′
1,S

′
2,S

′
3,S

′
4

1 for ∀ki ∈ S1

⋃
S2

⋃
S3

⋃
S4 do

2 if σ(d(ki, Sj .cen)) < τdup then /* Variance */
3 S′

j ← ki

⋃
Sj , if ki 
∈ Sj with j ∈ {1, 2, 3, 4}

4 {S1, S2, S3, S4} ← {S′
1, S

′
2, S

′
3, S

′
4 }

Figure 2(a) illustrates the hierarchical clustering in Algorithm 1, where each
dot represents a keyword and different aggregation of these dots presents different
keyword clusters. The dots marked in different color are the centroid of these
clusters, and moreover, same color denotes their clusters stay in the same level.

Fig. 2. Overview of the keyword cluster layer

Notice that, the main target of QC-Tree is to improve the pruning effect
of keywords while making the future query keyword set located in only one
keyword cluster. As is shown in both Algorithm1 and Fig. 2(a), with the cluster
level growing, the cluster will be more centralized and compact. That means the
possibility of one query being allocated to different clusters increases layer by
layer. It is necessary to decide an optimal τcluster to terminate the hierarchical
cluster proceeding, if not, there would only be a single keyword in each cluster
finally. The basic structure of QC-Tree is displayed in Fig. 2(b), where each
internal node keeps the centroid keyword (cen) and four pointers (4p) to its four
descendants nodes, and each leaf node will keep the keyword set in this cluster
and the pointer to a new DR-Tree. Additionally, a cut-line is drawn to emphasize
the shift of index structure, which is mainly dependent on the value of τcluster.

As is analyzed above, the leaf cluster is where a query would most likely
be scattered into different clusters. We will take a keyword-relaxation operation
by duplicating some keywords among the four clusters sharing the same parent
node. In Fig. 2(c), for a keyword cluster, its keywords are grouped into four
sub-clusters and the duplication operation need to be executed. The dots in the
shadow represent the keywords that will be duplicated and allocated to all of
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these four sub-clusters because they are closed to all of the sub-clusters. Here, we
introduce another threshold (τdup) to decide whether to execute the duplication
operation. Although this keyword-relaxation operator will cause redundancy of
keywords and extra space consumption, it will largely improve the time efficiency,
which will also be demonstrated in the experimental verification.

4.2 Spatial Layer

Under each keyword cluster in the bottom of QC-Tree, we build a DR-Tree based
on dual-filtering technique to organize the spatial objects in this cluster.

In Fig. 3, a basic structure of DR-Tree is shown in the spatial layer. Each
internal node N records a two-element tuple: 〈SP,KB〉. The first element SP
stands for the skyline points of the numerical attributes of all objects in the
subtree rooted at the node. The second element is a bitmap of the keywords
included in this cluster, which uses 1 and 0 to denote the existence of keywords.

Keyword Bitmap Filter Algorithm: In the DR-Tree, each node just records
the keyword bitmap, and then the specific keywords list is kept only in the leaf
keyword cluster. Then, the keyword relevance can be calculated just by Bitwise
AND within the pair of bitmaps, which can decrease the storage consumption
and increase the query efficiency.

Because bitwise AND within bitmaps need an exact keywords matching, in
order to support similar keyword matching, we also implement the relaxation
in each query process. In Fig. 3, as is highlighted in blue, the bitmap of query
keywords performs a search-relaxation by switching some 0-bits to 1-bits based
on the keyword similarity The search-relaxation algorithm will be proposed in
Algorithm 4 in Sect. 4.2.

Multidimensional Subspace Skyline Filter Algorithm: In order to satisfy
the needs of user’s intention on multiple attributes, a filter called Multidimen-
sional Subspace Skyline Filter, which is inspired by [1,8], is employed to amortize
the query false positive and the cost of computation. We use the Evaluate() algo-
rithm proposed in [8] to gain the multidimensional skyline points efficiently, and
then let every QC-Tree node record the skyline points of its descendants. Fur-
thermore, in order to reduce the complexity of recording multidimensional sky-
line points, we will take the point-compression operation by merging the closed
skyline points in the attributes space. We calculate the cosine distance between
skyline points’ attributes to measure the similarity, and then merge these closed
points when cosine distance is larger than a threshold.

5 QDR-Based Query Algorithm

In this section, we will introduce the ASKQ processing algorithms based on
QDR-Tree. The process includes finding the Leaf Cluster, making search-
relaxation and searching in the DR-Tree.
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Fig. 3. Structure of QDR-Tree

Find the leaf cluster. The leaf keyword cluster that is best-matched with q can
be obtained by iteratively comparing q with the four sub-clusters in each cluster
level. If the combination of keywords in the query is typical and can be allocated
into the same cluster, only one keyword cluster will be found. Otherwise, more
than one keyword cluster may be returned.

Search-Relaxation. As is stated in Sect. 4.2, by means of executing search-
relaxation, bitmap-based filter can support similar keyword matching. In Algo-
rithm4, a bitmap of relaxed query keyword is obtained by switching 0-bit to 1-bit
if their keyword distance is under a threshold. By adopting a rational threshold,
we can make a good trade-off between time cost and space occupation.

Algorithm 3. FindLeafCluster
Input: q, QC-Tree Tqc

Output: the leaf cluster: LC
1 LC ← ∅
2 foreach k ∈ q.K do
3 lc ← Tqc.root
4 while lc is not leaf cluster do
5 ls ← lc.subi, with d(k, lc.subi.cen) is minimum among 4 lc.subs

6 LC ← LC ∪ lc
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Algorithm 4. Search relaxation
Input: bitmap of query keyword: bmq, bitmap of keyword cluster: bmc
Output: bitmap of relaxed query keyword: bmr

1 for i ← 1 to /bmq/ do
2 if bmq[i] = 1 then
3 bmr[i] ← 1
4 for j ← 1 to /bmc/ do
5 if d(ki,kj) < τ then
6 bmr[j] ← 1

Algorithm 5 illustrates the query processing mechanism over QDR-Tree.
Given a query q, the object retrieval is carried out firstly by traversing the
QC-Tree to locate the best-matched keyword cluster. Secondly, after executing
search-relaxation, it will traverse the DR-Tree in the ascending order of the
scores and keep a minimum heap for the scores. Notice that, if more than one
keyword cluster is located, it will traverse all of them. At last the Top-κ results
can be returned.

The ranking score of an object o for ASKQ is calculated by Eq. (2). Here,
α, β ∈ [0, 1] are parameters indicating the relative importance of these three
factors. ψ(q, o) is the Euclidian distance between q and o. The Dmax

s is the
maximal spatial distance that the client will accept. φ(q, o) which represents the
keyword relevance between q and o is determined by the result of Bitwise AND
between their keyword bitmaps. The smaller the score, the higher the relevance.

score(q, o) = αβ × ψ(q, o)
Dmax

s

+ (1 − β) × 1
φ(q, o)

+ (1 − α)β ×
|q.W |∑

i=1

q.wi × o.ai (2)

What is more, the score for non-leaf node N can also been measured to
represent the optimal score of its descendant nodes, which is defined as Eq. (3)

score(q,N) =αβ × min ψ(q,N.MBR)
Dmax

s

+ (1 − β) × 1
φ(q,N)

+ (1 − α)β × min
∀p∈N.sp

|q.W |∑

i=1

q.wi × p.ai

(3)

where the min ψ(q,N.MBR) represents the minimum Euclidian distance
between the N’s MBR and the φ(q,N) is can also be calculated by the bitmap of
keywords kept in this node. We can prove that Topκ(q) is an exact result by the
Theorem 1. If the score of the internal node dose not satisfy the ASKQ, there is
no need to search its descendant nodes. Hence, the final Top-κ objects will have
the least κ scores.
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Theorem 1. The score of an internal node N is the best score of its descendant
object o to the query q.

Proof. the score factors in location proximity, keyword relevance and non-spatial
attributes’ value. First, the MBR of the N encloses all of its descendant objects,
then ∀oi ∈ descendant objects of N, min ψ(q,N.MBR) ≤ ψ(q, oi). Second, the
keyword bitmap includes all of the keywords existing in the descendant objects
of N . Obviously, φ(q,N) ≥ φ(q, o). Finally, the skyline points dominate or
are equal to all of descendent objects concerning the value of attributes, i.e.,
min∀p∈N.SP

∑|q.W |
i=1 q.wi × p.ai ≤ ∑|q.W |

i=1 q.wi × o.ai. All these inequalities con-
tribute to that score(q,N) ≤ score(q.o). �

Algorithm 5. QDR-Search algorithm
Input: a query q, Topκ results κ, and a QDR-Tree Tqdr

Output: Topκ(q)
1 LC = FindLeafCluster (q, Tqc);
2 for i ← 1 to |LC| do
3 q.bitmap ← SearchRelaxation (q.bitmap, LC[i].bitmap)
4 Minheap.insert(LC[i].root, 0)
5 while Minheap.size() 
= 0 do
6 N ← Minheap.first()
7 if N is an object then
8 Topκ(q).insert(N)
9 if Topκ(q).size() ≥ k then

10 break

11 else
12 for ni ∈ N .entry do
13 if Number of objects with smaller score than score(q, ni) in

Minheap < (κ − Topκ(q).size()) then
14 Minheap.insert(ni, score(q, ni))

6 Experiment Study

6.1 Baseline Algorithm

In this section, we propose three baseline algorithms which are based on the
three existing indexes listed in Table 1, including IR-Tree [9], SKY R-Tree [16]
and IRS-Tree [10]. As is discussed in Sect. 1, none of these existing indexes can
be qualified for the ASKQ due to different drawbacks. The specific algorithm
designs will be respectively explained in detail as follows.

Because the IR-Tree pays no attention on the value of numerical attributes,
all spatial objects containing the query keywords and numerical attributes will
be extracted. After that they will be ranked by the comprehensive value of
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numercial attributes. Eventually, the top-κ spatial objects are just the result of
the ASKQ.

Different from the IR-Tree, the SKY R-Tree fails to support multi-keywords
query because one SKY R-Tree can only arrange one keyword and its correspond-
ing spatial objects, such as restaurant. In order to deal with the ASKQ, all of
the SKY R-Trees containing the query keywords will be searched and merged to
obtain the final top-κ results.

The last baseline algorithm is proposed based on the IRS-Tree which is orig-
inally intended to address the GLPQ. Unlike ASKQ, the GLPQ requires specific
range of attributes to leverage the IRS-Tree. To copy with the ASKQ, we will
firstly set some different suitable ranges of each attributes as the input, which
insures that enough spatial objects can be returned. Afterwards, we will further
to select top-κ objects from the results in the first stage. Apparently, in our
experiments, the IRS-Tree will not make much sense anymore.

Notice that, all of these three baseline algorithms cannot solve the ASKQ
directly at a time and need subsequent elimination of redundancy, which deter-
mines their inefficiency in the ASKQ.

In the experiment section, we conduct extensive experiments on both real
and synthetic datasets to evaluate the performance of our proposed algorithms.

6.2 Experiment Setup

The real dataset is crawled from the famous location-based service platform,
Foursquare. After information cleaning, the dataset has about 1M objects con-
sisting of geographical location, the keyword list written in English, and the
normalized value of attributes. Each spatial object contains the keywords such
as steak, pizza, coffee, etc. and four numerical attributes, including price, envi-
ronment, service and rating.

In the synthetic dataset, each object is composed of coordinates, various
keyword, and multi-dimensional numerical attributes. The size of the synthetic
dataset varies in the experiments. The coordinates are randomly generated in
(0, 10000.0), and the average number of keywords per object is decided by a
parameter r which denotes the ratio of the number of object’s keywords to the
cluster’s. Without loss of generality, the values of each numercial attribute are
randomly and independently generated, following a normal distribution.

We compare the query cost of proposed algorithms with different datasets
respectively. The experimental settings are given in Table 2. The default values
are used unless otherwise specified. All algorithms are implemented in Python
and run with Intel core i7 6700HQ CPU at 2.60 GHz and 16 GB memory.

6.3 Performance Evaluation

In this section, we campare different baseline algorithms proposed in Sect. 6.1
with our framework. We evaluate the processing time and disk I/O of all the
proposed methods by varying the parameters in Table 2 and investigate their
effects. In the first part we study the experimental results on the real dataset.
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Table 2. Default value of parameters

Parameter Default value Descriptions

κ 10 Top-κ query

|o.A| 4 No. of attributes’ dimension

δ 0.5 Weight factor of Eq. (1)

α 0.5 Weight factor of Eq. (2)

β 0.67 Weight factor of Eq. (2)

τcluster 0.3 Threshold of quad clustering

τdup 0.05 Threshold of duplication

|O| 1M Number of objects

M 25 Maximum number of DR-tree entries

Index Construction Cost: We first evaluate the construction costs of various
methods. The cost of an index is measured by its construction time and space
budget. The costs of various methods are shown in Fig. 4, where IRS refers to
the baseline structure IRS-Tree, the SKY-R, IR refer to SKY R-Tree, IR-Tree
respectively, and the QDR represents our design. We can see that, SKY R-Tree
and IR-Tree exceed both in time consumption and space cost, because they
are short of attention of either attributes or multi-keywords. Moreover, since
we employ bitmap and skyline points to measure numercial attributes, QDR is
more lightweight than IRS.

Effect of κ: We investigate the effect of κ on the processing time and disk I/O
of the proposed algorithms by randomly generate 100 queries. Here, considering
that the SKY R-Tree and IR-Tree do not take into account either attributes
or keywords, we add a filter operation after their query process. For example,
the SKY R-Tree returns Top-κ results of each keyword and merges them in the
second stage. Obviously, this redundancy of result is the main reason of the high
time cost. As shown in Fig. 5, with the increase of κ, IRS and QDR have the
same smoothly increasing trend on query time and disk I/O. QDR exceeds in
query time cost with different parameters. It indicates that we can effectively
receive the Top-κ results from one branch to another.

Effect of |O|: Parameter |O| denotes the number of objects in the QDR-Tree,
We increase the number of objects in the synthetic dataset from 0.1 to 5 M.
It can be seen from Fig. 7(a) and (b), that, SKY-R and IR have more obvious
increases in query time cost and disk I/O when the data size increases, which can
be explained because of their larger redundancy along with the larger dataset.
On the other hand, the QDR is more stable and surpasses another three indexes.

Effect of |o.A|: Parameter |o.A| denotes the number of attributes the object
o covers. As shown in Fig. 7(c) and (d), the query time and Disk I/O of the
IR-Tree based on synopses tree has distinct increase, because it fails to consider
the attributes, while another three frameworks are more stable, which is mainly
because of either the skyline filter algorithm or the synopses tree.



QDR-Tree: An Efficient Index Scheme for Complex Spatial Keyword Query 403

Fig. 4. Construction cost Fig. 5. Effect of κ

Effect of τcluster & τdup: τcluster and τdup are the crucial parameters in our
QDR-Tree, which are analyzed theoretically in Sect. 4. The experimental results
also verify their effect on the Processing Time and Index Size. Figure 6(a) and (c)
show that both τcluster and τdup have an optimal value to minimize the processing
time. Smaller or larger value will both increase the processing time because of
keyword scattring or redundancy. In Fig. 6(b) and (d), index size decreases as
the τcluster becomes larger and reach saturation at some point, while it increases
along with the τdup because of the increase of keyword redundancy.

Fig. 6. Synthetic dataset

Fig. 7. Effect of τcluster & τdup

7 Conclusion

In this paper, we formulated the attributes-aware spatial keyword query (ASKQ)
and proposed a novel index structure call Quad-cluster Dual-filtering R-Tree
(QDR). QDR-Tree is a two-layer hybrid index based on two index structures
and two searching algorithms. We also proposed a novel method to measure the
relevance of spatial objects with query keywords, which applies keyword-bitmap
and search-relaxation to achieve exact and similar keyword match. Moreover, by
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employing the keyword-relaxation, we greatly improve the time efficiency at the
sacrifice of a little space consumption. Finally, massive experiments with real
datasets demonstrate the efficiency and effectiveness of QDR-Tree.
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Abstract. Graph pattern matching has been increasingly used in e.g.,
social network analysis. As the matching semantic is typically defined in
terms of subgraph isomorphism, several problems are raised: (1) match-
ing computation is often very expensive, due to the intractability of
the problem, (2) the semantic is often too strict to identify meaning-
ful matches, and (3) there may exist excessive matches which makes
inspection very difficult. On the other hand, users are often interested
in diversified top-k matches, rather than entire match set, since result
diversification has been proven effective in improving users’ satisfaction,
and top-k matches not only eases result understanding but also can save
the cost of matching computation. Motivated by these, this paper inves-
tigates approximating diversified top-k graph pattern matching. (1) We
extend traditional notion of subgraph isomorphism by allowing edge to
path mapping, and define matching based on the revised notion. With the
extension, more meaningful matches could be captured. (2) We propose
two functions for ranking matches: a relevance function w(·) based on
tightness of connectivity, and a distance function d(·) measuring match
diversity. Based on relevance and distance functions, we propose diver-
sification function F (·), and formalize the diversified top-k graph pattern
matching problem using F (·). (3) Despite hardness of the problem, we
provide two approximation algorithms with performance guarantees, and
one of them even preserves early termination property. (4) Using real-
life and synthetic data, we experimentally verify that our approximation
algorithms are effective, and outperform traditional matching algorithms.

1 Introduction

Graph pattern matching has being widely used in social data analysis [4,18],
among other things. A number of algorithms have been developed for graph
pattern matching that, given a pattern graph Q and a data graph G, compute
M(Q,G), the set of matches of Q in G (e.g., [7,15]). As social graphs are typically
very large, with millions of nodes and billions of edges, several challenges to social
data analysis with graph pattern matching are brought out.

c© Springer Nature Switzerland AG 2018
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Fig. 1. Querying social network

(1) Traditionally, graph pattern matching is defined in terms of subgraph
isomorphism [13]. The matching semantic only allows edge to edge mapping,
which is often too strict to identify important and meaningful matches.

(2) The matching algorithms often return an excessive number of results. Indeed,
M(Q,G) may contain exponentially many subgraphs of G when matching
is defined by subgraph isomorphism. It is a daunting task for the users to
inspect such a large match set M(Q,G) and find what they are searching for.

(3) The sheer size of social graphs makes matching computation costly: it is
NP-complete to decide whether a match exists (cf. [16]), not to mention
identifying the complete match set.

These highlight the need for approximating diversified top-k graph pattern
matching: given Q, G and k, it is to find top-k matches of Q in M(Q,G), such
that the quality of the k-element match set has provable bounds. The benefits of
identifying diversified top-k matches with quality bounds are twofold: (1) users
only need to check k matches of Q rather than a large match set M(Q,G); (2) if
we have an algorithm for computing top-k matches with the early termination
property, i.e., it finds top-k matches of Q without computing the entire match set
M(Q,G), we do not have to pay the price of full-fledged graph pattern matching.

Example 1. A fraction of a social network is given as graph G in Fig. 1(a). Each
node in G denotes a person, with attributes such as job title, e.g., project man-
ager (PM), database administrator (DBA), programmer (PRG), business analyst
(BA), user interface developer (GUI) and software tester (ST). Each edge indicates
friendship, e.g., (Dave, Adam) indicates that Dave and Adam are friends.

To build up a team for software development, one issues a pattern graph Q
depicted in Fig. 1(b) to find qualified candidates. The search intention asks team
members to satisfy the following requirements: (1) with expertise: PM, PRG, DBA
and ST; (2) meeting following friendship relations: (i) PM and PRG (resp. DBA)
collaborated well before and are mutual friends; (ii) PRG and DBA have common
friends, i.e., they are connected within 2 hops; (iii) ST is a friend of PRG, but is
possibly a direct (resp. indirect, with distance 2) friend of DBA.

It is often too restrictive to define matches as isomorphic subgraphs of Q.
While if we extend Q with edge weights, more meaningful matches can be
captured [5,7]. Indeed, this extension allows mapping from edges in Q to paths
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in G with distance constraint specified by edge weights, e.g., edge (PRG, DBA)
with weight 2 in Q can be mapped to a path between Adam and Mat in G. With
the extension, match set M(Q,G) includes following matches:

Match ID Nodes in the match (PM, PRG,
DBA, ST)

Match ID Nodes in the match (PM, PRG,
DBA, ST)

t1 (Dave, Adam, Mat, Lucy) t2 (Phip, Dan, Mat, Rei)

t3 (Phip, Dan, Carl, Rei) t4 (Bob, Bill, Carl, Emmy)

t5 (Walt, Bill, Fred, Ruth)

Observe that M(Q,G) is (unnecessarily) too large to be inspected, while users
may only be interested in top-k matches of Q that are as diverse as possible. It
is hence unnecessary and too costly to compute the entire large set M(Q,G). In
light of this, an algorithm with the early termination property is desired, since
it identifies top-k matches without inspecting the entire M(Q,G).

