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1 Introduction

On closer inspection many apparent contradictions turn out to be mere disagreements
between distinct sources of information. For example, if a source s; says P and a
source s, says — P, their disagreement would only become an actual contradiction
if we naively merged what they say into our own knowledge base. In this case, our
own knowledge base would entail P A —P and would, therefore, be inconsistent.
Although we could use traditional paraconsistent logics to avoid this kind of incon-
sistency’s worst consequences, this would be an unsatisfactory approach, because
the inconsistency in this case was clearly just a result of our indiscriminate use of
knowledge originating from distinct mutually contradictory sources.

This paper proposes a new logical paradigm through which disagreements can be
expressed and resolved. A possible worlds semantics is used (cf. Sect.3), and each
source denotes a world. Logical sentences of the form @, P express that source s
claims P and denote that P is true at the world denoted by s. Within these logics,
we can merge conflicting information more cautiously. For instance, our knowledge
base would entail (@, P) A (@,,—P) and, as desired, no inconsistency would follow
from the disagreement between s; and s, with respect to P.

Section 4 explores a few different behaviours, attitudes and procedures that people
typically use to resolve disagreements and to aggregate their opinions and beliefs
in order to reach common collective decisions in the social groups to which they
belong. They include consensus, dictatorship, trust and voting. All these disagree-
ment resolution methods can be formalized within the proposed logical paradigm,
and it may be considered that each method leads to a different logic conforming
to the proposed paradigm. As discussed in Sect.4.4, the voting method requires
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formulating the possible worlds semantics in a way that is, from a technical perspec-
tive, subtly different from traditional formulations (cf. Sect. 3).

One of the main goals during the development of para-disagreement logics,
besides simplicity and conceptual adequacy, was ease of implementation of auto-
mated reasoning tools for these logics. To show that this goal has been achieved,
Sects. 5 and 6 exhibit and discuss semantical embeddings of the logics into, respec-
tively, the non-extensional higher-order logic of the interactive proof assistant Coq
and a fragment of first-order logic extended with datatypes and linear integer arith-
metic supported by the automatic SMT-solver Z3.

2 Syntax

As shown in Definition 1, the basic language of our logics is the usual language of
propositional logic extended with the usual box and diamond operators of modal
logics [12], and the @ operator and the (here explicit) in nominal operator from
hybrid logics [2]. This basic syntax is extended in Sect.4.

Definition 1 Given countably infinite sets &2 and .7 of, respectively, propositional
symbols and information sources, the set of formulas formulas £ is the smallest set
satisfying:

e ifpe P, thenp € Z.
o ifp € Z, then ¢ e Z.
o if o € £ and ¢, € &, then:

- A@p e Z.

- Vel
-9 —> p e

o if ¢ € Z, then:

-Op e .
- Qp e .
o ifs e .Y andp € £, then @, € Z.

o if s € .7, then in(s) € Z.
e ifse Yandg e ¥, then(s € g) € Z.

3 Semantics

The semantics for para-disagreement logics, as described in Definitions 2 and 3, is
conceptually similar to typical possible worlds semantics for modal logics, essentially
differing only in the representation of world reachability.
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Definition 2 A model is atuple M := (W, R, [», [ »), where W is a countable set
ofworlds, R : W — List[W]is afunction that maps each world to the list of worlds
reachable fromit, I~ : . —> W is an interpretation function that maps each source
to the world it denotes, and 15 : W x & — {T, L} is an interpretation function
that maps each world and atomic proposition to a truth value.

Definition 3 The truth of aformula ¢ inaworldwofamodel M := (W, R, [ », [ )
is denoted M F,, ¢ and is defined recursively as follows:

M &, pforevery p € & suchthat I (w, p) =T
M E, —@iff M ¥, ¢.

ME, o1 ANy ift M F,, ¢y and M F,,

ME, o1V ift M, gror M E, ¢

ME, o1 — @ iff M ¥, ¢1 or M F,, @2

M &, Oy iff M E,, ¢ for every w' € R(w)

M E,, Q¢ iff M E,, ¢ for some w' € R(w)

M ':w @v(p iff M bly’ (s) ¢

ME, in(s)iff Io(s) =w

ME, s egiff I»(s) € RUy(g))

Definition 4 A set of logical sentences ¢y, ..., ¢, entails another logical sentence
@, denoted ¢y, ..., ¢, F ¢, iff M E,, ¢ for all w and for every model M such that
M E,, ¢; for 1 <i <n and for all w.

The main technical difference between the semantics described above and the
usual possible worlds semantics is that reachability of worlds is represented not as
a binary relation between worlds, but as a function that maps a world to a list of its
reachable worlds. Consequently, in the models used in para-disagreement logics, the
number of worlds reachable from any world is always finite (because lists are finite),
whereas this number could be countably infinite when reachability is represented as
a binary relation between worlds. Having only a finite number of reachable worlds
is important for the disagreement resolution method described in Sect.4.4.

