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Contradictions, from Consistency
to Inconsistency

Walter Carnielli and Jacek Malinowski

If something is contradictory, then it is not consistent; but if something is non-
contradictory, is it necessarily consistent? If so, there may be nothing between con-
sistency and inconsistency. Thus if we literally apprehend the title of this book, it will
be onnothing.However, the title of this book should be understoodmore broadly. This
is because it is not so obvious how we should deal with notions like contradictions,
consistency, inconsistency, and triviality. It must not be the case that something is
there and is not there at the same time - here is the principle of contradiction in the for-
mulation of Aristotle which, on the one hand, forms the basis of all critical thinking,
and on the other hand, it is the object of controversy among the philosophers from
Heraclitus through Hegel, to the present day. Jan Łukasiewicz, in his monograph
Aristotle’s Principle of Contradiction (Jan Łukasiewicz O zasadzie sprzeczności
u Arystotelesa, Polska Akademia Umiejȩtności, Kraków 1910. English translation
after Holger Heine Jan Łukasiewicz and the Principle of Contradiction, PhD Thesis,
University of Melburne 2013 http://cat.lib.unimelb.edu.au/record=b5152962 access
18-03-2018.) wrote:

The principle of contradiction is the only weapon against mistakes and lies. If contradictory
statements were to be reconcilable with each other, if affirmation were not to nullify denial,
but if the one were to be able to meaningfully coexist next to the other, then we would
have no means at our disposal to discredit falsity and unmask lies. It is because of this that
in every inference in which we apply this principle, for example in an apagogic proof, the
concern is to demonstrate the falsity of some statement. And it is also because of this, that
the accusation that somebody is caught in contradictions—be it in a scientific treatise or
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2 W. Carnielli and J. Malinowski

on the witness stand—is such a sensitive matter. Without mercy, it reveals mistakes or lies.
Thus, it is the principle of contradiction that makes it possible to victoriously fight a variety
of untruths, and on this relies its entire significance.

In the same monograph, Łukasiewicz indicated that the Aristotle’s writings included
three different meanings of the contradiction principle: ontological, logical, and psy-
chological, although Aristotle himself did not distinguish them. Within the ontolog-
ical approach ‘The same cannot simultaneously belong and not belong to and the
same thing’. Within the logical approach ‘Contradictory statements are not simulta-
neously true’. Whilst within the psychological approach, ‘Nobody can believe that
one and the same thing is and is not’.

The terms consistency, inconsistency and contradiction in the title of this book
should be understood in such a broad and multithreaded manner. In the classical
logic, based on the bivalence principle, material implication and the modus ponens
principle, the Ex falso quodlibet law applies, also known as the principle of explo-
sion. Anymaterial implication with a false predecessor is true. So if the theory allows
contradictions, which are false in the traditional logic after all, then any proposition
will be its logical consequence. Therefore, if we apply classical logic, any theory
containing a contradiction becomes worthless. However, even in this most restric-
tive comprehension of the contradiction principle, an infraction of the contradiction
principle, even only apparent, is an important research tool. As a research tool, we
face the contradiction in each apagogical argument (reductio ad absurdum) when in
the conditional mood, by assuming the falsity of the argued thesis.

The restriction of the classical logic obtained by rejecting the principle of explo-
sion leads to a wide class of logical systems known as paraconsistent logics. They
allow to tackle the local incidental contradictions. If, for example, a vast database
contains an error, it is natural to treat it as a contradiction to the fundamental knowl-
edge, external to that database. Applying classical logic to such a database would
make it useless since every sentence would be a logical consequence thereof. How-
ever, this would be an action contrary to the common sense. After all, it is sufficient
to fix the error or at least minimize its effects. Rejection of the principle of explosion
makes the database still useful, following the possible isolation of an ambiguous,
contradictory fragment. Such locally contradictory but globally useful theories lie
just between consistency and inconsistency.However, the subjectmatter of the papers
contained in this volume by far exceeds the scope of the paraconsistent logics.

Not less frequent phenomena are the assemblies of non-contradictory theories
which are contradictory to each other. They form a peculiar sort of patchwork of
non-contradictory theories. Such theories are not only useful, they also constitute a
common phenomenon in science. The relativistic mechanics is contradictory to the
classical one; in the first one the velocity of light is constant, while in the second
one it depends on the reference system. A photon is a particle or a wave, depending
on what phenomenon we desire to explain. The contradiction is not a problem here
because the individual theories have different domains. The phenomenon of global
contradiction between locally non-contradictory theories, typical of science, shows
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that in the entirety of its sense, science as awhole lies somewhere between consistency
and inconsistency.

What leads us to the contradiction, in science but also in everyday life, are not
only the paradoxes, but also conflicting information, bad data and other kinds of
uncertainty.

Let us put aside paradox-like sophisms and paralogisms which are based on con-
cealed logical errors. The essence of the proper paradox is that we end up with an
unexpected result through a correct reasoning. It can be a contradictory proposition—
i.e. an antinomy, or a contradiction in a logical sense—as it is the case for theRussell’s
Antinomy. However, other paradoxes of infinity lead to the unexpected result that the
part does not have to be smaller than the whole. Such a result, even though it is not
a contradictory proposition in its own right, contradicts the common-sense intuition
and can be treated as a contradiction in the sense of the psychological principle of
contradiction. Georg Cantor already in 1899, in his seminal work on the founda-
tions of set theory, referred to multiplicities such that the assumption that all of its
elements ‘are together’ leads to a contradiction, so that it is impossible to conceive
of the multiplicity as a unity, as ‘one completed thing’. Such multiplicities Cantor
called absolutely infinite or inconsistent multiplicities. However, the cases where the
totality of the elements of a multiplicity could be thought of without a contradiction
as ‘being together’, or ‘forming one thing’, would lead to a consistent multiplicity,
or a ‘set’.

If we take the following property as an axiom: ‘A part cannot be equinumerous
with the whole’, we will easily show that no endless sets exist. And yet this property
still seems natural, for many it is obvious, although on the other hand it forms
the basis of infinity paradoxes. Which ones of the obvious “truths” we take as an
axiomatic starting point for the considerations, is therefore of significance. This fact
only became obvious thanks to the discoveries of anomalies related to the concept of
infinity. This shows how the set theory, and especially the field of the infinite cardinal
numbers, is placed between consistency and inconsistency. The same applies to the
selection of axioms and the selection of the primary concepts. A specific selection can
determine the contradiction of a theory. The analysis of the theory language and the
selection of its fundamental concepts is also an issue which, in fact, lies between non-
contradiction and contradiction. This volume consists of 13 papers. Most of them,
but not all, are developed around the subtle distinctions between consistency and
non-contradiction, as well as among contradiction, inconsistency, and triviality, and
concern one of the above mentioned threads of the broadly understood contradiction
principle. Some others take a perspective that is not too far away from such themes,
but with the freedom to tread new paths.

Jonas R. Becker Arenhart: “The Price of True Contradictions About the World”

The paper examines an argument advanced by Newton C. A. da Costa according to
which there may be true contradictions about the concrete world. This is perhaps one
of the few arguments advancing this kind of thesis in full generality in the context
of a scientifically-oriented philosophy. Roughly put, the argument holds that contra-
dictions in the concrete world may be present where paradoxes require controversial
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solutions, solutions which in general are radically revisionary on much of the body
of the established science. It is argued that the argument may be successfully chal-
lenged in the face of the actual practice of science; as a consequence, commitment
to true contradictions about the world may be correctly dismissed as unnecessary, at
least if the route to contradictions is the one advanced in the argument. Its final part
highlights a parallel between da Costa’s argument and another typical dialetheist
argument by Graham Priest to the effect that paradoxes of self-reference are true
contradictions.

Luis Estrada-Gonzalez and Maria del Rosario Martinez-Ordaz: “The Possibil-
ity and Fruitfulness of a Debate on the Principle of Non-contradiction”

Five major stances on the problems of the possibility and fruitfulness of a debate on
the principle of non-contradiction (PNC) are examined: Detractors, Fierce support-
ers, Demonstrators, Methodologists and Calm supporters. The paper intends to show
what Calm supporters have to say on the other parties wondering about the possibil-
ity and fruitfulness of a debate on PNC. The main claim is that one can find all the
elements of Calm supporters already in Aristotle’s works. In addition, it is argued
that the Aristotelian refutative strategy, originally used for dealing with detractors of
PNC in Metaphysics, has wider implications for the possibility and fruitfulness of
an up-to-date debate on PNC, at least in exhibiting some serious difficulties for the
other parties.

Michele Friend and Maria del Rosario Martinez-Ordaz: “Keeping Globally
Inconsistent Scientific Theories Locally Consistent”

Most scientific theories are globally inconsistent. ‘Chunk and permeate’ is a method
of rational reconstruction that can be used to separate, and identify, locally consis-
tent chunks of reasoning or explanation. This then allows us to justify reasoning
in a globally inconsistent theory. We extend chunk and permeate by adding a visu-
ally transparent way of guiding the individuation of chunks and deciding on what
information permeates from one chunk to another. The visual representation is in
the form of bundle diagrams. The bundle diagrams are then extended to include not
only reasoning in the presence of inconsistent information or reasoning in the logical
sense of deriving a conclusion from premises, but more generally reasoning in the
sense of trying to understand a phenomenon in science. This extends the use of the
bundle diagrams in terms of the base space and the fibres. This is then applied to
a case in physics, that of understanding binding energies in the nucleus of an atom
using together inconsistent models: the liquid drop model and the shell model. Some
philosophical conclusions are drawn concerning scientific reasoning, paraconsistent
reasoning, the role of logic in science and the unity of science.

Eduardo Barrio, Federico Pailos and Damian Szmuc: “What is a Paraconsistent
Logic?”

Paraconsistent logics are logical systems that reject the classical principle, usually
dubbed Explosion, that a contradiction implies everything. However, the received
view about paraconsistency focuses only on the inferential version of Explosion,
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which is concerned with formulae, thereby overlooking other possible accounts. This
paper proposes to focus, additionally, on a meta-inferential version of Explosion, i.e.
one which is concerned with inferences or sequents. In doing so, the paper offers a
new characterization of paraconsistency by means of which a logic is paraconsistent
if it invalidates either the inferential or the meta-inferential notion of Explosion. The
non-triviality of this criterion is shown by discussing a number of logics. On the
one hand, logics which validate and invalidate both versions of Explosion, such as
classical logic and Asenjo–Priest’s 3-valued logic LP.

On the other hand, logics which validate one version of Explosion but not the
other, such as the substructural logics TS and ST, introduced by Malinowski and
Cobreros, Egré, Ripley and van Rooij, which are obtained via Malinowski’s and
Frankowski’s q- and p-matrices, respectively.

David Gaytán, Itala D’Ottaviano and Raymundo Morado: “Provided You’re
not Trivial: Adding Defaults and Paraconsistency to a Formal Model of Expla-
nation”

Let us assume that a set of sentences explains a phenomenonwithin a systemof beliefs
and rules. Such rules and beliefs may vary and this could have a collateral effect that
different sets of sentencesmay become explanations relative to the new system,while
other ones no longer count as such. This paper offers a general formal framework
to study this phenomenon. The paper also gives examples of such variations as we
replace rules of classical deductive logic with rules more in the spirit of da Costa’s
paraconsistent calculi, Reiter’s default theories, or even a combination of them. This
paper generalizes the previous notions of epistemic system. That notion was used
to analyze the concept of explanation, using Reiter’s default theories and a specific
paraconsistent logic of da Costa. The main proposal is a formal framework, GMD,
based on doxastic systems, which allows the interaction between the theoretical
constructs (in this case, explanations), theories and logics to be analysed. The formal
framework is intended to be applied to the modeling of scientific explanation, trying,
along the way, to shed light on different kinds of interaction between paraconsistency
and non-monotonicity.

Bruno Woltzenlogel Paleo: “Para-Disagreement Logics and Their Implemen-
tation Through Embedding in Coq and SMT”

Four different disagreement resolution methods were discussed, with special empha-
sis on the majority voting method. However, it is important to note that para-
disagreement logics form a general framework that, in principle, can support other
(possiblymore sophisticated) disagreement resolutionmethods aswell. The develop-
ment of para-disagreement logics required a formulationof possibleworlds semantics
that is technically different from the usual one. Their embedding into the meta-logics
of Coq and SMT-solvers also pushed further the state-of-the-art of the embedding
approach, as it required the use of arithmetics, which was not necessary in previous
work on simpler modal logics. At the same time, the successful (almost full) automa-
tion of para-disagreement logical reasoning within Coq and Z3 attests the current
level of maturity of these tools even for a domain of application for which they were



6 W. Carnielli and J. Malinowski

not originally intended. And indeed, the embeddings described here expand the range
of applications of classical interactive and automated theorem provers to the area of
paraconsistent reasoning, broadly understood, at leastwhen contradictions aremerely
apparent as a result of disagreement between clearly identifiable sources. Although
the focus herewas on propositional para-disagreement logics, thiswas so just because
the propositional level was sufficient to discuss the essence of para-disagreement log-
ics. The embedding into the meta-logic of SMT-solvers could be easily extended
to quantifier-free first-order logic, and the embedding into the metalogic of Coq
can be easily extended to rigid higher-order logic with constant or varying domains
(i.e. with actualistic or possibilistic quantifiers). As para-disagreement logics target
apparent inconsistencies (e.g. disagreements such as @s1 P ∧ @s2¬P), they should
be regarded as a complement, and not a replacement, to the paraconsistent logics,
which handle actual inconsistencies (e.g. P ∧ ¬P).

Marco Panza and Mirna Dzamonja: “Asymptotic Quasi-completeness and
ZFC”

The axioms ZFC of first order set theory belong to the best and most accepted, if not
perfect, foundations used in mathematics. As they imply the axioms of first-order
Peano Arithmetic and are presented using a recursively enumerable list of axioms,
ZFC axioms are subjects to Gödel’s Incompleteness Theorems, and so if they are
assumed to be consistent, they are necessarily incomplete. This can be witnessed by
various concrete statements, including the celebrated Continuum Hypothesis CH.
The independence results about the infinite cardinals are so abundant that it often
appears that ZFC can basically prove very little about such cardinals. This paper puts
forward a thesis that ZFC is actually very powerful at infinite cardinals, but not at all
of them.

Rodrigo A. Freire: “Interpretation and Truth in Set Theory”

The present paper is concerned with the presumed concrete or interpreted character
of some axiom systems, notably axiom systems for the usual set theory. A presen-
tation of a concrete axiom system (set theory, for example) is accompanied with a
conceptual component which, presumably, delimitates the subject matter of the sys-
tem. In this paper, concrete axiom systems are understood in terms of a double-layer
schema, containing the conceptual component as well as the deductive component,
corresponding to the first layer and to the second layer, respectively. The conceptual
component is identified with a criterion given by directive principles. Two lists of
directive principles for the set theory are given, and the two double-layer pictures of
the set theory that emerged from these lists are analyzed. Particular attention is paid
to the set-theoretic truth and the fixation of truth-values in each double-layer picture.
The semantic commitments of both proposals are also compared, and distinguished
from the usual notion of ontological commitment, which does not apply. The pre-
sented here approach to the problem of concrete axiom systems can be applied to
other mathematical theories with interesting results. The case of elementary arith-
metic is mentioned in passing.
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Daniele Mundici: “Coherence of the Product Law for Independent Continuous
Events”

In his paper Logische Prinzipien des mathematischen Denkens, 1905, p.168, Hilbert
observed that axioms and definitions in probability theory are a bit confused. As it is
well known, the additivity law for the probability of two incompatible events is an
axiom, while the product law defines independent events in terms of a preassigned
probability function. And yet, independence, just like incompatibility, has a classical
probability-free definition in the context of Boolean algebras and propositional logic.
By de Finetti’s 1932 Dutch Book theorem, the additivity law follows from his notion
of a coherent/consistent set of betting odds. The author shows that the product law
for (logically) independent events similarly follows from de Finetti’s fundamental
notion, for Boolean as well as for continuous MV-algebraic events. Thus an axiom
and a definition turn out to be corollaries of a consistency notion.

Jose Carlos Magossi and Olivier Rioul: “A Local-Global Principle for the Real
Continuum”

This paper discusses the implications of a local-global (or global-limit) principle for
proving the basic theorems of real analysis. The aim is to improve the set of available
tools in real analysis, where the local-global principle is used as a unifying principle
fromwhich the other completeness axioms and several classical theorems are proved
in a fairly direct way. As a consequence, the study of the local-global concept can
help to establish some better pedagogical approaches for teaching classical analysis.

Marcelo Finger: “Quantitative Logic Reasoning”

This paper examines several similarities among the logic systems that deal simulta-
neously with deductive and quantitative inference. It is claimed that it is appropriate
to call the tasks those systems perform as Quantitative Logic Reasoning. Analogous
properties hold throughout that class, for whose members there exists a set of linear
algebraic techniques applicable in the study of satisfiability decision problems. The
tasks performed by propositional Probabilistic Logic; first-order logic with count-
ing quantifiers over a fragment containing unary and limited binary predicates; and
propositional Łukasiewicz Infinitely-valued Probabilistic Logic are regarded from
the viewpoint of Quantitative Logic Reasoning.

Walter Carnielli, Hugo Luiz Mariano and Mariana Matulovic: “Reconciling
First-Order Logic to Algebra”

This paper propounds an alternative to the traditional cylindric and polyadic algebras
for the first-order logic, based on the polynomial representation of first-order sen-
tences. The authors argue that this new algebraic setting can be seen as a legitimate
algebraic semantics for the first-order logic, even closer to the primordial forms of
algebraization of logic. By employing the notion of M-rings, rings equipped with
infinitary operations that can be naturally associated to the first-order structures and
each first-order theories, the paper shows that infinitary versions of the Boolean
sums and products are able to express algebraically first-order logic from a new
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perspective. The paper also discusses how generalizations of the method could be
lifted successfully to n-valued logics and to the other non-classical logics, helping
to reconcile some lost ties between algebra and logic.

Sérgio Marcelino, Carlos Caleiro and Umberto Rivieccio: “Plug and Play Nega-
tions”

Within the study of consistency and inconsistency from a mathematical logic point
of view, negation is the crucial connective. Negation is used to formulate the prin-
ciple of explosion known as ex contradictione quodlibet, which is one of the laws
that distinguish classical logic from so-called paraconsistent logics, that is, calculi
designed to model reasoning in the presence of a certain amount of inconsistency.
In turn, within logical calculi negation is usually introduced as a derived connective
given by the term ¬p = p → ⊥, which uses the material implication →, and the
falsum constant ⊥. The degree of paraconsistency of a logic, that is its degree of
tolerance to inconsistencies, is thus determined by the interaction among these three
connectives. This paper considers logics that result from different choices of subsets
of the usual inference rules that capture the interaction between implication and fal-
sum, thus determining different negations. The techniques used allow for a modular
analysis of the logics, providing complete semantics based on (non-deterministic)
logical matrices and complexity upper bounds. Using the semantics obtained for the
“environment logics”, the paper studies the negation-only fragments of each; axiom-
atizations for each of these negations are provided, and their paraconsistent character
is analyzed.

The Conference

The work on this volume began during the Studia Logica conference “Trends in
LogicXVI: Consistency, Contradiction, Paraconsistency andReasoning – 40years of
CLE”, held at the State University of Campinas (Unicamp), Brazil, between Septem-
ber 12–15, 2016. The event, centered around the areas of logic, epistemology, philos-
ophy and history of science, celebrated the 40th anniversary of the Centre for Logic,
Epistemology and the History of Science (CLE). Some of the papers collected in this
volume were presented on the conference. Others were initiated by the discussions
that took place. This volume is not so much the aftermath of that conference, but it
is more the result of the work that was initiated there.
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The Price of True Contradictions About
the World

Jonas R. Becker Arenhart

What contradictory beliefs guarantee us, after all, is false
beliefs. Contradiction is the short road to falsehood, and if
falsehood is not to be avoided, it’s not clear what is. In a way,
even those who most vociferously urge us to accept
contradiction seem to concede this point, for even they reject
with horror the prospect of a trivial system in which anything
follows. But what is wrong with triviality if not that it assures
that even falsehoods will appear as theorems?
If contradiction is to be avoided whenever possible, as surely it
is, then proposals that we gracefully embrace contradiction are
to be rejected whenever possible as well

Grim [14, p.27]

Abstract We examine an argument advanced by Newton C. A. da Costa according
to which there may be true contradictions about the concrete world. This is perhaps
one of the few arguments advancing this kind of thesis in full generality in the
context of a scientifically-oriented philosophy. Roughly put, the argument holds
that contradictions in the concrete world may be present where paradoxes require
controversial solutions, solutions which in general are radically revisionary on much
of the body of established science. We argue that the argument may be successfully
challenged in the face of the actual practice of science; as a consequence, commitment
to true contradictions about the world may be correctly dismissed as unnecessary, at
least if the route to contradictions is the one advanced in the argument. We finish by
highlighting a parallel between da Costa’s argument and another typical dialetheist
argument by Graham Priest to the effect that paradoxes of self-reference are true
contradictions.
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1 Introduction

Dialetheias are typically defined as true contradictions, that is, formulas of the form
α and ¬α both of which are true (see Priest [22, p.1,p.75]). While it is controversial
whether there are dialetheias, there is one favorite example of contradiction that is
candidate for being a dialetheia: the sentence comprising the Liar paradox (i.e. “this
sentence is false”). A feature of the Liar is that it is a semantic paradox: it is clear that
it does not infect the concrete world, in the sense that it does not concern concrete
objects located in space-time. So, even assuming that dialetheias are possible in the
actual world, there is no easy example of a contradiction in the concrete world. So,
is there any prospect for dialetheism to reign in the concrete world?

Doubts about the possible extent of dialetheism are reflected on distinctions such
as between metaphysical contradictions (contradictions in reality) as opposed to
semantic contradictions (contradictions featuring “merely” in our models of reality
and our theories, but not necessarily representing any features of actual reality).1

We also find talk about real contradictions, meaning contradictions in the concrete
world, as opposed to semiotic contradictions, i.e. contradictions arising from the
workings of language and systematization of knowledge representation (see da Costa
[9, chap.3, sec.3]). So, assuming that some contradictions are likely to arise, are they
a result of the way the world is, or are they just a sign of our admittedly vague and
less than perfect linguistic practices? Answering such questions may provide us a
better understanding of the scope and nature of dialetheism (and indirectly, of reality
too, of course). Such questions are also of fundamental importance for us to make
sense of the very idea of contradictions (a linguistic notion) in reality (which itself
is non-linguistic, for sure).

In this paper we focus on contradictions in concrete reality. We stress “concrete”
because herewe shall not dealwith contradictions arising in an abstract realm, such as
aCantorian universe of naïve set theory containingRussell’s set, theNewton–Leibniz
version of the infinitesimal calculus, and the like. We shall focus our discussion on
a fairly neglected argument advanced by da Costa [9, chap.3] to the effect that there
may be true contradictions about the real (concrete) world. As far as we know, this is
one of the few arguments that attempt to present the claim that the actual world may
be contradictory in the context of a scientifically-oriented philosophy. Roughly put,
the argument is an attempt to locate contradictions in the world: the contradictory
character of reality manifests itself precisely where science meets contradictions
in successful theories and where the elimination of such contradictions requires
radically revisionary moves, resulting most of the times in artificial amputation of
widely held scientific tenets. The heavy price paid in obtaining consistent results acts
as a sign that the world may be contradictory, that a contradiction in reality is the
main source behind the problem.

1See alsoMares [16] for a correspondingdistinctionbetween semantic dialetheism andmetaphysical
dialetheism; see also Beall [5] for a distinct terminology but a related attempt at a classification,
and also Bobenrieth [8].
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Our main claim, however, will be that even though it is not logically forbidden to
accept such talk about true contradictions, the price of doing so is just too high; there
are many difficulties with the strategy advanced by da Costa that seem to point to the
fact that consistent solutions are preferable, even at what is viewed as a seemingly
exorbitant cost. At least on pragmatic grounds, there are good reasons to prefer to
avoid commitments with true contradictions. The main reason, as we shall see, is that
accepting true contradictions puts pressure for adjustments on our overall system of
knowledge that are at odds with our best current scientific and philosophical practice.
Or, put another way: our most successful canons of rationality still seem to privilege
consistency; and that happens for good reasons, it seems.

The paper is structured as follows. In Sect. 2 we present, as clearly as possible, the
argument leading from paradoxes to (the possibility, at least, of) true contradictions.
In Sect. 3 we deal mainly with our objections to the argument. Each objection is
presented in a separated subsection. In Sect. 4 we conclude, bringing to light why da
Costa’s argument should be more well known among friends and foes of dialetheism
and paraconsistency: it bears striking resemblances with the main argument by Priest
favoring the adoption of dialetheism in the face of the Liar paradox. So, it incarnates
the typical strategy to defend dialetheism in many distinct levels.

2 Contradictions in Concrete Reality

To begin our discussions, we shall assume here for the sake of argument that to
speak of true contradictions about the concrete world is not a category mistake;
that is, the world itself may be the responsible for making contradictory sentences
true by containing contradictory facts or something to that purpose. So, we leave
aside the worries raised, for instance, by Bobenrieth [8], who has a rather negative
view about the possibility of applying the concept of ‘contradiction’ to the world.
In that sense, the thesis to be discussed concerns the claim that there are dialetheias
(true contradictions) about the concrete world. That being settled, the main problem
is that it still remains really difficult to conceive what it would be like to have
true contradictions about the concrete world. So, the main question is: what are the
prospects for true contradictions about the concrete world?

It seems that even some dialetheists are willing to reject such a radical possibility,
confining true contradictions to a purely semantic level (see for instance Beall [6],
Mares [16]). Of course, there are arguments for a contradictory world in famous
speculative thinkers such as Heraclitus, Hegel, and Marx; more recently, there are
attempts to defend that the world is (in some sense) contradictory in association
with Eastern religious beliefs. Deguchi, Garfield, and Priest [12, p.371] go on to
say that “[i]t is important that samsāra and nirvāna are both distinct and identical
at this world”. So, by looking at the right places, one may find that claims of a
contradictory world are not so rare (see also Priest and Routley [25] for further
sources of contradictions in philosophical thought).
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However, interesting as those considerations are, we shall confine ourselves to
scientifically-oriented arguments about true contradictions, that is, arguments con-
cerning contradictions that arise from our scientific description of the world. Here,
da Costa [9, chap.3] (first edition in Portuguese from 1980) offers perhaps the most
promising strategy to advance such a point of view from a very general perspective,
not based on an examination on a case by case basis (we shall touch on another
favorite theme by dialetheists in general, and by Priest in particular, in the final
section of this paper). The general idea of da Costa’s argument, as we shall see, is
that contradictions in the concrete world may be manifesting themselves precisely
where no clear agreement over a consistent solution to paradoxical situations in
our best scientific theories is likely to arise; i.e., troubles in consistently solving a
paradoxical situation in empirical science may have their sources in a contradictory
reality described by those theories.

To begin with the relevant terminology, following da Costa [9, chap.3] we shall
focus here on paradoxes involving concrete objects, that is, prima facie sound
arguments leading to apparently unacceptable conclusions, in particular, to con-
tradictions. Traditionally, contradictions are deemed unacceptable because they are
generally thought of as false, a point to which we shall return briefly in the conclu-
sion. When faced with those paradoxical arguments, da Costa [9, chap.3 sec.1] says
there are two possibilities:

(i) Those arguments are fallacies (paralogisms), and we may discover and provide
for general agreement as to where reasoning went wrong (think about algebraic
arguments attempting to prove that 0 = 1 involving division by zero), or

(ii) The precise source of the problem is a contentious issue. A consistent resolution
of the paradox is available only at the cost of substantial theory revision and,
perhaps, mutilation of established canons of scientific rationality.

Paradoxes of the second category are called aporias by da Costa (see da Costa
[9, p.198]). While there are consensual solutions for paralogistic paradoxes,2 aporias
are paradoxes whose “resolutions” are constantly called into question; there is no
agreement that an attempted solution succeeded in finding a fallacy in the argument.
More than that, the main feature of an aporia is that its consistent resolutions all seem
to require revision or mutilations of substantial portions of our currently established
canons of scientific rationality.

As an example of amost typical aporia (not about the concreteworld yet), consider
the Liar paradox. Solutions to the Liar are plenty, and no consensus about which one
has got it right seems about to appear. Most consistent solutions to the Liar, such as
Russell’s and Tarski’s, are heavily revisionary of our actual linguistic and scientific
practices (see also the discussions of their limitations in Priest [23]; for an overview
on semantic paradoxes and some attempted solutions see Horsten [15]). There is no
way to treat the Liar as a fallacy without mutilating much of our actual scientific and

2Even though they sometimes can be rather sofisticated arguments, from a mathematical point of
view.
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linguistic practices. That gives the Liar the status of an aporia (see also our discussion
in the final section).

Now, the strategy for locating contradictions in the concrete world proceeds as
follows. Argumentative mistakes leading to contradictions (paralogisms) are very
unlikely to have any source in reality. Their solution is typically fast and, in general,
simple, we just have to locate the flaw in the reasoning; they require no revision
in the theories in which they are derived. When it comes to dealing with aporias,
however, things aremuch different. Given that heavy revisions are required in order to
consistently accommodate an aporia, and that even suchmovements are controversial
and constantly called into question, it seems that they could be anchored in reality.
If we could discover general features of aporias, then perhaps by finding candidates
to be aporias we would be able to claim that we have at least good reasons to be
suspicious that we are facing a contradiction whose source is reality itself. As da
Costa [9, p.206] puts it:

. . . if there are real contradictions, there must be differences between solutions to paradoxes
that are not aporias reflecting reality, and solutions to other paradoxes, grounded objectively
in the real world.

[. . . ]

. . . if we are able to detect certain features of aporias properly speaking which clearly
distinguish them from paralogisms, we may argue that they probably reflect objective and
real contradictions; their resolution, no doubt, will require radical transformations in science.
(All translations of da Costa [9] are ours)

So, there is a clear attempt to find a connection between aporias and contradictions
in reality. On the one hand (the first implication in the quote), it seems that real
contradictions will ground the distinction between aporias and paralogisms. On the
other hand (the second implication in the quote), it is advanced that if we can establish
a difference between the two kinds of paradoxes, then we may go on and claim that
aporias reflect reality somehow. Here we shall focus on the second implication, the
one which attempts to establish the existence of true contradictions from aporias. As
da Costa indicates, the sign that an aporia reflects a real contradiction is shown in the
fact that the resolution of an aporia will require a deep transformation in science (due
to the fact that the source of the contradiction is supposedly located in reality). The
examples da Costa [9, pp.206-207] furnishes for aporias about the concrete world
illustrate this move from aporias (a contradiction in a theory) to contradictions in
reality itself. They are the following ones:

(i) The paradoxical particle and wave nature of quantum entities in the double slit
experiment. As it is well known, in the context of the double-slit experiment
quantum entities behave sometimes as particles, sometimes aswaves; it depends
on how many slits are open (one or two). The most well-known solution to
such a paradox, according to da Costa, is the Copenhagen interpretation, which
requires severe mutilation of the very canons of scientific reasoning; it confines
what may be said about quantum entities only to the context of experimental
results, and abolishes the explanatory role of the theory.
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(ii) Zeno’s paradoxes of movement and change. Paradoxes such as the arrow para-
dox and the Achilles and the Tortoise race are avoided only due to the artificial
mathematical machinery of the calculus; our notions of space and time must be
substituted by mathematical idealizations (the continuum), idealizations which
are very far away from our common notion of space and time. There must be
substantial revision of our intuitive concepts in order to overcome the contra-
dictions provided by the paradoxes (i.e. the radical transformation of science
due to the solution of an aporia, mentioned by da Costa).

(iii) The plurality of incompatible interpretations of quantum mechanics. The
Copenhagen interpretation of quantum mechanics is only one of the candi-
dates to interpret quantum theory. Among the alternatives, Bohm, for instance,
presented an incompatible interpretation with hidden variables, an account of
microphysical reality much closer to classical mechanics. Obviously, many
other interpretations incompatible with the Copenhagen proposal and also
incompatible among themselves are yet available (many worlds, GRW, modal
interpretations, to mention just a few). In the face of many incompatible inter-
pretations of quantum theory, da Costa [9, p.207] asks: couldn’t we conjecture
that “the difficulties come from our attempts at giving consistent descriptions
of an inconsistent reality?”

Before we proceed, a comment on item (iii) is in order. Prima facie, this seems to
be merely a case of empirical underdetermination, which we could expect to solve
in due time: the data do not allow us to choose among the competing interpretations
now; further investigationmay be expected to do so. But why should we consider this
as evidence for true contradictions? In order to see the multiplicity of incompatible
interpretations as generating an aporia, we take it that da Costa is not only claiming
that incompatible interpretations should be seen as accounting for incompatible fea-
tures of reality, each interpretation getting something right, none of them getting it
completely right. Rather, the suggestion is that none of the interpretations is com-
pletely problem free: choosing interpretation I1 leads to difficulties that interpretation
I2 may be seen as solving, and the same could be said of any two consistent interpre-
tations. So, the problem is that it is not possible to provide a unique and consistent
account of quantum reality that does not lead us to further difficulties and which does
not require radical revision of current science.What underlies the wave-particle dual-
ity? What happens in a measurement? What are quantum entities? Interpretations
are attempts to answer those questions. However, they do so in incompatible and
incomplete ways. Perhaps, and that is how we interpret da Costa’s suggestion, the
trouble comes from the fact that what underlies the theory is contradictory, so that an
understanding of quantum mechanics (as provided by an interpretation) would have
to take into account the contradictory reality if it is not to keep missing something.
In the end, the trouble seems to be about quantum reality, about what interpretations
deal with, not only about the conflict of interpretations.

The key to the argument seems to lie in the fact that a contradictory reality prevents
us from a simple consistent solution of aporias, they will always lead to a revisionary
transformation. So, the main claims leading us from paradoxes to true contradictions
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about reality may be summarized as follows: (1) there is a substantial difference
between the resolution of aporias and the resolution of paralogisms; aporias require
radical revisions (“transformation”) in science. (2) This difference may be explained
by the fact that aporias are objectively grounded in reality, somehow. (3) If we can
identify features of aporias in a paradox, we have evidence for the possibility of
contradictions in the world. (4) There seems to be clear cases of aporias in science.
(5) So, it is at least possible that some contradictions are objectively grounded in
reality.

3 Problems with Real Contradictions

As da Costa [9, p.207] himself notices, the argument is clearly not definitive. There
is no a priori way to establish that the concrete world is contradictory; it is a task
for empirical science to tell us how the world looks like. In general, it is a fact
that empirical science typically eliminates contradictions in the concrete world by
changing theory and pursuing consistent solutions. So, what are the prospects for
assuming that there may be real contradictions in the concrete world? Our view is
that they are not good, and that the above argument is not only inconclusive, but also
very unconvincing and problematic.

Of course, it is still open to the friend of contradictions to look for contradictions
in other places, for instance, mystic or religious beliefs. However, as we mentioned
before, in this paper we shall discuss only the case of using science as a source for
true contradictions (and in doing so, we follow da Costa). This restriction poses no
serious drawback on our investigation, it seems, given that science seems to provide
our most reliable guide to how the world looks like.

The following remarks are conceived to put obstacles on the way of jumping from
contradictions in a theory to contradictions in reality, as the above argument attempts
to allow us to do. In the final section, we shall discuss a bit further how widespread
in the literature on dialetheism such a strategy really is (although it does not usually
appear as an argument favoring contradictions in empirical reality).

3.1 The Most Common Objection: Negative Facts

Tobeginwithwhat sounds as commonwisdomagainst a contradictory actualworld, it
should bementioned that oneof themostwell-knownobstacles for true contradictions
about the world concerns its alleged commitment with negative facts. Suppose the
world is contradictory irrespectively of how our concepts describe it. That is, it is the
world which makes some contradictory statements (the aporias, perhaps) true. But
then, as Priest [24, pp.200-201] remarks, true contradictions in a strongmetaphysical
sense will require a corresponding ontology: it is required a fact for being the truth-
maker of A and (the argument goes) a negative fact for being the truth-maker of ¬A.
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So, it seems, if we want some true contradictions about the concrete world, negative
facts will have to be taken into account. It seems that da Costa [9, p.205] goes along
similar lines too, when claiming that “[t]he contradiction A ∧ ¬A is real if A and
¬A are true statements, satisfying Tarski’s criterion (T) and making reference to real
states of facts” (emphasis in the original).

At first sight, that application of the T-scheme understood as relating a sen-
tence with a state of facts could well be understood as committing one with neg-
ative facts (but see also the discussion on exclusion that follows). If that reading
is accepted, notice that one needs not even go as far as to accept true contradic-
tions to be committed to negative facts; the assumption (by da Costa) that a negative
sentence corresponds to a fact already seems to require negative facts. That is, com-
mitment to negative facts is not a privilege of dialetheists. Now, although account-
ing for such negative facts is clearly not impossible, negative facts were looked
with suspicious in metaphysics for a long time, to say the least. So, the price of
true contradictions, in the metaphysical front, is commitment to negative facts (for
further metaphysical exploration of the impossibility of contradictions in reality,
see also Tahko [26]).

However, notice that if negative facts are regarded with suspicions by most, so
are true contradictions! Dialetheism is by no means the mainstream view about the
nature of reality. So, we shall not focus on that kind of objection as ourmain argument
against concrete dialetheias. Although troubles with negative facts are very general
and will certainly generate difficulties for any account of true contradictions about
reality, it seems to us that da Costa [9] has a logico-philosophical background that
may be employed to accommodate such difficulties, even if it does not reassure
worries about negative facts. So, as we shall argue, even if negative facts can be
accommodated, there are other difficulties lurking around the corner for the friend
of dialetheism about the world (for another view on negative facts and prospects
about how the negative view on negative facts could change, see Barker and Jago
[4]). First, however, let us briefly check how da Costa accommodates facts.

According to da Costa, there is roughly a correspondence between syntactical
categories of formal languages employed in the rational reconstruction of scientific
theories and ontological categories (the relation between them is the result of an
idealized reconstruction through axiomatization, of course, but this is not an issue
to be discussed now). For instance, the syntactical categories of individual terms
(individual variables and individual constants), predicate constants and variables,
and atomic sentences, correspond to the ontological categories of object, relation
and property, and fact, respectively (see da Costa [9, p.53] for a detailed exposition).
So, when we reconstruct a scientific context encompassing contradictions with the
use of an appropriate paraconsistent logic, this reconstruction determines that some
propositions of the form A and¬Awill be true, that is, theywill correspond to positive
and negative facts that must both obtain (at least according to the reconstruction).

So, according to this framework, by adopting a view allowing for true contra-
dictions, the situation may be accommodated by encompassing negative facts too,
represented by the negation of a sentence. Obviously, this does not settle the tradi-
tional set of problems with negative facts, but it seems that at least da Costa will
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have a framework in which to deal with the issue, were he to advance a theory about
negative facts too. Furthermore, as we said, granted that one is willing to concede
that contradictions may arise in the world, the acceptance of negative facts seems
just a minor side effect when it comes to accommodate such contradictions. Notice
that this move may also work to reassure worries about whether the very idea of
contradiction (in general a syntactical or semantical notion) applies to reality (see
Bobenrieth [8] for such worries). Anyway, the difficulties with negative facts will
have to be discussed, but it seems that in the context of da Costa’s approach they can
at least be accommodated.

One possible way to avoid discussing negative facts would be to provide an alter-
native account for negation in terms of material incompatibility (as suggested by
Berto in [7], among other places). In a nutshell, negation may be understood in terms
of incompatibility as follows: ¬α means, roughly, a state that is incompatible (mate-
rially excludes) the state α. Incompatibility or exclusion is a primitive, understood
independently of negation. This may avoid negative facts, of course. For instance,
‘x is not a wave’ may be understood as meaning some state that is materially incom-
patible with being a wave, as for instance, the state that ‘x is a particle’, given that
particles and waves exclude each other. No need for negative facts such as ‘x is
not a particle’. Also, this is said to grant a metaphysical version of the law of non-
contradiction: one cannot have incompatible states obtaining together, given the very
meaning of incompatibility.

Notice that incompatibility is compatible with da Costa’s framework on the rela-
tion between logic and ontology. In fact, all that was required there was that atomic
sentences correspond to facts, but nothing was said about sentences composed by the
use of connectives such as negation, for instance. Perhaps, by making some adjust-
ments, with the use of this proposal of incompatibility it would be possible to keep
both the idea that a true sentence of the form¬α corresponds to a fact, and that it does
not need to correspond to a negative fact. So, another approach to true contradictions
could be envisaged that avoided the main traps against negative facts.

However, that suggestion really does not seem to help us with the debate on
there being true contradictions. Incompatible states, by definition, cannot obtain
together, there are no true contradictions when negation is taken to represent a form
of material incompatibility. Of course, this was the main motivation for Berto [7] to
advance the proposal to begin with: the idea was that there is a sense of contradiction
that even dialetheists should accept. As a result, whenever two states may obtain
together, they are not incompatible, and the conjunction of statements referring to
them does not result contradictory. Let us keep with our example of particles and
waves in quantum mechanics. Here, da Costa’s suggestion that particles and waves
in quantum mechanics may be a case of a true contradiction only means that being a
particle could, in fact, be compatible with being awave. But then, given the suggested
understanding of negation, that would no longer be a case of contradiction: ‘being a
particle’ would not imply ‘not being a wave’, and ‘being a wave’ would not imply
‘not being a particle’. That is, every time a contradiction (understood in terms of
incompatibility) seems to be true, the very contradiction disappears, given that the
incompatibility disappears. True contradictions are no longer possible. As a result,
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this suggestion may avoid negative facts, but it does not allow the debate to begin
with. So, we shall not pursue this suggestion here.

Instead of insisting on those typically metaphysical problems, our worries are
focused on the relation between the true contradictions and their alleged source in
science.We shall concede the argument without putting emphasis on themetaphysics
of negative facts, or on banning true contradictions with a metaphysical primitive
such as incompatibility.

3.2 Dictating Science from the Armchair?

So, by accepting the argument from paradoxes to true contradictions, what are we
conceding, in fact? In this section, we shall discuss a methodological objection to
accepting true contradictions in our scientific theories, at least on what concerns
concrete objects. The general idea is as follows: the argument from aporias to true
contradictions would seem to imply that science could be generally mistaken in elim-
inating aporias when it indeed does so. In other words, if the argument is reasonable
and there are (or could have been) at least some real contradictions behind the apo-
rias, then, it seems, their elimination is not warranted! To eliminate a contradiction
would put us in the wrong path, we would be deviating from truth.

Before we proceed, we should make it clear that we are assuming that the dis-
cussion on true contradictions requires a form of scientific realism. In fact, in order
to discuss whether our current theories provide for real contradictions, it is required
that we take those theories as correctly (truly) describing at least some aspects of
reality. That is most important when we notice that discussion about true contradic-
tions concern, most of the times, unobservable posits of scientific theories (as we
shall emphasize later).

Now, that realist stance is almost always coupled with a kind of naturalistic
approach to philosophical methodology: philosophy should not dictate the devel-
opment of science. In another slogan: scientific practice has precedence over philo-
sophical speculation. If philosophy and the march of science conflict, it seems, it is
the first that must give precedence to the second. In the face of such commitments
to realism and naturalism, the idea that some theories may have provided for true
contradictions seems largely unwarranted.

Let us focus, for the time being, on past cases of aporias that were eliminated in
our current science. On the one hand, we may rest content with the eliminations of
contradictionsmade by science so far and keepwith the development of science or, on
the other hand,wemayhold on to the argument that aporias are signs of contradictions
and claim that even though science has indeed eliminated some contradictions of our
description of reality, they are still there, due to their character of aporia; we have
got the wrong track with such an elimination. In the first case, there are no more
worries with real contradictions, and there is nothing else to be said; the argument
is abandoned, at least for those past cases. In the second case, it is implied that
science (through the collective action of scientists) has made some wrong moves in
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providing for such an elimination, so that the contradictions should be allowed to
stay. The fact that a new theory does not describe those contradictions does nothing
to remove them from reality, of course! The main problem with this move is that the
defense of true contradictions ends up being made on purely speculative grounds,
given that it is no longer grounded in actual science (given that scientific evidence for
them was eliminated in the course of science). So, to keep with some contradictions
requires that we see philosophy (or some philosophers) as having a privileged take
on how science is to be developed. Philosophers (the dialetheists, only) would end
up legislating for science. In other words, the idea is that as soon as a contradiction
is eliminated from a scientific theory by a new development, the argument does not
deal anymore with current science.

The difficulties in this case could be softened by the adoption of more moderate
views on the relation between metaphysics and science. We could assume that the
exploration of ontological possibilities is also a task for the philosopher (see specially
da Costa [10, p.284], Morganti and Tahko [18]). So, the possibility that the world
is inconsistent is to be taken seriously, at least as a metaphysical possibility. What
makes this option scientifically relevant, according to this view, is that at least some
scientific theory could be seen as providing indirect evidence for the actual truth
(or approximate truth) of this inconsistent option. Ontological possibilities can be
discarded only after they have proved to be clearly incompatible with current science
or when they are clearly deficient in comparison with other candidates available (see
also Arenhart [2] for such methodological discussions on ontology).

However, this moderate view does not provide for any comfort for the dialetheist.
While the strategy is interesting and plausible in general as part of metaphysical
methodology, if it is to be taken as relevant, the idea that a contradictory ontology is
possible will still have to be a legitimate possibility for an actual scientific theory. As
we have seen, science typically eliminates its contradictions, so, given that we are
using science as a test for the very plausibility of ontologies, the fact that there is a
possibility involving contradictions would not work. The fact is that science, at least
as it has developed so far, ends up eliminating contradictions, and the contradictory
possibilities are typically discarded in the way to scientific change.

The alternative, then, would seem to be to claim more radically that contradic-
tions should not be eliminated, neither in past theories, nor in future theories. How-
ever, by doing so one would end up putting philosophers much above scientists on
what concerns scientific development. This would amount to giving up the idea that
philosophers should not dictate science from the armchair. In this sense, it would
be hubristic to hold to the “true contradiction” option on what concerns our current
scientific theories, to say the least. That is, accepting true contradictions just because
it is an available option, it seems, is not the best option. One would end up hanging
to the science that could have been, instead of the science that actually is (Priest [23]
seems to do something like that in relation to set theory).

Of course, to hold that no contradiction will ever arise in a theory that could
come out true is also to legislate for the future. Science could well end up choosing
dialetheism some time, so that cases of contradictions must be evaluated on a case
by case basis. To keep open the possibility of a true contradiction in future theories,
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da Costa [9, p.208] remarked that it is easier to prove that contradictions are real
than that they are not: one single case could prove the positive thesis, while it is
difficult to prove non-existence of something, except on speculative (non-naturalistic)
grounds. However, here the table may be turned on da Costa: one is never certain
that the existence of an aporia really refers to a true contradiction; given that it seems
rather unlikely that scientific methodology will change on what concerns elimination
of contradictions, it is much more likely that any contradictory theory is adopted
temporarily, and that the next theory will eliminate (or try to eliminate) the aporia.
There is no definitive evidence that could be furnished in order to establish that a
contradiction is indeed true.

There are further reasons, it seems, for us to think that the argument according to
which aporias may be pointing to true contradictions is problematic. Let us check.

3.3 Unequal Treatment of Observable and Unobservable
Contradictory Objects

A rather different problem is that the argument for true contradictions is at odds with
another resolution by da Costa and even other dialetheists such as Beall [6] on what
concerns concrete objects. The difficulty is related to the asymmetry on the treatment
of aporias and paralogisms about concrete objects. To illustrate the issue, consider the
famous paradox of the catalog. If there were a catalogC of all the catalogs of a library
that do not mention themselves, we would end up with a situation clearly leading to
a contradiction: C mentions itself if and only if it does not mention itself. For such
paradoxes, there is a fast and clear diagnosis: by reductio, it is sensible to blame
the assumption of the existence of C as the source of the contradiction. Classical
logic applies to concrete objects as catalogs (this is da Costa’s own diagnosis, see [9,
pp.199-200, p.205]; Beall [6, p.6 and p.16], on the other hand, does explicitly claim
that classical logic applies to sentences referring to the world in general, not only
catalogs).

However, aren’t particles and waves in quantum mechanics just as concrete as
catalogs? Obviously, quantum entities are not observable, but it seems that they
are just as real if we assume a form of scientific realism (which, again, seems to
be required if we are to deal with true contradictions arising from them and have
the T-scheme interpreted as suggested by da Costa, in the previous section). But
then, when it comes to dealing with contradictions, why are the treatments different
for catalogs and for quantum entities? Why do we conclude that by the force of
the contradiction the catalog C does not exist, while quantum entities exist and
are (possibly) contradictory? There is an awkward asymmetry in the treatment of
both cases which is left unexplained. Shouldn’t similar cases preferably have similar
treatments?

Obviously, onemay claim that the catalog case is a paralogism, while the quantum
case is (at least prima facie) a legitimate aporia. But justifying the application of that
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distinction in the case of concrete objects is precisely the point in question. The
cases may not be different, for all we know. As da Costa has acknowledged, science
eliminates its contradictions, so we may end up discovering that the quantum case
(if it really presents a contradiction, of course) is just a paralogism too, but one of a
much more difficult resolution, given all that is involved. In this sense, the argument
for true contradictions proves too little: it is not enough merely to affirm a distinct
treatment for quantum entities and for catalogs. By assuming the resolution that
contradictory catalogs do not exist, there is nothing to prevent us from claiming that
there is a possible resolution of the paradox in quantummechanics which proves, for
instance, that no entity is both particle and wave at the same time, just as in the case
of the catalog. In fact, a more developed theory may provide for another kind of more
fundamental entities (maybe the standard model or even string theory?) that allow
for refinements that may lead to a resolution of the issue. It just happens that such a
solution requires much more efforts than the case of the catalog, but both kinds of
entities would be in the same category.

The plausibility of the argument, then, seems to rest on the distinction between
observable and unobservable entities (problematic as it is): contradictions for observ-
able entities are (or at least ought to be) paralogisms, contradictions for unobservable
entities may well be aporias. The only reason for the distinct treatment of those enti-
ties comes from the difficulty in dealing with quantum particles, while it is relatively
easier to deal with catalogs. That, however, has less to do with the nature of the
problem than with the nature of the entities involved. While catalogs are simple
medium-sized artifacts, quantum entities are complex and highly removed from our
intuition, described by a complex mathematical theory, so no wonder a more diffi-
cult solution to problems concerning them is likely to be required. In this case, the
complexity of the answer and the kind of revision it requires is not to be taken as a
sign that a contradiction is involved, but rather it concerns the very complexity of
the subject-matter under study.

So, if one is not willing to concede that paradoxes for unobservable entities may
be paralogisms too, it seems plausible to require that one should be forced to accept
that some paradoxes for observable entities may be aporias too, on the grounds of
having the distinction unmotivated. In this case, however, the argument inconve-
niently proves too much: there could be contradictory medium-sized objects such
as catalogs. But that is something we would hardly assume. So, assuming that some
unobservable entities are responsible for true contradictions, while observable ones
are not, may sound tricky: it is the unobservable nature of the entities which prevents
reasoning about them from being treated as paralogism. Unobservable entities, at
least in the case explored, involve such difficult problems that observable entities do
not seem to engender. The idea of true contradictions benefits from unobservability
to treat similar cases as distinct, a treatment that, as we have seen, is not justified from
the point of view being discussed. In the end, it seems that one should either accept
that contradictory catalogs may also exist or else assume that quantum entities are
not contradictory, with the progress of science required for the paradox to be solved.

Of course, the relation between unobservability and the complexity of the problem
is contingent on the case under study, but it illustrates a pattern that may appear in
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many cases. Unobservable entities may engender much more difficult problems, so
no wonder their solution will cause us much more trouble. This leads us to another
difficulty posed by the relation between aporias and contradictions, as described
by da Costa’s argument: that the elimination of aporias involves always a kind of
negative move, mutilating the whole body of science available at a given time.

3.4 The Solution of Aporias and Mutilation of Reason

Suppose we admit that some contradictions are true, and that their source is concrete
reality. Then, the use of a system of paraconsistent logic seems to be warranted under
this assumption to tame the contradiction. But then, granted that the only problem
with the contradiction was that a classical framework has an explosive consequence
relation when contradictions are present (i.e. from A and ¬A any formula B what-
soever follows), after a paraconsistent logic is assumed nothing else is required on
what concerns those entities. That is, to keep with the case of quantum mechanics,
if entities are really particles and waves, and that’s the end of it, there is no require-
ment for further investigation, at least on what concerns the source of the original
problem. So, if aporias were here to stay and did in fact represent real contradictions,
then aporias would be easily accommodated by the adoption of some paraconsistent
logic, leaving the rest of science untouched.

But that is not how science works: the quest for understanding seems to require
that we search for a solution to the aporia; in the case of particles and waves in
quantum theory, for instance, by the construction of quantum field theory or even
deeper theories that are still being sought. So, the diagnosis that a contradiction is
the source for an aporia may be just misguided: in fact, it is a sign that we got the
wrong path and it is time for another scientific revolution. That is how typically we
deal with a contradiction: it is a sign for us to retrace our premises and to revise our
beliefs. Keeping with contradictions by the adoption of a paraconsistent logic would
be detrimental to the evolution of science. In this sense, keeping the contradiction
would amount to a biggermutilation of science: that contradictions be accommodated
by theoretical advances in the underlying logic, not of the specific branch of science
under consideration.

Consider for instance the actual situation in fundamental physics, where quan-
tum mechanics and general relativity are inconsistent (or, perhaps more clearly put,
incompatible). Attempts to provide for a fundamental theory by unifying the two
have faced many difficulties, perhaps most of the difficulties that a typical resolution
of an aporia would engender. But is it a case of an aporia? Maybe a paraconsis-
tent logic could be employed in contexts requiring the use of both theories and we
could claim that it is really a case of inconsistency in the world. But then, science
would be left just as it is, except for a change of logic. The search for unification in
physics would be pointless. Certainly, assuming true contradictions about the world
in this case would not help us in advancing science (for further case studies in which
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progress in science was achieved by the elimination of contradictions, see Mosterín
[20]).

Other things being equal, keeping the contradictions is by far not the most fruitful
option. As Priest [21, pp.421-422] has argued, one should balance between theo-
retical virtues in order to choose the most plausible theoretical hypothesis. When
a contradictory option is the most fruitful one, this should not deter us from choosing
it. But, as it seems, at least in the case of empirical sciences, the paraconsistent option
has only non-triviality to offer. Indeed, choosing to keep contradictions and embrace
a paraconsistent logic adds no new explanatory power, simplicity or unification (more
on these in the next subsection). So, the path to the elimination of contradictions is
the one that always seems more promising, with the success of science attesting it.

That may shed some light on the claim that the resolution of an aporia requires
substantial changes in science. That science is required to change in order to accom-
modate recalcitrant experiences should not be seen in such negative lights. In fact,
that is just how science manages to solve its problems. Some problems are such
that they cannot be accommodated in our current theories, so a new theory is cre-
ated. Substantial change in our intuitive frame of the world should not be seen as
necessarily negative; in fact, that is what twentieth century physics brought us most
forcefully ever since relativity theory and quantum mechanics appeared. So, if the
elimination of aporias requires that some intuitions should go, so be it. Keeping with
contradictions instead of fomenting their resolution invites a conservatism that is not
the mark of science so far.

Perhaps the resolution of Zeno’s paradoxes through the tools of the calculus is
a better illustration of the price paid to remove contradictions? True, it introduces
counterintuitive tools and idealizations that take us far from our comfortable intuition
of space and time. However, that is precisely what science is about most of the time.
There is no easy description of reality without such idealizations and abstractions,
they are part of science and cannot be eliminated. Furthermore, their resolution
is currently leading to further investigation of discrete consistent solutions to the
paradoxes (seeArdourel [1]). That is, even if the claim that the substitution of intuitive
space and time by the continuum were sound, it would provide no ground for us to
prefer to keep with the aporias.

Still concerning the negative press given to the mutilations required by the res-
olution of aporias, consider the example of the Copenhagen interpretation. This is
certainly not a good case against the removal of aporias. In fact, the Copenhagen
interpretation, although it is certainly not a cohesive and unified view of a group of
physicists, indeed had such a strict view of science and its goals (considering Bohr
as a main representative of the Copenhagen interpretation). But that is not a feature
of the elimination of aporias in general. Rather it is a peculiarity of the Copenhagen
interpretation!More: other interpretations, such asBohm’s, attempt precisely to solve
the difficulties by keeping most of the traditional ideas concerning the description
of a physical system. So, the Copenhagen interpretation does not count as a typical
move in the resolution of aporias. That is, restriction to empirical data available in
experiments is a mark of the Copenhagen interpretation, but of this interpretation
only, not of the elimination of contradictions in general.
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One worry with those arguments may be as follows: it may well be the case that
our ability to eliminate aporias is not matched by reality, which is contradictory. Our
rational desire to keep consistency does not match reality itself. That suggestion may
only be pursued on a complete dissociation of our epistemology (here, incarnated in
our best scientific theories) and metaphysics. However, that is incompatible with the
realist view adopted here. If a contradiction is to be present without it being suggested
by science, then, it will have to be suggested by alternative means. In that case, of
course, the realist will prefer to stick with science instead of other incompatible
sources of knowledge of reality, as we have already argued.

3.5 Contradictions and Theoretical Virtues

Let us focus once again on the negative view of change in science that is allegedly
brought by the resolution of aporias and consider what a paraconsistent dialetheic
alternative would bring. Recall that it was said that the resolution of aporias requires
deep revision of scientific canons of rationality, and that such a revision some-
how does not always work to the benefit of our understanding. For instance, it was
advanced that the contradiction between wave and particle in quantum mechanics
could be solved by the Copenhagen interpretation, which on its turn mutilates sci-
ence, banning legitimate search for explanations and requiring the abandonment of
other traditional features of science. But again, that is a peculiar feature of the Copen-
hagen interpretation, a feature that is not common to all of the consistent solutions
to aporias in general (far from that). So, the example is favorable to the dialetheist,
but it is not a typical case of scientific development by the resolution of problems.

Of course, there is no easy and consensual consistent solution to wave-particle
duality yet, although there are plenty of attempts. The same could be said about
quantum superposition and entanglement (issues an interpretation has to deal with).
As da Costa and de Ronde [11, sec.3] have stressed, perhaps it is time for us to
abandon consistent attempts to understand the working of superposition and try to
face the fact that a contradiction is involved. Also, as Priest [21, pp.421-422] has
remarked, consistency is not the sole theoretical virtue involved in theory choice:
when an inconsistent hypothesis delivers unification, explanatory power, elegance,
and so on, it should be considered as legitimate. Maybe it is time to face the fact that
quantum reality is inconsistent.

But let us not go so fast. Let us consider what the dialetheic solution to a paradox
would give us in terms of theoretical virtues. Assume that we are employing a para-
consistent logic in order to accommodate contradictory particle-wave behavior, or
superpositions and entanglement (perhaps a paraconsistent set theory, as suggested
in da Costa and de Ronde [11]). Are we able to save the so-called traditional features
of science (whatever they are taken to be) that are said to be eliminated by consistent
solutions? It seems that we are not, at least not by merely employing a paraconsistent
logic. By embracing a contradiction we by no means assure that explanatory power
and other virtues are safeguarded or improved. What are the explanatory powers of
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contradictory objects? The same as the consistent ones, it seems. If a paraconsistent
quantum theory is more explanatory than a consistent rival, then there are means
to distinguish the theories, it seems, and we may judge their empirical adequacy.
However, so far no such case has emerged.

That is, to the best of our knowledge, no one has managed to provide for a para-
consistent formulation of quantum mechanics. Our claim is that such a formulation,
if it is going to appear, will have to preserve the empirical results of standard quantum
theory. But if the theory will be formulated with the mere adjunction that superpo-
sitions are contradictory, then that will not enhance our understanding of what is
going on; rather, the other way around: it leaves us even more distant from a clear
understanding of the situation. It is enough to recall popular expositions of quantum
mechanics that attempt to convey to the general public a flavor of quantum super-
position by holding that quantum particles may be at two places at the same time,
or that Schrdinger’s cat may be both dead and alive. Those claims certainly add to
the mystery of the theory, but shed no light on what is going on (see the discussions
in Arenhart and Krause [3]). To know that they are contradictory helps nothing with
the quest for understanding.

Perhaps a case could be made by the paraconsistent interpretation of superposi-
tion, as advanced by da Costa and de Ronde [11], and de Ronde [13]. The difference
is that the contradiction comes now at the level of interpretation, not of the formalism
(with interpretations thought of as adding another level of theory to the formalism,
now at an informal level). According to this view, superpositions are sometimes real
contradictions, even though this is not present at the formalism. Consider for instance
an electron in a superposition of states between spin up and spin down. Potentially,
the electron is both spin up and down, so a contradiction obtains. Could that introduce
explanatory power to quantum mechanics or restore some of the traditional virtues
of science that are typically abandoned in quantum mechanics?

It doesn’t seem so. By merely postulating a new realm of entities, potential con-
tradictions, one does not immediately aggregate explanatory power to the theory,
neither do we gain in elegance, coherence, mathematical simplicity, or, what is more
relevant, understanding. Our overall understanding of the situation is not improved
by assuming a real contradiction dealt with by a paraconsistent logic. We are still
left with questions about the collapse of the wave function when a measurement is
made, for instance, and with questions as to why only one of them collapses, not to
mention questions of how such a contradiction is to be understood (see also Arenhart
and Krause [3]).

For another example, consider the case of nuclear models, as discussed by
Morrison [19]. It is instructive to check how she summarizes the problem, in a
few lines [19, p.351]:

Here we have exactly the same phenomenon (the atomic nucleus and its constituents) mod-
eled in entirely different ways depending on the data that needs explanation. However, in
most cases these models go beyond mere data fitting to provide some type of dynamical
account of how and why the phenomena are produced. But, because there are over thirty
fundamentally different models that incorporate different and contradictory assumptions
about structure and dynamics there is no way to determine which of the models can even
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be said to approximate the true nature of the nucleus. […] Each of the models is both pre-
dictively, and in some cases, explanatorily successful in its particular domain but there is
no way to build on and extend the models in a cumulative way. So, although we are able
to extract information about the nuclear phenomena from these models we have no way of
assessing the epistemic status of that information over and above its success in predicting
certain types of nuclear phenomena.

That is, the trouble seems to be that the success of each kind of model is directly
connected, some times, to the doubtful theoretical commitments of the models, com-
mitments that other models directly contradict. It is not always easy to determine
whether there is legitimate modeling or merely data fitting. As a result of the major
difficulty in establishing a unified coherent picture, paraconsistency could be called
as a helping hand. However, as Morrison [19, p.351] goes on to argue, this is clearly
not a case where any kind of paraconsistency could help to save the day:

What is perhaps significant for philosophical purposes is that this is not a situation that
is resolvable using strategies like partial structures, paraconsistent logic or perspectivism.
No amount of philosophical wizardry can solve what is essentially a scientific problem of
consistency and coherence in theoretical knowledge.

The issue seems to be a general one. By changing logic to a paraconsistent one
we by no means gain a better understanding of the underlying phenomena. That
is, by claiming that something is legitimately both a wave and a particle does not
add anything new to what we already knew about the theory: that some things are
behaving in a way that is not completely coherently described by our current theory.
Why is that so? Assuming contradictions adds nothing to answer that question. The
claim could be more vividly illustrated by the case of moral dilemmas or in contexts
of inconsistent laws, where practical consequences are even more immediate. By
employing paraconsistent deontic logic we do not solve the legal problems we are
involved in, we just grant that no explosion obtains from the contradictions. However,
there is still not an issue about how to act morally in such contexts, or which law
should be applied. Further: when witnesses of a crime contradict each other, we do
not apply paraconsistent logic to tame the contradiction; that would be of no help!
Paraconsistency leaves things where they are, and the same seems to be the case in
science (anyway, let us mention that there are alternatives to deal with inconsistent
contexts without the need of paraconsistent logics; see Michael [17]). The problem
with contradictions in physics are not touched upon when we change logic; that is
an issue that must be solved by the kind of theoretical advance that is provided by
physics and theory development, something that is typically done by eliminating the
contradictions, as Morrison has suggested.

So, it seems that by merely embracing contradictions we do not grant a better
science, not even the maintenance of traditional scientific canons. The same could be
said about the paradoxes ofmotion and change: dowegather a better understanding of
those concepts by adhering to an inconsistent view of them, in place of the traditional
one provided by the calculus? This does not seem to be the case. Contradictions leave
us just where we are; attempts to remove them provide for better understanding, or
at least it has been so for science (again, see Mosterín [20]).
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4 Final Remarks: Where Can We Find True
Contradictions?

So, in the end, the friend of true contradictions about the world will have heavy
prices to pay. Assuming true contradiction in science forces us to adopt a whole
bunch of uncomfortable positions. To keep the contradictions, we shall have to dic-
tate the nature of the entities science deals with from the outside of science, from
a philosophical position, ignoring the development of science as it eliminates con-
tradictions. Furthermore, keeping with true contradictions we are obliged to adopt
an inconvenient conservative and pessimistic attitude towards change in science. We
may run the risk of imposing methodological obstacles to the development of sci-
ence in order to keep our favorite aporias in the theory. Also, as we have seen, the
main examples of possible aporias are not representative of the typical elimination
of contradictions in science.

Furthermore, there is a rather negative ring on that argument; it places its bets
on our inability to solve problems. Science, as a human enterprize, is the activity of
searching for solutions for problems like those mentioned as examples of aporias.
Keeping with contradictions would be like siding with the pessimist. This is clearly
put by Priest [21, p.424]; even though he does not use da Costa’s terminology, he
makes it clear that when faced with an aporia, “we may find that there are no better
ways to go. In which case, we may just have to conclude that the improbable [i.e., a
true contradiction] is the case”.

But more than recalling those problems, and linking with the previous quote by
Priest, we would like to finish by remarking that the argument presented by da Costa
favoring true contradictions about the world has striking similarities with another
style of argument by Priest [22] in favor of adopting true contradictions. Let us
consider the most typical case first, the paradoxes of self-reference such as the Liar.
Concerning them, Priest says:

Here we have a set of arguments that appear to be sound, and yet which end in contradiction.
Prima facie, then, they establish that some contradictions are true. Some of these arguments
are two thousand and a half years old. Yet, despite intensive attempts to say what is wrong
with them in a number of logical epochs, including our own, there are no adequate solutions.
(Priest [22, p.83])

He then goes on to compare the self-reference paradoxes with Zeno’s paradoxes.
According to Priest [22, p.83], there is agreement about what the solution to Zeno’s
paradoxes are, with only minor details still left for dispute. In the case of paradoxes
of self-reference, however, no such consensus on a solution is forthcoming, and this
suggests that “trying to solve them is simply barking up the wrong tree: we should
just accept them at face value, as showing that certain contradictions are true” (Priest
[22, p.83]).