To measure the quality of the top-k matches, one may consider the following
criteria. (1) Tightness of connectivity [5]. Observe that matches t2, t4 and t5 are
connected more tightly than matches t1 and t3 due to shorter inner distances, and
are considered more relevant to the query. (2) Social diversity [2,19]. Consider
match set {t2, t3, t4}, t2 and t3 share three common members, while t2 and t4
are quite “dissimilar” as they don’t have members in common. Putting these
together, when k = 2, {t2, t4} makes a good candidate for top-k matches in
terms of both relevance and diversity. ��

This example shows that diversified Top-k graph pattern matching may rec-
tify the limitations of existing matching algorithms. To make practical use of it,
however, several questions have to be answered. (1) What relevance and diver-
sity functions should be used to rank the matches? (2) What is the complexity
of computing top-k matches based on both of the functions? (3) How can we
guarantee early termination by our algorithms for computing top-k matches?

Contributions. This paper answers these questions.

(1) We revise the traditional notion of subgraph isomorphism by supporting
edge to path mapping, and define graph pattern matching with the revised
notion, that’s given Q and G, it is to compute the set M(Q,G) of matches
of Q in G, where each edge ep of Q is mapped to a path in G with length
bounded by the weight of ep (Sect. 2).

(2) We introduce functions to rank matches of Q, namely, relevance function w(·)
that measure the relevance of a match, and distance function d(·), which
measure the “dissimilarity” of two matches. Based on both, we define a
bi-criteria (balanced by a parameter λ) diversification function F (·), which
aims to identify matches that are connected tightly and cover social elements
as diverse as possible, simultaneously. We formalized diversified top-k graph
pattern matching problem based on the diversification function F (·), and
show that the decision version of the problem is NP-hard (Sect. 3).
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(3) Despite hardness of the problem, we develop two approximation algorithms.
One is in O(|G|!|G| + k

22|G|+1) time with approximation ratio 2, and the
other one is in time O((k · |Q|)1/2|G|!|G|), and in the meanwhile, not only
preserves the early termination property but also has approximation ratio
|Q|k2−|Q|lk−|Q|k−lk2

k(2|Q|−l)(l+1) , where l indicates the level number when the algorithm
terminates (Sect. 4).

(4) Using both real-life and synthetic data, we experimentally verify the per-
formance of our algorithms (Sect. 5). We find that they effectively reduce
excessive matches: when k = 10, our top-k matching methods only need
to examine 12%–18% of matches in M(Q,G) on average. Better still, our
algorithms are efficient: with only 6.5 s to identify top-k matches on a graph
with 4 million nodes and 53.5 million edges. In addition, they scale well with
|G| and |fe(e)|, and are not sensitive to the change of k.

These results yield a promising approach to querying big social data.

Related Work. We categorize the related work as follows.

Top-k Graph Pattern Matching. Top-k graph pattern matching is to retrieve
k best matches from the match set. There has been a host of work on this topic.
For example, [21] propose to rank matches, e.g., by the total node similarity
scores [21], and identify k matches with highest ranking scores. [13] investigates
top-k query evaluation for twig queries, which essentially computes isomorphism
matching between rooted graphs. To provide more flexibility of top-k pattern
matching, [5] extends matching semantics by allowing edge to path mapping, and
proposes to rank matches based on their compactness. Instead of matching with
subgraph isomorphism, graph simulation [15] is applied as matching semantic,
and pattern graph is designated an output node in [8], then match result includes
a set of nodes that are matches of the output node.

Diversified Graph Pattern Matching. Result diversification is a bi-criteria
optimization problem for balancing result relevance and diversity [3,11], with
applications in e.g., social searching [2]. Following the idea, diversified graph
pattern matching has been studied in, e.g., [8,20]. [8] takes both diversity and
relevance into consideration, and proposes functions to capture both relevance
and diversity. In contrast, [20] considers diversity only, and measures diversity
by the number of vertices covered by all the matches in the result. Our work
differs from prior work in the following: (1) our matching semantic is quite
different from that in [8,20], where [8] applies graph simulation as matching
semantic, designates an output node in pattern graph, and treats matches of the
output node as match result; and [20] adopts traditional subgraph isomorphism
as matching semantic, a more strict semantic than ours. (2) [20] only considers
match diversity, while ours considers both relevance and diversity.
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2 Preliminary

In this section, we first define data graphs and pattern graphs. We then introduce
graph pattern matching problem.

2.1 Data Graphs and Pattern Graphs

We start with notions of data graphs and pattern graphs.

Data Graphs. A data graph (or simply a graph) is an undirected graph
G = (V,E,Lv), where (1) V is a finite set of nodes; (2) E ⊆ V × V , in which
(v, v′) denotes an edge between v and v′; and (3) Lv is a function such that for
each v in V , Lv(v) is a label from an alphabet Σ. Intuitively, the node labels
denote e.g., keywords, social roles [7].

We shall use the following notations. (1) A path ρ in a graph G is a sequence
of nodes (v1, · · · , vn) such that (vi, vi+1) (i ∈ [1, n − 1]) is an edge in G. (2) The
length of the path ρ, denoted by len(ρ), is n − 1, i.e., the total number of edges
in ρ. (3) The distance dist(v, v′) between v, v′ is the length of the shortest path
between them. (4) An edge weighted graph G = (V,E,Lv, Le) is a data graph,
with V , E, Lv defined the same as its unweighted counterpart, but carrying
weight Le(v, v′) on each edge (v, v′).

Pattern Graphs. A pattern graph is an undirected graph Q = (Vp, Ep, fv, fe),
where (1) Vp is the set of pattern nodes, (2) Ep is the set of pattern edges, (3)
fv is a function defined on Vp such that for each node u ∈ Vp, fv(u) is a label
in Σ, and (4) fe is a function defined on Ep such that for each edge (u, u′) in
Ep, fe(u, u′) is either a positive integer k or a symbol ∗.

We denote |Vp| + |Ep| as |Q| (the size of Q), and |V | + |E| as |G| (the size
of G).

2.2 Graph Pattern Matching Revised

We now introduce the graph pattern matching problem, denoted by GPM. Con-
sider a data graph G = (V,E,Lv) and a pattern graph Q = (Vp, Ep, fv, fe).

Graph Pattern Matching. A match of Q in G is an n-ary node-tuple
t = 〈v1, · · · , vn〉, where vi ∈ V (i ∈ [1, n]), n = |Vp|, and there exists a bijec-
tive function h from Vp to the nodes in t such that (1) for each node u ∈ Vp,
fv(u) = Lv(h(u)); and (2) (u, u′) is an edge in Q if and only if there exists a
path between h(u) and h(u′) with length no more than fe(u, u′) in G.

The answer to Q in G, denoted by M(Q,G), is the set of node-tuples t in
G that matches Q. Abusing notations, we say a node v is a match of u, if v is
in a match t and is mapped by h(·) from u. Intuitively, the node label fv(u)
of u specifies search condition on nodes, and the edge label fe(u, u′) imposes
a bounded (resp. an unbounded) distance on the length of a path in G, that
is mapped from edge (u, u′) in Q, if fe(u, u′) is not ∗ (resp. fe(u, u′) = ∗).
Traditional pattern graphs are a special case of the patterns defined above with
fe(u, u′) =1 for all (u, u′) in Ep.
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Example 2. Recall G, Q and M(Q,G) in Example. 1. One may verify that each
pattern node carries search conditions, i.e., a node v in G can match u only if
Lv(v)=fv(u); and each pattern edge with weight specifies distance bound. Take
t1 as example, it is mapped via h from Vp, for each pattern edge (u, u′), there
exists a path with length no more than fe(u, u′) between h(u) and h(u′), e.g.,
pattern edge (PRG,DBA) is mapped to a path (Adam,Mary,Mat) with length 2,
that is no more than fe(PRG,DBA). ��

3 Diversified Top-k Graph Pattern Matching

In practice, the match set could be excessively large, while users are often inter-
ested in the best k matches that are not only relevant to the query, but also as
diverse as possible. This suggests us to study the diversified top-k graph pattern
matching problem.

In this section, we first propose two functions: relevance function for measur-
ing the relevance of matches, and distance function to measure match diversity
(Sect. 3.1). We next define a diversification function, a bi-criteria objective func-
tion combining both relevance and diversity, and introduce the diversified top-k
graph pattern matching problem based on the function (Sect. 3.2).

3.1 Relevance and Distance Measurement

We start with a function to measure the relevance of matches of pattern graph.

Relevance Function. On a match t of Q in G, we define the relevance function
w(·) as following:

w(t) =

√
|Ep|√

Σ(u,u′)∈Ep,h(u),h(u′)∈t(dist(h(u), h(u′)))2
.

That is, the relevance function favors those matches that are connected tightly.
The more tightly the nodes are connected in a match t, the more relevant t is to
Q, as observed in study [5]. Thus, matches with high w(·) values are preferred
for relevance.

We next introduce a metric for result diversity [17]. As observed in [2,19],
it is important to diversify (social) search results so that groups identified can
cover more elements (see Example 1).

Distance Function. To measure the “dissimilarity” of matches, we define a
distance function as following. Given two matches t1 with node set V1 and t2
with node set V2, we define their distance d(t1, t2) as following:

d(t1, t2) = 1 − |V1 ∩ V2|
|V1 ∪ V2|

.

Intuitively, the distance between two matches indicates their social diversity, and
the larger d(t1, t2) is, the more dissimilar t1 and t2 are.
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Observe that the function constitutes a metric. For any matches t1, t2 and
t3 of a pattern graph Q, (1) it is symmetric, i.e., d(t1, t2) = d(t2, t1), and (2) it
satisfies the triangle inequality, i.e., d(t1, t2) ≤ d(t1, t3) + d(t2, t3).

Example 3. Recall graph G, pattern Q in Fig. 1, the relevance values of the

matches are w(t1) =
√

5
11 , w(t2) =

√
5
8 , w(t3) =

√
5
11 , w(t4) =

√
5
8 and

w(t5) =
√

5
8 , hence t2, t4 and t5 are more relevant to Q than t1 and t3,

since they are connected more tightly. On the other hand, the distance val-
ues between each pair of matches are d(t1, t2) = 6

7 , d(t1, t3) = 1, d(t1, t4) = 1,
d(t1, t5) = 1, d(t2, t3) = 2

5 , d(t2, t4) = 1, d(t2, t5) = 1, d(t3, t4) = 6
7 , d(t3, t5) = 1

and d(t4, t5) = 6
7 , thus compared with t2, t3 is more dissimilar to t1, as t1 and

t3 correspond to two completely different groups of people. ��

3.2 Match Diversification

It is recognized that search results should be relevant, and at the same time, be
as diverse as possible [11,19]. Based on the relevance and distance functions w(·)
and d(·), we next introduce a diversification function.

Diversification Function. On a match set S = {t0, . . . , tk} of a pattern graph
Q, the diversification function F (·) is defined as

F (S) = (1 − λ)
∑

ti∈S
w(ti) +

2 · λ

k − 1

∑

ti∈S,tj∈S,i<j

d(ti, tj),

where λ ∈ [0, 1] is a parameter set by users.
The diversity metric is scaled down with 2·λ

k−1 , since there are k·(k−1)
2 numbers

for the difference sum, while only k numbers for the relevance sum. The function
F (·) is a minor revision of max-sum diversification introduced by [11]. It is a bi-
criteria objective function to capture both relevance and diversity, and strikes
a balance between the two with a parameter λ that is controlled by users, as a
trade-off between the two [19].

Diversified Top-k Graph Pattern Matching Problem. With the diver-
sification function F (·), we next state the problem of diversified top-k graph
pattern matching, denoted by DivTopK. Given G, Q, a positive integer k, and a
parameter λ ∈ [0, 1], it is to find a set of k matches S ⊆ M(Q,G) such that

F (S) = arg max
S′⊆M(Q,G)

F (S ′),

i.e., for all k-element sets S ′ ⊆ M(Q,G), F (S) ≥ F (S ′).

Example 4. Recall data graph G, pattern graph Q in Fig. 1. One can verify
that when 0 < λ < 1, {t2, t4} or {t2, t5} makes a top-2 diversified match
set, since their diversification value is maximum among all 2-element subsets
of M(Q,G). ��
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Theorem 1. The DivTopK problem is NP-hard (decision problem).

Proof Sketch: The decision problem of DivTopK is to decide, given Q, G, k, λ
and bound B, whether a k-element subset S ⊆ M(Q,G) with F (S) ≥ B exists.
We show DivTopK problem is NP-hard, by reduction from the NP-complete
3-dimensional matching problem (3DMP) [9]. An instance φ of 3DMP comprises
three finite and disjoint sets W , X, Y , a subset τ ⊆ W × X × Y , and an integer
D. It is to determine if a 3-dimensional matching M ⊆ τ with |M | ≥ D exists.

Given any instance of 3DMP, we construct an instance of DivTopK as follows.
(1) We construct a pattern graph Q, with three nodes uw, ux and uy labeled

by w, x and y, respectively, and three edges {(uw, ux), (uw, uy), (ux, uy)}. (2) We
construct a data graph G as follows. (a) For each element ow (resp. ox and oy) in
set W (resp. X and Y ), we construct a node vw (resp. vx and vy), and insert into
G. (b) For each matching (owi

, oxi
, oyi

) in τ , we insert edges (vwi
, vxi

), (vwi
, vyi

)
and (vxi

, vyi
) in G. (3) We set λ = 1 in F (·), and k = D, B = D.

One may verify the following: the transformation above is in PTIME, and
every matching in τ corresponds to a match of Q in G. One may further ver-
ify that the transformation is indeed a reduction, since there exists a match-
ing of size at least D if and only if there exists a k-element matches with
F (S) ≥ B. As 3DMP is NP-complete, the decision problem of DivTopK is hence
NP-hard. ��

Despite hardness, we provide approximation algorithms for the prob-
lem (Sect. 4). Better still, one of the algorithms preserves early termination
property.

4 Finding Top-k Diversified Matches

In spite of hardness, we develop approximation algorithms for the DivTopK prob-
lem, where one algorithm approximates diversification value with entire match
set, while the other one applies level-wise strategy [20], which searches matches
level by level, and terminates at certain level, e.g., l, once k matches are identi-
fied. The main results of this section are as follows.

Theorem 2. Given any instance of DivTopK problem, and assume that SOPT

is the optimal solution of the instance, the DivTopK problem can be solved
by (1) an algorithm that finds a set S of k matches with F (S) at least
1
2 · F (SOPT ) in O(|G|!|G| + k

22|G|+1) time; and (2) another algorithm that
preserves early termination property, and identifies match set S with F (S) no
less than |Q|k2−|Q|lk−|Q|k−lk2

k(2|Q|−l)(l+1) · F (SOPT ), where l indicates the level number at
which the algorithm terminates.

We next provide two such algorithms and their detailed analysis as proofs of
Theorem 2(1) and (2), respectively.



Approximating Diversified Top-k Graph Pattern Matching 415

4.1 Approximating Diversification

Intuitively, the DivTopK problem can be divided into two subproblems: (1) graph
pattern matching, which computes the match set M(Q,G), and (2) max-sum
diversification [3], that identifies a k-element subset S from M(Q,G). Following
the strategy, we provide an algorithm with approximation ratio 2 as a construc-
tive proof of Theorem 2(1).

Algorithm. The algorithm, denoted as TopkApx (not shown), takes Q, G, k and
λ as input, and works in three stages. (1) It computes an edge weighted graph
G′ = (V ′, E′, L′

v, Le) from G, where V ′ is a subset of V , L′
v is defined the same

as Lv in G, each edge ev = (v, v′) in E′ corresponds to an edge eu = (u, u′) in
Q, i.e., L′

v(v) = fv(u), L′
v(v′) = fv(u′), and Le is a function defined on edges

such that the edge weight Le(ev) of ev is no larger than fe(eu). (2) It computes
M(Q,G) with the algorithm which revises VF2 [6] by combining constraints
imposed via edge weights. (3) TopkApx applies the strategy given in [14] to select
top-k matches. Specifically, TopkApx iteratively selects a pair of matches with
maximum diversification value, and puts them in S. After k

2 times selection, if k
is odd, i.e., |S| = k−1, TopkApx selects one more match t to maximize F (S∪{t}),
and enlarges S with t. Finally, it returns S as diversified top-k matches.

Example 5. Given G and Q in Fig. 1, TopkApx first generates an edge weighted
graph G′, and identifies t1-t5 as matches of Q (see Example 1). Assuming λ = 0.5
and k = 3, TopkApx first selects {t2, t4} to extend S since F (t2, t4) = 1.79 is max-
imum. It then enlarges S with t5 as the diversification value can be maximized
with t5. TopkApx finally returns {t2, t4, t5} as the top-3 diversified matches. ��

Correctness and Complexity. TopkApx always terminates, and returns at most
k matches when it terminates. To see the approximation ratio that TopkApx pre-
serves, observe that an instance of DivTopK can be transformed to an instance
of the Maximum Dispersion problem (MAXDisp) [14]. The MAXDisp problem is
to find a subgraph Gk induced by a k-node subset Vk from a weighted com-
plete graph Gc with the maximum sum of edge weights. Given a set of matches
M(Q,G), we construct a complete graph Gc as following: each node vi in Gc

represents a match ti in M(Q,G), and each edge (vi1 , vi2) carries a weight
fe(vi1 , vi2) = 1−λ

k−1 (w(ti1)+w(ti2))+
2λ

k−1d(ti1 , ti2). Then, the diversification value
F (S) of a k-element subset S equals to F ′(Gk) = Σvi1 ,vi2∈Gk,i1<i2fe(vi1 , vi2),
i.e., total edge weights of Gk. One may easily verify that S is the top-k match
set if and only if Gk maximizes F ′(·). As TopkApx simulates the 2-approximation
algorithm for MAXDisp to select matches, hence TopkApx approximates DivTopK
with ratio 2.

To see the computational complexity, observe that, it takes TopkApx
O(|V |(|V |+ |E|)) time to construct graph G′. Since |G′| is bounded by |V |+ |E|,
the match set computation is hence in O(|V |!|V |) time. The cost for top-k match
selection takes O(k

22|V |+1) time, as there may exist 2|V | matches of Q in G. Thus,
TopkApx is in O(|G|!|G| + k

22|G|+1) time in the worst case.
The analysis above completes the proof of Theorem 2(1). ��
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4.2 Early Termination Algorithm

Though TopkApx preserves approximation ratio 2, it requires all the matches of
Q to be computed, which may be inefficient on large graphs as there may exist
exponentially many matches. To rectify this, we develop an algorithm that not
only preserves performance guarantee, but also has early termination property.

In a nutshell, the algorithm applies the level-wise strategy [20] to discover
best k matches. The discovery process starts from level 0, and may last for
|Vp| levels. At level i (i ∈ [0, |Vp|]), the algorithm identifies a set of matches,
which are as relevant to Q as possible, and have i nodes in common with node
set of existing matches. Once k matches are found, the algorithm terminates
immediately without enumerating all the matches. We next show Theorem 2(2)
by providing an algorithm and its detailed analysis as a constructive proof.

Input: Pattern Q, graph G, k, λ.
Output: A k-element set of matches of Q.
1. set S:=∅, :=∅; integer i := 0;
2. construct an edge weighted graph G′;
3. while i ≤ |Vp| do
4. restore can(us); pick us from Vp;
5. while can(us) �= ∅ do
6. pick a node vs from can(us); can(us) := can(us) \ {vs};
7. Gs = Expand(vs, us, G

′, Q, , i); S := S ∪ {Gs}; := ∪ Vs;
8. if |S| = k then return S;
9. i := i + 1;
10. return S;
Procedure Expand
Input: vs, us, G′, Q, , i.
Output: A match Gs of Q.
1. initialize an index I := ∅, a stack q := {us}, an empty graph Gs;
2. initialize pattern Qo with node us, I(Qo) with a match taking node vs;
3. while q �= ∅ do
4. u := q.pop();
5. for each unvisited edge (u, u′) in Q do
6. generate Q′

o by expanding Qo with (u, u′);
7. for each match Go in I(Qo) do
8. generate G′

o by extending Go with (v, v′);
9. if G′

o is a match of Q′
o then

10. I(Q′
o) := I(Q′

o) ∪ {G′
o};

11. if Q′
o is equivalent to Q then

12. select Gs with |Vs ∩ | = i and largest w(·) from I(Q′
o); break ;

13. q.add(u′) if u′ is not visited before;
14. return Gs;

Fig. 2. Algorithm TopkET
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Algorithm. The algorithm, denoted as TopkET and shown in Fig. 2, takes Q,
G, k and λ as input. It first initializes two empty sets S and T to keep track of
match set of Q and node set of all the matches in S, and sets level number i=0
(line 1). TopkET then computes an edge weighted graph G′ = (V ′, E′, L′

v, Le)
in the same way as TopkApx does; as a byproduct, for each pattern node u, a
set can(u) that includes nodes in G′ with the same node label as u is initialized
(line 2). After G′ is constructed, TopkET iteratively identifies matches of Q by
applying the level-wise strategy, starting from level 0 (lines 3–9). Specifically,
TopkET first restores can(us) to its original value, and selects a pattern node
us from Vp (line 4). It next repeatedly conducts the following to find matches:
(a) pick a match candidate vs of us for expansion. Once vs is selected, it is
removed from can(us) (line 6); (b) employ procedure Expand to generate a new
match Gs of Q by growing from vs, and extends sets S and T with Gs and
Vs, i.e., the node set of Gs, respectively (line 7). After extension, if |S| already
reaches k, TopkET terminates immediately, and returns S as final result (line 8);
otherwise, it starts next round expansion from another match candidate. When
all the candidates of us are used, i.e., can(us) = ∅, TopkET increases level number
i by 1, and starts a new round evaluation (line 9). Finally, TopkET returns the
set S as top-k matches of Q (line 10).