Definition 5 A source s is a groupinamodel M := (W, R, I», [ ») iff R(I» (w))
is non-empty (i.e. the world denoted by s has reachable worlds). Any source s’

In para-disagreement logics, the formula @ ;¢ can be read as “s claims ¢ or “s is
of the opinion that ¢”. The formulas € g canberead as “s is a participant in the group
g”. Para-disagreement logics are concerned with establishing relationships between
the claims of a group and the claims of its participants (or even non-participants).

The notion of group does not need to be understood in a narrow sense. From a
broader and abstract perspective, for example, a person whose opinions are strongly
influenced by three newspapers could be modelled as a “group” where those media
sources are participants; and a software system that combines data from several
different databases could be modelled as a “group” that has those databases as par-
ticipants.
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4 Methods for Information Aggregation and Disagreement
Resolution

The main concern from this point on is to investigate possible relationships between
the opinions of a group and the opinions of its members. In general, the group
needs to aggregate the opinions of its members and resolve disagreements. There
are potentially many methods to do that, and para-disagreement logics do not aim to
advocate in favour of one method, but rather to be flexible and expressive enough to
allow a wide variety of methods to be formalized and possibly combined to reason
simultaneously about groups with distinct disagreement resolution behaviours. The
next subsections discuss a few.

4.1 Consensus

One of the simplest methods for a group to aggregate information from its members
is consensus: if all members of a group g claim something, then g claims it as well.
In logical form, the consensus axiom schema for a fixed' group g is:

@,y — ¢)

More strongly, a para-disagreement logic assuming the more general and well-
known T axiom schema (Jp — ¢) would be stating that all groups respect consensus.

The obvious limitation of consensus is that it says nothing about the opinions of
a group on matters on which its members disagree.

4.2 Dictatorship

Dictatorship is perhaps the simplest method to aggregate information in cases when
there is disagreement. The opinion of the group is simply dictated by a distinguished
source. The dictatorship axiom schema for a fixed group g with a fixed dictator d
i 2.
is7:

@g(@d(p g §0)

Furthermore, to show, for instance, that the dictator d has dissidents in his dic-
tatorship g, it suffices to find a proposition ¢ for which @,(@,g A O—q). This

IBy “fixed* it is meant that g is not a schema variable, but a constant. The consensus axiom schema
does not hold for all g. It is the responsibility of a user of the logic to instantiate and assert the
axiom schema for any particular g* that is a consensus group.

2Note that d does not need to be a participant of g.
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illustrates that it is easy to formalize dictatorships and reason about their situations
in para-disagreement logics.

A serious problem of dictatorships is that they blindly follow the opinions of the
dictator and simply ignore the opinions of other members of the group, who might
have greater expertise on certain topics than the dictator.

4.3 Expertise-Restricted Trust

In human society, groups often follow restricted forms of dictatorship, in which the
opinions and decisions of the group with respect to a proposition pertaining to a
certain topic is dictated by a member of the group with declared expertise in that
topic. For example, we are normally willing to trust the opinions of doctors on matters
related to our health and the opinions of lawyers on legal matters, but not conversely;
and a company’s technological decisions are ultimately taken by the CTO, whereas
its financial decisions by the CFO.

In order to be able to formalize groups with information aggregation based
on expertise-restricted trust, it is necessary to extend the basic syntax of para-
disagreement logic. One possibility is to extend it with the notion of topic and special
operators to talk about expertise on topics and pertinence to topics. For example, the
fact that an information source s has expertise on topic ¢ could be expressed by the
formula E (s, t) and the fact that a proposition p is about a topic ¢ could be expressed
by the formula A(p, t).> Assuming, for the sake of simplicity, that experts on a given
topic do not disagree on propositions related to that topic, the axiom schema stating
that g trusts its experts can be written as:

@, ((E(e,T) NA(p, 7)) = (@0 — ¢))

Despite the additional operators, the logic is still quantifier-free, and hence essen-
tially propositional.

4.4 Voting

Another common method to manage disagreements, especially in democratic soci-
eties, is to vote. There exist various vote-counting methods [23] and, in principle,
para-disagreement logics could be extended with any vote-counting method. But
majority voting is one of the simplest, and it is already sufficiently interesting to
illustrate a vote-based para-disagreement logic.

3 A is assumed to be an intensional operator: the truth values of A(p, 1) and A(q, 1) may differ from
each other even when p < ¢.
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The syntax of the logic needs to be extended with an intensional vote operator, a
majority modality and an aggregation connective, as shown below.

Definition 6 Given countably infinite sets &7 and .7 of, respectively, propositional
symbols and information sources, the set of formulas formulas £y is the smallest
set satisfying the clauses in Definition 1 (with .Z replaced by .y ) and also:

° lf(p € %y, then V(p) € Zy.
if p € %y, then My € L.
ifg,s1,...,5, €., theng <[sq,...,s,] € %y.