Further arguments on the same line are provided by Priest on what concerns
moral dilemmas and rational dilemmas (see [23, chap.13] and [22, chap.6]). Those
dilemmas are not explicit contradictions (just as being a wave and a particle is not),
but they do sometimes imply contradictions (just as being a wave and a particle



30 J. R. B. Arenhart

do, under reasonable assumptions). Their existence, as Priest says, “is simply a fact
of life” ([22, p.111]). It should come as no surprise now that the solution to those
problems, according to Priest, is to live with the dilemmas, just as we should do
with the contradictions involved in the semantic paradoxes. That is: in the absence
of a non-controversial solution, embrace the contradiction. Of course, the practical
question is left untouched, but, as dialetheists see things, contradictions are here to
stay even in the presence of rational dilemmas:

If there are such things, the next obvious question is what one should do if one finds oneself
in one. What one should do, is, of course, the impossible. But one can’t do that. Rationally,
one way or other, one is damned. C’est la vie. (Priest [22, p.115])

Notice that except for the fact that Priest and da Costa disagree on whether Zeno’s
paradoxes exemplify aporias, they agree that the Liar paradox (and paradoxes of
self-reference in general) is an aporia and that the fact that attempts at solving it have
taken so much controversies for so much time means that the contradiction may be
here to stay! Probably the same would be true on what concerns moral and rational
dilemmas. So, the arguments are completely analogous, with the proviso that Priest
does not advance his version of the argument as including contradictions in concrete
reality (although the Liar is said to be true in this world, the actual world). The upshot
is that dialetheists have a common strategy to motivate their position, and it always
appeal to our failure in reaching consensus about consistent solutions to certain
paradoxes. What da Costa did was to advance the argument in complete generality,
aiming also at the world itself with cooperation of science, while Priest restricts
the argument, it seems, to the typical cases involving language, self-reference, and
semantic concepts.

Now that we have seen that adopting contradictions as true in the real world is
not warranted, perhaps a similar case could be made against the same argument as
advanced by Priest (that is, the same argument now restricted to paradoxes involving
semantic and semiotic notions, as well as moral and rational ones). By treating the
arguments with distinct application spheres we may learn more about the scope of
dialetheism and, hopefully, reach a consensus that dialetheism itself is not required.
Contradictions may be just dismissed as false in the end, even though they should be
recognized as one of the main forces driving progress in science. Interesting as they
are, those lines of investigation are an issue for another work.
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The Possibility and Fruitfulness
of a Debate on the Principle
of Non-contradiction

Luis Estrada-González and Maria del Rosario Martínez-Ordaz

Abstract Five major stances on the problems of the possibility and fruitfulness of a
debate on the principle of non-contradiction (PNC) are described: Detractors, Fierce
supporters, Demonstrators, Methodologists and Calm supporters. We show what
Calm supporters have to say on the other parties wondering about the possibility
and fruitfulness of a debate on PNC. The main claim is that one can find all the
elements of Calm supporters already in Aristotle’s works. In addition, we argue that
the Aristotelian refutative strategy, originally used for dealing with detractors of
PNC in Metaphysics, has wider implications for the possibility and fruitfulness of
an up-to-date debate on PNC, at least in exhibiting some serious difficulties for the
other parties.

1 Introduction

Up to now, five major stances on the two long-standing interconnected problems
of the possibility and fruitfulness of a debate on the Principle of Non-contradiction
(PNC henceforth) can be recognized, namely:

• Detractors are ready to give PNC up; its relatively straightforward failure would
be enough ground to the possibility of disputing it. Aristotle in Metaphysics [1]
construed several ancient thinkers as detractors of PNC, notably Heracliteans, and
today the most visible effort is dialetheism as in [27].
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• Fierce supporters say that it holds universally and that it is so certain and basic that
it cannot be shown to hold on any more basic grounds. This is the line famously
held by Lewis ([21, 22]).

• Demonstrators such as Kant ([18]), Boole ([7]), Russell ([30]) or Priest ([26]) are
more open to debate, not necessarily because they are ready to give PNC up, but
because they think it can be demonstrated in terms at least as secure as the PNC
itself.

• Others, Methodologists, say that PNC can not only be discussed, but accepted or
rejected just as any other claim, namely usingmethodological principles of rational
choice. This view is espoused for example by Bueno and Colyvan ([8]) and Priest
([26]).1

• Calm supporters say that PNC has usually been formulated in some strong ways
and that Detractors are rightly attacking those formulations yet they should accept
a very basic form of PNC as to ensure the intelligibility of their proposals and
criticisms. This is basically the proposal recently outlined by Berto ([4, 5]) and
practiced e.g. by Tahko ([32]).

However, in the emergence of the last stance, the focus has been on how they
interact with Detractors. In this paper we show what Calm supporters have to say on
the other parties wondering about the possibility and fruitfulness of a debate on PNC.
The main claim is that one can find all the elements of calm supporters already in
Aristotle’s works, and that his way of dealing with detractors of PNC in Metaphysics
has wider implications for the possibility and fruitfulness of an up-to-date debate on
PNC. Aristotle’s way to refute Detractors not only would do that, but also shows how
to conduct a debate about PNCeven if it is certain andholds universally, against Fierce
supporters;why it is not demonstrable, againstDemonstrators, and not even subject to
settlement or rejection through methodological principles, against Methodologists.2

Two important remarks are in order here. First, we will not attempt a defense of
Calm supporters; we merely want to show how the Aristotelian refutative strategy
can be used beyond its original target, the ancient Detractors, and that it succeeds at
least in exhibiting some serious difficulties for the other parties. A more thorough
examination of each of them is left for further work. Secondly, this paper does not
constitute a merely historical reconstruction of the Aristotelian stand point, but it is
an attempt to provide a better understanding of the current debate on PNC. Thus,
some historical and exegetical details about Aristotle’s work will be left aside in
order to emphasize its import for more contemporary views regarding PNC.

1Advocators of “anti-exceptionalism about logic” —for example, Williamson ([37, 38]) and Hjort-
land ([23])— can be regarded as methodologists, and their views surely would have implications
for the debate here discussed. Note also that Priest appears as a detractor and a demonstrator, a
contradiction that, for him, would show that the debate would be better approached through the
methodological principles of rational choice. This would be more extensively discussed in Sects. 6
and 7 below.
2The only caveat was that Aristotle aimed at establishing a version of PNC stronger than his
refutations of detractors allowed to conclude but, as we have mentioned, this is not a problem for
Calm supporters in general.
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The plan of the paper is as follows. In Sects. 2–4 we introduce some basic Aris-
totelian terminologywhich serves as background for what follows. Although at some
points we do not steer clear from exegetical discussion, our main interest lies on suit-
able logical reconstructions of Aristotle’s views, useful for the overall issue about
the debate on PNC than in an exposition completely sound to the ears of a scholar
on them. In Sect. 2 we distinguish several kinds of principles of non-contradiction
present in Metaphysics Γ and some of its properties. Section3 is devoted to make
more precise about the semantic version of PNC which will be discussed throughout
the paper. In Sect. 4 we discuss Aristotle’s notions of demonstration and refutation,
and show how they help to deal with the anti-debate stance of Fierce supporters like
Lewis. In Sect. 5 we reconstruct one of Aristotle’s refutations of Heracliteans. This
will prove useful for showing what is wrong with the approaches of both Demon-
strators —issue dealt with in Sect. 6— and Methodologists —analyzed in Sect. 7—.

2 Aristotle’s Principles of Non-contradiction

Aristotle discussed at least three closely interrelated versions of the Principle of
Non-contradiction (PNC):

An ontological version (oPNC): It is impossible for a thing to be and not to be
(Metaphysics [1] 996b30; 1005b18-21)3;

a semantic version (sPNC): Given a proposition and its negation, they cannot
be both true (cf. Metaphysics [1] 1011b11-14);

a doxastic version (dPNC): It is impossible to believe contradictions (pairs
consistingof a proposition and its negation;Meta-
physics [1] 1005b23f).4

Aristotle claimed—although not always with this precise jargon, of course— that
PNC is fundamental or a first principle because of its

Groundingness things could not be if it did not hold (cf. Meta-
physics [1] 1006a28-1007b18; 1007b18-1008a2;
Physics, ch. 3);

Universality it holds in all situations (cf.Metaphysics1007b18-
1008a2);

Certainty it is the most certain and best known principle
(cf. Metaphysics 1006a5-1006a18);

Indemonstrability it is presupposed in every demonstration (so it is
itself indemonstrable) (cf. Metaphysics 1006a5-

3An ancestor of this is found in Plato, Republic [24] 436b: “It is obvious that the same thing will
never do or suffer opposites in the same respect in relation to the same thing and at the same time.”
4Also found in Plato. See Republic [24] 602e8-9: “And haven’t we said that it is impossible for the
same [person] to think/imagine at once/simultaneously opposite [things] about the same [things]?”
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1006a18; 1062a1ff; 1062a30);
5 should it be violated, communication, and in
general, purposeful action, would be impossible
(cf. Metaphysics 1008a8-1006b31).

Although all of the features sound well for oPNC, it is not the same for the other
versions. For example, it is not clear that Groundingness could be a feature of sPNC
or dPNC. Also, given the primacy of metaphysical issues for Aristotle, it is not clear
whether sPNC could be demonstrated through, or somehow based on, the oPNC.

In this paper we are interested in capturing in a systematic the state of the art of the
debate regarding PNC; for that reason, from now on, we will be focused mostly in a
version of sPNC since it has recently been emphasized that the issue of the possibility
of a debate can be more easily treated by discussing Indemonstrability ([4, 5, 26, 27,
32]). So, all of the features presented above should be taken as features of a semantic
first principle. For example, such a first principle would ground all semantics, would
hold for all semantic expressions, it would be more certain than any other semantic
principle and it could not be demonstrated on the basis of other semantic principles.
Thus, in what follows ‘PNC’ will stand for a version of sPNC that will be clarified
in the following sections.

3 Some Distinctions

It is common to muddle (i) principles concerning the structure of truth values, (ii)
principles concerning the relations between propositions and truth values and (iii)
the theoremhood or otherwise of certain propositions. For instance, Bivalence is a
principle concerning the structure of truth values: There are exactly two of them.6

Falsity of at least one contradictory is a principle concerning the relations between
propositions and truth values: One of a proposition and a negation of it is false.
p ∨ ¬p is a proposition that may or not be a logical truth. These three things are
independent of each other.

The situation is analogous in the case of PNC:

No values-gluts No truth value can be described as true-and-false;
(Interpretational) (a) only one of a proposition and a negation of it is true, or
Non-contradiction: (b) no proposition is both true and false;
Logical falsehood of A ∧ ¬A, for any A
Theoremhood of ¬(A ∧ ¬A), for any A.

5We do not know a simple expression to name this property, not even in our mother-tongue, and
certainly we do not dare piss the owners of English off by inventing one, hence the blank space.
6And it must not be confused with Non-referential gap: There is no truth value describable as
neither-true-nor-false. These are independent principles. Bivalence might not hold because, say,
there is a third value, but it is not “neither-true-nor-false” but rather, say, “true-and-false”.
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Again, these four claims are independent of each other.7 Thus, neither the mere
failure in a logic of A ∧ ¬A of being always false, nor both the failure of A ∧ ¬A
being always false and the theoremhood of ¬(A ∧ ¬A), as happens in numerous
contemporary logics, is enough evidence that Aristotle’s PNC has been effectively
violated. In addition, the fact that there can be a deduction of ¬(A ∧ ¬A) in a logic
does not suffice as evidence for its demonstrability.

In most of Metaphysics Γ Aristotle discusses whether the principles on the
structure of truth values or concerning the relations between propositions, which
together entail the wished properties of formulas. However, even No values-gluts
and (Interpretational) Non-contradiction would be, with certain additional assump-
tions, instances of a more basic semantic principle, stated at the beginning of his
discussion of Detractors (cf. Metaphysics [1] Γ , 1006b11):
Semantic exclusion: An expression cannot have two mutually exclusive semantic
properties.8

Then, in what follows ‘PNC’ will stand for Semantic exclusion and only deriva-
tively for (Interpretational) Non-contradiction or Non-referential glut. We would not
bother with distinguishing when Semantic exclusion is instantiated for propositions
or for descriptions of truth values; context would be enough guide, and in any case
Semantic exclusion would be doing most of the work.9 Its proper scope will be clear
in Sect. 5.

4 Aristotle on Demonstration, Refutation and the
Possibility of a Fruitful Debate on PNC

According to Aristotle, “a deduction (sullogismos) is [a] speech in which, certain
things having been supposed, something different from those supposed results of
necessity because of their being so.” (Prior Analytics [3] 24b18-20) Meanwhile, a
demonstration is for him a deduction in which the things supposed are known to
be true, primary, immediate, better known and prior than the resulting thing and
then the resulting thing is known (cf. Posterior Analytics 71b10-25).10 “Certainty”,
“immediacy”, “priority” or “better” knowledge does not mean, for Aristotle, self-

7A key ingredient in classical logic isFunctionality: (a) Every proposition has one value (b) but only
one. In a languagewith the usual ingredients (conjunction, disjunction, etc. as certain functions) this,
together with Bivalence, Falsity of at least one contradictory, No values-gluts and either version of
(Interpretational) Non-contradiction, suffices to give all the usual valuations of classical logic.
8For more details on this principle and its importance on Aristotle’s overall argument against
Detractors of PNC in Metaphysics Γ , see [35], where the principle is taken as saying that the
meaning of a term is unique, definite and determinate.Nonetheless,we take themutual exclusiveness
of certain semantic properties as a more appropriate reconstruction of Aristotle’s claims on the
uniqueness, definiteness and determinateness of meanings and their role in his refutations.
9For a guided tour on even more versions of PNC, see [16].
10Whereas it can be debated whether Aristotle’s notion of deduction allows reflexivity (A is
deducible from A) because of the “something different from [the things] supposed results” clause,
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evident knowledge. He distinguishes betweenwhat is better known for someone from
what is better known “in itself” or “in nature”, and says that he means the latter in his
characterization of demonstration. Thus, that someone does not find PNC true at first
sight does not count against, say, its Certainty (cf. Posterior Analytics 71b34-72a4;
76a18-22).

Aristotle holds that PNC, in either of his versions, is a “principle of demonstration”
and, thus, there is no demonstration in which PNC and only PNC is the conclusion;
it is indemonstrable (Metaphysics 1006a5-1006a18). There is an important remark
by Aristotle as to in what sense PNC is a principle of demonstration:

No demonstration assumes that it is impossible to assert and deny at the same time—unless
the conclusion too is to be proved in this form. Then it is proved by assuming that it is true
to say the first term of the middle term and not true to deny it. It makes no difference if you
assume that the middle term is and is not (…). (Posterior Analytics 77a10-14)

Aristotle’s point can be illustrated in this way. If all As are Bs and all Bs are Cs,
it follows that all As are Cs (this is just a Barbara form of argument), even if some
As are also not Bs. After all, they are still Bs as well, and so Cs. But if one wants
to conclude that all As are Cs and only that, i.e. not also that not all As are Cs, then
PNC has to be assumed.

Let us generalize this point given that the occurrence of negation here would be
rather an instance of the exclusion mentioned in the previous section: Whenever
one wants to demonstrate something but not also something excluded by it, one has
to presuppose PNC. If one presupposes it in no demonstration, one always could
demonstrate something but also something excluded by it, hence all exclusions and
probably everything. This remark will prove crucial to assess the attempts to demon-
strate PNC.

Given its Universality, PNC cannot be refuted, and given its Indemonstrability it
is, well, indemonstrable, so seemingly there would be no place for debate about it.
When responding to an invitation to contribute a piece to an anthology on the debate
about PNC, Lewis [22, 176] explicitly rejected the possibility of such a debate:

I’m sorry; I decline to contribute to your proposedbook about the ‘debate’ over the lawof non-
contradiction. My feeling is that since this debate instantly reaches deadlock, there’s really
nothing much to say about it. To conduct a debate, one needs common ground; principles in
dispute cannot of course fairly be used as common ground; and in this case, the principles
not in dispute are so very much less certain than non-contradiction itself that it matters little
whether or not a successful defence of non-contradiction could be based on them.11

demonstration certainly does not allow it: A would have to be both more certain (for it is a premise
in the demonstration) and less certain (for it is demonstrated) than itself.
11This was a permanent stance:

No truth does have, and no truth could have, a true negation. Nothing is, and nothing could
be, literally both true and false. This we know for certain, and a priori and without any
exception for especially perplexing subject matters. (…) That may seem dogmatic. And
it is: I am affirming the very thesis that [the foes of the PNC] have called into question
and —contrary to the rules of debate— I decline to defend it. Further, I concede that it is
indefensible against their challenge. They have called so much into question that I have no
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Lewis’ argument is intended neither as a demonstration nor as a justification of
PNC, but rather as a plea for its adoption as to ensure the possibility of any debate.12

He even says in another place: “I think this [the impossibility of a debate on PNC]
calls in question the very idea that philosophy always can and should proceed by
debate —itself a heretical view, likely to be vigorously opposed.” (Quoted in [27,
xix].)

MaybeLewis is right in that not everything can be debated, but it is not clear that no
debate on PNC is possible. One problem with Lewis’ argument is that it gives much
weight to the Certainty of PNC. Lear [20, Ch. 6.4] has correctly highlighted that, for
Aristotle, the Certainty of PNC does not make it self-evident, so it can be honestly
challenged, because Detractors can fail to acknowledge some of its other properties.
The story does not end, though, with the supporters of PNC acknowledging, say,
the Universality and Certainty of PNC and with Detractors failing to grasp them, as
Lewis’ argument seems to suggest.

Yet another problem is that Lewis seems to restrict the field of debate about PNC
to just either demonstrating it (“defend it”) or refuting it. Since PNC holds, refuting it
is not an option. And since it cannot be demonstrated, because there is nothing more
basic fromwhich it could be demonstrated, no debatewould be possible. ButAristotle
recognized another way to debate, namely defending PNC through the refutation of
their opponents (Metaphysics 1006a11ff; 1062a2). A refutation of a claim (possibly
endorsed by someone) is for him, typically, the deduction of a contradiction from
that claim (Prior Analytics [3] B20, 66b11). However, in the context of debating
PNC, deducing a contradiction from the claims of those who do not endorse it would
not work, on pain of blatantly begging the question. Rather, a refutation in this
context would exhibit something incompatible with the premises of the Detractors,
or something patently absurd by their own lights, so it “silences” them (Metaphysics
[1] 1009a17-20).13 Aristotle would try to show that the Detractors’ most important

foothold on undisputed ground. So much the worse for the demand that philosophers always
must be ready to defend their theses under the rules of debate. [21, 101]

And in a letter interceding for the publication of Priest’s In Contradiction:

Many people will think that it is an easy thing to refute Priest’s position, decisively and
in accordance with customary rules of debate. It is not an easy thing. I myself think that
it is an impossible thing: so much is called into question that debate will bog down into
question-begging and deadlock. (Quoted in [27, xix].)

In what follows we will use interchangeably ‘x is debated’, ‘x is disputed’, ‘the possibility that x
does not hold is entertained’ and even ‘x is defended’ in this reconstruction.
12Field [14] andBoghossian [6] call a principle “default reasonable” if it is regarded as being good at
leading to true beliefs and avoiding error (hence reasonable) and it is done so without first adducing
evidence or argument in its favor (hence default). We do not think PNCwould be default reasonable
in this sense for Lewis: It is not merely good at leading to true beliefs and avoiding errors, but is
the sine qua non to draw a distinction between true beliefs and errors at all; also, it is not merely
default, but already the distinction between what counts as evidence and an argument in favor of
something presupposes it.
13See [9, Ch. 5] for further details.
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premise is that whatever they say, even the smallest of words, is regarded by them
as intelligible, and so their denial of PNC should imply the ultimate unintelligibility
of what a detractor says. Said otherwise, a refutation of Detractors takes the form of
an exhibition that the intelligibility of what they say assumes the validity of (at least
a form of) PNC, as in ‘Some of my most basic expressions mean this and only this,
nothing else’.

Thus, debate can proceed according to Aristotle since PNC and its features might
not be obvious; and although it cannot be demonstrated nor proven false, it can be
defended through refutation. That the validity of PNC is essential to the meaningful-
ness of certain expressions can be made patent to Detractors, and with it, others of
PNC’s features, like its Certainty and Universality, or any other of its features that
might be in dispute, can also be made patent to those who call them into question.14

Thus, what one can learn from Aristotle is that a debate is possible if each party
has at least entertained the possibility that the other’s position might have some
intelligibility. Lewis is clearly demanding something stronger: that they all agree
on some substantial principles. On the other hand, a debate would be considered as
fruitful if it satisfies any of the following:

(Weak fruitfulness) One of the parties ismoved to actually find the other’s position
intelligible (nearly) as a whole in virtue of the exchange.

(Strong fruitfulness) One of the parties is moved to modify their position in virtue
of the exchange with the other one.

Again, Lewis demands at least the stronger version of fruitfulness for a debate on
the PNC.

5 Aristotle’s Refutation of Heracliteans

So, debate with Detractors is possible through refutation. The result will always
be establishing (some feature of) PNC, there is no much to debate about that, by
exhibiting the detractor’s ultimate commitment to PNC. One of the refutations of
Heracliteans, found in Metaphysics 1008a34-1008a38, shows particularly well the
Aristotelian strategy to make Detractors aware of their commitment to some form
or feature of PNC. But it shows not only that debate is possible, against Fierce
supporters, and that Detractors are wrong, at least in this specific case, but this
refutation has all the ingredients that show why Demonstrators and Methodologists
would be on the wrong track on the issue of debating PNC and we will deploy them
in the next sections.

Before reconstructing the refutation of Heracliteans, a note on terminology is
in order. For Aristotle, logic and logical notions have strong multi-agent dialogical
components. For example, we have seen that deduction is a kind of speech, and so
are demonstration and refutation. However, we have assumed that it is exegetically

14Thus, pace Priest [26], we take sides with those who say that some of Aristotle’s refutations
establish not necessarily PNC itself or at least its Universality, but something else about it, even if
that was not Aristotle’s aim. See [34] for further discussion.
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safe for our present concern to rely on what Dutilh Novaes [13, 123] calls “the
internalization of the interlocutors” in the modern proof- or model-theoretic analyses
of logic. For example, a typical reductio inmodern format exhibits a formof refutation
where the interlocutors are somehow internalized in the formal machinery. So, we
reconstruct cognitive-dialogical expressions like

(CD) The (group of) agent(s) s accepts/rejects/asserts/denies/believes/etc. what
the (group of) agent(s) s* accepts/rejects/asserts/denies/believes/etc.
as
(RCD)The (group of) agent(s) s accepts/rejects/asserts/denies/believes/etc. E(A).

where ‘E(A)’ is a reconstruction of what s* accepts/rejects/asserts/denies/believes/
etc. in terms of evaluations of the proposition A accepted/rejected/asserted/denied/
believed/etc. by s*. Even more frequently, we reconstruct (CD) internalizing all
interlocutors as

(ICD) E(A)

i.e., “The evaluation of A is such and such” as a step in an s-ian argument about s*’s
position. We will rely on such internalization later when talking about speech acts
like assertion and denial or even cognitive states like acceptance and rejection.15

Aristotle’s refutation reads as follows: “Again, if when the assertion is true, the
negation is false, and when this is true, the affirmation is false, it will not be possible
to assert and deny the same thing truly at the same time. But perhaps they might say
this was the very question at issue.” (Metaphysics 1008a34-1008a38) We provide
here a more or less thorough reconstruction of the argument to make as clear as
possible its basic premises16:

Basic premises:

(A1) For every valuation v and proposition A, if v(A) = � then v(¬A) = ⊥.
(A2) For every valuation v and proposition A, if v(¬A) = � then v(A) = ⊥.
(A3) For every valuation v and propositions A and B, if either v(A) �= � or v(B) �=

� then v(A ∧ B) �= �.
(A4) For every valuation v and proposition A, either v(A) = � or v(A) �= �.
(A5) There are exactly two truth values, � �= ⊥.

Rest of the argument:

(A6) Suppose v(A) = �
(A7) Then v(¬A) = ⊥ (from (A1))
(A8) Then v(¬A) �= � (from (A7) and (A5))

15Priest [26, 14f] does not regard as refutations some arguments where apparently there is no
other agent saying anything on the basis that Aristotle required Detractors to say something. This
internalization would help to explain the fact that there could be a refutation even if there were
nobody saying anything: Detractors’ saying has been internalized in the supporter’s argument.
16We would like to emphasize that the following reconstruction of Aristotle’s refutation strategy is
not an attempt to make an exegetically perfect reconstruction —considering, for example, the fact
that it is described in terms of a contemporary semantics. The main purpose of this reconstruction
is to show in a comprehensive manner how the strategy works. We leave to the Aristotelian scholars
to decide whether it matches perfectly the original proposal.
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(A9) Then v(A ∧ ¬A) �= � (from (A8) and (A3))
(A10) Now, suppose v(A) = ⊥
(A11) Then v(A) �= � (from (A10) and (A5))
(A13) Then v(A ∧ ¬A) �= � (from (A11) and (A3))
(A13) Make analogous proofs about the truth values of¬A until you have covered

all cases.
(A14) Then, for every valuation v, v(A ∧ ¬A) �= � (from (A1) to (A13))

Aristotle says: “But perhaps they might say this was the very question at issue.”
What is the “very question at issue”, what do ‘they’ and ‘this’ stand for? Dancy [12]
speaks of a single (fictional) target of Aristotle’s refutations and calls him “Antipha-
sis”. However, Aristotle’s refutations are directed at different possible foes of PNC
that is better to keep separated for the purposes of analysis: Dialetheists, for whom
some but not all contradictions are true; Heracliteans, for whom all contradictions
but not other propositions, especially their conjuncts, are true; trivialists, for whom
everything is true; and even logical nihilists, for whom nothing is true.17 Priest [26,
38] seems to think that the argument studied in this section is directed against a sup-
porter of dialetheism or trivialism, and that it is unsuccessful against them. However,
the thesis under discussion is “All contradictions (and only them) are true”, which
comes since Metaphysics 1007b26 and is attributed to the Heracliteans (cf. Meta-
physics [1] 1005b25, 1012a25), and which we will call “logical Heracliteanism”.18

The argument does not bear directly upon dialetheism, because it does not imply
logical Heracliteanism. And although trivialism implies logical Heracliteanism, it is
not the explicit target of the argument.19

Logical Heracliteanism is based on two theses. According to metaphysical Her-
acliteanism, everything is in state of flux at every moment; so, and this is semantic
Heracliteanism, a thing cannot be described truly to be an F because it would be to
fix it, and the same considerations aremade for not being an F , but it can be described
truly and fully as both being an F and not being an F . Hence all contradictions, but
none of their components, are true, because it would be the only way to capture the
changing nature of things.20

17And at least in one case, Aristotle distinguishes between Heracliteanism and dialetheism because
they need to be refuted in different ways, cf. Metaphysics 1008a7-12.
18Whether these views should actually be attributed to the historical Heraclitus is a moot point;
see [15, Ch. 5]. However, the interest here lies more in the position itself than in the correctness of
Aristotle’s scholarship.
19The problem is that Priest sometimes conflates trivialism—“Everything is true”—with a version
of Heracliteanism—’All contradictions are true’— (cf. [28, 131], although sometimes he says that
he is aware that the identification depends on certain assumptions, notoriously ‘and’-elimination
(see [26, 56]. Aristotle too thought that semantic Heracliteanism could be equated with trivialism,
but he was cautious: “The doctrine of Heraclitus, that all things are and are not, seems to make
everything true (…)” (Metaphysics1012a25).
20In proof-theoretic terms, Heracliteanswould not accept conjunction eliminationwhen the premise
is a contradiction, and theywould accept conjunction introductionwhen the conjuncts are not true but
only if they are contradictories. Inmodel-theoretic terms, itmay be that v(A) �= � or v(B) �= � even
if v(A ∧ B) = �. So,when the conjuncts are contradictories, semanticHeracliteanism’s conjunction
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So “the very question at issue” is what allows going from the truth conditions
of negation to the conclusion, i.e. the idea that a simultaneous affirmation of two
affirmations cannot be true if one of them is not true, (A3). In order to avoid begging
the question and complete the refutation, Aristotelians have to do another move,
and Aristotle has provided the pattern for that in his previous refutations (1006a18-
1088a33). Heracliteans say that (H) It is not the case that, for every propositions A
and B, if either v(A) �= � or v(B) �= � then v(A ∧ B) �= �. But (H) has the form
Not-(A3). Moreover, according to Heracliteans, (H) must fail to be true since only
(H) ∧ ¬(H) could be true. So, if Heracliteans want to say that their principle Not-
(A3) is true, they have to say that it is true only together with (A3). And indeed it
has to be so for any Aristotelian premise.21

However, this is not a great victory yet. Aristotelians would prefer Heracliteans
to accept only their premises and conclusion as true, but they merely get that Hera-
cliteans have to take both them and their negations as true. To say that Heracliteans
cannot do that is to assume PNC. For the argument to run, Aristotelians need Hera-
cliteans wanting to reject (A3) by saying that it is just false while only Not-(A3) is
true. But according to Aristotle, that is exactly what Heracliteans want to do, which
would undermine their own position, so the desired result for Aristotelians would
obtain.22 A shorter, less convoluted refutation of Heracliteanism that we have not
found in Aristotle’s works would be as follows: If all and only contradictions are
true, then there is some non-contradiction that is true, namely the Heraclitean thesis
itself (“All and only contradictions are true”). Therefore, not all contradictions and
only them are true.

In any case, if Heracliteans wanted to say that only Not-(A3), their (H), is true,
they would have to endorse some form of PNC, the minimal semantic principle of
non-contradiction (MSPNC):

(MSPNC) “For some semantic property P , family of semantic properties Q1, . . . ,

Qn and some expression e of a non-trivial theory T , it is impossible that P holds
good and that any of Q1, . . . , Qn holds good for e.”

For simplicity, the disjunction of the Qi s will be collectively denoted by ‘Not-
P’. This is like the principle of Semantic exclusion mentioned in Sect. 3, but with
explicit quantifiers. The argumentation against Heracliteansmakes clear the rationale

resembles the relevance logics’ fusion connective, and thus is not so odd by contemporary lights.
Besides, in certain sense, semantic Heracliteanism is dual to non-adjunctivism, which is a thesis
found in some paraconsistent logics like the earliest one, Jaśkowski’s: In non-adjunctivism, in
general v(A ∧ ¬A) �= � even if v(A) = v(¬A) = �. Non-adjunctivism was used in some of the
earliest attempts to make sense of impossible worlds; see [29].
21An argument similar to this one is presented in Metaphysics K (see 1062b2ff).
22Again according to Aristotle, Cratylus held that even contradictions over-fix reality so they must
be altogether false, like their conjuncts. However, he noticed the problem faced by the Heraclitean
and did notmake themistake of trying to philosophize about that, so he attempted to threw the ladder
out after stating his position and ceased to do virtually any philosophical statement (only “virtu-
ally” because he kept denying with his forefinger and that still causes problems). See Metaphysics
1010a10ff.
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behind MSPNC. In order for a theory T to rule out something, some of its expres-
sions must mean something and nothing else incompatible with that something, and
when certain contradictions are true, some of the expressions involved in them must
mean something else incompatible with what they supposedly mean. If logical Her-
acliteanism is expressible at all, it is false, because its expressibility requires either
that some non-contradictions are true, like Not-(A3) alone, or that somehow only
(A3) and Not-(A3) together mean Not-(A3), but the meaning of Not-(A3) does not
seem to be meaning of a contradiction.23

MSPNC is decidedly weaker than some might expect. But in fact most of Aris-
totle’s refutations do not succeed beyond establishing restricted versions of PNC,
likeMSPNC. It only holds for some expressions and some semantic properties, since
form the fact that Heracliteans need to recognize at least one non-contradiction as
true does not follow that only non-contradictions may be true, or more simply, the
negation of “All contradictions and only them are true” is not “No contradiction is
true”. Nonetheless, the scope of MSPNC is not a negligible one. Holding for all
theories which aim to rule something out from it just leaves one theory out, trivi-
alism. So Universality might not hold in the sense that MSPNC does not apply to
any expressions, but it holds in the sense that virtually every theory must have such
incompatible semantic properties.24

6 The Consequences of Refutations for Demonstrators

Aristotle’s argument in the previous section gives a clear example of why he does not
consider his refutations as demonstrations. Without (MS)PNC, there is no obstacle
for considering Not-An for any of the Aristotelian premises An , and then either
proving Not-PNC, or both PNC and Not -PNC, but not only PNC. So (MS)PNC has
to be presupposed in every demonstration that wants to demonstrate one thing and
only it, not also something excluded by it.

Demonstrations of PNC like Kant’s [18], Boole’s [7, Ch. 3] or Russell’s (cf. [36,
∗362 3.24])25 fall short for the same reason that logical Heracliteanism, but more

23Note that according to the Aristotelian argument, the option of describing a language in which all
contradictions are true but none of their components is true is open to Heracliteans, provided that in
its metalanguage either not all contradictions are true or some of the components of a contradiction
are true separately from it.
24That PNC might hold only for restricted versions has been pointed out several times by scholars.
Substances and “essential predicates” are the usual candidates for which oPNC certainly holds
(cf. [11, 17, 19]), although sometimes a slippery slope from the restricted oPNC about essential
predicates to a general oPNC about any predicates is attempted; see for example [33]. Tahko [32]
defends that oPNC holds certainly for concreta and its properties in “genuinely possible worlds
with macroscopic objects”, but not necessarily for every object of every possible world, not even
for every object of every physically possible world. More recently, Coren [10] has recently provided
an interpretation like ours, but attempting to show that Aristotle can succeed in defending a principle
much stronger than MSPNC.
25See also [30, §19]; [31, Ch. VIII].
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obstreperously since most of them, unlike Heracliteanism, are precisely not framed
as foes of PNC. In order to demonstrate PNC and only PNC, these demonstrations
would have to assume that only their premises —say, true first principles for Kant
or laws of thought in Boole’s case, let us denote them ‘M1, . . . , Mn’— but not also
something excluded by them hold. If PNC, in the form ofMSPNC, were not logically
prior to any of those premises then it would also be possible to adopt Not-Mi for
any of them, and then either proving Not-PNC, or both PNC and Not-PNC, but not
only PNC, regardless the formulation each of them gives of PNC. Therefore, neither
Kant’s, nor Boole’s nor Russell’s would be demonstrations of PNC, at least not in the
Aristotelian sense. The original sin of these demonstrations consists in most cases
in mistaking self-evidence or obviousness by the Aristotelian technical Certainty,
which are different as already mentioned in Sect. 4. Other principles might be more
evident than PNC, but it does not mean that they are more certain and thus they
cannot be used to demonstrate it.

As a step in his rebuttal of PNC, Priest says, more modestly than Kant, Boole or
Russell, that “it is not clear that it is a first principle”, that “it is not clear that the
LNC cannot be demonstrated” and then he sketches a demonstration:

Even granting this [Aristotle’s] notion of demonstration, it is not clear that the LNC cannot
be demonstrated, since it is not clear that it is a first principle. Consider, for example, the
Law of Identity,�(α → α). Though nothing is completely uncontentious, there is hardly any
disagreement about the correctness of this Law. (…) And given this, ¬♦(α ∧ ¬α) follows
from one application of the rule of inference: �(α → β) 	 ¬♦(α ∧ ¬β). [New paragraph]
One might object that the principle of inference here simply presupposes the LNC. This is
moot: it is valid, for example, in the semantics of In Contradiction, chapter 6, according to
which contradictions may be true. But whatever one says about this particular case, the point
remains: it is not at all obvious that no proof of the LNC in Aristotle’s sense is possible.
([26, 13, italics in the original])

Priest has attempted thus a demonstration of PNC using principles that seemmore
certain than PNC itself. One could demur at this point that Priest, like Lewis in his
argument against the possibility of debate, uses a notion of certainty different from
Aristotle’s and that it could be that, on further, more detailed inspection, these prin-
ciples show themselves as no more certain than PNC. But the standard Aristotelian
move against both Detractors of PNC —like Heracliteans— and its Demonstrators
—like Kant, Boole or Russell—, is that PNC has to hold for the premises of their
arguments to only hold good and not also not to hold, so PNC is prior to the premises
used whether to refute it or to demonstrate. However, Priest does not accept the prior-
ity of PNC in this sense and says that, for any of his premises or rules Pi , it is possible
that Pi and Not-Pi . So even if PNC is not demonstrable under Not-(R1), Not-(R2),
Not-(P1), Not-(P2) andNot-(P3), which he could endorse, it is under (R1), (R2), (P1),
(P2) and (P3), which he also could endorse. That PNC could be both demonstrable
and indemonstrable should worry only someone who already endorses PNC.26 Thus,
theAristotelianmove has seemingly left the friend of contradictions Priest unharmed.

26In [27, 241ff], Priest explicitly says that some arithmetical statements (in an inconsistent arith-
metic) are both provable and not provable.



46 L. Estrada-González and M. R. Martznez-Ordaz

Priest could make the same move with Lewis’ premises. But this easily general-
izes. If PNC does not hold, for any proposition A it could be that A and not-A. There
would be no purely logical way to saywhen a proposition does not hold and only does
not hold, and then ruling it out (cf. [26, 107]). In particular, a demonstration (or the
lack of one) of A would be at most a first step towards a verdict on its acceptability.

7 Methodologists and the Fruitfulness of the Debate

But that for Priest there is no logical way to rule things out does not mean for him
that there is not a way at all:

That a person may sometimes be able to accept a contradiction rationally, and that there is
nothing in the domain of formal semantics ever to stop a person accepting a contradiction,
I do not dispute. That a person can always accept a contradiction rationally is a blatant
non sequitur, which I reject. It does not follow from the fact that some contradictions are
rationally acceptable that all are, nor does it follow from the fact that there is nothing in
formal semantics against it that it can be done rationally. ([27, 104])

For example, Priest thinks that I am a frog is a belief less rationally acceptable
than The Liar is both true and false (cf. [26, 14]). According to him, the rationality
of individual logical principles derives from the degree of rational preference or
acceptance of the logical theory to which they belong, so these troubles with ruling
out things can be solved by turning to the realm of pragmatics and the discussion
of the rational acceptability of theories in general (cf. [26, 123]). Thus Priest counts
finally not as a demonstrator but as a methodologist,27 and given that he thinks
that some theories in which PNC holds score worse in overall criteria for rational
acceptability than those in which (allegedly) it does not hold, he is a methodologist
detractor.

Let us grant that some dialetheists havemanaged to establish that I’m a frog has an
extremely low degree of rationality and thus that it should be rejected. They cannot
reject it by negating it, though, because according to them a proposition and its
negation can both be true, and so acceptable. Nor they can reject it by saying that it is
false, because for them a proposition can be false but also true, and so acceptable. But
regardless how dialetheists can reject something, the important feature of acceptance
and rejection is that they are incompatible for them, just like contradictories in many
logics:

27Lewis mentions this:

It is not an easy thing [to refute Priest’s position, decisively and in accordancewith customary
rules of debate]. I myself think that it is an impossible thing: so much is called into question
that debatewill bogdown into question-begging anddeadlock. (On this point, Priest disagrees
with me: he thinks that shared principles of methodology might provide enough common
ground.) (Quoted in [27, xix].)
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Someone who rejects A cannot simultaneously accept it any more than a person can simul-
taneously catch a bus and miss it, or win a game of chess and lose it. If a person is asked
whether or not A, he can of course say ‘Yes and no’. However this does not show that he
both accepts and rejects A. It means that he accepts both A and its negation. Moreover a
person can alternate between accepting and rejecting a claim. He can also be undecided as
to which to do. But do both he cannot. ([25, 618])28

But now Aristotelians may strike again in two respects, one regarding the appeal
to epistemic virtues and another regarding the incompatibility between acceptance
and rejection. First, the fierce supporter Lewis contented himself with agreeing to
disagree with Priest, but Calm supporters, based on Aristotle’s refutations, can argue
that for every epistemic virtue Ei on the basis of which something is going to be
excluded, assuming no version of PNC allows one to consider also Not-Ei , where
it is something excluded by Ei . For example, if only Simplicity delivers simplicity
(whatever that means) it is because it is not the case that both Simplicity and Not-
Simplicity delivers simpler theories (whatever that could be) and so, theories more
rationally acceptable. It is clear that Priest is in the sights of the Aristotelian now.
A version of PNC has to hold at least at some level, contrary to the impression that
for any proposition A, it could be that A and not-A, which led us to the realm of
pragmatics: One wants to adopt an epistemic virtue E and not also Not-E, otherwise
they would not play the role of ruling some propositions out as required by Priest.29

Second, and has already been pointed out by Berto ([4, 5]), for Priest there is a
realm of notions (involving persons and buses, outcomes of games of chess, certain
speech acts) that seem to fall under MSPNC, as is clear from what he says on
acceptance and rejection. In Priest’s dialetheism, rejection has to do the job of ruling
some propositions, theories, claims, et cetera, out. But for that to work, he seemingly
has to assume that the notions of acceptance and rejection stand in the relation
sanctioned by MSPNC.30

What we have said about epistemic virtues would show that not even the well-
intentioned proposal of other Methodologists like Bueno and Colyvan [8] to conduct
debates about logical principles works so smoothly in their target case, PNC. They
say:

The crucial idea is that—similarly to what goes on in science—debates about logic typically
involve a common core of assumptions that are shared by the various parties in the debate.
This common core includes: (1) shared logical theories (that is, logical principles and rules),
or (2) shared views about the aims of logic, or (3) shared methodological principles (broadly

28See also [26, 110].
29This reveals that Priest underestimated Aristotle’s remark in Posterior Analytics mentioned in
Sect. 4. Aristotle says that whenever one wants to demonstrate something but not also something
excludedby it, one has to presupposePNC. If it is presupposed in nodemonstration, one always could
demonstrate something but also something else excluded by what was supposedly demonstrated,
hence all exclusions could be demonstrated. GivenMSPNC, the fact that contradictory propositions
can be accepted is irrelevant as to the Indemonstrability of (MS)PNC, although perhaps it counts
against some form of Universality for especially stronger versions of it.
30To be fair, dialetheists and other detractors are right in questioning stronger forms of PNC, like
“any sentence of the form A ∧ ¬A is untrue in any valuation”, and their assimilation to weaker
forms like MSPNC.
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understood to include metalogical principles). Although usually items (1)–(3) are not all
shared at the same time, at least one of them typically is. And as we will see, this provides
enough common ground for debates about logic to be conducted and, in some cases, settled.
([8, 166])

Among their examples of “significant agreement” between parties there are certain
affirmations, BCm , which, they say, allow debate, but PNCwould not be among them.
For example, dialetheists and non-dialetheists agree in the following:
(BC1) The conjunction of true contradictions and classical logic implies trivialism.
(BC2) Trivialism is untenable.
Together with other implicit principles: What is untenable has to be rejected; if
something is rejected then at least part of what implies it has to be rejected too, etc.31

However, without some form of PNC, probably MSPNC, these basic affirmations
shared by dialetheists and non-dialetheists do not rule out other affirmations that
could entail a prima facie incompatibility with the alleged result of the agreement,
and thus cannot do the job of providing either a justification or a rejection, and only
a justification or a rejection, of PNC, and only of PNC.

Bueno andColyvan [8, 170] suggest that the adoption of a principle not established
through debate would undermine fallibilism, but fallibilism is surely an advisable
stance.More generally, the backdrop ofmethodologism is, broadly speaking, the idea
that logic is not fundamentally different from other scientific theories and that it is
subject to the same desiderata and conditions as theories in natural science, as is clear
from the first line of the above quotation and was also clear already in Priest’s case.
However, we do not think that the adoption of MSPNC suppose a great threat neither
for fallibilism nor for the idea of logic as a theory as many others, though. Although
MSPNC is flanked by a universal quantifier such that only trivialism escapes from it,
there is a lot of room for fallibilism regarding what instances of the inner particular
quantifiers (some properties…, some expressions…) should be accepted. One could
claim that some properties and expressions fall under the scope ofMSPNCand accept
the claim using the usual methodology of natural sciences; also, and this was already
pointed out by Berto [4, 185] in his own terminology, one can be wrong about such
claims and rationally retract them again using the methodology of natural sciences.
Then, neither fallibilism nor the idea of a methodology akin to that of the rest of
science are threatened by the adoption of a principle like MSPNC.

The remarks above also help to explain the conflicting intuitions about the pos-
sibility of debate about PNC. MSPNC can be recognized as holding universally, as
Defenders of PNC say; its outer universal quantifier can be taken as being neither
demonstrable, for any demonstration of it would already require it, nor refutable,
because it would be a true universal claim. But debate would be possible since
MSPNC does not guarantee by itself its extension given the inner particular quan-
tifiers. Moreover, MSPNC leaves room for some non-false or plainly true contra-
dictions, as adversaries of stronger versions PNC have claimed. This debate would
be fruitful because proposing and rejecting specific instances of MSPNC involve

31Cf. the reconstruction of the debates in [8, 170–173].
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substantial claims. For example, even if dialetheists and classicists agree that accep-
tance and rejection fall under the scope of MSPNC, they still can fruitfully argue
whether truth and falsity or specific contradictions also fall under it without calling
into question MSPNC, that is, they can debate with enough common ground, as a
fierce supporter like Lewis demanded.

8 Conclusions

In this paper we have investigated the possibility and fruitfulness of a debate on
the principle of non-contradiction (PNC) by studying an Aristotelian approach to
the current major stances on the issue. More in particular, we have argued that
the Aristotelian refutative strategy, originally used in Metaphysics for dealing with
detractors of PNC, can be used for a better understanding of the different standpoints
involved in the contemporary debate on PNC.

After stating the version of PNC to be discussed, we have argued that one can
find all the elements of “Calm supporters” of PNC already in Aristotle’s works. A
calm supporter holds that a debate on the PNC is both possible and fruitful, and that
there is a version of PNC that even “Detractors” must endorse even if stronger forms
of the principles might have counterexamples. Calm supporters, contrasting “Fierce
supporters” like Lewis, think that a debate about PNC is both possible and fruitful
because PNC and its properties need not be evident and can be honestly doubted or
denied by detractors; and although PNC cannot be demonstrated and Detractors are
doomed to fail in their quest for counterexamples, a debatewithDetractors is possible
because they can legitimately challenge the principle yet are subject to refutation.
Refutation “silences” the denials by showing that they are ultimately committed to
PNC.

We have also showed that this strategy of exhibiting an ultimate commitment to
PNC serves for replying to “Demonstrators” and “Methodologists”. Demonstrators
deny the indemonstrability of PNC, but their alleged demonstrations are already
committed to PNC in that their premises are intended to mean something and not
also something incompatible with that, so they are not demonstrations. The mistake
lies inmost cases in confusing self-evidencewith certainty. Other principlesmight be
more evident than PNC, but it does not mean that they are more certain and thus they
cannot be used to demonstrate it. A difficult case is Priest’s demonstration of PNC,
because at the same time he accepts the charge that it is committed to PNC, so it is
both demonstrable and indemonstrable. He endorses then a methodologist approach
according to which principles and logics incorporating them should be accepted
or denied on the basis of the usual criteria for theory choice. But Methodologists
fall short by the same reasons as detractors and demonstrators: They presuppose
PNC since their methodological principles for theory choice are intended to mean
something but not also something excluded by them; for example, if simplicity is an
epistemic virtue, it is thought to exclude non-simple theories. However, the schematic
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character of PNC provides enough common ground for debate yet leaves room for
disagreement and fallibilism.
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Abstract Most scientific theories are globally inconsistent. Chunk and Permeate
is a method of rational reconstruction that can be used to separate, and identify,
locally consistent chunks of reasoning or explanation. This then allows us to justify
reasoning in a globally inconsistent theory.We extend chunk and permeate by adding
a visually transparent way of guiding the individuation of chunks and deciding on
what information permeates from one chunk to the next. The visual representation
is in the form of bundle diagrams. We then extend the bundle diagrams to include
not only reasoning in the presence of inconsistent information or reasoning in the
logical sense of deriving a conclusion from premises, but more generally reasoning
in the sense of trying to understand a phenomenon in science. This extends the use
of the bundle diagrams in terms of the base space and the fibres. We then apply this
to a case in physics, that of understanding binding energies in the nucleus of an atom
using together inconsistent models: the liquid drop model and the shell model. We
draw some philosophical conclusions concerning scientific reasoning, paraconsistent
reasoning, the role of logic in science and the unity of science.
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1 Introduction

Inconsistency toleration is practiced when we recognise sensible reasoning from
inconsistent information. Moreover, under inconsistency toleration, such reasoning
is not considered to be a threat to rationality. It is claimed that inconsistency toleration
is quite common in science. Moreover, from studying the history of science we learn
that, at some time in their development,most scientific theories havebeen inconsistent
([25, 27, 34, 44]). Some of the most famous examples of this are: Aristotle’s theory
of motion ([46]), the early calculus ([5, 25, 46]), Bohr’s theory of the atom ([11, 17,
25]), and Classical Electrodynamics ([19, 20]), among others.

Despite the historical examples, accepting the inconsistent character of science
meets with resistance. Whether the resistant are explicitly aware of it or not, the
reason for their resistance rests on the deeply entrenched view that the world is a
unified and consistent whole. It follows that our true scientific theories must also
be consistent in order to reflect this view of the world. We can trace the origins,
at least in the West,1 to Aristotle’s denial of contradictions in the world and of his
question begging ([44], chapter 1) arguments that ex contradictione quodlibet (from
a contradiction any formula, proposition or sentence we can write in the language
follows) is a valid argument form. Thus, from Aristotle we learn that reasoning from
a contradiction is somehow irrational, false or wrong.

Today, the view is reflected in the underlying logic used in making arguments
in science. The more widely accepted formal representations of such reasoning are
found in classical or constructive logic (where ex contradictione quodlibet arguments
are valid).2 If the basic principles of classical or constructive logic3 are correct then,
“an inconsistent theory implies any conceivable observational prediction as well as
its negation and thus tells us nothing about the world” ([24]: 79). Reasoning under
inconsistency is called explosive reasoning since everything we can express in the
language is true.

In order to reconcile the present and historical cases of alleged inconsistent sci-
encewith the repugnance of explosive reasoning, logicians have developed reasoning
strategies thatmodel sensible reasoning from inconsistencieswithout arriving at arbi-
trary conclusions [4, 7, 10, 11, 47]. Formal representations of reasoning where ex
contradictione quodlibet is invalid include the relevant and paraconsistent theories.
One of the common strategies of the formal theories is to separate the original incon-
sistent set of formulas or sentences into consistent subsets. Arguably, this seems

1Of course, we do not mean the ‘West’ in the geographical sense. We mean it in the sense of a
cultural tradition in science.
2Not all scientists have a thorough training in formal logic, so they might not be acquainted with
the terms ‘classical logic’ or ‘constructive logic’, nevertheless, these are accepted as the cannons
of reasoning and rationality by those who do have some training in logic, and their authority is
accepted, for reasons of division of labour. It is less fashionable now for scientists to study formal
logic. It was more common in the past.
3Classical and constructive approaches or reasoning styles are the most common in mathematical
and scientific practice. We shall discuss an important limitation of the formal representation of such
reasoning in the next section.
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to be a fruitful, intuitive and common strategy when reasoning with inconsistent
information [4].

Such separation exercises allow us to explain how we reason in the majority of
the historical cases of inconsistent science. We say that from the global perspective,
the scientific theories are inconsistent but that they have several important local
consistent sub-parts. This also explains how it is possible to apply inconsistent science
to technology, to wit:

A nice cutting edge high-tech example of such integration is the global positioning system
(GPS): by means of satellites kept in place by Newtonian physics, and atomic clocks ruled
by quantum mechanics and corrected by special and general relativity, this system maps the
spherical surface of the round earth on a geocentric grid (or rather, a geostatic grid), and
gives advice to people on the ground from a flat-earth point of view. ([12], 266).

The theories, say of the GPS system, have consistent sub-theories: the application
ofNewtonianmechanics to solve one problem, the application of quantummechanics
to run the clocks, the application of the relativity theories to correct the clocks for
their interaction with clocks on earth and so on. These theories of application are
more specialised theories, and these sub-theories are pairwise inconsistent with each
other. Taking this into account, the phenomena of inconsistency toleration has been
studied by logicians by distinguishing global analyses and local analyses of the
alleged inconsistent theories.4

One of the strategies for modelling non-explosive inconsistent reasoning that
makes use of separation into local consistent sub-theories isChunk and Permeate ([4,
10, 11]; Priest 2015; [7]). The underlying strategy is to separate a given inconsistent
set of sentences into consistent subsets and cordon them off by calling the subset a
‘chunk’.We then let only some information permeate fromone chunk to the next. This
strategy has been used to model some of the most popular examples of inconsistent
science such as the early calculus (cf. [10]; Sweeney 2014), Bohr’s Hydrogen Atom
(see [11]), the Dirac Delta function (cf. [4]) and Lobachevsky’s model of hyperbolic
geometry for indefinite integrals ([18], 162–172).

While the chunk and permeate strategy has been successfully used to model
particular examples of inconsistent scientific reasoning, it still lacks a systematic
method for separating chunks and for evaluating such separations for consistency.
Here we provide an almost effective method5 for separating inconsistent sets of
formulas and sentences. Because the method is not quite effective, we can only
claim to make the modelling more systematic, not systematic in the sense of giving
an effective procedure, although in some restricted cases we conjecture that it is
possible to give an effective procedure. This is reserved for future work.

4Here we shall focus only on global and local analyses of (in)consistency regarding specific bodies
of knowledge. In Sect. 3 we shall introduce the notions of global and local consistency and their
representation using bundle diagrams. In Sect. 6.2 we shall briefly introduce the corresponding
characterisations of global (in)consistency and local consistencywhen dealing with inconsistencies
in empirical sciences.
5It is not completely effective, and can only be made so under quite rigid and formal circumstances.
See the conclusion formore details about these limitations. Nevertheless, even as an almost effective
method, or even as a heuristic in informal reasoning, it will be quite useful.
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The significance of our work is that we can more clearly discuss some philosoph-
ical considerations on the subject of inconsistency toleration in formal and empirical
sciences. More specifically, in this paper we focus on three important issues: the role
of liar cycles and inconsistent reasoning in the formal sciences, the use of Chunk and
Permeate and Bundled Chunk and Permeate for modelling, reconstructing, explain-
ing and providing understanding of inconsistent scientific reasoning, and we discuss
the implications of inconsistency toleration in science especially in the light of the
research programmes that aim at the unification of science.

In order to address these issues, the paper is divided in two main parts: the first
one is devoted to logic and mathematics. We elaborate on the benefits of using
Chunk and Permeate when modelling inconsistent scientific reasoning, and present
our method. This part includes Sects. 2–5. In particular, in Sect. 2 we explain why it
is that reasoning with inconsistencies is assumed to be problematic from the point
of view of the philosophy of logic. In Sect. 3 we introduce the Chunk and Permeate
strategy and give reasons for looking at Bundled Chunk and Permeate. In Sect. 4
we introduce bundle diagrams. In Sect. 5 we use the bundle diagrams to individuate
chunks and determine permeation for liar cycles.

In the second part of the paper, we discuss science. This part includes Sects. 6–10.
In Sect. 6, we make some general remarks about the problem of inconsistency in
science. In Sect. 7, we introduce some considerations from the philosophy of science
about how to individuate and combine mutually inconsistent theories or models. In
Sect. 8 we provide an example of a globally inconsistent union of models and we
apply Bundled Chunk and Permeate, to this example. In Sect. 9 we present further
insights concerning why inconsistent groups of theories are thought to be a problem
for science. Finally, in Sect. 10 we draw some philosophical conclusions concerning
the unification of science, the nature of consistency and reasoning paraconsistently,
and what this means, while using only consistent formal representations of logical
reasoning locally.

2 Trivialism and Modern Mathematics

We shall be looking at the problems with trivialism andmodernmathematics through
two lenses, the classical lens and the constructivist lens. We begin with trivialism
and why it is a problem.

Under classical, model-theoretic conceptions of semantics, a trivial theory is one
where every formula in the language is true; under constructivist or proof-theoretic
conceptions a trivial theory is one where any well-formed formula of the language
can be derived. A trivial arithmetical theory would have it that 2 + 2 = 4, but also
2 + 2 = 19, 2 × 93 = 6 and so on. This is not a useful theory of arithmetic for
science. In fact, it is a disastrous theory of arithmetic, since it is completely undis-
cerning between the true theorems or equations and the false ones (as seen from a
more traditional consistent and classical conception of arithmetic). There is no false
statement, only ungrammatical ones, and ungrammatical statements are, arguably,



Keeping Globally Inconsistent Scientific Theories Locally Consistent 57

not counted as statements. Grammatical statements of the theory are all true, all
derivable and their negations are all true and derivable. The conceptions of arith-
metic error and correction are lost, and arguably ([44] Ch. 3), meaning is also lost.
Trivial theories are to be avoided according to the more common present practice of
mathematics.6

Most mathematicians claim7 that they are classical or constructivist reasoners,
([23], 64–70) so they think that if there is a contradiction in their theory, then their
theory becomes trivial.8 In other words, one route to trivialism starts from classical
or constructivist reasoning, you then meet a convincing contradiction that you do
not think can be explained away, reason as you would through the ex contradictione
quodlibet argument and you find yourself in a recognisably trivial theory. By modus
tollens, if we think we are not in a trivial setting, since this might be thought to be
a priori impossible, or we think that our theory is not trivial and we are unwilling
to give up our classical or constructivist reasoning, then our theory had better not
have any contradictions. So, we can avoid trivialism by remaining convinced that
whatever looks like a contradiction in our theory must a priori not be one. This leap
back from the brink of trivialism is quite common in science, and it explains, or
excuses, the separated reasoning where the global theory is inconsistent but the local

6We thank an anonymous reviewer for reminding us that there are supporters of trivialism, and
those who think that we can reason sensibly even in a trivial setting. In fact, this is almost what
we show using Chunk and Permeate. ‘Almost’ means that there is some ambiguity as to what this
means. See some remarks in the conclusion for elaboration. Since our concern is with present-day
practice and reasoning in science, we maintain that at present there are no trivialists in science.
7Some relevant and paraconsistent logicians claim that such mathematicians are actually, as man-
ifested in their reasoning behaviour, relevant or paraconsistent reasoners. This nuance will be
addressed in the conclusion.
8The logicians and mathematicians who disagree with this, who think that ex contradictione quodli-
bet proofs are invalid, are relevant logicians or paraconsistent logicians. The philosophical differ-
ence is that relevant logicians insist on there being a relevant connection between premises and
conclusion, paraconsistent logicians think that we can reason coherently with contradictions, or
through a contradiction, and they model such reasoning. Briefly, in a paraconsistent logic, while
you can derive an infinite number of formulas, as you can from any formula in any logic with a
minimum set of inference rules, you cannot derive very much of interest from a contradiction. It
is treated as a logical singularity. From p ∧ ¬p, you can derive p, ¬p, by ∧-elimination, then by
∧-introduction, you can derive (p ∧ ¬p) ∧ p and so on, with double negation introduction you could
derive ¬¬p... The point is that you cannot get to an arbitrary q.

Logically, what distinguishes relevant from other paraconsistent logics is that relevant logicians,
as part of the bigger substructural tradition, restrict some structural rules rather than operational
ones. Non-relevant paraconsistent logicians change the behavior of the connectives (especially
negation) while preserving the full set of structural rules of the language. This guarantees that they
stay as close to classical logic as possible (i.e. Priest’s LP).

This second way of putting the distinction reveals an important bias in this paper and for Chunk
and Permeate in general: it appeals to a specific kind of logician/mathematician/scientist. Martínez-
Ordaz would say that this particular kind of reasoner is one who admits that classical logic is along
the right lines and is a good starting point and possibly thinks that formal representations of relevant
reasoning sacrifice too much or change the reasoning too much. Chunk and Permeate then appeals
to: classical, constructive and some (non-relevant) paraconsistent reasoners (those who think that
inconsistency toleration is alright but we should nevertheless reason as consistently as possible).
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pieces are consistent. When we meet an apparent contradiction in our classical or
constructivist setting, we stay short of going through the ex contradictione quodlibet
reasoning.9

Let us turn to modern mathematics. Modern Western mathematicians make
proofs.10 Often, these are only partly formal, so we might not notice a contradiction.
Some proofs include sets of premises, lemmas or theorems that belong to theories
that are inconsistent with each other, in the sense that they use information from
different theories, and the theories themselves contradict each other. Some proofs
include sets of premises, lemmas or theorems that are inconsistent with each other in
the stronger sense that it is possible to derive a contradiction from them. Even worse,
few mathematicians seem perturbed by this despite the threat of trivialism. How do
we explain the lack of concern?

First note that none11 of these proofs use an ex contradictione quodlibet proof or
sub-proof, since this would bring disaster. In order to explain this, wemight speculate
that they are using a paraconsistent logic, or are reasoning paraconsistently, unbe-
knownst to them.12 This is not an idle thought, since some paraconsistent logicians
make this claim. Ifwe agreewith it, then itmakes sense to use a paraconsistent logic to
reconstruct the reasoning. But this would be disingenuous towards the claims, beliefs
and practices of present day working mathematicians, since few of them claim to be,
or believe that they are, reasoning paraconsistently, and they are qualified to make
that judgement, at least prima facie.

We introduceChunk and Permeate as a reconstruction of reasoning in the presence
of contradiction that respects the claims, beliefs and practices of present day working
mathematicians.

9Later in the paper, we shall see that this is exactly what Abramsky recommends.
10Not all mathematicians at all times finished their workwith proofs. In the past, before the twentieth
century in Europe, and in the colonies of the European countries, it became wide-spread in the
institution of mathematics that results and ideas had to be proved. This is not the case in every
mathematical culture, and it has not always been the case in European-based cultures. This is
despite the fact that when detailed proofs were given, the proofs in Euclid set the standard for rigour
of proof.
11The ‘none’ is meant as a challenge. The authors know of none that has been published, but of
course some might have slipped into the published cannon.
12The difference is this: if they are using a paraconsistent logic, then they have recourse to a formal
representation of the reasoning in the proof. If they are ‘reasoning paraconsistently’ then this is a
looser notion. They are reasoning in such a way as to entertain and recognise contradictions but
avoid trivialism. Here is the rub: which formal theory best represents their reasoning is usually
ambiguous. Their reasoning is represented by a class of formal theories. They are reasoning in the
spirit of paraconsistent reasoning in the sense of exercising damage control on the inconsistency.



Keeping Globally Inconsistent Scientific Theories Locally Consistent 59

3 Chunk and Permeate and General Remarks
on Extending it

Let us highlight the original aim of [10, 11] in developing Chunk and Permeate
(henceforth C&P). It was to reconcile the fact that sometimes mathematicians and
scientists reason with inconsistent premises with the fact that they deny that this
is possible or makes any sense. While it may seem sensible to those used to para-
consistent reasoning to argue that the inference procedures of such mathematicians
should be represented by a paraconsistent formal logic, it is not always clear that
the underlying logic is represented by any of the standard formal representations of
paraconsistent reasoning—or that it can be formally represented at all ([10]: 379).13

The C&P strategy consists in dividing a given a proof with inconsistent premises
into consistent subsets, called ‘chunks’, and to only allow some information to per-
meate from one chunk to the next.14 It is assumed that within each chunk we have
perfectly ‘acceptable’ (i.e. consistent) reasoning that can be represented using a clas-
sical or constructive formal logic.

Sharing Brown and Priest’s original intention, our purpose is to formally depict
only classical or constructive reasoning (within chunks) in cases where the premises
are inconsistent with each other. This restricts the more general method of C&P
because there is nothing forbidding us a priori from using a paraconsistent logic
within a chunk or letting formal representations of paraconsistent conceptions to
permeate from one chunk to another. We set aside such possibilities here because
we are holding ourselves to the more wide-spread current standards in mathematical
proofs.

Following theC&P strategy, we distinguish between two different types of chunk:
source chunks and target chunks. The former are the input chunks, the ones that
contain the original information that is often mixed in mathematical reasoning, while
the latter are the output chunks, the ones that contain the desired results of the proofs
[10]. Between chunks, we only allow to permeate the information we need to reach
the conclusion of the chunk.We begin with the source chunks and end with the target
chunk.

We should mention that a proof reconstructed with C&P loses cut-elimination, in
the sense that premises are not always available in any chunk in the re-construction,

13Even though, in principle, one could also have relevant or paraconsistent reasoningwithin a chunk,
we ignore this possibility here out of the respect for the prevailing claims beliefs and practices of
working mathematicians. See Priest (2015) for an example of paraconsistent logics within chunks.
14An interesting question is whether we can use the chunk and permeate strategy on an ex con-
tradictione quodlibet proof. Of course we can, in two different ways: one is to preserve classical
validity, so the proof just is a demonstration that anything (written correctly in the formal language)
can be derived from inconsistent premises. So the whole proof is one chunk. The second way is
to separate the negated reductio inference from the double negation elimination, thus ‘preserving’
consistency within each chunk. A negated reductio inference is one where we conclude the negation
of the hypothesis as opposed to the opposite of the hypothesis. If we hypothesise ‘q’, and this leads
to a contradiction, then we conclude the negation (and opposite) ‘¬q’. If we hypothesise ‘¬q’, we
would conclude the negation, (and not the opposite) ‘¬¬q’.
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[7]b. Premises have to be present in a chunk to be consulted in a chunk-sub-proof.
Classical and constructive reasoning places no such restriction on the use of premises.
For this reason, C&P proofs are non-classical and non-constructive. However, we
need not be alarmed. There are many formal systems of proof where cut-elimination
is absent; but more important, the loss of cut-elimination almost passes unnoticed in
each particular C&P proof. For, we might prove cut-elimination in a chunk, or use
cut-elimination within a chunk. It is only in the overall strategy of the proof that we
lose cut elimination. Put another way, under theC&P strategy, given some premises,
especially inconsistent ones, we do not countenance the closure of all inferences
from the premises since this would be the trivial theory in that language. Since the
mathematicians themselves do not consciously avail themselves of the trivial theory,
we think it is legitimate to model their practice using C&P. Making note of this just
makes explicit some of the philosophical subtleties involved in reasoning in ways
that are closer to reasoning ‘paraconsistenly’ while not having a particular formal
representation of paraconsistent reasoning in mind.

We extend C&P to model scientific understanding and problem solving, not just
reasoning and making arguments, and we give a more rigorous characterization of
chunks.15 In past reconstructions, choosing the chunks was largely a matter of feel,
with hints taken from the original proof. The more rigorous characterization we
propose here is meted out in terms of bundle diagrams, but it could also be done
more rigorously in terms of cohomology theory and sheaf theory [1] or in terms of
a pivotal consequence relation.16

The notion of a pivotal consequence relation is used to maximize sets of assump-
tions or axioms or rules of inference, up to cut elimination. This would be a way of
distinguishing chunks from each other. These extensions have not yet been worked
out for C&P explicitly.17 However, all of these more precise, rigorous, systematic
and formal approaches to defining chunks and the permeability relation might suf-
fer from being too precise because they would also have to be adapted to general
understanding as opposed to reasoning or deducing, and worse, they might be appli-
cable only in certain sorts of proof – those that can be expressed in the respective
formal languages. The pivotal consequence relation concept coupled with maximal
sets of assumptions up to cut-elimination is limited to cases that we can express in
propositions and in terms of clear and explicit rules of inference. Extending theC&P
strategy using cohomology theory or sheaf theory might also be too precise for the
purposes of reconstructing some of the reasoning in science, although Abramsky

15It would be nice tomake thesemaximal, but to prove that they are might not be possible. Similarly,
to give a method for checking for maximal chunks might not be possible. There might be two C&P
reconstructions that have the same number, or size, of chunks.
16See the work of ([30, 31]) for the introduction of this concept and Piazza and Pulcini [41] for the
notion of finding the maximal set of assumptions that could then be used, again, to extend the C&P
strategy by using the maximal set of assumptions to define a chunk.
17It would make a nice future project to look into the possibility of more rigorously defining the
chunks in thisway.Moreover, there promises to be some cleanways ofworking outwhat information
permeates using the definition of complementary sequent and complementary system. See Piazza
and Pulcini (2016) for details. We thank Pulcini for the suggestion in private correspondence.
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et. al. do this for quantum mechanics, but without C&P. While this might work for
highly mathematical areas of physics, it would be too precise in cases where we find
it difficult to fit the concepts of science to the concepts and language of cohomology
theory or sheaf theory. The scientific concepts might not be ready (yet) to be rep-
resented in this way. On the other hand, if the scientific theory is amenable to such
representation, then it might be quite revealing to work through the C&P exercise.
Generally, the more logical, formal or mathematical a science is, the more amenable
it is to a more rigorous extension of C&P.