Procedure Expand. The procedure takes vs, us, G′, Q, T and i as input, and
works as following. It first initializes an empty index I to keep track of the
mapping between a sub-pattern Qo of Q and its matches, and a stack q with us

(line 1). It next initializes a pattern graph Qo with node us, as a sub-pattern of Q,
and initializes I(Qo) with the match, that includes vs (line 2). Procedure Expand
then expands Qo as well as its matches following the topological structure of Q
(lines 3–13). Specifically, it first pops up the uppermost node u from the stack
q (line 4). For each unvisited pattern edge (u, u′) of Q, (a) Expand uses it to
expand existing sub-pattern Qo and generates a new sub-pattern Q′

o (line 6),
(b) for each match Go of sub-pattern Qo, Expand identifies edges (v, v′) in G′

and uses them to extend Go, where v is in Go as a match of u in Qo, and v′ is the
neighbor of v in G′ (line 8). If the newly generated subgraph G′

o is a valid match
of Q′

o, Expand enlarges index I by including G′
o in I(Q′

o) (lines 9–10). After
all the matches of Qo are processed, if Q′

o is already equivalent to Qo, Expand
selects one match Gs from I(Q′

o) such that the node set Vs of Gs has i nodes
in common with T and the relevance value of Gs is maximum among all the
matches, and breaks the while loop (lines 11–12). If the neighbor node u′ of u
was not visited before, Expand pushes it in stack q for further extension (line 13).
When while loop terminates, Expand returns Gs as a match of Q (line 14).

Example 6. Recall Example 1. Given λ = 0.5 and k = 3, TopkET identifies
diversified top-k matches starting following the level-wise strategy. Starting from
level 0, it first selects a pattern node us with minimum candidate set, e.g.,DBA,
initializes a pattern graph Qo with us, and applies procedure Expand to generate
matches. If a candidate Mat is selected in the first round iteration, two matches
t1 and t2 are identified after expansion. Since t2 has higher relevance value, it is
included in set S. In the second round iteration, if Carl is chosen, two matches
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t3 and t4 are found, and t4 is added in S as its relevance value is higher. In
the third round iteration, only Fred can be used for expansion, and the match
t5 is generated. One may verify that t5 can not be chosen at level 0, since it
shares node Bill with node set T. After all the candidates are processed, TopkET
proceeds match identification at level 1, following the same way as before, and
may select match t1, which has one common node with T , to enlarge S. Thus,
TopkET returns {t1, t2, t4} as diversified top-3 matches. ��

Analyses. To complete the proof of Theorem 2(2), it remains to verify the
correctness and complexity of TopkET.

Correctness. To see the correctness of the algorithm, it suffices to show that
when TopkET terminates, a set S including at most k matches of Q are returned,
and F (S) is no less than |Q|k2−|Q|lk−|Q|k−lk2

k(2|Q|−l)(l+1) F (SOPT ), where l is the level
number.

(1) It can be easily verified that when TopkET terminates, either (a) a set S of
k matches have been identified (termination condition in line 8), or (b) all
the matches of Q are returned, since otherwise TopkET will not terminate.

(2) To see the approximation ratio TopkET preserves, observe the following.
(a) F (S)

F (SOPT ) ≥ LB
UB , where LB and UB refer to lower bound of F (S) and

upper bound of F (SOPT ), respectively. (b) When w(ti) = 1 (i ∈ [1, k]), and
d(ti, tj) = 1 for 1 ≤ i < j ≤ k, the diversification value of the optimal
solution reaches its upper bound k, i.e., UB = k. (c) We show lower bound
of F (S), i.e., LB below.

We denote Sl as the increment of match set S at the l-th level, and Fd(Sl) as
the increment of distance part of diversification value introduced by including Sl

in S. Assume that the algorithm terminates at level l, then by induction, when
the algorithm terminates, Fd(Sl) is lower bounded by (Σj∈[0,l−1]|Sj |− l

2|Q|−l )|Sl|
+ |Sl|(|Sl|−1)

2 (1 − l
2|Q|−l ). Hence, F (S) = (1 − λ)Σti∈Sw(ti) + 2λ

k−1 (Fd(S0) +
Fd(S1) + Fd(S2) + · · · + Fd(Sl)), which is lower bounded by (1 − λ) ∗ Σti∈Sw(ti)
+ 2λ

k−1 (Σi∈[0,l](|Si| ∗ Σj∈[i+1,l]|Sj |) − Σi∈[1,l]|Si| ∗ i
2|Q|−i + Σi∈[0,l]

|Si|(|Si|−1)
2 (1 −

i
2|Q|−i )). Furthermore, it can be verified that (1 − λ) ∗ Σti∈Sw(ti) ≥ 0,
2λ

k−1 (Σi∈[0,l](|Si| ∗ Σj∈[i+1,l]|Sj |) ≥ k2

4 − (|Sl| − k
2 )2, Σi∈[1,l]|Si| ∗ i

2|Q|−i ≥
− l(k−|S0|)

2|Q|−l , and Σi∈[0,l]
|Si|(|Si|−1)

2 (1 − i
2|Q|−i )) ≥ 1

2 (1 − l
2|Q|−l )(

k2

l+1 − k). Putting

these together, F (S) is lower bounded by |Q|k2−|Q|lk−|Q|k−lk2

(2|Q|−l)(l+1) , hence the approx-

imation ratio F (S)
F (SOPT ) is lower bounded by |Q|k2−|Q|lk−|Q|k−lk2

k(2|Q|−l)(l+1) , where l is the
level number.

Complexity. Observe that it takes TopkET O(|V |(|V | + |E|)) time to construct
an edge weighted graph G′ (line 2). The outmost while loop runs at most
min(|Vp|, k) ≤ (k · |Vp|)1/2 times, for a single iteration, it is in O(|G′|!|G′|) time
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to identify one match of Q in G′, which is further bounded by O(|G|!|G|) time.
Thus, the worst time complexity of TopkET is O((k · |Vp|)1/2|G|!|G|) time.

Early termination. Algorithm TopkET preserves the early termination property.
In contrast to algorithms, e.g.,TopkApx, that identifies top-k matches from match
set M(Q,G), TopkET applies level-wise strategy to discover diversified top-k
matches, and terminates as soon as top-k matches are identified. As will be
verified in Sect. 5, TopkET is more efficient than TopkApx.

These completes the proof of Theorem 2(2). ��

5 Experimental Evaluation

We next experimentally verify the effectiveness and efficiency of our diversified
top-k graph pattern matching algorithms, using real-life and synthetic data.

Experimental Setting. We used the following datasets.

(1) Real − life graphs. We used two real-life graphs: (a) Pokec [1], a social
network with 1.63 million nodes of 269 types and 30.6 million edges. (b)
Google+ [12], a social network with 4 million entities of 5 types and 53.5 million
edges.

(2) Synthetic data. We designed a generator to produce synthetic graphs
G = (V,E,L), controlled by the number of nodes |V | and edges |E|, where
L are assigned from a set of 15 labels. We generated synthetic graphs follow-
ing the linkage generation models [10]: an edge was attached to the high degree
nodes with higher probability. We use (|V |, |E|) to denote the size of G.

(3) Pattern generator. We implemented a generator for pattern graphs
Q = (Vp, Ep, fv, fe), controlled by four parameters: |Vp|, |Ep|, label fv from
the same Σ, and an upper bound k for fe(e).

(4) Implementation. We implemented our algorithms TopkET, TopkETOPT,
which optimizes TopkET via selecting a pattern node us with minimum |can(us)|
for propagation, and TopkApx vs. DSQL [20], all in Java.

All the experiments were repeated 5 times on a Intel Core(TM)2 Duo
3.00 GHz CPU with 4 GB of memory and the average is reported here.

Experimental Results. We next present our findings.

Exp-1: Effectiveness. We first evaluated the effectiveness of our diversified
top-k matching algorithms, i.e.,TopkET, TopkETOPT vs. TopkApx. We measured
effectiveness by computing the ratio IR = |Mi(Q,G)|

|M(Q,G)| , where |M i(Q,G)| indicates
the amount of matches identified by the algorithms when they terminate.

V arying |Q|. Fixing k=10, λ = 0.5, fe(e) = 1 for all e ∈ Ep, we varied |Q| from
(4, 6) to (8, 16), and evaluated IR over two real-life graphs. The results shown
in Figs. 3(a) and (b) tell us the following. (1) TopkET, TopkETOPT effectively
reduce excessive matches. Taking patterns with size |Q| = (4, 6) as example,
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Fig. 3. Performance evaluation

TopkET (resp. TopkETOPT) only inspected 21% and 17.6% (resp. 15% and 12.6%)
matches, on average, on Pokec and Google+, respectively, when it terminates.
(2) TopkApx identifies all the matches of Q, hence has IR = 100% (results not
shown in figures). (3) TopkETOPT has lower IR than TopkET since its optimization
strategy effectively reduces its search space.

V arying k. Fixing |Q| = (4, 6), fe(e) = 1 and λ = 0.5, we varied k from 5
to 30 in 5 increments, and reported IR on Pokec and Google+. As shown in
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Figs. 3(d) and (e), the ratio IR of TopkET (resp. TopkETOPT) increased from
11% (resp. 9%) to 39% (resp. 31%), and 7% (resp 6%) to 29% (resp. 24%) on
Pokec and Google+, respectively, when k was increased from 5 to 30. The reason
is that, for larger k, more matches have to be identified and examined by the
algorithms.

V arying fe(e). We evaluated IR in the same setting as in Figs. 3(a) and (b), but
with fe(e) = 2 for pattern edges. Figure 3(c) shows the results on Google+, and
tells us that (1) TopkET, TopkETOPT only inspect a small portion of matches,
e.g., only 9% and 8% of matches for patterns with fe(e) = 2, and identify
top-k matches. The results are consistent with Fig. 3(b); (2) our early termina-
tion algorithms are more effective for larger fe(e), e.g., the IR of TopkET (resp.
TopkETOPT) on average is 11.8% (resp. 10.2%), which is smaller than IR when
fe(e) = 1. The results on Pokec are consistent with Fig. 3(c), hence are not
reported. We still evaluated IR in the same setting as in Figs. 3(d) and (e), but
using patterns with fe(e) = 2. The results on Google+, shown in Fig. 3(f), tell
us the following: our algorithms are more effective for larger fe(e), e.g., the IR of
TopkETOPT is on average 11.7%, less than 14.5% when fe(e) = 1. As the results
on Pokec are consistent with Fig. 3(f), hence are not reported.

As can be observed, our early termination algorithms work even better for
larger fe(e). This is because larger fe(e) will result in larger match set, while our
algorithms can identify top-k matches with less matches. Due to space constraint,
for even larger edge weights, e.g., fe(e) > 2, we do not report results here, while
we confirmed that the larger fe(e) is, the smaller IR is, which is consistent with
the analytics given above.

Exp-2: Efficiency. We next evaluated the efficiency of the algorithms, in the
same setting as in Exp-1. For comparison purpose, we set λ = 1, and only search
diversified top-k matches without considering match relevance to favor DSQL.

V arying |Q|. Fixing k = 10 and fe(e) = 1 for all pattern edges, we varied |Q|
from (4, 6) to (8, 16), and evaluated efficiency of the algorithms over real-life
graphs. As shown in Figs. 3(g) and (h), (1) TopkET (resp. TopkETOPT) takes
only 5.5% (resp. 4.6%) and 5.4% (resp. 4.3%) time of TopkApx, on average,
on Pokec and Google+, respectively. This verifies the effectiveness of the early
termination property that TopkET and TopkETOPT preserves; (2) TopkET (resp.
TopkETOPT) spends extra 32.5% (resp. 9.6%) and 72.2% (resp. 26.9%) time than
DSQL on Pokec and Google+, respectively, since they used a more costly strategy
to identify matches to favor result relevance, even though relevance is ignored in
the test; (3) TopkETOPT outperforms TopkET by 17.1% and 26% on Pokec and
Google+, respectively, owing to its optimization strategy.

V arying k. Fixing |Q| = (4, 6), fe(e) = 1, we varied k from 5 to 30 in 5 incre-
ments, and tested efficiency of the algorithms on real-life graphs. The results
are shown in Figs. 3(j) and (k). We find that (1) all the algorithms spend more
time for larger k, which is consistent with the observations in Figs. 3(g) and
(h); (2) TopkET, TopkETOPT and DSQL are more efficient than TopkApx, tak-
ing only 10.9%,8.2%,6.2% and 8.2%, 6.2%, 4.4% time of TopkApx on Pokec and
Google+, respectively; (3) TopkET, TopkETOPT and DSQL are more sensitive to
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the increase of k than TopkApx, as a large part of time used by TopkApx is match
set computation, which is not sensitive to the increase of k.

V arying fe(e). We evaluated efficiency of the algorithms, in the same setting as
in Figs. 3(g) and (h) but with fe(e) = 2. As DSQL only works for patterns with
fe(e) = 1, to rectify this, we slightly revise DSQL by integrating a preprocessing
task, i.e., extracting edge weighted graph G′ from G, and take G′ as input of
DSQL. Results on Google+ are shown in Fig. 3(i), and tell us following: all the
algorithms spend more time on larger fe(e), e.g., it takes TopkETOPT 27.5s (resp.
6.5s) to identify diversified top-k matches of Q with size (4, 6, 2) (resp. (4, 6, 1)).
The results on Pokec are consistent with Fig. 3(i) and are hence not reported.
We also tested efficiency in the same setting as in Figs. 3(j) and (k), but with
fe(e) = 2. Figure 3(l) shows results on Google+, and tells us that it takes all
the algorithms more time to identify diversified top-k matches, compared with
patterns with fe(e) =1. We do not report results on Pokec as they are consistent
with Fig. 3(l). The main reason that our algorithms spend more time for larger
fe(e) is that all the algorithms need extra time to generate edge weighted graph
G′. For larger fe(e), we do not report efficiency results due to space constraint,
while we confirmed that the larger fe(e) is, the more costly our algorithms are,
which is consistent with the analytics given above.

Exp-3 Scalability. Fixing |Q| = (4, 6), fe(e) = 1, we varied |G| from (1M, 2M)
to (2.8M, 5.6M) and evaluated the scalability of the algorithms with synthetic
data. The results, shown in Fig. 3(m), tell us: (1) all the algorithms scale well
with |G|; (2) the running time of TopkET, TopkETOPT and DSQL are less sensitive
to |G| than TopkApx.

Exp-4 Case Study. On Pokec, we manually inspected the diversified top-2
matches found by TopkETOPT for Q of Fig. 3(n) and (a). As shown in Fig. 3(n)
and (b), the two matches found by TopkETOPT are not only relevant to Q, but
also very dissimilar, since they are closely connected, i.e., with Le(e) = 1, and
share no common element.

Summary. (1) Our algorithms are effective: top-10 matches can be found by
TopkET when only 21% (resp. 17.6%) matches on Pokec (resp. Google+) are
identified. (2) Our algorithms are efficient: it only takes TopkET 8.8 s to find
top-10 matches of Q with |Q| = (4, 6), fe(e) = 1. (3) Our optimization strategy
is effective: TopkETOPT improves both IR and efficiency of TopkET. (4) Our
algorithms scale well with |G| and fe(e).

6 Conclusion

We have introduced and studied approximating diversified top-k graph pattern
matching problem. We have revised pattern graphs by allowing edge to path
mapping, defined functions to measure match relevance and diversity, and pro-
posed diversification function as a bi-criteria objective function to capture both
relevance and diversity. We have established the complexity of the problem,
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and provided approximation algorithms for computing diversified top-k matches
with early termination property. As verified analytically and experimentally, our
methods remedy the limitations of prior algorithms, by eliminating excessive
matches and improving efficiency on big social graphs.
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Abstract. We consider and formulate problems of PageRank score
boosting motivated by applications such as effective web advertising.
More precisely, given a graph and target vertices, one is required to find
a fixed-size set of missing edges that maximizes the minimum PageR-
ank score among the targets. We provide theoretical analyses to show
that all of them are NP-hard. To overcome the hardness, we develop
heuristic-based algorithms for them. We finally perform experiments on
several real-world networks to verify the effectiveness of the proposed
algorithms compared to baselines. Specifically, our algorithm achieves
100 times improvements of the minimum PageRank score among selected
100 vertices by adding only dozens of edges.

1 Introduction

Google’s “PageRank” [6,28] determines the importance and measures the pop-
ularity of webpages based on the linkage structure of the web. The intuition
behind PageRank is that a webpage is important if important webpages point to
it, and the PageRank score of a vertex is defined as the solution of a system of
linear equations. PageRank can be also interpreted as follows. Consider a random
surfer who usually randomly follows its out-edge, but with a certain probability
(e.g., 0.15), jumps to a uniformly chosen vertex. Then, the expected frequency of
visiting a vertex is equal to its PageRank score. Thanks to its simplicity and gen-
erality, PageRank has been applied in a wide range of areas including chemistry,
biology, recommender systems, and social network analysis [14].
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In this paper, we study the following problem of “boosting” PageRank scores.

Given a graph and target vertices, extract a small number of missing edges
that maximizes the minimum PageRank score among the targets.

Concretely, we consider certain scenarios, where we are required to

1. find a set of k missing edges such that in the resulting graph, the minimum
PageRank score among the target vertices is maximized,

2. find the smallest number of missing edges such that in the resulting graph,
the PageRank score of any target vertex is at least a threshold l, or

3. find a set of k missing edges such that in the resulting graph, the number of
target vertices with a PageRank score of at least a threshold l is maximized.

We face such problems in various applications including the example below.

Optimizing Linkage Structure for Effective Web Advertising. Com-
putational advertising has become increasingly important, e.g., approximately
$137.53 billion dollars was spent on online advertising in 20141. In computational
advertising, there are three key parties [7]: advertiser, who “creates” advertis-
ing; customer, who “views” advertising; and publisher, who “sells” web banner
spaces to advertisers. One of the main challenges is to design markets that simul-
taneously maximize values for advertisers, customers, and publishers. From the
viewpoint of a publisher, it is desirable to sell the publisher’s web banner spaces
for the highest possible price to advertisers. To obtain such a high price, publish-
ers need to provide some guarantee to advertisers; that is, users frequently visit
(all of) the target webpages wherein web banner spaces are offered. However,
the distribution of page visits [1] (and so PageRank scores [5,13,29]) is generally
heavily skewed. Hence, it is desirable to have more webpages of high PageRank
scores. In this manner, advertisers will have more chances to turn visitors of web
banner spaces into their customers.

For this purpose, we can imagine the situation where a publisher owns the
host network (i.e., webpages with the same hostname) and is given a set of
target webpages with web banner spaces. Then, the goal is to guide visitors
to any target webpages effectively by making “marginal” changes to its internal
linkage structure. Here, it is plausible to allow the publisher to choose only a few
hyperlinks because an excessively large number of hyperlink insertions may affect
the browsing behavior of users and each insertion may incur some cost. Also, a
set of candidate hyperlinks to be added to the host network is given since it might
be impossible to create hyperlinks from certain webpages (e.g., the homepage).
Hence, the goal is achieved by solving an instance of PageRank boosting problem,
and the solution would help improve the effectiveness of advertising.

1 https://www.emarketer.com/m/Article/Digital-Ad-Spending-Worldwide-Hit-36137
53-Billion-2014/1010736.

https://www.emarketer.com/m/Article/Digital-Ad-Spending-Worldwide-Hit-3613753-Billion-2014/1010736
https://www.emarketer.com/m/Article/Digital-Ad-Spending-Worldwide-Hit-3613753-Billion-2014/1010736
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Contributions. In this paper, we present the study on PageRank boosting
problem. Our main contributions are summarized as follows.

– Problem formulations (Sect. 3): We formulate discrete optimization prob-
lems of PageRank score boosting. Specifically, we introduce a problem of seek-
ing for a set of k missing edges that maximizes the minimum PageRank score
among a specified set of target vertices and further its two variants.

– Complexity analysis (Sect. 4): We prove that all of the three problems are
NP-hard to solve exactly and indeed some problem is hard even to approxi-
mate under some complexity assumption.

– Algorithms (Sect. 5): To overcome the hardness result, we develop efficient
heuristic algorithms for the problems. We propose to select edges missing in
the current graph having the maximum contribution on PageRank boosting
and add them to a solution. To this end, we propose a contribution-based
approach for missing edge selection.

– Experiments (Sect. 6): We perform experiments on real-world webgraphs
with up to millions of edges to verify the effectiveness of the proposed
algorithms compared to baseline algorithms. Specifically, the proposed algo-
rithm demonstrates 100 times improvements of the minimum PageRank score
among selected 100 webpages by adding only dozens of hyperlinks.

2 Related Work

PageRank score boosting has the potential to various applications including
link spam, search engine optimization, and measuring the PageRank error in
incomplete networks.