The intended readings of these new kinds of formulas are:

V(p): ¢ is a proposition at issue in the vote.
Me: the majority chooses ¢ (over —g).
g <[s1,...,s8,]: the group g aggregates the sources sq, ..., S,.

The semantics also has to be extended to cope with new syntactical constructions.
An interpretation for the vote operator is needed, as shown in Definition 7, and the
notion of truth needs to be extended to formulas containing the vote operator, the
majority modality and the aggregation connective, as stated in Definition 8.

Definition 7 A model is a tuple M := (W, R, Iy, [, Iy), where W, R, I » and
I are as in Definition 2 and Iy : W x 4, — {T, L} is an interpretation function
that maps each world and formula to a truth value.

Definition 8 The truth of aformula ¢ inaworldwofamodel M := (W, R, [», [ %)
is denoted M F,, ¢ and is defined recursively using the cases shown in Definition 3
as well as the following:

e ME, V(p)iff Iy(w,p) =T

e M F,, My iff there are more w’' € R(w) such that M F,, ¢ than w”’ € R(w) such
that M F,» —¢

o ME, g <Is1,....,8]iff RULZ () =I[Ly(s1),.... Ly (sp)]

It is now clearer why a technically different representation of reachability of
worlds (using a function mapping worlds to (finite) lists of worlds, instead of a
binary relation on worlds) was chosen. The definition of truth for a formula starting
with a majority modality requires comparing the number of worlds w’ for which ¢ is
true with the number of worlds w” for which —¢ is true. By requiring every world to
have finitely many reachable worlds, the unclear corner case of comparing infinite
numbers is simply avoided. The reason for choosing lists, in particular, is discussed
in Sect.5.

The majority voting axiom schema, stating that an arbitrary proposition is claimed
by a fixed group g if the majority of its members asserts it and it is voted, can then
be expressed as:

@y ((Me AV(p) = ¢)
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It is important to note that the vote operator is intensional with respect to its
argument, in the following sense: the truth value of V(p) depends on p’s intension
(i.e. the proposition itself) and not only on p’s extension (i.e. its denotation, its truth
value). Consequently, V(p) and V(g) may have different truth values, even if p and
q have the same truth values. Furthermore, if a group votes on a proposition p, this
does not mean that the group omnisciently votes on all other propositions that it
considers equivalent to p.

At this point one may wonder why the vote operator is needed. The following
example, which is loosely inspired by the real-world case of the Brazilian president’s
impeachment in 2016, shows that a modified majority voting axiom schema without
the vote guard (i.e. @,(Mp — p)) would not be very useful, because then the
opinions of a group would often be contradictory.

C?2C—>1? [I?
Senatora|C C — I 1
Senator b|—C C — [ =1
Senator ¢ |C  —(C — I)|—1

Example 1 Suppose that a senate g composed of three senators a, b and c (i.e.
g < la, b, c]) has to decide whether the president should be impeached (proposition
I). To come to that decision, the senators must deliberate on whether the president
has committed a certain crime (proposition C) and whether that crime is a sufficient
reason for impeachment (C — I). Suppose that the senators think according to the
following table:

Let S={@,(CA(C—>1T)AI),@,(~CA(C > I)A—I]),@.(CA—=(C—1)
AN=l),g <la,b,cl}. Then SF @,ONCAMC — I)AM=1). If @,
(OMp — p) is admitted, then:

e S, @,(Mp — p)F @,—I,because S F @,(IM—1).
o 5, @,(Mp — p)F @,1, because S F @,(IMC), and thus S, @,(Mp — p) F
@,C,and S F @,(MM(C — I),and thus S, @, (Mp — p) F @,(C — I).

And hence g’s opinions are contradictory (under S and @, (9tp — p)) because both
a proposition and its negation must be true. To avoid this, the senate must use the
guarded majority voting axiom schema and decide a priori on which propositions
it is going to vote. It may choose to vote on the conclusion (/) or on the premises
(C and C — 1), but it shouldn’t vote simultaneously on both. In either case, it is
possible to reason about the outcome of the senate’s decision process:

e in the first case (voting directly on the conclusion), S, @,((Mp A V(p)) —
p), V(I) F @,—I and hence the senate will decide not to impeach the president.

e in the second case (voting on the premises, and then deciding on the impeachment
by logical reasoning), S, @, ((Mp A V(p)) — p), V(C),V(C — I) F @,I and
hence the senate will decide to impeach the president.

One could also question the inclusion of the aggregation connective in the lan-
guage and wonder if it would not be possible to use the diamond ¢ and the explicit
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nominal in operators instead, since together they can also state that a world is reach-
able from another. The following example discusses this.