The bundles that we introduce in the next section are quite flexible and can be
thought of in several very different ways. They are suited to representing scientists’
more general understanding and reasoning as well as representing proofs. They are
more flexible, but when combined with C&P give fairly rigorous guidance for indi-
viduating chunks. Thus, BundledC&P takes us a step beyond the existing guidelines
which are to individuate chunks by ‘trying to follow the original intentions of the
author of the proof’. They take us a step towards greater rigour. In particular, the
further stepwould be to use cohmology theory, sheaf theory, and pivotal consequence
relation approaches to individuating chunks. We believe that the approach that we
introduce here, will sharpen our understanding of C&P as well as our understanding
of the scientific practice when dealing with inconsistency by separating information
according to context or background theory.

As we can already see, there are both practical and conceptual limitations to our
extension of the method. We shall discuss some of them further in the conclusion.

4 Bundles: Local and Global Consistency

We are interested in inconsistencies. In particular, in inconsistencies in information
being used to reason or understand phenomena in mathematics or science. We are
interested in cases that are a little sophisticated: where we do not simply have a
formula or sentence as one piece of information and the negation or denial of the
(otherwise) same formula or sentence.

In order to introduce the bundles, we follow Abramsky et. al. and focus on the
re-enforced liar paradox, also called ‘liar cycles’, where one person says of a second
that everything he says is true, while the second says of the first that everything he
says is false. This is a liar cycle of two. There can be liar cycles of three, four and so
on, and because they might be extensive, we might not be certain whether we are in
a liar cycle or not because the cycle is too large, or of indeterminate size. This makes
the inconsistency more sophisticated.

There is a similar situationwith someproofs inmathematics and computer science.
In the langage of classical logic: creating amodel ormaking a derivation can influence
what other models are then possible. We add more information—a new result from
another theory—and the models that satisfy this new information might preclude
the first models—this is a cycle of two. The model cycles might be larger, up to
indefinitely large. We might not know that satisfying some premises with a class of
models precludes our satisfying other premises with the same models.
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In the language of proof-theory,18 or of constructive logic, deriving a certain
theorem might set parameters on what can be derived next, and further down the
line. In an informal proof, we might find that by ignoring some of the work we did
earlier, we derive something that contradicts what we derived earlier. This is only
possible if we are reasoning under suppositions or hypotheses, and the suppositions
or hypotheses are important just for a sub-proof. Wemight not execute the derivation
needed to see the contradiction, and so not be aware of the contradictory milieu we
are in.

The other places where we see such reasoning is in quantum mechanics, reason-
ing from inconsistent data sets and so on ([1], 1). Or, there are situations where a
mathematician borrows theorems or results from various theories to prove her con-
clusion, suspects that she might be flirting with inconsistency, but is, nevertheless,
confident (or the mathematical community is confident) that her result stands. For
example, there might not be a tight and loyal translation between the theories, and
usually not even an equi-consistency proof between the theories. The mathematician
then borrows information from other theories that is locally consistent. But if we
were to mix all the theories together, we might well be able to derive a contradiction.
Moreover, she thinks she is reasoning classically or constructively. Such reasoning
is sensitive to context: that it should be local. For this reason, Abramsky et. al. call
this ‘contextual’ reasoning. ([1], 1) When we develop Bundled C&P, contextual
reasoning will be treated as a chunk.

We can represent liar cycles, and similar sorts of reasoning using bundle diagrams
from topology. Precisely:

The key idea is to understand contextuality as arising where we have a family of data which
is locally consistent but, globally inconsistent. This can be understood and very effectively
visualised... in topological terms: we have a base space of contexts (typically sets of variables
that can be measured or observed), a space of data or observations fibered over this space,
and a family of local sections (typically valuations of the variables in the context) in these
fibres. This data is consistent locally but not globally: there is no global section defined on
all the variables that reconciles [makes together consistent] all the local data. In topological
language we say that the space is “twisted” and hence provides an obstruction to forming a
global section. (Our emphasis, [1], 1).

In Sect. 5, we shall extend the bundle diagrams to accommodate other cases, by
considering other sorts of variables (base spaces) and other sorts of valuations on
those variables.We shall then see how theyfitwithC&P to vindicatemathematician’s
practice of reasoning with inconsistent premises.

Bundles are a type of diagrammatical representation. We shall first construct a
simple diagram, showing a consistent set of formulas (Figs. 2, 3, 4), then we shall
show liar cycles of three (Figs. 5, 6). We shall then widen the cycle to five (Fig. 7).
Next, we change some of the parameters on the bundle diagram to accommodate
different sorts of proof; and finally, we transpose this idea to the notion of C&P

18If we are doing formal proof theory, then there is no danger of inconsistency. However, here we
are thinking in terms of informal proofs or proofs using suppositions. We move from the model
theory story to the proof theory story to respect classical reasoning and constructive reasoning,
respectively.
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as a methodologically tight rational reconstruction of reasoning with inconsistent
premises, solve problems or trying to understand scientific phenomena from the
point of view of scientific theories that contradict each other.

We introduce the bundle diagrams. An easy bundle diagram for a consistent set
of formulas consists in the following. Assuming that everything Aristotle says, Plato
says and Socrates says is internally consistent, we make up our base space of: (A)
everythingAristotle says, (B) everything Plato says and (C) everything Socrates says.
Represent this with three points on a horizontal surface. Rising vertically upwards
from the points (A), (B) and (C), we draw fibres. See Fig. 1.

Fig. 1 Base space

Along each fibre are two stops: the possible valuations (true or false) of the set of
sentences uttered by Aristotle, Plato and Socrates respectively. Let the lower stops
represent false and the upper stops represent true. That is, it is possible that everything
Aristotle says is true, and it is possible that everything he says is false, similarly for
Plato and Socrates.

We add further information. Each of Aristotle, Plato and Socrates utter a special
sentence. Aristotle says: everything Plato says is true. Plato says: everything Socrates
says is true, and Socrates says: everything Aristotle says is true. Assuming that what
all three say is true, this connection is represented by drawing an edge from the T
stop, up the fibre from Aristotle, to the T stop, up the fibre from Plato and drawing an
edge from the T stop, up the fibre from Plato, to the T stop up the fibre from Socrates.
Finally draw an edge from the T stop, up the fibre from Socrates, to the T stop up
the fibre from Aristotle. See Fig. 2. Drawing these edges makes a ‘section’.

Fig. 2 Bundle diagram global consistency (all true)
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Fig. 3 Bundle diagram global consistency (all false)

This set of three edges represents the idea that Aristotle, Plato and Socrates say
only truths, and that they attribute truth to each other (we ignore the direction of
the attribution and the historical veracity of the claims in the base space). More
technically, the three edges constitute a closed path that traverses each of the fibres
only once ([1], 7). This represents global consistency in what Aristotle, Plato and
Socrates say. They could also have all said only falsehoods rather than truths, and
attributed falsehood to everything each other says. This could still be a consistent set
of sentences. In this case we would have a path connecting each of the F stops up
the fibres. See Fig. 3. Global consistency can also occur with a mixture of truths and
falsehoods. For example, see Fig. 4.

Fig. 4 Bundle diagram: global assignments

Aristotlemight say that everything Plato says is true, but Plato says that everything
Socrates says is false, and Socrates says that everything Aristotle says is false, but
what he says is false, so the edge goes from the F stop up the fibre from Socrates to
the T stop up the fibre fromAristotle. This is globally consistent, so we have a closed
path that traverses all the fibres only once. But say Aristotle is uttering a falsehood
when he says that everything Plato says is true. Then we have another closed path.
See Fig. 4. There are all together eight possible paths traversing each of the fibres
only once when we have a base space of three and two values up the fibres. Such
a “closed path” is also called a “global assignment” ([1], p. 7). To introduce more
vocabulary: any such closed path (traversing each fibre only once) is also called
univocal since it assigns one value to each variable.
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We do not always have global consistency, although we might have local con-
sistency. Let us now consider a liar cycle of three. We have the same base space.
The special sentences are the same, with one exception. This time, Aristotle says
that everything Plato says is false. The bundle diagram now is given in Fig. 5. If we
follow the path made by the edges, starting with assuming that what Aristotle says
is true, it will cross the fibres twice.

Fig. 5 Bundle diagram: liar cycle of three

If we start with the assumption that everything Aristotle says is false, then we
have another path, that also crosses all of the fibres twice. See Fig. 6.

Fig. 6 Bundle diagram: liar cycle of three

This is because the variables: (A) what Aristotle says, (B) what Plato says, and
(C) what Socrates says cannot be globally true, although any pair is locally, or
pairwise, consistent. This is a liar cycle of three. We can expand it to four, five or
more.We add Parmenides (D) andHeraclitus (E) between Plato andAristotle. Plato’s
special sentence is now “Everything Parmenides says is true”, Parmenides’ special
sentence is “Everything Heraclitus says is true”, and Heraclitus’ special sentence is
“Everything Plato says is false”. So this increases the liar cycle. See Fig.7.
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Fig. 7 Bundle diagram: liar cycle of five

We now extend the bundle diagrams. We depart from the liar cycle analogy, by
saying that instead of truth values up the fibres, we have models. So, we now put on
our classical, realist, model theorist hat. Our base space is now made up of formulas
that are satisfied by models that are represented by stops up the fibres. It is paracon-
sistently (note! we shall return to this in the conclusion) possible to have mixtures
of formulas whose models are locally consistent but globally inconsistent. In the
‘model-extension’ of the bundle diagram, the functions mapping models under for-
mula (A) on to models under formula (B) and so on, fail to make a global assignment.
There is a class of models that satisfies some formulas but if a particular subclass is
satisfied, then some of the first formulas are no longer satisfied by those models, and
the fibres are traversed more than once along their path.19

Changing the vocabulary to themore constructive, proof-theoretic version: instead
of models, we can discuss possible inferences from a set of suppositions or hypothe-
ses. If we cannot make a global assignment, then we ‘need’ (under our respect for
the assumptions concerning the practice of mathematics, that mathematicians think
of themselves as thinking consistently, classically or constructively) something like
C&P to reconstruct the reasoning.

5 Bundles and Chunk and Permeate

Originally, the main purpose of introducing C&P and bundle diagrams was to for-
mally depict mathematicians’ reasoning when they are using inconsistent premises.

19We do not know if this might also be due to a reflexive iteration that causes what Dummett calls
an ‘indefinitely extensible concept’. This might correspond to the idea that we do not know if we
are in an inconsistent cycle, so the edges might spiral up, but we have no way of knowing at any one
point if we might then be brought down again. A bundle diagram where the edges spiral upwards
indefinitely might represent something like a fractal where a new value is generated as a result of
both the formula and the last value or last few values. This is all speculation that requires further
investigation. We thank Jean-Paul van Bendegem for asking about spiralling edges.



Keeping Globally Inconsistent Scientific Theories Locally Consistent 67

In the classical mathematical proof case of the reconstruction, the base space is the
premises and the conclusion. The stops on the fibre represent values for the variables
of the theory. The values are either (i) the set of truth values that we can assign to
the premises or other formulas in the language, this is all we need if our logic is only
propositional or (ii) the (open) set of models satisfying the premises or conclusion,
we need this for a first-order classical theory or (iii) the inferences that can most
immediately be made (under some normal form and ordering of inferences) from
the premises and the conclusion. We need this sort of stop up the fibres if we are
reasoning in a first-order constructivist theory or proof theory.

A chunk can then be created by gathering the information in the base space below
a local path that traverses some fibres each only once and traverses no fibre twice.
Now we pay attention to the notion of a path being directed. This is not strictly
necessary, and in some cases will not be appropriate; but it helps for the description
here. Find a path that leads to the conclusion. The conclusion is in the last chunk, the
target chunk. There will also be some premises or theorems in the target chunk. But
the target chunk cannot include all of the premises. Information permeates, so there
will be some overlap in information between the chunks. To keep things simple, try
to minimize the number of chunks. In fact, it will often be possible to have only
two chunks, depending on what information has to permeate to the other chunk.
In bundle language: chunks consist in elements of the base space that are together
consistent. So, as a first approximation, we individuate chunks as the base space
below an edge that does not cross itself. Because some information permeates, there
will be elements of the base space that find themselves in more than one chunk. That
is what permeates.

Let us be more precise about what permeates. As we saw with the bundle repre-
sentations, pairs of variables in the base space are locally consistent iff there is an
edge between them. Following the bundle representation, we allow permeation and
individuation of chunks in a ‘back-and-forth’ play between: on the one hand wanting
to maximize chunks by taking the longest locally consistent assignment, and on the
other hand, letting only consistent-with the-next-chunk-and-used-in-the-next-chunk
information to permeate to the next chunk. So, now we are not maximising, but opti-
mising between two considerations. A given maximal chunk might have to be made
smaller, for reasons of permeation. There is some artistry here. This is a casualty, or
strength, of our giving more specific guidelines than were hitherto available, while
not wanting to make too formal and rigid the specifics of the bundle diagram. Situa-
tions that are amenable to more formal representation can be given a more effective
recipe for individuating chunks and determining permeation.

Under our guidelines, we might break up our premises into sub-premises thus
changing the base space. This corresponds to weakening axioms or splitting axioms
into two. For example, in our liar cyclewe could separate the special sentence from the
quantified sentence (which would not include the special sentence, so the quantifier
is bounded in an odd way!). Ignore this possibility, since it makes the notion of
‘maximizing’ or even ‘optimizing’ more complicated. It is because of such added
complications that the method we propose here is not effective.
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6 Generalizing Further: Bundled Chunk and Permeate
to Reconstruct Scientific Reasoning

Wegeneralize further. Inmathematical reasoning especially today, we are fairly clear
about what our premises are, where borrowed lemmas and borrowed theorems come
from and what our concluding theorem is. In science, these matters are not always
so clear. Moreover, we might be reasoning, not in the sense of deriving a theorem,
albeit informally, but in the sense of reasoning about a concept, a phenomenon or a
structure and so on, in order to deepen understanding rather than come to conclusions
of deductions. Regardless of the difference in purpose, we might still be concerned
about reasoning in an inconsistent context, where the ideas we bring to bear, in order
to deepen our understanding, contradict each other under some representations in a
formal language.

We shall work through an example very soon. Staying at the very general level
for now: to deploy the Bundle Chunk and Permeate strategy (henceforth, BC&P) for
reconstructing, or even guiding future reasoning, we start with deciding on the base
space of contexts. For BC&P, contexts will be sets of premises, ideas, theorems,
results, data from observations, or descriptions of phenomena which are jointly used
when solving specific problems;20 these sets will often coincide with the chunks
(if already specified). These premises/ideas/theorems/results could be of two types:
context–dependent, their interpretations and constraints are determined by the con-
text in which such premises are being evaluated, or context-independent, their inter-
pretations and constraints are given independently of which other premises are being
evaluated (and, sometimes, the premises’ value may be fixed and seem self-evident
to scientists).21

We then have to ask a very fundamental question about valuation, in order to
determine what we shall find going up a fibre. Valuations might be measurements,
or they might even be qualitative, in the form of properties. An edge will connect
values in adjacent fibres when the corresponding joint outcome is possible ([1],
p.7). A global assignment will be indicated by a closed path traversing all the fibres
only once. A contradiction could be –partially- pictured by assigning two mutually
incompatible values to the same premise/idea/theorem/result. But that is not enough,
to show the presence of global inconsistency, we need to show a ‘twisted space’ in
topological language ([1], p. 1–2). As it has been described in [1], such a twist will
help us to visualize the lack of a global assignment and the presence of mutually
incompatible contexts.

We have identified at least four types of path over a global base space:
(1) An open path that does not cross all the fibers. This indicates nothing about

the global base space.
(2) A closed path that crosses all fibers only once. This indicates a global assign-

ment and with it, the possibility of consistent reasoning in the global theory.

20For related notions see [1], p.1.
21For related notions see [1], p.6.
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(3) A closed path that crosses some or all fibres twice or more. This indicates
that the valuations change as the reasoning along edges is carried out: this shows
contextual reasoning, but not necessarily a contradiction. There is just a feed-back
loop (recursive reasoning) that changes the valuations next time that you consider
the base information. This is enough for identifying local contextuality.22

(4) A closed path that forces you to cross at least some of the fibers twice (or
more). The segment carved out by the edges makes a twisted space: one where there
is inconsistency in the global base space. To force the crossing twice there has to be
a cross-over between fibers. This shows that the base space contains a contradiction.
It shows global inconsistency.

In the following sections we present an application ofBC&P for modelling incon-
sistent reasoning in empirical sciences. In order to do so, we shall first provide some
definitions so as to make it easier to understand a particular case of inconsistent sci-
ence and the particular application of BC&P. Then, in (Sect. 6) we shall introduce
a case study from nuclear physics. And finally, we shall proceed to illustrate how
BC&P could give a satisfying account of this particular case.

7 Some Preliminaries from Empirical Inconsistent Science

While paradoxes and internal inconsistencies in the more formal sciences are well-
documented in the literature andhave called the attention ofmanyparaconsistent logi-
cians; inconsistencies from empirical sciences (in particular, inconsistencies between
theories or models)23 have not enjoyed as much attention. Some exceptions are men-
tioned in this paper. We think that the presence of some contradictions in scientific
reasoning is not a minor issue; so, if a case of inconsistent (non-trivial) science is
spotted, it seems necessary to offer an explanation about how inconsistent informa-
tion can be combined and not become trivial in the empirical sciences. We believe
BC&P can help us to achieve such an explanation or reconstruction of the reasoning.

7.1 Different Groups of Propositions

In the empirical sciences, the different disciplines and research domains are never
completely independent of each other ([27]: 53). As a matter of fact, more often than
we expect, in actual scientific practice different theories (from different disciplines)
and different models (from different theories) are often combined for solving specific

22Characterized in [1] as: “there is a local assignment which is in the support, but which cannot be
extended to a global assignment which is compatible with the support.” (2015, p.6).
23Schummer ([48], pp. 64–5) argues convincingly that, especially when considering problems in
chemistry, we use the term ‘model’ rather than ‘theory’, since this better reflects the practice of
chemists when reasoning about phenomena in chemistry. Of course, here we do not mean model in
the model theory sense of the term.
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problems. Some problems are complex enough that they cannot be clearly solved by
one theory or model alone.24 We shall focus mainly on inconsistencies that involve
two or more different—original—groups of propositions.

That being said, a natural question emerges: how can scientists individuate groups
of propositions as ‘distinct theories’ or ‘distinctmodels’?This is not a trivial question.
When we individuate objects we give the necessary and sufficient conditions under
which we are able to tell when two objects are different from each other, and when,
what we thought were two distinct objects, turn out to be the same one. Famous
examples include the discovery that the evening star is the morning star or that ‘jade’
is really two different chemical compounds: now called ‘jade’ and ‘jadeite’.

Nonetheless, individuating scientific theories along the sorts of standard lines we
would use to individuate mathematical theories is disingenuous towards scientific
practice.25 When talking about scientific theories the challenge is double: it is difficult
to say when a set of objects, substances or ideas is different from another set of
objects, substances or ideas, and it is also difficult to specify when two set of objects,
substances or ideas are part of the same scientific theory [38]. As a matter of fact,
the history of philosophical and scientific debates has shown that sometimes

we can’t agree on which set of ‘things’ constitute ‘Newtonian cosmology’, ‘classical electro-
dynamics’, and the rest. We see in (...) particular examples of disagreements about whether
some theoretical constituent (equation/model/proposition) should or shouldn’t be considered
‘a part of the theory’. ([40], 2892).

Such disagreements are hostage to the abstract activity of theory individuation.
When philosophers or scientists ask themselves if a particular scheme is ‘really the
theory X’, there is often miscommunication ([39] chap. 2, [40]). However, if they
ask themselves which are the theoretical constituents that are sufficient to solve a
particular problem given certain constraints, agreement is reached more easily.

Taking that into account, we take a naturalist stance, and observe that often in
actual scientific practice, scientific theories are not individuated abstractly, but in
terms of specific problem solving goals. Here we shall claim that a theory (or model)
will be successfully individuated according to a particular problem, if the set of
propositions that constitute such a theory (ormodel) entails a solution to the problem,
or a statement of the problem as well as a neat, or systematic understanding of it.26

Once a theory is individuated, it could be studied by analysing it globally, this is,
through the revision of the properties that the whole theory possesses; or it could be
studied through the analysis of some of the properties that only some of its subsets
possess.27

24For examples of this see Elsamahi [36, 37].
25If we were to be normative, or even prescriptive, about science we could disregard scientific
practice and force individuation of scientific theories in order to avoid inconsistency within a
scientific ‘theory’. We do not propose to do this, since, as we shall see, this would be quite unnatural
to the practice, and of rather limited interest.
26See ([27]) for related notions of problem solving.
27Even though almost any scientific theory could be fragmented in infinite ways, here we shall focus
only on such subdivisions that are compatible with the way in which scientists use their theories in
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A theory could be separated into meaningful subsets if and only if the elements
contained in such subsets are considered to be sufficient for solving interesting prob-
lems in the discipline to which they belong—if they are too minimal for solving
problems, we will not consider the separation to be a candidate for being a chunk.
The study of the properties that meaningful subsets of the original theory possess is
what we understand as local analyses. The properties that are present in meaningful
subsets of a theory, are not always present in the theory as awhole. For instance, a the-
ory could be locally consistent, i.e. could have consistent subsets, without necessarily
being globally consistent.

A particular theory (or model) A will be distinct from another theory (or model)
B according to a particular problem if and only if the solution of the problem that is
entailed by the theory (or model) B cannot be achieved without the theory (or model)
A.28 Two distinct theories (or models) could be satisfactorily combined if and only
if they are distinct theories and if their combination allows for larger explanatory
or predictive power, solving other problems or contribute to greater understanding,
than the one that each theory alone possesses.

In sum, we consider that the relationship between a particular group of proposi-
tions, their theoretical context and the solution to a specific problem are all necessary
for individuating theories (or particular models).

This way of individuating theories is not only loyal to the practice, but it will
be useful for separating groups of propositions when applying BC&P to particular
cases.

7.2 Global and Local (In)Consistency

As we claimed in the introduction, scientific inconsistent theories have often been
analysed at two scales of analysis: global and local. What interests us here are cases
where the global theory, or model is inconsistent, but sub-theories or set of models
are consistent.

While we take a ‘naturalist stance’ in the sense of respecting the scientific practice
and allowing it to guide our analysis on the relations between different theories and
betweendifferentmodels,we should note that respecting the practice comes at a price:
many of the scientific theories that are built and individuated under problem solving
considerations are, at some point in their development, inconsistent. For example,
Bohr’s theory of the atom was initially designed for explaining why hydrogen emits
and absorbs light at certain specific frequencies and, since the beginning, the theory

their standard practice. Henceforth, we shall refer to this way of choosing chunks as separating it
into meaningful subsets.
28In what follows, we shall assume that scientific theories are often individuated following specific
problem solving considerations, and that this individuation is often in terms of objects, sets of
phenomena, sets of forces acting together, or classes of axiomatic theories, among others.
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succeeded at its main goal. However, despites this success, the early versions of the
theory were inconsistent ([11, 17]).

As a matter of fact, the list of theories that (allegedly) have been inconsistent is
long and diverse, some examples of inconsistency in science are Bohr’s theory of the
atom ([11, 17]), the Early Calculus ([5], [25, 59]), Classical Electrodynamics ([19,
20]), Prout’s hypothesis [43], the models of the atomic nucleus [37], among others.

Although all those case studies aim at illustrating inconsistent scientific theories,
some logicians and philosophers of science have pointed out that the inconsistencies
that have been portrayed by these cases are not really homogenous ([15, 27, 33, 43]).
As a matter of fact, “if we distinguish between observation and theory (what cannot
be observed), then three different types of contradiction are particularly noteworthy
for our purposes: between theory and observation, between theory and theory, and
internal to a theory itself.” ([43], 144).

These differences play a crucial role in the philosophical analyses of inconsisten-
cies in the empirical sciences. Nevertheless, here we are analysing inconsistency in
science as a logical concept.29 We shall gloss over the differences by focusing on sets
of sentences or formulas. Thus, the sets of sentences might be about observations
and theory, might belong to ‘different’ theories or might all belong to a theory. Since
we are interested in representing the inconsistencies using the bundle diagrams, the
sets of sentences are our variables. They make up the base space.

We then focus on the distinction between local and global. These could be char-
acterised as follows. Given a specific problem X , and two different groups of propo-
sitions,30 a and b,31 that are put together to provide a solution for X :

• a is locally consistent if and only if a does not contain nor entail a contradiction.
• b is locally consistent if and only if b does not contain nor entail a contradiction.
• The union of a and b is locally consistent if and only if the union does not contain
or entail a contradiction.32

While in the sciences (formal and empirical) it is often expected that the union of
two locally consistent sets of information is still consistent, because true and about the
world, this is not always the case. However, we shall show that it is not as dangerous
as has been traditionally thought ([24, 42]). In what follows, we shall provide a case
study from nuclear physics where we combine two theories or models, that each is
internally consistent, but their union is inconsistent. Moreover, the union is needed
for having a more complete understanding and to solve some problems in science.

29For our bundle diagrams these differences would be drawn out by our choice of variables: be they
observations, theories or ideas within a theory.
30The propositions could be empirical assumptions, observational reports, laws, theorems, axioms,
etc.
31Here a and b could be either distinct theories or distinct meaningful subsets of the same theory.
32Of course, the union of two locally consistent sets of information need not be consistent with
each other.
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8 A Scientific Example of Bundled Chunk and Permeate

The first case studies that were modelled by usingC&P were cases of internal incon-
sistency, but recently, an example of a different kind has been provided as a candidate
for using BC&P. The example is the combination of two mutually inconsistent cli-
mate models that allow for accurate predictions regarding temperature, pressure,
humidity and other meteorological quantities [7, 9]. We consider it important to
emphasise the fact that scientists very often make use of mutually contradictory bod-
ies of knowledge in order to solve problems in their discipline, herewe shall introduce
a similar case study from nuclear physics. We chose to present this particular case
to reach three main goals: to introduce a new case of inconsistency toleration in
empirical sciences (Sect. 8.1), to illustrate an application of BC&P (Sect. 8.2), and
also, to draw some philosophical conclusions about inconsistency toleration and the
unification of science (Sects. 9 and 10).

8.1 The Case Study

In a nutshell, the case study goes as follows: the Liquid Drop Model and the Shell
Model contain incompatible basic principles regarding the structure of the nucleus of
an atom; it is only when nuclear physicists combine some of the predictions of both
models that they gain accuracy in their predictions and measurements of binding
energies for all the chemical elements of the periodic table and in their predictions
and explanations of other nuclear processes such as fission. This case study illustrates
a scenario in which eachmodel can accurately predict only a segment of the elements
in the periodic table and only part of a general phenomenon, but in which combining
the predictions of both models provides successful descriptions and predictions of
more general phenomena.

First, the nucleus of an atom is the small region in which 99.9% of the total
mass of the atom is located. The nucleus consists in protons and neutrons that are
bound together. The protons are responsible for the positive charge of the atom.
The behaviour of the nucleus is explained by appealing to two different forces: the
strong nuclear force and the weak nuclear force. The strong nuclear force is what
binds nucleons (protons and neutrons) into atomic nuclei, while the weak force is
responsible for the decay of neutrons to protons.Any atomic nucleus (of any chemical
element) will exhibit binding between protons and neutrons and decay of neutrons
and protons.

The binding energy of a nucleus is what in large part determines the stability of the
nucleus. Ideally, binding energies are necessary for understanding and determining
under which conditions a nucleon can change to another (from neutron to proton, for
instance) or escape from the nucleus. Considering that binding energies are necessary
for predicting and describing different aspects of the nuclear structure (for instance,
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correlations present in the nuclear ground state [16]) physicists have tried to come
up with a homogeneous theoretical framework to calculate this type of energy.

Our current nuclear physics provides us with models of features that allow us to,
at least, describe, predict and measure this type of behaviour of atomic nuclei. Such
models have been developed by different research programmes that have a main
goal in common, namely: to provide some insight into the structure and dynam-
ics of atomic nuclei. Today, there are 31 different successful and internally consis-
tent nuclear models that offer some insight into the nucleus of the atom (Cf. [14,
37]). These models are often classified into three main groups: microscopic mod-
els (focused on nucleon-nucleon interactions), collective models (focused on bulk
properties of the nucleus as a whole) and mixed models (which are somewhere in
between the two previous ones).33 However, as yet, there is no consistent or coherent
global account of the structure of the nuclei that allows us to explain, predict and
measure all of the nuclear behaviours.

The diversity of models itself is not problematic; especially if “each model has
its particular successes, and together they are sometimes taken as complementary
insofar as each contributes to an overall explanation of the experimental data” ([37]:
179). However, the case study that we are presenting here, illustrates how the basic
assumptions required by one model contradict those required by another model ([14,
32, 37]), more important, none of these conflicting assumptions seems to be idle,
and they all are, allegedly, strongly linked to success in particular applications of
each model [37]. Let us press this point further by describing two such mutually
incompatible nuclear models.

Thefirst of these twomodels is theLiquidDropModel (LDM ). It is one of themost
successful nuclear models. The LDM was formulated more than 80 years ago under
the assumption that the nucleus of an atom exhibits classical behaviour (protons and
neutrons strongly interact with an internal repulsive force proportional to the number
of nucleons). Themodelwas based “upon the experimentally established dependence
of total binding energy of a nucleus upon the number of nucleons. As expected for a
liquid, the nuclei proved to be almost incompressible and their total binding energy
included a negative term, proportional to the volume of a nucleus, and a positive
term, proportional to its surface” ([50]: 219). Since the beginning, the LDM could
predict and describe a series of nuclear properties, such as the growth of the nuclear
charge, the instability related to Coulombic forces, the evaporation of nucleons after
heating, the nucleus’ change of shape, and the phenomenon of spontaneous fission,
among others ([14, 37, 50]).

However, despite its success, the LDM fails to describe the way in which the
nucleus often displays distinctive energy levels forming shells and subshells (the so-
called shell effects). It also fails to give a full account for the ground-state properties
of nuclei ([49, 50]). Additionally, “the quantitative description of the nuclear force
that emerges from nucleon-nucleon reaction studies is incompatible with what is
known about nuclei” ([37], 178). Finally, while the LDM can be used to predict
and describe binding energies of nuclei of any element of the periodic table, in the

33This classification was first developed in ([22]), and later in ([14]).
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corresponding experiments, some nuclei show systematic deviations with respect to
the LDM predictions. Experimentation has shown that some nuclei are bound more
tightly together than predicted by the LDM depending on the number of nucleons
that they possess. To explain this phenomenon, scientists refer to the so-called ‘magic
numbers’. The phenomenon can be detected in the nuclei of atoms of, at least, Helium
(He), Oxygen (O), Calcium (Ca), Nickel (Ni) and Lead (Pb).

Nonetheless, the partial failure of the LDM does not mean that scientists are left
empty handed. When dealing with the phenomena that the LDM cannot describe,
physicists often rely on other models, one of the most important is the Shell Model
(SM ). This nuclearmodelwas formulatedmore than 70 years ago and aims at describ-
ing and predicting, among other nuclear properties, the shell effects of the nuclei. In
this model, a shell represents the energy level in which particles of the same energy
exist, and so, the elementary particles are located in different shells of the nucleus.
According to the SM the nucleus itself exhibits quantum-mechanical behaviour. “The
basic assumption in the nuclear shell model is that, to first order, each nucleon (pro-
ton or neutron) is moving in an independent way in an average field” ([16]: 58); that
is, for this model “nucleons are assumed to be point particles free to orbit within the
nucleus, due to the net attractive force that acts between them and produces a net
potential well drawing all the nucleons toward the centre rather than toward other
nucleons.” ([37]: 185). One of themost important virtues of the SM is that it accounts
for the magic numbers phenomenon, among other important experimental data.

Considering the diversity of models and the obvious conflicts between them,
nuclear physicists have untiringly attempted to combine both microscopic and col-
lectivemodels in order to provide a unified framework of the behaviour of the nucleus
([14]). Common manoeuvres have been related to the combination of elements from
the LDM with elements from the SM (Cf. Groote, Hilf and Takahasi 1976; [14, 16,
50]), however, the success of any of the attempts is still unclear.

A large number of nuclear physicists agree that “material systems such as nuclei
are too complex and contain too many constituents to be handled precisely with for-
mal “bottom-up” theories, but they are too small and idiosyncratic to be handled with
rigorous statistical methods that normally require large numbers to justify stochastic
assumptions” ([14], 57), and in that sense, even if endorsing unificationist commit-
ments, physicists take for granted that nowadays there are some scientific problems
whose solution requires the use of more than one nuclear model. For instance, the
calculation of binding energies of all elements of the periodic table; which, for accu-
racy, requires the use of the LDM for almost all the elements, and to use the SM for
those nuclei with magic numbers. An important remark: to provide accurate predic-
tions concerning binding energies is not an idle task for nuclear physicists, especially
in light of the privileged role that such energies play when describing, calculating
and explaining nuclear processes such as fission.

So, if they want to address the domain of binding energies of all the chemical
elements, physicists have to agree that at present there is no single direct way to cal-
culate them; instead, we have to use two mutually contradictory models, each one of
them accurately predicting only a segment of a general phenomenon. The contradic-
tion involved is even more troubling when we consider that both models contradict
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each other about the structure of the nucleus, and that such characterisations of the
nucleus are, allegedly, what is largely responsible for the success of each model in
particular applications ([37], Chap. 5).

Nuclear physicists use both models, LDM and SM , to calculate the binding ener-
gies for all elements of the periodic table; later on, they use such results for predicting
nuclear reactions such as fission. They calculate binding energies of the nuclei with
magic numbers using the SM and (for simplicity) use the LDM for the rest.

If scientists want to reason classically or constructively, and avoid triviality when
solving these problems, they either have to get rid of some basic assumptions of
specific models (by deciding that they are in fact idle, for instance), or they have to
find a way to connect the consequences of both models without allowing explosive
reasoning. Insofar as what has been said here is correct, this example from nuclear
physics is a good candidate for being modelled by BC&P.

8.2 Nuclear Physics and BC&P

For simplicity, here we shall only illustrate the case of nuclei of Helium-4 (He4).
First, the individuation according to a particular problem goes as follows: the problé-
matique that requires explanation is the behaviour of the atomic nucleus, in particular,
the phenomenon of fission of nuclei ofHe4. The theoretical constituents that are suf-
ficient for solving that problem are the LDM and the SM . For, atoms of Helium-4,
we also include information about howHe4 is one of the nuclei with magic numbers,
as well as the fact that the nucleus of He4 is identical to an alpha particle.

The basic assumptions of the Liquid Drop Model we need are, at least, the fol-
lowing:

(D1) The nucleus behaves as a classical fluid consisting in protons and neutrons
that strongly interact with an internal repulsive force proportional to the number of
protons.

(D2) Nucleons move randomly and bump into each other frequently.
(D3) The nucleus itself exhibits classical behaviour. (Cf. [13, 37])
(Dn) The semi-empirical mass formula34:

Eb(MeV ) = avA − aSA
2
3 − aC

Z2

A
1
3

− aA
(A − 2Z)2

A
+ δ(A,Z)

(Dc) The LDM -predictions regarding fission of He4 nuclei.
The basic assumptions we need from the Shell Model are, at least, the following:
(S1) The nucleus exhibits a quantum-mechanical behavior.
(S2) The atomic nucleus is a quantum n-body system.

34The formula is based on the DLM and is used to predict binding energies of nuclei. It is also
called “Weizsäcker’s formula”.
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(S3) The nucleus is not a relativistic object and its equation of motion (the system
wave function) is the Schrödinger equation.

(S4) The nucleons interact only via a two-body interaction which is, in effect, a
practical consequence of the exclusion principle.

(S5): The nucleons are assumed to be point particles free to orbit within the
nucleus, due to the net attractive force that acts between them and produces a net
potential well drawing all the nucleons toward the centre rather than toward other
nucleons. (Cf. [37]).

(Sc): The SM -prediction of the He4 binding energy,
We might think that we should make two chunks, one for each model with the

common information permeating from one chunk to the other, but in standard expla-
nations in nuclear physics, we more naturally find four source chunks:

• Einput: contains the empirical data aboutHe4 nuclei, including that it has a magic
number.

• LDM : contains the assumptions of the LDM , D1,D2 and D3 and Dn. This chunk
will grow, as we let in data contained in Einput and obtain as a result the LDM -
predictions regarding fission of He4 nuclei (Dc).

• SM : contains the assumptions of the SM , S1,S2,S3,S4 and S5. This chunk will
grow, aswe let in data contained inEinput and obtain as a result the SM -predictions
if the He4 binding energy (Sc).

• Exp: contains the experimental reports on binding energies of He4. Of Einput and
Exp chunk, one is (locally) true whenever the other is (locally) true, and they are
always assumed to be so.

OurBC&P reconstruction recognises also one target chunk, the solution to a problem:

• Eoutput: contains the empirically adequate predictions concerning binding ener-
gies and fission of He4 nuclei.

That considered, the base space of our BC&P includes four source chunks (Einput,
LDM , SM ,Exp) and one target chunk (Eoutput). In addition, along each of the fibres
are four stops, which represent the possible valuations considering the two main
goals: first, to calculate the binding energy of He4, and second, to calculate fission
for the He4 nucleus. The first two stops indicate if the statement that is evaluated is
considered to be true (Tb) or to be false (Fb) when calculating the binding energy,
the second pair of stops, indicate if the statement is assumed to true (Tf ) or to be
false (Ff ) when predicting fission.35

Now, when pursuing the target chunk, it is necessary to first determine the binding
energy ofHe4 nucleus. In order to do so,wefirst assumed that the sentences contained
in LDM are false, and then assume that the data from SM is true.We start to construct
our bundle diagram to represent this. See Fig. 8.

35Note that Tb and Fb are mutually exclusive, and the same goes for Tf and Ff . Nonetheless, the
following pairs are mutually compatible: Tb and Tf , Tb and Ff , and Tf and Fb.
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Fig. 8 Bundle diagram: basic assumptions of LDM and SM

That this is compatible with Einput being true –especially considering that Einput
includes the concept of He4 having a nucleus with a magic number. See Fig. 9.

Fig. 9 Bundle diagram: adding empirical input

Due to the falsity of LDM , and the assumption of sentences in SM being true, it is
according to our scientific reasoning, allowed to combine SM with Einput to obtain
Sc –which is taken as true. See Fig. 10.

Fig. 10 First result: Binding energy
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As Sc coincides with what is contained in Exp, and so, what is expressed by Sc
we are then is allowed to move to the target chunk, Eoutput. See Fig. 11.

Fig. 11 Contrasting with the experimental results

Once the accurate prediction of the He4 binding energy is available, the next step
is to explain and predict fission for He4 nuclei, and for that, physicists will use the
LDM . Thus, the sentences in the LDM chunk are taken as true. See Fig. 12.36

Fig. 12 Contextuality and the beginning of the second stage

Figure 12 is a representation of a base space that includes: propositions of each
model and predictions of each model regarding nuclear reactions of He4 nuclei,
as well as a general description of the phenomena of fission and binding ener-
gies (regarding He4 nuclei). We need the whole base space to predict fission for
He4 nuclei. There is an edge between variables when they can be used together in
order to enable measurements of binding energies. The fact that there is no closed
path traversing the fibres only once connecting particular base space points, such as

36Note that we have changed the color to indicate that we have moved to the next step in the
calculations involving nuclear fission for He4 nuclei. As it is in scientific reasoning, the edges have
direction, Sc has to be moved into Eoutput before it is possible to make any prediction regarding
nuclear fission. This is new (to the bundle diagram construction) but it is inherent to standard
scientific reasoning.
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Eoutput and D1, shows the logical contextuality of the model. It shows that there is
no global assignment that allows for recuperating the phenomena of binding ener-
gies and nuclear fission as a whole: for instance, when S1-S5, Sc and Exp are true
of the phenomena, D1 to D3 and Dn cannot be true. However, at the end, LDM -
assumptions and SM -assumptions are both necessary for giving an account of the
general phenomena of fission for He4 nuclei.

Finally, once again, what is in Einput is taken as true. And because LDM is true,
SM is taken as false.37 LDM is combined with what is in Einput, and it is possible
to obtain Dc (predictions about fission). Due to the compatibility between Exp and
Dc, Dc is allowed to flow to the target chunk, Eoutput. Now, in Eoutput nuclear
physicists have both the predictions of binding energies forHe4 nuclei as well as the
ones for nuclear fission for such atoms.38 See Fig. 13.

Fig. 13 Bundle diagram: binding energy + fission

What the bundle diagram has shown is revealing in more than one sense. First of
all, it allows us to see that even though the target chunk, Eoutput, can be somehow
constructed, it only happens in a very conceptual and abstract sense,wherewe assume
that some information used for the construction is false (D1 to Dn) or (S1 to S5).
The twist between Dn and S1 shows logical contextuality and the presence of only
logical contextuality.

In addition, the diagram can also suggest which chunk is fully compatible with
which other chunk (for instance, Einput is fully compatible with SM and with LDM ,
but it is also fully compatible with Exp and with Eoutput) and also suggests in which
cases information ought to be filtered (for instance the fact that SM and LDM are
mutually contradictory and they both still feed the target chunk, clearly suggests that
only limited information should be allowed to move from such chunks to the target
one).

37Sc is kept as true because it is compatible with the empirical assumptions (Einput), the experi-
mental reports (Exp), and the LDM -predictions for fission, and also because it is now part of the
target chunk.
38DLM -assumptions are next taken as false in cases in which the next move is to predict other
properties of nuclei, such as spin and parity of nuclei ground states.
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Finally, the use of BC&P diagrams can also help us to see how each of the nuclear
models is locally consistent.When looking at the areas in the diagram that correspond
only to each model, we can identify a local assignment that corresponds to a closed
path traversing all the fibres over that part of the base space exactly once; and the
same happens for the shell model. However, as should be clear to the reader, here,
the local consistency comes at the price of the impossibility of using only one model
for predicting both binding energies and fission for atoms of a certain type (those
with magic numbers).

9 Problems with Global Inconsistency in Science

There are two related problems. One is that it has long been presupposed, especially
in the more Western scientific traditions,39 that good reasoning should be consistent
([15, 24, 42]). The other problem is that it is often assumed that, in the long run,
our best science can be, and should be unified into one body of knowledge; where
unification presupposes consistency. One can find several research projects that are
in line with this particular pretension, for instance, the current project for unifying
the four fundamental forces. Call the first ‘the meta-logical problem’ and the second
‘the unification problem’. The second presupposes the first.40

Put another way, the first problem is that if we were to meet a contradiction in our
science, then reasoning would be impossible. We inherited this meta-logical idea at
least fromAristotle [44] if not frombefore.We call this presupposition ‘meta-logical’
because it concerns the limitations of logic. We call it a presupposition because there
are perfectly rigorous formal systems of reasoning that include contradictions as
features, so it is unnecessary.

Why are contradictions so detrimental to reasoning in science? Rehearsing what
we learned before in Sect. 1, if we are classical or constructive reasoners, then we
endorse ex contradictione quodlibet reasoning as valid. Assuming classical or con-
structive reasoning in our science, in the face of a contradiction, we have explosion.
Explosion in a theorymeans that every sentence written in the language of the theory,
or every formula written in the language of the theory is true, or is derivable. So if the
langage contains some form of negation or denial, then a sentence and its opposite
are both true, or both derivable. This is what we call trivialism. The problem with
trivialism is that it is undiscerning. There is no error and so no correction possible.
Anything goes (within the constraints of the language).

What does this mean for science? In a science this might well also include obser-
vation sentences. So, we might observe that the temperature indicated on the ther-
mometer is roughly zero, but also that it is one hundred degrees, or roughly seventeen

39Arguably, inmore Eastern traditions of ‘science’, contradictions are tolerated, (Garfield: Engaging
Buddhism). Such Eastern ‘science’ might not be recognised to be science at all a priori because
reasoning with contradictions is a priori impossible.
40Of course, it does not meta-logically have to, but it happens to.
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degrees, all at the same time and in the same situation. This makes nonsense of our
‘science’. Of course, note that this is all qualified by the antecedent of the condi-
tional of the second sentence of this paragraph: that we are classical or constructivist
reasoners.

Turning to the second problem: it is that we have an ideal towards which we strive
as scientists, and this is to unify science. What does this mean? Philosophically, it is
presumed41 that the real world is a ‘unified’ place, and this intimately includes the
presupposition that ‘reality’ is not contradictory.42 To our delight we have also found
that our scientific theories ‘work’ and that we have tangible progress in science. This
falls in line with the ‘cumulative retention’ tradition in philosophy. That is, science
serves us to predict, explain and control our natural environment. So, it is in this
sense that we have ‘success’ in science.

[V]irtually all models of scientific progress and rationality (with the exception of certain
inductive logics which are otherwise flawed) have insisted on wholesale retention of content
or success in every progressive-theory transition. According to some well-known models,
earlier theories are required to be contained in or limiting cases of, later theories; while in
others, the empirical content or confirmed consequences of earlier theories are required to
be subsets of the content or consequence classes of the new theories. [28]

Under this ideal conception, our individual scientific theories represent parts of the
unified (consistent) reality. It then follows that insofar as our theories reflect reality,
they should be consistent, not only within themselves but also with each other. The
unity of science consists in the global scientific project of making one consistent
theory that predicts and explains the whole of our natural world. So, rather than
separating the liquid drop model from the shell model of the nucleus of an atom, we
should be able to seamlessly reason from one to the other without meeting contra-
dictions. Of course, to arrange for this seamless reasoning, we would have to alter
the theories. Under a unified science, the distinctions between theories would then
be a matter of history and convenience; both conceptual and institutional. A unified
theory of the whole of scientific reality would consist in one set of laws from which
we would derive natural phenomena given some initial data.

In the concluding section, we shall question the presumptions made concerning
the unity of science, but for now, we recognise it as intrinsic to some of the practice
of science. An exception is chemistry [48]. Recognising the ideal of science, that
it should eventually be unified, we can see the problem if we find contradictions
in science. If there are contradictions within and between our theories, then this,
by definition, impedes unification. To think of contradiction as such an impediment
depends on the presumption that led to the first problem.

41We shall show exactly why this is a presumption, and on what it rests.
42For a short discussion of this issue where the possibility of a some-places contradictory real
physical world, see [21].
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10 Philosophical Conclusions

We have been trying to ‘make sense of’ mathematician’s and scientist’s reasoning
with inconsistent premises or statements from theories or models. ‘Making sense’,
here, means that we want to make a rational reconstruction under the pressure of
scepticism that such reasoning is illegitimate. Such pressure arises when a proof is
relatively informal, and uses information from different mathematical or scientific
theories that we know are incompatible with each other, where ‘incompatible’ means
that we know or suspect that if the two theories were written in the same language,
then it would be possible to derive a contradiction from the two theories.

Do we see such reasoning in mathematical or scientific practice? Yes. We have
done so for a very long time. The example we are most familiar with are those of the
early calculus and of Lobachevsky solving a problem in Euclidean geometry (about
the space under an indefinite integral) by appealing to his hyperbolic geometry.
The latter case is a rather simple one for C&P to work with, since there is no
information about parallel lines that is used in the proof. This corresponds to the cases
we referred to in the introduction where premises come from inconsistent theories,
but are not themselves inconsistent with each other. More important and blatant uses
of inconsistent premises are reconstructed in [10]. We have shown similar reasoning
in physics where we mix the liquid drop model with the shell model. Increasing
numbers of PhDs in mathematics are written using informal proofs that borrow from
different areas of mathematics; similarly for science. Since these are original, and
mark new territory inmathematics and science, they are exactly the sorts of proofs, or
types of reasoning, we should be cautious, and sceptical, about. In physics, chemistry
and biology we only have incomplete theories. The great unification of the sciences
is not on the horizon. Even the methodologies are sometimes in direct competition
[48].

For example, both the Andréka-Németi group’s [2] and the Krause and Arenhart
[26] approaches to physics urge us to develop a logical reduction/explanation of
physics. They disagree on what counts as a logic, and what counts as a reduction.
The first group prefer a first-order logic without the notion of forces, and where
‘causation’ is simply expressed in terms of before and after on the trajectory of
a body, or on a spatio-temporal relationship between two bodies. Any vestige of
causation that they have is metaphysically bare.

In contrast, the Krause–Arenhart approach uses a higher-order language with
proper classes and forces that are causal. The ‘reduction’ of the Andréka-Németi
group is thought of in terms of several formal theories and the limitative relations
that bear between them at the meta-level. The ‘reduction’ for the Krause–Arenhart
approach follows Suppes, to have one set of axioms, so one logical/ mathematical
theory. Thus, even here, where we have a highly mathematical, nay logical, approach
to problems in physics, there is no promise of unification in a traditional sense of one
theory. The fragmentation of science is in evidence. “Quant à? l’unité de la science,
si ardemment projetée jusqu’au début du xxe siècle, elle est finalement restée pure
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pétition de principe devant la spécialisation croissante des domaines scientifiques”43

([29], 13).
Because of the fragmentation of the sciences on the one hand, and the need to

use ideas from incompatible areas of the science to give fuller understanding and
explanations, and to make better predictions and control on the other hand; it is
pressing to reconstruct the reasoning, in order to show its coherence in the presence
of global inconsistency. For the reconstructionwe use an enhanced version ofC&P—
bundle informed chunk and permeate: BC&P. The main motivation for using C&P
over a paraconsistent formal representation of the reasoning is to preserve the meta-
logical intuition that scientists tend to share, that they reason either classically or
constructively, and even if they are not able to articulate these meta-logical intuitions
in these words, they would all find reasoning through a contradiction in science to be
problematic. Abramsky (in private conversation) uses the bundel diagrams to counsel
us to reason short of inconsistency, we should not reason using the inconsistency.
What we add to C&P as it has been developed, is the bundle diagrams, as a guide to
individuating chunks and selecting what information permeates from one chunk to
the next.

In our particular example, we used the two models of the nucleus of an atom, the
liquid drop model and the shell model. In the presence of measurements, we find
that the models contradict each other. Nevertheless, both are needed to explain the
phenomenon of binding energies. We thus extended the application of the bundle
diagram to include not just arguments, but more broadly the relationship between
models when they are both used in an explanation.

This was one example. We could extend the technique further. To do the BC&P
reconstruction for non-model theoretic proofs, ones that more closely resemble proof
theory, we would need to change the bundle diagram, so the ‘values’ are now, say,
mediate inferences from suppositions, where we make the formulas unique via a
combination of normal-form of language and by imposing some ordering on formu-
las.

The bundle diagrams represent a situation where we have global inconsistency.
The same can be done, without diagrams using sheaf theory and cohomology theory
[1]. Both tell us when it is ‘safe’ (i.e. consistent) to extend our reasoning, and when
it is that we overstep the bounds of consistency. C&P helps us to stay just within the
bounds: we can be systematically careful about what formulas, axioms, assumptions,
measurement statements we can locally consider together, and which we cannot. So
the bundle-extension of C&P can handle quite a lot of cases.

What cannot be handled? Ifwe are using formulas, theorems, results fromdifferent
theories or measurements where inter-translation is not obvious, it is not clear that
we could come up with a bundle diagram, and it might be more work than it is
worth. That is, it might be just as difficult to do this, as it is to generate some other
meta-proof of local consistency. The limitations to such extensions concern deciding

43As for the unity of science, so adently pursued up to the beginning of the twentieth century, what
has remained is nothing but a guiding principle, unatainable under the increasing fragmentation of
the domains of science.
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what the variables are, what count as valuations for the variables (since they might
not be common) and in cases where the valuations are different up each fibre, what
is to count as an edge, since the semantics is quite different, it is not clear how to
make a translation to then determine if two elements of the base space are pairwise
consistent.

For example, say, one premise comes from model theory, and another from proof
theory, then the valuations for the model theory formula will be various models (note
also that we might not be able to order them up a fibre, and this is another limitation),
and up the proof theory ‘variable’s’ fibre, we might have immediate and mediate
inferences. For the purpose of drawing edges between fibres, we might need to have
some sort of translation, and this might not be obvious or desirable in all cases.

Another criticism of this approach is that it might not remain loyal to the intended
reasoning of the mathematician who came up with the proof in the first place, or of
the scientist who came up with the mixed explanation. This is quite correct. All that
BC&P promises is that it is a means of staying loyal to the idea that is wide-spread in
the mathematical and scientific communities that local reasoning is consistent, and
usually classical or constructive.

There is a more interesting and thorny issue that we are touching on. It is that
while at the object-level, we are being careful to ‘stay locally consistent’ at the
meta-level, we must be reasoning paraconsistently in the very limited sense that we
are reasoning about reasoning consistently within globally inconsistent theories, or
models. A bundle diagram which has no path traversing each fibre only once repre-
sents reasoning inconsistently. So we are looking at a diagrammatic representation
of inconsistency and reasoning about inconsistency, and this might be thought of
as ‘reasoning paraconsistently’ without reasoning using a particular paraconsistent
logic.

Some paraconsistent logicians claim thatmathematicians reason paraconsistently,
unbeknownst to them, in exactly this way. The claims of the developers of C&P are
a bit ambivalent about the relationship between the C&P strategy and paraconsis-
tency. Brown recognises that we could use a paraconsistent logic within a chunk,
in principle, although this was not his original intention. Also, we are reasoning
paraconsistently at the meta-level in the thin sense that we recognise the presence of
inconsistency, and want to avoid bringing about explosion. What the very possibility
of BC&P reconstruction shows us is that what we immediately fear is explosion,
and only mediately, indirectly, inconsistency. This is one of the lessons of para-
consistency. Moreover, we are at pains, at the meta-level, to make very clear the
distinction between explosion and inconsistency through the bundle diagrams. If we
can represent the inconsistency, and avoid it, by reasoning short of it, then we rea-
son paraconsistently in the limited, thin, sense of exercising damage control over
the inconsistency. The details of the reasoning could be captured using a formal
paraconsistent logic, but this is unnecessary.

What is interesting is to draw the lesson that it is crossing the ex contradictione
quodlibet boundary into triviality or detonating explosion that is otiose in the present
practice, not the lingering background possibility—although this is enough to already
upset more sensitive souls. In the practice of mathematics and science today: having
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a bomb and a detonator is fine, using it is not. So, what we have done with BC&P is
give a means of vindicating inconsistency toleration in many cases in mathematics
and science. By using the bundle diagrams to set limits on our choice of chunks,
we see the edge of consistent reasoning at the meta-level. So, we have pushed the
problem of explosion into a smaller corner than it once occupied.
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What is a Paraconsistent Logic?

Eduardo Barrio, Federico Pailos and Damian Szmuc

Abstract Paraconsistent logics are logical systems that reject the classical princi-
ple, usually dubbed Explosion, that a contradiction implies everything. However, the
received view about paraconsistency focuses only the inferential version of Explo-
sion, which is concernedwith formulae, thereby overlooking other possible accounts.
In this paper, we propose to focus, additionally, on a meta-inferential version of
Explosion, i.e. which is concerned with inferences or sequents. In doing so, we
will offer a new characterization of paraconsistency by means of which a logic is
paraconsistent if it invalidates either the inferential or the meta-inferential notion
of Explosion. We show the non-triviality of this criterion by discussing a number
of logics. On the one hand, logics which validate and invalidate both versions of
Explosion, such as classical logic and Asenjo–Priest’s 3-valued logic LP. On the
other hand, logics which validate one version of Explosion but not the other, such as
the substructural logics TS and ST, introduced by Malinowski and Cobreros, Egré,
Ripley and van Rooij, which are obtained via Malinowski’s and Frankowski’s q- and
p-matrices, respectively.

1 Introduction

Paraconsistent logics are logical systems that rebel against the classical principle,
usually dubbed Explosion, that a contradiction implies everything, or that from a
contradiction, everything follows.
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As Priest, Tanaka and Weber say

The contemporary logical orthodoxy has it that, from contradictory premises, anything can
be inferred (…) Inconsistency, according to received wisdom, cannot be coherently reasoned
about (…) Paraconsistent logic challenges this orthodoxy. A logical consequence relation is
said to be paraconsistent if it is not explosive. [24]

Similarly, in the recent book by Carnielli and Coniglio, it is said that

Paraconsistent logics are able to deal with contradictory scenarios, avoiding triviality by
means of the rejection of the Principle of Explosion. [6, p. 3]

In a nutshell, as Ripley puts it

paraconsistency is a nonentailment claim. [28, p. 773]

The aim of this paper is to offer a new characterization of what paraconsistent
logics are. Our main claim will be that a logic L is paraconsistent if either the
inferential or the meta-inferential formulation of Explosion is invalid in it. These
two formulations of Explosion are, respectively, as follows

A,¬A ⇒ B
⇒ A ⇒ ¬A

⇒ B

Where the inferential and the meta-inferential level coincide, roughly, with what are
called (after Avron’s work in [2]), the internal and the external consequence of a
given logic.1 Let us clarify why we take our proposal to be a non-trivial contribution
to the debate about paraconsistency.

First, the received view about paraconsistency has only focused on formulations
of Explosion that concern formulae, i.e. a formula A and its negation ¬A. But surely
this can be taken to be a restricted point of view. Inwhat followswewill try to broaden
this conception by putting forward the aforementioned two different formulations of
Explosion: while the former (the traditional form, that is) is concernedwith formulae,
the latter is concerned with inferences or sequents. Thus, the traditional conception
understands Explosion as an inference, whereas the supplementary conception that
we are trying to bring to the table also suggest to understand Explosion as a meta-
inference.

Secondly, this raises the question about the possibility of finding paraconsistent
logics that are so for different inferential reasons. That this possibility is real implies
that our proposed criterion does not collapse with previous characterizations. In
other words, it does not make the (in)validity of Explosion at either of these levels to
collapse into the (in)validity at the other level. To prove this, we will offer examples
of logics which validate both versions of Explosion, logics that invalidate both, and
of logics that invalidate only one of them but not the other.

1In this paper we will be focusing on the inferential and the meta-inferential level, but when making
our closing remarks in Sect. 5 we will point towards a plausible (although not developed here) more
general conception of paraconsistency, which will require looking at many more levels.
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To carry out our current investigation, this paper is structured as follows. In Sect. 2
we introduce the distinction between inferences and meta-inferences, along with the
inferential and the meta-inferential formulations of Explosion, and our new criteria
for paraconsistency. In Sect. 3 we present four study cases: one logic that is not
paraconsistent, i.e. classical logic, and three logics that are paraconsistent: Asenjo–
Priest’s LP, and two substructural logics TS (a q-logic, as defined in [19], discussed
by Cobreros, Ripley, Egré and van Rooij [8], Malinowski [21], and French [14])
and ST (a p-logic, as defined in [12], discussed by Cobreros, Ripley, Egré and van
Rooij [8]). These logics are shown to be paraconsistent in different inferential ways.
While LP invalidates both the inferential and the meta-inferential formulations of
Explosion, TS invalidates the former but not the latter, whereas ST validates the
former but not the latter. In Sect. 4 we provide some philosophical reflections drawn
from our previous discussions, connecting our results with the debate on logical
pluralism and the inferentialist stance towards themeaning of the logical connectives.
Moreover, we consider three possible objections against our account and provide
replies to all of them. Finally, in Sect. 5 we offer some concluding remarks, and point
to some directions in which the present explorations can be further developed.

2 Different Inferential Ways of Being Paraconsistent

2.1 Inferences and Meta-Inferences

In order to understand and carry on our investigation, it will be important to have a
more precise grasp of the received view about paraconsistent logics and Explosion.
This view, traditionally takes paraconsistent logics as Tarskian logics and, so, we
shall better understand what these are.

For the purpose of analyzing these matters, it will be useful to fix some terminol-
ogy. Let L be a propositional language, such that FOR(L ) is the absolutely free
algebra of formulae of L , whose universe we denote by FOR(L ).

Definition 1 A Tarskian consequence relation over a propositional language L is
a relation � ⊆ ℘(FOR(L )) × FOR(L ) obeying the following conditions for all
A ∈ FOR(L ) and for all Γ,Δ ⊆ FOR(L ):

1. Γ � A if A ∈ Γ (Reflexivity)
2. If Γ � A and Γ ⊆ Γ ′, then Γ ′ � A (Monotonicity)
3. If Δ � A and Γ � B for every B ∈ Δ, then Γ � A (Cut)

Additionally, a (Tarskian) consequence relation � is substitution-invariant whenever
if Γ � A, and σ is a substitution on FOR(L ), then {σ(B) | B ∈ Γ } � σ(A).

Definition 2 A Tarskian logic over a propositional language L is an ordered pair
(FOR(L ),�), where � is a substitution-invariant Tarskian consequence relation.
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Throughout the years many scholars have argued that the Tarskian conception
of logic is quite narrow. For example, Shoesmith and Smiley [30], Avron [3] and
Scott [29] claimed that the Tarskian account should be generalized to a logic having
multiple consequences; andAvron [3] andGabbay [15] have argued that the condition
of Monotonicity should be relaxed; whereas it can be inferred that, derivatively,
Malinowski [19] and Frankowski [12] argued for a generalization or liberalization
which allows logics to drop Reflexivity and/or Cut.

These modifications, in turn, can be made sense of by noticing a shift in the nature
of the collection of formulae featured in the consequence relation. Thus, for exam-
ple, instead of treating logical consequence to hold between (sets of) formulae, it
may hold between labelled formulae, sequences of formulae (where order matters),
multisets of formulae (where repetition matters), etc. Interestingly, many of these
approaches invalidate Explosion, regarded as an inference that relates collections
(sets, sequences, multisets, etc.) of formulae. But none of the aforementioned alter-
natives proposed explicitly tomove from logical consequence as a relation conceived
between collections of formulae to a relation conceived between collections of some
other entities. Therefore, none of these alternatives proposed explicitly to change
from focusing on Explosion as an inference that relates formulae to an inference that
relates other entities.

However, some other approaches did. That is the case of Avron in [2], first, and
Blok and Jónsson in [5], second, which discuss a generalization of the Tarksian
account that allows to move to logical consequence relations that do not hold only
between collections of formulae, but between objects of other nature.

Definition 3 An inference or sequent on L is an ordered pair (Γ, A), where
Γ ⊆ FOR(L ) and A ∈ FOR(L ) (written Γ ⇒ A). SEQ0(L ) is the set of all
inferences or sequents on L .

Definition 4 ([11]) A meta-inference or meta-sequent on L is an ordered pair
(Γ, A), where Γ ⊆ SEQ0(L ) and A ∈ SEQ0(L ) (written Γ ⇒1 A). SEQ1(L )

is the set of all meta-inferences or meta-sequents on L .

Wewill say, accordingly, that from the following the one on the left is an inference,
whereas the one on the right is a meta-inference

A, B ⇒ A ∧ B
⇒ A ⇒ B
⇒ A ∧ B

and, indeed, according to the following definitions adapted from Avron [2], both are
valid in e.g. Gentzen’s sequent calculus LK for classical logic—as we shall see next,
when we define the corresponding notions of validity.

Now, going back to the proposed shifts from the ontology of the Tarskian account
of logical consequence, Avron suggested in [2] that the idea that logical consequence
can be said to hold of relata other than formulae is very reasonable to those used to
sequent calculus—and, most prominently, with substructural sequent calculi.

For Avron there are two different notions of logical consequence for a given
sequent calculus S: the internal and the external notion of logical consequence. In
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our work, however, instead of referring to these relations as internal and external,
we will refer to these levels, respectively, as the inferential and the meta-inferential,
characterized such that

• A follows inferentially from Γ in S (written �S Γ ⇒ A) whenever Γ ⇒ A is a
provable sequent of the calculus S. In such a case we will say that the inference
from Γ to A is S-valid.

This relation is concerned with which formulae follow from which (collection of)
formulae, given the rules of the calculus—i.e. which sequents follow, given the
axioms and rules of the calculus.

• A follows meta-inferentially from Γ in S (written �S Γ ⇒1 A) whenever ⇒A is
provable in the calculus that results from the addition to S of all the sequents ⇒B
(for B in Γ ) as initial sequents or axioms.2 In such a case we will say that the
meta-inference from Γ to A is S-valid.

This means that this relation is concerned with which sequents follow from which
(set of) sequents, given the axioms and rules of the calculus.

That these relations are different can be easily exemplified by the fact, nicely
noticed by Mares and Paoli in [22], that if a sequent calculus S has no Weakening
rules, then

�S A, B ⇒ A although �S A, B ⇒1 A

Finally, notice also in passing that re-writing the meta-inference

⇒A ⇒¬A
⇒B

with the aid of the previous notation, gives us as a result

{⇒A,⇒¬A} ⇒1 ⇒B

which, for matters of readability, we will write as

A,¬A ⇒1 B

reinforcing, thereby, the idea that we are dealing with nothing more than yet another
formulation of Explosion. Something that we will argue for explicitly in the next
section.

2We shall notice that in [2] Avron takes this definition to, additionally, require that Cut is taken as
a primitive rule. Something that—for the sake of generality—we do not demand here.
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2.2 Explosion, Revisited

Explosion, so to speak, comes in different flavors. Many rules, meta-rules and prin-
ciples are dubbed with that name. Nevertheless, there are what seems to be some
central or essential features that every one of them share, and indeed it is that they
embody the idea that contradiction equals triviality. This is traditionally understood,
in terms of the received view about paraconsistency as saying that

An inference with an inconsistent premise set implies any conclusion

As is well-known, inconsistent premise sets for inferences are sets that include (some
instance of) the (schematic) formulae A and ¬A. So, along these lines, Explosion is
without any surprise taken to be the inference

A,¬A ⇒ B

The question is now, how to adapt this idea to the case of meta-inferences. For
us, the most reasonable take is to say that

A meta- inference with an inconsistent premise set implies any conclusion

But, now, for meta-inferences, we must keep in mind that premise sets and conclu-
sions are formed with sequents. Thus, we must define what an inconsistent premise
set for meta-inferences is. We take these to be sets that include (some instance of) the
(schematic) sequents⇒ A and⇒ ¬A. That this is, in fact, a right way to understand
an inconsistent sequent set can be argued for by looking at e.g. the definition of an
inconsistent belief set (cf. [17]). Along these lines, Explosion is without any surprise
taken to be the meta-inference

⇒ A ⇒ ¬A
⇒ B

Furthermore, we are in good company in claiming that these are in fact two
versions or formulations of Explosion, one as an inference and the other as a meta-
inference. For Lloyd Humberstone, in his reference book The Connectives says in
[18, p. 118–119] that A,¬A ⇒ B is a sequent, i.e. an inferential form of Explosion,
whereas the following is a rule, i.e. a meta-inferential form of Explosion.

Γ ⇒ A Δ ⇒ ¬A
Γ,Δ ⇒ B

By letting Γ and Δ be empty, Humberstone proposed form collapses with ours.3

To conclude, let us rephrase in a more formal manner the main claim of this paper

3Let us notice, additionally, that Humberstone calls Ex Falso Quodlibet what we call Explosion,
but this is just a terminological and non-substantial issue.
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A logic L is paraconsistent i f

{
ei ther A,¬A ⇒ B is invalid in L
or A,¬A ⇒1 B is invalid in L

Additionally, let us highlight thatwe are not claiming these two are theonly dresses
that Explosion can use. If a logic invalidates either of the previous formulations
of Explosion, we will say that it is paraconsistent, although it need not invalidate
either to be so, for it may invalidate some other formulation(s) of Explosion. For
example, Explosion is sometimes formulated with the help of conjunction. Exploring
‘conjunctive’ versions of Explosion (both at the inferential and the meta-inferential
level) is no doubt an interesting task, one which for matters of space we decided not
to tackle here. In other words, we are not proposing a necessary, but a new sufficient
condition for logics to be paraconsistent.