Building Outlinks. Assume that a webmaster owns some webpages and wants
to increase their PageRank scores by modifying his/her own webpages, i.e., by
building their out-edges. Sydow [30] showed through computational experiments
that carefully chosen out-edges to a single vertex increases its PageRank score.
Avrachenkov et al. [3] theoretically analyzed a change of the PageRank score of a
single vertex caused by adding its new out-edges and reported an optimal linking
strategy. Subsequently, de Kerchove, Ninove, and Van Dooren [19] considered
a generalization of [3]’s problem whose aim is of maximizing the sum of the
PageRank scores of multiple vertices by changing their out-edges and provided
an optimal linking strategy for this problem.

Link Building. In the literature of search engine optimization, link building
aims to construct edges entering to target webpages (a.k.a. backlinks) with the
purpose of increasing website ranking in search engine results. From theoret-
ical aspects, a few hardness and approximation results were established such
as [26,27].
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Inserting Edges Under Control. In this situation, we can insert any of
hyperlinks under control to maximize the PageRank scores. Besides our motiva-
tion, this situation has been applied in the measurement of an error in PageRank
scores calculated from incomplete graphs [17]. Because of technical reasons, e.g.,
server down or a crawling strategy, we often overlook some edges, which results
in incorrect edges. The possible effect of such “fragile” edges on PageRank scores
can be estimated as a solution for this problem.

From an algorithmic point of view, there have been several results on approx-
imation and hardness. Csáji et al. [9,10] gave a polynomial-time algorithm for
maximizing the PageRank score of a single vertex. Olsen [25] considered a prob-
lem of finding k missing (allowing multiple) edges that maximize the minimum
PageRank score among a given set of vertices and proved its NP-hardness.
Though our problem is closely related to Olsen’s problem formulation, there
exist some differences between them. Firstly, multiple edges are not allowed in
our problem, and thus we cannot employ a trivial strategy which inserts multi-
ple edges connecting from a webpage with very high PageRank score to a target
webpage. Secondly, our problem is more general in a sense that we are given a
candidate set for missing edges, while Olsen’s problem assumes that every pos-
sible missing edge can be a candidate, i.e., a candidate set is fixed to be the set
consisting of all possible missing edges. Note also that we prove that our problem
is NP-hard even if the maximum degree of an input graph is bounded by a small
constant.

Link Spam. Link spams aim to unethically increase the rankings of target
webpages in search engine results by exploiting link-based ranking algorithms
such as PageRank. Gyöngyi and Garcia-Molina [15] introduced link farms, where
webpages exchange edges for mutual benefit. The best strategy to boost the
PageRank score of a webpage is to have all webpages in the link farm link to
that target. Baeza-Yates, Castillo, and López [4] empirically studied different link
farm structures (star and ring topologies). Remark that the link farm involves
webpage additions.

3 Problem Formulations

Notations. Let G = (V,E) be a directed graph where V is a set of n vertices
and E is a set of m edges. We assume that G is simple, i.e., it has no self-
loops or multiple edges. For a graph G and a set F of edges not in E (i.e.,
F ⊆ (V × V ) \ E), the symbol G ∪ F stands for the graph obtained from G by
inserting edges of F . If an edge set consists of a single edge, say, F = {(s, t)}, we
simply write G+(s, t) instead of G∪{(s, t)}. We denote the in- and out-degrees
of v by d−

G(v) and d+G(v), respectively.
The transition matrix P = (Pij) of a graph G is defined as

Pij =

{
1/d+(j) (j, i) ∈ E,

0 otherwise.
(1)
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The PageRank score xG of G is a solution of the following linear equation [6,28]:

xG = αPxG + (1 − α)|V |−1e, (2)

where e is the all-one vector and α ∈ (0, 1) is a decay factor, which is typically
set to α = 0.85.

Problem Descriptions. We here define PageRank score boosting problems.
Given a directed graph G = (V,E) (e.g., the host network of publishers), a set
of target vertices T (e.g., each of which is a webpage with web banner spaces),
and a set of missing edges S ⊆ (V ×V )\E under control, problems of PageRank
score boosting are formalized as follows.

Problem 1 (M inimum PageRank M aximization; MPM). Given a positive inte-
ger k, find k edges F ⊆ S so that the minimum of xG∪F (v) for v in T is maxi-
mized.

Problem 2 (Minimum PageRank Threshold Coverage; MinPTC). Given a
threshold number l ∈ (0, 1), find the minimum number of edges F ⊆ S so
that xG∪F (v) ≥ l for every vertex v in T .

Problem 3 (Max imum PageRank Threshold Coverage; MaxPTC). Given a
threshold number l ∈ (0, 1), and a positive integer k, find k edges F ⊆ S so
that the number of vertices in T with xG∪F (v) ≥ l for v in T is maximized.

4 Hardness Results

In this section, we show that the problems formulated in the previous section
are NP-hard.

Theorem 1. The MPM problem is NP-hard even if G is of maximum out-degree
3 and maximum in-degree 2.

Proof. We reduce the vertex cover problem to MPM. In the vertex cover problem,
we are given an undirected graph H = (W,F ) and a positive integer k, and the
aim is to find a vertex subset X of size at most k such that every edge has an
end vertex in X. The problem is known to be NP-hard even if H is a cubic graph
(i.e., the degree of each vertex is three) [12].

Suppose that we are given an instance of the vertex cover problem, consisting
of a cubic graph H = (W,F ) and a positive integer k. We construct a directed
graph G = (V,E) as follows. Set V = W ∪ F ∪ F ′ ∪ {s, s′}, where F ′ is a copy
of F . Two vertices w ∈ W and f ∈ F are adjacent if and only if w is an end
vertex of f . Moreover, we add edges (f, f ′) and (f ′, f) for all f ∈ F , and (s, s′)
and (s′, s). See Fig. 1. We define T = F and S = {(s, w) | w ∈ W}.

Let d be the minimum of PageRank xG(v) among v ∈ T . We claim that H
has a vertex cover of size at most k if and only if the instance G for MPM has
a solution I such that minv∈T xG∪I(v) > d. We first observe that xG(v) = d
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W

F = T

s

f = (w,w′)w

w′... ...
...

f ′

s′

...

Fig. 1. Reduction from the vertex cover problem.

for each vertex v ∈ T . This is because the out-degree of w is the same for any
w ∈ W , as H is cubic, and the in-degree of f is the same for any f ∈ F . If we
add an edge (s, w) in T , then the PageRank score of a vertex in Γ (w), where
Γ (w) is the set of vertices adjacent to w in T , increases. Therefore, the minimum
of xG(v) among v ∈ T becomes more than d if and only if there exists a vertex
subset S in V such that

⋃
v∈S Γ (v) = T . This means that these two problems

are equivalent.

Corollary 1. The MaxPTC problem is NP-hard.

Proof. We show that the MPM problem can be reduced to the MaxPTC prob-
lem. Suppose we are given an instance (G,T, S, k) of MPM. Let d be the mini-
mum of xG(v) among all target vertices v ∈ T . Notice that the MPM problem is
equivalent to finding the maximum number l ∈ [d, 1] such that a solution I for
the MaxPTC instance (G,T, S, l, k) satisfies xG∪I(t) ≥ l for all t ∈ T . Thus, the
MPM problem can be solved by repeatedly solving the MaxPTC problem with
changing l by the bisection search on the interval [d, 1]. Cramer’s rule implies
that xG(v) = xG′(v) or |xG(v) − xG′(v)| ≥ 1/|V ||V |+1 holds for any two graphs
G and G′ on the vertex set V . This fact means that the number of iterations in
the bisection search is O(|V | log |V |).

The reduction from the MPM problem in the proof of Corollary 1 can be also
adapted for MinPTC with a slight modification. Although this already implies
the NP-hardness of MinPTC, we can prove a stronger approximation hardness
of MinPTC by reducing the vertex cover problem to MinPTC directly. The
following theorem describes this fact in detail.

Theorem 2. It is NP-hard to approximate MinPTC within a factor of 1.3606.
Moreover, if the unique games conjecture is correct, MinPTC admits no (2− ε)-
approximation algorithm for any ε > 0.

Proof. We show that the vertex cover problem in a regular graph can be reduced
to MinPTC. Indeed, the reduction is almost same as the one in the proof of The-
orem 1. The only difference is that we have a threshold number l in the reduced
instance of MaxPTC; we set l to minv∈T xG(v) + ε, where ε is a small positive
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number such that 0 < ε ≤ 1/|V ||V |+1 (in the proof of Theorem 1, xG(v) = xG(u)
has been proven for any u, v ∈ T ). Feige [12] showed that if the vertex cover
problem with regular graphs admits an α-approximation algorithm for some
α ≥ 1, then the problem with arbitrary graphs also admits an α-approximation
algorithm. Thus, any approximation hardness result on the vertex cover problem
can be adapted to MinPTC. The former hardness result in the statement follows
from [11], and the later one follows from [20].

It should be noted that the reductions in Theorems 1 and 2 can be extended
to the reductions from the vertex cover problem (or hitting set problem) on
a k-uniform l-regular hypergraph, and the k-densest subgraph problem on a
regular graph. Moreover, the reductions from these problems to MinPTC are
approximation-preserving. A hypergraph G is denoted by G = (V, E), where
E ⊆ 2V . A hypergraph is k-uniform if each hyperedge in E has a size exactly k.
Note that a 2-uniform hypergraph is just a graph. A hypergraph is l-regular if
each node in V is contained in exactly l hyperedges, i.e., |{e ∈ E | v ∈ e}| = l for
every v ∈ V . The vertex cover problem on a hypergraph is the problem that, given
a hypergraph G, finds a minimum set S of vertices that covers every hyperedge,
i.e., S∩e �= ∅ for every e ∈ E . In the k-densest subgraph problem, we are given an
undirected graph, and the problem seeks to find a set of k vertices that induces
the maximum number of edges. Although we are not aware of any hardness
results on these problems, no known algorithm attains a constant-approximation
guarantee for these problems. Hence, the relationship between these problems
and MaxPTC is a side evidence for the fact that it is hard to obtain a good
approximation guarantee for MinPTC.

5 Proposed Algorithms

This section presents heuristic-based algorithms for our optimization problems.

Framework. As mentioned in the previous section, our problems include
the vertex cover problem on a hypergraph. Because the problem is NP-hard,
attempting to develop a polynomial-time algorithm is futile. However, this prob-
lem can be approximately solved via a greedy algorithm in an efficient manner.
More specifically, the greedy algorithm begins with an empty solution set, and
repeats adding a vertex that covers the maximum number of hyperedges not
yet covered by the solution. This algorithm admits O(log n)-approximation for
hypergraphs with n vertices [8,18,23].

Inspired by the above-mentioned greedy algorithm, we here design a greedy
heuristic for our problems. Our algorithm repeats adding an edge in a solution
similarly to the greedy algorithm. For each iteration, we evaluate the “contribu-
tion” of a candidate edge and select one that maximizes the contribution.

In the following subsections, we present two strategies of contribution evalu-
ation and devise the proposed algorithms.
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Algorithm 1. Naive strategy for SelectEdge.
1: procedure SelectEdge(G = (V,E), T, S, F )

2: compute PageRank scores xG∪F for current graph G ∪ F .

3: t ← argminv∈T xG∪F (v).

4: for all s ∈ V in decreasing order of
xG∪F (s)

d
+
G∪F

(s)+1
do

5: if (s, t) ∈ S \ (E ∪ F ) then

6: return (s, t).

Algorithm 2. Contribution-based algorithm for MinPTC.
Require: a graph G = (V,E), target vertices T ⊆ V , missing edges S ⊆ (V × V ) \ E, a threshold

l ∈ (0, 1).

1: F ← ∅.
2: loop

3: compute PageRank scores xG∪F for current graph G ∪ F .

4: if minv∈T xG∪F (v) ≥ l then

5: break.

6: S ← vertices with top-|T | PageRank xG∪F scores.

7: for all s ∈ S and t ∈ T do

8: compute PageRank scores xG∪F+(s,t) for G ∪ F + (s, t).

9: contrib(s, t) ← ∑
v∈T min(0, xG∪F+(s,t)(v) − l).

10: F ← F ∪ {argmax(s,t)∈S×T :(s,t)�∈E∪F contrib(s, t)}.
11: return F .

Naive Algorithms. The first contribution evaluation strategy is based on a
well-known fact that if an edge from u to v is inserted into a graph, then the
PageRank score of v will increase [2,16]. Because our objective is to increase
the “minimum” PageRank score, it is natural to select a vertex in T with the
“minimum” PageRank score as the head v of an edge to be added. We now
discuss which vertex is appropriate for the tail u of an edge to be added. From
the random-walk interpretation, inserting an edge leaving from a vertex with a
higher PageRank score is apparently more desirable. More precisely, we roughly
measure the effectiveness of a vertex u by its PageRank score divided by its
out-degree because the probability of a random walker moving to v through an
edge (u, v) is approximately equal to xG(u)/d+(u) rather than xG(u).

To sum up, for a set F of already selected edges, we pick up a missing
edge connecting from a vertex s in V with the maximum value of xG∪F (s)/
(d+G∪F (s) + 1) to a vertex t in T with the minimum PageRank score
mint∈T xG∪F (t). The procedure SelectEdge is shown in Algorithm 1.

Our naive algorithms for MPM, MinPTC, and MaxPTC start with an empty
set F = ∅ and continue the greedy selection according to SelectEdge until
k edges have been added into F (in the case of MPM and MaxPTC) or the
minimum PageRank score among T for a graph G ∪ F attains a given threshold
l (in the case of MinPTC).

Contribution-Based Algorithms. The disadvantage of the naive algorithms
is that it only evaluates a “local” influence of edge insertion on PageRank scores.
In reality, however, inserting a single edge not only increases the PageRank score
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Algorithm 3. Contribution-based algorithm for MPM.
Require: a graph G = (V,E), target vertices T ⊆ V , missing edges S ⊆ (V × V ) \ E, a solution

size k.

1: low ← minv∈T xG(v) and high ← 1.

2: F ← ∅
3: repeat

4: mid ← (low + high)/2

5: F ′ ← solve MinPTC with parameters G, T, S,mid.

6: if |F ′| ≤ k then

7: low ← mid and F ← F ′.
8: else

9: high ← mid.

10: until convergence

11: return F .

Algorithm 4. Contribution-based algorithm for MaxPTC.
Require: a graph G = (V,E), target vertices T ⊆ V , missing edges S ⊆ (V × V ) \ E, a solution

size k, a threshold l ∈ (0, 1).

1: low ← 0 and high ← |T | + 1.

2: F ← ∅.
3: repeat

4: mid ← �(low + high)/2�
5: F ′ ← select k edges according to the top-mid contribution.

6: if |{v ∈ T | xG∪F (v) ≥ l}| ≥ mid then

7: low ← mid and F ← F ′.
8: else

9: high ← mid.

10: until convergence

11: return F .

of its head but may also increase the PageRank scores of other vertices. The naive
strategy, which only considers a local influence on the PageRank score, cannot
capture such a “wide” influence and it may select ineffective edges.

To capture such a wide influence, we here introduce another kind of a measure
to evaluate the contribution of an edge. For the MinPTC problem, we define the
contribution of inserting an edge (s, t) to G as

∑
v∈T min(0, xG+(s,t)(v)− l). This

represents how close the graph G + (s, t) is to the goal. Note that if all target
vertices have PageRank score at least l, then this value takes zero.

Algorithm for MinPTC. Utilizing the contribution introduced above, we describe
our contribution-based algorithm for the MinPTC problem. Starting with an
empty set F = ∅, we evaluate the contribution of each edge in a candidate set
and add one with the maximum contribution into F . We continue this until the
minimum PageRank score among T attains a given threshold l. To reduce a
candidate set, we only evaluate edges whose tail has a high PageRank score and
whose head is in T . Pseudocode is shown in Algorithm 2.

Algorithm for MPM. We cannot directly use the above-mentioned contribu-
tion to MPM because a threshold l is not given. One might suggest a vari-
ant of Algorithm 2 which selects an edge with maximum minv∈T xG+(s,t)(v)
(we denote this strategy by Contrib-simple). This algorithm, however, does not
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take into account the increase in the PageRank scores of all vertices excluding
argminv∈TxG+(s,t)(v). In fact, Contrib-simple will be shown to be less effective
than the naive strategy in our experiments. We then use the reduction from
MPM to MinPTC that is presented in the proof of Corollary 1. That is, we
repeatedly solve the MinPTC problem with the bisection search on the interval
[d, 1], where d is the minimum of xG(v) among v ∈ T , to obtain the maximum
number l such that the answer of MinPTC is at most k. Pseudocode is shown
in Algorithm 3.

Algorithm for MaxPTC. For the MaxPTC problem, the goal is somewhat differ-
ent from MPM, i.e., maximizing the number of the target vertices with PageR-
ank score at least l, though both the problems ask for selecting k edges. We
again claim that a variant of Algorithm2, which selects an edge with maximum∑

v∈T min(0, xG+(s,t)(v)− l) is not so effective similarly to the case of MPM (we
denote this strategy by Contrib-simple). Hence, we again rely on the bisection
search, that is, we repeatedly decide whether or not inserting k missing edges
can increase the PageRank scores of r target vertices to l. To this end, instead
of maximizing the sum of min(0, xG(v) − l) for all target vertices v, we aim at
greedily maximizing the sum of min(0, xG(v)− l) for target vertices v having the
top-r PageRank scores in T . It is clear to see that if at least r target vertices have
PageRank score at least l, then the sum of contributions is zero. Pseudocode is
shown in Algorithm4.

Efficient Update of PageRank Scores. As mentioned so far, contribution-
based algorithms choose the most effective edge from a set of candidate edge in
each iteration. However, it requires computing the PageRank scores of a graph
obtained by inserting each candidate edge to evaluate its contribution. This
would be computationally expensive if we simply apply static algorithms.

In each iteration of the contribution-based algorithms, we have already the
PageRank scores of a graph G∪F , and we are asked to compute the PageRank of
G∪F +(s, t) for all candidate edges (s, t). This situation is similar to the dynamic
network setting when a graph is evolved, which allows us to use an incremental
algorithm for tracking PageRank scores on dynamic graphs proposed by [24].
Their algorithm can manage both the addition and deletion of several edges.
Thus we can compute the PageRank scores xG∪F+(s,t) for each candidate edge
(s, t), given xG∪F .

The algorithm is proven to perform efficiently if edges are randomly
inserted [24]. Unfortunately, this is not the case in our scenario because we insert
a single edge leaving from a vertex with a high PageRank score. Nevertheless,
our experimental results indicate the scalability of our proposed algorithms.

6 Experimental Evaluation

We conducted experiments on several webgraphs to demonstrate the effectiveness
of the proposed algorithms. All experiments were conducted on a Linux server
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with an Intel Xeon E5540 2.53 GHz CPU and 48 GB memory. All algorithms
were implemented in C++ and compiled using g++ 4.8.2 with the −O2 option.

Datasets. We use three webgraph datasets: Google network with 12,354 ver-
tices and 164,046 edges, which is a webgraph from google.com domain, from
Koblenz Network Collection [21], and Stanford network with 150,532 vertices
and 1,576,314 edges, which is a webgraph from stanford.edu domain, and Berk-
Stan network with 334,857 vertices and 4,523,232 edges, which is a webgraph
from berkely.edu and stanford.edu domains, from Stanford Network Analysis
Project [22]. For each graph, we extracted the subgraph induced by the largest
strongly connected component.

Selection of Target Vertices. Because the structural properties of T affect the
performance of each algorithm, we use the following different methods for select-
ing T .

– Random: randomly selects 100 vertices from V .
– 2-hop: (1) initialize r = 10, 000 and T = ∅, (2) pick up a vertex v having the

r-th highest PageRank score, (3) add the 2-hop neighbors of v into T , (4) if
|T | is less than 100, then increase r by one and return to (2); otherwise, (5)
randomly select 100 vertices from T .

Note that vertices selected by 2-hop are expected to be close to each other.

Algorithms. We compare the following four algorithms:

– Degree: a baseline algorithm that repeatedly selects an edge from a vertex
s with the maximum value of d−(s)/(d+(s) + 1) to a target vertex t with
the minimum in-degree. Note that this method does not take into account
PageRank scores.

– Naive: the naive algorithm with Algorithm 1.
– Contrib-simple: the contribution-based algorithm without the bisection

search for MPM and MaxPTC.
– Contrib: the contribution-based algorithm for MPM, MinPTC, and MaxPTC.

For MPM, the bisection search is repeated 30 times.

A parameter ε, which specifies the accuracy of PageRank estimation, is set as
ε = 10−7.

Solution Quality. We first examine the effectiveness of each algorithm. We
compute the PageRank scores of the graph obtained from an original graph by
inserting edges in the solution produced by each algorithm using power iteration.

Results for MPM. Table 1 shows the minimum PageRank score among target ver-
tices in the graph obtained by inserting missing edges selected by each algorithm.
We set the solution size k as 20, 40, and 80. In the 2-hop setting, Contrib gives
more effective missing edges compared to Contrib-simple and Naive. Inserting
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Table 1. Experimental results for MPM.