Example 2 Consider the same scenario from Example 1 above, but let S’ be S with
the statement g < [a, b, c]replaced by @, (Oin(a) A Qin(b) A Gin(c)). Superficially
S” and S may appear equivalent, but in fact they are not. S’ admits models where
the world denoted by g has other reachable worlds besides those denoted by a, b
and c, whereas in S the worlds reachable from the world denoted by g are exactly
only those denoted by a, b and c. Therefore, g < [a, b, c] is actually a stronger
statement than @,(Qin(a) A Qin(b) A Qin(c)). A consequence of this fact is that,
whereas with the former statement S, @, ((Mp A V(p)) — p), V() F @,—I,with
the latter statement ', @,((Mp A V(p)) — p), V(I) ¥ @,—I, because S’ gives
only partial information about the worlds reachable from the world denoted by g.
There is a model M of §', @,((Mp A V(p)) — p), V(I) where the world denoted
by g has several other reachable worlds where I is true and then M F @, 1.

Instead of extending the language with the aggregation connective, the language
could have been extended with quantification over sources and equality of sources.
In this case, a statement such as g < [a, b, c] could be replaced by @, (Gin(a) A
Qin(b) A Qin(c) AVx.(Qin(x) - x =a VvV x = bV x = ¢)). However, not only the
aggregation connective is simpler, more concise and more convenient, but it also
eases the implementation of counting, as discussed in the next two sections.

5 Embedding of Para-Disagreement Logics in Coq

A tool to support formal reasoning within para-disagreement logics can be imple-
mented through a shallow embedding of the semantics of para-disagreement logics
in the Coq proof assistant [11], which is based on the calculus of inductive construc-
tions [20] for a non-extensional type-theoretical higher-order logic. The first step is
to declare a type for worlds and the reachability function:

Parameter W: Type.
Parameter r: W -> list W.

Then the type of propositions of para-disagreement logics is defined as the function
type of functions that take a world and return a Coq proposition (i.e Prop):

Definition o := W -> Prop.

The propositional connectives operating on the lifted modal propositions are defined
as functions taking modal propositions and a world, and returning a Coq proposition.
Through currying (partial application of functions to arguments), such connectives
can also be seen as taking modal propositions and returning a modal proposition (i.e.
a function that takes a world and returns a Coqg proposition). Notations are declared
to allow the new lifted connectives to be written down exactly as Coq’s built-in
connectives, but with an “m” prefix.
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Definition mnot (p: o) (w: W) := "~ (p w).

Notation "m”~™ p" := (mnot p) (at level 74, right associativity).
Definition mand (p g:o0) (w: W) := (p w) / (g w).

Notation "p m/ g" := (mand p q)

(at level 79, right associativity).

Definition mor (p g:0) (w: W) := (p w) (g w) .
Notation "p m g" := (mor p qg) (at level 79, right associativity).

Definition mimplies (p g:o0) (w: W) :=
Notation "p m-> g" := (mimplies p qg)
(at level 99, right associativity).

(p w) —> (g w).

Definition mequiv (p g:o) (w: W) := (p w) <> (g w).
Notation "p m<-> g" := (mequiv p q)
(at level 99, right associativity).

The use of a reachability function mapping worlds to their reachable worlds instead
of a binary reachability relation between worlds requires that the box and diamond
modalities be defined in a different way, using an auxiliary function that traverses
the list of reachable worlds.

Fixpoint is_in A: Type (x: A) (l: list A) := match 1 with
| nil => False
| (cons h tail) => x = h (is_in x tail)

end.

Definition box (p: o) :=
fun w => forall wl, (is_in wl (r w)) -> (p wl).

Definition dia (p: o) :=
fun w => exists wl, (is_in wl (r w)) / (p wl).

The @ modality and the explicit nominal operator in borrowed from hybrid logics
are defined as expected, and a notation is declared to allow the special symbol @ to
stand for the modality.

Definition At (w: W) (p: o) := fun wO: W => (p w).
Notation "’'@" w p" := (At w p)

(at level 200, w ident, right associativity) : type_scope.
Definition In (w: W) := fun w0 => w = wO0.

For the sake of simplicity, it is assumed here that the set of source symbols .7 and the
set of worlds W denoted by the sources coincide. In other words, the interpretation
function I » is assumed to be the identity function. In the Cog embedding, this is
reflected in the usage of the type W not only for worlds but also for sources, as seen
in the type of the @ modality.
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The embedding of the basic language of para-disagreement logics in Coq is
completed with the definition of the aggregation connective and its corresponding
notation:

Definition aggregation (g: W) (1: list W): o :=

fun w: W => (r g) = 1.
Notation "g ’<<’ 1" := (aggregation g 1)
(at level 70) : type_scope.

And finally, quotes are used as notation for truth of a modal proposition in all worlds:

Definition UniversallyTrue (p: o) := forall w, p w.
Notation "’/ p ’" := (UniversallyTrue p).
Ltac mv := match goal with [|- (UniversallyTrue _)] => intro end.