An additional caveat, which echoes the well-known reservations expressed by
Igor Urbas in [34], should be mentioned concerning this characterization. In his
work, Urbas points out that the traditional definition of paraconsistency in terms of
invalidating the inferential form of Explosion counts as paraconsistent some logics
“which satisfy the letter of [this criterion] while brazenly flouting its spirit” [34, p.
345]. For instance, Johansson’s Minimal Logic invalidates Explosion, while validat-
ing the scheme A,¬A ⇒ ¬B, for arbitrary formulae B. Furthermore, as highlighted
by an anonymous referee, this logic will also invalidate the meta-inferential formu-
lation of Explosion, while still validating the scheme A,¬A ⇒1 ¬B, for arbitrary
formulae B. Thus, these considerations lead us to note that these pathological cases
can—and probably should—be exempted from the definition.

In what follows we will compare different cases of different logics, showing that
all of them take a distinctive stance with regard to the valid or invalid character of
the above portrayed inferential and meta-inferential versions of Explosion.

3 Study Cases

To accomplish our task in this section, we will divide these systems in two groups.
The first group will be composed of matrix logics and will include a logic that is not
paraconsistent at any level, i.e. classical logic CL, and a logic that is paraconsistent
both at the inferential and the meta-inferential level, i.e. Asenjo–Priest’s 3-valued
logic LP from [1, 23]. The second group will be composed of a q-matrix logic,4 i.e.
the logic TS, and a p-matrix logic,5 i.e. the logic ST, both due to Cobreros, Ripley,
Egré and van Rooij in [8], the former being also discussed by Malinowski in [21].
These logics will be shown to be, respectively, paraconsistent at the inferential but
not the meta-inferential level, and paraconsistent at the meta-inferential but not the
inferential level.

4q-consequence relations and q-matrices were introduced by Grzegorz Malinowski in [19].
5 p-consequence relations and p-matrices were introduced by Szymon Frankowski in [12].
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3.1 Matrix Logics

Definition 5 For L a propositional language, an L -matrix is a structure M =
〈V ,D,O〉, such that 〈V ,O〉 is an algebra of the same similarity type as L , with
universe V and a set of operations O , and D ⊆ V .

Notice, in the first place, that the set O includes for every n-ary connective 

in the language L , a corresponding n-ary truth-function f 


M : V n −→ V . With
regard to these, when context allows it, we will sometimes identify the connectives
themselves (which are linguistic items), with their corresponding truth-functions in
a given matrix. In the second place, notice that typically, when dealing with non-
classical logics, the set V is taken to be a superset of {t, f}.
Definition 6 ForM anL -matrix (respectively, anL -q-matrix or anL -pmatrix),
anM -valuation v is an homomorphism from FOR(L ) to V , for which we denote
by v[Γ ] the set {v(B) | B ∈ Γ }, i.e. the image of v under Γ .

Of interest are two-valued classical logic CL (which we do not bother to present
here due to the fact that it is perhaps the best known matrix logic), and the Asenjo–
Priest’s 3-valued logic LP, which is defined based on the 3-element Kleene algebra.

Definition 7 The 3-element Kleene algebra is the structure

K = 〈{t, i, f}, { f ¬
K , f ∧

K , f ∨
K }〉

where the functions f ¬
K , f ∧

K , f ∨
K are as follows

f ¬
K

t f
i i
f t

f ∧
K t i f
t t i f
i i i f
f f f f

f ∨
K t i f
t t t t
i t i i
f t i f

Definition 8 ([1, 23]) A 3-valued LP-matrix is a structure

MLP = 〈{t, i, f}, {t, i}, { f ¬
K , f ∧

K , f ∨
K }〉

such that 〈{t, i, f}, { f ¬
K , f ∧

K , f ∨
K }〉 is the 3-element Kleene algebra.

With these definitions we are now in a position to ask which formulations of
Explosion are valid, and which are invalid in classical logic and in LP. How-
ever, for this question to be meaningful, it is necessary to clarify how matrix log-
ics validate or invalidate both inferences and meta-inferences. Notice that, below,
�M is a substitution-invariant Tarskian consequence relation over L , whence
(FOR(L ),�M ) is a Tarskian logic. In addition to that, when some logic L is
induced by a matrix M , we may interchangeably refer to �M as �L.
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Definition 9 ForM amatrix, anM -valuation v satisfies a sequent or inferenceΓ ⇒
A (written v �M Γ ⇒ A) iff if v[Γ ] ⊆ D , then v(A) ∈ D . A sequent or inference
Γ ⇒ A isM -valid (written �M Γ ⇒ A) iff v �M Γ ⇒ A, for allM -valuations v.

Definition 10 ForM a matrix, anM -valuation v satisfies a meta-sequent or meta-
inferenceΓ ⇒1 A (written v �M Γ ⇒1 A) iff if v �M B, for all B ∈ Γ , then v �M

A. A meta-sequent or meta-inference Γ ⇒1 A is M -valid (written �M Γ ⇒1 A)
iff if v �M B, for all B ∈ Γ , then v �M A, for allM -valuations v.

Recall that in the last definition e.g. B stands for a sequent, i.e. an object of the form
Σ ⇒ C , and therefore e.g. v �M B should be read as v �M Σ ⇒ C . Accordingly,
when Σ is empty, it should be read as �M ∅ ⇒ C , which for matters of readability
we write as �M ⇒C .

Given these definitions it is easy to observe the following facts.

Fact 3.1 Classical logic CL validates both the inferential and the meta-inferential
formulation of Explosion, i.e. �CL A,¬A ⇒ B and �CL A,¬A ⇒1 B.

Proof These two facts are straightforwardly verified by noticing that there is noCL-
valuation v such that v({A,¬A}) ⊆ {t}, i.e. that there is no CL-valuation v such that
v �CL ⇒A and v �CL ⇒¬A. From thiswe infer, on the one hand, that there is noCL-
valuation v such that v({A,¬A}) ⊆ {t} and v(B) /∈ {t}, whence �CL A,¬A ⇒ B.
And, on the other hand, that there is no CL-valuation v such that v �CL ⇒A and
v �CL ⇒¬A and v �CL ⇒B, whence �CL A,¬A ⇒1 B. �

Fact 3.2 The logic LP invalidates both the inferential and the meta-inferential for-
mulation of Explosion, i.e. �LP A,¬A ⇒ B and �LP A,¬A ⇒1 B.

Proof To prove this facts, it is routine to construct an LP-valuation v such that
v(A) = v(¬A) = i, while v(B) = f . From this we infer, on the one hand, that v is a
valuation such that v({A,¬A}) ⊆ {t, i} and v(B) /∈ {t, i}, whence �LP A,¬A ⇒ B.
On the other hand,we infer that v is a valuation such that v �LP ⇒A and v �LP ⇒¬A,
while v �LP ⇒B, whence we conclude that �LP A,¬A ⇒1 B. �

3.2 q-Matrix Logics and p-Matrix Logics

Two interesting generalizations of Tarskian consequence relations appeared in the
last two decades, the notion of q-consequence relation, due to Malinowski [19]
and the notion of p-consequence relation, due to Frankowski [12]. As Wansing and
Shramko clearly explain in [31], the corresponding relation of q-logic is devised to
qualify as valid derivations of true sentences from non-refuted premises (understood
as hypotheses), whereas the notion of p-logic is devised to qualify as valid derivations
of conclusions whose degree of strength (understood as the conviction in its truth) is
smaller than that of the premises. We define these notions formally as follows.
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Definition 11 ([19]) A q-consequence relation over a propositional language L is
a relation � ⊆ ℘(FOR(L )) × FOR(L ) obeying the following conditions for all
A ∈ FOR(L ) and for all Γ,Δ ⊆ FOR(L ):

1. If Γ � A and Γ ⊆ Γ ′, then Γ ′ � A (Monotonicity)
2. Γ ∪ {B | Γ � B} � A iff Γ � A (Quasi-closure)

Definition 12 ([19]) A q-logic over a propositional language L is an ordered pair
(FOR(L ),�), where � is a substitution-invariant q-consequence relation.

Definition 13 ([12]) A p-consequence relation over a propositional languageL is
a relation � ⊆ ℘(FOR(L )) × FOR(L ) obeying the following conditions for all
A ∈ FOR(L ) and for all Γ,Δ ⊆ FOR(L ):

1. Γ � A if A ∈ Γ (Reflexivity)
2. If Γ � A and Γ ⊆ Γ ′, then Γ ′ � A (Monotonicity)

Definition 14 ([12]) A p-logic over a propositional language L is an ordered pair
(FOR(L ),�), where � is a substitution-invariant p-consequence relation.

Notice, moreover, that q-logics fail to validate Reflexivity, while p-logics fail to
validate Cut and, thus, are both non-Tarskian or substructural logics.

Semantically speaking, q-logics and p-logics can be obtained from structures
called, respectively,q-matrices and p-matrices, by similarmeans thanTarskian logics
are obtained from regular matrices.Whence, wemay refer to them as q-matrix logics
and p-matrix logics.

Definition 15 ([19]) ForL a propositional language, anL -q-matrix is a structure
〈V ,D+,D−,O〉, such that 〈V ,O〉 is an algebra of the same similarity type as L ,
with universe V and a set of operationsO , whereD+,D− ⊆ V andD+ ∩ D− = ∅.
Definition 16 ([13]) ForL a propositional language, anL -p-matrix is a structure
〈V ,D+,D−,O〉, such that 〈V ,O〉 is an algebra of the same similarity type as L ,
with universe V and a set of operations O , where D+,D− ⊆ V and D+ ⊆ D−.

A word on how q- and p-matrices generalize the usual notion of a logical matrix
is in order. In a usual logical matrix 〈V ,D,O〉 the truth-values of the matrix, i.e. the
elements of V , are presented in a dichotomized way. By this wemean that they either
belong to D—and, hence, are designated—or they belong to V \ D—and, hence,
are anti-designated.

Contrary to this, q- and p-matrices start from a non-dichotomized classification of
the truth-values of the given matrix—i.e. the members of V —letting them belong to
two sets, which we here callD+ andD−.6 Wewill, then, allow these sets to be jointly

6Here we will adopt this terminology—i.e. talk of D+ and D−—introduced by [32], emphasizing
that we will take q- and p-logics to be induced by different type of structures, i.e. respectively q-
and p-matrices. In this vein, what will be distinctive of these type of structures will be the properties
of the sets D+ and D−, as detailed in Definitions15 and 16, respectively.
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non-exhaustive and mutually non-exclusive. Paradigmatically, the first note of this
generalization is associated with q-matrices, where it is allowed thatD+ ∪ D− �= V
(see e.g. [20, p. 12]). Analogously, the second note of this generalization is associated
with p-matrices, where it is allowed that D+ ∩ D− �= ∅ (see e.g. [12, p. 45]).

From a purely abstract point of view, the setsD+ andD− need not be attached any
particular philosophical interpretation and, thus, the symbols+ and− are taken by us
to be arbitrary. Notwithstanding this, e.g. in the context of Malinowski’s discussion
of q-matrices, they are usually taken to represent, respectively, the set of accepted
and rejected elements (see [21]). Whereas, in the context of Frankowski’s discussion
of p-matrices they are usually taken to represent, respectively, the set of values
representing the degree of strength of the premises and the set of values representing
the degree of strength of the conclusion (see [12]). Furthermore, in the context of
Wansing and Shramko’s discussion of q-matrices, those truth-values belonging to
D+ are identified as representatives of a generalized notion of truth and those truth-
values belonging toD− as representatives of a generalized notion of falsity (see [32,
p. 195]).

There are two 3-valued q- and p-matrix logics associated to the 3-element Kleene
algebra that are discussed in the literature, which we would like to present in con-
nection to our ongoing investigation: the logic TS and the logic ST.

Definition 17 ([8, 21]) A 3-valued TS-matrix is a q-matrix

MTS = 〈{t, i, f}, {t}, {f}, { f ¬
K , f ∧

K , f ∨
K }〉

such that 〈{t, i, f}, { f ¬
K , f ∧

K , f ∨
K }〉 is the 3-element Kleene algebra.

Definition 18 ([8]) A 3-valued ST-matrix is a p-matrix

MST = 〈{t, i, f}, {t}, {t, i}, { f ¬
K , f ∧

K , f ∨
K }〉

such that 〈{t, i, f}, { f ¬
K , f ∧

K , f ∨
K }〉 is the 3-element Kleene algebra.

The former is discussed by e.g. Cobreros, Ripley, Egré and van Rooij in [8], and
also by Chemla, Egré and Spector in [7] in the context of the more general discussion
ofwhat represents a ‘respectable’ consequence relation between formulae.Moreover,
it was also discussed by Grzegorz Malinowski in [21] as a tool to model empirical
inference with the aid of the 3-valued Kleene algebra, and more recently was also
stressed by Rohan French in [14], in connection with the paradoxes of self-reference.

The latter is discussed by Cobreros, Ripley, Egré and van Rooij in several papers
(among them [8, 9, 26, 27]), with the aim of solving the riddles raised by paradoxical
phenomena, vagueness, and much more. It must be pointed out that it was also
entertained by Girard in [16] as a 3-valued interpretation of the sequent calculus LK
for classical propositional logic, without the Cut rule.

Once more, equipped with these definitions we are now in a position to ask
which formulations of Explosion are valid, and which are invalid in the q-matrix
logic TS and the p-matrix logic ST. Yet again, for this question to be meaningful,
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it is necessary to clarify how q- and p-matrix logics validate or invalidate both
inferences and meta-inferences—following e.g. [12] and [32, p. 196]. Notice that,
below, �M is a substitution-invariant q-consequence (respectively, p-consequence)
relation, whence (FOR(L ),�M ) is a q-logic (respectively, a p-logic). In addition
to that, when some q- or p-logic L is induced by, respectively, a q- or p- matrixM ,
we may interchangeably refer to �M as �L.

Definition 19 ForM a q-matrix, anM -valuation v satisfies a sequent or inference
Γ ⇒ A (written v �M Γ ⇒ A) iff if v[Γ ] ∩ D− = ∅, then v(A) ∈ D+. For M a
p-matrix, an M -valuation v satisfies a sequent or inference Γ ⇒ A (written v �M

Γ ⇒ A) iff if v[Γ ] ⊆ D+, then v(A) ∈ D−.7 For M a q-matrix or p-matrix, a
sequent or inference Γ ⇒ A is M -valid (written �M Γ ⇒ A) iff v �M Γ ⇒ A,
for all M -valuations v.

Definition 20 For M a q-matrix or p-matrix, an M -valuation v satisfies a meta-
sequent or meta-inference Γ ⇒1 A (written v �M Γ ⇒1 A) iff if v �M B, for all
B ∈ Γ , then v �M A. A meta-sequent or meta-inference Γ ⇒1 A isM -valid (writ-
ten �M Γ ⇒1 A) iff if v �M B, for all B ∈ Γ , then v �M A, for allM -valuations
v.

From these definitions the following facts follow.

Fact 3.3 ([8]) TS is a non-reflexive, and thus a substructural, logic.

Fact 3.4 ([8]) ST is a non-transitive, and thus a substructural, logic.

Fact 3.5 The logic TS invalidates the inferential formulation of Explosion, i.e. �TS

A,¬A ⇒ B, but it validates the meta-inferential formulation of Explosion, i.e. �TS

A,¬A ⇒1 B.

Proof To prove that �TS A,¬A ⇒ B construct a TS-valuation v such that v(A) =
v(¬A) = i, i.e. v({A,¬A}) = {i}, while v(B) = f . From this we infer that v is a
valuation such that v({A,¬A}) ∩ {f} = ∅ and v(B) /∈ {t}, whence �TS A,¬A ⇒ B.

To prove that �TS A,¬A ⇒1 B, suppose for reductio that �TS A,¬A ⇒1 B.
Then, there should be aTS-valuation v, such that v �TS ⇒A and v �TS ⇒¬A, while
v �TS ⇒B. Such a valuation will require that v(A) = t = v(¬A), which is impos-
sible. Whence, we conclude �TS A,¬A ⇒1 B. �

7Notice that this definition takes a p-logic to be induced by a p-matrix 〈V ,D+,D−,O〉 where it
is assumed that D+ ⊆ D−, whence this last clause reads: “if v[Γ ] ⊆ D+, then v(A) ∈ D−”. Now,
as remarked by an anonymous referee, if the same p-logic is taken to be induced by a q-matrix
〈V ,D+,D−,O〉where it is assumed thatD+ ∩ D− = ∅—as is done e.g. in [32, p. 210]—then this
last clause should read: “if v[Γ ] ⊆ D+, then v(A) /∈ D−”.

These considerations highlight that if the setsD+ andD− of a q-matrix are taken to, respectively,
represent a generalized notion of truth and a generalized notion of falsity—as in [32]—then with
regard to valuations on the 3-element Kleene algebra, TS and ST can be interpreted as follows. TS
consequence can be understood as requiring that for all valuations, if the premises are non-false,
then the conclusion is true; whereas ST consequence can be understood as requiring that for all
valuations, if the premises are true, then the conclusion is non-false.
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Fact 3.6 ([4]) The logic ST validates the inferential formulation of Explosion, i.e.
�ST A,¬A ⇒ B, but it invalidates the meta-inferential formulation of Explosion,
i.e. �ST A,¬A ⇒1 B.

Proof To prove that �ST A,¬A ⇒ B, suppose for reductio that �ST A,¬A ⇒ B.
Then, there should be an ST-valuation v, such that v({A,¬A}) ⊆ {t}, while v(B) /∈
{t, i}. Such a valuation will require that v(A) = t = v(¬A), which is impossible.
Whence, we conclude �ST A,¬A ⇒ B.

To prove that �ST A,¬A ⇒1 B construct an ST-valuation v such that v(A) =
v(¬A) = i, i.e. v({A,¬A}) = {i}, while v(B) = f . From this we infer that v is
a valuation such that v �ST ⇒A and v �ST ⇒¬A, while v �ST ⇒B, whence �ST

A,¬A ⇒1 B. �
Before moving on, it might be worth noticing—as pointed out by an anonymous

referee—that according to TS and ST the meta-inferential formulation of Explosion
is closely related to a restricted form of Cut. To be more precise, given these systems
validate e.g. the rule of right Weakening [WR] and also the left introduction rule
for negation [¬L], it is true that the meta-inferential formulation of Explosion is
equivalent to a restricted form of Cut—indeed, of both the additive [CutA] or the
multiplicative [CutM] version of Cut8—where the side formulae are empty.9

We can, in fact, provide more general facts fromwhich the previous can be seen as
corollaries.We do think that, nevertheless, giving the proper counterexamples for the
particular cases above is illustrative, as these logics are not so commonly mentioned
in the literature about paraconsistent logics.

Fact 3.7 TS has no valid inferences or sequents.

Proof Consider an arbitrary inference or sequent Γ ⇒ A, and consider a TS-
valuation v, such that v assigns the value i to every propositional variable of L .
Given TS is a q-matrix based on the 3-valued Kleene algebra, it is easy to see by
looking at the operations of the algebra that if every propositional variable p is such
that v(p) = i, then every formula C is such that v(C) = i, and in particular for every
B ∈ Γ, v(B) = i. Now, it only remains to notice that v is a TS-valuation such that
v[Γ ] ∩ {f} = ∅, but v(A) /∈ {t}, whence �TS Γ ⇒ A. Since Γ ⇒ A was arbitrary,
we may conclude that TS has no valid inferences or sequents. �

8By these rules we refer to the following, respectively.

Γ ⇒ Δ

Γ ⇒ ϕ,Δ
[WR] Γ ⇒ ϕ, Δ

Γ, ¬ϕ ⇒ Δ
[¬L] Γ, ϕ ⇒ Δ Γ ⇒ ϕ,Δ

Γ ⇒ Δ
[CutA]

Γ, ϕ ⇒ Δ Σ ⇒ ϕ,�

Γ,Σ ⇒ Δ,�
[CutM]

9Whence, the aforementioned equivalence is witnessed e.g. by the following derivation, where the
application of [Cut] is a rightful instance of both [CutA] and [CutM].

∅ ⇒ ¬A
∅ ⇒ A

¬A ⇒ ∅ [¬L]
∅ ⇒ ∅ [Cut]
∅ ⇒ B

[WR]
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Fact 3.8 ([16, 26]) ST and CL have the same set of valid inferences or sequents.

About these logics we shall mention, in addition to the previous remarks, that
in [4, 11, 25] it is shown that—through some suitable translation—the set of valid
inferences in LP coincides with the set of valid meta-inferences in ST, while in [14]
it is conjectured that—again, through some suitable translation—the set of valid
inferences in K3, i.e. Strong Kleene logic,10 coincides with the set of valid meta-
inferences in TS. As Francesco Paoli pointed out to us, this conjecture was shown
to be true, in light of the results proved in [33].

4 Philosophical Reflections

The previous discussion dealt with classical logic and three systems which, in light
of the previously proposed criterion, might be legitimately called paraconsistent.

Certainly, that classical logic is not, but LP is paraconsistent should not surprise
anyone, since these are well-known facts. Nevertheless, given our proposal, the pre-
vious remarks allow to offer a new look at the these systems. In this regard, we will
say that LP, as well as CL adopt a uniform policy with regard to paraconsistency.
We mean with this that, just like CL is not paraconsistent at either the inferential
or the meta-inferential level, LP is both paraconsistent at the inferential and the
meta-inferential level.

These remarks about uniformity suggest that it is reasonable to ask whether or
not it is possible to have logics which have a non-uniform policy towards paracon-
sistency. A positive answer to this question has been offered in the previous sections.
Two examples of the meaningfulness of this alternative are the substructural logics
TS and ST. The former is paraconsistent, although it is not uniformly so, for it is
paraconsistent at the inferential level, but not at the meta-inferential level. The latter
is paraconsistent, although it is also not uniformly so, for it is paraconsistent at the
meta-inferential level, but not at the inferential level.

Let us now comment on two philosophically discussions where the above remarks
can have some interesting repercussions. Claiming that there are some paraconsistent
logics which give a uniform and other that have a non-uniform policy with regard to
the validity of Explosion is relevant to the discussion of logical pluralism: different
levels of logical consequence can give different answers about the validity of a certain
inference, rule, or scheme—in the case that concerns us, about Explosion. But, of
course, these remarks can be generalized. As Barrio, Rosenblatt and Tajer [4] have
shown, meta-inferential validity in ST coincides (through some suitable translation)
with inferential validity in LP. If we also take into account that Cobreros, Ripley,
Egré and van Rooij proved that ST and CL have the same set of valid inferences or
sequents, this result can be interpreted conceptually as the admission that two rival

10That is, the matrix logic induced by the structure MK3 = 〈{t, i, f}, {t}, { f ¬
K , f ∧

K , f ∨
K }〉, such that

〈{t, i, f}, { f ¬
K , f ∧

K , f ∨
K }〉 is the 3-element Kleene algebra.
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logics are both right, i.e. CL could be a correct response at the level of inferences
and LP could be a right answer at the level of meta-inferences.

Obviously, we are not claiming that cases in which the inferential and the meta-
inferential notion of validity come apart are a proof of logic pluralism. It is also
possible to support the view according to which meta-inferential validity imposes
conditions on inferential validity, as e.g. Dicher and Paoli [11] seem to maintain.
Or that meta-inferential validity has no weight, for the only thing that matters is
inferential validity logic, as Ripley and the defenders ofST seem tomaintain. Instead,
we affirm that logics like ST and TS open the possibility of adopting a pluralistic
attitude about logic: depending on what level we are interested, different appropriate
answers could be given.

Another important issue that the present discussion might have consequences for,
is the question about the meaning of logical connectives, and—most importantly—
the relation that their meanings have with their behavior in various inferential levels.
For example, in STmodus ponens is valid for the conditional at the inferential level,
but it is not a valid rule at the meta-inferential level, as Zardini [35] points out. If
the meaning of a logical connective is given by the valid inferences in which it is
involved, logics as ST seem to admit connectives with different meanings at different
inferential levels.

Moreover, for inferentialists the question arises as to whether or not the meta-
inferential properties of the logics (at least partly) determine the meaning of the
connectives of the given system, as Dicher [10] seems to suggest. That is, if we
compare the connectives of, for example, TS, ST and CL proof-theoretically11—
following the remarks of e.g. [14]—do they have the same meaning, given they are
equipped with the same set of operational rules? All these questions are of deep
philosophical import, and we hope to discuss them in future work.

4.1 Answers to Some Possible Objections

To conclude this section, let us evaluate a number of objections that might be raised
against our approach. We consider, initially, two objections which question that TS
and ST are genuine paraconsistent logics. After that, we consider an objection that
questions the extent towhich our proposed criterion of paraconsistency is reasonable.

The first objection aims at TS, and it concerns whether or not it is a paraconsis-
tent logic in a trivial sense. Everyone would accept (even if they do not accept our
proposed characterization of a paraconsistent logic) that an inferential consequence
relation with no valid inferences is paraconsistent. For Explosion is a (schematic)
inference, and if no (schematic) inference is valid, a fortiori Explosion will be invalid
for that logical consequence relation. This is, in fact, the situation with inferential
validity in TS.

11Along these lines, CL can be proof-theoretically understood as Gentzen’s sequent calculi LK,
TS as LK minus the structural rule of Reflexivity, and ST as LK minus the structural rule of Cut.
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Now, the objection goes: in which sense is a consequence relation with no valid
inferences a genuine consequence relation? It seems that it is as meaningless as a
consequence relation as the empty set itself, and—as Chemla, Egré and Spector
suggest in [7]—it will be definitely non-standard to call the empty set a genuine
consequence relation, let alone a logic. Furthermore, if a consequence relation with
no valid inferences is not a genuine consequence relation, it hardly can represent a
genuine paraconsistent consequence relation.

To this we reply by noticing, as is done in [7], that the fact that TS has no valid
inferences does not allow to identify its inferential consequence relation with the
empty set. For, in a certain sense, the fact thatTS has no valid inferences is dependent
on the language being employed.Werewe to have a constant� representing the value
t, and a constant ⊥ representing the value f , then e.g. the following inferences will
be valid in the referred extension of TS (and, thus, of the 3-valued Kleene algebra)

� ⇒ � ⊥ ⇒ ⊥ ⊥ ⇒ �

More importantly, the addition of such constants to TS will not imply the validity
of Explosion at the inferential level. Therefore, TS is a paraconsistent logic in a
meaningful and non-trivial sense.

The second objection aims at ST, whose peculiarly non-uniform way of being
paraconsistent has been called into question in some recent papers like [4, 11],
causing an impasse regarding the qualification ST deserves as a classical or non-
classical logic.

On the one hand, some of its advocates (i.e. Cobreros, Ripley, Egré and van
Rooij) seem to claim that, given ST coincides with CL at the inferential level, then
ST deserves to be referred nothing more than an alternative presentation of classical
logic. This argumentative line appears to be supported by the fact that J.-Y. Girard
employed in [16] the ST 3-valued q-matrix to give a presentation of classical logic
where Cut fails.

On the other hand, some of its critiques, like Barrio, Rosenblatt and Tajer in [4]
and Dicher and Paoli in [11] appear to think that ST should not be identified with
classical logic, but with LP. This argumentative line appears to be supported also
by the fact that e.g. Cobreros, Ripley, Egré and van Rooij usually present ST as
Gentzen’s sequent calculus LK for classical logic, minus the structural Cut rule. But
if they prefer to talk about ST as a sequent calculus system, then they are prone to
the following imputation due to Dicher and Paoli

Notice, however, that in a sequent calculus all of the action takes place at the level of sequent-
to-sequent rules, whereby from one or more sequents (intuitively understood as ‘inferences’)
we derive more sequents (i.e., more ‘inferences’). Which is to say, the action takes place at
the level of metainferences. [11, p. 8, our emphasis]

The result of the previous dialectic is, then, that some say that ST is not para-
consistent, but is classical, because the only thing that matters is inferential validity
and at that level ST coincides with CL, whereas some others say that ST is para-
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consistent, but is not classical, because the only thing that matters is meta-inferential
validity and at that level ST coincides with LP.

We stand in the middle: we take that both inferential and meta-inferential validity
matter. Since both matter, then particularly meta-inferential validity matters and thus
we think that ST deserves to be taken as a genuine paraconsistent logic. But do we
draw a symmetric conclusion and claim that ST is classical? No. This might bother
some objectors, and to the consideration of their potential objection we now turn.

Thus, the third objection concerns the extent to which our proposed criterion of
paraconsistency is reasonable, and would run roughly as follows. It is unreasonable
to say that a logic is paraconsistent if either its inferential or its meta-inferential
consequence is, because this is an instance of a more general criterion that we would
not accept, for it has instances that we would reject. Namely, the general criterion
that

A logic is X if either its inferential or its meta-inferential consequence is X

Now, the objection may continue, if X is ‘classical’, then we have just said that
it would not be reasonable to accept that a logic is classical if e.g. its inferential
consequence is not classical, but its meta-inferential consequence is classical.

To this we reply as follows. First of all, by claiming that a logic is paraconsistent
if either its inferential or its meta-inferential consequence is we are not necessarily
committed to accept the general criterion that a logic is X if either its inferential or
its meta-inferential consequence is X . This is so, just like accepting an instance of
the Law of Excluded Middle (e.g. ‘Either Goldbach’s Conjecture is true, or Gold-
bach’s Conjecture is false’) does not necessarily commit oneself to the unrestricted
acceptance of the Law of Excluded Middle, for one may think that there are cases in
which it may fail to hold (e.g. future contingents, etc.).

Finally,wedo in fact think that there is a reason to refrain fromadopting the general
criterion, i.e. that some of its instances are wrong, in particular, the instance where
X is ‘classical’. We are of the opinion that a logic being classical at some inferential
level does not propagate to a qualification of the entire logic, whereas a logic being
non-classical—and, in particular, paraconsistent—does propagate to a qualification
of the entire logic. The asymmetry resides, mainly, in the fact that being classical is a
characteristic that requires the fulfillment of certain inferential features, while being
non-classical and in particular paraconsistent is a characteristic that requires the non-
fulfillment of certain inferential features. As is stressed by Ripley—in the quote of
his that wementioned in Sect. 1—paraconsistency is a nonentailment claim, whereas
it appears that classicality is an entailment claim. For this reason, it is reasonable for
us to say that there is a difference in being paraconsistent, which requires that at least
at some level (either the inferential or the meta-inferential) this nonentailment claim
holds, and being classical, which seems to require that at all levels the entailment
claim holds.
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5 Conclusion

In the present paper we presented a new criterion for a logic to be paraconsistent:
if either the inferential or the meta-inferential formulation of Explosion is invalid in
L, then it is paraconsistent. Interestingly, we showed that a logic may invalidate one
but validate the other, contrary to what happens in logics that have a uniform policy
towards these matters, such as classical logic and LP which, respectively, validate
both and validate neither of the formulations. The study cases that we focused on
were two substructural logics, TS and ST; the former invalidates the inferential, but
invalidates the meta-inferential formulation of Explosion, and the latter validates the
inferential, but invalidates the meta-inferential version of Explosion. This strongly
suggests that the proposed criterion is non-trivial and that there are interesting cases
of logics which deserve to be called paraconsistent and that have not been regarded
as such by the received view about paraconsistency, which focused exclusively on
the inferential formulation(s) of Explosion. By focusing on versions of Explosion
which are not inferential, but meta-inferential, we argued that Explosion comes in
very different flavors and that it should be explored with greater generality that it has
been, until now.

Let us close these conclusions with one final comment. In this paper we dealt with
logical consequence between formulae and between sequents, thereby considering
and evaluating inferential and meta-inferential versions of Explosion. But nothing
prevents us from taking the investigation one step further and considering conse-
quence relations between e.g. meta-sequents. Yet, again, if this is plausible, why
stop there? We can definitely consider consequence relations between meta-meta-
sequents, and so on and so forth. It can be easily seen how this procedure can be
further reproduced, giving us a whole hierarchy of inferences concerned with the
logical relations between objects of the lower level(s). In doing so it is interesting to,
thus, look at inferences as having, or being of, some level represented by some ordi-
nal number. Common inferences relating formulae are, therefore, of level 0, whereas
meta-inferences are of level 1, meta-meta-inferences are of level 2, and so on and
so forth. In this vein, Explosion might be regarded as a meta-schematic inference
A,¬A ⇒α B, for α an ordinal. In other words, as a meta-scheme or scheme of
schemes, i.e. a scheme that gives, for each ordinal, a schematic inference, namely
the formulation of Explosion for that inferential level.

These surely are interesting directions to explore. A full exposition of them will
require defining how big the hierarchy is and if it has a fixed point or not, how
inferences at somepeculiar levels (e.g. at limit ordinals) look, howdo the formulations
of Explosion beyond the meta-inferential level look, and many other technical and
conceptual matters. Settling this issues is no doubt an interesting task, but one which
demands an amount of space beyond the one available for this paper. We hope to
investigate them in further research.
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Provided You’re not Trivial: Adding
Defaults and Paraconsistency to a Formal
Model of Explanation

David Gaytán, Itala M. Loffredo D’Ottaviano and Raymundo Morado

Abstract Let us assume that a set of sentences explains a phenomenon within a
system of beliefs and rules. Such rules and beliefs may vary and this could have as
a collateral effect that different sets of sentences may become explanations relative
to the new system, while other ones no longer count as such. In this paper we offer a
general formal framework to study this phenomenon. We also give examples of such
variations as we replace rules of classical deductive logic with rules more in the spirit
of da Costa’s paraconsistent calculi, Reiter’s default theories, or even a combination
of them. This paper generalizes the notion of epistemic system in [6]. That notion
was used to analyze the concept of explanation, using Reiter’s default theories and
a specific paraconsistent logic of da Costa. Our proposal is a formal framework,
GMD, based on doxastic systems, which allows us to analyze the interaction between
theoretical constructs (in this case, explanations), theories and logics. We mention
some obstacles, we develop the formal framework, and finally we apply it to the
modeling of scientific explanation. Along the way, we try to shed light on different
kinds of interaction between paraconsistency and non-monotonicity.

1 Our Roadmap

In this paper we present a formal framework motivated by the problems of modeling
explanation from the point of view of Philosophy of Science. The original aim was
to help deal with some counterexamples to the classical models of explanation of
Hempel and Oppenheim and handle the difficulties that some theorists observe in
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their analysis.We generalize previous results with respect to explanation and develop
amore general formal framework that could prove useful in analyzing other scientific
constructs like scientific laws, predictions, or general techniques to gather evidence.
This formal framework can be fruitful to analyze the relationship between expla-
nations and inconsistent theoretical contexts. In particular, its modular presentation
allows our formal framework to capture relations between explanation and context.
Context is represented as composed of elements whose modulation in the formal
framework plays a very important role.

The formal framework is based on the logical interaction between a non-
mononotonic logic and a paraconsistent logic. In particular, both systems used are
amongst the first ones proposed. In the case of paraconsistent logic we will use the
hierarchy of calculi of Newton da Costa [4]. In the case of non-monotonic logic, we
will use the logic of default reasoning of Raymond Reiter [17]. But it is important
to note that the formal framework presented in this work, with tiny modifications,
could be put in a logical interaction with other non-monotonic and paraconsistent
systems.

An obstacle to the logical interaction between a non-monotonic logic and a para-
consistent logic is that several non-monotonic logics require consistency to reach a
conclusion. To address this problem, we include a general rule structure based on
Reiter’s defaults. We then build the notion of a doxastic system as a formal envi-
ronment for the interaction between logics and theories. We assume theories have
underlying logics and that we can distinguish between logics and theories. Next,
we show the possibility of having non-monotonic doxastic systems, and paracon-
sistent non-monotonic doxastic systems. Finally, we apply this to the design of a
paraconsistent non-monotonic formal model of explanation.

2 Example of Some Difficulties in Modeling Explanations

Scientific explanation is a phenomenon studied by, among other disciplines, Artifi-
cial Intelligence and Philosophy of Science. Both approaches can be viewed as com-
plementary. In the context of Artificial Intelligence, explanations have been seen
mostly as a process to infer a hypothesis. In Philosophy of Science, explanations
have been assumed to be a kind of product of scientific activity.1 In this tradition,
the central idea is to characterize explanation in Science through either a theory or
a formal model. When the choice is to construct a model, the classical proposal is
to regard explanations as argumentative structures. In this approach the central issue
is: What idea of argumentation can clarify the notion of explanation? Can we build a
model of argumentation able to characterize an explanation adequately? The model
is expected to help us to identify explanations and to distinguish them from other
things in Science. This line of research in Philosophy is expected to help outline a
notion of scientific rationality. In [7] are proposed the “classical models”, basically

1Classical texts are [7, 8].
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a pair of argumentative schemas that, adding other relevant conditions, are viewed
as an abstract representation of scientific explanations. These schemas contain laws
and initial conditions as premises, and a description of a phenomenon as a con-
clusion. This kind of argument form, adding non-vacuity conditions and empirical
restrictions, yields the classical models. The set of premises is called the “explanans”
and the conclusion is called the “explanandum”. Thus, the argumentative analysis of
explanation proposes a structure of the following kind:

explanans, therefore, explanandum.

The two basic classical models use either deductive or statistical laws in the
explanans. If the laws are deductive, we have a “deductive nomological model” (D-
N Model). On the other hand, if the laws have a statistical character, we have an
“inductive statistical model” (I-S Model).2

Parallel to these developments, some philosophers advanced their own formal
models of explanation.3 Some of these models were argumentative models, but some
dispensed with the assumption that an explanation can be modeled as an argument.4

The modeling of explanation has run into roughly three kinds of problems5:

(I) Problems about the inferential relation in the model.6

(II) Problems about the relation of relevance between explanans and explanandum.7

(III) Problems about the context of explanation.8

Types I and III are problems closely linked to non-monotonicity. Some classical
counterexamples presented against the classical models of Hempel, and Hempel’s
own analysis about the problem of epistemic ambiguity in [8], implicitly pointed out
the convenience of relativizing explanations to knowledge bases under change.Afirst
example is [16], which tries to characterize probabilistic and random explanations.
Despite attempting a deductive modeling, the author recognizes the difficulties of
the task. In [20] the necessity of a non-deductive model is even clearer. Van Fraassen
supports the characterization of explanations as counterfactuals, proposed by David
Lewis in [10], as a viable position in principle, and also characterizes the contextual
dependence of explanations via a set ofmore changeable assumptions and a set of less
changeable ones. One of the consequences of his analysis is that we need to explore
conditionals in which the reinforcement of the antecedent is not valid. Finally, in

2These models may also differ in other aspects.
3E.g. Salmon, Railton, and van Fraassen. For a good historical survey of these philosophical dis-
cussions, see [18].
4For example, van Fraassen, [20].
5For a reconstruction of classical problems about scientific explanation, see [6].
6We are thinking about the counterexamples about sufficient or necessary characteristics of the
model, or about the so called “epistemic ambiguity problem” (Cf. [8]), and also about the hard
problems of deductive representation in Science, reported independently in [9] and [15].
7E.g., the problems about causal underdetermination or about asymmetries of explanation. For both
topics you can see [1].
8For the notion of causality in different contexts, see [20].
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[19], this same intuition is analyzed. However, in none of these cases a decidedly
non-monotonic modeling, which would take into account the problems indicated in
the literature, was attempted.

In order to show the kind of problems we are considering, we use a common
example of explanation from Philosophy of Science’s literature:
Example EX
(P1) John ate arsenic two days ago.
(P2) Anyone who eats arsenic will die in a lapse of 24 hours.
(C) John died

The example fulfills the conditions of an explanation in Hempel’s model. The
explanans is the set P1, P2 of premises, and we can consider that the explanandum
is the conclusion C of the argument, and we have a deductive or highly probable
relation of derivation between that set and C. Hempel also included into his model
several conditions of adequacy. One of them is

(AC1) each member of the explanans must be true.
Taking into account some counterexamples to Hempel’s models of explanation, we
can demand further adequacy conditions. The following three are candidates to ade-
quacy conditions that go beyond Hempel’s original requirements, although they do
not seem to be necessary for every kind of scientific explanation.
(AC2) the explanans has to give a causal account of the explanandum.
(AC3) the explanansmust describe facts that actually are the causes of the occurrence
of the explanandum.
(AC4) the explanansmust be related to the explanandum by means of at least a high
probability derivation.

One may have at least two different attitudes towards AC1–AC4. One may con-
sider them as necessary conditions if an argument is to be an explanation at all.
Another possible perspective is to consider that AC1–AC4 constitute conditions for
some argument to be a good explanation. We shall adopt this latter perspective.

(PS1) Imagine that Joseph wanted to play a joke on John: Joseph has made John
believe some P1 (for instance, that fire is produced by phlogiston, or that light travels
in space through an ether), and actually P1 is false. In this situation, erroneously, John
believes that P1 is true, i.e., John believes that AC1 is fulfilled. Hempel would discard
the case as a pseudo-explanation since P1 is false, but we have a strong intuition that
those historic explanations were erroneous yet explanations nonetheless. We do not
necessarily want to consider P1 as a true proposition in order to consider Ex1 an
explanation. Maybe we do not need to consider every premise to be true in order for
an argument to qualify as an explanation.
(PS2) Let us now suppose that P1 and P2 are true. Note, also, that P1 and P2
give a causal justification for C. Then, example EX counts as an explanation; even
more, as a true and causal explanation.We have an argument that fulfills the adequacy
conditionsAC1andAC2.Nevertheless, there are a lot of possiblemeanings of “causal
relation” and we may consider also some relations fulfilled in an explanation that
are not causal relations. We have then different possibilities for what an explanatory
relevance relation needs to be.
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(PS3) Imagine that Example EX fulfills AC1–AC3, but Joseph knew that John had
cardiac problems. AC3 is usually considered a condition to prevent this possible
failure. Then, when Joseph is informed that his friend is dead, he formulates an
explanation that appeals not to arsenic but to John’s suffering from heart problems.
Would we say that the argument of Joseph is not an explanation? Similarly to the
PS1 case, we have a strong intuition that those historic explanations were erroneous
or bad explanations but yet explanations nonetheless. In addition, if we maintain that
explanations function on epistemic level, in the sense that explanations are doxastic
proposals to account for a particular fact, Joseph had an explanation. Maybe Joseph’s
explanation does not correspond to reality, but it could be considered a correct for-
mulation of an explanation. May be an argument representing an explanation does
not need to refer to a cause chain that actually causes the explanandum.
(PS4) Let us, finally suppose that P2 in Example EX is rather “Anyone that eats
arsenic will likely die in a lapse of 24 hours”. We consider also that Example EX,
with the new P2, fulfills AC1–AC3. But, let us also suppose that the quantity of
arsenic consumed by John, made the probability in P2 a low probability. Maybe we
know, in this hypothetical situation, that such amount of arsenic has a little effect in
very few people. In a certain sense, the fact that John consumed arsenic explains his
death, but there is a possibility that Example EX, although it is a good formulation
of an explanation, may be a bad explanation of John’s death. Example EX is an
explanation but maybe not a good one. In this work, we will consider that even in
such situation, Example EX is an explanation.

We may accept conditions of the type of AC1–AC4 as necessary conditions for
the goodness of an explanation according to our beliefs and rules.9 Assuming that
the goodness of an explanation depends on the beliefs and rules from which such
goodness is evaluated, the doxastic context of an explanation, containing as it does
such beliefs and rules, might generate different adequacy conditions. In order to dis-
tinguish different sets of conditions for a good explanation it is very important to
take into account the variations that the adequacy conditions might undergo. These
variations might change what it means to be a good explanation. Because of this a
modulating treatment might prove useful. The way we propose to handle explana-
tions will include representing several internal elements of a minimal explanation
and other context related components so that the elements are subject to variance,
to be “modulated”. Because our proposal allows for such variation, our treatment
modulates and not just models explanations. As we shall also see, the variation of
the components must be reflected in changes in the form of interaction between
some of the components; therefore, our model will capture a modulation between
components and not only of them in isolation.

9PS1–PS4 are taking from the discussion in Philosophy of Science.
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3 Building Rules and Doxastic Systems on GMD

An integral part of our paper is building simple examples of modulation. For that we
will use a simple construct that will reflect a system of beliefs, namely a doxastic
system, with a dynamic internal structure. A doxastic system contains both belief
sets and methods to change those sets. We can capture those methods by means of
the idea of a rule. We will concentrate on the representation of modulations in the
dynamics of rules and its consequences inside the doxastic system as a whole.

We intuitively understand here the general structure of a rule in a doxastic system
S, as a triple 〈A, γ,M 〉, such that A is a set of formulas sufficient to obtain γ , γ

is the formula obtained normally from A, and M is the modulation of the rule. A
modulation in the rule is understood as a condition in the rule that allows or restricts
the inference of γ from A. This M may be as variegated as societal constraints,
resource limitations, ethical considerations, etc. In this paper we will consider only
simple modulations such as conditions of consistency or conditions of non triviality.

We now construct a formal framework to relate these intuitive concepts of a
doxastic system and of a rule. We will call this framework “GMD” after the last
names of the authors.

We begin assuming, as a base to GMD, a standard first order logical vocabu-
lary: logical constants V1 = {→,∧,∨,↔,¬,∀, ∃}, constants for individuals V2 =
{a, b, . . . , t, a1, . . . , t1, a2, . . .}, variables for individuals V3 = {u, . . . , z, u1, . . . , z1,
u2, . . .}, constants for predicates V4 = {P,Q,R, . . . ,Z,P1, . . . ,Z1,P2, . . .}, and
propositional variablesV5 = {α, β, . . . , ω, . . . , α1, . . . , ω1, α2, . . .}. Sinceour vocab-
ulary is going to be

⋃5
i=1 Vi, we construct the set of well formed formulas (wffs),

FOR, as usual.
We will now propose more specific versions of those intuitive ideas. We will

construct an abstract notion of rule. Also a formal environment for the interaction
between logics and theories: the doxastic systems.

Definition 1 (Definition 1) An (specific) intra-system rule (“IR”) for GMD, IR, is
an ordered triple 〈A, γ,B〉 where:
(1) A,B ⊂ FOR,
(2) A and B are finite,
(3) γ ∈ FOR,
(4) There exists a set K ⊆ FOR and a relation (condition) C (of 〈A, γ,B〉) between
B and K , such that:
If every element α ∈ A is obtained (or appears in a previous line in a given demon-
stration), and C is fulfilled between B and K , then γ is obtained (in this case, we
say that γ is inferred from A by means of 〈A, γ,B〉). This C can be considered the
modulation of 〈A, γ,B〉.

For a given IR 〈A, γ,B〉, we will call every α ∈ A “a prerequisite” of the IR, γ the
“conclusion” of the IR, A the “presence condition” of the IR, every β ∈ B a “proviso”
in the IR, B the “absence condition” of the IR, A ∪ B the “requisites” of the IR, and
K , a “base of provisos” of the IR.
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Note that by means of our abstract notion of rule, based in a structure 〈A, γ,B〉,
we can represent standard rules on FOR, as cases of rules with B = ∅. In such cases,
we write [A, γ ] instead of 〈A, γ,B〉. (Otherwise it is considered a non-standard rule).
Remark 1 The general intuition in Definition 1 is that some rules have a structure
similar to the classical one, in the sense that the conclusion depends only on a set of
prerequisites or premises; and we have rules with a default structure, in which the
conclusion could depend also on another kind of conditions, the provisos.

With this notion of rule we can represent and modify the mechanisms of inference
in reasoning considered with possible restrictions. Themodificationsmade inside the
structure of rules could facilitate the representation of reasoning, and environments
with contradictions andwith the possibility of losing conclusions (what usually could
be called “paraconsistent reasoning” and “non-monotonic reasoning”). We can think
of these environments in terms of an interaction between theories and logics (what
we will call in GMD “mixed doxastic systems”). In this line of thought, one of
our aims is to represent theories containing contradictions (inconsistent theories),
but also weak inferences (may be defaults) that could generate contradictions in
our theoretical corpus, and even logically closed inconsistent sets of propositions,
generated from initial theoretical and logical conditions (inconsistent extensions).
We want to distinguish between “permitted” contradictions, and “not permitted”
contradictions (which justify a paraconsistent formal environment in GMD). If a
contradiction α ∧ ¬α is permitted in an initial system of beliefs, then we say, closely
to the use of da Costa, that α is a “bad behaved” formula in that system. On the
contrary, if α ∧ ¬α is not permitted in that initial system of beliefs, then we say that
α is a “well behaved” formula in that system. Both last two terms are due to da Costa.

With modifications inside the rule (what we will call “modulations”), we want
to represent weak (non deductive), non-monotonic and paraconsistent reasoning.
We think that this kind of representation of reasoning can contribute to model a
minimal argumentative notion of explanation. We will make all these modifications
in a manner that allows us to capture combinations of theories and logics of different
kinds, and also different kinds of interactions between theories and logics.

Definition 2 (Definition 2) An ordered pair 〈Ψ,Ω〉 is a doxastic system (ds) Σ in
GMD iff:
(1)Ψ �= ∅ is a set of IR rules andΩ ⊆ FOR. Wemay understandΨ as the inferential
engine and the elements of Ω as the sentences in Σ .
(2) Ψ generates, through applications of its elements, a consequence function
CnΨ such that its domain is FOR and its co-domain is ℘℘(FOR), i.e., CnΨ :
FOR −→ ℘℘(FOR). In particular, it is clear that Ω ∈ ℘(FOR) and that CnΨ (Ω)

⊆ ℘(FOR). CnΨ (Ω) is called the set of extensions of 〈Ψ,Ω〉.
In a ds Σ = 〈Ψ,Ω〉, Ψ may represent the underlying logic Λ of Σ . We will

consider Λ as a standard underlying logic if every rule IR ∈ Ψ is an standard rule on
FOR. (Otherwise it is considered a non-standard underlying logic). By the way, if
some rules IR in Ψ have an empty presence condition, A = ∅, and an empty absence
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condition, B = ∅, they function as axioms, and Λ may be considered an axiomatic
logic.

In a doxastic systemΣ = 〈Ψ,Ω〉,Ω may represent a theory T , as a set of beliefs.

Definition 3 (Definition 3) A doxastic system Σ = 〈Λ,T 〉, is called “a mixed dox-
astic system”, mds, in GMD iff at least two rules, 〈A1, γ1,B1〉i, 〈A2, γ2,B2〉j ∈ Λ are
such that B1 = ∅ and B2 �= ∅. In other words, a mds is a ds with at least one standard
rule and at least one non-standard rule.

Definitions 2 and 3 are generalizations of the idea of epistemic system developed
in [6], which was applied to a model scientific explanation. That work captured the
interaction between the calculus C1, from the hierarchy of calculi of Newton da
Costa, with a logic of default reasoning of Raymond Reiter. These new definitions
are made in order to capture interactions between different logics and different sets
of beliefs (or theories), also in connection with the notion of explanation.

Definition 4 (Definition 4) A derivation of a wff φ from a set of formulas Z ⊆ FOR
in a mds Σ = 〈Λ,T 〉 is a sequence of wffs 〈γ1, . . . , γn〉 such that:
(1) γn = φ.
(2) For every γi in the sequence, at least one of the following conditions holds:
(a) γi ∈ T ∪ Z .
(b) γi follows syntactically from T ∪ Z according to Λ by CnΛ of 〈Λ,T 〉. We can
also formulate this as saying that γi follows syntactically from Z by CnΣ .
We say that there is a 〈Λ,T 〉 -derivation φ from Z, or that there is a Σ-derivation of
φ from Z. In symbols, Z �Σ φ.

The structure of the notion of derivability relative to a doxastic system allows us
to represent several interesting situations. For Σ = 〈Λ,T 〉, Z �Σ φ can represent
the following cases10:

(1) With Z = ∅, represents the case in which φ follows from Σ ,
(2) with Λ = ∅, the case in which φ is a reiteration, i.e., φ ∈ Z ∪ T (a reiteration of
the theory or the additional information).
(3) with T = ∅, the case in which φ follows from Z only by the logical resources
of Σ ,
(4) with Z ∪ T = ∅, the case in which φ is a logical truth in Σ ,
(5) with Z ∪ Λ = ∅, the case in which φ is an assumption of Σ , i.e., φ ∈ T (an
assumption of the theory T of Σ),
(6) with Λ ∪ T = ∅, the case in which φ is an additional premise for Σ , i.e., φ ∈ Z .

Remark 2 The idea of keeping Z explicitly out of the doxastic system is to be able
to represent how different sets of propositions may interact with different doxastic

10As can be noted by the use we make of T, we can think of the theory T as the set of fundamental
assumptions of the theory. These assumptions do not necessarily have to be identified with axioms.
They could be the axioms of the theory, but they could be also some of its fundamental consequences:
basically, we can understood T as the set of assumptions about the world.
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systems. For instance, we may want to analyze if a certain set Z can constitute an
explanans with respect to a particular theory T . In some cases, we may also want
to analyze if a certain set Z constitutes an explanation regarding a particular theory
T with a particular underlying logic Λ. In the analysis from GMD, the results of
these combinations (explanans Z , theory T , underlying logic Λ) could be crucially
different. The idea is that two important elements of some contexts are their logic
and their presuppositions. We try to provide a highly simplified representation of
these elements with the notion of doxastic system, and our notion of a Σ-derivation
is a pale shadow of that of a contextual derivation.

In terms of consequence functions we have:
The set of extensions from Z relative to 〈Λ,T 〉, denoted by Cn〈Λ,T 〉(Z), is defined
as follows:
Cn〈Λ,T 〉(Z) = {E | E is an extension of 〈Λ,T ∪ Z〉}.
For Σ = 〈Λ,T 〉, we will write:
CnΣ(Z) = {E | E is an extension of 〈Λ,T ∪ Z〉}.

We can define the syntactic notion of consequence relative to different logics Λ

and different theories T . Thus, our central strategy in order to compare explanations
in theoretical contexts is: In order to represent a theory we can take T as something
like a base belief set, and, to represent a logic, we can use Λ. In particular, we are
interested in using as ourΛ a combination of a default theory in the sense of Raymond
Reiter and C1 of the hierarchy of calculi C∗=

n , 1 ≤ n < ω, of Newton da Costa.
A particular mds can contain rules of different types generated by the general IR

structure of an ordered triple. We can define classical rules, with certain modulations
in B, and we can define default rules with certain other modulations in B.

The general idea is to generate, as a particular case of mds, each default theory:
“Reiter’s mds”. And we can also capture, with modifications in the way we apply
the defaults, systems we have called “Reiter-da Costa’s mds”.

We can characterize different kinds of interaction between logics and theories
depending upon the construction of the consequence relation. Because of this it
is possible to generate standard default theories like Reiter’s, or allow for interac-
tion between non-monotonicity and paraconsistency. This shows, again, the possible
modulations in our proposal, by means of the description of the function of conse-
quences Cn mentioned above, not only in (i) our general structure of a rule, but also
in (ii) the theories and logics. Let’s show these modulations in more detail in the next
two sections.

4 Building a Default Theory on GMD

In this section we use our formal framework GMD, based upon an abstract formula-
tion of rules and upon the idea of the interaction between theories and its underlying
logics, in order to represent standard default logic in Reiter’s line of thought.
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In first place, we assume First Order Classical Logic with identity and functions
by means of the axiomatic structure of the system C∗=

0 from da Costa hierarchy
Cn, 0 ≤ n ≤ ω [4]. This system corresponds to First Order Classical Logic. We will
understand this system as a set of rules [A, γ ], some of them with A = ∅.

In second place, we present a natural generalization of default logic by means of
C∗=
0 and a generalization of rules described above.
Now we construct a more specific yet still very general case of extension.

Definition 5 (Definition 5) Let E,Z ⊆ FOR, and the mdsΣ = 〈Λ,T 〉, E0 = T ∪ Z
andEi+1 = Cn〈Λ,∅〉(Ei), for allEi, where i ≥ 0; thenwe say that a set E is an extension
of 〈Λ,T ∪ Z〉 iff E = ⋃∞

i=0 Ei.11

For S ⊆ FOR, from now on we may write CnΛ(S) instead of Cn〈Λ,∅〉(S).

Remark 3 Definition 5 does not restrict the kind of theory or underlying logic used in
the mds. Although we will focus on the case of default and paraconsistent logics, this
GMD framework is general enough to accommodate mixed doxastic systems based
on other kinds of Λ. Note also the very general idea of the syntactic consequence
relation between Ei and E in CnΛ(Ei). This relationship will be clearer when we
specify it in the case of default reasoning.

We give now the usual notions related to consistency. Given a set S ⊆ FOR,
we call S a “consistent set of formulas” iff it does not exist any wff θ such that
θ ∈ ⋃

CnΛ(S) and also ¬θ ∈ ⋃
CnΛ(S), where Λ is classical logic. Otherwise, we

call S an inconsistent set of formulas.
The set of all formulas, FOR, is called “the trivial set”. Obviously, If S is the

trivial set, then S is inconsistent.
Given an mds Σ , we call Σ an inconsistent mds iff every extension E of Σ is

inconsistent; if it is not the case, we call it a non-inconsistent mds.
Given an mds Σ = 〈Λ,T 〉 , we call Σ a “trivial mds” iff every extension E of Σ

is trivial (i.e. every E = FOR); if this is not the case, we call it a “non-trivial mds”.
Given an mds Σ , we call Σ an “explosive mds” iff for every inconsistent set S,

every E ∈ CnΣ(S) is trivial (i.e. every E = FOR).12 If it is not the case, we call it a
“paraconsistent mds”.

Theorem 1 Given Σ = 〈Λ,T 〉 on GMD and Z ⊆ FOR, and the following condi-
tions:
(i) Λ = C∗=

0 ,
(ii) every IR ∈ Λ is a standard rule (i.e., with B = ∅),
then not necessarily every extension E ∈ CnΣ(Z) is a consistent extension.
Sketch of proof:
Let T = {α,¬α}. Then, every extension E ∈ CnΣ(Z) is such that {α,¬α} ⊆ E.
Therefore, E is inconsistent.

11Note the emphasis: The only sets that are considered extensions are fixed points of the consequence
function.
12Please note that we are talking here of a trivial mds and not of a trivial CnΣ function.
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Remark 4 It is important to note that, in our formal framework GMD, not every
sr rule is necessarily a classical rule, and also that to have standard rules does not
guarantee that a system will produce only consistent sets of consequences.

Theorem 2 In the initial conditions of the Theorem 1 above, 〈Λ,T ∪ Z〉 has an
inconsistent extension E iff E = FOR.
Sketch of proof:
⇒
Let T = {α,¬α}. Then, by Theorem 1, every extension E ∈ CnΣ(Z) is inconsistent.
Given i, for every E ∈ CnΣ(Z), andβ ∈ FOR, (α ∧ ¬α) → β ∈ E, therefore,β ∈ E.
⇐
Let an arbitrary E, E = FOR. Then {α,¬α} ⊆ E. Then E is inconsistent.

Theorem 3 In the initial conditions of the Theorem 1 above, 〈Λ,T ∪ Z〉 has an
inconsistent extension E iff T ∪ Z is inconsistent.
Sketch of proof:
⇒
Let E1 be inconsistent, then there exists α ∈ FOR, such that {α,¬α} ⊆ E1. Now
assume T ∪ Z is consistent. Given i and ii, Λ is classical logic and its rules are sr.
Then, given our assumption, either α or¬α is derived by rules inΛ. Therefore, there
exists a valid argument that shows T ∪ Z �Σ α ∧ ¬α. But this is a contradiction,
because Λ is classical logic and its rules are sr, and in these conditions T ∪ Z �Σ

α ∧ ¬α is not a valid argument. Therefore, T ∪ Z is inconsistent.
⇐
Since every extension E ∈ CnΣ(Z) is such that T ∪ Z ⊆ E, therefore, if T ∪ Z is
inconsistent then E is inconsistent.

Theorem 4 In the initial conditions of Theorem 1,
Σ = 〈Λ,T ∪ Z〉 has a trivial extension E iff T ∪ Z is inconsistent. (E is the only
extension.)
Sketch of proof:
⇒
If E ∈ CnΣ(Z) is such that E = FOR then, by Theorem 2, E is inconsistent. If E is
inconsistent, by Theorem 3, T ∪ Z is inconsistent.
⇐
If T ∪ Z is inconsistent then, by Theorem 3, every E ∈ CnΣ(Z) is inconsistent. If E
is inconsistent then, by Theorem 2, E = FOR.

With these precedent formal elements, in this sectionwewill characterize inGMD
(1) Reiter’s defaults, (2) Generalized Reiter’s defaults, and (3), Reiter’s systems, by
means of modulations based on the notions of a base of provisos K and a relation
between K and the absence condition B.

A Reiter’s default can be captured in GMD as a non-standard rule 〈A, γ, {β1, . . . ,

βn}〉 in a mds Σ , such that for every extension E of Σ , its base of provisos K is such
that
(1) K = E,
(2) its condition C is: ¬β1, . . . ,¬βn /∈ K .
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Themore familiar presentation of a Reiter’s default can be presented in our frame-
work GMD as 〈{α}, ω, {β1, . . . , βn}〉. Reiter writes a default as:

α : �β1, . . . ,�βn

ω

This structure could be read it as follows:
“If α, infer ω provided that our epistemic state is such that it is consistent to assume
every βi in the sequence β1, . . . , βn”.

Other kinds of default rules can be constructed with different modulations. For
example, we can make a modulation by modifying condition C, as follows:

Differently from Reiter’s default, a default based on non triviality can be captured
in GMD as a non-standard rule 〈A, γ,B〉 in a mds Σ , such that for every extension
E of Σ , its base of provisos K is such that
(1) K = E,
(2) its condition C is: K �= FOR.

In order to combine non-monotonicity and paraconsistency, we will make now
a different modulation in a default rule. This modulation is a combination between
Reiter’s defaults and the precedent non trivial defaults. The new modulation is a
certain kind of combination of both conditions C of the two precedent kinds of
defaults.

We consider that a Standard Non Trivial Default (SNT-Default) as an nsr 〈A, γ,B〉
in a mds Σ = 〈Λ,T 〉, such that for every extension E of Σ , its base of provisos K
is such that
(1) K = E,
(2) its condition C is:

⋃
CnΛS(B ∪ K) �= FOR.

Where ΛS is the set of standard rules [A, γ ] ∈ Λ.

Remark 5 Our above notion of default is called by us “StandardNonTrivial Default”
(or “NTS-Default”) because its modulation by means of 1 and 2, is based upon
triviality and not upon contradiction and its condition C of non triviality is based
upon the set of standard rules of Λ (it is different from Reiter’s original proposal,
here represented by a Reiter’s default).

Even if we use SNT-Defaults, from the extensional point of view, the effect that
is produced taking Λ as da Costa’s classical calculus C∗=

0 , is the same than that
produced in a Reiter’s default theory. What is most important for our goals, is that
the change described in Remark 5 will permit, in a very natural way, the interaction
between paraconsistency and default reasoning which will be developed in the next
section.

To emphasizemore clearly the way in which systems similar to those of Reiter can
be varied in GMD, we will show each component of the systems as an item that can
be modulated, also modifying the interaction of the different components within the
system. For simplicity, in this presentation of GMD we will only introduce a class of
modulations, namely, restrictions, but it is possible to implement modulations such
as amplifications or couplings of various restrictions. We can now represent a default
theory through an mds with certain particular modulations, as following:
A Reiter’s system in GMD is a mds Σ = 〈Λ,T ∪ Z〉 such that:
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(A) C∗=
0 ⊆ Λ (i. e., in the system we encounter this particular logical restriction).

(B) Every [A, γ ] ∈ Λ is such that 〈A, γ 〉 ∈ C∗=
0 (i.e., a particular restriction of the

structure of rule).
(C) Every nsr 〈A, γ,B〉 ∈ Λ is an SNT-Default (i.e., a particular restriction of struc-
ture of rule).
(D) Every extension E ∈ CnΣ(Z) is such that E = ⋃∞

i=0 Ei, where for the family
{Ei}i∈N, the following conditions hold: E0 = T ∪ Z .
For all Ei, where i ≥ 0, Ei+1 = ⋃

CnΛS(Ei) ∪ {γ | γ is the conclusion of a par-
ticular nsr 〈A, γ,B〉 ∈ Λ,A ⊆ ⋃

CnΛS(Ei), and the relation C, between B and the
respective base of provisos K of 〈A, γ,B〉, is fulfilled} (i.e., a particular restriction
of the interaction logic-theory).
ΛS is the set of standard rules [A, γ ] ∈ Λ.

We have proposed a very general structure of a rule, which supports modulations
in two senses: specifying the base of provisos K , and specifying the condition C that
relates BwithK . And we also have proposed three additional kinds of modifications:
on the supposed underlying logic respect to a theory, on the possible change of the
theory T , and on the procedure of interaction between theories and its underlying log-
ics (through construction of extensions of a theory by means ofCnΣ ). Together those
modifications provide us with a formal framework to analyze the interaction between
rules, theories and their underlying logics: we can vary some of the mentioned items
with gradual modifications and, in this way, analyze the variation in relation to their
effects in terms of different mds’s Σ and their different sets of consequences.

Now we will present some results related with Reiter’s systems.

Theorem 5 A Reiter’s system Σ = 〈Λ,T ∪ Z〉 has an inconsistent extension E, iff
T ∪ Z is inconsistent.
Sketch of proof:
⇒
Let E1 be inconsistent, then there exists α ∈ FOR, such that {α,¬α} ⊆ E1. But, by
condition D of a Reiter’s system, every E is that E = ⋃∞

i=0 Ei. Finally, E1 is the
result of the function CnΛS when there is not another SNT-default to apply. Assume
that T ∪ Z is consistent. Then, there exists an E1

j such that E1
j−1 is consistent and

E1
j is inconsistent. Consequently, there exists at least one subset of applied SNT-

defaults 〈A, γ,B〉 ∈ Λ (SAD now on) such that SAD ∪ CnΛS(E1
j−1) is inconsistent

and SAD ∪ CnΛS(E1
j−1) ⊆ E1. But this would imply that E1 is FOR, because, as we

said, E1 is the result of the function CnΛS . But, by construction, every applied SNT-
default must comply with its condition C, namely,

⋃
CnΛS(B ∪ E1) �= FOR. Thus,

our assumption is false. Therefore, T ∪ Z is inconsistent.
⇐

Since every extension E ∈ CnΣ(Z) is such that T ∪ Z ⊆ E, therefore, if T ∪ Z is
inconsistent then E is inconsistent.

Theorem 6 For every pair of extensions of a Reiter’s system Σ = 〈Λ,T ∪ Z〉, E1

and E2, E1 ∪ E2 is inconsistent. In this case we say that E1 and E2 are orthogonal.
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Sketch of proof:
T ∪ Z is or a consistent or an inconsistent set.
In the first case, we know that, E1 and E2, are the result of the application of different
SNT-defaults such that applying some of them imply the impossibility of applying
others. This impossibility consists of non-compliance of the condition C. But this
condition is only that the resulting E must not be the trivial set. In these situation,
for every pair E1 and E2, E1 ∪ E2 is trivial. But the trivial set is an inconsistent set.
Therefore, in these conditions, for every E1 and E2, E1 ∪ E2 = FOR.
Second case, we know that every extension E will be such that CnΛS(T ∪ Z) ⊆ E,
but, in a Reiter system, ΛS is classical logic, then, E = FOR. Therefore, in this
situation, for every E1 and E2, E1 ∪ E2 is inconsistent.

Theorem 7 If a Reiter’s systemΣ = 〈Λ,T ∪ Z〉 has an inconsistent extension then
it is its unique extension.
Sketch of proof:
By Theorem 5, if has some inconsistent extension E1, then T ∪ Z is inconsistent.
And by construction, every extension E is such that CnΛS(T ∪ Z) ⊆ E. Then, in
these conditions, FOR ⊆ E, for every E, i.e., in these conditions, every E = FOR.
Therefore, in these conditions, every E1 of Σ is such that for every other extension
E of Σ , E1 = E = FOR.