Settings Minimum PageRank score [×106] Run time [s]

Dataset k Contrib

(Algorithm3)

Contrib-simple Naive Degree Contrib

(Algorithm3)

Contrib-simple Naive Degree

Google 0 12.97 12.97 12.97 12.97 – – – –

(Random) 20 13.94 13.57 13.71 12.97 3,803.6 120.2 0.1 0.1

40 18.09 17.64 18.03 14.12 7,820.4 236.7 0.1 0.1

80 36.43 27.74 31.54 16.00 13,901.9 501.2 0.2 0.2

Google 0 13.12 13.12 13.12 13.12 – – – –

(2-hop) 20 267.99 78.70 152.70 18.86 3,219.6 93.3 0.1 0.1

40 439.04 205.75 370.33 77.66 5,861.4 184.5 0.1 0.1

80 1,379.17 235.57 1,279.54 129.61 11,840.2 354.7 0.2 0.2

Stanford 0 1.03 1.03 1.03 1.03 – – – –

(Random) 20 1.09 1.05 1.06 1.03 7,006.0 228.4 1.1 0.9

40 1.50 1.43 1.47 1.06 12,600.5 410.9 1.4 1.3

80 4.01 3.81 4.01 1.06 22,291.1 729.0 2.3 2.3

Stanford 0 1.47 1.47 1.47 1.47 – – – –

(2-hop) 20 187.93 114.28 27.58 6.09 5,833.2 213.3 1.0 0.9

40 347.97 163.44 237.69 6.22 10,388.6 379.4 1.4 1.3

80 556.98 200.51 386.48 6.38 18,756.4 729.2 2.2 2.2

BerkStan 0 0.46 0.46 0.46 0.46 – – – –

(Random) 20 0.46 0.47 0.47 0.46 4,723.8 155.8 2.0 1.9

40 0.68 0.68 0.63 0.47 8,684.8 284.2 2.8 2.7

80 1.56 1.57 1.49 0.47 16,243.7 512.2 4.6 4.4

BerkStan 0 0.56 0.56 0.56 0.56 – – – –

(2-hop) 20 41.88 25.62 24.70 1.24 4,418.9 125.9 1.9 2.0

40 69.54 39.16 42.97 1.24 7,865.5 232.6 2.8 2.9

80 178.94 58.51 170.14 6.61 14,298.6 431.4 4.6 4.4

only dozens of edges significantly improves the PageRank scores of target ver-
tices, e.g., the minimum PageRank score for Stanford improves from 0.0000015
to 0.00018. In the Random setting, however, edge insertions hardly increase
the PageRank scores of target vertices, and there are no significant differences
between Contrib and Naive. Note that Degree does not improve the minimum
PageRank scores at all. In fact, it mostly selected missing edges with the same
head.

Let us investigate the change of PageRank scores of target vertices caused
by edge insertion. Figure 2 illustrates a subgraph of Google induced by T (2-
hop) in which each target vertex is colored according to its PageRank score
(red for higher values, blue for lower values). We can observe that vertices in
T are connected to each other, as expected from the construction of T . In the
original graph, target vertices take PageRank scores from 0.000013 to 0.072. In
the resulting graph obtained by adding 80 missing edges chosen by Contrib, most
of the target vertices are colored in green (PageRank score at least 0.0014). In
other words, this edge addition improves the minimum PageRank score by 100
times. We also note that red vertices in the middle of the figures actually have
the highest and second-highest PageRank scores among all the vertices.
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Table 2. Experimental results for MinPTC.

Settings # inserted edges Run time [s]

Dataset l Contrib
(Algorithm 2)

Naive Contrib
(Algorithm 2)

Naive

Google 0.0001 90 93 494.4 0.2

(Random) 0.0002 95 97 510.9 0.3

0.0004 120 98 652.9 0.3

0.0008 181 98 988.8 0.3

Google 0.0001 7 9 31.7 0.1

(2-hop) 0.0002 10 30 46.2 0.1

0.0004 37 43 165.9 0.1

0.0008 54 56 238.1 0.2

Stanford 0.0001 101 100 840.4 2.6

(Random) 0.0002 103 100 861.5 2.5

0.0004 233 379 1,530.1 7.9

0.0008 780 1,027 4,576.9 20.0

Stanford 0.0001 11 32 100.3 1.1

(2-hop) 0.0002 21 38 168.6 1.3

0.0004 52 78 406.5 2.5

0.0008 148 233 1,019.1 5.0

BerkStan 0.0001 118 98 699.0 4.9

(Random) 0.0002 254 287 1,299.3 12.4

0.0004 574 675 2,698.3 26.7

0.0008 1,890 2,136 7,175.1 81.3

BerkStan 0.0001 60 69 324.7 3.7

(2-hop) 0.0002 93 136 467.6 6.3

0.0004 244 313 1,059.2 13.3

0.0008 795 1,083 2,900.1 42.6

Results for MinPTC. Table 2 shows the number of inserted edges with each
threshold value l for each algorithm. The threshold value l is set as l = 0.0001,
0.0002, 0.0004, and 0.0008. Note that we did not run Degree because it may not
produce a reasonable number of missing edges, as expected from the results for
MPM. When target vertices are selected by 2-hop, Contrib outperforms Naive
under almost every setting. Particularly, Contrib requires only 10 edges to ensure
that every PageRank score in T reaches 0.0004 for Google, whereas Naive requires
30 edges for the same. On the other hand, both Naive and Contrib demonstrate
poor performance when target vertices are selected by Random. Note that both
Naive and Contrib select at least 100 = |T | missing edges for this setting. This is
because randomly selected target vertices are very far from each other, and thus,
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Table 3. Experimental results for MaxPTC.

Settings # vertices with PageRank score ≥ l Run time [s]

Dataset k Contrib

(Algorithm4)

Contrib-

simple

Naive Degree Contrib

(Algorithm4)

Contrib-

simple

Naive Degree

Google 0 4 4 4 4 – – – –

(Random) 20 30 29 24 24 695.7 109.3 0.1 0.1

l = 0.0001 40 50 49 44 40 1,394.8 229.3 0.1 0.1

80 90 90 87 51 2,441.0 454.2 0.2 0.2

Google 0 79 79 79 79 – – – –

(2-hop) 20 100 100 100 97 125.2 94.0 0.1 0.1

l = 0.0001 40 100 100 100 99 125.7 186.6 0.1 0.1

80 100 100 100 100 109.1 364.2 0.2 0.2

Stanford 0 0 0 0 0 – – – –

(Random) 20 21 21 20 20 1,311.0 194.7 1.0 1.0

l = 0.0001 40 41 41 40 39 2,569.3 397.2 1.4 1.3

80 81 78 80 55 3,791.2 748.9 2.3 2.2

Stanford 0 11 11 11 11 – – – –

(2-hop) 20 100 100 56 33 516.0 183.5 1.0 0.9

l = 0.0001 40 100 100 100 41 511.0 344.0 1.4 1.3

80 100 100 100 51 458.5 638.4 2.2 2.2

BerkStan 0 2 2 2 2 – – – –

(Random) 20 22 22 22 22 953.3 141.9 1.9 1.8

l = 0.0001 40 41 42 42 21 1,796.3 277.8 2.9 3.1

80 80 82 82 39 3,386.0 520.3 4.5 4.3

BerkStan 0 15 15 15 15 – – – –

(2-hop) 20 52 51 41 33 990.5 165.8 2.0 1.9

l = 0.0001 40 73 72 62 42 1,554.8 241.3 2.9 2.8

80 100 100 100 56 1,996.8 428.8 4.5 4.4

both Naive and Contrib have no other choice but to insert an edge connecting
a vertex with a high PageRank score to every target vertex.

Results for MaxPTC. Table 3 shows the number of vertices with PageRank score
at least l = 0.0001 for each algorithm. Contrib produces quite effective missing
edges in some settings, e.g., adding 40 missing edges to BerkStan increases the
number of target vertices (selected by 2-hop) with a specified condition from 15
to 73, whereas Naive increases it to 62. Contrib-simple performs slightly worse
than Contrib. For Random, the number of target vertices with PageRank score
at least l = 0.0001 is roughly equal to the number of inserted edges. This also
comes from the fact that vertices chosen by Random are far from each other.

Scalability. We then study the scalability of each algorithm. Tables 1, 2 and 3
report the run time of each algorithm for MPM, MinPTC, and MaxPTC. Degree
is naturally the fastest in most cases. Naive is highly scalable for all settings; it
only requires at most 100 s. Contrib-simple requires at most 1,000 s. Although
Contrib is the slowest among all algorithms, it even scales to BerkStan with
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millions of edges. Note that Contrib requires a longer time for MPM compared
to MinPTC because it solves MinPTC 30 times for the bisection search.

Fig. 2. Subgraph of Google induced by T (2-hop). Each vertex is colored according to
its PageRank score. (Color figure online)

7 Conclusion

In this paper, we have considered the three graph optimization problems of
boosting PageRank scores. We have proven the NP-hardness and then proposed
heuristic-based algorithms inspired by the greedy strategy. Through experiments
on real-world graph data, we have verified the effectiveness of the proposed
algorithms compared to baseline algorithms.
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Abstract. Input to the Most Navigable Path (MNP) problem consists
of the following: (a) a road network represented as a directed graph,
where each edge is associated with numeric attributes of cost and “nav-
igability score” values; (b) a source and a destination and; (c) a budget
value which denotes the maximum permissible cost of the solution. Given
the input, MNP aims to determine a path between the source and the
destination which maximizes the navigability score while constraining its
cost to be within the given budget value. This problem finds its appli-
cations in navigation systems for developing nations where streets, quite
often, do not display their names. MNP problem would help in such cases
by providing routes which are more convenient for a driver to identify and
follow. Our problem is modeled as the arc orienteering problem which is
known to be NP-hard. The current state-of-the-art for this problem may
generate paths having loops, and its adaptation for MNP, that yields
simple paths, was found to be inefficient. In this paper, we propose two
novel algorithms for the MNP problem. Our experimental results indi-
cate that the proposed solutions yield comparable or better solutions
while being orders of magnitude faster than the current state-of-the-art
for large real road networks. We also propose an indexing structure for
the MNP problem which significantly reduces the running time of our
algorithms.

1 Introduction

The problem of finding the most navigable path takes the following as input: (a)
a directed graph representation of a road network where each edge is associated
with a cost (distance or travel-time) value and a navigability score value; (b) a
source and a destination and; (c) a budget value. Given the input, the objec-
tive is to determine a path between the source and the destination which has
the following two characteristics: (i) the sum of navigability score values of its
constituent edges is maximized and, (ii) the total length (in terms of distance
or travel-time) of the path is within the given budget. In other words, MNP is
a constrained maximization problem.

This problem finds its applications in navigation systems for developing
nations. Quite often, streets names in developing countries are either not
c© Springer Nature Switzerland AG 2018
S. Hartmann et al. (Eds.): DEXA 2018, LNCS 11029, pp. 440–456, 2018.
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displayed prominently or not displayed at all. In such cases, it becomes diffi-
cult to follow the conventional navigation instructions such as “Continue on Lal
Sai Mandir Marg towards Major P Srikumar Marg”. In such nations, it is desir-
able to travel along a path which is “easily identifiable” by a driver. For instance,
consider the example shown in Fig. 1. Here, Path 1 is the shortest path between
KFC in Cannaught Place (point A) and the Rajiv Chowk metro station (point
B). The path has a travel time of 10 min. However, this route is potentially con-
fusing due to lack of prominently visible sites and easily identifiable turns. To
navigate on this route, one would have to heavily rely on a very accurate GPS
system (potentially expensive) operating over a good quality map with no miss-
ing roads, both of which may be non-trivial for a common traveler in developing
countries.

Fig. 1. Problem illustration

In contrast, consider Path 2 from A
to B in Fig. 1 with a travel time of
12 min. This route involves going past
some popular sites like the hotel Sar-
vana Bhavan and the hotel Radisson Blu
Marina, and then taking the first right
turn that follows. Given the challenges
associated with transportation and nav-
igational infrastructure in a developing
nation setting, one may choose Path 2
even if it is 20% longer than the short-
est path. This is because it is easier
to describe, memorize, recall and fol-
low. This option would be even more
amenable if the driver is not well versed
with the area. Furthermore, travelers
who are not comfortable using navigation
systems while driving, senior citizens for
instance, generally look up the route sug-
gestions before starting their journey. Such travelers tend to memorize the route
based on the sites en-route to their destination. These travelers would thus be
benefited by our concept of most navigable paths which are potentially easier to
memorize.

The concept of most navigable paths would also help drivers of two-wheelers
(predominant in developing countries) by suggesting routes which are easier to
follow, as it can be difficult to follow step-by-step instructions on a screen while
driving two-wheelers. To the best of our knowledge, both Google maps (www.
maps.google.com) and Bing maps (www.bing.com/maps) do not have the option
of most navigable paths.

Computational Challenges. Finding the “Most Navigable Path (MNP)” is
computationally challenging. The MNP problem is formalized as the Arc Ori-
enteering Problem (AOP) (a maximization problem under constraints) which is
known to be an NP-hard combinatorial optimization problem [2,7]. The AOP
problem can easily be reduced to the Orienteering Problem (OP) [15] which

www.maps.google.com
www.maps.google.com
www.bing.com/maps
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is also NP-hard [7]. Another factor which adds to the complexity of the MNP
problem is the scale of real road networks, which typically have hundreds of
thousands of road segments and road intersections.

Challenges in Adapting a Minimization Problem. It is important to note
that a maximization problem such as the MNP problem cannot be trivially
reduced into a minimization problem by considering the inverse of the navi-
gability scores. Even without the budget constraint, the MNP problem involves
maximizing the sum of navigability scores of the output path. Mathematically,
it is equivalent to maximizing the sum of n parameters, s1, s2, . . . , sn (si denotes
the score of edge ei in a path); which is not equivalent to minimizing the sum
of their inverses, 1

s1
, 1
s2

, . . . , 1
sn

. Thus, it is non-trivial to generalize algorithms
developed for minimization problems (e.g., [6,8,9]) for the MNP problem. For
the same reason, algorithms developed for k shortest loop-less paths problem
[12] and route skyline queries [10] can also not be adapted for the MNP problem
even when they provide an opportunity to incorporate the budget constraint by
post-processing the returned k paths based on their total cost. We compare the
performance of our algorithms with that of an algorithm that optimally solves the
formulation: Minimize

∑
ei∈path

1
si

, subject to
∑

ei∈path ci ≤ budget (ci denotes
the cost of edge ei in a path). Towards this end, we adapt the Advanced Route
Skyline Computation algorithm [10] to optimally solve this formulation. Our
experiments show that the proposed algorithms outperform this adaptation in
terms of solution quality. Due to space constraint, the results of this experiment
are not shown in this paper.

Limitations of Related Work. The existing algorithms for the AOP problem
(or the OP as AOP can be reduced to OP) can be divided into three categories:
exact, heuristic and approximation algorithms. An exact algorithm for the AOP
based on the branch-and-cut technique has been proposed in [2]. However, the
algorithm would not be able to scale up to real-world road networks as it takes
up to 1 h to find a solution for a graph with just 2000 vertices.

There have been several works which proposed heuristic algorithms for the
AOP [14,16] and OP [4,13] problems. A core requirement of these algorithms
is pre-computation of all-pairs shortest paths of the input graph. This pre-
computation step is necessary for ensuring their scalability (as also pointed out
by Lu and Shahabi [11]). However, it is important to note that in any realistic
scenario, urban networks keep updating frequently, e.g., roads may be added,
closed or heavily congested (due to repair or accidents), etc. Thus, any real-life
system for the MNP problem working on large-scale urban road maps cannot use
these techniques which require frequent computation of all-pairs shortest paths.

To the best of our knowledge, the only heuristic algorithm that does not
pre-compute shortest paths is [11]. However, it generates paths with loops. We
adapted their solution for the MNP problem. Our experimental results indicated
a superior performance of the algorithms proposed by us. Our understanding is
that their algorithm is most suitable when there are very few edges with a non-
zero navigability score value.

Gavalas et al. [7] proposes an approximation algorithm for the OP problem
where edges are allowed to be traversed multiple times, a relaxation not suitable
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for our problem as it would be pointless to drive unnecessarily in a city to reach
a destination. Similarly, approximation results were proposed in [3,5]. But they
would also need to pre-compute all-pairs shortest paths for efficiency, which as
discussed previously is not suitable for the MNP problem in typical real-world
scenarios.

Our Contributions. This paper makes the following contributions:

1. Proposes the novel problem of finding the most navigable path. This problem
has a potential to add value to the current navigation systems so that they
can be easily used in developing nations.

2. Proposes a novel indexing structure (navigability index ) for road networks
which can estimate (in constant time) the potential of any given segment (a
sequence of edges in a path) for navigability score improvement.

3. Presents two algorithms for the MNP problem which use a novel Weighted Bi-
directional Search (WBS) procedure and the previously described navigability
index.

4. Extensively evaluates the proposed algorithms on three real-road network
datasets, and compares their performance against that of the current state-
of-the-art algorithm, ILS(CEI) [11].
Our experiments demonstrate that the proposed algorithms yield comparable
or better solutions while being orders of magnitude faster than the state-of-
the-art.

Outline. The rest of the paper is organized as follows. In Sect. 2, we cover
the basic concepts and formally present the problem definition. In Sect. 3.1, we
describe the WBS algorithm. The proposed algorithms for MNP are presented
in Sects. 3.2 and 3.3. In Sect. 4, we discuss the experimental evaluation. Finally,
we discuss our conclusions and future work in Sect. 5.

2 Basic Concepts and Problem Definition

Definition 1. Road network: A road network is represented as a directed
graph G = (V,E), where the vertex set V represents the road intersections and
the edge set E represents the road segments. Each edge in E is associated with a
cost value which represents the distance or travel-time of the corresponding road
segment. Each edge is also associated with a score value (≥0) which represents
the navigability score of the corresponding road segment. We refer to an edge
with a score value >0 as a navigable edge.

Definition 2. Path: A path is a sequence of connected edges <e1 e2 ... en>. For
this work, we consider only simple paths (paths without cycles).

Definition 3. Segment of a path: A sequence of connected edges,
<ei ei+1 ... ej>, denoted as Sij, is a segment of the path P = <e1 e2 ... en> if
1 ≤ i ≤ j ≤ n. Sij .score denotes the sum of scores of all the edges in Sij.
Likewise, Sij .cost denotes the sum of costs of all the edges in Sij. Sij .start and
Sij .end denote the first and last vertices of Sij.
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2.1 Problem Definition

Input consists of:

(1) A road network, G = (V,E), where each edge e ∈ E is associated with a
non-negative cost value and a navigability score value.

(2) A source s ∈ V and a destination d ∈ V .
(3) A positive value overhead which corresponds to the maximum permis-

sible cost allowed over the cost of the minimum cost path from s to
d. In this paper, we refer to the term (overhead + cost of theminimum
cost path from s to d) as the budget.

Output: A path from s to d
Objective function: Maximize path.score
Constraint: path.cost ≤ budget.

2.2 Practical Considerations While Using MNP

While using MNP in real life one would have to assign navigability scores to
the road segments. Though the score values may be subjective, a rule of thumb
could be followed. The values could be assigned over a range (e.g., 1–15) where
higher values (e.g., 10–15) could be given to edges with unique/popular sites
like a well-known temple or a prominent building, and lower values (e.g., 1–5)
to edges with sites like petrol pumps and ATMs.

3 Proposed Approach

Our proposed algorithms for the MNP problem primarily consists of the following
two steps. Firstly, we compute a shortest path from s to d which optimizes only
on the cost attribute of the path. This path is referred to as the initial seed path.
In the second step, we iteratively modify portions of this seed path with the goal
of improving the navigability score of the solution. While this is being done, we
ensure that the total cost of the resulting path is within the budget value. A key
procedure used for improving the navigability of the seed path is our proposed
weighted bi-directional search. We first describe the weighted bi-directional search
procedure in Sect. 3.1. Following this, in Sects. 3.2 and 3.3, we propose two novel
algorithms for the MNP problem which use this search procedure on “segments”
of the initial seed path to improve its navigability score.

3.1 Weighted Bi-directional Search (WBS)

Input to the WBS algorithm consists of the input road network, a specific seg-
ment (Sij) of the initial seed path, and a budget value (B′). The goal of the
algorithm is to determine a replacement (S′

ij) for the specified segment such
that the following criteria are satisfied:

1. The new segment (S′
ij) has a higher score value than the input segment.
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2. The resultant path from the source to the destination, obtained after replacing
Sij with S′

ij , is simple (i.e., no loops).
3. The total cost of the new segment S′

ij is within B′.

The WBS algorithm employs a bi-directional search to determine the replace-
ment S′

ij . The forward search starts from the first vertex of the input segment
Sij , whereas the backward search starts from the last vertex of Sij . In each iter-
ation of the WBS algorithm, the forward search determines the best-successor of
the current tail node (denoted as Ftail) of the partial segment it is developing.

In contrast to the forward search, the backward search determines the best-
predecessor of the current tail node (denoted as Btail) of the partial segment
it is developing. This is done by processing the incoming edges at Btail. At the
beginning of the algorithm, Ftail is initialized to the Sij .start, whereas Btail

is initialized to Sij .end. We now provide details on computation of the best-
successor and best-predecessor.