With all the basic language ready, it is time to move on to the extensions described in
Sect.4.4. As the majority modality requires counting, an auxiliary count function
is defined:

Parameter dec: forall (f: o) (w: W), £ w + 7 (f w).
Fixpoint count (p: o) (l: list W) := match 1 with
[ [1 =>20

| head::tail => if (dec p head)
then (1 + (count p tail))
else (count p tail)
end.
The function count needs to traverse all the reachable worlds and count on how
many of them the modal proposition is true. Lists are the simplest traversable and
collection datatype, and that is why it was chosen here and also as the return type of
the reachability function in Definition ??. The parameter dec is needed to conform
with the typing requirements of the “1f ..then ..else ..” expression.
Once the count function is available, defining the majority modality can be
easily done as follows:

Definition M (p: o) :=
fun w: W => ((count p (r w)) > (count (m~ p) (r w))).

Next the intensional vote operator is declared, together with an axiom stating that it
is invariant with respect to negation of its argument.

Parameter V: o —> o.

Axiom vote_invariant_wrt_negation:
"mforall p, (V p) m<-=> (V (m~ p)) '.

And then finally the majority axiom schema can be declared:
Axiom majority_axiom: ’'mforall p, ((V p) m-> ((M p) m—> p))’.

Now that the para-disagreement logic is fully embedded, the impeachment example
can be formalized as shown below:
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( The three senators =)
Parameters a b c: W.

(» The senate containing the three senatc x )

Parameter g: W.

Axiom e: ' (g << [a; b ; cl)’.

(» The two

(x» pro sition that the 1l a crime x)
Parameters C: o.

(» proposition that the president should be impeached x*)

Parameters I: o.

(* The senators’ opinions x)

Axiom a_claims_C: ' (@ a C)'.

Axiom a_claims_C_implies_I: '@ a (C m—> I)’.

(* a’s third opinion is not independent x)

Lemma a_claims_I: '@ a I '/

Proof. mv.

apply (a_claims_C_implies_I w). apply (a_claims_C w).
Qed.

Axiom b_claims_not_C: '@ b (m~ C)'.
Axiom b_claims_C_implies_I: '@ b (C m—-> I)’.
Axiom b_claims_not_I: '@ b (m~ I)’.

Axiom c_claims_C: (@ c C)'.
Axiom c_claims_not_C_implies_I: '@ c (m
Axiom c_claims_not_I: (@ ¢ (m~ I))'.

(* The propos 1s that have be
Axiom C_is_voted: '@ g (V C)'.
Axiom C_implies_I_is_voted: '@ g (V (C m—> I))'.

From the axioms stated above, it is now possible to prove that the majority claims
that the president committed a crime:

Lemma majority_claims_C: '@ g (M C)'.
Proof.

mv.

unfold At; unfold M.

rewrite (e w).

assert (C a); [apply (a_claims_C w) | auto].
assert ((m~ C) b); [apply (b_claims_not_C w) | auto].
assert (C c¢); [apply (c_claims_C w) | auto].

unfold count.

destruct (dec C a); [auto | contradiction].
destruct (dec C c¢); [auto | contradiction].
destruct (dec (m~ C) b); [auto | contradiction].
destruct (dec (m~ C) a); [contradiction | auto].
destruct (dec C b); [contradiction | auto].
destruct (dec (m~ C) c¢); [contradiction | auto].

Qed.
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However, the proof above is tedious, requiring the user to interactively count the
senators that (dis)agree with the claim. In order to automate the counting, a new
tactic can be implemented using Coq’s Ltac language, as shown below:

Ltac count db :=
match goal with
|- context [if dec ?g ?x then _ else _] =>
destruct (dec g x);
firstorder with db;
count db
end.

The count tactic receives a hint database db of axioms and tries to automatcally
decide the conditions of if-then-else statements in the goal using the firstorder
tactic with the given database. It is a recursive tactic that reapplies itself until it fails.

With shallow embeddings, it is also often the case that definitions need to be
unfolded for a goal to be proven. To automate the unfolding, the unfold_pdl
tactic defined below repeatedly tries to unfold all defined connectives, quantifiers
and operators included in the modal unfold hint database occurring both in the
conclusion and in the hypotheses of the goal.

Create HintDb modal.
Hint Unfold mimplies mequiv mnot mor mand
dia box A E M At In UniversallyTrue count: modal.

Ltac unfold_pdl := try mv; repeat autounfold with modal;
repeat autounfold with modal in * |[-.

Automation can be improved further with a tactic that combines the previously
defined tactics with Coqg’s built-in auto and autorewrite tactics:

Ltac pdl_solve kb rb := unfold_pdl; autorewrite with rb;
try auto with kb modal; try count kb.