Theorem 8 (Minimality of extensions) If E1 and E2 are extensions of a Reiter’s
system, such that E1 ⊆ E2, then E1 = E2.
Sketch of proof:
Suppose that E1 ⊂ E2. By construction, for every extension E, E = ⋃∞

i=0 Ei. Then if
E1 ⊂ E2, there is a semiextension E2

j , such that E
2
j = E1. Thus E1 is not an extension

at all. But this fact contradicts the initial condition that E1 and E2 are extensions.
Therefore, E1 �⊂ E2. Given E1 ⊆ E2, then E1 = E2.

Theorem 9 (Global Non-monotonicity) Not every non trivial Reiter’s System Σ =
〈Λ,T 〉 is such that for any Z ⊆ FOR, CnΣ(∅) ⊆ CnΣ(Z).
Sketch of Proof:
Let Σ = 〈Λ,T 〉, Λ = C∗=

0 ∪ {〈{α}, γ, {β}〉}, T = {α}.
With these conditions, if we consider Z = {¬β}we would have the following results:⋃

CnΣ({α, γ }) ∈ CnΣ(∅) and, nevertheless,
⋃

CnΣ({α, γ }) /∈ CnΣ(Z).

Theorem 10 (Relative Non-monotonicity)Given a non trivial Reiter’s SystemΣ =
〈Λ,T 〉, not every extension EΣ of Σ is such that there exists an extension EΣZ of
Σ = 〈Λ,T ∪ Z〉, such that EΣ ⊆ EΣZ .
Sketch of Proof:
The interesting case:
Let Σ = 〈Λ,T 〉, Λ = C∗=

0 ∪ {〈{α}, γ, {β}〉}, T = {α}. Under these conditions, if
we consider Z = {¬β} we would have the following results: CnΣ(∅) = {⋃CnΣ

({α, γ })} and CnΣ(Z) = {⋃CnΣ({α})}
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Let
⋃

CnΣ({α, γ }) be EΣ and
⋃

CnΣ({α}) be EΣZ . We can observe that in this
case, it does not occur that EΣ ⊆ EΣZ .
The limit case:
LetΣ = 〈Λ,T 〉 ,Λ = C∗=

0 ∪ {〈{α}, γ, {β}〉, 〈{α}, φ, {¬γ }〉}, T = {α}. Under these
conditions, if we consider Z = ∅ we would have the following results:
CnΣ(∅) = {⋃CnΣ({α, γ }),⋃CnΣ({α, φ})} = CnΣ(Z).
Let

⋃
CnΣ({α, γ }) be EΣ and

⋃
CnΣ({α, φ}) be EΣZ . We can observe that in this

case, it does not occur that EΣ ⊆ EΣZ either.

Remark 6 Theorems 5, 6, 8, and Theorem 7, correspond to Corollaries 2.2, 2.3 and
Theorems 2.4 and 3.3 in [17].

5 Building a Paraconsistent Default Theory on GMD

A default derivation is based on an observation of consistency by means of its cor-
respondent base of provisos K and relation C. This makes it difficult to connect
defaults and paraconsistent logics. Due to this, we presented a modified version of a
non-standard rule: a NTS-Default. We need one more modification in order to allow
the interaction between non-monotonicity and paraconsistency. We will use the defi-
nition of a Reiter’s system with a change in its logical modulation. We can do that by
means of a paraconsistent logic. Thus, we will assume, as an example of constituent
of Λ, the axioms of C1 of the paraconsistent calculi from da Costa’s hierarchy C∗=

n ,
1 ≤ n ≤ ω. As before, we will understand C1 as a set of rules of the form 〈A, γ 〉 (not
to be confused with [A, γ ], which, as we said above, abreviates an ordered triple).

By modifying the base of provisos K and its corresponding relation between B
and K , we have characterized a Reiter’s system. We must do a little modulation in
order to fulfill our aim. If we replace calculus C0 with C1 in da Costa’s hierarchy,
we will obtain a mds that can support the interaction between non-monotonicity and
paraconsistency. Similarly to our presentation of Reiter’s Systems, we will present
the different components that have been modulated in the Reiter-da Costa systems.

Definition 6 (Definition 6) We define a Reiter-da Costa System (or an RC-system)
as a mds Σ = 〈Λ,T ∪ Z〉, where:
(A) C1 ⊆ Λ (i.e., a particular logical modification).
(B) Every [A, γ ] ∈ Λ is such that 〈A, γ 〉 ∈ C1 (i.e., a particular restriction of struc-
ture of rule).
(C) Every nsr 〈A, γ,B〉 ∈ Λ is an SNT-Default (i.e., a particular restriction of struc-
ture of rule).
(D) Every extension E ∈ CnΣ(Z) is such that E = ⋃∞

i=0 Ei, where for the family
{Ei}i∈N, the following conditions hold: E0 = T ∪ Z .
For all Ei, where i ≥ 0, Ei+1 = ⋃

CnΛS(Ei) ∪ {γ | γ is the conclusion of a par-
ticular nsr 〈A, γ,B〉 ∈ Λ,A ⊆ ⋃

CnΛS(Ei), and the relation C, between B and the
respective base of provisos K of 〈A, γ,B〉, is fulfilled}
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Let’s show some interesting results using Reiter-da Costa systems, instead of
Reiter’s systems.

Theorem 11 Not necessarily, if E is an inconsistent extension of an RC-system Σ ,
E = FOR. Due to this, Σ is a paraconsistent mds.
Sketch of Proof:
Let α be a badly-behaved member of FOR (α and ¬α can be both true). And let α,
¬α, be the unique inconsistency in E. In these conditions we cannot obtain, by C1,
the result E = FOR.

Theorem 12 If Σ = 〈Λ,T ∪ Z〉 is an RC-system and T ∪ Z is inconsistent, then
every extension E of Σ is inconsistent.
Sketch of Proof:
By construction, every extension E ∈ CnΣ(Z) is such that T ∪ Z ⊆ E. Then, if T ∪ Z
is an inconsistent set, so will be E.

Theorem 13 For every pair of different extensions of an RC-system, E1 and E2,
E1 ∪ E2 is inconsistent. (Orthogonality)
Sketch of Proof:
By construction, each extension is constructed by rules whose absence condition is
based on non-triviality. Then, if E1 and E2 are different extensions, both belonging
to CnΣ(Z), then E1 ∪ E2 generates the trivial set. This fact is possible only if they
are mutually inconsistent extensions.

Theorem 14 An RC-system Σ = 〈Λ,T ∪ Z〉 has FOR as an extension iff
CnC1(T ∪ Z) = {FOR}.
Sketch of Proof:
⇒
Byconstruction, every extensionE is constructedby the applicationof rules ofC1, and
by the application of rules whose absence condition is based on non-triviality. Then,
in these systems, the application of rules that are not in C1 does not produce triviality.
It follows that, if E ∈ CnΣ(Z) and E = FOR then the triviality was already in the
consequences of the basic assumptions of the theory, i.e., CnC1(T ∪ Z) = {FOR}.
⇐
If CnC1(T ∪ Z) = {FOR} then, by construction, E1 = FOR ∪ {γ | γ is the conclu-
sion of a particular nsr 〈A, γ,B〉 ∈ Λ, . . .}, then FOR ⊆ E1; therefore, FOR ⊆ E. It
follows than E = FOR.

Theorem 15 For every pair of different extensions E1 and E2 of an RC-system
〈Λ,T ∪ Z〉, CnC1(E1 ∪ E2) = {FOR}, (i.e.,

⋃
CnC1(E1 ∪ E2) is trivial).

(Paraorthogonality)
Sketch of Proof:
Similarly to Theorem 13, by construction every different extensions E1 and E2 are
constructed by rules whose absence condition is based on non-triviality. Then, if
E1 and E2 are different extensions, both belonging to CnΣ(Z), then it follows that
CnC1(E1 ∪ E2) = {FOR}.
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Theorem 16 (Global Non-monotonicity)
(A) For some non trivial RC-System Σ = 〈Λ,T 〉, there exists a Z ⊂ FOR such

that CnΣ(∅) �⊂ CnΣ(Z).
Sketch of Proof:
Let Σ = 〈Λ,T 〉, Λ = C1 ∪ {〈{α}, γ, {β}〉}, T = {α}, and let β be a well-behaved
formula (not badly behaved). Under these conditions, if we consider Z = {¬β} we
would have the following results:⋃

CnΣ({α, γ }) ∈ CnΣ(∅) and, nevertheless,
⋃

CnΣ({α, γ }) /∈ CnΣ(Z).
(B) For some non trivial RC-System Σ = 〈Λ,T 〉, there exists a Z ⊂ FOR such

that
⋃

CnΣ(∅) �⊂ ⋃
CnΣ(Z). The intuitive idea is that

⋃
CnΣ(Z) represents the

total set of available consequences (perhaps not simultaneously) from Z in Σ .
Sketch of Proof:
Let Σ = 〈Λ,T 〉, Λ = C1 ∪ {〈{α}, γ, {β}〉}, T = {α}, and let β a well-behaved for-
mula. Under these conditions, if we consider Z = {¬β}we would have the following
results:
γ ∈ ⋃

CnΣ(∅) and, nevertheless, γ /∈ ⋃
CnΣ(Z).

Theorem 17 (Relative Non-monotonicity) Given a non trivial RC-System Σ =
〈Λ,T 〉, not every extension EΣ of Σ is such that exists an extension EΣZ of
Σ = 〈Λ,T ∪ Z〉, such that EΣ ⊆ EΣZ .
Sketch of Proof:

The interesting case:
Let Σ = 〈Λ,T 〉, Λ = C1 ∪ {〈{α}, γ, {β}〉}, T = {α}, and let β a well-behaved for-
mula. Under these conditions, if we consider Z = {¬β}we would have the following
results: CnΣ(∅) = {⋃CnΣ({α, γ })} and CnΣ(Z) = {⋃CnΣ({α})}
Let

⋃
CnΣ({α, γ }) be EΣ and

⋃
CnΣ({α}) be EΣZ . We can observe that in this case

it does not occur that EΣ ⊆ EΣZ .
The limit case:

LetΣ = 〈Λ,T 〉 ,Λ = C∗=
0 ∪ {〈{α}, γ, {β}〉, 〈{α}, φ, {¬γ }〉}, T = {α}. Under these

conditions, if we consider Z = ∅ we would have the following results:
CnΣ(∅) = {⋃CnΣ({α, γ }),⋃CnΣ({α, φ})} = CnΣ(Z).
Let

⋃
CnΣ({α, γ }) be EΣ and

⋃
CnΣ({α, φ}) be EΣZ . We can observe that in this

case it does not occur that EΣ ⊆ EΣZ either.

Remark 7 Theorems 11, 14, 15 and 16 are different results from that of [17]. The-
orem 14 is analogous to Reiter’s theorem about an inconsistent initialW . Mainly, in
this new kind of doxastic system (RC-System), the differences in results are because
of the fact that inconsistency does not imply triviality.

6 Explanations in the GMD Formal Framework

In the present section, we will use our abstract notion of rule and the constructed
environment GMD that deals with theories and its underlying logics, to capture
a minimal concept of explanation. This concept of explanation, we think, will deal
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with some of the main objections discussed in the main related debates in Philosophy
of Science. In order to do that, we will use the Reiter-da Costa systems and begin
constructing some new functions. We will begin with the analysis of three conditions
in explanations in order to motivate our use of new modulations.

The notion of SNT-Defaults reflects the idea of explanation as an argumentative
structure. Two difficulties remark in the debate on explanation in Philosophy of Sci-
ence, which we can model with this structure, are the possibility of low probability
arguments as explanations and the possibility of arguments with unspecified excep-
tions as arguments. Both difficulties have been seen in the philosophical literature
of explanation as definitive obstacles to the construction of an argumentative formal
model of explanation. If default structures capture a minimal idea of argument, and
this in turn could capture a minimal idea of explanation then we may be able to
represent minimal explanations based on default structures. Besides, not only there
are counterexamples to the demand of a deductive relation in argument-base expla-
nations (as we so in our discussion of AC4), there are also similar counterexamples
against the need for a probabilistic relation in them. There is a great diversity of
inferential relations that are non deductive and not even probable. For instance, we
may mention plausibility and tipicity relations.13 Due to this it would be interesting
if the inferential relation assumed in an explanation remains open to variation that
allowed to represent such different inferential relations.

On the other hand, the demand for truth in the premises of an explanation is
also very restricted (as we have seen in the discussion about condition AC1 at the
beginning of this paper). This demand would exclude historically important cases in
Science, for instance, that of Phlogiston in the explanation of combustion. We can
trust scientific theories to be generally in state of flux. This suggest a representation
of scientific explanation that skirts the truth restriction on the premisses. Even more,
we should avoid expecting all explanations to start from a consistent premise set.
And this is so because explanations can not be evaluated in isolation with respect to
the doxastic systems with which they interact and, oftentimes, it is difficult to asses
whether those doxastic systems yield no contradictions. One way to represent this
later possibility is to held doxastic systems as Reiter-da Costa systems. One may
represent the possibility of falsehood in the explanans addressing the connection
between explanans and explanandum, so to say, indirectly, and this maybe achieve
maintaining this connection as a derivation relation that does not assumes a true
left side. Thus, the pluses of the explanans depend only under general inferential or
justificatory capabilities, not including the demand for truth. We shall explore this
possibility of representation in this section.

In ourmodel AC1–AC4 are desirable but non-essential characteristics of an expla-
nation. We want to allow something to be called an explanation even if it violates
one or more of this conditions. In the way of an elucidation of the concept of expla-
nation, according to the reflections suggested by PS1–PS4 and in this section, our
basic idea in this work is that an argument is an explanation if the facts supposed
in its explanans allow to establish an explicative relevance relation between some

13See [13].
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of these supposed facts and the fact supposed in the explanandum. We consider
both explanans and explanandum as propositions. These propositions are assuming
facts. An explanation is a relationship between a set of propositions (explanans) and
another proposition (the explanandum). Differently, we call “explanatory relevance
relation” to a relationship that happens between facts: between the facts supposed in
the explanans and the fact supposed in the explanandum. The precise nature of the
explanatory relevance relation is an unsolved problem in Philosophy of Science, but
we will assume for the time being a minimal notion of explanation (which includes
a distinction between explanation and explanatory relevance relation) that we think
contributes to solve this kind of problems in the modeling of scientific explanations.

Of course, to say that an explanatory relation is a relation between facts is not very
precise. Our proposal in this paper does not commit us to one of these explanatory
relationships in particular. We just try to clarify how the distinction between an
explanation and the explanatory relevance relation it supposes helps to understand
the interaction between explanations and their theoretical contexts, using a non-
monotonic and paraconsistent formal environment.

We do not need to reject (as non necessary) every feature of explanation.
Argument-base explanations tend to demand stronger than normal justifications con-
ditions. For instance, a coherence is demanded in the inferential mechanism itself
specially in the interaction of the rules used to build a belief set. We will analyze this
in more detail in the case of justifications involving non standard rules. For instance,
the activation of defaults require only the consistency of certain truths with respect
to the final extension. But, in some cases, we might be interested, for a variety of rea-
sons, in the consistency between the propositions themselves deemed comparable in
the activated rules. We might want all justifications comparable with the final exten-
sions to be comparable among themselves. We shall explore this special requirement
below.

Our abstract notion or rule allows for particular instances of modulation of the
mechanism of inference inside specific doxastic systems.

Let us suppose the next three situations under involving absence conditions.
(AbCondS0) Suppose Example EX, and suppose that Joseph is reflecting about the
situation. He considers completely true four things besides P1 and P2:

(P3) John used to put the arsenic in a jar similar to the jar of sugar,
(P4) John used to have dangerous enemies,
(P5) If P3 then, (C1) John was a very irresponsible person,
(P6) If P4 then, (C2) John had a complicated life.

With this set of beliefs at his disposal, Joseph infers with a lot of certainty: (C1)
and (C2).

(AbCondS1) Suppose Example EX, and suppose that Joseph is reflecting about
the situation. He considers completely two things besides P1 and P2: P3 and P4 (but
not necessarily P5 and P6). Furthermore Joseph engages in two following inferential
processes:

(I1) Based on P3, and assuming that:
(As1) John made peace with his dangerous enemies
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Joseph infers by some non-standard rule that:
(C3) John died accidentally.
(I2) Based on P4, and assuming ¬(As1), Joseph infers by some non-standard
rule ¬(C3).

(AbCondS2) Suppose Example EX, and suppose that Joseph is reflecting about
the situation. He considers completely true two things besides P1 and P2: P3 and
P4 (but not necessarily P5 and P6). Furthermore Joseph engages in two following
inferential processes:
(I3) Based on P3, and assuming (As1), Joseph infers by some non-standard rule
(C3).14

(I4) Based on P4, and assuming ¬(As1), Joseph infers by some non-standard rule
(C2) John had a complicated life.

AbCondS0 describes a classical situation. Joseph infers from true premises by
simple Modus Ponens independently of any assumption. He is using standard rules
(with B = ∅). He does not need to check absence conditions.

The situation AbCondS1 is very different. In this situation Joseph is inferring by
non-standard rules (with B �= ∅), so he needs to check absence conditions. Note also
that Joseph has alternative inferential processes in this situation. He rationally cannot
maintain the inference I1 jointly with I2. We have, then, two different extensions of
his base belief set. If Joseph has a preference for one of these extensions, he needs
rationally to cancel the other one because of the contradictory conclusions (C3 and
¬C3) of I1 and I2. In certain cases, when we apply a non-standard rule (nsr), we
want to check the consistency between the set B of nsr and the set of consequences.15

In the situation AbCondS2 we also have non-standard rules. And we have another
interesting situation. Let us observe that (C3) and (C2) are not contradictory conclu-
sions. We could rationally maintain both sentences at the same time. Nevertheless,
the provisos that lead us to infer (C3) and (C2) contain contradictory sentences. In
order to infer (C3) Joseph assumes (As1), but to infer (C2), he assumes ¬(As2).
Technically, he can accept (C2) and (C3) without contradiction. Nevertheless, Is it
advisable to assume that both provisos hold? This is an interesting question whose
answermight depend on our specific theoretical interest for usingmodels that include
provisos. In what follows we will explore the approach that would rather dispense
with a incoherence sets of activated provisos.

An answer to this question depends upon our conception of assumption in the
context of a proviso. The proviso used to infer (C2) is not compatible with that used
to infer (C3). If there were no other justifications and we want to have a consistently
justified set of beliefs, we should not maintain (C2) and (C3).

Departing from [17], the set of sentences that a doxastic system uses to check
the provisos in B can be different depending on the kind of rationality in question.
It is convenient to maintain a general formulation of the absence conditions (B) in
a non-standard rule (a rule with B �= ∅), such that it allows for different ways of

14As the reader might notes, I1 and I3 are the same. The difference between the situation AbCondS1
and AbCondS2 is with respect to I2 and I4.
15We leave for another paper the exploration of the epistemic significance of such cases.
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interaction between the beliefs that we consider with a high level of certainty and
the beliefs we consider with a low level of certainty.

In AbCondS1 it is sufficient to check the absence condition (the provisos) of
each inference I1 and I2 in the set of final consequences, the final extension. In
this way, if we find a contradiction, we cancel the inference of one of I1 or I2. In
AbCondS2, this strategy will not be sufficient. We will need to check the absence
condition of its inference I3 and I4 in the set of final consequences but also to check
that those absences conditions do not conflict with any prerequisite or provisos in
any of the rules used to generate the set of final consequences. Even more we may
need to check each proviso used against the set of prerequisites and provisos used
as a whole. Basically, in this situation, when we apply a non-standard rule, as we
are supposing here, we need to check consistency inside the set of consequences Γ

in union with the absence conditions of that non-standard rule, in union with the
absence conditions of any other rule used in order to construct Γ .

Our analysis of AbCondS0, AbCondS1, and AbCondS2 in relation with the
absence condition of a rule, sheds light on an important modularity of mds. We
may vary the absence condition of a rule and, by this change, allow for variation in
the way of constructing the set of consequences. By means of these possible vari-
ations, we can model different kinds of consequences. Another interesting case of
this modulation is when the same set of consequences results from the variations but
each time justified differently.

If wewant to capture certain kinds of reasoning coherence, wewill need to capture
the interaction between provisos of different rules used in a doxastic system. This can
lead us to consider, as a reference in the application of a particular rule, not only the
extension that is being constructed, but also the way in which that extension is being
put together. Before we analyze other important conditions to incorporate in a model
of explanation, let’s offer an adequate representation of these cases of coherence of
provisos by means of a certain new modulation.

Given an RC-System Σ = 〈Λ,T ∪ Z〉, we have our previous function CnΣ that
returns the set of all extensionsE ofΣ . Now, wewill assumeD⊆Λ = {d1, d2, . . . , dn}
as the set of SNT-Defaults in Σ . We then use a function BP that takes an extension
E ∈ CnΣ , and returns the set of sequences {s1, s2, . . . , sm} such that, for all si:

(a) si = 〈di1 , di2 , . . . , dik 〉 is a sequence in which some elements (not necessarily all
the elements) of D⊆Λ can be applied to produce E.
(b)
E0 = T ∪ Z ,
E1 = ⋃

CnΛ(E0) ∪ {ω1 | ω1 is the conclusion of di1 in si},
E2 = ⋃

CnΛ(E1) ∪ {ω2 | ω2 is the conclusion of di2 in si},
...

Ek = ⋃
CnΛ(Ek−1) ∪ {ωk | ωk is the conclusion of dik in si},⋃

CnΛ(Ek) = E.

Remark 8 Wecould construct one and the same extensionE with different sequences
of defaults. The number of defaults in D⊆Λ is not necessarily the same number of
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sequences to construct E. Thus, not necessarily n = m. It is also important to note
that these different sequences can be composed of elements of different subsets of
D⊆Λ. Therefore, it is not necessary that n = k. A limit case to construct an extension
could be the case in which k = 0.

We can think of BP(E) on Σ as the set of building paths using Σ towards E.
If we consider Bn the absence condition of dn, and in general, Bi the absence

condition of di in a building path sk , we can use now a function J such that applied
to a building path sk of Σ for the construction of an extension E, i.e., J (sk), gives us
the set of every β ∈ Bi of every di in sk .16 Basically, the function J (sk), where sk is a
building path to construct E, produces the set of all provisos used to construct E by
means of sk .

With these concepts at hand we are able, in certain particular cases, to distinguish
two extensions such that Ep = Eq, because of two different building paths sp �= sq.
Then, given a particular doxastic system Σ , for all E ∈ CnΣ and each sk ∈ BP(E),
we may define a tuple 〈E, sk〉.

Including these new notions in GMD, we can construct a new modulation that
produces a new default structure. We define a Standard Non Triviality Default with
Proviso coherence (SNTP-Default) as an nsr 〈A, γ,B〉 in a mds Σ = 〈Λ,T ∪ Z〉,
such that
(1) The base of provisos K of 〈E, sE〉 is K = E ∪ J (sE),
(2) The condition C is: CnΛS(B ∪ K) �= {FOR}.
Where ΛS is the set of all standard rules [A, γ ] ∈ Λ.
We can now define another kind of doxastic system in GMD. In order to do that, we
take the definition of an RC-System, and we will only modulate the non-standard
rules contained in its corresponding Λ.

Definition 7 (Definition 7)We define a Reiter-da Costa Systemwith provisos coher-
ence (or an RCP-system) as a mds 〈Λ,T ∪ Z〉, where:
(A) C1 ⊆ Λ.
(B) Every [A, γ ] ∈ Λ is such that 〈A, γ 〉 ∈ C1.
(C) Every nsr 〈A, γ,B〉 ∈ Λ is an SNTP-Default (i.e., a particular restriction of struc-
ture of rule).
(D) Every extension E ∈ CnΣ(Z) is such that E = ⋃∞

i=0 Ei, where for the family
{Ei}i∈N, the following conditions hold: E0 = T ∪ Z .
For all Ei, where i ≥ 0, Ei+1 = ⋃

CnΛS(Ei) ∪ {γ | γ is the conclusion of a par-
ticular nsr 〈A, γ,B〉 ∈ Λ,A ⊆ ⋃

CnΛS(Ei), and the relation C, between B and the
respective base of provisos K of 〈A, γ,B〉, is fulfilled}.

With these changes in a doxastic system,we can then observe that different deriva-
tions of the same φ ∈ FORmay exist in the same extension Eq, depending upon dif-
ferent pairs 〈Eq, sq1〉, 〈Eq, sq2〉, in a same RCP-system Σ . We will write in symbols
that a derivation of φ from Z in an RCP-system Σ exists by means of 〈E, s〉 as:

16Although ours is different, the J function is inspired on a similar function J (applied on one
particular default) that appears in Sect. 3.3 of [12].
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Z �ΣEs φ.
We can consider φ as a disjunctive syntactic consequence from Z in an RCP-system
Σ = 〈Λ,T 〉 iff φ ∈ ⋃

CnΣ(Z).
And we can consider φ as a conjunctive syntactic consequence from Z in an RCP-
system Σ = 〈Λ,T 〉 iff φ ∈ ⋂

CnΣ(Z).
These modifications, SNTP-Defaults and RCP-Systems, are sufficient to capture

the interaction between paraconsistency and non-monotonicity in an argumentative
schema relative to a particular doxastic system. With these kinds of rules, we can
capture in GMD a basic notion of explanation, a minimal notion of argumentative
explanation that is able to include derivability with low probability as explanation.
In addition, this notion checks for coherence between the assumptions we usually
make in the construction of an explanation. This last characteristic entails a distinc-
tion between extensions and non deductive inferences involved in their construction.
We understand extensions of a doxastic system set theoretically. And we are under-
standing building paths used to construct extensions (the non-deductive inferences
used to make extensions), as sequences of applied rules to construct an extension
from a particular doxastic system.

Since the aim of GMD is to analyze the interaction between explanations and, as
we said before, a minimal version of different contexts, we need to link the minimal
conditions of explanations with variations in the components of different possible
doxastic systems. We will do this through an meta-schema that does not assume any
particular doxastic system. We will use the general structure of a rule also in the
construction of this meta-schema. In addition, we ought to note, that formal tools in
GMD allow us only to deal with situations related to problems about inference and
problems about context (problems of kind I and III). Problems of kind II, related to
the notion of explicative relevance, are not yet included in our representation. Taking
all this into consideration, the meta-schema we will construct in GMD will need to
have components to capture:
(MS1) Different derivability relations,
(MS2) Different doxastic systems,
(MS3) A particular notion of possibility that allows us to represent the paraconsistent
environment not inside of a doxastic system, but in the interaction between explana-
tions and doxastic systems,
(MS4) Different explicative relevance relations.

Our unit of analysis is not the explanation in an absolute sense, but a candidate
for explanation in relation to a particular doxastic system. This allows us to analyze
the interaction between explanations and doxastic systems. An important feature of
our proposal is that it allows to analyze if a set of statements can be considered an
explanans for a phenomenon with respect to a doxastic system even though that set
of statements does not belong to the doxastic system in question. This implies being
able to implement an analysis on the possibility that a set of statements is integrated
into a particular doxastic system producing an explanation, but at the same time
maintaining this integration as a mere possibility. Given that the kind of systems that
we use for the notion of explanation is Reiter-da Costa system, this possibility of
integration must also be treated in a paraconsistent way.



132 D. Gaytán et al.

In this line of thought, we will exemplify MS1 and MS2 with the help of NTP-
Systems. In order to capture MS3, we define now a notion of paraconsistent possi-
bility for GMD.

Definition 8 (Definition 8) We will consider that a formula φ ∈ FOR is paracon-
sistenly possible in a doxastic system Σ = 〈Λ,T 〉, in symbols, ♦Σφ, iff exists an
extension E of Σ with a building path sk , such that:
CnC1(E ∪ {φ} ∪ (sk)) �= {FOR}.

Another and more illustrative way to see this last definition of paraconsistent
possibility is the following. Respect to some doxastic system Σ = 〈Λ,T 〉, we have
that ♦Σα iff exists an extension E with an sk of Σ , such that:

α ∈ ⋃
CnC1(E ∪ J (sk)) OR ¬α /∈ ⋃

CnC1(E ∪ J (sk))
If we do not suppose the truth of the last disjunction, we will have four cases:
(i) Redundant Case. When α is in

⋃
CnC1(E ∪ J (sk)) and is a well-behaved

formula: α ∈ ⋃
CnC1(E ∪ J (sk)) AND ¬α /∈ ⋃

CnC1(E ∪ J (sk)).
(ii) Trivial Case. When α is not in

⋃
CnC1(E ∪ J (sk)) and is well-behaved for-

mula: α /∈ ⋃
CnC1(E ∪ J (sk)) AND ¬α ∈ ⋃

CnC1(E ∪ J (sk))
(iii) Paraconsistent Case.When¬α is in

⋃
CnC1(E ∪ J (sk)) and is a bad-behaved

formula: α ∈ ⋃
CnC1(E ∪ J (sk)) AND ¬α ∈ ⋃

CnC1(E ∪ J (sk))
(iv) Ignorant Case. When neither α nor ¬α are in

⋃
CnC1(E ∪ J (sk)): α /∈⋃

CnC1(E ∪ J (sk)) AND ¬α /∈ ⋃
CnC1(E ∪ J (sk)).

α is paraconsistently possible in the cases i, iii and iv. The trivial case makes the
disjunction false. We will write♦Σ(A) to denote that every φ ∈ A is paraconsistently
possible in Σ .

At the beginning of our paper we presented a couple of demands that are usu-
ally made in the discussion about what should be included in a model of scientific
explanation: AC2, that there must be a causal relation, AC3, that the explanansmust
describe the causal relation that actually produced the explanandum. On that occa-
sion wementioned that both conditions should be analyzed in contrast to the fact that
many senses of causal relation could be found that could satisfy some intuitions of
what should be required as explanatory relevance relation. It would be convenient if
a minimal model of explanation had the possibility of modulations of the relevance
relation required according to different ways of understanding what would be a good
explanation. However, the required explanatory relevance relation should not be con-
fused with the relation of derivation present in an explanation. The first is a relation
between phenomena, the second, between statements. We will try a characterization
of the explanatory relevance relation that includes these considerations.

Now, with the aim of capturing MS4, we will introduce a notation to represent a
explanatory relevance relation between phenomena. The intuitive idea of a relevant
explanatory relation from the explaining phenomenon d to the phenomenon to be
explained e is a relation in which d gives account of the existence of e. d may have
this kind of relation with e through a chain in which every link is a phenomenon with
a relevant explanatory relation to other links.
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We say that:
(a) [chainn] is a chain of n linked phenomena, chainn is the set of elements of [chainn],
and D(chainn) is the propositional description of the elements of chainn.
(b) If {e1, e2, e3, . . . , en−1, en} are the set of linked phenomena that make up [chainn],
then the set of edges of [chainn] is {(e1, e2, ), (e2, e3, ), . . . , (en−1, en)}.
(c) If [chainn] is an initial subchain of [chainn+1], then ew �� [chainn] means that ew

is the last linked phenomenon in [chainn+1].
(d)D(e),D(chainn),D([chainn]),D(ew �� [chainn]) stand respectively for a descrip-
tion of some phenomenon e, a description of the elements of [chainn], a description
of [chainn] itself, and a description of ew being the last element in [chainn+1].

We are ready now to model in GMD how a minimal notion of explanation works
as an argument, taking into consideration the problems mentioned in I, II, III.

Definition 9 (Definition 9). We say that there is a relation of explanation between a
set of propositions A and the phenomena e relative to an RCP-System Σ = 〈Λ,T 〉
iff there is an ordered pair 〈EΣ, sk〉 in Σ and a pair 〈E〈Λ,T∪A〉, sj〉 in 〈Λ,T ∪ A〉 such
that:

(Ex1) A �EΣ
sk
D(chainn).

(A description of the elements of the set of phenomena chainn,D(chainn), is derivable
from A, in Σ through sk ).

(Ex2) ♦E〈Λ,T∪A〉
sj

D(e �� [chainn]).
(It is paraconsistently possible with respect to 〈E, sk〉 of 〈Λ,T ∪ A〉 that e be the next
member of the chain [chainn]).

(Ex3) ♦EΣ
sk
A.

(Every element of A is paraconsistently possible respect to 〈E, sk〉 of Σ).
(Ex4) ♦E〈Λ,T∪A〉

sj
D(e).

(The description of e is paraconsistently possible in Esk of 〈Λ,T ∪ A〉.
Note that in this approach the explanation relation holds between a set of proposi-

tions A and a phenomenon e through an explanatory relevance relation between the
phenomenon described by the explanans A (in the description of the chain) in the
theoretical context of the RCP-System Σ . A pair 〈A, e〉 can be evaluated in GMD in
order to determine if there is a relation of explanation between its elements, under
some RCP-System. Let us note too that the connection between the explanans A
and the explanandum e is given by way of a description of the elements of some
phenomena chain. Finally, the notion of possibility is introduced in order to keep
some coherence with the postulates governing the RCP-Systems, and the evaluation
outside these systems.

This way, in GMD we can distinguish three important elements in the model:
the explanatory relevance relation, the relation of explanation and the explanation.
Explanatory relevance relations are particular relations supposed to hold between
phenomena. Some doxastic systems suppose them as a condition for something to
be an explanation. A relation of explanation is a relation supposed to be satisfied
between a set of propositions and a particular phenomenon. Relations of explanation
are understood as constituted by inferential relations involving doxastic systems, but
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also are constituted by the fulfillment of the relevance relation. Finally, explanations
are argument schemas that satisfy the extra-epistemic conditions that depend upon the
fulfillment of a relation of explanation in the context of a particular doxastic system.
Fulfillment of the relation of explanation depends, itself, among other things, upon
the fulfillment of an explanatory relevance relation, in the context of a particular dox-
astic system too. This way, we can identify, from GMD, pairs of sets of propositions,
descriptions of a phenomenon, 〈A,D(e)〉, as candidates to be explanations. These
candidates can be expressed in GMD independently from doxastic systems. Inter-
actions between these pairs of candidates can be compared with different doxastic
systems, in order to determinewhether the candidates can be considered explanations
with respect to a particular doxastic system. This will depend onwhether a relation of
explanation between a different pair (the pair constituted by the set of propositions A
and the phenomenon referred to by the description above, i.e. 〈A, e〉) is satisfied. The
satisfaction relation between the members of the pair described involves an inferen-
tial relation and an explanatory relevance relation, connected one with the other in
the same doxastic system.

An explanation can be represented too by a meta-argument (or a meta-schema),
external to the epistemic systems, constituted by the elements Ex1–Ex4 just men-
tioned in the precedent lines.

A pair 〈A,D(e)〉 is an explanation with respect to Σ = 〈Λ,T 〉 in GMD, iff there
is a pair 〈E, sk〉 inΣ such that betweenA and e the relation described by the following
schema holds:

(EX) For everyΣ = 〈Λ,T 〉, phenomena e, set of formulaeA, and chains n, n + 1:
A �EΣ

sk
D(chainn) : ♦EΣ

sk
A♦E〈Λ,T∪A〉

sj
D(e)♦E〈Λ,T∪A〉

sj
D(e �� [chainn])

D(e)
which can be read as follows:
“If a description of the chain n can be derived from the set A in some context Esk of
Σ = 〈Λ,T 〉, A is paraconsistently possible in the context Esk of Σ , and the next two
items are paraconsistently possible, in some context Esj of 〈Λ,T ∪ A〉,
(i) the description of e, (i. e., D(e)),
(ii) the description of a chain n + 1, in which e is the last edge (assuming the chain
n as the initial subchain of chain n + 1),
then, you may infer the description of e (i. e.,D(e)) in the context Esj of 〈Λ,T ∪ A〉.”

If, under these conditions, D(e) may be inferred, we can say that A explains e in
the context of Σ .

This way, we could suppose that a criteria in GMD to identify pairs 〈A,D(e)〉 as
explanations respect to a given doxastic system is that these pairs satisfy the schema
EX.GMD can checkwhether a given pair 〈A,D(e)〉would function as an explanation
with respect to a particular doxastic system Σ , even if there is no extension E in Σ

such that A ∪ {D(e)} ⊆ E.
We can observe some interesting properties relative to this formal framework

GMD to represent interactions between explanations and doxastic systems. Let A,
A′ be different sets of propositions; e a phenomenon; [chainm], [chainn] different
chains of phenomena; and Σ , Σ ′ different RCP-Systems.
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(e1) If there is a relation of explanation between A and e relative to Σ , and A is true
(that is, every element in A is true), then this supports the truth ofD(e) in the context
of Σ .
(e2) It is possible for A and D(e) to be true in Σ , without a relation of explanation
holding between A and e.
(e3) The fact that A keeps a relation of explanation with e in the context of Σ does
not depend upon the fact whether A is true or not.
(e4) The fact that A has a relation of explanation with e in the context of Σ by means
of [chainm] does not imply that extra-systematically (that is to say, outside Σ and
A) the explanatory relevance relation between e and the phenomena that make true
the elements in A, actually holds, that is, it does not imply the actual existence of a
relation between e and [chainm].
(e5) Sometimes 〈A,D(e)〉 could be a explanans-explanandum pair (that is, it could
be a relation of explanation) in the context of Σ , while it might not have this relation
in the context of Σ ′.
(e6) Sometimes D(e) could be explained by A, and by A′ too, in the context of the
same Σ .
(e7) Sometimes D(e) could be explained by [chainm] and by [chainn], in the context
of the same Σ .
(e8) Sometimes, if 〈A,D(e)〉 is a explanans-explanandum pair, it could use [chainm]
as a part of the explanation but it could also use [chainn], in the context of the sameΣ .
(e9) Sometimes if 〈A,D(e)〉 is a explanans-explanandum pair in the context of Σ ,
and the information of Σ grows, then, even when the prerequisite of EX might be
satisfied for Σ , it could happen anyway that, for this pair, the provisos no longer
hold.
(e10) Sometimes, if 〈A,D(e)〉 is a explanans-explanandum pair in a given contextΣ ,
when information grows the prerequisite does not keep its nexus with the explanatory
relevance relation anymore (we cannot concludeD(chainn) from A). Then, 〈A,D(e)〉
no longer is a explanans-explanandum pair.
(e11) Sometimes, if 〈A,D(e)〉 is a explanans-explanandum pair in a given contextΣ ,
when information grows, even if the prerequisite keeps its nexus with the explanatory
relevance relation, the chain turns out not to be paraconsistently possible after the
information growth and then, 〈A,D(e)〉 cannot be a explanans-explanandum pair
either.
(e12) Sometimes, in a given context Σ , if 〈A,D(e)〉 is a explanans-explanandum
pair, when information grows we cannot infer the description D(e) from A anymore.

This formal frame GMD to model explanation puts together formal tools from
paraconsistent and non-monotonic logic. Also, e1–e12 suggest that GMD may help
to solve some important objections in Philosophy of Science and to build an argu-
mentative model of scientific explanation. The model presents a version of the inter-
actions between explanations and their theoretical contexts by means of representing
minimal relations between components of the explanations.
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7 Concluding Remarks

GMD is a formal framework to analyze the interaction between rules and a minimal
conception of context (doxastic systems). The context is composed by a set of beliefs
(a minimal idea of a theory) in interaction with an inferential engine (a logic). Our
abstract characterization of rules allows us to have a wide variety of rules and kinds
of interaction with several parts of a context, by means of our concept of modulation.
We think that the formal environment inside GMD could contribute to clarify the
combination and interaction between various logics and between their particular
components.

Identifying explanations with argumentative schemas, GMD is able to repre-
sent in an abstract way explanations that take into account both paraconsistent and
default forms of argumentation. The distinction between explanations, relations of
explanation and explanatory relevance relations, allows an open doxastic view of
the notion of explanation, such that we can understand explanations as theoretical
proposals that not necessarily correspond to reality, but have specific properties that
clearly establish connections with arguments and with belief systems. With this dis-
tinction at hand, we are also able to represent the interaction of particular cases of
explanations with a context (which we represent, in a minimalistic way, as a simple
doxastic system). This interaction has paraconsistent and non monotonic proper-
ties. The resulting model constitutes a theoretical proposal about a minimal notion
of explanation, emphasizing the elucidation of the interaction between its internal
components and of the interaction between the explanation and its context (what
we could call its “contextual explanans”). We think that this proposal helps to solve
some important representation problems in the theory of explanation from the point
of view of Philosophy of Science. It will be interesting to explore the possibility of
modeling with GMD different types of explanations in the literature, and to make
some comparisons of their advantages or disadvantages. In particular, with respect
to types of explanation of events.17

GMD provides the possibility to modify both internal items inside a doxastic
system and also internal conditions of rules (modulation). A possibly fruitful future
research would be to develop a broad concept of modulation and of its relation to the
notions of translation18 and combination of logics. In addition, modulation seems to
be a promising tool for a unified study of many aspects of scientific explanation, and
it seems applicable to other areas as well, such as Argumentation Theory, Discourse
Analysis, etc.

The meta-schema proposed to model argumentative explanations also could be
developed with different objectives than those of modeling explanations. We hope,
for example, that the meta-schema will prove helpful in the development of criteria
for the introduction of defaults in doxastic systems.

Many open problems remain. For instance, we characterize relevance in expla-
nation as a chain structure that would be able to capture a part of the usual notion

17For example, in textbooks such as [14], or in several of the approaches presented in [18].
18In particular, translations in paraconsistent logic. For example, [5].
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of causal relation, and also other possible notions of explanatory relevance relations
(such as inferential relations, supervenience, etc.). We decided to leave open the
possibility of other relations and that is a reason for this generality. Nevertheless, we
would like to be able to explore a deeper notion of explanatory relevance relation
for explanations and it may be interesting to investigate its connections with relevant
logics too.

We would like to study the effects of modulating the kind of relevance between
explananda and explanans. It is plausible that the kind of relevance that is adequate
varies from context to context. Besides, it is likely that different default or paracon-
sistent logics19 may provide different resources for the representation and analysis
of different kinds of explanation.
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Para-Disagreement Logics and Their
Implementation Through Embedding
in Coq and SMT

Bruno Woltzenlogel Paleo

1 Introduction

On closer inspectionmany apparent contradictions turn out to bemere disagreements
between distinct sources of information. For example, if a source s1 says P and a
source s2 says ¬P , their disagreement would only become an actual contradiction
if we naively merged what they say into our own knowledge base. In this case, our
own knowledge base would entail P ∧ ¬P and would, therefore, be inconsistent.
Although we could use traditional paraconsistent logics to avoid this kind of incon-
sistency’s worst consequences, this would be an unsatisfactory approach, because
the inconsistency in this case was clearly just a result of our indiscriminate use of
knowledge originating from distinct mutually contradictory sources.

This paper proposes a new logical paradigm through which disagreements can be
expressed and resolved. A possible worlds semantics is used (cf. Sect. 3), and each
source denotes a world. Logical sentences of the form @s P express that source s
claims P and denote that P is true at the world denoted by s. Within these logics,
we can merge conflicting information more cautiously. For instance, our knowledge
basewould entail (@s1 P) ∧ (@s2¬P) and, as desired, no inconsistencywould follow
from the disagreement between s1 and s2 with respect to P .

Section 4 explores a few different behaviours, attitudes and procedures that people
typically use to resolve disagreements and to aggregate their opinions and beliefs
in order to reach common collective decisions in the social groups to which they
belong. They include consensus, dictatorship, trust and voting. All these disagree-
ment resolution methods can be formalized within the proposed logical paradigm,
and it may be considered that each method leads to a different logic conforming
to the proposed paradigm. As discussed in Sect. 4.4, the voting method requires
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formulating the possible worlds semantics in a way that is, from a technical perspec-
tive, subtly different from traditional formulations (cf. Sect. 3).

One of the main goals during the development of para-disagreement logics,
besides simplicity and conceptual adequacy, was ease of implementation of auto-
mated reasoning tools for these logics. To show that this goal has been achieved,
Sects. 5 and 6 exhibit and discuss semantical embeddings of the logics into, respec-
tively, the non-extensional higher-order logic of the interactive proof assistant Coq
and a fragment of first-order logic extended with datatypes and linear integer arith-
metic supported by the automatic SMT-solver Z3.

2 Syntax

As shown in Definition 1, the basic language of our logics is the usual language of
propositional logic extended with the usual box and diamond operators of modal
logics [12], and the @ operator and the (here explicit) in nominal operator from
hybrid logics [2]. This basic syntax is extended in Sect. 4.

Definition 1 Given countably infinite setsP andS of, respectively, propositional
symbols and information sources, the set of formulas formulasL is the smallest set
satisfying:

• if p ∈ P , then p ∈ L .
• if ϕ ∈ L , then ¬ϕ ∈ L .
• if ϕ1 ∈ L and ϕ2 ∈ L , then:

– ϕ1 ∧ ϕ2 ∈ L .
– ϕ1 ∨ ϕ2 ∈ L .
– ϕ1 → ϕ2 ∈ L .

• if ϕ ∈ L , then:

– �ϕ ∈ L .
– ♦ϕ ∈ L .

• if s ∈ S and ϕ ∈ L , then @sϕ ∈ L .
• if s ∈ S , then in(s) ∈ L .
• if s ∈ S and g ∈ S , then (s ∈ g) ∈ L .

3 Semantics

The semantics for para-disagreement logics, as described in Definitions 2 and 3, is
conceptually similar to typical possibleworlds semantics formodal logics, essentially
differing only in the representation of world reachability.
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Definition 2 A model is a tuple M := 〈W, R, IS , IP 〉, where W is a countable set
ofworlds, R : W −→ List[W ] is a function thatmaps eachworld to the list ofworlds
reachable from it, IS : S −→ W is an interpretation function that maps each source
to the world it denotes, and IP : W × P −→ {�,⊥} is an interpretation function
that maps each world and atomic proposition to a truth value.

Definition 3 The truth of a formulaϕ in aworldw of amodelM := 〈W, R, IS , IP 〉
is denoted M �w ϕ and is defined recursively as follows:

• M �w p for every p ∈ P such that IP (w, p) = �
• M �w ¬ϕ iff M �w ϕ.
• M �w ϕ1 ∧ ϕ2 iff M �w ϕ1 and M �w ϕ2

• M �w ϕ1 ∨ ϕ2 iff M �w ϕ1 or M �w ϕ2

• M �w ϕ1 → ϕ2 iff M �w ϕ1 or M �w ϕ2

• M �w �ϕ iff M �w′ ϕ for every w′ ∈ R(w)

• M �w ♦ϕ iff M �w′ ϕ for some w′ ∈ R(w)

• M �w @sϕ iff M �IS (s) ϕ

• M �w in(s) iff IS (s) = w
• M �w s ∈ g iff IS (s) ∈ R(IS (g))

Definition 4 A set of logical sentences ϕ1, . . . , ϕn entails another logical sentence
ϕ, denoted ϕ1, . . . , ϕn � ϕ, iff M �w ϕ for all w and for every model M such that
M �w ϕi for 1 ≤ i ≤ n and for all w.

The main technical difference between the semantics described above and the
usual possible worlds semantics is that reachability of worlds is represented not as
a binary relation between worlds, but as a function that maps a world to a list of its
reachable worlds. Consequently, in the models used in para-disagreement logics, the
number of worlds reachable from any world is always finite (because lists are finite),
whereas this number could be countably infinite when reachability is represented as
a binary relation between worlds. Having only a finite number of reachable worlds
is important for the disagreement resolution method described in Sect. 4.4.

Definition 5 A source s is a group in a model M := 〈W, R, IS , IP 〉 iff R(IS (w))

is non-empty (i.e. the world denoted by s has reachable worlds). Any source s ′

In para-disagreement logics, the formula @sϕ can be read as “s claims ϕ” or “s is
of the opinion that ϕ”. The formula s ∈ g can be read as “s is aparticipant in thegroup
g”. Para-disagreement logics are concerned with establishing relationships between
the claims of a group and the claims of its participants (or even non-participants).

The notion of group does not need to be understood in a narrow sense. From a
broader and abstract perspective, for example, a person whose opinions are strongly
influenced by three newspapers could be modelled as a “group” where those media
sources are participants; and a software system that combines data from several
different databases could be modelled as a “group” that has those databases as par-
ticipants.



142 B. Woltzenlogel Paleo

4 Methods for Information Aggregation and Disagreement
Resolution

The main concern from this point on is to investigate possible relationships between
the opinions of a group and the opinions of its members. In general, the group
needs to aggregate the opinions of its members and resolve disagreements. There
are potentially many methods to do that, and para-disagreement logics do not aim to
advocate in favour of one method, but rather to be flexible and expressive enough to
allow a wide variety of methods to be formalized and possibly combined to reason
simultaneously about groups with distinct disagreement resolution behaviours. The
next subsections discuss a few.

4.1 Consensus

One of the simplest methods for a group to aggregate information from its members
is consensus: if all members of a group g claim something, then g claims it as well.
In logical form, the consensus axiom schema for a fixed1 group g is:

@g(�ϕ → ϕ)

More strongly, a para-disagreement logic assuming the more general and well-
knownTaxiomschema (�ϕ → ϕ)wouldbe stating that all groups respect consensus.

The obvious limitation of consensus is that it says nothing about the opinions of
a group on matters on which its members disagree.

4.2 Dictatorship

Dictatorship is perhaps the simplest method to aggregate information in cases when
there is disagreement. The opinion of the group is simply dictated by a distinguished
source. The dictatorship axiom schema for a fixed group g with a fixed dictator d
is2:

@g(@dϕ → ϕ)

Furthermore, to show, for instance, that the dictator d has dissidents in his dic-
tatorship g, it suffices to find a proposition q for which @g(@dq ∧ ♦¬q). This

1By “fixed“ it is meant that g is not a schema variable, but a constant. The consensus axiom schema
does not hold for all g. It is the responsibility of a user of the logic to instantiate and assert the
axiom schema for any particular g∗ that is a consensus group.
2Note that d does not need to be a participant of g.
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illustrates that it is easy to formalize dictatorships and reason about their situations
in para-disagreement logics.

A serious problem of dictatorships is that they blindly follow the opinions of the
dictator and simply ignore the opinions of other members of the group, who might
have greater expertise on certain topics than the dictator.

4.3 Expertise-Restricted Trust

In human society, groups often follow restricted forms of dictatorship, in which the
opinions and decisions of the group with respect to a proposition pertaining to a
certain topic is dictated by a member of the group with declared expertise in that
topic. For example, we are normallywilling to trust the opinions of doctors onmatters
related to our health and the opinions of lawyers on legal matters, but not conversely;
and a company’s technological decisions are ultimately taken by the CTO, whereas
its financial decisions by the CFO.

In order to be able to formalize groups with information aggregation based
on expertise-restricted trust, it is necessary to extend the basic syntax of para-
disagreement logic. One possibility is to extend it with the notion of topic and special
operators to talk about expertise on topics and pertinence to topics. For example, the
fact that an information source s has expertise on topic t could be expressed by the
formula E(s, t) and the fact that a proposition p is about a topic t could be expressed
by the formula A(p, t).3 Assuming, for the sake of simplicity, that experts on a given
topic do not disagree on propositions related to that topic, the axiom schema stating
that g trusts its experts can be written as:

@g((E(ε, τ ) ∧ A(ϕ, τ )) → (@εϕ → ϕ))

Despite the additional operators, the logic is still quantifier-free, and hence essen-
tially propositional.

4.4 Voting

Another common method to manage disagreements, especially in democratic soci-
eties, is to vote. There exist various vote-counting methods [23] and, in principle,
para-disagreement logics could be extended with any vote-counting method. But
majority voting is one of the simplest, and it is already sufficiently interesting to
illustrate a vote-based para-disagreement logic.

3A is assumed to be an intensional operator: the truth values of A(p, t) and A(q, t) may differ from
each other even when p ↔ q.



144 B. Woltzenlogel Paleo

The syntax of the logic needs to be extended with an intensional vote operator, a
majority modality and an aggregation connective, as shown below.

Definition 6 Given countably infinite setsP andS of, respectively, propositional
symbols and information sources, the set of formulas formulas LV is the smallest
set satisfying the clauses in Definition 1 (withL replaced by LV ) and also:

• if ϕ ∈ LV , then V(ϕ) ∈ LV .
• if ϕ ∈ LV , then Mϕ ∈ LV .
• if g, s1, . . . , sn ∈ S , then g ≺ [s1, . . . , sn] ∈ LV .

The intended readings of these new kinds of formulas are:

• V(ϕ): ϕ is a proposition at issue in the vote.
• Mϕ: the majority chooses ϕ (over ¬ϕ).
• g ≺ [s1, . . . , sn]: the group g aggregates the sources s1, …, sn .

The semantics also has to be extended to cope with new syntactical constructions.
An interpretation for the vote operator is needed, as shown in Definition 7, and the
notion of truth needs to be extended to formulas containing the vote operator, the
majority modality and the aggregation connective, as stated in Definition 8.

Definition 7 A model is a tuple M := 〈W, R, IS , IP , IV 〉, where W , R, IS and
IP are as in Definition 2 and IV : W × LV −→ {�,⊥} is an interpretation function
that maps each world and formula to a truth value.

Definition 8 The truth of a formulaϕ in aworldw of amodelM := 〈W, R, IS , IP 〉
is denoted M �w ϕ and is defined recursively using the cases shown in Definition 3
as well as the following:

• M �w V(ϕ) iff IV (w, ϕ) = �
• M �w Mϕ iff there are more w′ ∈ R(w) such that M �w′ ϕ than w′′ ∈ R(w) such
that M �w′′ ¬ϕ

• M �w g ≺ [s1, . . . , sn] iff R(IS (g)) = [IS (s1), . . . , IS (sn)]
It is now clearer why a technically different representation of reachability of

worlds (using a function mapping worlds to (finite) lists of worlds, instead of a
binary relation on worlds) was chosen. The definition of truth for a formula starting
with a majority modality requires comparing the number of worlds w′ for which ϕ is
true with the number of worlds w′′ for which ¬ϕ is true. By requiring every world to
have finitely many reachable worlds, the unclear corner case of comparing infinite
numbers is simply avoided. The reason for choosing lists, in particular, is discussed
in Sect. 5.

Themajority voting axiom schema, stating that an arbitrary proposition is claimed
by a fixed group g if the majority of its members asserts it and it is voted, can then
be expressed as:

@g((Mϕ ∧ V(ϕ)) → ϕ)
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It is important to note that the vote operator is intensional with respect to its
argument, in the following sense: the truth value of V(p) depends on p’s intension
(i.e. the proposition itself) and not only on p’s extension (i.e. its denotation, its truth
value). Consequently, V(p) and V(q) may have different truth values, even if p and
q have the same truth values. Furthermore, if a group votes on a proposition p, this
does not mean that the group omnisciently votes on all other propositions that it
considers equivalent to p.

At this point one may wonder why the vote operator is needed. The following
example, which is loosely inspired by the real-world case of the Brazilian president’s
impeachment in 2016, shows that a modified majority voting axiom schema without
the vote guard (i.e. @g(Mp → p)) would not be very useful, because then the
opinions of a group would often be contradictory.

C ? C → I ? I ?
Senator a C C → I I
Senator b ¬C C → I ¬I
Senator c C ¬(C → I ) ¬I

Example 1 Suppose that a senate g composed of three senators a, b and c (i.e.
g ≺ [a, b, c]) has to decide whether the president should be impeached (proposition
I ). To come to that decision, the senators must deliberate on whether the president
has committed a certain crime (proposition C) and whether that crime is a sufficient
reason for impeachment (C → I ). Suppose that the senators think according to the
following table:

Let S={@a(C ∧ (C → I ) ∧ I ),@b(¬C ∧ (C → I ) ∧ ¬I ),@c(C ∧ ¬(C → I )
∧ ¬I ), g ≺ [a, b, c]}. Then S � @g(MC ∧ M(C → I ) ∧ M¬I ). If @g

(Mp → p) is admitted, then:

• S,@g(Mp → p) � @g¬I , because S � @g(M¬I ).
• S,@g(Mp → p) � @g I , because S � @g(MC), and thus S,@g(Mp → p) �
@gC , and S � @g(M(C → I ), and thus S,@g(Mp → p) � @g(C → I ).

And hence g’s opinions are contradictory (under S and@g(Mp → p)) because both
a proposition and its negation must be true. To avoid this, the senate must use the
guarded majority voting axiom schema and decide a priori on which propositions
it is going to vote. It may choose to vote on the conclusion (I ) or on the premises
(C and C → I ), but it shouldn’t vote simultaneously on both. In either case, it is
possible to reason about the outcome of the senate’s decision process:

• in the first case (voting directly on the conclusion), S,@g((Mp ∧ V(p)) →
p),V(I ) � @g¬I and hence the senate will decide not to impeach the president.

• in the second case (voting on the premises, and then deciding on the impeachment
by logical reasoning), S,@g((Mp ∧ V(p)) → p),V(C),V(C → I ) � @g I and
hence the senate will decide to impeach the president.

One could also question the inclusion of the aggregation connective in the lan-
guage and wonder if it would not be possible to use the diamond ♦ and the explicit
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nominal in operators instead, since together they can also state that a world is reach-
able from another. The following example discusses this.

Example 2 Consider the same scenario from Example 1 above, but let S′ be S with
the statement g ≺ [a, b, c] replaced by@g(♦in(a) ∧ ♦in(b) ∧ ♦in(c)). Superficially
S′ and S may appear equivalent, but in fact they are not. S′ admits models where
the world denoted by g has other reachable worlds besides those denoted by a, b
and c, whereas in S the worlds reachable from the world denoted by g are exactly
only those denoted by a, b and c. Therefore, g ≺ [a, b, c] is actually a stronger
statement than @g(♦in(a) ∧ ♦in(b) ∧ ♦in(c)). A consequence of this fact is that,
whereaswith the former statement S,@g((Mp ∧ V(p)) → p),V(I ) � @g¬I , with
the latter statement S′,@g((Mp ∧ V(p)) → p),V(I ) � @g¬I , because S′ gives
only partial information about the worlds reachable from the world denoted by g.
There is a model M of S′,@g((Mp ∧ V(p)) → p),V(I ) where the world denoted
by g has several other reachable worlds where I is true and then M � @g I .

Instead of extending the language with the aggregation connective, the language
could have been extended with quantification over sources and equality of sources.
In this case, a statement such as g ≺ [a, b, c] could be replaced by @g(♦in(a) ∧
♦in(b) ∧ ♦in(c) ∧ ∀x .(♦in(x) → x = a ∨ x = b ∨ x = c)). However, not only the
aggregation connective is simpler, more concise and more convenient, but it also
eases the implementation of counting, as discussed in the next two sections.

5 Embedding of Para-Disagreement Logics in Coq

A tool to support formal reasoning within para-disagreement logics can be imple-
mented through a shallow embedding of the semantics of para-disagreement logics
in the Coq proof assistant [11], which is based on the calculus of inductive construc-
tions [20] for a non-extensional type-theoretical higher-order logic. The first step is
to declare a type for worlds and the reachability function:

Then the type of propositions of para-disagreement logics is defined as the function
type of functions that take a world and return a Coq proposition (i.e Prop):

The propositional connectives operating on the lifted modal propositions are defined
as functions takingmodal propositions and a world, and returning a Coq proposition.
Through currying (partial application of functions to arguments), such connectives
can also be seen as taking modal propositions and returning a modal proposition (i.e.
a function that takes a world and returns a Coq proposition). Notations are declared
to allow the new lifted connectives to be written down exactly as Coq’s built-in
connectives, but with an “m” prefix.
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The use of a reachability function mapping worlds to their reachable worlds instead
of a binary reachability relation between worlds requires that the box and diamond
modalities be defined in a different way, using an auxiliary function that traverses
the list of reachable worlds.

The @ modality and the explicit nominal operator in borrowed from hybrid logics
are defined as expected, and a notation is declared to allow the special symbol @ to
stand for the modality.

For the sake of simplicity, it is assumed here that the set of source symbolsS and the
set of worlds W denoted by the sources coincide. In other words, the interpretation
function IS is assumed to be the identity function. In the Coq embedding, this is
reflected in the usage of the type W not only for worlds but also for sources, as seen
in the type of the @ modality.
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The embedding of the basic language of para-disagreement logics in Coq is
completed with the definition of the aggregation connective and its corresponding
notation:

And finally, quotes are used as notation for truth of a modal proposition in all worlds:

With all the basic language ready, it is time to move on to the extensions described in
Sect. 4.4. As the majority modality requires counting, an auxiliary count function
is defined:

The function count needs to traverse all the reachable worlds and count on how
many of them the modal proposition is true. Lists are the simplest traversable and
collection datatype, and that is why it was chosen here and also as the return type of
the reachability function in Definition ??. The parameter dec is needed to conform
with the typing requirements of the “if …then …else …” expression.

Once the count function is available, defining the majority modality can be
easily done as follows:

Next the intensional vote operator is declared, together with an axiom stating that it
is invariant with respect to negation of its argument.

And then finally the majority axiom schema can be declared:

Now that the para-disagreement logic is fully embedded, the impeachment example
can be formalized as shown below:
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From the axioms stated above, it is now possible to prove that the majority claims
that the president committed a crime:
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However, the proof above is tedious, requiring the user to interactively count the
senators that (dis)agree with the claim. In order to automate the counting, a new
tactic can be implemented using Coq’s Ltac language, as shown below:

The count tactic receives a hint database db of axioms and tries to automatcally
decide the conditions of if-then-else statements in the goal using the firstorder
tactic with the given database. It is a recursive tactic that reapplies itself until it fails.

With shallow embeddings, it is also often the case that definitions need to be
unfolded for a goal to be proven. To automate the unfolding, the unfold_pdl
tactic defined below repeatedly tries to unfold all defined connectives, quantifiers
and operators included in the modal unfold hint database occurring both in the
conclusion and in the hypotheses of the goal.

Automation can be improved further with a tactic that combines the previously
defined tactics with Coq’s built-in auto and autorewrite tactics:

In the case of the impeachment example, the databases of facts and rewrite equalities
can be created as shown below:
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The previous lemma can now be proved fully automatically:

And other lemmas can be proven fully automatically as well:

Full automation is not possible when the lemma to be proven depends on axioms and
lemmas that have not been included in the hint databases. Furthermore Coq’s auto
tactic ignores axioms and lemmas that have a universally quantified head, because
such axioms and lemmas can match any goal and, therefore, the proof search may
not terminate. The majority axiom schema has a universally quantified head, and
that is why it has not been included in the hint database. Consequently, lemmas that
depend on this axiom currently cannot be proven fully automatically. Nevertheless,
in such cases, it often suffices to apply the majority axiom, include previously proved
lemmas in the local context with pose, and solve the remaining goals automatically
with the provided tactic.

A less automatic but more efficient alternative to pose and pdl_solve is shown
below for a similar lemma.

And finally the president’s impeachment can be shown:
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6 Embedding of Para-Disagreement Logics in SMT

To automate reasoning in para-disagreement logics even further, SMT-solvers (for
satisfiability modulo theories) such as Z3 [17], which are capable of dealing with
lists, recursive function definitions and linear integer arithmetic are a natural choice.

The main difference to the previous embedding in Coq is that the standard
language[4] of SMT-solvers is not a higher-order typed language but a first-order
multi-sorted language. This already causes difficulty when declaring the sort/type
for propositions. In constrast to the embedding in Coq, where propositions had
a defined function type from worlds to Coq’s built-in Prop, function types/sorts
are not available in the first-order multi-sorted first-order language of SMT-solvers.
Therefore, propositions are assumed to be of a primitive (declared but undefined)
sort of arity 0.

As in the Coq embedding, reachability is declared as a function from worlds to lists
of worlds:

As a consequence of the fact that the sort o of propositions is now a primitive sort
and not a function type fromworlds to the meta-logic’s propositions, the connectives
and modal operators cannot be simply defined as functions, as they were in the Coq
embedding. Instead, they must first be declared without definition:

And then their intended meanings have to be axiomatized with the help of a truth
predicate:
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The axiomatizations of box, diamond andmajoritymake use of auxiliary recursive
function definitions that traverse the list of reachable worlds and output a formula
that checks, respectively, whether the given proposition is true in all, in at least one,
and in the majority of reachable worlds:

For convenience, a validity predicate is defined, analogously to the quotes in the Coq
embedding.

And finally the majority axiom schema can be asserted:

Now that the para-disagreement logic has been embedded, the impeachment example
can be formalized. First the senators and the senate itself are declared as worlds:

Then the fact that the senate aggregates the three senators is asserted.
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And the atomic propositions are declared and the senators’ opinions can be asserted:

The facts that the senators decided to vote on whether the president committed a
crime and on whether the crime should imply impeachment are asserted.

To ask the SMT-solver whether the previous assertions entail impeachment, the
negation of the impeachment conjecture should be asserted, as shown below. This
is so because SMT-solvers are refutational theorem provers, proving conjectures by
contradiction.

Finally, the commands check-sat and get-proof should be invoked.

Unfortunately, Z3 fails to prove this conjecture, probably because SMT-solvers have
incomplete quantifier instantiation heuristics, whichmay be failing to find the correct
instantiation when there are defined connectives and operators. Fortunately, Z3 can
solve the problem with just a slight help. If the following unfolding of the majority
axiom schema is manually asserted, Z3 is able to do all the remaining logical and
arithmetical reasoning fully automatically, and outputs a proof that is 35842 charac-
ters long.
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7 Related Work

The idea of using modal logics to handle (apparent) contradictions can be traced
back at least to Jaskowski’s discussive logics [16]. However, the para-disagreement
logics proposed here use the @ modality, thereby overcoming well-known issues
[19] faced by Jaskowki due to his use of the ♦ modality instead. As in Jaskowki’s
logics, the � modality acts like a consensus operator. �P expresses that everybody
claims P . Together with the T axiom (�P → P), the behavior of � is reminiscent
of the ◦ consistency operator of logics of formal inconsistency with principles of
gentle explosion [13].

Preferential and Distance-based paraconsistent logics [3] form an interesting
class of logic that handles inconsistencies by considering most preferred or least dis-
tant valuations of a theory in order to determine the logical consequences of the theory.
Although the use of preferential and numerical approaches may suggest a similarity
with the voting-based para-disagreement logic presented in Sect. 4.4 or with para-
disagreement logicswhere an information source is preferred (e.g. as in Sect. 4.3), the
similarities are superficial and the logics are actually very different, simply because
para-disagreement logics are not paraconsistent logics. Para-disagreement logics are
classical, monotonic, modal logics, where the principle of explosion holds. Their
goal is to deal with consistent theories containing formulas such as @s1 P ∧ @s2¬P ,
which express a disagreement between s1 and s2. In paraconsistent logics (including
preferential and distance-based), on the other hand, the concern is to avoid the princi-
ple of explosion in the presence of inconsistencies in theories with formulas such as
P ∧ ¬P . Another difference between para-disagreement logics and preferential or
distance-based paraconsistent logics is that the latter’s preferential or distance-based
mechanisms for avoiding explosion in the presence of inconsistencies is extra-logical
and rigidly built-in as part of the semantics, whereas the former’s disagreement res-
olution mechanisms are expressible syntactically in the logic itself through axiom
schemata that can be flexibly modified and even combined to suit various domains
of applications, as not all disagreements ought to be resolved in the same way.