Determining the Best-Successor of Ftail. Given the current tail node of the
forward search frontier Ftail, and the target node (current Btail), the algorithm
computes the Forward Navigability Potential (Γ f in Eq. 1) of all the outgoing
neighbors u of Ftail. Following this, the neighbor with the highest Γ f is desig-
nated as the best-successor of Ftail. Algorithm 1 details this process.

Γ f (u, Ftail, Btail) =
1 + score(Ftail, u)

cost(Ftail, u) + DE(u,Btail)
(1)

In Eq. 1, DE denotes the Euclidean distance1 between the outgoing neighbor
u (of Ftail) and the current tail node of backward search Btail. As per Eq. 1,
neighbors of Ftail which are closer to Btail (i.e., lower Euclidean distance), and
involve edges with high navigability score values and low cost values, would get
a higher value of Γ f . Algorithm 1 chooses the neighbor which has the highest
value of Γ f .

Algorithm 1. Best-Successor of Ftail (G,Ftail, Btail)
Input: A road network G, Ftail and Btail

Output: Best-Successor of Ftail and its gamma value (Γ f
best)

1: for all OutNeighbors u of Ftail do � only the unvisited Outneighbors
2: Compute Γ f (u, Ftail, Btail)
3: end for
4: Best-Successor of Ftail ← OutNeighbor u of Ftail with highest Γ f

Determining the Best-Predecessor of Btail. Analogous to the computation
of Γ f , the Backward Navigability Potential (Γ b) can be computed using Eq. 2.

1 If the edge costs represent travel-times, then a lower bound on the travel time may
be used. This can be computed using the upper speed limit of a road segment.
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Here, we consider the incoming edges of Btail. The neighbor with the highest Γ b

is designated as the best-predecessor of Btail.

Γ b(v,Btail, Ftail) =
1 + score(v,Btail)

cost(v,Btail) + DE(v, Ftail)
(2)

It is important to note that both the forward and the backward searches
have “moving targets.” In other words, the value of Btail in Eq. 1 (and Ftail in
Eq. 2) would change as the algorithm proceeds. To this end, the WBS algorithm
employs a design decision to help in terminating quickly (while not sacrificing
on the navigability score).

Algorithm 2. Weighted Bi-directional Search (G,P, Sij , B
′)

Input: A road network G, a path P , a segment Sij of P , a budget value B
′

= B −
P.cost + Sij .cost, Output: A new segment S

′
ij to replace Sij

1: Ftail ← Sij .start, Btail ← Sij .end
2: Mark Ftail as colored by forward search and Btail as colored by backward search
3: while Forward and backward searches do not color a common node do
4: if Ftail and Btail are connected via a 1-hop or 2-hop path then
5: Pcand ← Sij .start � Ftail � Btail � Sij .end

6: if Pcand.cost ≤ B
′
then

7: Save Pcand in the set (Ω) of candidate segments
8: end if
9: end if

10: Compute Best-Successor of Ftail & its Gamma, Γ f
best (using Algorithm 1)

11: Compute Best-Predecessor of Btail & its Gamma, Γ b
best

12: if Γ f
best > Γ b

best then
13: Ftail ← Best-Successor of Ftail � Move the forward search
14: Compute Best-Predecessor of Btail

15: Btail ← Best-Predecessor of Btail � Move the backward search
16: Mark Ftail and Btail as colored by their respective searches
17: else
18: Btail ← Best-Predecessor of Btail � Move the backward search
19: Compute Best-Successor of Ftail (using Algorithm 1)
20: Ftail ← Best-Successor of Ftail � Move the forward search
21: Mark Ftail and Btail as colored by their respective searches
22: end if
23: if (Sij .start � Ftail).cost + (Btail � Sij .end).cost > B

′
then

24: Break
25: end if
26: end while
27: if Forward and backward searches have colored a common node then
28: Pcand ← Reconstructed path between Sij .start and Sij .end by following the

Best-Successors/Best-Predecessors
29: Save Pcand in Ω
30: end if
31: Return the segment in Ω with highest navigability score
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The algorithm first moves the frontier (forward or backward) whose next
node to be added2 comes in with a higher value of Γ . The rationale behind this
design decision is the following: a node with higher Γ can imply one or more
of the following things: (1) closer to the current target; (2) higher navigability;
(3) lower edge cost. Needless to say that all these circumstances are suitable
for the needs of the WBS algorithm. After advancing the selected search, WBS
re-computes the next node to be added to the other search frontier before it
is advanced. For instance, if in the first step the node added by the forward
search had higher Γ , then WBS would first advance the forward search frontier
by updating its Ftail to its best-successor. Following this, best-predecessor of the
backward search is re-computed based on the new value of Ftail. After that, the
backward search is also advanced by updating its Btail to its best-predecessor.
Note that in any particular iteration of WBS, both the forward and the backward
searches are advanced.

Putting Together Forward and Backward Searches. Algorithm 2 puts
together our proposed forward and backward searches along with a termination
condition and a mechanism to collect candidate solutions during the execution.
We now describe both these aspects of the WBS algorithm.

As one can imagine, a natural termination condition for the WBS algo-
rithm would be meeting of the forward and the backward searches, i.e., both
the searches color the same vertex. Algorithm 2 uses this as the primary termi-
nation condition as indicated in the while loop on line 3 of the pseudo-code. In
addition to this, the algorithm also terminates, if at any stage, the total cost of
the partial paths constructed so far by the forward and the backward searches
happens to be greater than the available budget B′. This termination clause is
indicated in lines 23–25 of Algorithm 2.

During the course of the algorithm, it collects several candidate solutions in a
set called Ω (lines 4–9 and lines 27–29 in Algorithm2). In the end, WBS returns
the solution having the highest navigability score. The primary reason to collect
these candidate solutions being that the forward and the backward searches may
not always meet during the course of the algorithm. WBS collects the candidate
solutions in the following two ways:

1. At any time during the exploration, if the current Ftail and Btail are con-
nected through either a direct edge or two edges then, the segment formed
by concatenating this direct edge (or two edges) with the current partial
segments formed by forward and backward searches is saved as a candidate
solution in the set Ω. This is done only if the total cost of this candidate
solution is less than the budget B′. This case is illustrated in lines 4–9 of the
algorithm.

2. Trivially, if the two search frontiers meet, the partial segments formed by the
forward and the backward searches are concatenated to create a candidate
solution between the first and last nodes of the original segment Sij .

2 Best-successor in case of forward search and best-predecessor in case of backward
search.
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Time Complexity Analysis. The number of vertices visited by WBS is O(|V |).
No vertex is visited twice, and each vertex v that gets colored leads to com-
putation of degree(v) number of navigability potential values. Thus, the time
complexity of WBS is O(|E|).

3.2 MS(WBS): Multiple Segment Replacement Algorithm with
WBS

As described earlier, the core idea of both our algorithms is to compute an initial
seed path (P ) first, and then replace segments of this seed path to improve its
navigability score. In this section, we describe an algorithm which efficiently
chooses a set of segments of P , which when replaced by the output of WBS,
lead to a high increase in the navigability score. Note that we may not be able
to replace all the segments due to the budget constraint.

For the sake of brevity, we describe only the most crucial part of the algo-
rithm, which is to determine the set of segments of the initial seed path for
replacement. One can trivially put this along with the previously described WBS
algorithm and the construction of the initial seed path to create a full pseudo-
code.

In the MS(WBS) algorithm, we first execute an instance of WBS for each
of the possible segments of the initial seed path. While calling an instance of
WBS for a segment Sxy in the initial seed path, we pass a budget value B′ = B
- cost of seed path (P.cost) + Sxy.cost. Here, B is the budget value given in the
problem instance (B = overhead + P.cost).

Following these calls to the WBS algorithm, we would have a pair
<score gain, cost gain> for each of the possible segments Sxy in the initial
seed path. Here, score gain of a segment Sxy is defined as the difference in
the navigability score values of Sxy and its replacement S′

xy. Sxy.sgain =
S′
xy.score−Sxy.score. Cost gain is also defined in an analogous way: S

′
xy.cgain =

S′
xy.cost − Sxy.cost

Selecting a set of segments to replace from a given seed path is non-trivial.
This is because of the following three reasons: (a) segments chosen for replace-
ment may have common edges, (b) the budget constraint and, (c) replacements
of the chosen segments may overlap.

As an instance of challenges (a) and (b), refer to Table 1. The table illustrates
a sample scenario on replacing segments of an initial seed path <e1 e2 e3 e4>.
The ten possible segments of this path are shown in Table 1 along with their
sample sgain and cgain values. In the table, an entry (0, 0) implies that no
solution was found by WBS for that segment. In this example, we can either
replace the segment <e2 e3> or the segment <e1 e2 e3>. Replacing both would
not be possible as e2 is common to both segments.

In addition, if the allowed overhead was 15 then, the combination <e2 e3>
and <e1> can be collectively replaced. Whereas, segments <e1 e2> and <e3>
cannot be collectively replaced, as their total cost gain is 20. We now formalize
this idea using the concept of a feasible and disjoint set of segments corresponding
to a path.



Finding the Most Navigable Path in Road Networks: A Summary of Results 449

Table 1. Set of all segments of path <e1 e2 e3 e4>

Segment (sgain, cgain) Segment (sgain, cgain)

<e1> (7, 5) <e2 e3> (16, 10)

<e2> (7, 5) <e3 e4> (15, 10)

<e3> (5, 8) <e1 e2 e3> (15, 18)

<e4> (0, 0) <e2 e3 e4> (0, 0)

<e1 e2> (15, 12) <e1 e2 e3 e4> (10, 15)

Feasible and Disjoint Set of Segments (FDSS). FDSS of a given path
(initial seed path P ) is a set of segments such that no two segments in the set
share an edge, and P.cost +

∑
∀S∈FDSS S.cgain ≤ B. In our previous example,

<e2 e3> and <e1> forms an FDSS. As expected, the central goal would be to
determine an FDSS which results in the highest increase in navigability score.

Computational Structure of the FDSS Problem. The FDSS problem can
be seen as an advanced version of the 0/1 knapsack problem where certain items
are not allowed together (i.e., segments having common edges). For solving
FDSS, one can first enumerate all sets of disjoint segments and then, run an
instance of 0/1 knapsack on each set of disjoint segments. Basically, each set
is generated by cutting a path at k unique locations (0 ≤ k ≤ #edges in the
path - 1). However, this technique would have two computational challenges:
(i) knapsack problem is known to be NP-hard, (ii) a path with n edges would
have 2n−1 unique sets of disjoint segments. Given these reasons, this paper pro-
poses to drop the feasibility constraint of the FDSS definition. This gives us the
concept of a Disjoint Set of Segments (DSS).

Disjoint Set of Segments (DSS). DSS of a given path is a set of segments
such that no two segments in the set share an edge. Our algorithm attempts
to compute a DSS which results in the highest increase in navigability score
(optimal DSS) without considering the budget constraint.

Dynamic Programming (DP) Based Solution for Computing Opti-
mal DSS. We observe that the DSS problem exhibits the optimal substructure
property. We exploit this property to design a DP based solution to compute the
optimal DSS which takes θ(l3) time and consumes θ(l2) space (for a seed path
with l edges). The central idea in this DP formulation is to consider the DSS
problem analogous to that of the rod cutting problem. Our initial seed path P
becomes the “rod” being cut. We aim to “break up this rod” (i.e., initial seed
path) into pieces (i.e., disjoint segments) such that the total score gain obtained
by replacing these disjoint segments is maximum. Understandably, the rod is
assumed to be made up of edges, and we are allowed to place cuts at the head
or tail node of edges.

fij = max
i≤k≤j

(Sik.sgain + f(k+1)j) (3)
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Equation 3 represents the underlying recurrence equation for our DP based solu-
tion. Here, fij denotes the optimal solution for the sub-problem having edges
numbered i through j. The optimal solution for the initial seed path P con-
taining n edges (numbered 1 through n) is given by f1n. Variable k denotes the
edge after which the first cut in the optimal solution is assumed to be placed.
For each possible first cut (i.e. for each value of k), we check the sum of sgain
values of Sik (solution found by WBS for segment towards the left of the cut)
and f(k+1)j . f(k+1)j is the optimal break-up computed by this algorithm for the
sub-problem having edges numbered (k + 1) through j. The option for having
no cut at all is considered when k = j. The base conditions for this recurrence
equation are: fii = Sii.sgain (subproblem of size 1) and f(i+1)i = 0. Algorithm 3
presents a bottom up procedure for computing this recurrence equation.

Algorithmic Details of MS(WBS). This algorithm has three primary steps.
In the first step, sgain values are computed for all possible segments of the
initial seed path using the WBS algorithm. After this, in the second step, we
compute the optimal DSS of the initial seed path using Algorithm3. Next, WBS
is invoked on all pieces in the optimal DSS in decreasing order of their sgain
values, and the path is updated after each invocation of WBS. The reason for
invoking WBS again is to ensure that the path remains free from loops as it is
updated. The segments are extracted in decreasing order of their sgain values
to maximize the improvement in the score as replacing all segments within the
budget may not be feasible.

Algorithm 3. DP algorithm for computing optimal DSS
Input: sgain values for all segments of seed path, Output: Optimal DSS

1: for spsize = 2 to n do � Subproblem size
2: for i = 2 to n − spsize + 1 do � First edge of segment
3: j ← i + spsize − 1 � Last edge of segment
4: fij ← 0 � Initializing optimal solution for Sij

5: for k = i to n do � Edge after which first cut is placed
6: if Sik.sgain + f(k+1)j > fij then
7: fij ← Sik.sgain + f(k+1)j

8: end if
9: end for

10: end for
11: end for

Time Complexity Analysis. For the time complexity analysis of MS(WBS),
we do not consider the complexity of initial seed path computation. Given that
we are using a shortest path from s to d as our seed path, this cost is upper
bounded by the cost of Dijkstra’s algorithm O(|E| + |V | log |V |).

The first step of MS(WBS) estimates the sgain values for all segments of the
seed path using WBS. For a path with l edges, this takes O(l2|E|) time since
the total number of segments in the path is θ(l2). A DSS is then selected in the
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second step using our DP solution, in θ(l3) time. Step three involves updating the
path by calling WBS on all segments in the selected DSS. Since the maximum
number of segments in a DSS can be l, this step requires O(l|E|) time. This gives
a time complexity of O(l2|E|) for MS(WBS).

3.3 VAMS(WBS): Vicinity Aware Multiple Segment Replacement
Algorithm with WBS

Recall that MS(WBS) computes the estimates of score gain values for all the
possible segments of the initial seed path. In other words, given an initial seed
path with l edges, MS(WBS) calls WBS algorithm θ(l2) times to get the score
gain of each of the possible segments. Following which, it determines the optimal
set of segments (DSS) for replacement. Invoking θ(l2) instances of WBS may not
be computationally scalable. To this end, this section proposes a novel metric
called vicinity potential (VP) of a segment. The VP values serve as a proxy to
the score gain values of the θ(l2) segments in the initial seed path. The algorithm
(VAMS(WBS)) proposed in this section uses VP values instead of the score gain
values. We now provide details on computing the VP value of a segment.

Given a segment Sij and a budget value B′, the vicinity of Sij is defined
as the area bounded by the ellipse with focal points as Sij .start and Sij .end.
The length of its major axis is B′. The properties of an ellipse allow us to claim
the following: any path between Sij .start and Sij .end of length ≤ B′ would not
include any edge lying completely outside or intersecting this ellipse.

Vicinity Potential (VP) of a Segment. The VP value of a segment Sij is
defined as the average of navigability scores of all the navigable edges lying in
the vicinity of Sij . Equation 4 presents this formally3. Recall that only the edges
having a navigability score value > 0 are referred to as navigable edges (denoted
in Eq. 4 as ′ne′).

V P (Sij , B
′) =

∑
ne∈ellipse(Sij .start,Sij .end,B′) ne.score

Count(ne ∈ ellipse(Sij .start, Sij .end,B′))
(4)

This definition is based on the intuition that more the number of highly navigable
edges in a segment’s vicinity, the higher would be the probability of finding a
segment to replace it.

Navigability Index for Computing the VP Values. To compute the VP
value of a segment, one needs to obtain the set of edges that are contained in its
vicinity. This computation can be made efficient using our navigability index.

Navigability Index is similar to a regular spatial grid. Each cell in this index
stores two numeric values: sum and count. The sum value of cell (x, y) is set
to the sum of scores of all navigable edges contained in the rectangle bounded
between cells (0, 0) and (x, y). The count value of cell (x, y) is set to the number

3 If edge costs represent travel-times, then the travel-time based budget can be con-
verted to a distance based budget using the upper speed limit of a road segment.



452 R. Kaur et al.

of navigable edges contained in this rectangle. Given these, the sum and count
values of any rectangle in the grid, bounded between cells (i, j) and (m,n), can
be computed using Eqs. 5 and 6 (refer Fig. 2). Here, sum(x, y) and count(x, y)
respectively denote the sum and count values of cell (x, y).

Sum = sum(m,n) − sum(i − 1, n) − sum(m, j − 1) + sum(i − 1, j − 1) (5)

Count = count(m,n)−count(i−1, n)−count(m, j −1)+count(i−1, j −1) (6)

i

j 

i - 1

n 

m
j - 1

Fig. 2. Navigability index
illustration

The proposed index structure computes the VP
value for any segment in O(1) index lookups, irrespec-
tive of the order of the grid index used. This is done
as follows: to compute the VP value of Sij , we take
the spatial coordinates of Sij .start and Sij .end as the
foci of the ellipse with the length of major axis= B′.
Next, we compute the grid aligned minimum bound-
ing rectangle (MBR) of this ellipse. The VP value of
Sij can then be computed by plugging the bottom-left
(i, j) and upper-right (m,n) coordinates of this MBR
in Eqs. 5 and 6. This makes the computation much faster. The idea of this index
structure was inspired by the work of Aly et al. [1].

Algorithmic Details of VAMS(WBS). VAMS(WBS) is similar to MS(WBS)
with exceptions in the first and the second steps. Given the initial seed path,
the first step of VAMS(WBS) involves computing the VP values of all segments
of the seed path. In the second step, the optimal DSS is computed based on the
VP values of segments. Next, the VAMS(WBS) invokes the WBS algorithm to
determine the actual replacements for the segments in the optimal DSS.

Time Complexity Analysis. The time complexity of the first step of
VAMS(WBS) is θ(l2), since VP values are computed for θ(l2) segments, and
each such computation takes O(1) time. The complexity of the remaining steps
is the same as the steps of MS(WBS). Thus, the time complexity of VAMS(WBS)
is O(l|E| + l3).

4 Experimental Evaluation

Performance of the proposed algorithms was evaluated through experiments on
three real-road networks of different sizes (refer Table 2). Datasets 1 and 3 were
obtained from OpenStreetMap (http://www.openstreetmap.org). Dataset 2 was
obtained from Digital Chart of the World Server (https://www.cs.utah.edu/
∼lifeifei/SpatialDataset.htm). All datasets constituted directed spatial graphs
with vertices as road intersections and edges as road segments. Cost of each
edge corresponded to the metric of distance. Navigability score values of edges
were generated synthetically. We assumed that 40% of the total edges in each
dataset have no prominently visible site, and assigned them a score value of zero.
The remaining 60% of the edges were assumed to be navigable. These edges were

http://www.openstreetmap.org
https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
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assigned a non-zero score value. The navigable edges were distributed uniformly
across space, and were assigned a random integral score value in the range 1–15.

Table 2. Description of datasets

Dataset Place Vertices Edges

1 Delhi 11,399 24,943

2 California 21,048 39,976

3 Beijing 55,545 95,285

Baseline Algorithm. Given the score gain values of all segments of the initial
seed path, a naive algorithm would be to replace the segment with the highest
sgain value. We call this algorithm the Single Segment replacement algorithm
with WBS (SS(WBS)), and use it as the baseline algorithm.

Experimental Setup. All algorithms were implemented in Java language on a
machine with a 2.6 GHz processor and a 32 GB RAM. The shortest paths were
computed using the A∗ algorithm. For the VAMS(WBS) algorithm, the order
of the grid index built for datasets 1, 2 and 3 was 300 × 300, 500 × 500 and
1000 × 1000 respectively. The idea was to create 1 km × 1 km grid cells in each
navigability index. To study the effects of change in the available overhead, we
set the overhead as a fraction of the length of the shortest path. An overhead of
x% implies that the total length allowed for the resultant path is: shortest path
length + x% of the shortest path length. The statistics reported for an overhead
of 0% represent the values for the shortest path. We report the average statistics
for 100 random query instances for all three datasets.

4.1 Comparative Analysis of Proposed Algorithms

Effect of Increase in Overhead on the Score of a Path. Figure 3 illustrates
the results of this experiment for queries where shortest path length was 40 kms.
MS(WBS) gives paths with higher navigability score values than SS(WBS) and
VAMS(WBS). This is because MS(WBS) actually computes the score gain values
of all possible segments (unlike VAMS(WBS)). In addition, it computes the
optimal DSS (unlike SS(WBS)) using these score gain values.