In the case of the impeachment example, the databases of facts and rewrite equalities
can be created as shown below:

Create HintDb db.
Hint Resolve a b ¢ g e C I: db.
Hint Resolve C_is_voted C_implies_I_is_voted: db.
Hint Resolve a_claims_C a_claims_C_implies_I a_claims_I: db.
Hint Resolve b_claims_not_C
b_claims_C_implies_TI
b_claims_not_I: db.
Hint Resolve c_claims_C
c_claims_not_C_implies_TI
c_claims_not_I: db.

Create HintDb rb.
Hint Rewrite e: rb.
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The previous lemma can now be proved fully automatically:

Lemma majority_claims_C: '@ g (M C)’.
Proof.

pdl_solve db rb.

Qed.

And other lemmas can be proven fully automatically as well:

Lemma majority_claims_C_implies_TI: '@ g (M (C m—> I))’.
Proof.

pdl_solve db rb.

Qed.

Lemma majority_claims_not_I: '@ g (M (m~ I))’.
Proof.

pdl_solve db rb.

Qed.

Full automation is not possible when the lemma to be proven depends on axioms and
lemmas that have not been included in the hint databases. Furthermore Coq’s auto
tactic ignores axioms and lemmas that have a universally quantified head, because
such axioms and lemmas can match any goal and, therefore, the proof search may
not terminate. The majority axiom schema has a universally quantified head, and
that is why it has not been included in the hint database. Consequently, lemmas that
depend on this axiom currently cannot be proven fully automatically. Nevertheless,
in such cases, it often suffices to apply the majority axiom, include previously proved
lemmas in the local context with pose, and solve the remaining goals automatically
with the provided tactic.
Lemma g_claims_C: ' (@ g C)’.
Proof.
pdl_solve db rb.
apply majority_axiom.

pose C_is_voted; pdl_solve db rb.

pose majority_claims_C; pdl_solve db rb.
Qed.

A less automatic but more efficient alternative to pose and pdl_solve is shown
below for a similar lemma.
Lemma g_claims_C_implies_I: '@ g (C m—> I)’.
Proof.
pdl_solve db rb.
apply (majority_axiom g);
[apply (C_implies_I_is_voted w) |
apply (majority_claims_C_implies_I w)].
Qed.

And finally the president’s impeachment can be shown:

Theorem g_claims_TI: (@ g I)’.
Proof.

pdl_solve db rb.

apply (g_claims_C_implies_I w).
exact (g_claims_C w).

Qed.
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6 Embedding of Para-Disagreement Logics in SMT

To automate reasoning in para-disagreement logics even further, SMT-solvers (for
satisfiability modulo theories) such as z3 [17], which are capable of dealing with
lists, recursive function definitions and linear integer arithmetic are a natural choice.
The main difference to the previous embedding in Coq is that the standard
language[4] of SMT-solvers is not a higher-order typed language but a first-order
multi-sorted language. This already causes difficulty when declaring the sort/type
for propositions. In constrast to the embedding in Coqg, where propositions had
a defined function type from worlds to Coq’s built-in Prop, function types/sorts
are not available in the first-order multi-sorted first-order language of SMT-solvers.
Therefore, propositions are assumed to be of a primitive (declared but undefined)
sort of arity 0.
(declare-sort o 0)
(declare-sort W 0)
As in the Cog embedding, reachability is declared as a function from worlds to lists
of worlds:

(declare—-fun r (W) (List W))

As a consequence of the fact that the sort o of propositions is now a primitive sort
and not a function type from worlds to the meta-logic’s propositions, the connectives
and modal operators cannot be simply defined as functions, as they were in the Cog
embedding. Instead, they must first be declared without definition:

declare—-fun mnot (o) o)
declare-fun mimp (o o) )
declare—fun mand

declare—-fun box (
declare—-fun dia (
declare-fun M (o) o)

declare—-fun vote (o) o)

(

(

(
declare-fun mor (o o) o

o

o

(
(
(
(
(
(
(
(

And then their intended meanings have to be axiomatized with the help of a truth
predicate:

(declare-fun T (o W) Bool) ;; (T p w) = "p is true at world w"

(assert (forall ((w W) (p o))
(1ff (T (mnot p) w) (not (T p w)) ) )

(assert (forall ((w W) (p o) (g o))
(1ff (T (mimp p q) w) (=> (T p w) (T g w)) ) ))

(assert (forall ((w W) (p o) (g o))
(1ff (T (mand p g) w) (and (T p w) (T g w)) ) ))

(assert (forall ((w W) (p o) (g o))
(iff (T (mor p gq) w) (or (T p w) (T g w)) ) ))
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The axiomatizations of box, diamond and majority make use of auxiliary recursive
function definitions that traverse the list of reachable worlds and output a formula
that checks, respectively, whether the given proposition is true in all, in at least one,
and in the majority of reachable worlds:

(define-fun-rec TInAll ((p o) (1 (List W)) ) Bool
(or (= 1 (as nil (List W)))
(and (T p (head 1)) (TInAll p (tail 1))) ))
(assert (forall ((w W) (p o)) (iff (T (box p) w)

(TInAll p (r w)) ) )

(define-fun-rec TInOne ((p o) (1 (List W)) ) Bool
(and (not (= 1 (as nil (List W))))
(or (T p (head 1)) (TInOne p (tail 1))) ))
(assert (forall ((w W) (p o)) (iff (T (dia p) w)

(TInOne p (r w)) ) )

(define-fun-rec count ((p o) (1 (List W)) ) Int
(ite (= 1 (as nil (List wW))) O
(ite (T p (head 1)) (+ 1 (count p (tail 1)))

(count p (tail 1)) )))

(assert (forall ((w W) (p o)) (iff (T (M p) w)
(> (count p (r w))
(count (mnot p) (r w))))))

For convenience, a validity predicate is defined, analogously to the quotes in the Cog
embedding.

(define-fun V ((p o)) Bool (forall ( (w W) ) (T p w)) )
And finally the majority axiom schema can be asserted:
(assert (forall ((p o)) (V (mimp (mand (vote p) (M p)) p) ) ))

Now that the para-disagreement logic has been embedded, the impeachment example
can be formalized. First the senators and the senate itself are declared as worlds:

(declare-fun senA () W)
declare—-fun senB () )

( W
(declare-fun senC () W)
( ()

declare—-fun senate W)

Then the fact that the senate aggregates the three senators is asserted.

r senate)

insert senA

insert senB

insert senC (as nil (List W))))) ))

(assert (=

(
(
(
(
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And the atomic propositions are declared and the senators’ opinions can be asserted:

(declare—fun c () o)
(declare-fun i () o)
(assert (T c senh))
(assert (T (mimp c i) senA))

(assert (T 1 senA))

(assert (T (mnot c) senB))
(assert (mimp ¢ 1) senB))
(assert (T (mnot i) senB))

5

(assert (T c senC))
(assert (T (mnot (mimp c i)) senC))
(assert (T (mnot i) senC))

The facts that the senators decided to vote on whether the president committed a
crime and on whether the crime should imply impeachment are asserted.

(assert (T (vote c) senate))
(assert (T (vote (mimp c 1i)) senate))

To ask the SMT-solver whether the previous assertions entail impeachment, the
negation of the impeachment conjecture should be asserted, as shown below. This
is so because SMT-solvers are refutational theorem provers, proving conjectures by
contradiction.

(assert (not (T 1 senate)) )
Finally, the commands check-sat and get-proof should be invoked.

( )
( )

Unfortunately, Z3 fails to prove this conjecture, probably because SMT-solvers have
incomplete quantifier instantiation heuristics, which may be failing to find the correct
instantiation when there are defined connectives and operators. Fortunately, Z3 can
solve the problem with just a slight help. If the following unfolding of the majority
axiom schema is manually asserted, Z3 is able to do all the remaining logical and
arithmetical reasoning fully automatically, and outputs a proof that is 35842 charac-
ters long.

(assert (forall ((p o) (w W))
(=> (and (T (vote p) w) (T (M p) w)) (T p w) )))
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7 Related Work

The idea of using modal logics to handle (apparent) contradictions can be traced
back at least to Jaskowski’s discussive logics [16]. However, the para-disagreement
logics proposed here use the @ modality, thereby overcoming well-known issues
[19] faced by Jaskowki due to his use of the ¢ modality instead. As in Jaskowki’s
logics, the [J modality acts like a consensus operator. L1P expresses that everybody
claims P. Together with the 7" axiom (JP — P), the behavior of [ is reminiscent
of the o consistency operator of logics of formal inconsistency with principles of
gentle explosion [13].

Preferential and Distance-based paraconsistent logics [3] form an interesting
class of logic that handles inconsistencies by considering most preferred or least dis-
tant valuations of a theory in order to determine the logical consequences of the theory.
Although the use of preferential and numerical approaches may suggest a similarity
with the voting-based para-disagreement logic presented in Sect.4.4 or with para-
disagreement logics where an information source is preferred (e.g. as in Sect. 4.3), the
similarities are superficial and the logics are actually very different, simply because
para-disagreement logics are not paraconsistent logics. Para-disagreement logics are
classical, monotonic, modal logics, where the principle of explosion holds. Their
goal is to deal with consistent theories containing formulas such as @, P A @,,—P,
which express a disagreement between s; and s,. In paraconsistent logics (including
preferential and distance-based), on the other hand, the concern is to avoid the princi-
ple of explosion in the presence of inconsistencies in theories with formulas such as
P A —=P. Another difference between para-disagreement logics and preferential or
distance-based paraconsistent logics is that the latter’s preferential or distance-based
mechanisms for avoiding explosion in the presence of inconsistencies is extra-logical
and rigidly built-in as part of the semantics, whereas the former’s disagreement res-
olution mechanisms are expressible syntactically in the logic itself through axiom
schemata that can be flexibly modified and even combined to suit various domains
of applications, as not all disagreements ought to be resolved in the same way.