As (apparent) contradictions can be common for AI agents and databases han-
dling data from various sources or from different points in time, it is not surpris-
ing that many tasks, such as belief revision [1], information/data integration [18],
database repair [10] and consistent query answering [14, 21], share an interest
with para-disagreement logics on the topic of tackling (apparent) contradictions.
One important distinguishing characteristic of the framework of para-disagreement
logics is that it does not advocate for a specific way of handling apparent contra-
dictions but rather provides an expressive language that allows disagreements to be
explicitly modeled and allows a wide variety of disagreement resolutionmechanisms
to be asserted through axiom schemata, as non-exhaustively exemplified in Sect. 4.
Due to this generality, it may be the case that some concrete approaches proposed
for belief revision, database repair, information integration and consistent query
answering could be defined as concrete para-disagreement logics within the frame-
work described here. In such cases, the para-disagreement logic framework would
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serve as an alternative classical modal foundation to define these approaches, which
are often described from a non-classical, non-monotonic and paraconsistent stand-
point. Despite its generality, however, certainly not all database-related approaches
are amenable to be described as para-disagreement logics. An essential requirement
in the para-disagreement logic framework is the ability to distinguish and name the
sources of contradictory information. In a practical database setting, this requirement
is not always satisfied. For instance: a single source may already contain contradic-
tory information; or, maybe, even though the contradictory information originates
from different sources or time points, it is not known anymore from which source
or time point each piece of information originated. Database-related techniques that
target such situations are clearly outside the scope of the para-disagreement logic
framework.

The embedding of para-disagreement logics in Coq follows an approach previ-
ously used in the embedding of the modal logics K, KB and S5 in Coq [8, 9] and
related to the embedding of the same logics in Isabelle [5, 7] and TPTP THF [6].
However, that approach had to be modified (as explained in the previous sections),
because para-disagreement logics require a different technical encoding of reacha-
bility between worlds, and it also had to be extended with arithmetical reasoning for
counting worlds. Furthermore, the work presented here also discusses automation of
reasoning in para-disagreement logic within Coq, whereas the previous work in [9]
was concerned with interactive reasoning only.

Thanks to the maturity, efficiency and popularity of Sat-solvers, theorem provers
(e.g. [15, 22]) for non-classical and modal logics have been implemented recently
with architectures that use Sat-solvers as black-boxes. In contrast, the work pre-
sented here uses an SMT-solver. As the logics of SMT-solvers are more expressive
than the classical propositional logic of Sat-solvers, non-classical and modal logics
(even complex ones requiring arithmetical reasoning such as para-disagreement log-
ics) can be fully embedded within the logics of SMT-solvers, and these solvers can
then be used directly, with no need to build a separate prover having an SMT-solver
as a black-box component.

8 Conclusion

The para-disagreement logics presented here constitute a new paradigm to deal with
apparent contradictions that occur when different agents or sources of information
have conflicting opinions about some propositions. Four different disagreement res-
olution methods were discussed, with special emphasis on a majority voting method.
However, it is important to note that para-disagreement logics are a general frame-
work that, in principle, can support other (possibly more sophisticated) disagreement
resolution methods as well.

The development of para-disagreement logics required a formulation of possible
worlds semantics that is technically different from the usual. Their embedding into
themeta-logics of Coq andSMT-solvers also pushed further the state-of-the-art of the
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embedding approach, as it required the use of arithmetics, whichwas not necessary in
previous work on simpler modal logics. At the same time, the successful (almost full)
automation of para-disagreement logical reasoning within Coq and Z3 attests the
current level ofmaturity of these tools even for a domain of application forwhich they
were not originally intended. And indeed, the embeddings described here expand the
range of applications of classical interactive and automated theorem provers to the
area of paraconsistent reasoning, broadly understood, at least when contradictions
are merely apparent as a result of disagreement between clearly identifiable sources.

Although the focus here was on propositional para-disagreement logics, this was
so just because the propositional level was sufficient to discuss the essence of para-
disagreement logics. The embedding into the meta-logic of SMT-solvers could be
easily extended to quantifier-free first-order logic, and the embedding into the meta-
logic of Coq can be easily extended to rigid higher-order logic with constant or
varying domains (i.e. with actualistic or possibilistic quantifiers).

As para-disagreement logics target apparent inconsistencies (e.g. disagreements
such as@s1 P ∧ @s2¬P), they should be regarded as a complement, andnot a replace-
ment, to paraconsistent logics, which handle actual inconsistencies (e.g. P ∧ ¬P).
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Asymptotic Quasi-completeness and ZFC

Mirna Džamonja and Marco Panza

Abstract The axioms ZFC of first order set theory are one of the best and most
widely accepted, if not perfect, foundations used in mathematics. Just as the axioms
of first order Peano Arithmetic, ZFC axioms form a recursively enumerable list of
axioms, and are, then, subject to Gödel’s Incompleteness Theorems. Hence, if they
are assumed to be consistent, they are necessarily incomplete. This can be witnessed
by various concrete statements, including the celebrated ContinuumHypothesis CH.
The independence results about the infinite cardinals are so abundant that it often
appears that ZFC can basically prove very little about such cardinals. However, we
put forward a thesis that ZFC is actually very powerful at some infinite cardinals,
but not at all of them. We have to move away from the first few and to look at
limits of uncountable cardinals, such as ℵω. Specifically, we work with singular
cardinals (which are necessarily limits) and we illustrate that at such cardinals there
is a very serious limit to independence and that many statements which are known
to be independent on regular cardinals become provable or refutable by ZFC at
singulars. In a certain sense, which we explain, the behavior of the set-theoretic
universe is asymptotically determined at singular cardinals by the behavior that the
universe assumes at the smaller regular cardinals. Foundationally, ZFC provides an
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asymptotically univocal image of the universe of sets around the singular cardinals.
We also give a philosophical view accounting for the relevance of these claims in a
platonistic perspective which is different from traditional mathematical platonism.

1 Introduction

Singular cardinals have a fascinating history related to an infamous event inwhich one
mathematician tried to discredit another and ended up being himself proved wrong.
As Menachem Kojman states in his historical article on singular cardinals [28],
‘Singular cardinals appeared on the mathematical world stage two years before they
were defined’. In a public lecture at the Third International Congress of Mathematics
in 1904, Julius König claimed to have proved that the continuum could not be well-
ordered, therefore showing thatCantor’sContinuumHypothesis does notmake sense,
since this would entail that 2ℵ0 , the (putative) cardinal of the continuum, is not well
defined. This was not very pleasant for Cantor, who was not alerted in advance and
who was in the audience. However, shortly after, Felix Hausdorff found a mistake in
König’s reasoning, which was to have used an incorrect lemma of Bernstein, proved
by induction on all ℵs by an argument that did not work at an uncountable ℵ that
happens not to have an immediate predecessor. Such cardinals were then named
‘singulars’ by König in 1905.

This is not the way we define singular cardinals today. The difference between the
modern definition and König’s has important consequences that deserve an explana-
tion.

Today, in ZFC, we regard cardinals as initial ordinals and the inherited order
lets us talk about the cofinality of a cardinal κ , namely cf(κ). In ZF, following von
Neumann, an ordinal is defined to be a transitive set well-ordered by the membership
relation. It can then be seen that each ordinal is exactly the set of ordinals strictly
smaller than it. A cardinal is an ordinal that is not bijective with any ordinal smaller
than it. For example, ω is a cardinal since it is the smallest infinite ordinal. Notice
that every ordinal α is bijective with exactly one cardinal, which we denote by ‘|α|’
and call ‘the cardinality of α’.

As such, the definition of the cardinality of an ordinal does not require the Axiom
of Choice, but this axiom is required to ensure that every set has a cardinality. More
precisely, in ZF one can prove that every well-ordered set is bijective with exactly
one cardinal, but not that any set can be well-ordered. This is what the Axiom of
Choice states (in one of its equivalent forms).

A set B is cofinal in an ordered set (A,≤) if and only if B is a subset of A and for
any x in A there is a y in B such that x ≤ y. The cofinality cf(A) of an ordered set
A is the smallest cardinality of a set cofinal in A. This definition applies in particular
when A is a cardinal κ considered as an ordered set with the relation ≤ between
ordinals, giving us the definition of cf(κ). Any cardinal is obviously cofinal in itself.
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Hence, from the definition above it immediately follows that, for any cardinal κ ,
cf(κ) ≤ κ . Given this, we say that a cardinal κ is regular if and only if cf(κ) = κ .
We say, then, that κ is singular just if it is not regular. For example, ℵω and ℵω+ω

and ℵω1 are each singular.
Already in ZF, it can be easily shown that the class of ordinals is well-ordered by

the membership relation. It follows that every cardinal has an immediate successor.
If the former is λ, we denote the latter by ‘λ+’. A cardinal which has an immediate
predecessor is said to be a successor cardinal. If a cardinal is not a successor, then
we say that it is a limit cardinal.

The example of ℵ0 is enough to show that a limit cardinal can be regular. While
analyzing König’s attempted proof, Hausdorff proved, appealing to the Axiom of
Choice, that all successor cardinals are regular. This makes, for example, ℵn regular
for any natural n. But this cannot be proved without the Axiom of Choice. In the
absence of Choice it may even happen that all uncountable cardinals are singular.
Indeed,Motik Gitik [18] has given amodel of ZFwhere all uncountable cardinals are
not only singular, but they all also have cofinality ℵ0 (the model is described in some
detail at the end of Sect. 3). In addition, even if the Axiom of Choice is admitted, we
cannot prove, just within ZFC, that there are cardinals other than ℵ0 and 0 which are
both limit and regular, that is, weakly inaccessible, as any such putative cardinal is
usually called (this follows from Gödel’s incompleteness). On the other hand, it is
easy to see that there are unboundedly many singular cardinals. For example, ℵα+ω

is singular for any ordinal α.
All this came about since the existence of singular cardinals destroyed an infa-

mous argument put forward in 1904. But there is little justification in the qualification
‘singular’ that was obtained because of this incident, since there are unboundedly
many such cardinals. This qualification is even quite unfortunate because, in fact, it
is at these cardinals that set theory behaves better: it turns out that at them the incom-
pleteness phenomena of ZFC are much less present (although not totally absent)
than at regular cardinals. We shall illustrate this fact by various recent mathematical
findings. These results show that many statements which are known to be indepen-
dent at regular cardinals become provable or refutable by ZFC at singulars, and so
indicate that the behavior of the set-theoretic universe is asymptotically determined
at singular cardinals by its features at the smaller regular cardinals. We could say,
then, that even though ZFC is provably incomplete, asymptotically, at singular cardi-
nals, it becomes quasi-complete since the possible features of universes of ZFC are
limited in number, relative to the size of the singular in question. These facts invite
a philosophical reflection.

The paper is organized as follows: Mathematical results that illustrate the men-
tioned facts are expounded in Sects. 2 and 3. The former contains results that by now
are classic in set theory and it is written in a self-contained style. The latter contains
results of contemporary research and is meant to reinforce the illustration offered by
the former. This section is not written in a self-contained style, and it would be out
of the scope of this paper to write it in this way. Section 2 also contains a historical
perspective. Finally, some philosophical remarks are made in Sect. 4.
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2 Modern History of the Singular Cardinals

One of the most famous (or infamous, depending on the point of view) problems
in set theory is that of proving or refuting the Continuum Hypothesis (CH) and its
generalisation to all infinite cardinals (GCH).

Cantor recursively defined two hierarchies of infinite cardinals, the ℵs and the �s,
the first based on the successor operation and the second on the power set operation:
ℵ0 = �0 = ω, ℵα+1 = ℵ+

α , �α+1 = 2�α , and for δ a non-zero limit ordinal ℵδ =
supβ<δ ℵβ , �δ = supβ<δ �β (here we are using the notation ‘sup(A)’ for a set A of
cardinals to denote the first cardinal greater or equal to all cardinals in A). A simple
way to state GCH is to claim that these two hierarchies are the same: ℵα = �α , for
any α. Another way, merely involving the first hierarchy, is to claim that for every
α we have 2ℵα = ℵ+

α . CH is the specific instance ℵ1 = �1 or 2ℵ0 = ℵ1. Insofar as
�1 = |R|, CH can be reformulated as the claim that any infinite subset of the set of
the real numbers admits a bijection either with the set of natural numbers or with the
set of real numbers.

It is well known that, frustratingly, Cantor spent at least thirty years trying to prove
CH. Hilbert choose the problem of proving or disproving GCH as the first item on
his list of problems presented to the International Congress of Mathematics in 1900.
In 1963 [8], Paul Cohen proved that the negation of CH is relatively consistent with
ZFC. This result, jointly with that proved by Kurt Gödel in 1940 [20]—that GCH is
also relatively consistent with ZFC—entails that neither CH nor GCH are provable
or refutable from the axioms of ZFC.

Cohen’s result came many years after Gödel’s incompleteness theorems [19],
which imply that there is a sentence in the language of set theory whose truth is
not decidable by ZFC. But the enormous surprise was that there are undecidable
sentences which are not specifically constructed as a Gödel’s sentence; in particular,
there is one as simply stated and well known as CH.

There aremanymathematical and philosophical issues connected to this outcome.
The onewhich interests us here concerns the consequences it has for ZFC’smodels: it
entails that if ZFC is consistent at all, then it admits a huge variety of differentmodels,
where CH and CGH are either true or false and, more generally, the power set class-
function (namely F : Reg → Reg; F (κ) = 2κ , where Reg is the class of regular
cardinals) behaves in almost arbitrary ways (see below on the results of William
Easton). This means that ZFC’s axioms leave the von Neumann universe of sets V—
which is recursively defined by appealing to the power set operation (V = ⋃

α

Vα , with

α an ordinal and Vα = ⋃

β<α

P
(
Vβ

)
)—hugely indeterminate: they are compatible,

for example, both with the identification of V with Gödel’s constructible universe
L (which is what the axiom of constructibility ‘V = L’ asserts, by, then, deciding
GCH in the positive), and with the admission that in V the values of 2κ are as
large as desired, which makes V hugely greater than L . The question is whether
this indetermination of the size of Vα versus the size of Lα can be somehow limited
for some sort of cardinals, i.e. for some values of α. The results we mention below
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show that this is so for singular cardinals, and even, as we said above, that V is
asymptotically determined at singular cardinals by its features at the smaller regular
cardinals.

To explain this better, we begin with a result by Easton [16], who, shortly after
Cohen’s result and building on earlier results of Robert Solovay [45], proved that
for regular cardinals the indetermination of the values of the power set function is
even stronger than the Cohen’s result suggests: for any non-decreasing class-function
F : Reg → Reg defined in an arbitrarymodel of ZFC so that cf(F(κ)) > κ for all κ ,
there is an extension to another model that preserves both cardinals and cofinalities
and in which 2κ = F(κ), for any regular cardinal κ . This implies that in ZFC no
statement about the power set (class)-function1 on the regular cardinals other than
‘κ ≤ λ =⇒ 2κ ≤ 2λ’ and ‘cf (κ) < cf (2κ)’ can be proved.

It is important to notice that singular cardinals are excluded from Easton’s result.
Just after the result was obtained, it was felt that this restriction was due to a technical
problem which could be overcome in the future. But what became clear later is that
this restriction is due to deep differences between regular and singular cardinals.
Indeed, many results attesting to this soon followed. In particular, what these results
eventually showed is that the power set class-function behavesmuch better at singular
cardinals than it does at regular ones.While the above quoted results byGödel, Cohen
and Easton imply that the value of the power set function can be decided in ZFC for
neither regular nor singular cardinals, as not even 2ℵ0 has an upper bound there, it
turns out that one can do the next-best thing and show in ZFC that the value of 2κ for
any singular κ is conditioned on the values of 2λ for the regular λ less than κ . This
entails that the size of Vκ+1 is, in turn, conditioned by that of that of Vλ for λ ≤ κ .

Already by 1965 and 1973 respectively, LevBukovský [5] and StephenH.Hechler
[21] had proved, for example, that in ZFC if κ is singular and 2λ is eventually constant
for λ < κ , then 2κ is equal to this constant. Therefore the value of 2κ is entirely
determined by the values of the power set function below κ . An infinite cardinal λ is
said to be strong limit if for any θ < λ we have 2θ < λ (in particular, it follows that
such a cardinal is limit). Note that strong limit cardinals, and in particular, strong
limit singular cardinals, exist in any universe of set theory: an example is given by
�ω. Solovay [46] proved that for any κ which is larger or equal to a strongly compact
cardinal (a large cardinal λ characterised by having a certain algebraic property that
is not essential to explain here, namely that any λ-complete filter can be extended
to a λ-complete ultrafilter), we have 2κ = κ+. In other words, GCH holds above a
strongly compact cardinal. This result, of course, is only interesting if there exists a
strongly compact cardinal. In fact this result was obtained as part of an investigation
started earlier by Dana Scott [36], who investigated the question of what kind of
cardinal can be the first cardinal failing GCH, that is, what properties must have a
cardinal κ such that 2κ > κ+, but such that 2θ = θ+, for all infinite cardinals θ < κ .
What Solovay’s result shows is that such a cardinal cannot be strongly compact.

1According to the common abuse of notation, we call F ‘power set function’, even though it is in
fact a class-function.
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This result led Solovay to advance a new hypothesis, according to which, for
singular cardinals, his own result does not depend on the existence of a strongly
compact cardinal. In other words, the hypothesis is that in ZFC, every singular strong
limit cardinal κ satisfies 2κ = κ+. The heart of it is the following implication called
the ’Singular Cardinal Hypothesis’:

2cf(κ) < κ =⇒ κcf(κ) = κ+, (SCH)

for any cardinal κ . Indeed, for definition, the antecedent implies that κ is a singular
cardinal, so that SCH states that κcf(κ) = κ+, for any singular cardinal κ for which
this is not already ruled out by 2cf(κ) being too big. On the other hand, if κ is a
strong limit cardinal, then it follows from the elementary results mentioned in the
previous section that κcf(κ) = 2κ (see [27], p. 55), so that the consequent reduces to
‘2κ = κ+’. Hence, SCH implies that the power set operation is entirely determined
on the singular strong limit cardinals, since GCH holds for any such cardinal.

In a famous paper appearing in 1975 [44], Jack Silver proved that if κ is a singular
cardinal of uncountable cofinality, then κ cannot be the first cardinal to fail GCH.
A celebrated and unexpected counterpart of this result was proved by Menachem
Magidor shortly afterwards [31]. It asserts that in the presence of some rather large
cardinals, it is consistent with ZFC to assume that ℵω is the first cardinal that fails
GCH. This, of course, implies that the condition that κ has uncountable cofinality is
a necessary condition for Silver’s result to hold. But it also implies that SCH fails
and that the power set function at the strong limit singular cardinals does not always
behave in the easiest possible way.

Another celebrated theorem proved shortly after the work of Silver is Jensen’s
Covering Lemma [11], from which it follows that if there are no sufficiently large
cardinals in the universe, then SCH holds. To be precise, this lemma implies that
SCH holds if 0	 does not exist. (It is probably not necessary here to define 0	, but
let us say that it is a large cardinal whose existence would make V be larger than L ,
whereas its nonexistence would make V be closely approximated by L .)

Further history of the problem up to the late 1980s is quite complex and involves
notions that are out of the scope of ZFC and, a fortiori out of the scope of our paper.
Details can be found, for example, in the historical introduction to [43]. Insofar as
our interest here is to focus on the results that can be proved in ZFC, we confine
ourselves to mention a surprising result proved by Fred Galvin and András Hajnal in
1975 [17]. Bymoving the emphasis fromGCH to the power set function as such, they
were the first to identify a bound in ZFC for a value of this function, namely for the
value it would take on a strong limit singular cardinal with uncountable cofinality.
Let κ be such a cardinal, then what Galvin and Hajnal proved is that 2κ < ℵγ ,
where γ = (2|α|)+ for that α for which κ = ℵα . As the comparison with the two
results of Silver and Magidor mentioned above makes clear, singular cardinals with
countable and uncountable cofinality behave quite differently. There were no reasons
in principle, then, to think, that Galvin and Hajnal’s result would extend to singular
cardinals with countable cofinality and the state of the matters stood still for many
years.
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Fast forward, and we arrive at a crowning moment in our story, namely to the
proof, by Saharon Shelah in the late 1980s, of the following unexpected theorem,
put forward in [43]:

[∀n (
n < ω =⇒ 2ℵn < ℵω

)] =⇒ 2ℵω < ℵω4 . (1)

Shelah’s theorem is, in fact, more general than the instance we quoted, which nev-
ertheless perfectly illustrates the point. If ℵω is a strong limit, then the value of
the power set function on it is bounded. In every model of ZFC, Shelah’s theorem
extends to the countable cofinality the result of Galvin and Hajnal, obtains a bound
in terms of just the ℵ-function (unlike the Galvin–Hajnal theorem which uses the
power set function), and shows that in spite of Magidor’s result (which shows that
SCH can fails at singular strong limits cardinals of countable cardinality), even at
such cardinals a weak form of SCH holds, namely the value of the power set function
is bounded.

Shelah’s theorem is proved by discovering totally new operations on cardinals,
called ‘pcf’ and ‘pp’, which are meaningful for singular cardinals and whose values
are very difficult to change by forcing. In many instances it is not even known if
they are changeable to any significant extent. It would be much too complex for us to
describe these operations here but the point made is that even though ZFC axioms are
quite indecisive about the power set operation in general, they are quite decisive about
it at the singular cardinals and this is because they prove deep combinatorial facts
about the operations pcf and pp. The field of research concerned with the operations
pcf and pp is called the ‘pcf theory’.

3 Some Contemporary Results

The foregoing results have been known to mathematicians for a while but they do
not seem to have influenced the literature in philosophy very much. The purpose
of this article is to suggest that they have some interest for our philosophical views
about ZFC and, more generally, set theory. Before coming to it, however, let us
make a short detour in the realm of some more recent results which further illustrate
the point. These results, to which this section is devoted, deal with mathematical
concepts which are rather advanced; it would distract from the point to present them
in a self-contained manner. Those readers who are not at ease with these concepts
can safely skip the present section, taking it on trust that contemporary research
continues to prove that singular cardinals have quite peculiar features, and that the
mathematical universe at such cardinals exhibits much less indetermination than at
the regular cardinals. This is the view that we shall discuss in Sect. 4.
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Let us begin by observing that the emphasis of the recent research on singular
cardinals has moved from cardinal arithmetic to more combinatorial questions. We
could say that what recent research on singular cardinals is concerned with is com-
binatorial SCH: rather than just looking at the value of 2κ for a certain cardinal κ ,
one considers the “combinatorics” of κ , namely the interplay of various appropriate
properties ϕ(κ) of it. An example of such a property might be the existence of a
certain object of size κ , such as a graph (see below on graphs) on κ with certain
properties, or the existence of a topological or a measure-theoretic object of size κ ,
in themore complex cases. Onemay think of κ as a parameter here. Then the relevant
instance of combinatorial SCH would say that the property ϕ(κ) depends only on
the fact that ϕ(θ) holds at all θ < κ . The question can be asked more generally, what
about the relevant property of κ can be proved in ZFC, knowing that the property
holds all θ < κ .

Concerning the former aspect of such a question, that concerned with what can be
proved inZFC, a celebrated singular compactness theoremhas been proved byShelah
in [40]. Shelah’s book [43] presents, moreover, many applications of pcf theory to
deal with this aspect of the question. The latter aspect of the question—namely
the forcing counterparts of the former—appeared only later, due to the enormous
difficulty of doing even the simplest forcing at a singular cardinal and the necessity
(by the Covering Lemma) of using large cardinals, for performing this task. One of
the early examples is [14].

To illustrate this sort of research, let us concentrate on one sample combinato-
rial problem, which has to do with one of the simplest but most useful notions in
mathematics, that of a graph.

A graph is a convenient way to represent a binary relation. Namely, a graph (V, E)

consists of a set V of vertices and a set E ⊆ V × V of edges. Both finite and infinite
graphs are frequently studied in mathematics and they are also used in everyday
life, for example to represent communication networks. Of particular interest in the
theory of graphs is the situation when one graph G is subsumed by another one H ,
in the sense that one can find a copy of G inside of H . This is expressed by saying
that there is an embedding from G to H . Mathematically speaking, this is defined as
follows.

Definition 1 Suppose that G = (VG, EG) and H = (VH , EH ) are graphs and f :
G → H is a function. We say that f is a graph homomorphism, or a homomorphic
embedding if f preserves the edge relation (so a EG b implies f (a) EH f (b) for all
a, b ∈ VG) but it is not necessarily 1-1. If f is furthermore 1-1, we say that f is a
weak embedding. If, in addition, f preserves the non-edge relation (so a EG b holds
iff f (a) EH f (b) holds), we say that f is a strong embedding.

Graph homomorphisms are of large interest in the theory of graphs and theoretical
computer science (see for example [23] for a recent state-of-the-art book on graph
homomorphisms). Thedecisionproblemassociated to the graphhomomorphism, that
is, deciding if there is a graph homomorphism from one finite graph into another,
is NP-complete (see Chap.5 of [23], which makes the notion also interesting in
computer sciences).
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Of particular interest in applications is the existence of a universal graph. If we
are given a class G of graphs, we say that a certain graph G∗ is universal for G if
every graph from G admits a homomorphic embedding into G∗. Of course, variants
of this relation can be obtained by replacing homomorphic embedding with weak
or strong embedding, as defined in Definition 1. The combinatorial question that we
shall survey is that of the existence of universal graphs of a fixed size κ in various
contexts.

To begin with, ZFC proves that there is a unique up to isomorphism graph G∗ of
size ℵ0. This is known as a Rado graph (or, also, random or Erdös–Rényi graph),
and it satisfies that for every finite graph G and every vertex v of G, every strong
embedding ofG\{v} intoG∗ can be extended to a strong embedding ofG intoG∗. As
a consequence, G∗ strongly embeds all countable graphs. This graph was discovered
independently in several contexts, starting from the work of Ackermann in [2], but
its universality properties were proved by Rado in [33].

Under the assumption of GCH, from the existence of saturated and special models
in first-order model theory (see [7]), it follows that a universal graph exists at every
infinite cardinal κ . In particular, the assumption that λ < κ =⇒ κλ = κ entails that
there is a saturated, and consequently universal, graph of size κ .

When we move away from GCH, the existence of universal graphs becomes a
rather difficult problem. Shelah mentioned in [41] a result of his (for the proof see
[30] or [12]), namely that adding ℵ2 Cohen reals to a model of CH destroys any
hope of having a universal graph of size ℵ1. This does not only mean that there is
no universal graph in this model, but also that, by defining the universality number
of a family G of graphs as the smallest size of a subfamily F of G such that every
element of G embeds into a member of F , we have that in the above model the
universality number of the family of graphs of size ℵ1 is the largest possible, namely
2ℵ1 . More generally, one can state the following theorem:

Theorem 1 (Shelah, see [30] or [12]) Suppose that λ < κ =⇒ κλ = κ and let P

be the forcing to add λ many Cohen subsets to κ (with cf(λ) ≥ κ++ and λ ≥ 2κ+
).

Then the universality number for graphs on κ+ in the extension by P is λ.

Using a standard argument about Easton forcing, we can see that it is equally easy
to get negative universality results for graphs at a class of regular cardinals:

Theorem 2 Suppose that the ground model V satisfies GCH and C is a class of
regular cardinals in V , while F is a non-decreasing function on C satisfying that
for each κ ∈ C we have cf(F(κ)) ≥ κ++. Let P be Easton’s forcing to add F(κ)

Cohen subsets to κ for each κ ∈ C . Then for each κ ∈ C the universality number
for graphs on κ+ in the extension by P is F(κ).

The proofs of these results are quite easy. In [41], Shelah emphasizes this by
claiming that “The consistency of the non-existence of a universal graph of power
ℵ1 is trivial, since, it is enough to add ℵ2 generic Cohen reals”. He focuses, indeed,
on a much more complex proof, that of the consistency of the existence of a universal
graph at ℵ1 with the negation of CH. He obtained such a proof in [42], while Mekler
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obtained a different proof of the same fact in [32]. Insofar as ℵ0 is regular, ℵ1 is
the successor of a regular cardinal. Other successors of regular cardinals behave
in a similar way, although neither Mekler’s nor Shelah’s proof seems to carry over
from ℵ1 to larger successors of regulars. A quite different proof, applicable to larger
successors of regulars but proving a somewhat weaker statement, was obtained by
Džamonja and Shelah in [15]: they proved that assuming that it is relatively consistent
with ZFC that the universality number of graphs on κ+ for an arbitrary regular κ is
equal to κ++ but 2κ is as large as desired.

All these results only concern regular cardinals and their successors, and leave
open the question for singular cardinals and their successors. Positive results analo-
gous to the one just mentioned by Džamonja and Shelah were obtained by Džamonja
and Shelah, again, in [14], for the case where κ is a singular cardinal of countable
cofinality, and by Cummings, Džamonja, Magidor, Morgan and Shelah in [9], for
the case where κ is a singular cardinal of arbitrary cofinality. The most general of
their results can be stated as follows:

Theorem 3 (Cummings et al. [9]) If κ is a supercompact cardinal, λ < κ is a
regular cardinal and Θ is a cardinal with cf(Θ) ≥ κ++ and κ+3 ≤ Θ , then there is
a cardinal preserving forcing extension in which cf(κ) = λ, 2κ = 2κ+ = Θ and in
which there is a universal family of graphs on κ+ of size κ++.

Further recent results of Shelah (private communication) indicate that the uni-
versality number in the above model should be exactly κ++. These results concern
successors of singular cardinals, which themselves are, of course, regular. The situ-
ation for singular cardinals themselves is different; in particular, no forcing notion
can operate on them. We do not have any general results about graphs on such car-
dinals, but here is a result showing that in specific classes of graphs, the existence of
a universal element at singulars is simply ruled out by the axioms of ZF (not even
the full ZFC is needed):

Theorem 4 (Džamonja [13]) (ZF) Suppose that κ is a cardinal of cofinalityω. Then,
for any λ ≥ κ in ZF, there is no universal element in the class of graphs of size λ

that omit a clique of size κ , under graph homomorphisms, or the weak or the strong
embeddings.

This survey of the graph universality problem shows in a specific example the
phenomenon of the change in the combinatorial behaviour between the three kinds
of cardinals: successors of regulars, successors of singulars and, finally, singular
cardinals. At successors of regulars combinatorics is very independent of ZFC, so
that simple forcing, without use of large cardinals, allows us to move into universes
of set theory which have very distinct behaviours. At the successor of a singular
cardinal, we can move from L-like universes only if we use large cardinals (as we
know by Jensen’s Covering, mentioned above), and this shows up in combinatorics in
the necessity to use both large cardinals and forcing to obtain independence results.
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This independence is in fact limited (as in the example of Shelah’s pcf theorem
quoted above). Finally, at singular cardinals, combinatorics tends to be completely
determined by ZFC, or even by ZF, as in the example of Theorem 4.

In connection with this theorem, it is interesting to note that in the absence of
the Axiom of Choice, it is possible that every uncountable cardinal is singular of
countable cofinality. To be exact, Gitik proved in [18] that from the consistency of
ZFC and arbitrarily large strongly compact cardinals, it is possible to construct a
model of ZF in which all cardinals have countable cofinality. Therefore, if one is
happy to work with ZF only, then one has the choice to move to a model in which
only singular cardinals exist and they only have countable cofinality. In such amodel,
combinatorics becomes easy and determined by the axioms, at least in the context
of the questions that have been studied, such as the graph universality problem.

4 Philosophical Remaks

Mathematical platonism is often presented as the thesis that mathematical objects
exist independently of any sort of human (cognitive, and/or epistemic) activity, and
it is taken to work harmoniously with a realistic semantic view, according to which
all we can say in mathematics (i.e. by using a mathematical language) is either true
or false, to the effect that all that has been (unquestionably) proved is true, but not all
that is true has been (unquestionably) proved or can be proved (because of various
forms of incompleteness of most mathematical theories).

Both claims are, however, quite difficult to support and are, in fact, very often
supported only by the convenience of their consequences, or, better, by the convenient
simplicity of the account of mathematics they suggest, and because they provide
a simple explanation of the feeling most mathematicians (possibly all) have that
something external to them resists their intuitions, ideas, programs, and conjectures,
to the effect that all that they can frame by their thoughts or their imagination must
have, as it were, an external, independent approval, before having its place among
mathematical achievements. Hence, an interesting philosophical question is whether
there can be weaker claims that have similarly convenient consequences and that can
be more easily positively supported, either by evidence coming from mathematical
practice, or by more satisfactory metaphysical assumptions, or, better, by both.

It is our opinion that such claims can reasonably be formulated. In short, they are
the following: (i) there are ways for us to have epistemic de re access tomathematical
objects; (ii)we are able to prove truths about them, thoughothers are still not provedor
are unprovable within our most convenient theories (which are supposed to deal with
these objects). Claim (i) means that there are ways for us to fix intellectual contents
which are suitably conceived as individuals that mathematics is dealing with, in such
a way that we can afterwards (that is, after having fixed them) ascribe properties
and relations to these individuals. Claim (ii) means that some of our ascriptions
of property and relations to these individuals result in truths, in the sense that they
somehow comply with the content we have afterwards fixed, and, among them, some
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can be, and in many cases have been, provably established, though others are still
not so or cannot be so within the relevant theories.

The phrase ‘de re’ in claim (i) belongs to the philosophical lexicon. It is currently
used in opposition to ‘de dicto’ to point out a distinction concerning propositional
attitudes, typically belief (or knowledge). Believing that something is P can mean
believing either that there is at least one thing that is P or that some specific thing is
P . In the former case the belief is de dicto; in the latter de re. If the relevant thing is
t , a suitable way to unambiguously describe the second belief is saying that of t , it is
believed that it is P . This makes clear that the subject of a de re propositional attitude
is to be identified independently from ascribing to it what the relevant proposition
ascribes to it. Hence, its being P cannot be part of what makes it what it is. This is
not enough, however, since for the attitude to be de re, the identification has to be
stable under its possible variations. If Mirna believes that t is the only thing that is
Q, her believing of t that it is P is the same as her believing it of the Q. But Marco
can believe that the only thing that is Q is s (distinct from t). So his believing of the
Q that it is P is quite distinct from Mirna’s belief that it is so. Hence neither beliefs
are de re. This makes clear that the identification of the subject of a de re attitude is
to be independent of the attitude itself or, even, of any sort of attitude (since different
attitudes can compose each other’s). This is why the most straightforward examples
of de re attitudes concern empirical objects ostensively, or pre-conceptually identified
in one way or another.

This has not prevented philosophers from appealing to the de re versus de dicto
distinction in relation to mathematics. In particular, a rich discussion has concerned
the possibility of using appropriate sorts of numerals for directly referring to natural
numbers while having a de re attitude towards them. Diana Ackerman has considered
that “the existence of [natural] numbers is a necessary condition for anyone’s hav-
ing de re propositional attitudes toward them” ([1], p. 145). Granted their existence,
Tyler Burge has wondered whether we can have “a striking relation to […][a natural
number] that goes beyond merely conceiving of it or forming a concept that repre-
sents it”, and answered that this is so for small such numbers, since “the capacity
to represent […][them] is associated with a perceptual capacity for immediate per-
ceptual application in counting” ([6], pp. 70–71). Saul Kripke has gone far beyond
this, by suggesting a way to conceive natural numbers that makes decimal numer-
als apt to “reveal[…] their structure” ([39], p. 164; [29]). For him, natural numbers
smaller than 10 are the classes of all n-uples (n = 0, 1, . . . , 9), while those greater
than 9 are nothing but finite sequences of those smaller than 10. This makes decimal
numerals, or, at least, short enough ones, work as “buckstoppers” (i.e. they are such
that it would be nonsensical asking which number is that denoted by one of them, in
opposition to terms like ‘the smallest perfect number’, denoting the natural number
whose buckstopper is ‘six’), and so allow direct reference to them. By dismissing
such a compositional conception of natural numbers, Jan Heylen [25] and Stewart
Shapiro [38] have respectively submitted that Peano numerals (the numerals of the
form ‘0′...′’, written using only the primitive symbols for zero and the successor rela-
tion in the language of Peano Arithmetic) and unary numerals (mere sequence of n
strokes used to denote the positive natural number n) provide canonical notations
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allowing de re knowledge of natural numbers. Finally, Jody Azzouni [3] has argued
that the existence of natural numbers is not required for having “de re thought” about
them, since such a thought can be “empty”.

Our use of ‘de re’ in claim (i) differs from all these uses in that the de re versus
de dicto distinction has a much more fundamental application in our account of
mathematics. Far from merely concerning our way of denoting natural numbers so
to identify them in such a way to make de re propositional attitudes towards them
possible, granted their existence, or our de re thought about them empty, granted their
nonexistence, it concerns our way of fixing mathematical objects so as to confer
existence to them. In our view these objects are, indeed, nothing but contents of
(intentional) though, whose existence just depends on the way they are fixed. Here
is how we see the matter.

There are many ways of fixing intellectual contents, which, in appropriate con-
texts, are (or can be) suitably conceived as individuals. A liberal jargon can refer
to these contents as abstract objects. If this jargon is adopted, the claim that math-
ematics deals with abstract objects becomes quite trivial, and can neither be taken
as distinctive of a platonist attitude, nor can provide any characterisation of math-
ematics among other intellectual enterprises. In a much more restrictive jargon, for
something (i.e. the putative reference of a term or description) to count as an object, it
has to exist. Under this jargon, the claim that mathematics deals with abstract objects
becomes much more demanding, overall if it is either required that these objects
are self-standing or mind-independent, or if it is supposed that nothing can acquire
existence because of any sort of intellectual (intentional) act. The problem, then,
with this claim is that it becomes quite difficult to understand what ‘to exist’ can
mean if referred to abstract contents. What we suggest is reserving the term ‘abstract
object’ to intellectual contents suitably conceived as individuals and so fixed, in an
appropriate context, so as to admit de re epistemic access, this being conceived, in
turn, as the apprehension of them making de re attitudes towards them possible.
We submit that, once this is granted, the claim that mathematics deals with abstract
objects becomes both strong enough and distinctive, so as to provide the ground for
an appropriate account of mathematics.

Mathematics traditionally admits different modalities for fixing intellectual con-
tents. The French philosopher Jean-Michel Salanskis [34, 35] suggested to distin-
guish two basic ways of doing it: constructively and correlatively.

The former way has a more limited application, but can be taken, in a sense,
as more fundamental. Peano’s numerals can, for instance, be quite simply fixed
constructively by stating that: (i) the sign ‘0’ is a Peano’s numeral; (ii) if the sign ‘σ ’
is such a numeral, then the sign ‘σ ′’ is such a numeral, too; (iii) nothing else is such a
numeral. Similarly, unary numerals can be constructively fixed by stating that: (i) the
sign ‘|’ is such a unary numeral; (ii) if the sign ‘σ ’ is such a numeral, then the sign
‘σ |’ is such a numeral, too; (iii) nothing else is such a numeral. These are numerals,
not numbers, however. And is clearly unsuitable to use the same pattern to define
natural numbers. Suppose it were stated that: (i) 0 is a natural number; (ii) if σ is
such a number, then σ ′ is such a number; (iii) nothing else is such a number. It would
have not been established yet that there is no natural number n such that 0 = n′, or
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n = n′. To warrant that this is so, it would still be necessary to impose appropriate
conditions to the successor function −′, which cannot be done constructively. To
overcome the difficulty, one could have recourse to a trick: stating the natural numbers
are the items that Peano numerals denote, or positive such numbers the items that
unary numerals denote, in such a way that distinct such numerals denote distinct
such numbers. This would make Peano’s numerals directly display the structure
of natural numbers, and unary ones that of positive natural numbers, so providing a
canonical notation for these numbers allowing direct reference to them, in agreement
to Heylen’s and Shapiro’s proposals. But this would be dependent on the informal
notion of denotation. Supposing that we have the necessary resources for handling
this notion without ambiguity, this would allow us to fix natural numbers almost
constructively. Once this is done, one could look at these numbers as such, and try
to disclose properties they have and relations they bear to each other’s. Making it in
agreement with mathematical requirements of rigor asks both for further definitions
and the fixation of inferential constraints or rules, typically of an appropriate codified,
if not formal, language. What is relevant for illustrating our point, is, however, not
this, but rather that that we can do both things in such a way to keep the reference
steady to the contents previously fixed as just said: it is on them that we define the
relevant properties and relations; and it is to speak of them that we establish the
appropriate inferential constraints, and fashion (or adopt) the appropriate language,
which allows us to say of them, or some of them, that they are so and so. This should
give a rough idea of the intellectual phenomenon we want to focus on by speaking
of de re epistemic access.

More importantly, we could observe that once appropriate intellectual contents are
fixed constructively, one can also try to capture them correlatively, that is, through an
axiomatic implicit definition. This can be done somehow informally, or by immersing
the definition within a formal system affording both the appropriate language and
the appropriate inference rules (or, possibly, allowing to state these rules). In the
case of natural numbers, we can, for instance, define them, through Peano axioms,
within an appropriate system of predicate logic, and we could conceive of doing
that with the purpose of characterizing correlatively the same contents previously
fixed constructively, so as that each of them provide the reference for a singular
term appropriately introduced within the adopted language, and that they provide,
when taken all together, the domain of variation and quantification of the individual
variables involved in the definition.

The predicate system adopted can be both first- or higher-, typically second-,
order. There is, however, a well-known difference among the two cases: while Peano
second-order arithmetic (or PA2, for short) is categoric (with respect to the subjacent
set theory), by a modern reformulation of Dedekind’s argument [10], Peano first-
order arithmetic (or PA1, for short) is not, by an immediate consequence of the
Löwenheim-Skolem’s theorem [7]. This suggests that the verb ‘to capture’ is not to
be understood in the same way in both cases. In the second-order case, it means that
the relevant axioms determine a single structure (up to isomorphism),whose elements
are intended to be the natural numbers, identified with the same objects previously
fixed constructively. In the first-order case, it means that these axioms describe a
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class of non-isomorphic structures, all of which include individuals that behave,
with respect to each other’s, in the same way as the elements of this structure do, and
that we can then intend, again, as the same objects previously fixed constructively.

Both in the usual platonist tongue, and in our amended one, we could say that the
limited expressive power of a first-order language makes it impossible to univocally
describe the natural numbers by means of such a language: to do it, a second-order
language is needed (and it suffices). Still, the verb ‘to describe’ should be under-
stood differently in the two cases: while in the former case it implies that that these
numbers are self-standing objects that are there as such, independently of any intel-
lectual achievement, in the latter case, it merely implies that these objects have been
previously fixed. Hence, if no previous definition were admitted or considered, the
verb ‘to fix’ should be used instead. What should, then, be said is that the limited
expressive power of a first-order language makes it impossible to univocally fix the
natural numbers by means of such a language. (Of course, the relativisation of the
categoricity of PA2 to a given model of set-theory makes the usual platonist tongue
appropriate only insofar as it is admitted that this model reflects the reality of the
world of mathematical objects, which, in presence of the strong non-categoricity of
ZFC requires a further act of faith. But on this, later.)

The difference between and first- and the second-order case is not limited to
this, however. Another relevant fact is that the language of PA1 is forced to include,
together with the primitive constants used to designate the number zero and the
successor relation, also two other primitive constants used to designate addition and
multiplication. (Though versions of PA1 often adopt a language including a further
primitive constant used to designate the order relation, this can be easily defined
in terms of addition by, then, reducing the number of axioms, albeit increasing the
syntactical complexity of some proofs.) The only primitive constants which are
required to be included in the language of PA2 are, instead, those used to designate
the number zero and the successor relation: addition and multiplication (as well as
order), can be recursively defined in terms of zero and successor. Hence, whereas
Peano second-order axioms (implicitly) define a structure

〈
N, ′〉 Peano first-order

axioms define uncountably many distinct structures
〈
N, ′,+,×〉

. It remains the fact,
nevertheless, that the former structure is reflected within any one of the latter ones.
Hence, if we admit that the axioms of PA2 capture or fix a domain of objects in an
appropriate way, there is room to say that PA1 is studying these same objects by
weaker logical means, by identifying them as the common elements of uncountably
many possible structures

〈
N, ′,+,×〉

, though being unable to provide an univocal
characterisation of them.

This should clarify a little better what having epistemic de re access to mathemat-
ical objects could mean: one could argue that, once natural numbers are captured or
fixed by the axioms of PA2 as the elements of

〈
N, ′〉, one can, again, look at them

as such and try to disclose their properties and relations, so as to recover the same
property or relation already ascribed to them, and possibly more. This can be done in
different ways. By staying within PA2, one can, for example, besides proving the rel-
evant theorems statable in its primitive language, also enrich this language bymeans
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of appropriate explicit definitions, so as to introduce appropriate constants—as those
designating addition multiplication and order—to be used in the relevant proofs. By
leaving this theory, one can also try to describe them by using a weaker language,
such as a first-order one, and be, then, forced to implicitly define addition and mul-
tiplication in them by appropriate axioms, though being unable to reach an univocal
description. Other ways for studying these numbers are, of course, at hand. But, for
our present purpose, we can confine ourselves to observe that in this latter case (as in
many other ones), what we are doing may be appropriately accounted for by saying
that, of these very numbers, we claim (by using the relevant first-order language)
that they are so and so, or, better, that they form a structure

〈
N, ′,+,×〉

.
There is a quite natural objection one could address to these views. One could

remember that, as any other second-order theory, PA2 is syntactically incomplete,
to the effect that some statements that are either true or false in its unique model
are neither provable nor disprovable in it, and there is, then, no way (or at least
no mathematically appropriate way) for us to know whether they are true or false.
Hence, one could argue, whatever a de re access to natural numbers, as defined by
PA2, might be, it cannot be, properly speaking, an epistemic access, since there are
not only things about these numbers that we do not know, but also things that we
cannot know. We think this objection misplaced, since something analogous also
occurs for genuine empirical objects. Take the chair you sit on (if any): there are
many properties that we suppose (at least from a realist perspective) that it does or
does not have, about which even our best theories and the information we are in place
to obtain are insufficient to make a decision. This should not imply, it seems to us,
that you have no knowledge of that chair. Of course, we could always change our
theories or improve them if we considered that deciding some questions that we know
to be undecidable within them is relevant. In the same way, if we were considering
(or discovering) that there are some relevant statements about natural numbers which
are provably undecidable in PA2, we could try to add axioms to the effect of provably
deciding these statements. But allowing this possibility does not imply that we do
not have de re epistemic access to these numbers as fixed by PA2, while working on
them either within or outside it. All that is required for it is that there is a suitable
sense in which we can say that on these numbers (as independently fixed) we can
define some properties or relations within this theory, or of these numbers we can
claim this or that outside the theory.

Something similar to what happens with PA2 also happens with Frege arithmetic
(or FA, for short), namely full (dyadic) second-order logic plus Hume’s Principle
(see Wright [49] or [4], especially Sect. II). The role played by natural numbers in
the former case is played by the cardinal ones (understood as numbers of concepts)
in the latter case. Once a particular cardinal number, typically the number of an (or
the) empty concept is identified with 0, and an appropriate functional and injective
relation is defined on these numbers so as to play the role of the successor relation,
one can select the natural numbers among the cardinal ones, as being 0 together with
all its successors. One can then capture or fix the natural numbers without appealing
to addition and multiplication on them (and no more on order, at least explicitly).But
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now there is even more: these numbers can be captured or fixed by selecting them
among itemswhich are fixed, in turn, by appealing neither to a designated item like 0,
nor to a certain dyadic relation, like the successor relation. Of the cardinal numbers,
one could, then, say, that some of them are the natural ones and can be studied as
such with other appropriate means.

It is easy to see that, as opposed to PA2, FA is not categoric (with respect to the
subjacent set theory). This merely depends on the presence in some of its models
of objects other than cardinal numbers, which can be absent from others. Still, FA
interprets PA2 (this is generally known as Frege’s theorem: see [22], for example),
and a result of relative categoricity can also be proved for FA ([47], prop. 14; [48],
pp. 573–574): any two models of it restricted to the range of the number-of operator
are isomorphic (with respect to the subjacent set theory). This might make one think
that a form of categoricity (with respect to the subjacent set theory) is essential for
allowing de re epistemic access to mathematical objects, i.e. that the only intellectual
contents suitably conceived as mathematical objects that we can take to have de re
epistemic access to are those fixed within a theory endowed with an appropriate form
of categoricity (with respect to the subjacent set theory).

This is not what we want to argue for, however. The previous example of the
constructive definition of positive natural numbers should already make it clear.
Another, quite simple example is the following: when we define the property of
being a prime number within PA1, we do it on the natural numbers in such a way
that we can say that on these numbers we define this property; if the definition
is omitted, many usual theorems of PA1 can no longer be proved, of course, but
this does not change anything to many other theorems still concerned with natural
numbers as defined within this theory. These two examples are different from each
other, and both different from that given by the access to natural numbers as defined
within PA2. That provided by the definition of prime numbers within PA1 is only
an example of de re epistemic access internal to a given theory, which reduces, in
fact, to nothing more than the possibility of performing an explicit definition within
this very theory. Claiming that we have de re epistemic access to natural numbers
as defined constructively, or to these very numbers as defined correlatively within
PA2, when we try to study them in a different context, is quite a different story. Still,
there is something similar in the three cases, and this is just what we are interested
in underlining here: it is a sort of (relative) stability of intellectual contents counting
as mathematical objects, a stability that is made possible by the way these contents
are fixed. We do not want to venture here in the (possibly hopeless) tentative of
classification of forms of de re epistemic access. Still, it seems clear to us that the
phenomenon admits differences: both the stability depending on a constructive, or,
more generally, informal definition, and that depending on a categorical implicit
formal definition are extra-theoretic; the former is strictly intentional, as it were, the
latter semantic; that depending on explicit definitions within non-categoric theories
is merely syntactic (and, then, intra-theroretic) or restricted, at least, to an informally
identified intended model. But the notion of independent existence of mathematical
objects, which usual platonism is concerned with, is imprecise enough to make it
possible to hope that all these different sorts of stability can provide an appropriate



176 M. Džamonja and M. Panza

(metaphysically weak) replacement of it in many cases in which platonists use it in
their accounts of mathematics.

# # #

But, let it be as it may. The question here is different: what does all this have to do
with ZFC, and the results mentioned in Sects. 2 and 3, above?

On the one side, it is clear not only that the categoricity of PA2 and FA is relative
to the (inevitably arbitrary) choice of a model of set-theory, and, then, typically,
of ZFC, but also that what has been said about PA1, PA2 and FA has a chance to
be clear only if set-theory provides us with a clarification of the relevant crucial
notions. This is, however, not enough for concluding that whatever philosophical
position we could take on natural numbers, and other mathematical objects along
the lines suggested above, is necessarily dependent on a preventive account of ZFC.
On the one side, we do not need all the expressive and deductive power of ZFC,
and a fortiori of whatsoever acceptable extension of it, to make the relevant notions
clear. On the other side, it is exactly the high un-categoricity of ZFC that invites
us to reason with respect to finite numbers under the supposition that a model of
the subjacent set-theory has been chosen, or, even, independently of the preventive
assumption that these numbers are sets.

This suggests taking ZFC as an independent mathematical theory—one, by the
way, powerful enough to be used (among other things) for studying from the outside
the structures formed by the natural numbers, as well as by other mathematical
objects, as objects we have a de re epistemic access to independently of (the whole
of) it. One could then ask whether some sort of de re epistemic access to pure
sets (conceived as sui generis objects implicitly defined by ZFC) is possible or
conceivable. The high un-categoricity of ZFC seems to suggest a negative answer.
Because it looks like neither this theory as such, nor any suitable extension of it
(with the only exception, possibly, of ZFC + ‘V = L’, if this might be taken to be a
suitable theory, at all) can provide a way to fix pure sets in any appropriate way for
allowing de re (semantic) epistemic access to them. Upon further reflection, the case
can appear, however, not to be so desperate as it seems to be at first glance, and the
results mentioned above help us in seeing why this is so.

To begin with, one might wonder whether, in analogy to what we have said
concerning PA1 and PA2, ZFC could not be taken as studying pure sets as the objects
previously fixed in a quasi-categorical way by ZF2, just like PA1 might be taken to
do with the natural numbers as (captured or) fixed by PA2.

The problem with this suggestion is that the relations between ZFC and ZF2 are
not as illuminating as those between PA1 and PA2. For example, if we fix a level
of the cumulative hierarchy of sets, say Vα , then the second-order theory of Vα is
simply the first-order theory of P(Vα) = Vα+1, hence passing to the second-order
does not seem like it has achieved much. However, it is true that formulating ZF in
the full second-order logic so as getting ZF2, one achieves what is known as quasi-
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categoricity. The proof is basically contained in Zermelo [50]. We can describe the
situation in more detail although informally, as follows.

What Zermelo proved for ZF2 is that for any strongly inaccessible cardinal υ

which is supposed to exist, there is a single model (up to isomorphism) of ZF2 pro-
vided by the structure 〈Vυ,∈〉. It follows that all theories ZF2 + ‘there are exactly
n strongly inaccessible cardinal’ (n = 0, 1, 2, . . .), or ZF2n , for short, are fully cate-
gorical, giving that ZF2 has, modulo isomorphism, asmany (distinct) models as there
are strongly inaccessible cardinals (recall that Vυ can only include strongly inacces-
sible cardinals smaller than υ). Of course, in any of these models any statement of
the language of ZF2 is either true or false (according to the Tarski’s semantic). But,
because of the proof-theoretical incompletess of the second-order logic, and, then,
of any second-order theory, it is not necessarily decidable. As noted below, this is so
also for PA2. The difference is that in these extensions of ZF2, the undecidable state-
ments include somewith a clear and unanimously perfectly recognizedmathematical
significance, namely CH and GCH.

Now, while the problem of deciding GCH (for cardinals greater than 2ℵ0 ) can
be seen as intrinsically internal to set theory (both to ZFC and ZF2), this is not so
for CG. For, if we admit that there are (necessarily not-constructive) ways to fix
real numbers, so as to allow us to have de re epistemic access to them (for example
within PA2, as originally suggested by Hilbert and Bernays ([24], supplement IV),
the problem of deciding CH can be seen as the question of answering the very natural
question of how many are such numbers, a question which should, then, be seen as
having a definite answer outside set theory (both ZFC and ZF2). The difference is,
then, relevant, also from the point of view we are delineating.

Usually, a model VM of ZFC is diagrammatically represented this way:

VL

where VL is the model of ZFC + ‘V = L’, and the external triangle can coincide
with the internal one (which happens if ‘V = L’ is true in the model), but not go
up to become internal. However, insofar as nothing requires that a model of ZFC
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have a uniform hierarchic shape, and no significant feature of it is represented by the
symmetry of the diagram, we submit that a better representation is the following

V
L

where all that is required of the external curve, call it ‘C ’, for short, is that it is
everywhere increasing (with respect to the line of cardinals, taken as axe) and external
or coincident to the internal half straight-line. If this picture is adopted, a model of
ZF2 could be depicted in the same way, with the specification that the external curve
is univocally determined by the choice of a strongly inaccessible cardinal υ, or by
the supposition that there are exactly n such cardinals, which leads to our calling it
‘Cυ’ or ‘Cn’.

One could, then, advance that (the axioms of) ZF2 plus the choice of a strongly
inaccessible cardinal, or (those of) ZF2n allow to univocally fix a domain of sui
generis objects—call it ‘the υ-sets’ or ‘the n-sets’—and that ZFC is studying these
very objects with weaker logical means as elements of uncountably many possible
structures, being unable to provide an univocal characterisation of them.

This suggests that ZF2, plus the choice of a strongly inaccessible cardinal, or
ZF2n provide domains of objects we can have a de re access to, in the same way as
this happens for PA2, that is, not only internally, and so providing a sort of syntactic
stability, but also externally, so as to provide a sort of semantic stability: one could
argue that, once pure sets are fixed by the relevant (second-order) axioms, one can
look at them as such and try to tell (both using a first- or a second-order language)
the properties they have or the relations they bear to each other’s. Of them, we claim
that they form a structure that ZF(C) and all its usual (first-order) extensions try to
describe, though being unable to univocally identify.

Still, the relativisation to the choice of a strongly inaccessible cardinal or the
admission of the supplementary axiom ‘there are exactly n strongly inaccessible
cardinals’ make the situation much less satisfactory than the one concerned with
Peano (first- and second-order) arithmetic: taken as such, ZF2 is not only proof-
theoretically incomplete; it is also unable to univocally fix the relevant objects.
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This relativisation or admission do not prevent us from ascribing, however, to
ZF2 a form of categoricity, since from Zermelo’s result “it also follows that every
set-theoretical question involving only sets of accessible rank is answerable in ZF2”,
and, then, in particular, that “all propositions of set theory about sets of reals which
are independent of ZFC”, among which there is CH, are either true or false in any of
its model, though no proof could allow us to establish whether the former or the latter
obtains ([26], p. 790). Thismight be taken as very good news.But a strong objection is
possible: it is possible to argue that the truth or falsity of CH in anymodel of ZF2 does
not depend on the very axioms of this theory, but on the consequence relation which
is determined by the use of second-order logic and the standard (or full) interpretation
of it, or, in other terms, that what makes CH true or false there is not what the axioms
of ZF2 genuinely say about sets, but their using second-order variables, semantically
interpreted as sets of n-tuples on the fist-order domain. Clearly, this would make
second-order logic so interpreted “inadequate for axiomatizing set theory” (see [26],
pp. 782 and 790–793, for details).

We do not want enter such a delicate question here. We merely observe that the
mathematical results we have expounded above show that there is no need to go
second-order to get a limited form of quasi-categoricity. Since these results suggest
that ZFC has already (and alone, that is, without any need to appeal to any supple-
mentary axiom) the resources for fixing some of its objects in a better way than it is
usually thought. Namely, if we are happy to work at a singular cardinal then much of
the combinatorics is determined by what happens at the regular cardinals below, even
to the point of fixing the cardinal arithmetic (see Shelah’s Theorem 1 quoted above).
In some cases, we do not even need to know what happens at the regular cardinals
below (see Theorem 4). And if we are happy to be in a world with no Axiom of
Choice, we can even imagine that all cardinals are singular, as in the Gitik’s model
and hence much of the cardinal combinatorics is completely determined by ZF.

Let us look back to the second of the previous figures and suppose that κ is a
singular cardinal. What these results suggest is this: if the values of the ordinates of
C are fixed for all regular cardinals λ smaller than κ , i.e. if a single model of ZFC is
chosen relatively to all these regular cardinals, then the value of the ordinate of C for
κ is strongly constrained, in the sense that this value can only belong to a determined
set (a set, not a class) of values. In other terms, things seem to happen as if the shape
of a model of ZFC for the regular smaller than κ strongly conditions the shape of the
possible models at κ .

These results could be understood as saying that the non-categoricity of ZFC is, in
fact, not as strong as it appears. Even within first-order, the behavior of the universe
of sets is fixed enough at singular cardinals to give us some sort of external and
semantic de re epistemic access to them and their power sets. In particular, once
we have given to us all sets of size < κ and all their power sets, our choices for
κ are quite limited. This offers an image of the universe of sets in which a strong
lack of uniuvocality only concerns successor cardinals or uncountable regular limit
cardinals, if any (remember that the existence of uncountable regular limit cardinals
is unprovable in ZFC). One could say that, at singular limits, ZFC already exhibits
a form of categoricity, or, better, that it does it asymptotically, since the ratio of
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singular cardinals over all cardinals tends to 1 as the cardinals grow. And at the price
of working only in ZF we can even imagine to be in the model of Gitik, in which
every uncountable cardinal is a singular limit.

Under a realist semantic perspective, according to which all we could say about
the universe of sets is either true or false, one could say that this shows that, though
ZFC is unable to prove the full truth about this universe, it provably provides an
asymptotic description where the singular cardinals are the limits of the asymptotes.
This also suggests, however, an alternative and more sober picture, which is what we
submit: though there is no sensible way to say what is true or false about the universe
of sets, unless truth and falsity are merely conceived as provable truth and falsity,
ZFC provides an asymptotically univocal image of the universe of sets around the
singular cardinals: the image of a universe to which we can have an external semantic
de re epistemic access.
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Interpretation and Truth in Set Theory

Rodrigo A. Freire

Abstract The present paper is concerned with the presumed concrete or interpreted
character of some axiom systems, notably axiom systems for usual set theory. A
presentation of a concrete axiom system (set theory, for example) is accompanied
with a conceptual component which, presumably, delimitates the subject matter of
the system. In this paper, concrete axiom systems are understood in terms of a
double-layer schema, containing the conceptual component as well as the deductive
component, corresponding to the first layer and to the second layer, respectively. The
conceptual component is identifiedwith a criterion given by directive principles. Two
lists of directive principles for set theory are given, and the two double-layer pictures
of set theory that emerged from these lists are analyzed. Particular attention is paid to
set-theoretic truth and the fixation of truth-values in each double-layer picture. The
semantic commitments of both proposals are also compared, and distinguished from
the usual notion of ontological commitment, which does not apply. The approach
presented here to the problem of concrete axiom systems can be applied to other
mathematical theories with interesting results. The case of elementary arithmetic is
mentioned in passing.

1 Introduction

A foundational analysis of meaning and truth in axiomatic theories usually begins
with a division of axiom systems in two groups: An axiom system is said to be
concrete if its language is supposed to be interpreted in a specific way. In opposition,
an axiom system is said to be abstract if it is not supposed to be interpreted in a
specific way. For example, when explaining the construction of axiom systems in
mathematics, Shoenfield writes:

We have so far supposed that we have definite concepts in mind. Even so, it may be possible
to discover other concepts which make the axioms true. In this case, all the theorems proved
will also be true for these new concepts. This has ledmathematicians to frame axiom systems
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in which the axioms are true for a large number of concepts. A typical example is the set
of axioms for a group. We call such axiom systems modern axiom systems, as opposed to
the classical axiom systems discussed above. Of course, the difference is not really in the
axiom system, but in the intentions of the framer of the systems. ([12], p. 2)1

I agree with Shoenfield that it is unproblematic that the difference is not really
in the systems. However, how could one fix the system’s intended interpretation?
There are obvious problems with the claim that the intentions of the framer of the
system already fix the interpretation. For it is not enough to intend. It is not clear how
intentions could fix an interpretation, for the intention to present an axiom system
about some specific subject matter may not suffice to interpret the axiom system.

When we are introduced to axioms for (first-order) arithmetic we are (usually)
supposed to learn that they are about definite concepts of sum and product of natural
numbers. But, using Shoenfield’s formulation, there are other concepts which makes
the usual axioms of arithmetic true. An axiom system is constituted by sentences
which are purely linguistic objects, and its interpretation, what it is intended to be
about, is therefore amatter of language convention. The acquiredmeaning of linguis-
tic symbols is given by some kind of convention. What is the language convention
according to which it is possible to interpret axioms for arithmetic in the usually
intended way? One such language convention must fulfill intentions, but it cannot
be made of intentions. For it seems clear that we do not learn intentions, whatever
this could mean, when we learn that an axiom system for arithmetic talks about the
definite concepts of sum and product of natural numbers, because it is not clear how
to constitute a language convention from intentions.

This paper is first of all concerned with the following

Problem 1: How could we explicate the commitments latent in the interpretation of
an axiom system for set theory we happen to have inherited?

If an axiom system is supposed to talk about some definite concepts, then there must
be something prior to the system in question that we have to adopt in order to interpret
its language. Otherwise, how could the sentences of an axiom system acquire the
meaning that fulfills the intention to talk about specific concepts? As I have argued
above, although this prior standard that we have adopted when we learn to interpret
an axiom system for set theory must fulfill the relevant intentions, it cannot be a
plurality of intentions. Now, the relevant question is: What should we adopt in order
to interpret an axiom system for set theory in some specific way?

Of course, one could say “why bother? If we do not know how to make sense of
the notion of interpreted formal system, just forget about it. It does not make any dif-
ference when we are doing the technical work with formal systems.” Unfortunately,
the problem of making sense of the notion of interpreted formal system is directly
related to the problem of fixing truth-values. Based on Gödel’s incompleteness theo-
rems, arithmetical truth is generally held to go beyond provability, implying that the
axiom systems for arithmetic must be regarded as concrete. Therefore, there must be
an interpretation of the language of arithmetic fixing truth-values beyond provability.

1The terms concrete and abstract are used, for example, by Tait in [13], p. 90.
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Making sense of the notion of interpreted formal system is a required component in
any explanation of this transcendent nature of arithmetical truth.

Notice that problem 1 is only asking how canwe understand the notion of concrete
axiom system for set theory, that is, how can we explicate interpreted character of
the language of set theory that excludes from consideration at least some concept of
set membership which nevertheless makes the axioms true. The thesis that there is
one correct concrete axiom system for set theory is a substantive thesis that I will
discuss later.

In general, we say that a sentence is true with respect to a prior standard if
an agreement between sentence and standard obtains. Otherwise, we say that the
sentence is false with respect to the instituted standard. The commitments latent in
an interpretation of an axiom system for set theory amounts to such a prior standard.

There is a traditional position on this problem according to which an interpreted
axiom system for set theory is an axiom system endowed with a model, or a class
of models which constitute a prior standard for the correctness of the axiom system,
existing independently of our mathematical practice. These independent models can-
not be the usual mathematical models. In fact, usual mathematical models are math-
ematical objects living inside set theory, and cannot be used to define the presumed
concrete character of set theory. In this picture, the interpretation of an axiom system
for set theory is committed to the existence of independent models.

Furthermore, in this framework, we are assumed to have some kind of “nonpropo-
sitional grasp”, or “mathematical intuition” of independent models, from which we
interpret the axiom systems and ground the axioms. This viewwill be discussed later.
For now, it is enough to say that I think this position is inadequate. Models for set
theory are very complicated, there is no simple representation of such a model, and
it is not reasonable to say that models for set theory are, historically or conceptually,
prior to the axioms. It is not clear howwe could have some kind of “nonpropositional
grasp” of those models, and how we could extract a language convention connecting
the axiom system and its models from it.

I will work out a completely different solution to problem 1 based on the following
thesis: If an axiom system is supposed to be interpreted in a specific way, then there
must be a public criterion, given as principles which are considered unambiguous,
objective and based on the standard practice of the relevant mathematical theory2

and prescribe the interpretation of the system, that is, the intended class of models.
What do we learn when we learn to interpret an axiom system for set theory is a
list of principles that prescribe that interpretation. It is not necessary to assume the
existence of standard models independent of our mathematical practice in order to
prescribe, through a criterion, what would count as one.

In Sect. 2, two lists of principles corresponding to two criteria for interpreting the
axiom systems for set theorywill be explicitly stated, and these criteria constitute two

2The standard practice of set theory, that is the mathematical activity initiated by Cantor’s seminal
works, ishistorically given. The historical existence of this practice, considered as amerely historical
phenomenon, is, of course, independent of the set-theoretic principles extracted from it. Therefore,
there is no circularity in the relation between the set-theoretic principles that will be given here and
the practice of set theory.
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solutions for problem1.Theprinciples in those listswill be calleddirective principles.
I assume, therefore, the priority of a list of directive principles over the corresponding
class of standard models, and the axiomatization of a mathematical theory must be
guided by such a list. The primary standard for the correctness of a mathematical
theory is the corresponding list of directive principles, the corresponding class of
standard models must be understood as a secondary standard for the correctness of
the theory, and only insofar as it represents the principles. Each list of principles
constitutes a direction to be pursued by the theory.

After stating explicitly the directive principles for the two lists, I will be concerned
with the following:

Problem 2: How and to what extent does the interpretation of the axiom systems for
set theory committed to the criterion corresponding to given directive principles fix

truth-values?

In Sect. 3, an analysis of problem 2 will be given.
The analysis of problems 1 and 2 is independent of the substantive thesis according

to which there is one correct interpretation of the axiom systems for set theory.
However, it will be argued that the interpretation prescribed by each list of directive
principles stated below is a plausible understanding of the axiom systems for set
theory. Its plausibility ultimately comes from the fact that it is an interpretation
prescribed by principles extracted from the standard practice of set theory. Therefore,
the solutions to problem 1 given in this paper are at least historically correct in the
sense that it is based on the thesis that the presumed concreteness (or classicality)
of axiom systems for set theory must rest on instructions by which we understand
sets according to Cantor, Dedekind, Fraenkel, Hilbert, Zermelo, etc. I defend the
thesis that the organization of set theory is not ultimately based on, or committed to,
a nonpropositional grasp of independent objects, nor on intentions, but on a criterion
given as a list of set-theoretic principles extracted from the standard practice of this
mathematical theory.