Effect of Increase in Overhead on the Running Time. Figure 4 shows the
results of this experiment for queries where shortest path length was 30 kms. The
running time for overhead of 0% marks the time taken to compute the shortest
path. In general, VAMS(WBS) takes less time because it avoids the expensive
repetitive invocation of WBS algorithm to compute the score gain value of each
segment in the path. As the overhead is increased from 10% to 40% the increase
in running time of all three algorithms is steady. The comparative performance
of the algorithms is in accordance with their time complexities.
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Fig. 3. Effect of increase in overhead on score of a path

Fig. 4. Effect of increase in overhead on running time

Effect of Increase in Path Length on the Running Time. Figure 5
shows the results of this experiment. The results are shown for an overhead
of 30%. We observe that VAMS(WBS) performs the best, followed by SS(WBS)
and MS(WBS), in that order. Also, the rate of increase in running time for
VAMS(WBS) is steady as compared to the other two algorithms.

Fig. 5. Effect of increase in path length on running time

4.2 Comparative Analysis of Proposed Algorithms and ILS(CEI)

Score Value and Running Time as a Function of Overhead. Figure 6(a)
shows the results of this experiment on Dataset 2 for queries with a shortest
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path length of 40 kms. For this experiment, we implemented an adaptation of
ILS(CEI) [11] that yields a simple path. Further, the original ILS(CEI) repeats
its iterations till the running time is less than some threshold value. We imple-
mented a version which executes a single iteration of ILS(CEI) and terminates,
similar to the working of our algorithms.

Fig. 6. Comparative analysis of proposed algorithms and ILS(CEI)

Our results show a superior performance of MS(WBS) over ILS(CEI) in terms
of both solution quality and running time. However, the difference between the
solution quality keeps decreasing with increase in overhead. For overhead values
higher than 15%, the solution quality of ILS(CEI) exceeds that of MS(WBS).
In contrast to this, the difference in running times of both algorithms becomes
increasingly significant as the overhead increases, making ILS(CEI) impractical
for higher values of overhead. The change in running time of MS(WBS) is steady.
Our results for other datasets followed a similar trend. Note that, in real-life, a
traveler would generally prefer lower values of overhead, implying that MS(WBS)
is a superior algorithm for the MNP problem.

Score Value per Unit Distance as a Function of Overhead. In this exper-
iment, we compared the score value per unit distance for the solutions given by
VAMS(WBS) and ILS(CEI). Figure 6(b) shows the results of this experiment on
Dataset 1 for queries with a shortest path length of 30 kms. Overhead values
were varied in this experiment. VAMS(WBS) has higher score value per unit
distance. The gap between the algorithms reduces as the overhead is increased.

5 Conclusions and Future Work

In this paper, we introduced the Most Navigable Path (MNP) problem and pro-
posed two novel algorithms for MNP: MS(WBS) and VAMS(WBS). We also
proposed an indexing structure for MNP which can be used to estimate (in
constant time) the gain in navigability score of a path on replacement of some
segment of the path. We demonstrated, through experimental analysis, the supe-
rior performance of our algorithms over the state-of-the-art heuristic algorithm
for AOP. In future, we plan to design the iterative versions of our algorithms
which shall improve the solution quality until some threshold on running time.
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Abstract. Input to the problem of Load Balanced Network Voronoi
Diagram (LBNVD) consists of the following: (a) a road network repre-
sented as a directed graph; (b) locations of service centers (e.g., schools in
a city) as vertices in the graph and; (c) locations of demand (e.g., school
children) also as vertices in the graph. In addition, each service center is
also associated with a notion of capacity and an overload penalty which
is “charged” if the service center gets overloaded. Given the input, the
goal of the LBNVD problem is to determine an assignment where each
of the demand vertices is allotted to a service center. The objective here
is to generate an assignment which minimizes the sum of the following
two terms: (i) total distance between demand vertices and their allot-
ted service centers and, (ii) total penalties incurred while overloading
the service centers. The problem of LBNVD finds its application in the
domain of urban planning. Research literature relevant to this problem
either assume infinite capacity or do not consider the concept of “over-
load penalty.” These assumptions are relaxed in our LBNVD problem.
We develop a novel algorithm for the LBNVD problem and provide a
theoretical upper bound on its worst-case performance (in terms of solu-
tion quality). We also present the time complexity of our algorithm and
compare against the related work experimentally using real datasets.

1 Introduction

The problem of Load Balanced Network Voronoi Diagram (LBNVD) takes the
following three inputs: (1) a road network represented as a directed graph G =
(V,E); (2) a set of nodes Vd (Vd ⊂ V ) designated as the demand nodes and; (3)
a set of nodes Vs (Vs ⊂ V ) designated as the service centers. With each service
center si ∈ Vs, we have information on its allowed capacity and overload penalty.

Given the input, LBNVD outputs an assignment R from the set of demand
vertices Vd to the set of the service centers Vs. In other words, for each demand
vertex vdi

∈ Vd, LBNVD determines a “suitable” service center sj ∈ Vs.
The objective of the LBNVD problem is to determine an assignment R which

minimizes the sum of the following two quantities: (i) sum of distances from the
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demand vertices to their allotted service centers and, (ii) total penalty incurred
across all the overloaded service centers.

LBNVD finds its applications in the area of urban planning. Examples include
the problem of defining the zones of operation for schools in a city (school catch-
ment area [1]). Here, the school going children (the demand) are to be divided
across a set of schools (service centers). For such a situation, it is important
to consider both the capacity of a school (e.g., in terms of #teachers) and a
notion of penalty as overloading the school too much (e.g., by not maintaining
appropriate student:faculty ratio) may decrease the quality of education.

Limitations of Related work: The current state of the art most relevant
to our work includes the work done in the area of network voronoi diagrams
without capacities [2,3], network voronoi diagrams under capacity constraints
[4–6], weighted voronoi diagrams [7] and optimal location queries (e.g., [8–10]).

Work done in the area of network voronoi diagrams without capacities [2,3]
assume that the service centers have infinite capacity, an assumption not suitable
in many real-world scenarios. On the other hand, work done in the area of
network voronoi diagrams with capacities [4–6] did not consider the notion of
“overload penalty.” They perform allotments (of demand nodes) in an iterative
fashion as long as there exists a service center with available capacity. In other
words, the allotments stop when all the service centers are full (in terms of their
capacity). The problem of LBNVD is different in the sense that it allows the
allotments to go beyond the capacities of the service centers. After a service
center is full, LBNVD uses the concept of the overload penalties for guiding the
further allotments and load sharing.

Weighted voronoi diagrams [7] are specialized voronoi diagrams. In these
diagrams, the cost of allotting a demand vertex x to a service center p is a linear
function of the following two terms: (i) distance between x and p and, (ii) a
real number denoting the weight of p as w(p). LBNVD problem is different from
weighted voronoi diagrams. Unlike the weighted voronoi diagrams, our “w(p)”
is a function of the number of allotments already made to the service center p.
And it would return a non-zero value only when the allotments cross beyond the
capacity. Whereas in [7], w(p) is assumed to play its role throughout.

Optimal location queries (e.g., [8,10]) focus on determining a suitable location
to start a new facility while optimizing a certain objective function (e.g., total
distance between clients and facilities). Whereas, in LBNVD, we already have
a set of facilities which are up and running, and we want to load balance the
demand around them.

Our Contributions: This paper makes the following 5 contributions:

(1) Define the problem of a Load Balanced Network Voronoi Diagram (LBNVD).
(2) Propose a novel Local Re-Adjustment based approach (LoRAL algorithm) for

the LBNVD problem. The proposed approach adopts a very prudent app-
roach towards optimization. Before allotting any demand vertex to a service
center, it checks if there exists a bounded number of local re-adjustments
which can be made to the current partially built network voronoi diagram
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to reduce its objective function value. These bounded number of local re-
adjustments are decided by exploring a bigger (but bounded) superset of
potential local re-adjustments. Such an approach helps in getting an overall
lower objective function values without increasing the execution time too
much.

(3) Provide a theoretical bound on the worst-case performance (in terms of final
objective function value) of the proposed LoRAL algorithm.

(4) Present an asymptotic time complexity analysis of the proposed approach.
(5) Experimental evaluation (on a real dataset of New Delhi road network)

which includes a comparison against the related work.

Outline: The rest of this paper is organized as follows: In Sect. 2, we provide
the basic concepts and the problem statement. Section 3 presents our proposed
approach. Sections 4 and 5 provide a detailed theoretical analysis and the time
complexity analysis of our proposed approach. Section 6 provides an experimen-
tal evaluation of our proposed approach and the related work on real datasets.

2 Basic Concepts and Problem Statement

Definition 1. A Road Network is represented as a weighted directed graph
G(V,E), where V is the set of vertices and E is the set of edges. Each vertex
represents a road intersection. A road segment between two intersections is rep-
resented as a directed edge. Each edge is associated with a cost w(u, v) which
represents the cost to reach vertex v from vertex u.

Definition 2. A Service Center is a vertex in the road network representing
a public service unit of a particular kind (e.g., schools, police stations and hospi-
tals). A set of service centers is represented as Vs = {s1, ..., s|Vs|}, where Vs ⊂ V
and |Vs| is the number of service centers.

Definition 3. A Demand Vertex is a vertex in the road network repre-
senting the location of a unit population which is interested in accessing the
previously defined service center. A set of demand vertices is represented as
Vd = {vd1 , ..., vd|Vd|}, where Vd ⊂ V and |Vd| is the number of demand vertices.
Whenever the context is clear we drop the subscript di from vdi

s’ to maintain
the clarity of text.

Definition 4. Capacity of a service center si (csi) is the prescribed number
of unit demand that a service center si can accommodate.

Definition 5. Penalty function of a service center si (qsi()) is a function
which returns the extra cost that must be paid for a new allotment to the service
center si which has already exhausted its capacity csi . This extra-cost is added
to the objective function as a “penalty” for undertaking this assignment. If the
allotment is done within the capacity of a service center, then no penalty needs
to be paid. Examples of penalty cost in real world include cost to add additional
infrastructure and/or faculty in a school.
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The penalty function of si (qsi()) takes a parameter j (1 ≤ j ≤ |Vd|) as
an input. Here, the value j implies that the service center si has already been
assigned j − 1 demand vertices, and now we are attempting the jth allotment.
qsi() returns 0 when j ≤ csi . Otherwise, it returns a positive value denoting the
extra-cost which must be added to the objective function (as a “penalty”) for
undertaking this assignment. qsi() returns only positive values and is monotoni-
cally increasing over j (1 ≤ j ≤ (|Vd|−csi)). The intuition behind monotonically
increasing penalty being: one may need to add increasingly more resources to a
school (or a hospital) as the overload keeps increasing.

2.1 Problem Statement

Input:

– A road network G(V,E), where each edge e ∈ E has a positive cost.
– A set of service centers Vs = {s1, ..., s|Vs|} where Vs ⊂ V .
– A set of demand vertices Vd = {vd1 , ..., vd|Vd|} where Vd ⊂ V .
– A set of positive integer service center capacities C = {cs1 , ..., cs|Vs|}.
– A set of penalty functions for the service centers Q = {qs1 , ..., qs|Vs|}.

Output: An assignment R : Vd → Vs. Each demand vertex is allotted to only
one service center.

Objective Function

Min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

∀ Service
Centers si

{
∑

∀ demand vertices vdj
allotted to si

Dist(vdj , si)

}

+ Total Penalty across all si

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(1)
Here, Dist(vdj

, si) denotes the shortest distance between the demand node
vdj

and the service center si. We assume that for every demand vertex in Vd,
there exists a path to reach at least one service center in Vs. Also, we consider the
case where the total capacity of all service centers is less than the total demand.
Apart from this, there can be two other cases. First, the total capacity is equal
to the total demand. And second, the total capacity is greater than the total
demand. In both these cases, some service centers can still get overloaded as a
demand vertex can choose to forcibly go (as it lead to lower objective function
value) to a nearby service center (which is already full) and pay the penalty
instead of going to a far-off “free” service center.

2.2 Using LBNVD in Real Life

Consider again the problem of defining the zone of operation for each school
(school catchment area [1]). For this problem, the unit of measurement for the
objective function (Eq. 1) could be the total cost of “operation” for one day
in Rupees (or Dollars). For this objective function, the edge costs in our road
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network should be the fare amount spent while traveling that edge. And if the
number of teachers in a school dictate its capacity, then penalty could be defined
using metrics like faculty - student ratio. For ease of interpretation one can
assume this penalty to be a constant number for each new allotment beyond
the capacity. Note that this would still adhere (in a strictly mathematical sense)
to the definition of penalty given in Definition 5. In this setting, if a faculty-
student ratio of 1:F is maintained in a school, then its overload penalty would
be Faculty-annual-salary/(F × 365) for each allotment over the capacity of the
school. For Indian scenarios, this fraction comes out in the range of 40–60 for
government schools. Note that one can easily create more complex notions of
capacities and penalty functions by incorporating other parameters like library-
books-student ratio, lab-equipments-student ratio, etc. It should be noted that
proposed algorithm is oblivious of these implementation intricacies of the penalty
functions as long as they adhere to Definition 5.

3 Proposed Approach - LoRAL Algorithm

3.1 Key Idea: Cascade of Local Re-adjustment

Cascade of local re-adjustments to the partially constructed voronoi diagram is
the central idea of our proposed approach. We use this key technique in our
algorithm to bring down the objective function value. We first describe this idea
at a high level in this section and then detail its operationalization in Sect. 3.2.
We now describe the idea of local re-adjustment through an illustrative example.

Fig. 1. A sample transportation network.

Given a LBNVD prob-
lem instance, the first
step is to determine the
closest service center for
each demand vertex vdi

∈
Vd. For this step, the
algorithm internally com-
putes the shortest dis-
tance between all pairs
of demand vertices and
service centers. Follow-
ing this, we sort the

(vdi
, closest si) pairs in the increasing order of the shortest distance to the

closest si. After this, the algorithm would process the pairs (vdi
, closest si) in

the increasing order of the shortest distance. Consider a stage when vdi
is being

processed. The algorithm would try to allot vdi
to its corresponding closest si.

At this stage, one of the following two cases can happen. Case 1: si is not yet
full (in terms of its capacity), in which case, the allotment goes through. Case
2: si is already full and we need to “pay a penalty” for this assignment.
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Fig. 2. Partially constructed LBNVD for network shown
in Fig. 1 (best it color).

For addressing case 2,
we propose the concept
of Cascade of Local Re-
Adjustments of the cur-
rent partially built net-
work voronoi diagram. It
is important to note that
once a demand vertex vdi

is allotted to a service
center si it need not be
removed from si, unless
it is required during the
local re-adjustment. And if removed from si, another demand node (since the
algorithm deemed it as a better option) would be associated with si. This implies
that as the algorithm progresses, the total penalty paid on any service center
either increases or remains the same (i.e., monotonically increases).

Concept of Single Local Re-adjustment of Partial Voronoi Diagram: Figure 1
shows a sample road network with 5 service centers (S1, S2, . . . , S5) and 11
demand vertices. Figure 2 illustrates a partially constructed network voronoi
diagram on the road network shown in Fig. 1. In the figure, the demand vertices
which are allotted to a service center are filled using the same color as that
of their allotted service center. Vertices which are not yet allotted are shown
without any filling. Furthermore, nodes where a service center is located are
assumed to have zero demand. In the problem instance shown, the first few
<demand vertex- closest service center> pairs (in increasing order of distance
to the closest service center) have already been processed. All these pairs were
processed through case 1, and S1, S2 and S3 are now full in capacity. Now,
consider the case when the pair <X,S3> is being processed. Ideally the demand
vertex X should be assigned to service center S3 as per the nearest service center
criteria. However, since S3 is full we need to consider one of the following 9
options for Local Re-Adjustment.

1. Allot X to S3 and pay the penalty of overloading S3;
Total increase in objective function: 4+ qS3() (penalty paid as 1st insertion
beyond the capacity of S3).

2. Allot X to S3, but push the vertex D to another service center.
Total increase in objective function to associate X to S3 and then transfer D
to:

– S1: 4 + (5 − 1) + qS1() (penalty paid as 1st insertion beyond the capacity
of S1)

– S2: 4 + (9 − 1) + qS2() (penalty paid as 1st insertion beyond capacity in
S2)

– S4: 4 + (10 − 1) (No penalty since under-loaded)
– S5: 4 + (10 − 1) (No penalty since under-loaded)
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3. Allot X to S3 but push the vertex F to another service center.
Total increase in objective function to associate X to S3 and then transfer F
to:

– S1: 4 + (42 − 3) + qS1() (penalty paid as 1st insertion beyond capacity in
S1)

– S2: 4 + (21 − 3) + qS2() (penalty paid as 1st insertion beyond capacity in
S2)

– S4: 4 + (10 − 3) (No penalty since under-loaded)
– S5: 4 + (47 − 3) (No penalty since under-loaded)

The algorithm would evaluate the cost of each of these options (in terms of
increase in objective function value) and then choose the minimum. Note that
while considering options for allotted demand nodes to be pushed out at S3,
we only consider what we refer to as the boundary vertices of S3. In Sect. 4, we
prove this formally in Lemma1. Following is a formal definition of the boundary
vertices of a service center si.

Definition 6. Set of Boundary Vertices of a service center si (Bsi):
Bsi = {b1si , b

2
si , . . . , b

m
si} for a service center si is a set of demand vertices allotted

to the service center si such that each vertex in Bsi has at-least one of the
following three properties: (a) an outgoing edge to a vertex allotted to a different
service center sj, (b) an outgoing edge to a different service center sj or, (c)
an outgoing edge to an unprocessed demand vertex. In Fig. 1, D and F were
currently the only boundary vertices of S3. Whenever the context is clear we
drop the superscript m from bmsis’ in our text.

Cascade of Local Re-adjustments: Continuing our previous example, in
options (2) and (3), S1, S2, S4 and, S5 would in-turn also consider local re-
adjustment after receiving a boundary vertex from S3. This would happen only
if they themselves are overloaded. This process continues leading to what we
refer to as cascade of local re-adjustments. One such case could arise if X was
allocated to S3 and D was pushed to service center S1, thereby overloading it
by 1. Now, S1 can in-turn choose between the following two decisions:

Option 1. Accept D and overload itself.
Option 2 Accept D and in-turn push one of its boundary vertices to another
service center (for e.g., K to S5).

More details on this are covered in the upcoming sections. It is important
to note that in our actual operationalization of the previously described idea,
the proposed algorithm first simulates a set of k cascades and then chooses the
cascade which results in lowest increase of objective function.

3.2 Best of K Cascades LoRAL Algorithm

This section details the operationalization of our previously discussed idea of
local re-adjustments. In our proposed algorithm we use the following heap.
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MinDistance Heap: a binary min-heap data structure which is ordered on the
distance between a demand vertex and its closest service center.

Our algorithm starts by first computing the shortest distance between all
pairs of demand vertices and service centers. This paper uses shortest path algo-
rithm as a black box. As a proof of concept in our implementation, we used
the Floyd-Warshall [11] algorithm for computing the shortest distances. One
can easily replace Floyd-Warshall algorithm with other shortest path algorithms
(e.g., [12–14]).

Following the shortest distance computation, we insert the pairs <Demand
vertex, closest si> in the MinDistance heap. Demand vertex to be processed next
is picked from the MinDistance heap using the extract-min operation. Initially
all vertices are unprocessed and a while loop is executed till the MinDistance
heap is not empty. This ensures that all demand vertices are processed.

Let the result of extract-min operation be a demand vertex vdi
and its clos-

est service center si. Currently vdi
is unprocessed, and as per the closest dis-

tance metric it should go to the service center si. However, before allotting a
demand vertex to a service center, the algorithm checks if si can accommodate
the demand or not. In case the service center si has the required capacity, then
vdi

is allotted to si. Following this, the objective function is incremented by the
shortest distance between si and vdi

.
However, had si been full or overloaded, the algorithm would have reached

the scenario of local re-adjustment. The concept of local re-adjustment is opera-
tionalized in the following way. We first simulate the total increase in objective
function in k cascades of local re-adjustments. Then, the algorithm chooses the
cascade which has the lowest increase in the objective function. The algorithm
then implements the local re-adjustments of this chosen cascade in the partially
constructed voronoi diagram provided it is cheaper (i.e., lower increase in
objective function value) than just accepting additional overload at si. Follow-
ing are details on simulating the k cascades.

Structure of One Simulated Cascade: Consider again the previous scenario
of vdi

and its closest service center si. Each of the simulated cascades start at
si and progresses in the following way: the service center si accepts its current
assignment (i.e., the demand node vdi

) and pushes out one of its boundary
vertices to another service center, say sj . Now, sj evaluates the following two
options: (a) just accept the si’s boundary vertex or, (b) accept and then push
out one of its own boundary vertices to another service center, say sk. sj would
proceed with the option which leads to a lower increase in objective function
value. The same process repeats at sk. This cascade of local re-adjustments
keeps rolling until one of the following three things happen:

(1) At any stage, sj to which a boundary vertex is transferred is under-full.
(2) Total #re-adjustments in this simulated cascade becomes greater than a

certain threshold.
(3) At any stage, sj to which a boundary vertex is transferred assess that it is

cheaper (i.e., lower increase in objective function value) to simply just accept
the vertex being forced upon rather than accepting and in-turn rejecting one
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of its own boundary vertices. In other words, sj chooses option (a) described
in the previous paragraph. We now provide details on the simulating k cas-
cades.