As (apparent) contradictions can be common for Al agents and databases han-
dling data from various sources or from different points in time, it is not surpris-
ing that many tasks, such as belief revision [1], information/data integration [18],
database repair [10] and consistent query answering [14, 21], share an interest
with para-disagreement logics on the topic of tackling (apparent) contradictions.
One important distinguishing characteristic of the framework of para-disagreement
logics is that it does not advocate for a specific way of handling apparent contra-
dictions but rather provides an expressive language that allows disagreements to be
explicitly modeled and allows a wide variety of disagreement resolution mechanisms
to be asserted through axiom schemata, as non-exhaustively exemplified in Sect. 4.
Due to this generality, it may be the case that some concrete approaches proposed
for belief revision, database repair, information integration and consistent query
answering could be defined as concrete para-disagreement logics within the frame-
work described here. In such cases, the para-disagreement logic framework would
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serve as an alternative classical modal foundation to define these approaches, which
are often described from a non-classical, non-monotonic and paraconsistent stand-
point. Despite its generality, however, certainly not all database-related approaches
are amenable to be described as para-disagreement logics. An essential requirement
in the para-disagreement logic framework is the ability to distinguish and name the
sources of contradictory information. In a practical database setting, this requirement
is not always satisfied. For instance: a single source may already contain contradic-
tory information; or, maybe, even though the contradictory information originates
from different sources or time points, it is not known anymore from which source
or time point each piece of information originated. Database-related techniques that
target such situations are clearly outside the scope of the para-disagreement logic
framework.

The embedding of para-disagreement logics in Coq follows an approach previ-
ously used in the embedding of the modal logics K, KB and S5 in Coq [8, 9] and
related to the embedding of the same logics in Isabelle [5, 7] and TPTP THF [6].
However, that approach had to be modified (as explained in the previous sections),
because para-disagreement logics require a different technical encoding of reacha-
bility between worlds, and it also had to be extended with arithmetical reasoning for
counting worlds. Furthermore, the work presented here also discusses automation of
reasoning in para-disagreement logic within Coq, whereas the previous work in [9]
was concerned with interactive reasoning only.

Thanks to the maturity, efficiency and popularity of SAT-solvers, theorem provers
(e.g. [15, 22]) for non-classical and modal logics have been implemented recently
with architectures that use SAT-solvers as black-boxes. In contrast, the work pre-
sented here uses an SMT-solver. As the logics of SMT-solvers are more expressive
than the classical propositional logic of SAT-solvers, non-classical and modal logics
(even complex ones requiring arithmetical reasoning such as para-disagreement log-
ics) can be fully embedded within the logics of SMT-solvers, and these solvers can
then be used directly, with no need to build a separate prover having an SMT-solver
as a black-box component.

8 Conclusion

The para-disagreement logics presented here constitute a new paradigm to deal with
apparent contradictions that occur when different agents or sources of information
have conflicting opinions about some propositions. Four different disagreement res-
olution methods were discussed, with special emphasis on a majority voting method.
However, it is important to note that para-disagreement logics are a general frame-
work that, in principle, can support other (possibly more sophisticated) disagreement
resolution methods as well.

The development of para-disagreement logics required a formulation of possible
worlds semantics that is technically different from the usual. Their embedding into
the meta-logics of Cogand SMT-solvers also pushed further the state-of-the-art of the
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embedding approach, as it required the use of arithmetics, which was not necessary in
previous work on simpler modal logics. At the same time, the successful (almost full)
automation of para-disagreement logical reasoning within Coq and Z3 attests the
current level of maturity of these tools even for a domain of application for which they
were not originally intended. And indeed, the embeddings described here expand the
range of applications of classical interactive and automated theorem provers to the
area of paraconsistent reasoning, broadly understood, at least when contradictions
are merely apparent as a result of disagreement between clearly identifiable sources.

Although the focus here was on propositional para-disagreement logics, this was
so just because the propositional level was sufficient to discuss the essence of para-
disagreement logics. The embedding into the meta-logic of SMT-solvers could be
easily extended to quantifier-free first-order logic, and the embedding into the meta-
logic of Cog can be easily extended to rigid higher-order logic with constant or
varying domains (i.e. with actualistic or possibilistic quantifiers).

As para-disagreement logics target apparent inconsistencies (e.g. disagreements
suchas @, P A @, —P),they should be regarded as acomplement, and not areplace-
ment, to paraconsistent logics, which handle actual inconsistencies (e.g. P A —=P).
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