Vann McGee has written a paper on a related subject [10]. In his paper’s intro-
duction McGee says:

The internal problem is this: the realist conception supposes that themeaning ofmathematical
terms is fixed with sufficient precision to ensure that each sentence has a determinate truth
value.Nowwhatevermeaning a linguistic expression has it possesses in virtue of the thoughts
and practices of human beings. Not all meaning is thus dependent on human thought and
action – the fact that a red sky in the morning means stormy weather isn’t a matter of
convention – but the fact that the numeral ‘7’ refers to the fourth prime is a matter of how
we have chosen to use a symbol. So there must be something we think, do, or say that fixes
the intended meaning of mathematical terms. How are we able to do this? Mathematical
objects aren’t like Fido, whom you can hold by the collar while you give him a name.
Nonetheless, there is something we think, do, or say that connects concrete speech acts with
their abstract referents. Until we can give at least a rudimentary account of how this is done,
the realist doctrine that mathematical sentences have determinate truth values will remain
deeply mysterious. ([10], pp, 35–36)

Although closely related, McGee’s internal problem of realism and problem 1
on axiom systems for set theory are, strictly speaking, different problems. They
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are conceptually different, and there are at least two important practical differences
between McGee’s problem and problem 1. First, McGee’s problem presupposes that
each sentence has a rigid truth-value. This is not required for an axiom system to be
concrete. In fact, an axiom system is not to be considered concrete if it is understood
as talking about whatever structure satisfying the axioms; otherwise it is interpreted
according to a criterion. Thus, to say that an axiom system is interpreted in a specific
way is not to say that its subject matter is a unique structure up to isomorphism, or
a class of structures which are all elementary equivalent, but that it is not the class
of all structures which satisfy the axioms. Secondly, for both McGee’s problem and
problem 1, the concrete character of an axiom system must rest on mathematical
practice, but for a criterion to be considered a solution to problem 1 it must prescribe
a class of structures and be extracted from the standard practice of set theory. The
latter condition is not required for a solution ofMcGee’s problem.McGee’s proposal
is stated in general outline in the following paragraph:

Knowing how to use mathematical terms in practical problem solving is an important com-
ponent of our understanding of mathematical vocabulary, but it doesn’t take us far enough.
Something more is needed. The format of our proposed answer is this: What we learn when
we learn mathematical vocabulary, apart from learning how to count and measure, is a body
of mathematical theory. What else could the answer be? The meaning given to a mathemat-
ical term is wholly dependent upon our use of the term (unlike a term like “Fido”, whose
meaning depends partly on our usage and partly on causal connections beyond our control),
and our practical uses of the term aren’t enough to determine the truth values; so what else
is left but our use of the term in theorizing? ([10], p. 40)

There are important similarities and dissimilarities between McGee’s solution to
his problem and the solutions to problem 1 that I will present in this paper, and
the comparison of these solutions is illuminating. I am arguing that the solution to
problem 1 is that a concrete axiom system is a formal system accompanied by a
criterion given as a list of directive principles which gives the commitments latent
in the interpretation of set theory and, although these principles must be given as
set-theoretic principles extracted from standard practice of set theory, they are not a
separate mathematical theory as inMcGee’s proposal. Another point is that McGee’s
solution is not faithful with respect to the standard practice of set theory. Indeed,
McGee appeals to an Urelement Set Axiom ([10], p. 52), and this axiom is not to be
found in the standard practice of set theory. On the other hand, the solution to problem
1 that will be presented shortly is not a solution to McGee’s problem, because it does
not fix all truth values. There would be more interesting things to say in this regard,
but I shall not be occupied with an exegesis of McGee’s paper.

2 Two Double-Layer Pictures for Set Theory

As I have already said in Sect. 1, I propose that a criterion, given by set-theoretic
principles, must be the basis for a solution of problem 1, and these principles will be
called directive principles. From now on, for the sake of definiteness, I will identify
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axiom systems with formal first-order systems, in the usual sense. The solution that
I propose is roughly as follows: Formal systems for set theory can be considered as
concrete if and only if they are, tacitly or not, accompanied by a criterion, given as a
list of directive principles, which prescribe its interpretation, that is, the appropriate
class of structures. There is a list of minimal desiderata that a proposed solution to
problem 1 has to meet in order to be treated as a plausible understanding of the axiom
systems for set theory: (i)Asolution to problem1 is based on set-theoretic principles,
the directive principles, that must be explicitly stated. (i i) All these principles must
be extracted from the standard mathematical practice of set theory, according to the
thesis that, whatever meaning a linguistic expression in this theory has, it has in
virtue of the standard practice of set theory. (i i i) It is desirable that the instructions
contained in the directive principles solving problem 1 relate to the formal systems
for set theory in an unproblematicway, without appeal to any intuition of independent
objects. (iv) One such solution must fix truth-values in a satisfactory way, that is,
at least all arithmetical statements must have rigid truth-values in the interpretation
given by the corresponding criterion.

Of course, since the directive principles are stated explicitly below, it follows that
this solution meets desideratum (i). The following directive principles highlight the
production of sets, which is undoubtedly a central aspect of set theory.

2.1 The First List of Directive Principles

1. A set is determined by its elements, which are sets themselves, and there is no
infinite regress in this transitive determination.

2. An arbitrary choice of elements of a set determines a set, which is a subset of the
original set.

3. An arbitrary replacement of each element of a set by a set determines a set.
4. All the elements of the elements of a set determine a set.
5. All the subsets of a set determine a set.
6. There is an infinite set.

The first thing to say about the criterion given by the directive principles above is
that they are not an independent formal system for set theory, nor a natural language
formulation of the axioms of a formal system. They are not even a separate theory but
just give a criterion for interpreting the formal systems for set theory. This criterion
is not defining sets, in any significant sense. Recall that, for the language of set theory
to be understood as being about something more specific than whatever concept of
set membership which makes the axioms true, there must be some prior standard, a
criterion excluding some of these concepts, that we learn when we learn to interpret
it. The directive principles can play the role of this prior standard: They are the basic
directives for an axiomatic theory of sets that can be found in the main line of thought
developed throughout set theory, and this is the only a priori justification needed for
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them, as they are not, in any philosophically significant sense, “absolute set-theoretic
principles”.3

Now, notice that the formal system ZFC can be obtained from the directive
principles by formalization. For example, each instance of the replacement axiom
is directly obtained from principle (3): Given a set A and a functional formula F ,
principle (3) gives the unique set B obtained from A by replacing each element
by its F-image, which is the set required to exist by the replacement axiom. The
only nontrivial case is the axiom of choice, but this axiom can also be obtained by a
formalization of the principles: A choice set for a given set is a subset of the union
of the set, and hence can be obtained by the use of directive principles (2) and (4).
It can also be easily obtained from directive principle (3) alone, as the production of
a choice set for a given set is the particular case of a replacement of each element of
the given set by an element of itself.4 The axiom of choice can be seen as an attempt
at formalizing part of the arbitrariness present in directive principles (2) and (3). In
Sect. 3 I will show that this arbitrariness cannot be fully formalized.

In order tomake explicit the point that the criterion givenby the directive principles
above meets desideratum (i i), that is, that they are historically coherent with the
formal systems for set theory, I will say a few words on the origins of the principles:
Harward and Cantor, although not working from an axiomatic perspective, discussed
what they considered to be very basic facts about sets. The former carried forward
his discussion in an article at the Philosophical Magazine in 1905, and the latter in
correspondence with Dedekind and Hilbert. The facts that they noted are very similar
to the directive principles stated above: Both suggested something like principles (2)
to (6). For example, Cantor in a letter to Dedekind ([2], p. 114) stated the following:

Two equivalent multiplicities either are both “sets” or are both inconsistent.
Every submultiplicity of a set is a set.
Whenever we have a set of sets, the elements of these sets again form a set.

Directive principles (2), (3) and (4) are collectively equivalent to these three state-
ments in Cantor’s letter. Of course, principles (5) and (6) are also a basic part of
Cantor’s seminal works.

Principle (1) is the outcome of the guiding thought according to which the right
way to think about a set is that it is, whatever its naturemay be, a well-founded, exten-
sional entity determined directly by itsmembers. This thought can be reformulated as
[A set is an object whose immediate constituents are its elements, and it is determined
by its elements. Furthermore, since an object cannot be a constituent, immediate or

3This is an important point: The directive principles above give instructions for understanding
formal sentences in usual set theory – these principles are not directly related to other set theories
such as those theories of non-well-founded sets. Therefore, their application outside the framework
of usual set theory is not justified.
4This is not accidental. In fact, with the exception of the empty set, which can be produced by
directive principle (2) from any given set, all subsets produced by directive principle (2) from a
given set can also be produced by directive principle (3). Indeed, it is easy to see that for each
arbitrary choice of elements of a given set producing a nonempty set there is a replacement of the
elements of the given set producing the same nonempty set.
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not, of itself, it follows that sets should be extensional and well-founded objects.]
The following famous passage of [3] is relevant for this thought and, consequently,
for directive principle (1):

By an “aggregate” (Menge) we are to understand any collection into a whole (Zusammenfas-
sung zu einen Ganzen) M of definite and separate objects m of our intuition or our thought.
These objects are called the “elements” of M . ([3], p. 85)

It seems clear from this passage that, according to Cantor, a set is determined by
its elements.5 The extensionality of sets is surely a component of the set theory
developed by Cantor, but it seems that he nowhere explicitly talks about it. Dedekind
states it as a fact about sets in his famous ‘The Nature and Meaning of Numbers’.
An explicit thought on the well-foundedness of sets is to be found on early drafts
of Zermelo’s axioms (preceding the publication of [14]) where, according to Moore
([11], p. 165), he had initially assumed, as a postulate, that a set could not be a
member of itself.

I will not make any further comments on the origin of the directive principles
in the given list. The above paragraphs are meant as a brief illustration of how
these principles can be seen as the outcome of guiding thoughts on sets by the
founding fathers of set theory, sometimes working in different perspectives, with
different intentions and independently of each other. The directive principles are a
primary expression of directions that led to the formal systems for set theory, and, as I
understand it, one such expressionmust be part and parcel of this theory. This account
for the possibility of interpretation of formal systems for set theory is not a theory
about the psychological origin of the axioms of those formal systems. Accordingly,
directive principles are not intentions, intuitions or dialectical considerations about
sets; they constitute a public criterion for interpreting formal sentences in set theory
and this historical note is intended to show their correctness with respect to the
standard practice of this mathematical theory.

The codification of the directive principles in a formal (first-order) system give
rise to nonlogical axioms in a formal language, but the principles precede their
formal counterparts in the schema of set theory. The formal systems for set theory
can be obtained from the directive principles by an operation of formalization. Since
formalization does not appeal to any intuition of mathematical objects, the proposed
solution meets desideratum (i i i). Also, it must be obvious that we should not throw
the directive principles away after formalizing set theory, unless we want to give
up the possibility of interpreting the resulting formal systems according to those
principles. Thus, I am proposing that set theory consists of two layers: The directive
principles are the first layer, and the formal counterparts of the directive principles are
the second layer. As it is already known, the formal system ZFC is one such formal

5It is also important to notice that in this passage Cantor seems to express the view according
to which all sets are psychological objects. This is irrelevant for understanding a theory of sets:
There may be concrete and abstract, psychological and physical sets, and a theory of sets must only
be concerned with aspects common to all these possibilities. Therefore, the only important point
extracted from this passage is that a set is, whatever its specific nature may be, determined by its
elements without any further addition.
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counterpart of the directive principles, which means that ZFC is in the second layer
in this double-layer schema. Also, the arbitrariness present in directive principles
(2) and (3) cannot be fully formalized, which means that the second layer in the
double-layer schema is open-ended.

Furthermore, reinforcing what was said above, although the directive principles
above can be equivalently written in the second-order language of set theory, they
are not a kind of “second-order formal system”. The directive principles do not
constitute any kind of autonomous formal system in the sense that they do not play
a deductive role in the double layer schema. Therefore, there is emphatically no
attempt to replace the usual (first-order) formal systems for set theory by directive
principles – this would be a very bad move because these principles cannot play
the deductive role of a formal system. The double-layer schema of set theory stated
above is based on the complementarity of directive principles and formal systems:
The principles demarcate the subject matter of the formal systems for set theory by
giving a criterion for excluding at least some concepts of set membership which
nevertheless makes the axioms true, because they constitute stronger commitments,
but they cannot replace their formal counterparts in proofs.

2.2 The Second List of Directive Principles

1. A set is determined by its elements, which are sets themselves, and there is no
infinite regress in this transitive determination.

2. The elements of a set satisfying a property determines a set, which is a subset of
the original set.

3. The replacement of each element of a set by a set given by a functional relation
determines a set.

4. All the elements of the elements of a set determine a set.
5. All the subsets of a set determine a set.
6. Given a countable list of sets, there is a set determined by exactly those sets in

the list.
7. Given a set there is a choice function on this set.

The general remarks about directive principles given above apply equally to this
second list. Now, in contrast with the first list, sets given by replacement and separa-
tion are supposed to be defined. There is a stronger principle of infinity, principle (6),
which can also be understood as an infinitary replacement axiom for countable sets,
for it can be reformulated as follows: An arbitrary replacement of each element of a
countable set by a set determines a set. One traditional argument for the replacement
axiom states that without this axiom it is not possible to prove the existence of the
set {ω,℘(ω), ℘ (℘ (ω)), ...}. Of course, we can argue that there is nothing special
with this countable set, and this is an evidence that the stronger principle of infinity
is instituted in the practice of set theory, used to justify the replacement axiom. In
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fact, we can find the stronger principle of infinity expressed in [6], p. 46, footnote 5
(and also in [1]):

A stronger axiom schema of infinity than VI is introduced in Fraenkel 27 (p. 114, Axiom
VIIc. Fraenkel’s axiom is equivalent, on the basis of axioms I-V, to the schemawhich asserts,
roughly, that every “denumerable collection of elements” is a set (Bernays 37–54 III).

Furthermore, the notion of countable list of sets is present in set theory from its
beginnings. For example, Cohen says ([4], p. 64):

It is perhaps not generally known, but Cantor’s stimulus to study set theory arose from
countable ordinals.

A choice principle concludes our list, which, of course, is extracted from the
standard practice of the discipline.

A first-order (partial) formalization of the above principles results in ZFC , nat-
urally. These principles can be equivalently written in the infinitary language Lω1ω1 .
The resulting list of sentences is equivalent to ZFC plus

∀x0∀x1...∃y∀z(z ∈ y ↔ z = x1 ∨ z = x2 ∨ ...).

This second list of principles has the virtue that it can be equivalently written in
the language Lω1ω1 , while the first list requires the much more complex second-order
language. In other words, the meaningfulness of the criterion given by the second
list of principles is a cheap assumption when compared to the meaningfulness of the
criterion given by the first list. Unfortunately, based on a mathematical analysis of
the proposed lists of directive principles, it is arguable that only the first list captures
the conception of cumulative hierarchy of sets, which seems to be the basic concept
in terms of which set-theoretic truth is usually understood. The analysis of both lists
that will be given in Sect. 3 clarifies the differences in a precise way.

The first layer in each of these double-layer pictures gives a criterion for the
interpretation of formal systems for set theory; the second layer is always the domain
of proof and formalization within the finitary range. The double-layer pictures of set
theory that I have proposed have nothing to do with the two layers of mathematics
in the picture of Platonism as diagnosed by Tait in the criticisms of Benacerraf and
Dummett:

Benacerraf and Dummett seem to me to be typical of those who adopt a particular picture
of Platonism. The picture seems to be that mathematical practice takes place in an object
language.But this practice needs to be explained. In otherwords, the object language has to be
interpreted. The Platonist’s way to interpret it is by Tarski’s truth definition, which interprets
it as being about a model – a Model-in-the-Sky – which somehow exists independently of
our mathematical practice and serves to adjudicate its correctness. So there are two layers
of mathematics: the layer of ordinary mathematical practice in which we prove propositions
such as [There is a prime number greater than 10] and the layer of theModel at which [There
is a prime number greater than 10] asserts the ‘real existence’ of a number. ([13], p. 67)

Later on, Tait concludes

The myth of the Model tends to get attached to Platonism (or at least to ‘epistemological’
Platonism in the sense of Steiner (1975)) because the view that mathematics is about things
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like the system of numbers is compared with the view that propositions about sensible
things are about the physical world; and here there is a tendency to believe that there is such
a nonpropositional grasp, namely, sense perception, which does endowmeaning on what we
say and to which we appeal to determine truth. But I hope that, if not what I have said, then
Wittgenstein’s critique of this view of discourse about sensibles will convince the reader that
it is inadequate. ([13], p. 74)

There is no such thing as the layer of the “Model(s)-in-the-Sky” in the double-
layer accounts of set theory given here, and there is no appeal to a nonpropositional
grasp of independent objects. First of all, the double-layer accounts given here are
not committed to independent objects, but are only committed to the objectivity of
the criteria given by directive principles. Furthermore, there is no need of any kind of
nonpropositional grasp, which is usually needed in a schema in which the possibility
of interpretation is alienated from formal systems. If the second layer of a double-
layer schema consists of first-order counterparts of the first layer, as is the case here,
then the formal system’s corresponding interpretation is not alienated from them and
there is no nonpropositional grasp involved.

With respect to the particular picture of Platonism which seems to be adopted by
Benacerraf and Dummett in their criticisms, Tait writes

... Needless to say, it is not this version of Platonism that I am defending or that I even
understand. Thus, I should not be understood to be taking part in any realism/antirealism
dispute, since I do not understand the ground on which such disputes take place. As a
mathematical statement, the assertion that numbers exist is a triviality. What does it mean to
regard it as a statement outside of mathematics? ([13], p. 68)

The directive principles are not subject to Tait’s question, because they are neither
statements outside set theory, nor ways of stepping outside this mathematical frame-
work. These principles just give us a criterion for the interpretation of formal systems
for set theory. When mathematically analyzed, each list of directive principles gives
a criterion separating a class of standard structures and giving the truth conditions
for each sentence, as it will be shown in Sect. 3.

2.3 Other Views on Set Theory and Mathematical Truth

A possible alternative to a double-layer schema of set theory is, of course, a single-
layer account of it, according to which set theory consists only of a layer of first-order
formal systems, which can be either static or evolving in time, such that their formal
languages are not supposed to be about something more specific than all possible
models of their axioms. It seems to me that this single-layer picture is inadequate in
several ways. I will mention three: First, it is historically problematic, because the
original framers of set theory did not think about set theory that way, as an abstract
axiom system, and, for sure, the original stimulus to study set theory was not to
encompass a plethora of concepts of set membership. Secondly, it can be seen as an
artificial attempt at reducing truth to provability by decree, while at the same time
saying nothing about the justification of the axioms. Thirdly, in this single-layer view
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of set theory,wehavenoway to understand∈ as capturing a concept ofmembership: It
is just an arbitrary relationwhich satisfies a given list of axioms of a formal system for
set theory. In this case, not even the interpretation of finitary sentences is satisfactory,
for different models, possibly non-wellfounded, may disagree with respect to these
sentences. However, it is very reasonable to assume that we can interpret finitary
sentences in a satisfactory way, for, otherwise, it would be very hard to see how we
could understand the formal systems themselves. More dramatically, from Gödel’s
second incompleteness theorem it follows that the consistency of set theory itself is
one of those finitary sentences that witnesses this shortcoming of interpretation in
the single-layer account of set theory in question. Gödel himself remarked that:

... It is this theorem [the second incompleteness theorem] which makes the incompletability
of mathematics particularly evident. For, it makes it impossible that someone should set
up a certain well-defined system of axioms and rules and consistently make the following
assertion about it: All of these axioms and rules I perceive (with mathematical certitude) to
be correct, and moreover I believe that they contain all of mathematics. If somebody makes
such a statement he contradicts himself. For if he perceives the axioms under consideration
to be correct, he also perceives (with the same certainty) that they are consistent. Hence he
has a mathematical insight not derivable from his axioms. ([9], p. 309)

Although I do not believe that mathematical knowledge can be extracted from
perception, I agree with Gödel that the consistency of a mathematical theory is a
presumed component of the thought that led to its formal systems. Therefore, I
argue that a satisfactory account of the truth of the axioms of a formal system for a
mathematical theory must also account for the truth of their consistency, if they are
consistent, and, at the same time, leave some room for the possibility of inconsistency.
In fact, our grasp of formal systems presupposes that we understand mathematical
sentences of the form “S is provable from the axioms” either affirmed or denied.
This is accomplished in the double-layer pictures of set theory that I am proposing.
For, on the one hand, if the formal systems for set theory are consistent then the truth
value of their consistency is fixed by both the first and the second lists of directive
principles, as it was seen in Sect. 3. On the other hand, if the formal systems for set
theory are inconsistent, then both lists of directive principles are eo ipso incoherent
and fail to play any role as a criterion for the interpretation of the formal systems.

This possibility of failure is an important aspect of this account of set theory
because, indeed, we may fail. How could we fail to formulate a consistent system of
axioms and rules if we do have a nonpropositional grasp of a “Model-in-the-Sky”,
which is declared as the standard formathematical correctness?Howcould our formal
systems for set theory turn out to be inconsistent if we perceive with mathematical
certitude the truth of their axioms? The directive principles do not give us certainty
regarding consistency: They can only give us a criterion for interpreting the formal
language such that if the consistency sentences are assumed to be true, then they are
true according to the given interpretation, which is exactly what provability cannot
accomplish according to Gödel’s second incompleteness theorem. The delimitative
role played by directive principles when demarcating the class of standard models
of the theory and fixing truth-values is very different from the role of “mathematical
intuition” as a prior standard that the axioms have to meet in order to be considered
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correct. In [7], Gödel argued for “mathematical intuition” as a criterion of truth in
set theory different from provability in a formal setting:

... What, however, perhaps more than anything else, justifies the acceptance of this criterion
of truth in set theory is the fact that continued appeals to mathematical intuition are necessary
not only for obtaining unambiguous answers to the questions of transfinite set theory, but
also for the solution of the problems of finitary number theory (of the type of Goldbach’s
conjecture), where the meaningfulness and unambiguity of the concepts entering into them
can hardly be doubted. This follows from the fact that for every axiomatic system there are
infinitely many undecidable propositions of this type. ([7], p. 485)

I do not think that an appeal to some obscure mathematical intuition clarifies any-
thing. I think that a priorimathematical intuition is somethingweknownothing about.
We knowmuch more about mathematical truth than about a priori intuition: explain-
ing the former in terms of the latter sounds like explaining the partially understood
in terms of the completely not understood. If mathematical intuition is understood
as a posteriori mathematical feeling, then it is something we gain through contin-
ued mathematical training. We could be trained in a mathematical subject until the
basic articulation of its primitive notions become fully grasped and we forget how
it was when we were not yet thinking that way. At this point, we could say that the
fundamentals of the subject became intuitive to us, but to say that this a posteriori
intuition is the foundation of the subject is to reverse the order of explanation. I am
defending a replacement of ‘mathematical intuition’ by ‘directive principles’, which,
of course, is not a change of names – their roles and nature are very different. With
this proviso, I would agree with a thesis that is related to Gödel’s extract above: As
soon as we want to determine in what relation set theory stands to and to what extent
it is captured by formal systems, then analysis of directive principles is essential. The
reason behind this is that formal systems cannot provide the criteria for structures
that directive principles can.

Trying to clarify what is meant by mathematical intuition, Gödel remarked earlier
that:

It should be noted that mathematical intuition need not be conceived of as a faculty giving an
immediate knowledge of the objects concerned. Rather it seems that, as in the case of physical
experience, we form our ideas also of those objects on the basis of something else which
is immediately given. Only this something else here is not, or not primarily, the sensations.
([7], p. 484)

Gödel does not tell us what this “something else which is immediately given”
is supposed to be, but there are some important remarks on the directive principles
that are related to Gödel’s attempt to clarify the issue of mathematical intuition:
The directive principles are not a faculty giving an immediate knowledge of sets.
Rather it seems that we form our ideas of the mathematical objects concerned on the
basis of the directive principles in the sense that the subject matter of set theory is
prescribed by these principles. They are an outcome of the thoughts of the founding
fathers of this mathematical theory, but their origin is not a primary concern of the
investigations on the possibility of interpreting formal systems for set theory. In any
case, it is clear that they are not sensations.
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Ferreirós ([5], pp. 380–384) is another logician-philosopher that has recently
expressed a related view on the insufficiencies and implausibility of an account of
mathematical theories according to which they consist of formal systems standing
alone. When talking about two contrary tendencies in the development of mathemat-
ics, one which aims at a reduction of mathematics to a purely symbolic system and
another one which aims at a reduction of mathematics to a purely conceptual system,
Ferreirós writes

In my view, the failure of both radical tendencies is of the essence. The standpoint I adopt
emphasizes the need to consider the meaning or thought that accompanies formulae and
calculations. (This is no doubt shared by many other philosophers, but the question is how to
proceed.) Mathematical symbolism cannot be mastered without immersion in a practice, and
by learning the practice we learn to associate representations and meaning to the formulae.
Normal (so-called informal) symbolic systems and theories cannot be made to stand alone
outside of practice; and when systems and theories are formalized and made to stand alone,
the phenomenon of non-standard interpretations arises in a natural way.

Indeed, I defend the complementarity of symbolic means and thought in mathematics–
each one joined by the other, none of them reducible to the other. For obvious reasons, it is
more difficult to deny the role and importance of the symbolic component in mathematics,
but substantial arguments can be given for a similar conclusion concerning the conceptual
component. For my purposes here, I shall be content with the modest claim that, in light of
developments in mathematics and its foundations during the 20th century, such a standpoint
deserves to be seriously considered as an option. ([5], pp. 381 and 382)

Of course, I agreewith Ferreirós on the insufficiency of symbolicmeans to account
for (all) mathematical theories. However, it is not enough to say that mathematics and
set theory are a combination of a symbolic component with a conceptual component
– if one is trying to formulate in these terms a standpoint on the foundations of
mathematical truth then one must say what the symbolic and conceptual components
are supposed to be and how they relate to each other. I am defending that, in the case
of set theory, directive principles, which give unambiguous and objective criteria
to demarcate the interpretation and understanding of formal systems, constitute the
conceptual component6 complementing the layer of formal systems, and not thought,
meaning and representations, which are the categories used by Ferreirós in the above
extract. Ferreirós does not tell uswhat exactly this conceptual component he is talking
about is: It is not even clear whether this conceptual component is public or private.
I do not think that the intentions, representations and thoughts that we associate to
formulae when we learn a practice are univocal. The problem of the possibility of
interpreting formal systems is in need for a more precise account of the conceptual
component of the corresponding concrete axiom systems.

I am proposing the complementarity of formal systems and the directive principles
– formal systems cannot play the delimitative role that the directive principles can,
and these principles cannot play the deductive role of formal systems.

6The conception of the conceptual as a criterion is unproblematic: A concept naturally gives rise to
a criterion separating those things falling under it from the rest.
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3 Mathematical Analysis of the Role of Directive Principles

Although lists of directive principles do not constitute a formal system, their role as
criteria for the interpretation of formal systems can be analyzed within mathematics.
Before someone says this is circular, I reinforce that I am not talking about any
reduction of directive principles to formal systems. Circularity comes in only if a
reduction is proposed: It is circular to reduce directive principles to formal systems,
since those principles are a basis for interpreting formal systems. However, it is not
circular to use a formal system for set theory to analyze directive principles. There
is no reduction taking place here, the layer of the formal systems does not subsume
the layer of the directive principles and, consequently, there is no circularity.

From now on, I will assume that the formal system ZFC for set theory is con-
sistent. The aim of a mathematical analysis of the role of directive principles is to
clarify what is, according to each of the two lists of principles, the subject matter of
set theory.

3.1 The Standard Models of Set Theory According
to the First List of Directive Principles

I take it for granted that a mathematical analysis of the subject matter of an axiom
system for a mathematical theory must result in a distinguished class of structures,
the standard models. Therefore, the following definition is required:

Definition 1 A structure (M, E), in which E is a binary relation on M , is said to
conform to the first list of directive principles iff

1. (M, E) satisfies the axioms of extensionality and regularity.
2. If x ∈ M and if c is a subset of M such that for each y ∈ c it holds that yEx , then

there is an element in M whose E-members are the elements of c.
3. If x ∈ M and if r : M → M is a function on M , then there is an element in M

whose E-members are all those elements w such that r(y) = w for some y that
is E-member of x .

4. If x ∈ M then there is an element in M whose E-members are all E-members of
E-members of x .

5. If x ∈ M then there is an element in M whose E-members are all E-subsets of
x .

6. (M, E) satisfies the axiom of infinity.

Theorem 1 characterizes those structures conforming to the first list of directive
principles, clarifying what is, according to those principles, the subject matter of set
theory:

Theorem 1 (Zermelo [15]) A structure (M, E) conforms to the first list of directive
principles iff for some strongly inaccessible cardinal κ , (M, E) ∼= (Vκ ,∈).
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Proof First, notice that E is a well-founded relation on M . In fact, suppose that there
is an infinite sequence (xi )i∈ω of elements of M such that xi+1Exi , for each i ∈ ω.
Since (M, E) satisfies all the axioms of ZFC , it follows that every element in M
has a transitive closure in the sense of (M, E). Let x be the transitive closure of x0 in
(M, E), and let c be the set {xi : i ∈ ω}. From the second directive principle in the
first list, it follows that there is a set y ∈ M such that zEy iff there is an i ∈ ω such
that z = xi . Thus,

(M, E) |= ∀z(zEy → (∃w(wEy ∧ wEz))),

and (M, E) cannot satisfy the axiom of regularity. Therefore, it is not the case that
there is an infinite sequence (xi )i∈ω of elements of M such that xi+1Exi , for each
i ∈ ω.

Now, let (N ,∈) be the transitive collapse of (M, E). If α is the first ordinal which
is not in N , then N ⊆ Vα . Suppose N �= Vα . The ordinal α is a limit ordinal. For if
α is β + 1, then β ∈ N and the set β ∪ {β} ∈ Vα+1 \ Vα cannot be in N . From this
it follows that (N ,∈) cannot be a transitive model of ZFC and we conclude that α
is limit.

Let β be the first ordinal such that there is an element x in Vβ \ N . Since α is limit,
Vα = ⋃

γ<α Vγ , and if for all γ < α it holds that Vγ ⊆ N , then Vα ⊆ N . Therefore
β < α and β ∈ N . Since x ⊆ N ∩ Vβ = (Vβ)N ∈ N , it follows, from the second
directive principle, that x ∈ N . Therefore, N = Vα .

From the third and fifth directive principles, it can be proved that α is regular and
strong limit, respectively. In fact, if β is an ordinal such that β < α, then β ∈ N and
the direct image of a function r : β → N is an element of N . Since the union of an
element in N is also in N , it follows that r : β → N cannot be cofinal in α. Also, if
λ < α is a cardinal, then ℘(λ) ∈ N , the cardinal of ℘(λ) in the sense of (N ,∈) is
2λ, and 2λ < α. This proves the result. �

From this mathematical result, it is plausible to say that, according to the first list
of directive principles, set theory is about the concept of the cumulative hierarchy of
sets, which is exemplified by the hierarchies of sets (Vκ ,∈), in which κ is a strongly
inaccessible cardinal. Now, is this the correct interpretation of set theory? Are the
hierarchies of sets the true subject matter of set theory? I think that the only sure
answer to this question is that this interpretation is historically correct, in the sense
that (a) the concept of the cumulative hierarchy of sets seems to be the basic concept
in the discussions on set-theoretic truth, and (b) the directive principles in the first
list are to be found as the basic facts about sets in the works of the founding fathers of
this mathematical theory, and fixes truth-values in a plausible way, as it will be shown
in the sequel. Therefore, although directive principles are not intentions, they seem
to fulfill the intentions of the framers of the axiom systems for set theory, notably
Cantor’s and Zermelo’s intentions.
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Now it is possible to clarify how sentences in formal systems for set theory acquire
a meaning under the background language convention given by the first list of direc-
tive principles. Adopting amodel-theoretic perspective on this point, ifϕ is a sentence
(in the first-order language with a symbol for equality and one binary predicate vari-
able R for membership) then the meaning of ϕ can be defined, according to the
background language convention given by the first list of directive principles, as the
class function that assigns to each structure (Vκ ,∈), in which κ is a strongly inac-
cessible cardinal, the truth-value T if (Vκ ,∈) |= ϕ, and the truth-value F otherwise.
This extensional account of meaning is based on the thesis that a sentence expresses
its truth-conditions with respect to a presumed background language convention. In
this model-theoretic setting, the truth-conditions of a sentence ϕ in a formal system
for set theory can be identified with structures (Vκ ,∈) in which ϕ is true. The truth-
value of ϕ is said to be fixed by the directive principles if and only if ϕ has the same
truth-value on every structure (Vκ ,∈), in which κ is a strongly inaccessible cardinal.
It is already easy to see that the directive principles and the first-order axioms of the
formal system ZFC have very different fixing powers.7 If there is an explanation to
this greater fixing powers of the directive principles, then it is that, contrary to the
axioms of a formal system, the directive principles are not required to effectively
generate the truths that are fixed by them. The role of the directive principles is not
to computably generate truths, but just to give a criterion for the interpretation of
formal systems.

Recall that, in a model-theoretic perspective, if ϕ is a sentence then the truth-value
of ϕ is fixed by the background language convention given by the first list of directive
principles iff ϕ has the same truth-value on every structure (Vκ ,∈), in which κ is
a strongly inaccessible cardinal, that is, iff the class function which is the meaning
of ϕ is constant. The structures (isomorphic to) (Vκ ,∈), in which κ is a strongly
inaccessible cardinal will be called Z-standard models of ZFC . The continuum
hypothesis, CH , for example, has the same truth-value on every Z -standard model8

because all sets relevant to the truth or falsity of CH belong to a lower level Vα ,
in which α is countable. Therefore, the truth-value of CH is fixed by the directive
principles. Also, the truth-value of arithmetical sentences – consistency statements,
in particular – are fixed9 by the first list of directive principles, and, of course, the
truth of every theorem of ZFC is fixed by the first list of directive principles.

The mathematical analysis of the truth-value of some statements can be condi-
tional. Consider the sentence ‘there is a strongly inaccessible cardinal’. If there is a
strongly inaccessible cardinal, then this sentence does not have the same truth-value
on every Z -standard model. If there are no strongly inaccessible cardinals then the
falsity of the sentence ‘there is a strongly inaccessible cardinal’ is fixed by the first

7Naturally, the truth-value of ϕ is said to be fixed by the axioms of ZFC iff ϕ has the same
truth-value on every model of ZFC .
8Notice that this does not mean that CH holds in every Z -standard model. It just means that it is
true/false in one Z standard model iff it is true/false in all Z -standard models.
9From Gödel’s first incompleteness theorem it follows that the sentences that hold in all standard
models cannot be effectively enumerated. This shows that the arbitrariness present in directive
principles (2) and (3) of the first list cannot be fully formalized.
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list of directive principles. Although this is not as informative as for CH , it gives
some information: If ‘there is a strongly inaccessible cardinal’ is true then its truth
is not fixed by the first list of directive principles, and if it is false then its falsity is
fixed by the first list of directive principles. Similarly, the existence of a measurable
cardinal can be analyzed conditionally: If ‘there is a measurable cardinal’ is true then
its truth is not fixed by the first list of directive principles, and if it is false then its
falsity is fixed by the first list of directive principles.

Another example of a conditional analysis is the following: If V = L holds then
it holds in every Z -standard model and its truth is fixed by the directive principles.
On the other hand, if V = L is false, then its falsity can be fixed or not by the
directive principles depending on how it fails: If there is a non-constructible subset
of ω then V = L is false in every structure (Vκ ,∈) and its falsity is fixed by the first
list of directive principles. If there is a strongly inaccessible cardinal and the rank of
the least-ranked non-constructible sets is greater than the first strongly inaccessible
cardinal, then the falsity of V = L is not fixed by the first list of directive principles.
Therefore, it seems that the first list of directive principles fix truth-values in a
satisfactory way, meeting desiderata (iv). For example, the directive principles fix
the truth-value of every arithmetic statement, and every statement whose truth or
falsity depends only on an initial segment of the hierarchies of sets bounded by
the first inaccessible. It is also plausible to say that the existence of an inaccessible
cardinal, and related statements, does not have the truth-value fixed.

If the truth of a sentence assumed to be true is not fixed by the directive principles,
then its adoption as a new axiom for set theory must be accompanied by an extension
of directive principles, in case one wants to keep the possibility of interpreting the
resulting formal systems. If the truth of a new axiom assumed to be true is not in the
range of the directive principles stated above, then these principles are insufficient
for interpreting the new axiom system. On the other hand, if the truth of a sentence
assumed to be true is fixed by the directive principles then its adoption as a new
axiom need not be accompanied by an extension of directive principles, but this does
not mean that its adoption as a new axiom is justified in the picture of set theory that
I am defending. Because, even in case the truth of a sentence assumed to be true is
fixed by the directive principles, its adoption as a new axiom may cause a mismatch
between the layer of the directive principles and the layer of formal systems. In fact,
if V = L is true then its truth is fixed by the directive principles, but V = L cannot
be obtained by a formalization of part of the directive principles, which implies that
ZF + V = L is not a formal system for set theory according to the double-layer
picture of set theory presented here. Therefore, in this double-layer scheme, the
mere conditional fact that if a sentence is true then its truth is fixed by the directive
principles does not suffice to justify the adoption of the sentence as a new axiom.
In this schema, it is also required that the resulting formal systems be obtained from
formalizations of the directive principles.
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3.2 The Standard Models of Set Theory According
to the Second List of Directive Principles

The mathematical analysis of the criterion given by the second list of directive prin-
ciples is based on the following:

Definition 2 A structure (M, E), in which E is a binary relation on M , is said to
conform to the second list of directive principles iff

1. (M, E) satisfies the axioms of ZFC .
2. If c is a countable subset of M , then there is an element in M whose E-members

are the elements of c.

It is easy to prove that a structure conforms to the second list of directive principles
iff it is isomorphic to a transitive model of ZFC closed under countable subsets.

Theorem 2 A structure (M, E) conforms to the second list of directive principles iff
(M, E) is isomorphic to a transitive model of Z FC closed under countable subsets.

Proof If (M, E) conforms to the second list of directive principles, then it is well-
founded. In fact, suppose that there is an infinite sequence (xi )i∈ω of elements of M
such that xi+1Exi , for each i ∈ ω. From the second item inDefinition 2, it follows that
there is a set y ∈ M such that zEy iff there is an i ∈ ω such that z = xi . Therefore,
(M, E) cannot satisfy the regularity axiom.

Now, let (N ,∈) be the transitive collapse of (M, E). The transitive structure
(N ,∈) is isomorphic to (M, E), and it conforms to the second list of directive
principles. It is a model of ZFC and it is closed under countable subsets.

The other direction is trivial. �

Since all transitive models of ZFC agree on arithmetic statements, the second
list of directive principles fixes the truth-values for all arithmetical sentences, which
is an important desideratum for a criterion for the interpretation of ZFC . The status
of the continuum hypothesis is less determined. The power set of ω is absolute for
transitive models which are closed under countable subsets. Also, ℵ1 is absolute
for those models. Therefore, if ℵ1 is the cardinal of ℘(ω) in one transitive model
closed under countable sets, then it is really the cardinal of ℘(ω). Equivalently, if
the continuum hypothesis is false, then its falsehood is fixed by the second list of
directive principles.

The notion of countable set is also absolute for transitive models of ZFC closed
under countable subsets, and it seems sensible to say that the absoluteness of the
notion of countability is part of the very conception of set theory.

In the proposed double-layer schema, the conceptual component of set theory
is given in the first layer as a criterion separating some structures from the class
of all models of the corresponding formal systems. Theorem 2 above shows that
according to the second list of directive principles the subject matter of set theory
can be understood as constituted by the transitive models closed under countable
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subsets, which can be called K -standard models. This is probably not the usual
way the conceptual component of set theory is understood, but this account of set-
theoretic truth has the merit of fixing the truth-values of arithmetic statements, and
even those of second-order arithmetic, because of the absoluteness of ℘(ω) with
respect to K -standard models, and its semantic commitments are relatively modest.

3.3 The Standard Models of Elementary Arithmetic

It is generally acknowledged that (most) mathematical theories can be faithfully
reduced to a definitional extension of set theory. If this is accepted, then the analysis
of set theory developed in Sects. 2 and 3 is perfectly general. However, this is not
an unproblematic thesis. For example, there are the usual, well-known arguments to
the effect that set theory cannot provide an ontological reduction of mathematics.10

Therefore, an independent account of mathematical truth for other theories is desir-
able. Fortunately, it is possible to provide a similar double-layer account to other
foundational axiomatic theories, such as elementary arithmetic,11 an axiomatic the-
ory in which truth and provability also seem to be mismatched. In contrast with the
theory of groups, for example, in which permutation groups are the primary phenom-
ena, the (first-order) formal systems for set theory and elementary arithmetic cannot
be obtained as axiomatizations of such classes of models that we come upon as the
primary phenomena, independently of those formal systems. Instead, the formal sys-
tems for set theory and elementary arithmetic can be obtained as formal counterparts
of directive principles. In the case of elementary arithmetic the double-layer schema
also applies — the first layer consists of the directive principles, the second layer
consists of formal systems. A list of directive principles for elementary arithmetic,
formulating the notational-algorithmic conception of arithmetical operations, can be
given as follows:

1. Each number is denoted by a unique numeral, which is a syntactic object obtained
by a repetition, possibly null, of a primitive symbol. Each numeral denotes a
unique number.

2. Given two nsumerals s and t , the sum of the numbers denoted by s and t is denoted
by the numeral obtained by the repetition of the primitive symbol determined by
t over s.

3. Given two numerals s and t , the product of the numbers denoted by s and t is
denoted by the numeral obtained by the repetition of the repetition s determined
by t .

10For a clear and concise exposition of this point, see [10], pp. 36–39.
11I am using the expression “elementary arithmetic” to designate the axiomatic theory of natural
numbers without reference to sets of natural numbers. In order to designate the axiomatic theory of
natural numbers and sets of natural numbers the expression “elementary analysis” is preferred.
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The subject matter of elementary arithmetic can be analyzed in an analogous way: It
will be proved that all structures conforming to the principles above in the obvious
sense are isomorphic to the structure (ω,+,×). Therefore, that elementary arithmetic
is concerned with the standard model is, in this account, a consequence of the very
directives which are the conceptual component of this axiom system, and this is very
different from declaring a model standard by decree.

These directive principles prescribe a criterion for the interpretation of formal
systems for elementary arithmetic. Now, there is a mathematical theorem which can
be seen as evidence for the thesis that in this specific case the directive principles do
what is expected, and their first-order formalizations are always partial:

Theorem 3 Every structureA = (D,⊕,⊗) conforming to the directive principles
above, in the sense that:

1. for every d ∈ D there is a unique numeral s such that d = sA ,
2. given two elements sA and tA in D, the sum sA ⊕ tA = (s ˆt)A , where s ˆt is

the numeral obtained by the repetition of the primitive symbol determined by t
over s, and

3. given two elements sA and tA in D, the product sA ⊗ tA = (s ∗ t)A , where
s ∗ t is the numeral obtained by the repetition of the repetition s determined by t,
is isomorphic to the structure (ω,+,×).

Proof For each d ∈ D, let s be the unique numeral such that d = sA , and let n be
the unique number canonically associated with s. Clauses (2) and (3) imply that the
bijection d �→ n is an isomorphism. �

The directive principles given for elementary arithmetic can be equivalently
expressed in Lω1ω. Therefore its semantic commitments are very modest since this
language is arguably a slight extension of the first-order language of elementary
arithmetic.

4 On Foundations of Mathematical Truth

It is usually said that set theory is a foundation of mathematics. I understand this as
the claim: Mathematical truth can be explained away in terms of the better under-
stood set-theoretic truth. Thus, according to this understanding of the above claim,
set theory is a foundation of mathematical truth. I agree with this claim, but this is not
an unproblematic thesis. In fact, as it was already mentioned, there are well-known
arguments to the effect that set theory cannot provide an ontological reduction of
mathematics. However, an answer to this objection is that to provide an ontolog-
ical reduction is not a requirement for a foundation of mathematical truth: What
is required for set theory to be a foundation of mathematical truth is that (a) all
mathematical theorems can be formalized as theorems in the formal systems for set
theory, and (b) this mathematical theory comes with a good understanding of its
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truth. Item (a) hardly needs to be argued for. With respect to (b), if the explanation
of mathematical truth in terms of set-theoretic truth is to represent an improvement
in clarity and precision, then set-theoretic truth must be well-understood.

In this paper I have defended an understanding of the commitments behind set-
theoretic truth based on certain directive principles. These directiveswere subject to a
mathematical analysis in order to clarify their delimitative role in the interpretation of
set theory. In that mathematical analysis, the subject matter of set theory is, according
to the first list of directive principles and Theorem 1, constituted by the hierarchies
of sets (Vκ ,∈), in which κ is a strongly inaccessible cardinal, and according to
the second list and Theorem 2, is constituted by the transitive models of ZFC
which are closed under countable subsets. These were established as mathematical
facts based on Definitions 1 and 2, respectively. Since set theory is considered a
standard foundation of mathematics, these accounts of the commitments behind
the interpretation of set theory correspond to accounts of the commitments behind
mathematical truth. Now, it is important to finally explain how these pictures of set
theory and mathematical truth solve the original problems.

The presumed concrete character of formal systems for set theorymust be defined.
Based on Gödel’s incompleteness theorems, set-theoretic truth is generally held to
transcend formal systems. If set-theoretic truth is supposed to go beyond provability
in formal systems, then we have to explain how can we ground truth-values in set
theory and what are we committed to when we do this. Our first task is to define what
is a concrete axiom system. The proposed solution to this problem was formulated in
terms of a double-layer schema of concrete axiom systems: A concrete axiom system
is constituted by two layers, the layer of directive principles of the system, which
correspond to the conceptual component of the system, and the layer of the formal
systems, which correspond to the deductive component. Directive principles give us
the commitments latent in the interpretation of formal systems, separating appro-
priate structures from all possible realizations of the axioms (when mathematically
analyzed).

The second thing to do is to give directive principles for set theory. Two lists of
directive principles were presented. The double-layer pictures of set theory and set-
theoretic truth unfolded in Sects. 2 and 3 are such that truth-values are fixed beyond
provability. For example, each sentence of second-order arithmetic has a rigid truth-
value in each one of the double-layer pictures presented here. Of course, the truth
of every theorem of 20th century classical mathematics which can be formalized in
ZFC is also fixed in these double-layer pictures. That is, transferring the analysis
of the commitments behind set-theoretic truth set forth in this paper to 20th century
classical mathematics, it is possible to provide an appropriate account of the com-
mitments latent in the notion of mathematical truth we happen to have inherited that
does not rest on mathematical intuition, nor on formalization alone, but on principles
which give us criteria for interpreting formal systems.

The proposed double-layer schema of concrete axioms systems is not commit-
ted to objects in an independent model, but it is committed to the objectivity of the
criterion given by directive principles in the first layer, which corresponds to the
conceptual component of the system. A given structure either conforms to the cri-
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terion or not, according to the relevant definitions of conformity, and this is what
is understood by the objectivity of the criterion given by directive principles. It is a
semantic commitment, it is what is required by the conceptual component of the sys-
tem in order to separate some structures from all possible realizations of the axioms.
The second list of directive principles given for set theory has a modest semantic
commitment, when compared to the first list, but the first list seems to be closer to the
concept of membership hierarchy, which is arguably the most popular candidate for
the conceptual component of set theory. I agree with Kreisel’s dictum12 that the point
is not the existence of objects but the objectivity of mathematical truth. Philosophy
of mathematics can profit from a shift of focus from the category of the object to the
notion of objectivity, and to account for set-theoretic truth in terms of an objective
criterion is such a shift.
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Coherence of the Product Law
for Independent Continuous Events

Daniele Mundici

Abstract Let A∗ and B∗ be finite sets of continuous events (e.g., physical observ-
ables, or random variables) represented by elements of semisimple MV-algebras A
and B. Suppose α : A∗ → [0, 1] and β : B∗ → [0, 1] are coherent books, i.e., maps
satisfying de Finetti’s coherence criterion. Suppose all events in A∗ are (logically)
independent of all events in B∗. Let C = A ⊗ B be the semisimple tensor product of
A and B.We first prove that if a, a′ ∈ A∗ and b, b′ ∈ B∗ satisfy a ⊗ b = a′ ⊗ b′, then
α(a)β(b) = α(a′)β(b′). Thus by setting γ (a ⊗ b) = α(a)β(b) we obtain a [0, 1]-
valued function γ defined on the set C∗ of pure tensors of C of the form a ⊗ b for
a ∈ A∗ and b ∈ B∗. We then prove that γ is a coherent book onC∗. For the proofs we
need theMV-algebraic extension of de Finetti Dutch Book theorem, Fubini theorem,
and the Kroupa–Panti theorem (which in turn rests on the preservation properties of
the Γ functor, the Stone–Weierstrass theorem and the Riesz representation theorem).

1 Main Result

We refer to [1, 15] for background on MV-algebras. The latter stand to continuously
valued events (or random variables) as boolean algebras stand to yes-no events. For
every MV-algebra D we let hom(D) be the set of homomorphisms of D into the
standard MV-algebra [0, 1]. Let D∗ = {d1, . . . , dn} be a finite subset of D. Follow-
ing [9, Definition 2.1] or [15, Definition 1.1], a map δ : D∗ → [0, 1] is said to be
(hom(D))-coherent if

for all σ : D∗ → R there is υ ∈ hom(D) with
n∑

i=1

σ(di )(δ(di ) − υ(di )) ≥ 0. (1)

When D is clear from the context, any such map δ will be said to be a coherent book.
In the particular case when D is a boolean algebra, (i.e., x ⊕ x = x for all x ∈ D),
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coherent books on D∗ coincide with de Finetti’s coherent betting systems on the set
D∗ of yes-no events, in the sense of [2, pp. 311–312], [3, Chap. 1], [4, § 3.3].

Our main result in this paper shows that coherence is preserved by taking product
books of coherent books on independent sets of continuous events. See Sect. 2 for
details on the (probability-free, purely logical) notion of independence used through-
out.

Theorem Let A and B be semisimple MV-algebras and C = A ⊗ B their semisim-
ple tensor product. Let A∗ and B∗ be finite subsets of A and B . Let

C∗ = {w ∈ C | w = a ⊗ b for some a ∈ A∗ and b ∈ B∗}. (2)

Suppose α : A∗ → [0, 1] and β : B∗ → [0, 1] are coherent books. Then:

(i) Whenever a, a′ ∈ A∗ and b, b′ ∈ B∗ satisfy a ⊗ b = a′ ⊗ b′, we have the identity
α(a)β(b) = α(a′)β(b′).

(ii) The map

γ : a ⊗ b ∈ C∗ 	→ α(a)β(b) ∈ [0, 1], (for all a ∈ A∗ and b ∈ B∗),

whose existence is ensured by (i), is a coherent book on C∗.

We say that γ is the product book of α and β.

Proof We let μ(A) and μ(B) denote the maximal spectral spaces of A and B. In
the light of [15, § 4.5], throughout we will identify the semisimple MV-algebra
A (resp., B) with a separating subalgebra of [0, 1]-valued continuous functions on
μ(A), (resp., on μ(B)). Further, via the representation [15, Theorem 9.17, Corollary
9.18], we also identify the maximal spectral space μ(C) with the product space
μ(A) × μ(B). We define the cylindrification maps

cyl ↑: A → A ⊗ B and cyl→ : B → A ⊗ B

by stipulating that for any f ∈ A the map cyl↑ transforms f into the function
fcyl↑ : μ(A) × μ(B) → [0, 1] given by

fcyl↑(m, n) = f (m), for all m ∈ μ(A) and n ∈ μ(B). (3)

Similarly, for any g ∈ B,

gcyl→(m, n) = g(n), for all m ∈ μ(A) and n ∈ μ(B). (4)

As a main property of the semisimple tensor product, [13], [15, § 9.4], these cylin-
drification maps isomorphically embed A (resp., B) onto a subalgebra Acyl↑ (resp.,
onto a subalgebra Bcyl→ ) of C . For any f ∈ A and g ∈ B the product fcyl↑ · gcyl→ is
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said to be a pure tensor, denoted f ⊗ g. As proved in [15, 9.17(ii)], C is the small-
est MV-algebra of (necessarily continuous) [0, 1]-valued functions on the compact
Hausdorff space μ(C), containing all pure tensors.

As the reader will recall, [11, 12], for every MV-algebra D, a state s on D is
a function s : D → [0, 1] satisfying s(1) = 1 and having the following additivity
property: for all x, y ∈ D, if x � y = 0 then s(x ⊕ y) = s(x) + s(y). When D is a
boolean algebra, a state on D is just a (finitely additive, normalized) measure on D
as defined in the classical paper [5].

The (⇒) direction of [9, Theorem3.2]—which is theMV-algebraic generalization
of de Finetti Dutch Book theorem, [2, §§ 8–9], [3, pp. 7–8], [4, §§ 3.3, 3.4, 3.8],
yields states s on A and t on B respectively extending the coherent books α on A∗
and β on B∗. The Kroupa–Panti theorem [8, Corollary 29], [17, Proposition 1.1], [15,
Theorem 10.5] then yields uniquely determined regular Borel probability measures
λ and ν on the Borel σ -algebras B(μ(A)) and B(μ(B)) of the compact Hausdorff
spaces μ(A) and μ(B) in such a way that

s(a) =
∫

μ(A)

a dλ and t (b) =
∫

μ(B)

b dν for all a ∈ A and b ∈ B. (5)

This theorem rests on the preservation properties of the Γ functor, [10, § 3], the
Stone–Weierstrass theorem and the Riesz representation theorem. With reference to
[20, § 1.7], let ξ be the product measure of the (trivially) σ -finite measures λ and ν.
Combining Fubini theorem with (3)–(4), for each pure tensor a ⊗ b we obtain

∫

μ(C)

a ⊗ b dξ =
∫

μ(C)

acyl↑ · bcyl→ dξ

=
∫

μ(B)

(
b

∫

μ(A)

a dλ

)
dν

=
∫

μ(A)

a dλ ·
∫

μ(B)

b dν.

Let the map u : C → [0, 1] assign to every c ∈ C the quantity

u(c) =
∫

μ(C)

c dξ. (6)

A direct verification shows that u is a state of C , called the product state of s and t .
From (5)–(6) for all a, a′ ∈ A and b, b′ ∈ B with a ⊗ b = a′ ⊗ b′ we get

u(a ⊗ b) = s(a) · t (b) = s(a′) · t (b′) = u(a′ ⊗ b′),

from which property (i) follows as a particular case. Let the map γ : C∗ → [0, 1]
be obtained by restricting the product state u to the set C∗ of pure tensors defined



210 D. Mundici

in (2). By the (⇐)-direction of [9, Theorem 3.2], γ is a coherent book on C∗s. By
construction, γ is the product book of α and β.

This settles (ii) and completes the proof of the theorem. �

In [16] the present author proved the boolean fragment of the foregoing theorem,
stating that the product book of two coherent books defined on independent sets of
yes-no events (exists and) is coherent.

2 Concluding Remarks

Suppose A∗ = {a1, . . . , am} and B∗ = {b1, . . . , bn} are sets of yes-no events, with
each ai independent of each b j . Formally speaking, A∗ ⊆ A and B∗ ⊆ B for inde-
pendent subalgebras A and B of some boolean algebra C as defined in [18, § 13] or
[7, Chap. 4, 11.3]. So, by definition, 0 �= a ∈ A, 0 �= b ∈ B entails 0 �= a ∧ b ∈ C.

In particular, if A ∪ B generates C then C is canonically isomorphic to the free
product A

⊕
B of A and B. Suppose α : A∗ → [0, 1] and β : B∗ → [0, 1] are

coherent books. One may naturally conjecture that the map assigning to each event
(ai and b j ) the value α(ai )β(b j ) is a (well defined) coherent book. This conjec-
ture, first proved in [16], also follows from our theorem in this paper, as the special
case when A and B are boolean algebras, because A and B are then semisimple
MV-algebras, and their (semisimple) tensor product A ⊗ B coincides with their free
product A

⊕
B, [7, § 11.1], [15, 9.17–18]. In the present boolean algebraic con-

text, the event (ai and b j ) amounts to the conjunction (ai ∧ b j ). Thus the mutual
“independence” of the finite sets of yes-no events A∗ ⊆ A and B∗ ⊆ B (for boolean
algebras A and B) may be accounted for in algebraic terms as follows: The canon-
ical injections A ↪→ A

⊕
B ←↩ B isomorphically map A and B onto independent

subalgebras A′, B ′ of A
⊕

B = A ⊗ B, the latter denoting the semisimple tensor
product of A and B qua MV-algebras.

For continuous events the situation is more delicate, because the free product of
twoMV-algebras is in general different from their tensor product, [15, Example 9.15,
p.108]. Only the latter provides a useful formalization of “independent” sets of MV-
algebraic events A∗ ⊆ A and B∗ ⊆ B, via the cylindrification embeddings of A and
B into A ⊗ B. For each a ∈ A∗ and b ∈ B∗ the event (a and b) is represented by the
pure tensora ⊗ b.Theproduct bookγ ofα andβ assigns toa ⊗ b the valueα(a)β(b).
The existence of γ as amap follows from condition (i) in our theorem, whose validity
crucially depends on the assumed coherence of α and β. While Łukasiewicz logic
has no connective to formalize the tensor product operation, once A ⊗ B is written
as the Lindenbaum algebra of some theory, [15, § 1.5], as in [13, constructions, pp.
234 and 237], there do exist formulas coding each element a ⊗ b in the domain of γ.

De Finetti’s definition (1) of a coherent book, as well as the definition of a product
book, are the same for boolean and for MV-algebras. Our theorem settles the natu-
ral conjecture that coherence is preserved by taking product books on independent
(continuous, as well as yes-no) events—where “independence” is given the natu-
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ral probability-free definition. Needless to say, if coherence were not preserved, the
notion of “stochastic independence” and/or de Finetti’s notion of “coherence” would
require a radical revision.

In [15, p. 9] a large class of continuous events are given a convenient formal-
ization in the framework of MV-algebras, generalizing the usual interpretation of
two-valued events as elements of boolean algebras. As noted in [14, Remarks, pp.
240–241] and [15, p. 129], once the coherence of a book β is defined via (1) for events
sitting in an MV-algebra A, coherence becomes equivalent to the extendability of
β to a state s of A. The MV-algebraic counterpart of Riesz-Kakutani representation
theorem [6, 19], (i.e., the Kroupa–Panti theorem [8, Corollary 29], [17, Proposition
1.1]), shows that states of A are in one-one correspondence with regular Borel proba-
bility measures on the maximal spectral space μ(A). Thus states, which are (finitely
additive) functionals onMV-algebras, correspond to (countably additive) probability
measures.

Letting A range over semsimpleMV-algebras,μ(A)will be any possible compact
Hausdorff space. Since by [9, Theorem 3.2], s is a state of A iff the restriction of s
to every finite subset of A is coherent, then de Finetti’s notion of a coherent book
naturally incorporates the σ -additivity axiom of Kolmogorov probability theory, and
also accounts for the product law in the definition of stochastically independent
events.
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A Local-Global Principle for the Real
Continuum

Olivier Rioul and José Carlos Magossi

Abstract We discuss the implications of a local-global (or global-limit) principle
for proving the basic theorems of real analysis. The aim is to improve the set of
available tools in real analysis, where the local-global principle is used as a unifying
principle from which the other completeness axioms and several classical theorems
are proved in a fairly direct way. As a consequence, the study of the local-global con-
cept can help establish better pedagogical approaches for teaching classical analysis.

1 Introduction

The logical foundations of mathematical analysis were developed at the end of
19th century and beginning of 20th century by mathematicians such as B. Bolzano
(∼1817), A. L. Cauchy (∼1821–1829), K. Weierstrass (∼1865-1895), C. Méray
(∼1869), R. Dedekind (∼1872), G. Cantor (∼1872), E. Heine (∼1872), E. Borel
(∼1895-1903), P. Cousin (∼1895) and H. Lebesgue (∼1905). They departed from
the geometric intuition of the “real line” by establishing rigorous proofs based on
completeness axioms that characterize the real number continuum.

As noticed in [4, 14, 27], rigor was not the most pressing question. Instead these
authors focused on teaching. Several mathematicians found themselves in an awk-
ward situation when they had to teach differential and integral calculus based on
fuzzy geometric evidences. Therefore, they decided to reform it [27]. Examples are
Cauchy’s Cours d’Analyse at École Polytechnique in Paris, Weierstrass’s lectures
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at the University of Berlin and Dedekind’s course at Zürich Polytechnic. Dedekind
wrote:

In discussing the notion of the approach of a variable magnitude to a fixed limiting value,
and especially in proving the theorem that every magnitude which grows continually, but
not beyond all limits, must certainly approach a limiting value, I had recourse to geometric
evidences.(...) For myself this feeling of dissatisfaction (...) I should find a purely arithmetic
and perfectly rigorous foundation for the principles of infinitesimal analysis. [8, pp. 1–2]

Felix Klein coined the phrase “the arithmetizing of mathematics” [22], a classic of
the era of rigor. Until today, the foundation has not been put into question; it is still
recognized as satisfactory in all classical textbooks which define R as any ordered
field satisfying one of the equivalent completeness axioms listed below1:

Sup (Least Upper Bound Property) Any set of real numbers has a supremum (and
an infimum)2;
Cut (Dedekind’s Completeness) Any cut defines a (unique) real number;
Nest+Arch (Cantor’s Property) Any sequence of nested closed intervals has a com-
mon point + Archimedean property;
Cauchy+Arch (Cauchy’s Completeness) Any Cauchy sequence converges+Archi-
medean property;
Mono (Monotone Convergence) Any monotonic sequence has a limit2;
BW (Bolzano–Weierstrass) Any infinite set of real numbers (or any sequence) has a
limit point2;
BL (Borel–Lebesgue) Any cover of a closed interval by open intervals has a finite
subcover3;
Cousin (Cousin’s partition [13]) Any gauge defined on a closed interval admits a
fine tagged partition of this interval;
Ind (Continuous Induction [5, 17, 20]).

One may find it striking that all these equivalent properties look so diverse. This
calls for the need of a simple unifying principle from which all such properties could
be easily and directly derived as theorems. In this article, we introduce and discuss
two versions of yet another equivalent axiom:

LG (Local-Global) Any local and additive property is global;
GL (Global-Limit) Any global and subtractive property has a limit point.

The earliest reference we could find that explicitly describes this principle is Guyou’s
little-known French textbook [16]. Guyou wrote:

Les démonstrations de ce livre sont, en général, différentes des démonstrations classiques; un
tel remaniement comporte sans doute des erreurs, que je serai reconnaissant à mes collègues
de bien vouloir me signaler. [16, p. xv].

1Precise definitions will be given in Sect. 4. Some of the statements require the Archimedean
property: Any real number is upper bounded by a natural number.
2Possibly infinite, e.g., sup R = inf ∅ = +∞, sup ∅ = inf R = −∞, lim ±n = ±∞.
3This is Borel’s statement, also (somewhat wrongly) attributed to Heine, and later generalized by
Lebesgue and others [1].
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[The proofs in this book are, in general, different from the classical proofs; such a reworking
may contain errors, that I shall be grateful to my colleagues for pointing out to me.]

The principlewas later re-discovered independently and frequently inmany disguises
in some American circles [11, 21, 26, 28, 30]. One central concept is the notion of
interval-additive property set up independently by Guyou and Ford [11, 16], which
we feel can be useful for pedagogical purposes:

A statement P concerning intervals will be called interval-additive if whenever P is true for
each of two overlapping intervals [. . .] it is also true for the interval obtained by combining
them; that is, their union. [11, p. 106]

2 Teaching Real Analysis: Present Situation

We have studied the logical flow of proofs in detail in the most influential under-
graduate/graduate textbooks in the U.S.A. [2, 7, 29], France [9, 25] and Brazil [15,
24]. These included not only proofs of the essential properties of the real numbers,
but also of the basic theorems for continuity (boundness theorem BT, intermedi-
ate value theorem IVT, extreme value theorem EVT, Heine’s uniform continuity
theorem Heine) and differentiation (essentially the mean value theorem MVT).

We identified the logical flows of each of these textbooks as follows:
Robert G. Bartle, Elements of Real Analysis [2]
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Richard Courant, Introduction to Calculus and Analysis I [7]

Walter Rudin, Principles of Mathematical Analysis [29]



A Local-Global Principle for the Real Continuum 217

Jean Dieudonné, Foundations of Modern Analysis [9]

Serge Lang, Undergraduate Analysis [25]
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Elon Lages Lima - Análise Real [24]

Djairo Guedes de Figueiredo - Análise I [15]

It appears that Sup is by far the preferred axiom, with Nest+Arch being the only
considered alternative in [7, 9]. Other axioms (Cauchy, Arch,Mono,BW, often BL,
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and sometimes Cut) are derived as theorems. In contrast, Cousin and Ind are never
used.4 BW is often central to prove the basic theorems of real analysis (particularly
IVT, EVT, Heine) with BL sometimes used as a “topological” alternative.

Our conclusion about classical approaches is that several classical proofs are quite
difficult and subtle for the beginner (e.g., proofs of EVT or Heine usingBW). Recent
attempts to improve this situation in the literature advocate the use of Cousin [13]
or Ind [5, 17], but this can also be cumbersome at times (although we agree that this
is a matter of opinion).

Some textbooks (such as [29]) also mention the possibility of proving the fun-
damental axiom by first constructing the reals from the rationals—themselves con-
structed from the natural numbers— the two most popular construction methods
being Dedekind’s cuts and Cantor’s fundamental sequences. While this is satisfac-
tory for logical consistency, the details are always tedious and not very instructive
for the student or for anyone using the real numbers, since the way they can be
constructed never influences the way they are actually used.

In the following sections we describe the LG/GL alternative, which we show is
one basic unifying principle from which all other completeness axioms and basic
continuity and differentiability theorems are easily derived, as illustrated in the fol-
lowing figure. In this way a teacher may advantageously choose to teach (or not to
teach) any given item.

4Although proposed at the same time as Borel’s BL, Cousin has been largely overlooked since. It
was only recently re-exhumed as a fundamental lemma for deriving the gauge (Kurzweil–Henstock)
integral (e.g. [13]). Ind is much more recent and in fact inspired from LG (see [10, 19]).
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3 The Local-Global Principle: A Primer

In the remainder of this paper (perhaps with the exception of Sect. 5), our presen-
tation is deliberately at the simplest undergraduate level. In particular, we do not
use explicitly topological concepts such as compactness and connectedness (even
though these could be easily addressed within the present framework) and start with
what we think of as the simplest type of point sets, namely intervals. We also stay
one-dimensional although the concepts derived here can be easily generalized to
point sets in any dimension.

Let us explain the above LG and GL principles by defining the following intuitive
notions.

3.1 Points and Intervals

We follow the classical notations of points and intervals with some non-traditional
definitions which will now be explained. We add two new symbols −∞ and +∞ to
the usual real set R such that:

R = R ∪ {−∞,+∞}

is totally ordered where −∞ and +∞ are the smallest and largest elements of R,
respectively.

Definition 1 A real point is an element of R. A finite point is an element of R, and
an infinite point is −∞ or +∞.