Simulating k Cascades: Consider again the previous scenario of vdi
and its

closest service center si. Bsi is the set of boundary vertices of si.
Firstly, the algorithm calculates the sum of the following four terms for every

pair of boundary vertex bsi ∈ Bsi and service center sj ∈ {Vs − si}: (1) shortest
distance between vd and si, (2) shortest distance between bsi and service center
sj , (3) penalty value of the service center sj (if any) and, (4) negative of distance
between boundary vertex bsi and service center si. Note that at this stage we
don’t need to worry about the penalty that was paid by bsi to si as instead of bsi
we would be adding another demand vertex (vdi

) to si. In other words, the total
number of demand vertices allotted to any service center will only increase (or
remain the same) as the algorithm progresses. Following this, we choose the top
k pairs of bsi and their respective sjs’ which had the lowest sum. These k pairs

Algorithm 1. Best of k Cascades LoRAL Algorithm
Input: (a) Number of Cascades k, (b) Allowed length of cascade l (must be ≤ |Vs|−1)
Output: LBNVD with Objective Function value Δ

1: Compute the shortest path distance between every demand vertex in Vd and every
service center in Vs.

2: For each vdi ∈ Vd determine the closest service center and create a MinDistance
heap with all <demand vertex-closest service center> pairs.

3: while MinDistance heap is not empty do
4: < vdi , si > ← extract-min on MinDistance heap.
5: if si has vacancy then
6: Allocate vdi to si, decrement capacity of si, increment Δ by dist(vdi , si)
7: else
8: Set Ω ← top k boundary vertices (bsis’) and their corresponding service centers

(sjs’) for re-adjustment.
9: for Each boundary vertex bsi in Ω do

10: Simulate a cascade starting with si accepting vdi and pushing out bsi to sj
11: Cascadei ← resulting cascade
12: βi ← Increase in objective function value after Cascadei

13: end for
14: Set cost of overload: δ1 ← dist(vdi , si) + qsi()
15: Set cost of transfer: δ2 ← Min∀i∈[1,k]{βi}
16: if δ1 < δ2 then
17: Allot vdi to si with penalty, and Δ = Δ + δ1.
18: else
19: Allot vdi to si. Implement the cascade which had the lowest β value
20: Δ = Δ + δ2.
21: end if
22: end if
23: end while



466 A. Mehta et al.

seed the k cascades of the local re-adjustments whose cost would be simulated
by the algorithm.

After this, the algorithm takes forward each of the k cascades individually
and unravels them in a manner similar to that explained previously. Note that
in each of these cascades, at any stage, a service center sj (�= si) rolls forward
the cascade only along the best boundary vertex (along its respective sk (�= sj)).
Basically, a service center sj (�= si) compares the increase in objective function
seen after the re-adjustment of each of its boundary vertices bsj ∈ Bsj (to each
of the service centers sk �= sj) and then chooses the option with minimum
increase to roll forward. This is in contrast to the first service center si which
chooses top k boundary vertices and rolls forward each of them. For each of
the k simulated cascades, we note the final increase in objective function value
at the end of cascade. The cascade which generates the minimum increase in
objective function overall is chosen as the best cascade. Note that in each of
these k cascades, no service center is allowed to repeat. Finally, the algorithm
chooses between performing overload at si or implementing the set of local re-
adjustments as per the best cascade. Algorithm 1 shows the pseudo-code for best
of k cascades LoRAL algorithm.

3.3 Execution Trace

Figure 3 illustrates a partially constructed LBNVD on a road network containing
5 service centers (S1, S2, . . . , S5) and 11 demand vertices. Figure 3 also illus-
trates the capacities and the penalty functions of the service centers. For ease of
understanding, in this example, penalty functions are assumed to be just con-
stants. Note these also adhere to the formal definition of penalty functions stated
in Definition 5. As mentioned earlier, one can use any monotonically increasing
function as a penalty function in the LoRAL algorithm. In Fig. 3, the demand
vertices which are allotted to a service center are filled using the same color as
that of their allotted service center. Vertices which are not yet allotted are shown
without any filling. Nodes where a service center is located are assumed to have
zero demand.

In the problem instance shown, the first few <Demand vertex, closest si>
pairs (in increasing order of distance to the closest si) have already been pro-
cessed. All these pairs were processed as direct assignment as their respective
service centers were under-full at that stage. S1, S3 and S4 are now full in capac-
ity. Now, consider the case when the pair <X,S3> is being processed. S3 is full,
and thus we reach the scenario of re-adjustment. Assume that the max number
of cascades in the algorithm (refer Algorithm 1) is set to 2. S3 has only two
boundary vertices D and F , so both would be chosen for simulating cascades.
Now for both D and F , we compute the “best service center” (a service center
which leads to lowest increase in objective function). For node D, this would be
S1 with a total increase of 18 (4 + 5 − 1 + 10) in the objective function value.
Whereas for node F , the best service center is S4 with a total increase of 19
(4 + 10 − 3 + 8). Now the pairs <F,S4> (Cascade 1) and <D,S1> (Cascade 2)
become the seeds for the two cascades simulated by the algorithm.
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Fig. 3. Illustrating best of K cascades LoRAL algorithm
(best it color).

Cascade 1 (Seed
<F,S4>): Given that
S4 is also full, it
would consider bet-
ween the following
two options: (a) acc-
ept F and pay the
penalty. The overall
increase in objective
function value in this
case would be 19. (b)
Accept F and push out its only boundary vertex J1 to its corresponding “best
service center”, which happens to be S2. The overall increase in this case be 18
(4 + 10 − 3 + 10 − 3). One can observe that option (b) leads to lower increase in
objective function and thus would be chosen to roll forward the cascade beyond
S2. However, this cascade would not roll beyond S2 as S2 was under-full.

Cascade 2 (Seed <D,S1>): Given that S1 is also full, it would consider
between the following two options: (a) accept D and pay the penalty. The overall
increase in objective function value in this case would be 18. (b) Accept D and
push out one of its boundary vertices to another service center. For this option it
would evaluate all pairs of its boundary vertices (A, B, K, C) and service centers
(S2, S3, S4 and S5) to determine the best boundary vertex and its corresponding
best service center to roll forward. For our example, this happens to be the pair
<K,S5>. The total increase in this case would be 9 (4 + 5 − 1 + 3 − 2). Option
(b) leads to lower increase in objective function and thus would be chosen to roll
forward the cascade beyond S5. However, this cascade would not roll beyond S5
as S5 was under-full.

Now, the LoRAL algorithm would compare the increase in objective across
the three options: (a) force allotment of X to S3, (b) Cascade 1 and, (c) Cas-
cade 2. In our example, Cascade 2 leads to lowest increase and thus would be
implemented by the algorithm. This process continues until all demand nodes
are allotted.

4 Theoretical Analysis

Lemma 1. Consider a full service center si where a new demand vertex v is
being inserted. For a local re-adjustment operation on si, it is sufficient to con-
sider only the boundary vertices of si (refer Definition 6).

Proof. Let sx be any service center and u be any non-boundary demand vertex
of si. We would prove that there would exist at-least one boundary vertex bsi
of si such that total increase in objective function obtained by pushing out bsi

1 In case it had more boundary vertices, it would have considered the boundary vertex
which lead to lowest increase in objective function.
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to a service center sx would be less than (or equal to) the increase observed
while pushing out u to sx. Let the total increase in objective function value by
accepting v and pushing out u to a service center sx is Θ. Thus, Θ = Dist(v, si)+
Dist(u, sx) − Dist(u, si) + Penalty at sx (no change in penalty paid to si as v
got in and u got out). Given that u is a non-boundary vertex of si, any shortest
path from u to sx must pass through a boundary vertex of si. W.l.g assume
that bi is this boundary vertex. Let Φ be the total increase in objective function
obtained by accepting v and pushing out bi to service center sx. Thus, Φ =
Dist(v, si) + Dist(bi, sx) − Dist(bi, si) + Penalty at sx. We can ignore the terms
corresponding to Dist(v, si) and the penalty paid at sx as they are common on
both sides. Thus, we focus only on the terms Θnew = Dist(u, sx) − Dist(u, si)
and, Φnew = Dist(bi, sx) − Dist(bi, si). Now, we need to establish that Θnew ≥
Φnew. Θnew − Φnew = Dist(u, sx) − Dist(bi, sx) + Dist(bi, si) − Dist(u, si). By
triangle inequality of shortest paths: Dist(u, si) ≤ Dist(u, bi) + Dist(bi, si).
Therefore, Θnew −Φnew ≥ Dist(u, sx)−Dist(bi, sx)+Dist(bi, si)−Dist(u, bi)−
Dist(bi, si). Since, Dist(u, sx) = Dist(u, bi) + Dist(bi, sx). We have, Θnew −
Φnew ≥ Dist(u, bi) + Dist(bi, sx) − Dist(bi, sx) + Dist(bi, si) − Dist(u, bi) −
Dist(bi, si). Therefore Θnew −Φnew ≥ 0. Thus, bi becomes the chosen boundary
vertex to push out instead of u.

4.1 LBNVD Problem and Min-Cost Bipartite Matching

The LBNVD problem can be reduced to min-cost bipartite matching [15]. The
first step of this reduction (postulated in [15] from a theoretical perspective) is
creation of a bipartite graph from the demand vertices and service centers. In the
first set of vertices of the bipartite graph, we put |Vd| × |Vs| number of vertices.
In the second set (of vertices), we put one vertex for each of the demand vertex
given in the input. Now, we make the number of vertices same in both the sets
by creating dummy vertices and adding them to the set corresponding to the
demand vertices. Following this, we add edges between the two sets. We would
be adding an edge between all pairs of nodes in the bipartite graph. Cost of an
edge between the sets is defined as follows:

(a) If Vertex in the second set is not a dummy vertex: Edge cost
(vertex, jth copy of si) = ShortestDistance(vertex, si) + penalty paid for
being the “j-capacity of si” (if j > capacity of si) insertion beyond the
capacity of si. Note that the penalty term is not added if j ≤ capacity of si.
(b) If Vertex in the second set is a dummy vertex: Edge cost (vertex,
jth copy of si) = Infinite.

A perfect matching of minimum weight on this bipartite graph would be a solu-
tion to our LBNVD problem instance. Note that we would have to remove the
cost contributed by the dummy vertices in the final objective function value.
Also the edges need to be directed in a certain way as explained next.
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4.2 Bounding the Performance of LoRAL Algorithm

Consider again the bipartite graph representation of the LBNVD problem. In the
optimal algorithm [16], we first add a super source s and super destination node
t. Following this, we add directed edges from super source to all the unmatched
(initially all) demand vertices and edges from copies of the unmatched (initially
all) service centers to the super destination. During the course of the algorithm,
as the nodes get matched, we remove the edges incident on s and t. Also, as
the matching progresses, edges which are in the matching are oriented from
the copies of service centers to the demand nodes and vice-versa if otherwise.
In addition, costs of the edges oriented from set of demand vertices to service
centers are deemed to be positive. Whereas, the costs of edges directed from
service centers to demand nodes are deemed to be negative. Note that it is
possible to work with only positive edge costs but in such a case, the algorithm
also assigns a potential (≥0) to each node (refer [16]) and works with both edge
costs and node potentials.

In each iteration of the optimal algorithm, we compute the shortest path
between s and t and augment the matching. The edges which are directed from
the set of demand vertices to the copies of the service centers get added to the
matching and the ones directed otherwise are removed. It has been theoretically
proven [16] that, at given stage of the matching, augmenting along the shortest
path between s and t increases the size of the matching by one, i.e., one more
demand node gets added to the matching. And the increase in the objective
function value is the least possible. Furthermore, continuing this way leads to
optimal answer. Note that LoRAL algorithm also increases the size of matching
by one in each iteration of the main loop (line number 3).

It should be noted that the “cascade of local re-adjustments” created while pro-
cessing a demand node (at line 4) is same as the described s-t path on this bipar-
tite graph. Also note that, we are referring to “cascade of local re-adjustments”
in a general sense. It includes both direct allotment (line 6) and “cascade of
re-adjustments” (lines 8–21 in Algorithm 1). Therefore, the primary difference
between the optimal algorithm and our proposed LoRAL algorithm turns out to
be the difference in total cost of the s − t path chosen in each iteration. We use
this difference to bound the worst case approximation of our LoRAL algorithm.

Lemma 2. Given an instance of the LBNVD problem. Let cmin be the small-
est capacity, i.e., cmin = min{cs1 , ..., cs|Vs|} and pmax be the maximum possi-
ble penalty that could be paid by any particular allotment to any service center
sj ∈ Vs. Let costmin be the smallest distance between any demand vertex and any
service center, i.e., costmin = min∀vdi

∈Vd∧sj∈Vs
dist(vdi

, sj). Let costmax be the
largest increase in objective function possible while inserting any demand node,
i.e., costmax = max∀vdi

∈Vd∧sj∈Vs
dist(vdi

, sj) + pmax. The worst case deviation
in final objective function value between the LoRAL and the optimal algorithm
is bounded by: (|Vd| − cmin) × (costmax − costmin).

Proof. We prove this using the value of the worst case increase in objective
function value after processing each demand vertex. Note that both LoRAL and
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the optimal algorithm would in general process the demand vertices in different
order, but one could derive a bound using the net increase in objective function
value after a unit increase in the size of matching (and number of demand vertices
is same across both algorithms). It is important to note that, (at-least) the first
cmin demand vertices processed by both the algorithms would be same. This is
because of the greedy nature of algorithms where they choose only the lowest cost
(as determined by them) augmenting paths. And these first cmin demand vertices
would be processed as direct allotment (by both the algorithms) to the closest
service center as all the service centers are guaranteed to have free space then. For
each of the first cmin demand vertices, both algorithms are guaranteed to have
the same amount of increase in objective function value. After this, for each new
addition (though different demand vertices), the LoRAL algorithm could in worst
case have costmax increase in objective function value, i.e., none of the paths of
local re-adjustments helped. Whereas the optimal algorithm could (theoretically)
lead to only costmin increase in objective function value. Therefore, the worst
case deviation in final objective function value between the LoRAL and the
optimal algorithm is bounded by: (|Vd| − cmin)× (costmax − costmin). Note that
this bound is just a mathematically possible upper bound.

5 Asymptotic Complexity

The input graph G(V,E) has n vertices and m edges, out of which we have |Vd|
demand vertices and |Vs| service centers.

Time Complexity: The shortest path distance between all pairs of demand
vertices and service centers is computed using the floyd-warshall algorithm [11]
which takes O(n3). Using the result of the floyd-warshall, we determine the
closest service center for each demand vertex which takes O(|Vd|×|Vs|). In step 2,
we construct MinDistance heap which takes O(Vd) time. In step 3, the algorithm
enters into a while loop which runs for each of the |Vd| demand vertices. In step
4, each extract-min operation takes O(log(|Vd|)) time. Steps 5–7 take O(1) each.
After this, steps 8–21 simulate increase in objective function value in k cacades of
local re-adjustments starting at the service center si. For one local-adjustment,
the algorithm has to see #boundary vertices × |Vs| pairs of boundary vertices
and service centers. This can take at most O(|Vd| × |Vs|) time (in worst case).
Therefore, simulating increase in objective function in k sequences of local re-
adjustments where length of each sequence in upper bounded by |Vs| (as no
service center is allowed to repeat) would take O(k|Vs||Vd||Vs|). Given steps 8–
13 are inside the while loop on step 3 (which would run for |Vd| times), the total
running cost of the LoRAL algorithm becomes: O(n3) + O(|Vd||Vs|) + O(|Vd|) +
O(k|Vd||Vs||Vd||Vs| + |Vd|log(|Vd|)). If |Vs| � |Vd|, the total running cost of the
LoRAL algorithm becomes: O(n3)+O(k|Vd|2 + |Vd|log(|Vd|)). It is important to
note the term k×|Vd|2 is an absolute mathematical upper bound and can happen
only in highly contrived datasets where each demand node has a direct edge to all
the |Vs| service centers. Only in such cases, the cost of one re-adjustment becomes
O(|Vd| × |Vs|). For any realistic road networks, the #boundary-vertices � |Vd|.
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Also, the O(n3) time for computing the shortest distance between |Vd| × |Vs|
pairs can be significantly reduced in practice by employing techniques like A*,
contraction hierarchies, etc.

6 Experiment Results

Algorithms were tested on a real road network dataset of New Delhi contain-
ing 65902 vertices and 144410 edges obtained from OpenStreetMaps [www.
openstreetmap.org]. Some vertices (chosen randomly) of this graph were desig-
nated as the service centers and other vertices as the demand vertices (each with
unit demand). Algorithms were implemented in Java 1.7 and the experiments
were carried out on a Intel(R) Xeon(R) CPU machine (2.50 GHz) with 96 GB
of RAM and Cent OS 6.5. We pre-computed the closest service center to each
demand vertex using floyd-warshall as a black box. In our experiments, we mea-
sured run-time and final value of objective function as different parameters were
varied. We compared the performance of the following 5 algorithms.

(1) Best of k Cascades LoRAL: Algorithm 1 while upper bounding the values
of k to: (a) number of demand vertices and, (b) number of demand vertices/2
(denoted as “best of k/2 cascades” in the plots). By upper bounding we
mean that each service center would explore Min{its #boundary vertices,
k} number of cascades. l was set to #service centers - 1.

(2) Bounded LoRAL: Algorithm 1 with k= 1 and l = #service centers/2.
(3) Unbounded LoRAL: Algorithm 1 with k = 1 and l = #service centers - 1.
(4) Min-Cost Bipartite Matching algorithm given in [15].
(5) CCNVD algorithm proposed in [4].

Experiment 1: Comparing Our Algorithms with the Optimal Algo-
rithm: Figures 4 and 5 shows the results of this experiment. In this experiment,
the number of service centers in each network was set according to the following
scheme: 1 service center for every 400 demand vertices (denoted as service cen-
ter ratio 400:1). Capacities of all service centers were chosen randomly (integers)
from the range 250–350. For sake of ease of interpretation, we took each penalty
function as constant a random integer from the range 50–80. Note that this still
follows our formal definition of penalty functions given in Definition 5.

Our experiments showed that LoRAL algorithms were much faster than the
optimal algorithm while maintaining comparable values of the final objective
function. Best of k cascades algorithm was closest to the optimal algorithm in
terms of the final value of the objective function. The optimal algorithm did not
scale up with the increase in the size of the input network (Fig. 4) and thus, was
excluded from further experiments with networks of size 65000 vertices.

Experiment 2: Effect of Number of Service Centers: Figure 6 shows the
result of this experiment. In this experiment, the number of service centers was
varied by changing the ratio of the # demand vertices to the # service centers. A
smaller value of this ratio indicates a larger number of service centers. Capacities

www.openstreetmap.org
www.openstreetmap.org
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Fig. 4. Exp1 - run-time analysis. Fig. 5. Exp1 objective func. analysis.

of all service centers were chosen randomly (integers) from the range 250–350.
For sake of ease of interpretation, we took each penalty function as constant a
random integer from the range 50–80.

Fig. 6. Effect of number of service center.

Experiment 3: Effect of Total Capacity of Service Centers: In this exper-
iment, penalty costs were in the range of 50–80 units and the number of service
centers were according to the ratio of 300:1 (Figs. 7a and b) and 500:1 (Fig. 7c).
Our experiments showed that as the parameter total capacity/# demand ver-
tices decreased, runtime increased as more local re-adjustments were made and
value of the objective function increased as more penalty was being paid.

Experiment 4: Effect of Penalty Costs: In this experiment we took each
penalty function as constant a random integer from the set range (x-axis in
Fig. 8a and b). Ratio of total-capacity/#demand-vertices was set to 0.6 and the
number of service centers were set according to the ratios 300:1 (Fig. 8a and b)
and 500:1 (Fig. 8c).

Experiment 5: Comparing LoRAL Algorithms with CCNVD: Table 1
shows the results of this experiment. Note that since CCNVD [4] does not have
a notion of penalty, we focus on the “obj func value - total penalty paid” values



Load Balancing in Network Voronoi Diagrams Under Overload Penalties 473

Fig. 7. Effect of total capacity of service centers.

Fig. 8. Effect of penalty costs.

Table 1. Experiment 5 - comparing LoRAL algorithm with CCNVD

Network
size

Cost type Unbounded Bounded Best of k
cascades

CCNVD

1000
vertices

Final obj func value 91910 91910 91910 168688

Total penalty 15400 15400 15400 NA

Obj func value -
Total penalty paid

76510 76510 76510 168688

2000
Vertices

Final obj func value 184197 186197 184197 263585

Total penalty 37924 37924 37924 NA

Obj func value -
Total penalty paid

146273 146273 146273 263585



474 A. Mehta et al.

for comparison. One can observe that CCNVD [4] had very large values on this
metric. This is because CCNVD [4] aims for service area contiguity.

7 Conclusions

This paper proposed a novel LoRAL algorithm for the LBNVD problem. App-
roach was evaluated both theoretically and experimentally, using real datasets of
the New Delhi road network. Our experiments indicated that the LoRAL algo-
rithm was significantly more scalable than the optimal algorithm. In future, we
would like to work on other generalizations of LBNVD.
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