We feel that introducing explicitly infinite points is quite convenient here because
it allows for simpler statements where e.g., we can dispense with assuming that a
given point set is bounded to prove the existence of some limit point (since that limit
point can be infinite). In other words, our take on the classical debate of potential vs.
actual infinite leans toward adopting actual infinities, essentially for convenience.

Most of the sets considered in the sequel will be point sets in R, particularly
intervals. We consider two kinds of intervals:

Definition 2 Let u, v points in R such that u < v. The following are the two kinds
of intervals with u and v as extremities:

[u, v] = {x ∈ R|u ≤ x ≤ v}
]u, v[ = {x ∈ R|u < x < v}

To simplify the assertions we consider any [a, b] ⊆ [−∞,+∞] = R and assume
that all closed intervals [u, v] ⊆ [a, b] are nondegenerate (u < v). Again this implicit
convention of nondegenerate intervals will appear quite convenient in what follows.
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Definition 3 Intervals are overlapping if their intersection is an interval.5

Central in our study are properties of intervals [u, v] ⊆ [a, b]. Guyou wrote:

Une fonction f (x), qui possède la propriété d’être bornée (nous appellerons cette propriété
P) dans deux intervalles contigus, possède la même propriété dans l’intervalle somme des
deux (nous dirons que P est additive). [16, p. 32]

[A function f (x), which has the property of being bounded (we shall call this property P)
in two contiguous intervals, has the same property in the sum of the two intervals (we shall
say that P is additive).]

Here we shall always consider properties P of such intervals, and any property
P is identified with the set of intervals [u, v] that satisfies this property. Thus we
write “[u, v] ∈ P” if [u, v] satisfies the propertyP . The negation ¬P of property
is identified to the complementary set of P , that is, [u, v] /∈ P ⇐⇒ [u, v] ∈ ¬P .

Since we identify P with a family of closed subintervals of [a, b], the set of all
properties P can be thought as the set-theoretic abstraction of the set of all such
families of closed subintervals. It is of course much simpler to think of the statement
[u, v] ∈ P as a property satisfied by an interval [u, v] which is itself characterized
by two endpoints u < v. Thus [u, v] ∈ P can be simply thought as a binary relation
uRv on the set of ordered endpoints u < v.

3.2 Additive and Subtractive Properties

Definition 4 A property P is additive if for any u < v < w

[u, v] ∈ P ∧ [v,w] ∈ P =⇒ [u,w] ∈ P.

A consequence of P being additive is that it defines a transitive binary relation
uRv ⇐⇒ [u, v] ∈ P .

Definition 5 A property P is subtractive if for any u < v < w,

[u,w] ∈ P =⇒ [u, v] ∈ P ∨ [v,w] ∈ P.

Proposition 1 A propertyP is additive if and only if its negation¬P is subtractive.

Proof The contraposition of statement [u, v] ∈ P ∧ [v,w] ∈ P =⇒ [u,w] ∈ P
is [u,w] ∈ ¬P =⇒ [u, v] ∈ ¬P ∨ [v,w] ∈ ¬P . �

Example 1 The property of a function being positive (or nondecreasing, or contin-
uous) on [u, v] is additive and subtractive (and in fact true for any subinterval).

5A non-degenerate interval. Hence two adjacent intervals [u, v] and [v,w] (where u < v < w) are
not overlapping since their intersection is reduced to a point.
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Example 2 The property that [u, v] has exactly one integer is subtractive but not
additive. The property that [u, v] has at least two integers is additive but not subtrac-
tive.

Example 3 An important example of a quite general subtractive property is “u /∈ E
and v ∈ E” where E is any set of points. In fact, if u < v < w, and if [u,w] ∈ P ,
we have [u, v] ∈ P or [v,w] ∈ P according to v ∈ E or not. As an example, for all
real function f , the property “ f (u) ≤ 0 and f (v) > 0” is subtractive. Similarly, the
property “ f (u) ≤ 0 and f (v) ≥ 0” is also subtractive.

Certain properties are true under slightly different conditions that require a partial
overlap between the two subintervals:

Definition 6 A property is o-additive (overlap-additive) if for all t < u < v < w,

[t, v] ∈ P ∧ [u,w] ∈ P =⇒ [t,w] ∈ P.

Example 4 The property “(v − u) ≥ 1” is additive and o-additive. The property
“(v − u) ≤ 1” is neither additive, nor o-additive.

Example 5 The property “ f is a linear function on [u, v]” is o-additive, but not
additive (consider a piecewise linear function). The property “ f is a convex function
on [u, v]” is o-additive, but not additive.
Example 6 The property “ f (u) f (v) > 0” (“ f (u) and f (v) are of the same sign”)
is additive, but not o-additive.

Definition 7 A property P is o-subtractive if for all t < u < v < w,

[t,w] ∈ P =⇒ [t, v] ∈ P ∨ [u,w] ∈ P.

Example 7 Any property such that, when true for an interval, remains true for any
subinterval ([u′, v′] ⊂ [u, v] ∈ P implies [u′, v′] ∈ P) is a fortiori o-subtractive.

Example 8 The property “(v − u) < 1” is subtractive and o-subtractive. The prop-
erty “(v − u) > 1” is neither subtractive nor o-subtractive.

Proposition 2 A property P is o-additive if and only if its negation ¬P is o-
subtractive.

Proof The contraposition of “[t, v] ∈ P ∧ [u,w] ∈ P =⇒ [t,w] ∈ P” is
“[t,w] ∈ ¬P =⇒ [t, v] ∈ ¬P ∨ [u,w] ∈ ¬P”. �

Example 9 The property “ f is a nonlinear function on [u, v]” is o-subtractive but
not subtractive.

Example 10 The property f (u) f (v) ≤ 0 (“ f (u) and f (v) have opposite signs”) is
subtractive but not o-subtractive.
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3.3 Neighborhoods

Instead of using the general notion of a neighborhood in an abstract topological space
we use the following equivalent notion for R, based on intervals, which is enough
for our purposes. A neighborhood V (x) of a point x ∈ [a, b] contains all points
“sufficiently close” to x :

Definition 8 A neighborhood V (x) of a point x ∈ [a, b] is any set of points con-
taining at least one interval [u, v] such that:

⎧
⎪⎨

⎪⎩

u < x < v, if a < x < b;
a = u < x, if x = a;
u < v = b, if x = b.

Thus in a neighborhood V (x), it is possible to approach x from both sides if x belongs
to the interior of [a, b], but only from one side if x is one of the extremities of [a, b].
The notion of neighborhood depends on the considered set [a, b]. In most situations
one may consider only neighborhoods that are themselves intervals.

Definition 9 An interval [u, v] is adapted to neighborhood V (x) if x ∈ [u, v] ⊆
V (x).

3.4 Local Properties and Limit Points

Definition 10 A propertyP is local at x if there exists a neighborhood V (x) such
that all intervals adapted to x satisfyP , i.e.,

∃V (x),∀[u, v] adapted to V (x), [u, v] ∈ P.

A property P is local on a set of points E if it is local at any point in E .

Example 11 As will be seen later, continuity and differentiability of functions are
local properties. For example, a function f is continuous iff for any ε > 0, “| f (u) −
f (v)| < ε” is local. Some topological properties such as interior point or isolated
point can also be seen as local properties.

Definition 11 A propertyP has a limit point x if each neighborhood V (x) contains
an adapted interval which satisfies P , i.e.,

∀V (x), ∃[u, v] adapted to V (x), [u, v] ∈ P.

A property P has a limit on a set of points E if it has a limit at each point of E . It
can be easily seen as an exercise that any property local at x does have a limit at x .
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Proposition 3 A property P is not local at x if and only if its negation ¬P has a
limit at x.

Proof The negation of the assertion ∃V (x),∀[u, v] adapted to V (x), [u, v] ∈ P is
∀V (x), ∃[u, v] adapted to V (x), [u, v] ∈ ¬P . �
Thus to say thatP is not local on a set E is the same as saying that ¬P has a limit
at at least one point of E .

3.5 Local-Global and Global-Limit Axioms

We introduce the following as foundations (completeness axioms) for the real num-
bers. As shown later in Sects. 4 and 5 (Proposition 9), any one of these axioms is
enough to characterize R or R just as it is done traditionally by other completeness
axioms.6 Again let [a, b] be any interval in R.

Local-Global Axiom (LG). Every local and additive property on [a, b] is global,
that is, satisfied by [a, b].
Global-Limit Axiom (GL). Every global and subtractive property has a limit point
in [a, b].
Proposition 4 The LG and GL axioms are equivalent.

Proof Let P be additive, that is, ¬P is subtractive. The LG axiom can then be
written as: if P is local in [a, b] then [a, b] ∈ P . This is in turn equivalent by
contraposition to the statement: if [a, b] ∈ ¬P then ¬P has a limit point in [a, b],
which is the GL axiom. �
Lemma 1 Any property that is both local and o-additive is additive.

Proof Suppose [u, v] ∈ P and [v,w] ∈ P . Since P is local at v, there exists a
neighborhood of v in which any interval [r, s] which contains v satisfies P . We
may then assume that u < r < v < s < w. SinceP is o-additive, [u, v], [r, s] ∈ P
implies [u, s] ∈ P , then [u, s], [v,w] ∈ P implies [u,w] ∈ P . Thus P is addi-
tive. �
It follows from the lemma that in the LG axiom, we may always consider either
additive or o-additive properties. Thus we obtain the equivalent variants:

Local-Global Axiom (LG)–variant. Every local and o-additive property is global,
that is, satisfied by [a, b].
Global-Limit Axiom (GL)–variant. Every global and o-subtractive property has a
limit point in [a, b].

6Even though the proposed axioms appear to be second-order statements since they are quantified
over properties of sets, in fact any property is simply identified to a family of subintervals. Therefore,
the axioms only require the basic (first order) ZF theory (with or without the axiom of choice), as
is usual when teaching real analysis at an elementary level.
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4 Elementary Theorems for the Reals

Many commonmathematical properties can be identified as local andmany common
mathematical objects can be identified as limit points. For example, a function f is
continuous iff for any ε > 0, “| f (u) − f (v)| < ε” is local; a sequence xk converges
iff “xk ∈ [u, v] for sufficiently large k” has a limit point. Thus, taking LG orGL as the
fundamental completeness axiom for the real numbers it becomes easy and intuitive
to prove all the other completeness properties, as well as all the basic theorems of
real analysis. We start with the elementary theorems for the reals.

4.1 Dedekind Cuts

Definition 12 ADedekind cut is a pair (E, E ′)where point set E and its complement
set E ′ in [a, b] are such that E ′ < E , that is, u < v for any v ∈ E and u /∈ E .

Theorem 1 (Cut: Dedekind’s Completeness) Any cut (E, E ′) defines a (unique)
point x such that E ′ ≤ x ≤ E.

Proof We can assume by hypothesis that E and E ′ are non-empty sets. The property
[u, v] ∈ P with u /∈ E and v ∈ E is global and also subtractive (see Example 3). By
the GL axiom, P has a limit point x : any neighborhood V (x) contains u < x < v
such that u /∈ E and v ∈ E . From this we can deduce that no point x ′ ∈ E is < x ,
otherwise we could find u ∈ E ′ so that x ′ < u < x , which contradicts the hypothesis
E ′ < E . Similarly no point in E ′ is > x . Hence E ′ ≤ x ≤ E . �

For completeness we observe the following.

Proposition 5 The LG axiom is equivalent to Dedekind’s completeness.

Proof It is enough to prove the GL axiom from Dedekind’s completeness theorem.
Let P be global and subtractive and E be the set of points v for which [a, v′] ∈ P
for all v′ ≥ v. Clearly a /∈ E (since [a, a] is not a non-degenerate interval) and b ∈ E .
Since v ∈ E implies that all v′ ≥ v are in E , one has E ′ ≤ E and (E, E ′) is a cut, and
there exists x such that E ′ ≤ x ≤ E . In every neighborhood V (x) one can find [u, v]
such that [a, v] ∈ P but [a, u] /∈ P . SinceP is subtractive, [u, v] ∈ P . HenceP
has limit point x . �

4.2 Supremum and Infimum

Instead of the usual definitions of supremum (least upper bound) and infimum (great-
est lower bound), we may use the following definitions which are easily shown to be
equivalent and are more convenient for our purposes.
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Definition 13 (Supremum) A point set E has upper bound v if E ≤ v. It has supre-
mum x = sup E if the property that “v is an upper bound of E and u is not an upper
bound of E” has limit point x .

Lower bound and infimum are defined similarly.

Theorem 2 (Sup: LeastUpperBoundProperty)Every set of points has a supremum.

Proof We may assume that the set E is non empty (otherwise sup E = −∞) and
not reduced to {a} (in which case sup E = a). The above-mentioned property P:
“v ≥ E, u � E” is global since b ≥ E and a � E . It is also clearly subtractive (see
Example 3). By the GL axiom, P has a limit point which is sup E . �

For completeness we observe the following.

Proposition 6 The LG axiom is equivalent to the supremum theorem.

Proof It is enough to prove the LG axiom from the supremum theorem. Let P be
local and additive and set s = sup{x | [a, x] ∈ P}. SinceP is local in s, each inter-
val [u, v] adapted to a neighborhood V (s) satisfiesP . If s < b, one can choose [u, v]
such that v > s and [a, u] ∈ P . Then by additivity, [a, v] ∈ P which contradicts
the definition of s. Therefore s = b and [a, b] ∈ P . �

4.3 Continuous Induction Principle

In this section we consider properties on points in [a, b]. Such a property P can
be identified with a set of points satisfying this property; then x ∈ P is just a short
notation for “x satisfies P”. The principle of mathematical induction in N concerns
the properties of natural numbers. The property P ⊂ N is inductive if:

1. 0 ∈ P;
2. if n > 0 and if all k < n satisfies P , then n ∈ P;
3. if n ∈ P , then n + 1 ∈ P .

Due to the discrete nature of the integers, condition 2 implies condition 3, so we
may only assume conditions 1 and 3 (the usual induction) or conditions 1 and 2 (the
“strong induction”). The principle of mathematical induction says that any inductive
property is satisfied for all integers: P inductive =⇒ P = N. This principle can
now be stated for the real numbers as follows:

Definition 14 A property P (subset of [a, b]) is inductive if
1. a ∈ P;
2. if x > a, and if all u < x satisfies P , then x ∈ P;
3. if x < b, and if x ∈ P , then there exists v > x such that [x, v] ⊂ P .
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Theorem 3 (Ind: Continuous Induction (or Real Induction [5]))Any inductive prop-
erty P is global. (In other words, the only induction subset of [a, b] is [a, b] itself.)
Proof LetP be the property of intervals [u, v] defined by “each point ≤ u satisfies
P but there exists a point ≤ v which does not satisfy P”. This property is subtractive
(see Example 3). Since a ∈ P , if it is not true that any point ≤ b satisfies P , thenP
would be global. Assume by contradiction that this is the case. By the GL axiom,P
admit a limit point x . Then all u < x satisfies P and by condition 2, x ∈ P . If x < b,
by condition 3, we find v > x such that each point ≤ v satisfies P , which contradicts
x as a limit point of P . Therefore the limit point is equal to b, and each point ≤ b
satisfies P . �

For completeness we observe the following.

Proposition 7 The LG axiom is equivalent to the continuous induction principle.

Proof It is enough to prove the LG axiom from the continuous induction principle.
Let P be local and additive and let P be the set of x points for which either x = a
or [a, x] ∈ P . By hypothesis a ∈ P .

• Let x > a and assume that all points < x satisfy P . Since P is local in x , each
interval [u, v] adapted to a certain neighborhood V (x) satisfies P . Since x > a
we can choose [u, v] such that a < u < x and v = x . Then u ∈ P . Both intervals
[a, u], [u, x] satisfyP . Since P is additive, [a, x] satisfies P , so x ∈ P .

• Let x < b and assume that x ∈ P . AsP is local in x , each interval [u, v] adapted
to a certain neighborhood V (x) satisfiesP . Since x < b we can choose [u, v] so
that u = x and v > x . For all v′ such that x < v′ ≤ v, [x, v′] remains adapted to
V (x), and so satisfies P . If a = x , we have [a, v′] ∈ P . Otherwise a < x , and
the two intervals [a, x], [x, v′] satisfy P . Since P is additive, [a, v′] ∈ P . In
both cases [a, v′] ∈ P for all v′ such that x < v′ ≤ v, hence [x, v] ⊂ P .

By continuous induction we deduce that b ∈ P , that is, [a, b] ∈ P . �

4.4 Monotone Limits

Instead of the usual definition of a limit of a sequence we can adopt the following
definition which is easily shown to be equivalent and is more convenient for our
purposes.

Definition 15 A sequence (xk) of points has limit �: xk → � if the propertyP that
“[u, v] contains all xk for large enough k” has limit point �.
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Notice that � can be either finite or infinite.

Theorem 4 (Mono: Monotone Convergence) Any monotonic sequence has a limit.

Proof Let (xk) be a monotonic sequence of points in [a, b]. We may assume that
(xk) is nondecreasing (otherwise consider (−xk)). The above-mentioned property
“[u, v] contains all xk are large enough k” is clearly global and amounts to say that
“v is greater than or equal to all xk and u is not greater than or equal to all xk”. This
property is subtractive (see Example 3). By the GL axiom, P has a limit point x .
Therefore, xk → x . �

4.5 Archimedean Property

Theorem 5 (Arch: Archimedean Property) k → +∞, i.e., for every u ∈ Rwe have
k ≥ u for large enough k.

As usual this implies that the set Q of rational numbers is dense, i.e., each interval
[u, v] contains a rational number.

Proof Consider the sequence (k) of natural numbers in [a, b] = [0,+∞] and let
[u, v] ∈ P be defined by: “[u, v] contains all large enough integers”. This property
is obviously global. The assertion “[u, v] ∈ P” means that v is greater than all the
integers, and that u is not greater than all the integers; thus P is subtractive (see
Example 3). By the GL axiom, P has a limit point x , i.e., k → x . If x were finite,
we could find an interval of the type [v − 1, v] (where v is finite) which contains all
integers≥ k. For such a k, we have v − 1 < k =⇒ v < k + 1, which is impossible.
Therefore, x = +∞. �

An alternate proof uses the GL axiom and the property defined by “[u, v] contains
infinitely many integers”.

4.6 Cauchy Sequences

Instead of the classical definition of a Cauchy sequence using double indexing, we
feel that the following definition is somehow simpler.

Definition 16 A sequence (xk) is Cauchy if for all ε > 0, we have, starting from a
certain index K , the inequality |xK − xk | < ε for all k ≥ K .
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In other words, the sequence is eventually “almost stationary”. This definition, of
course, requires that the xk are eventually all finite. The usual definition of the usual
convergence (towards a finite limit x) replaces xK by x in the above inequality. Since
|xK − xk | ≤ |xK − x | + |x − xk |, any convergent sequence is a Cauchy sequence.

Remark 1 The classical definition is: for all ε > 0,we have |x� − xk | < ε for all large
enough k and � (≥ K ). Since |x� − xk | ≤ |x� − xK | + |xK − xk | this is equivalent to
the above definition.

Remark 2 A Cauchy sequence is bounded, because for any given ε > 0, we have
|xk | < ε + |xK | for all k ≥ K .

The following Cauchy criterion is Bolzano’s theorem:

Theorem 6 (Cauchy: Cauchy’s Completeness)A sequence is convergent if and only
if it is a Cauchy sequence.

Proof It is enough to show that a Cauchy sequence (xk) converges. Property P
defined by “[u, v] contains every xk for all large enough k”. is obviously global. It is
also o-subtractive, because if t < u < v < w and [t,w] satisfiesP , it is impossible
for both [t, u] and [v,w] to contain xk for infinitely many values of k, since that
would contradict the Cauchy property |x� − xk | < ε for ε = (v − u). Hence either
[t, v] ∈ P or [u,w] ∈ P . By the GL axiom,P has a limit point x , that is, xk → x .
The limit x is finite because the sequence (xk) is bounded. �

4.7 Nested Intervals of Cantor and Adjacent Sequences

We consider families of intervals [r, s] belonging to [a, b]. Such families do not have
a common point if their intersection is empty.

Theorem 7 (Cantor) Each family of intervals [r, s] with no common point admits
a finite subfamily with no common point.

Proof Let S be the family of intervals [r, s] with no common point:

⋂

[r,s]∈S
[r, s] = ∅.

Let P be the property that there is a finite sub-family of S with no common point
in [u, v]. This property is local. Indeed, no point x belongs to all intervals of S , so
there exists an interval [r, s] ∈ S which does not contain x . It is possible to chose a
neighborhood V (x) disjoint from this interval [r, s]. Each [u, v] adapted to V (x) then
satisfiesP , since it does not contain any point of [r, s] (which by itself constitutes a
finite sub-family ofS ). The propertyP is also additive, because given u < v < w,
if [u, v] does not contain a common point of a finite sub-family of S , and if [v,w]
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does not contain a common point of another finite sub-family ofS , then [u, v] does
not contain a common point of the union of the two finite sub-families. By the LG
axiom, [a, b] ∈ P , that is, there exists a finite sub-family ofS without any common
point in [a, b]. �

Theorem 8 (Nest: Cantor’s Property) Every sequence [rk, sk] of nested intervals
(such that [rk+1, sk+1] ⊂ [rk, sk] for all k) has a common point (common to each of
the intervals).

This is an immediate consequence of Cantor’s theorem, since all finite sub-families
of nested intervals sequences [rk, sk] has as an intersection in the last (smallest)
interval, which is not-empty. As a consequence the sequence has a common point.
However it is instructive to show a direct proof using the GL axiom:

Proof LetP be the property that [u, v] contains one of the intervals [rk, sk] (hence all
intervals for large enough k). The propertyP is clearly global. If it is not subtractive,
there exists u < v < w such that [u,w] ∈ P with rk < v < sk for all k large enough:
v is then a common point for all such intervals. Otherwise, P is subtractive, and
by the GL axiom, P has a limit point x . This point is necessarily common to the
intervals [rk, sk], otherwise we could find an interval [u, v] which contains x and
disjoint from an interval [rk, sk], which contradicts that P has a limit at x . �

An easy consequence is

Theorem 9 (Cantor) [a, b] is uncountable.
Proof We may assume that [a, b] is bounded. If it is countable, let us write [a, b] =
{x1, x2, . . . , xk, . . .}.Set [a0, b0] = [a, b]. For all integer k ≥ 0, define by induction a
subinterval [ak+1, bk+1] of [ak, bk] which does not contain xk (by example, partition
[ak, bk] into three sub-intervals of the same length, and define [ak+1, bk+1] as the
first sub-interval of three that does not contain xk). The sequence of intervals [ak, bk]
has a common point x ∈ [a, b] distinct from all of the x1, x2, . . . , xk, . . ., which is
impossible. �

Definition 17 Two sequences (rk), (sk) in [a, b] are adjacent if (rk) is nondecreas-
ing, (sk) is nonincreasing, and sk − rk tends to 0.

Theorem 10 (Adjacent Sequences) Two adjacent sequences converge to the same
limit.

Proof The difference sk − rk decreases since rk increases and sk decreases. As it
tends to zero, it is always ≥ 0. So rk ≤ sk for every k, and the intervals [rk, sk] are
nested. Let x be a common point in these intervals: rk ≤ x ≤ sk for every k. Since
the width of [rk, sk] tends to zero, each neighborhood V (x) contains [rk, sk] for large
enough k. Hence both sequences tend to x . �

For completeness we observe the following.
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Theorem 11 The LG axiom is equivalent to the two theorems of the adjacent
sequences Theorem 10 and of Archimedes Theorem 5.

Proof lt is enough to show that both theorems imply the GL axiom. LetP be global
and subtractive. One proceeds by dichotomy. Let [a0, b0] = [a, b] unless [a, b] =
[−∞,+∞], in which case we can define [a0, b0] to be equal to the first of the two
intervals [−∞, 0] or [0,+∞] which satisfies P . Thus we can always assume that
at least one of the two interval extremities are finite. We define them by induction
[ak+1, bk+1] equal the first of the two following intervals that satisfyP:

• [ak, (ak + bk)/2] or [(ak + bk)/2, bk], if ak and bk are finite;
• [ak, ak + 1] or [ak + 1,+∞], if bk = +∞ (ak being finite);
• [−∞, bk − 1] or [bk − 1, bk], ak = −∞ (bk being finite).

AsP is subtractive, this sequence is well defined. Since (ak) is nondecreasing, and
(bk) is nonincreasing, we have three cases to consider:

• ak and bk are finite for large enough k; then bk − ak = 2−k(b − a) tends to 0 since
(by Theorem 5) 2k > k → +∞; the sequences (ak) and (bk) are adjacent, so by
Theorem 10 they converge to the same limit.

• bk = +∞ for every k; we then have a0 = 0 and ak+1 = ak + 1 for any k ≥ 0,
where ak = k → ∞ by Theorem 5.

• ak = −∞ for every k; we then have the same bk = −k → −∞ by Theorem 5.

In all cases, ak and bk tend to the same limit x (finite or infinite). Each neighborhood
V (x) for every k large enough, contains the interval [ak, bk] ∈ P . ThereforeP has
a limit point x . �

4.8 Bolzano–Weierstrass Property

Definition 18 A limit point x of a set E (also called accumulation point) is such
that each neighborhood V (x) contains infinitely many points of E . That is to say,
the property that [u, v] contains infinitely many points of E has x as a limit point in
the sense of Definition 11.

A limit point x of a sequence (xk) (also called cluster point, or adherent value) is
such that each neighborhood V (x) contains xk for infinitely many values of k. That
is to say, the property that [u, v] contains xk for infinitely many values of k has x as
a limit point in the sense of Definition 11.

Theorem 12 (BW: Bolzano–Weierstrass)Any infinite set of points has a limit point.

If the set is bounded, this limit point is finite.

Proof Let E be an infinite set of points, and P be the property with the interval
[u, v] containing infinitely many points in E . This property is global by hypothesis.
It is also subtractive: if [u,w] contains infinitely many points in E , at least one of
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those sub-intervals [u, v], [v,w] must have infinitely many points in E . By the GL
axiom, P has a limit point x , i.e., x is a limit point of E . �

Note that by contraposition, any locally finite set is finite. Also, by the same
argument, any uncountable set of points has a condensation point (that is, such that
every neighborhood of it contains uncountably many points of E).

Theorem 13 (BW for Sequences) Any sequence has a limit point.

This is a consequence of the preceding theorem applied to the set of the sequence
values, if one considers the two cases where the set is finite or infinite. A direct proof
using the GL axiom is as follows.

Proof Let (xk) be any point sequence and let P be the property that an interval
[u, v] contains xk for infinitely many values of k. The property is evidently global. It
is also subtractive: if [u,w] contains xk for infinitely many values of k, at least one
of [u, v], [v,w] has the same property. By the GL axiom,P has a limit point x , that
is, x is a limit point (in the usual sense of Definition 18) of the sequence (xk). �

4.9 Heine–Borel–Lebesgue Cover

Recall that a family of intervals cover a set of points E if each point in E is in at
least one of the intervals of that family. For example, R = {]ri , si [}i∈I covers E if
E ⊂ ⋃

i∈I ]ri , si [. We also say that this family is a cover of E . In addition, if this
family is composed of a finite number of intervals, then it is a finite cover of E .

Theorem 14 (BL: Borel–Lebesgue (sometimes known as Heine–Borel)) Any cover
of [a, b] by means of open intervals admits a finite subcover.

In other words, given any family R of open intervals covering [a, b], we can find a
finite number of intervals ]rk, sk[ (k = 1, . . . ,m) ofR such that each point in [a, b]
belongs to at least one of ]rk, sk[:

[a, b] ⊂
m⋃

k=1

]rk, sk[.

Proof LetP be the property that the interval [u, v] is covered by a finite number of
intervals ]r, s[ of R. As R covers [a, b], each x ∈ [a, b] belongs to some interval
]r, s[ ofR. Taking V (x) =]r, s[ as a neighborhood of x , every interval [u, v] ⊂ V (x)
is covered by a finite number (equal to 1) of intervals ofR, that is, ]r, s[ itself. Hence
P is local. It is also additive: if [u, v] and [v,w] covered each one by a finite number
of open intervals of R, their union is a finite cover of [u,w]. By the LG axiom, P
is global, i.e., satisfied by [a, b]. �
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4.10 Cousin Partition

Definition 19 A partition (of intervals) of [a, b] is a finite cover of [a, b] by non-
overlapping intervals [u, v] ⊂ [a, b].
In other words, a partition of [a, b] corresponds to a subdivision, that is, a finite
number of points a = u1 < u2 < · · · < um = b, such that the intervals [uk, uk+1]
(1 ≤ i < m) do not overlap and cover [a, b].
Definition 20 An environment V of a set of points E is a family of neighborhoods,
with one neighborhood V (x) for every point x ∈ E .

Definition 21 An interval [u, v] is adapted to the environment V if there exists
x ∈ [u, v] such that [u, v] ⊂ V (x). A set of intervals is adapted to the environment
V if every interval is.

Thus, a partition π = {[ui , ui+1]}1≤i<m of [a, b] is adapted to the environment V
(on [a, b]) if it exists for each of the intervals of which it is composed, that is, if for
all i (1 ≤ i < m), there exists x ∈ [ui , ui+1] ⊂ V (x).

Theorem 15 (Cousin: Cousin’s Partition) For any environment V of [a, b], there
exists a partition of [a, b] adapted to V .

Proof Let P be the property that the interval [u, v] admits a partition adapted to
V . For all x ∈ [a, b], every adapted interval [u, v] to V (x) is for itself an adapted
partition of [u, v] to V . Hence P is local. It is also additive: if [u, v] and [v,w]
admit each one a partition adapted to V , the union of the two partitions constitute a
partition of [u,w] adapted to V . By the LG axiom, P is global. �

For completeness we observe the following.

Proposition 8 The LG axiom is equivalent to Cousin’s theorem.

Proof It is enough to show that Cousin’s theorem implies the LG axiom. Let P be
a local and additive property in [a, b]. AsP is local, there exists an environment V
such that every adapted interval to V satisfiesP . A Cousin’s partition corresponding
to V is then composed of intervals that satisfy P . Since P is additive, it follows
that [a, b] ∈ P: P is global. �

5 Equivalence Between Completeness Axioms

In this section we prove the equivalence between the various completeness axioms.
This of course is not required in an elementary course but is satisfactory for logical
consistency.
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Proposition 9 Local-global (LG or GL) axioms are equivalent to any of the follow-
ing statements:

1. Existence of a Dedekind cut point;
2. Existence of supremum (or infimum);
3. Principle of continuous induction;
4. Intersection theorems of Cantor + Archimedean property;
5. Nested intervals theorem + Archimedean property;
6. Adjacent sequences theorem + Archimedean property;
7. Monotone limit theorem;
8. Cauchy’s criterion + Archimedean property;
9. Bolzano–Weierstrass theorem (for sets or for sequences);
10. Heine–Borel–Lebesgue covering theorem;
11. Existence of Cousin’s partition.

Proof Wehave already directly proven each one of the results fromLGorGLaxioms.
The converse proofs given above show the equivalences with the statements 1, 2, 3,
6, and 11 . Furthermore, the implications 4 =⇒ 5 =⇒ 6 have already been seen,
hence the equivalences with statements 4 and 5.

We can conclude with the following implications: (9 =⇒ 7 =⇒ 6), (8 =⇒
6), and (10 =⇒ 11).

9 =⇒ 7: We have seen that the Bolzano–Weierstrass theorem for sets implies
that for sequences. We now show that the Bolzano–Weierstrass the-
orem for sequences implies the monotone convergence theorem.
Let (xk) be a monotonic sequence and V (x) an interval which is
a neighborhood of x . The sequence (xk) admits a limit point x
such that x� ∈ V (x) for infinitely many values of �. Let K be such
that xK ∈ V (x) and k ≥ K . There exists an index � > k such that
x� ∈ V (x). As this sequence is monotonic, xk lies between xK and
x�, hence xk ∈ V (x) for all k ≥ K , which shows that x is the limit
of (xk).

7 =⇒ 6: If two adjacent sequences (rk), (sk) are monotone, then they tend to
limits: rk → r and sk → s. Since sk − rk → 0,we deduce s − r = 0,
hence r = s, which proves the adjacent sequences theorem.
The sequence xk = k is increasing and tends to a limit x . If x is
finite,wehaveboth k → x and k + 1 → x + 1 so x = x + 1which is
impossible. Hence x = +∞, which proves the Archimedes property.

8 =⇒ 6: It is enough to show that the Cauchy criterion implies the adjacent
sequences theorem. Two adjacent sequences (rk), (sk) are such that
sk − rk is nonincreasing and tends to 0. For all ε > 0, we have then
sK − sk ≤ sK − rK < ε and rk − rK ≤ sK − rK < ε for all k ≥ K .
These are Cauchy sequences, hence converge: rk → r and sk → s.
As sk − rk → 0, we deduce that s − r = 0 or r = s.
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10 =⇒ 11: Let V be an environment of [a, b] which we assume is of open
intervals. This constitutes a covering of [a, b]. Extract a finite cov-
ering V (xk) =]rk, sk[ for 1 ≤ k ≤ K . Relabelling if necessary, we
can always assume that x1 < x2 < · · · < xK and assume that K is
minimal. Pick xi1 such that a ∈ V (xi1) and as long as b /∈ V (xi j )
define a finite sequence xi j such that xi j+1 > xi j and V (xi j+1) over-
laps with V (xi j ), until V (xim−1) � b. One obtains a finite covering
V (xik ) =]rik , sik [ for 1 ≤ k < m where each V (xik ) overlaps with
V (xik+1).We can then choosem points a = u1 < u2 < · · · < um = b
with uk+1 ∈ V (xik ) ∩ V (xik+1). Every [uk, uk+1] is then adapted to
V (xik ) for 1 ≤ k < m. These intervals forms an adapted Cousin par-
tition to V .

�

6 Elementary Theorems of Real Analysis

6.1 Continuous Functions

We consider functions defined on [a, b], with values in R or C, or more generally
in R

n or C
n , or every vector space of finite dimension over R or C, or even more

generally, in a Banach space over R or C. We note | · | the corresponding absolute
value, modulus, or norm.

We advocate the following definition of continuity.

Definition 22 A function f is continuous in a point x if for all ε > 0, the property
“| f (v) − f (u)| < ε” is local in x . A function f is continuous on a set E if it is
continuous in each point of E .

In other words, f is continuous at x if for all ε > 0, there exists a neighborhood
V (x) in which u ≤ x ≤ v implies | f (u) − f (v)| < ε. When x = b, it is a continuity
to the left at b; when x = a, it is a continuity to the right at a.

Conversely, f is discontinuous at x if there exists ε > 0 for which the property
“| f (v) − f (u)| ≥ ε” is not limit at x .

Remark 3 The continuity definition in a point x is equivalent to the classical def-
inition: for all ε > 0, there exists a neighborhood V (x) such that for all t ∈ V (x),
| f (t) − f (x)| < ε. Indeed we obtain this condition from the definition above when
getting [u, v] = [x, t] if t ≥ x , [u, v] = [t, x] otherwise. Conversely, if [u, v] is
adapted to V (x), we have | f (v) − f (u)| ≤ | f (v) − f (x)| + | f (u) − f (x)| < 2ε.

Remark 4 Saying that f is continuous at x is the same as saying that f (t) tends
toward f (x)when t → x . When x = b, this is a limit to the left at b, denoted f (b−);
when x = a, this is a limit to the right at a, denoted f (a+).
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It is possible for f to only be defined on ]a, b[ but having finite limits f (a+) and
f (b−). We can say then that f is continuous on [a, b], in the sense where we can
extend by continuity f by setting f (a) = f (a+) and f (b) = f (b−).

Example 12 The function f (x) = 1

1 + x2
is continuous on [−∞,+∞] (extend by

continuity setting f (±∞) = 0).

Example 13 The function f (x) = arctan(x) is continuous on [−∞,+∞] (extend
by continuity setting f (−∞) = −π/2 and f (+∞) = π/2).

Example 14 The function f (x) = x2 is continuous on any bounded interval. But
with our definition7 it is not continuous (cannot be extended by continuity) on
[−∞,+∞].
Theorem 16 (BT: Boundedness Theorem) Each continuous function on [a, b] is
bounded on [a, b].
Notice that [a, b] may very well be unbounded (a and/or b can be infinite).

Proof The property P defined by “ f is bounded on [u, v]” is local since for given
ε > 0, any u in the neighborhood V (x) satisfies | f (u)| ≤ | f (u) − f (x)| + | f (x)| ≤
| f (x)| + ε. The propertyP is also additive, because if | f | ≤ M on [u, v] and | f | ≤
M ′ on [v,w] then | f | ≤ max(M, M ′) on [u,w]. By the LG axiom, f is bounded on
[a, b]. �

The above proof shows that, more generally, any locally bounded function is (glob-
ally) bounded.

Theorem 17 (EVT: Extreme Value Theorem) Each continuous real function f on
[a, b] reaches its maximum, i.e., there exists x ∈ [a, b] such that f (x) ≥ f (t) for all
t ∈ [a, b].
Of course, considering − f , each real continuous function f on [a, b] reaches its
minimum.

Proof The property P: “there does not exist a value of f which is greater than
any value of f on [u, v]” (in other words ∀t ∈ [a, b], ∃x ∈ [u, v], f (t) ≤ f (x)) is
clearly global. It is also subtractive, otherwise the greater of the two values of f is
greater than f on [u,w]. By the GL axiom, P has a limit point x . We have then,
by continuity, ∀t ∈ [a, b], f (t) < f (x) + ε for all ε > 0, hence f (t) ≤ f (x) for all
t ∈ [a, b]. �

Interestingly, the proof extends verbatim to the more general case where f is upper
semi-continuous. Also notice that the boundedness theorem was not required for this
proof, which, therefore, provides another proof for boundedness since min f ≤ f ≤
max f .

7We found it convenient for later developments that functions assume only finite values in order to
leverage on the complete metric space property of the set of function values.
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Theorem 18 (IVT: Intermediate Value Theorem) Each continuous real function on
[a, b] takes any value between f (a) and f (b).

In other words, if y is any value taken between f (a) and f (b), there exists x such
that f (x) = y.

Proof The property [u, v] ∈ P defined by “y is between f (u) and f (v)” (that is,
“ f (u) ≤ y ≤ f (v) or f (v) ≤ y ≤ f (u)”) is global. It is also subtractive, because if
u < v < w and y is between f (u) and f (w), then whatever the value of f (v), y is
either between f (u) and f (v), or between f (v) and f (w). By the GL axiom, P
has a limit point x . By continuity, for all ε > 0, we have f (x) − ε < y < f (x) + ε,
hence y = f (x). �

Theorem 19 (Heine’s Theorem) Every continuous function of a bounded interval
[a, b] is uniformly continuous.
Proof Let f be continuouson [a, b] and ε > 0.ThepropertyP: “| f (x) − f (y)| < ε

for all x, y sufficiently close in [u, v]” (that is, there exists δ > 0 such that |x − y| <

δ =⇒ | f (x) − f (y)| < ε) is local by definition of continuity. It is also o-additive:
if t < u < v < w and if for all x, y sufficiently close in [t, v] or in [u,w] one has
| f (x) − f (y)| < ε, then all x, y ∈ [t,w] such that |x − y| < v − u will be both in
[t, v] or both in [u,w], so that wewill always have | f (x) − f (y)| < ε for sufficiently
close x, y. By theLGaxiom,P is global,whichmeans that f is uniformly continuous
on [a, b]. �

6.2 Differentiable Functions

We advocate the following definition of differentiability.

Definition 23 A function f is differentiable at a finite point x with derivative
f ′(x) = λ if for all ε > 0, the property [u, v] ∈ P defined by

| f (v) − f (u) − λ(v − u)| < ε(v − u)

is local in x . A function f is differentiable on a (bounded) set E if it is differentiable
at all points of E which defines the derivative f ′ of f on E .

In other words, f has a derivative λ = f ′(x) at x if for all ε > 0, there exists a
neighborhood V (x) in which u ≤ x ≤ v implies | f (v) − f (u) − f ′(x) · (v − u)| <

ε(v − u). If f is defined on [a, b] and a or b are finite, we can have x = a or x = b
in the definition of the derivative; this is then a derivative to the left at b if x = b, a
derivative to the right at a if x = a.

Notice that if f takes values in a vector space, λ · (v − u) is the vector product λ
by the scalar (v − u), and the derivative f ′(x) has vector values.
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Remark 5 For real-valued functions the above definition of derivative at x point is
equivalent to the classical definition:

f (x) − f (t)

x − t
→ λ

where t tends to x . Indeed, we get this condition from the definition above by tak-
ing [u, v] = [x, t] if t ≥ x , [u, v] = [t, x] otherwise, and dividing by (v − u). Con-
versely, if [u, v] is adapted to V (x), we have | f (v) − f (u) − λ(v − u)| = | f (v) −
f (x) − λ(v − x) + f (x) − f (u) − λ(x − u)| ≤ ε

(|v − x | + |x − u|) = ε(v − u).
(This is sometimes referred to in the literature as the “straddle lemma”).

Proposition 10 Every differentiable function is continuous.

Proof If f is differentiable with derivative λ at x , the property | f (v) − f (u)| <

(|λ| + ε)(v − u) is local at x . But if [u, v] is small enough, for a given ε′ > 0,
(|λ| + ε)(v − u) < ε′, hence the property | f (v) − f (u)| < ε′ is local at x . �

Inspired by Cohen and Bers [3, 6], we advocate the use of the following theorem
in place of the classical mean value theorem (see Remark 6 below).

Theorem 20 (Finite Increase Inequality8) Let f, g be two differentiable functions
on [a, b], where g assumes real values.

• if | f ′| < g′ on [a, b] then | f (b) − f (a)| < g(b) − g(a);
• if | f ′| ≤ g′ on [a, b] then | f (b) − f (a)| ≤ g(b) − g(a);

Proof Let x ∈ [a, b], suppose | f ′(x)| < g(x) and let ε > 0 small enough such that
| f ′(x)| + ε < g′(x) − ε.

For u ≤ x ≤ v in a neighborhood V (x), one has | f (v) − f (u)| < | f ′x)| · (v −
u) + ε(v − u) < g′(x) · (v − u) − ε(v − u) < g(v) − g(u). This implies that the
property “| f (v) − f (u)| < g(v) − g(u)” is local. This property is also additive
for if u < v < w, | f (v) − f (u)| < g(v) − g(u) and | f (w) − f (v)| < g(w) − g(v)
imply | f (w) − f (u)| ≤ | f (w) − f (v)| + | f (v) − f (u)| < g(w) − g(v) + g(v) −
g(u) = g(w) − g(u). By the LG axiom, the property is global:

∣
∣ f (b) − f (a)

∣
∣ <

g(b) − g(a).
For the second part, we can replace g(x) by g(x) + εx for ε > 0, so that | f ′| <

g′ + ε, hence | f (b) − f (a)| < g(b) − g(a) + ε(b − a). Since ε > 0 is arbitrarily
small, we have | f (b) − f (a)| ≤ g(b) − g(a). �

An alternate proof for the second part considers the property “| f (v) − f (u)| ≤
g(v) − g(u) + ε(v − u)”.

The above theorem is enough to prove the following important results:

• if f ′ = 0 on [a, b] then f is constant there (take g constant); thus an antiderivative
is unique up to an additive constant;

8A literal translation of the French “inégalité des accroissements finis”,which advantageous replaces
the “théorème des accroissements finis”, which is the mean value theorem.
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• if g′ > 0 on [a, b] then g is increasing; if g′ ≥ 0 on [a, b] then g is nondecreasing
(take f constant).

Remark 6 Cohen and Bers wrote:

With characteristic vigor, L. Bers announced in a recent conversation: “Who needs the
mean value theorem! All we want as a start in elementary calculus is the proposition that if
f ′(x) = 0 for all x in [a, b], then f is constant.” [6]

The “full” mean value theorem [. . .] is a curiosity. It may be discussed together with
another curiosity, Darboux’ theorem that every derivative obeys the intermediate value the-
orem. [3]

The actual “mean value theorem”, which states that there exists x ∈ ]a, b[ such that
f (b) − f (a)

b − a
= f ′(x).

gives no indication of the position of point x in the interval [a, b]. This proof shows
that the only condition is that f (b)− f (a)

b−a lies between two possible values of the
derivative, and as such, is related to Darboux’s theorem that f ′ takes any value
between f ′(a) and f ′(b) on [a, b]. We couldn’t find a direct and easy proof of the
mean value theorem using the LG or GL axiom. Darboux’s theorem can be proved
using the fact that the derivative f ′ vanishes at an extremum of f , and the mean value
theorem then becomes an easy consequence of Darboux’s theorem: if f ′ does not
take the value λ = f (b)− f (a)

b−a then by Darboux’s theorem f ′ is either always greater
or always less, which by the finite increase inequality implies either f (b)− f (a)

b−a > λ

or < λ, a contradiction.

7 Conclusion and Perspectives

Our objective is twofold. First we would like to draw attention to the local-global
principle as a new efficient and enjoyable tool for proving the basic theorems of real
analysis. Second, we aim to clarify the local-global concept to possibly improve the
teaching of real analysis at undergraduate and graduate levels.

As a future work the LG/GL concept may be used as a basis for a new presentation
of the integral, just as Cousin’s lemma was used to build the Kurzweil–Henstock
integral [12, 18, 23]. In such an approach the so-called “fundamental theorem of
calculus”, appropriately generalized, can become the actual definition for a novel
notion of the antiderivative function.

Acknowledgements The authors would like to thank Pete Clark for his detailed review of the
paper and his many useful comments and suggestions.
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Quantitative Logic Reasoning

Marcelo Finger

Abstract In this paper we show several similarities among logic systems that deal
simultaneously with deductive and quantitative inference. We claim it is appropriate
to call the tasks those systems perform as Quantitative Logic Reasoning. Analogous
properties hold throughout that class, for whose members there exists a set of lin-
ear algebraic techniques applicable in the study of satisfiability decision problems.
In this presentation, we consider as Quantitative Logic Reasoning the tasks per-
formed by propositional Probabilistic Logic; first-order logic with counting quanti-
fiers over a fragment containing unary and limited binary predicates; and proposi-
tional Łukasiewicz Infinitely-valued Probabilistic Logic.

1 Introduction

Quantitative Logic Reasoning aims at providing a unified treatment to several tasks
that involve both a deductive logic reasoning and some form of inference about quan-
tities. Typically, reasoning with quantities involves probabilities and/or cardinality
assessments. Superficially, we are dealing with such distinct quantitative inferen-
tial capabilities but it is our aim to clarify that, to some significant extent, these
approaches share a considerable set of common features, which include, but are not
restricted to:

• similar reasoning tasks with quantities, which typically involve decision problems
such as satisfiability or entailment assessments;

• similarly structured fragments that lead to the existence of normal forms;
• similar characterizations of consistency in terms of coherence;
• similar formulations based on Linear Algebra;
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• similar decision algorithms employing SAT-based column generation;
• similar complexity of decision problems, which for the fragments covered in this
work are “only” NP-complete.

We believe that the presence of such similarities elicits the grouping of several
logic systems under the name of Quantitative Logic Reasoning systems.

We explore the shared properties of three logic systems with the aim of bringing
forward the similarities as well as the particularities of each system. For that, we
present some well known results, which are employed as a basis for the develop-
ment of quantitative reasoning techniques; we also present original results, mainly
in dealing with counting quantifiers over unary and restricted binary predicates; and
in the normal form and linear algebraic methods for Łukasiewicz Infinitely-valued
Probabilistic Logic. But the main claim of originality lies in bringing forward the
similarities of all those systems.

The following logic systems are studied in detail.

• Probabilistic Logic (PL). It consists of classical propositional logic enhanced with
probability assignments over formulas, presented in Sect. 2.

• Counting Quantifiers over a first order fragment containing unary predicates; we
show that such a fragment can be extended with binary predicates in restricted
contextswithout a complexity blow up. TheCQUandCQUEL logics are presented
in Sect. 3.

• Łukasiewicz Infinitely-valued Probabilistic Logic (LIP), a multi-valued logic for
which there exists a well-founded probability theory, presented in Sect. 4.

For each system above, we present language, semantics and decision problem,
followed by normal form presentation and satisfiability characterization We also
present complexity results and decision algorithms.

It is important to note that throughout this work those logics and their decision
problems are presented syntactically, and formulas are linguistic objects, presented as
a context-free grammar or some similar, recursive, device. The syntactic vocabulary
contains, at the level of terminals, a set of basic (propositional) symbolsP , a set of
connectives with appropriate arity and punctuation symbols.

2 Probabilistic Logic

Probabilistic logic combines classical propositional inference with classical (dis-
crete) probability theory. The original formulation of such a blend of logic and prob-
ability is due to George Boole who, in his seminal work introducing what is now
known as Boolean Algebras, already dedicated the two last sections to the problem
of combining logic and probability results, stating that

the object of the theory of probabilities might be thus defined. Given the probabilities of any
events, of whatever kind, to find the probability of some other event connected with them.

George Boole [8, Chap. XVI, 4, p. 189]
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Deciding if a given set of probabilities is consistent or coherent may be seen as
a first step for Boole’s “probability extension problem”. Indeed, there is certainly
more than one way of computing probabilities starting from the establishment of
their coherence; see [15] and also the methods presented in this work.

For the purposes of this work, we concentrate on the decision problem of prob-
abilistic logic, the Probabilistic Satisfiability problem (PSAT), which consists of
an assignment of probabilities to a set of propositional formulas, and its solution
consists of a decision on whether this assignment is satisfiable; this formulation is
based on a full Boolean Algebra which, due to de Finetti’s Dutch Book Theorem (see
Proposition 2.5 below), is equivalent to deciding the coherence criterion over a finite
Boolean Algebra. The problem has been first proposed by Boole and has since been
independently rediscovered several times (see [27, 28] for a historical account) until
it was presented to the Computer Science and Artificial Intelligence community by
Nilsson [38] and was shown to be an NP-complete problem, even for cases where
the corresponding classical satisfiability is known to be in PTIME [24].

Boole’s original formulation of the PSAT problem did not consider conditional
probabilities, but extensions for them have been developed [27–29, 43]; the latter two
works also cover extensions of PSAT with imprecise probabilities. The complexity
of the decision problems for conditional probabilities becomes PSPACE-complete
if constraints can combine distinct conditional events; otherwise it remains NP-
complete [19]. A few tractable fragments of PSAT were presented [1]. In this work,
however, we concentrate on PSAT’s original formulation, and in this section we
follow the developments of [6, 7, 20, 22].

The PSAT problem is formulated in terms of a linear algebraic problem of expo-
nential size. The vast majority of algorithms for PSAT solving in the literature are
based on linear programming techniques, such as column generation, enhanced by
several types of heuristics [20, 22, 29, 32].

On the other hand, there is a distinct foundational approach to sets of probabil-
ity assignment to formula known as coherent probabilities, which are based on de
Finetti’s view of probabilities as betting odds [13–15].

In the following we present a few examples in Sect. 2.1, discuss the relationship
between PSAT and coherent probabilities in Sect. 2.2 and present an algorithm for
deciding PSAT in Sect. 2.3.

2.1 Examples

Consider the following example.

Example 2.1 A doctor is studying a disease D and formulates a hypothesis, accord-
ing to which there are three genes involved, g1, g2 and g3 such that at least two of
which must be present for the disease D to manifest itself. Studies in the population
of D-patients shows that each of the three genes is present in 60% of the patients.

The question is whether the doctor’s hypothesis is consistent with the data. �
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In this example, we see a hypothesis consisting of hard statements (statements
with probability 1) being confronted with probabilistic data. The consistency of the
joint statement is sees as decision problem of the sort we are dealing with here.

A second example is as follows.

Example 2.2 In an ant colony infestation, three observers have reached different
conclusions.

• Observer 1 noticed that at least 75% of the ants had mandibles or could carry
pieces of leaves.

• Observer 2 said that at most a third of the ants had mandibles or did not display
the ability to carry pieces of leaves.

• Observer 3 stated that at most 15% of the ants had mandibles.

The question is whether these observations are jointly consistent or not. �
We now see how these examples can be formalized.

2.2 Coherent Probabilities and Probabilistic Satisfiability

APSAT instance is a setΣ = {P(αi ) ��i pi |1 ≤ i ≤ k}, whereα1, . . . , αk are classi-
cal propositional formulas defined on n logical variables1 P = {x1, . . . , xn}, which
are restricted by probability assignments P(αi ) ��i pi , where ��i ∈ {=,≤,≥} and
1 ≤ i ≤ k. It is usually the case that all ��i are equalities, in which case the PSAT
instance can be seen simply as a set of pairs {(αi , pi )||i = 1, . . . , k}.

There are 2n possible propositional valuations v over the logical variables, v :
P → {0, 1}; each such valuation is truth-functionally extended,2 as usual, to all
formulas, v : L → {0, 1}, and a formula α is valid if every valuation satisfies it,
noted as |= α. Let V be the set of all propositional valuations.

A probability distribution over propositional valuations3 π : V → [0, 1], is a
function that maps every valuation to a value in the real interval [0, 1] such that∑2n

i=1 π(vi ) = 1. The probability distribution π can be uniquely extended over the
set of all propositional formulas built from V . This, the probability of a formula α

according to distribution π is given by Pπ (α) = ∑{π(vi )|vi (α) = 1}. The following
is a straightforward consequence of this definition.

1In computational logic tradition, variables are also called (syntactical) atoms, but to avoid confusion
with the algebraic use of ‘atom’ as the smallest nonzero element of an algebra, we use here instead
the term propositional symbol, or (atomic) proposition.
2Thus, valuations can be seen as homomorphisms of the set of formulas into the two element
Boolean Algebra {0, 1}.
3While the presentation here stays on the syntactical level, in algebraic terms this notion can be seen
as a probability measure over the free boolean algebra, in the sense of [30]. Recall that a measure
on A is a function τ : A → [0, 1] which is additive for incompatibles and also satisfies τ(1) = 1.
When A is finite, as in the case here, every a ∈ A equals the disjunction of the atoms it dominates,
so τ is uniquely determined by its value at the set of (algebraic) atoms of A. For every element
a ∈ A the value of τ(a) is the sum of the values τ(e) for all atoms e ≤ a.
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Lemma 2.3 The probability Pπ defined above respects Kolmogorov’s basic prop-
erties of discrete probability:

K1 0 ≤ Pπ (α) ≤ 1

K2 If |= α then Pπ (α) = 1

K3 If |= ¬(α ∧ β) then Pπ (α ∨ β) = Pπ (α) + Pπ (β)

Nilsson [38]’s linear algebraic formulation of PSAT considers a k × 2n matrix
A = [ai j ] such that ai j = v j (αi ). The probabilistic satisfiability problem is to decide
if there is a probability vector π of dimension 2n that obeys the PSAT restriction:

Aπ �� p
∑

πi = 1

π ≥ 0 (1)

where �� is a “vector” of comparison symbols, ��i∈ {=,≤,≥}.
A PSAT instance Σ is satisfiable iff its associated PSAT restriction (1) has a

solution. If π is a solution to (1) we say that π satisfies Σ . The last two conditions
of (1) force π to be a probability distribution. Usually the first two conditions of (1)
are joined, A is a (k + 1) × 2n matrix with 1’s at its first line, p1 = 1 in vector
p(k+1)×1, so ��1-relation is “=”.

Example 2.4 Consider Example 2.1. Let xi represent that gene i is active in a
D-patient. The hypothesis that at least two genes are active in a given D-patient
is represented by ¬(¬xi ∧ ¬x j ) with 100% certainty for i 
= j :

P(x1 ∨ x2) = P(x1 ∨ x3) = P(x2 ∨ x3) = 1.

The data stating that each gene occurs in 60% of D-patients is given by:

P(x1) = P(x2) = P(x3) = 0.6,

and the question is if there exists a probability distribution that simultaneously sat-
isfies these 6 probability assignments.

Consider now Example 2.2. Let x1 mean that an ant has mandibles and x2 mean
that that it can carry pieces of leaves. In this case, we obtain the restrictions Σ :

P(x1 ∨ x2) ≥ 0.75 P(x1 ∨ ¬x2) ≤ 1/3 P(x1) ≤ 0.15

Consider a probability distribution π and all the possible valuations as follows.

π x1 x2 x1 ∨ x2 x1 ∨ ¬x2
0.20 0 0 0 1
0.05 1 0 1 1
0.70 0 1 1 0
0.05 1 1 1 1
1.00 0.10 0.75 0.80 0.30
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which jointly satisfies the assignments above, so Example 2.2 is satisfiable. We are
going to present an algorithm to compute one such probability distribution if one
exists. �

On the other hand, de Finetti’s approach aims at defining a “coherent” set of
betting odds, or simply a coherent book. Given a map from formulas to real values
in [0, 1], P : {α1, . . . , αk} → [0, 1], there is a Dutch book against P if there are
σ1, . . . , σk ∈ R such that

k∑

i=1

σi (P(αi ) − v(αi )) < 0 for all valuations v.

The map is coherent if there is no Dutch book against it.
This can be understood as a game between two players, Alice the bookmaker and

Bob the bettor, wagging money on the occurrence of αi . For each i , Alice states
her betting odd P(αi ) = pi ∈ [0, 1] and Bob chooses a “stake” σi ∈ R; Bob pays
Alice

∑k
i=1 σi · P(αi ) with the promise that Alice will pay back

∑k
i=1 σi · v(αi ) if

the outcome is possible world (or valuation4) v. The chosen stake σi is allowed to be
negative, in which case Alice pays Bob |σi | · P(αi ) and gets back |σi | · v(αi ) if the
world turns out to be v. Alice’s total balance in the bet is

∑k
i=1 σi (P(αi ) − v(αi )). So

there is a Dutch book against Alice if the bettor has a choice of stakes such that, for
every valuation v, Alice looses money. Thus an assignment is coherent if for every
set of stakes a bettor chooses, there is always a possible non-negative outcome. It
turns out that coherent maps are precisely those that can be seen as satisfiable PSAT
instances.

Proposition 2.5 (de Finetti [13–15]) Given a map from formulas to real values in
[0, 1], P : {α1, . . . , αk} → [0, 1], the following are equivalent:

(a) P is a coherent book.
(b) The probability assignment Σ = {(αi , P(αi )) | i = 1, . . . , k} is a satisfiable

PSAT instance.

As a consequence of Proposition 2.5 and Lemma 2.3, a coherent assignment
is one that respects the axioms of probability theory. Furthermore, to decide if an
assignment is coherent, we can employ linear algebraic methods that solve (1).

Example 2.6 In Example 2.1, consider a negative stake σ = −1 for the hypothesis
information, and a positive stake of σ = 1 for the probabilistic data, thus obtaining
a total balance of

S = −1 · ((1 − v(a ∨ b)) + (1 − v(a ∨ c)) + (1 − v(b ∨ c))) + 1 ·((0.6 − v(a))+
(0.6 − v(b)) + (0.6 − v(c)))

4The notion of a “world”, can be understood via Stone duality, whereby homomorphisms of a
boolean algebra A of events into the two element boolean algebra {0, 1} are a dual counterpart of
A, consisting of all possible evaluations of the events of A into {0, 1}, and can thus be identified
with the set of possible worlds where these events take place.
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It turns out that S < 0 for all 8 possible worlds v, so this choice of stake constitutes
a Dutch Book and the assignment is incoherent and, by Proposition 2.5, it is an
unsatisfiable PSAT instance. �

2.3 Algorithms for PSAT Solving

In this presentation, we follow Finger and De Bona [20, 22].
An important result of [24], which is an application of Carathéodory’s Theorem

[16], guarantees that a solvable PSAT instance has a “small” witness.

Proposition 2.7 If a PSAT instanceΣ = {P(αi ) = pi |1 ≤ i ≤ k} is satisfiable, then
there is a solution. π to the PSAT restrictions (1) such that there at most k + 1
elements π j ≥ 0. �

Proposition 2.7 implies that the complexity of PSAT is in NP. The special case
where all pi = 1 makes classical SAT a special case of PSAT, so PSAT is NP-hard.
It follows that PSAT is NP-complete.

APSAT instance is in propositional normal form if it can be partitioned in two sets,
〈Γ,Ψ 〉, where Γ = {P(αi ) = 1|1 ≤ i ≤ m} and Ψ = {P(yi ) = pi |yi is a proposi-
tional symbol, 1 ≤ i ≤ k}, with 0 < pi < 1. The partition Γ is the SAT part of the
normal form, usually represented only as a set of propositional formulas and Ψ is
the propositional probability assignment part. By adding at most k extra variables,
any PSAT instance can be brought to normal form in polynomial time.

Example 2.8 ThePSAT instance inExample 2.4 is already in normal form,withΓ =
{x1 ∨ x2, x1 ∨ x3, x2 ∨ x3} and Ψ = {P(x1) = P(x2) = P(x3) = 0.6}. This indi-
cates that the normal form is a “natural” form in many cases, such as when one
wants to confront a theory Γ with the evidence Ψ .

For the formulation of Example 2.2, we add three new variables, y1, y2, y3
and make

Γ = {
y1 → (x1 ∨ x2), (x1 ∨ ¬x2) → y2, x1 → y3

}

≡ {
x1 ∨ x2 ∨ ¬y1,¬x1 ∨ y2, x2 ∨ y2,¬x1 ∨ y3

}

and Ψ = {P(y1) = 0.75, P(y2) = 1
3 , P(y3) = 0.15}. �

The algebraic formalization of PSAT (1) has a special interpretation if the for-
mula is in normal form, in which the columns of matrix A are Γ -consistent valua-
tions; a valuation v over y1, . . . , yk is Γ -consistent if there is an extension of v over
y1, . . . , yk, x1, . . . , xn such that v(Γ ) = 1. This property is the basis for encoding
instances of PSAT into those of SAT. However, due to the cubic increase in the num-
ber of variables, this method is too inefficient. For details on this form of reduction,
see [22].

Instead, we plan to solve (1) without explicitly representing the exponentially
large matrix A, using a method called column generation. For that, we consider the
following linear program:
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min c′ · π

subject to A · π = p
π ≥ 0 and

∑
πi = 1

(2)

The cost vector c in (2) is a {0, 1}-vector such that ci = 1 iff column A j is
Γ -inconsistent. Thus, the column generation process proceeds by generating Γ -
consistent columns. The result of this minimization process reaches total cost
c′ · π = 0 iff the input instance is satisfiable.

We now describe the column generation process presented in Algorithm 2.1,
which solves (2). We start by describing the format of the input data. Condition∑

πi = 1 in (2) is usually incorporated in matrix A. By convention, this equation
always be the first line of A. Also by convention, vector p is sorted in decreasing
order, such that its first position contains a 1, corresponding to the equation

∑
πi = 1;

accordingly, vector p is prefixed with a 1. Let k = |Ψ |. This convention allows us to
solve the linear program (2) initializing A as an upper triangular matrix Tup, which is
a (k + 1) × (k + 1) square matrix where elements on the diagonal and above it are
1 and the remaining ones are 0. As a consequence, the initial probability distribution
π is initialized such that πi = pi − pi+1, 1 ≤ i ≤ k and πk+1 = pk+1. The cost c is
a {0, 1}-vector in which c j = 1 iff column A j is Γ -inconsistent, 1 ≤ j ≤ k + 1.

In the column generation process, columns will be added to A, and the vectors for
cost c and solution π will be correspondingly extended. As all generated columns at
the following steps are Γ -consistent, all cost elements added to c are 0.

Column generation proceeds by steps. At step 0, we start A, c and π as described
above (line 1). At each step s, we start by solving the linear program A(s) · π(s) =
p (line 3); so we suppose there is a linear programming solver available; for an
algorithm that does not presuppose a linear solver, see [20]. We require that the
solution generated contains the primal solution π(s) as well as the dual solution
z(s) [4]; the dual solution is given by z = cB · B−1, where B is the basis of the linear
program at step s, that is, a square sub-matrix of A used to compute π(s) as the
solution of Bπ(s) = p, and cB is the cost of the columns of the basis. These are used
in the column generation process (line 4) described below. If column generation fails,
then the process cannot decrease current cost and Algorithm 2.1 is terminated with a
negative decision. Otherwise, a new column is generated and A and c are expanded.
At the end, when the objective function has reached 0, the final values of A and x
are returned.

The idea of SAT-based column generation is to map a linear inequality over
a set of {0, 1}-variables into a SAT-formula, using the O(n) method described in
Warners [44]. The inequality is provided by the column selection method used by
the Simplex Method for solving linear programs [4, 39]. Given a linear program in
format (2), the reduced cost c̄y of inserting column y from A in a simplex basis is

c̄y = cy − z′ · y (3)

where cy is the cost associated with column y and z is the dual solution of the system
A · π = p of size k + 1. As the generated column y is always Γ -satisfying, cy = 0,



Quantitative Logic Reasoning 249

Algorithm 2.1 PSATViaColGen(ϕ)

Input: a normal form PSAT formula 〈Γ,Ψ 〉.
Output: a solution (π, A) for (2), if one exists; “No”, otherwise.
1: A(0) = Tup; compute cost vector c(0) and π(0)

2: for s = 0; c(s)′ · π(s) > 0; s++ do
3: z(s) = DualSolution(A(s), p, c(s))

4: y(s) = GenerateColumn(z(s), Γ )

5: return “No” if column generation failed
6: A(s+1) = append − column(A(s), y(s))

7: c(s+1) = append(c(s), 0)
8: end for
9: return (π(s), A(s)) such that A(s) · π(s) = p and c(s)′ · π = 0 // Successful termination

so to ensure a non-increasing value in the objective function we need a non-positive
reduced cost, c̄y ≤ 0, which leads us to

z′ · y ≥ 0 (4)

As y is a {0, 1}-vector, inequality (4) can be transformed into a SAT-formula; that
formula is added toΓ to obtainα, which encodes a solution to (4) that isΓ -satisfying.
We then send α to a SAT-solver; if it is unsatisfiable, there is no way to reduce the
cost of the linear program’s objective function; otherwise, we obtain a satisfying
assignment v. The generated column is v(y), the restriction of v the variables in
y, which is a solution to (4). A new basis is obtained by substituting v(y) for an
appropriate outgoing column. The Simplex Method provides a way of choosing
the outgoing column, and guarantees the new basis is a feasible solution to linear
program (2) whose cost is smaller than or equal to the previous one.

We have shown how to construct a SAT-based column generation function
GenerateColumn(z, Γ ), provided we are given a (dual) solution for the correspond-
ing linear program.

Theorem 2.9 Algorithms 2.1 and GenerateColumn provide a decision procedure
for the PSAT problem.

Proof The correctness of Algorithm 2.1 is a direct consequence from the fact that
〈Γ,Ψ 〉 is satisfiable iff the linear program (2) reaches a minimum at 0. As column
generation only fails when it is impossible to decrease the cost function, this process
either fails or brings the cost to 0, which is the only way Algorithm 2.1 terminates
with a solution. �

Note that the proof above guarantees termination, but even if it uses a polynomial-
time linear solver, nopolynomial bound is provided for the number of steps,which can
in principle be O(2k). Several implementations using the simplexmethod, employing
various column generation strategies, are described in Finger and De Bona [22],
which also describe important empirical properties of those implementation.
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3 Counting Quantifiers over Unary Predicates

Counting quantifiers are quantitative constraints which may superficially look dif-
ferent from probabilistic reasoning. However, here we demonstrate that there are
striking similarities between these two forms of reasoning allowing us to lump them
together under the heading of Quantitative Logic Reasoning.

The need to combine deductive reasoning with counting and cardinality capabili-
ties in a principled way has been long recognized, but the complexity of this task has
precluded its development. However, by generating a fragment of counting quan-
tifiers inspired by the PSAT formulation, we are able to present a useful deductive
system with counting that is “only” NP-complete and which allows for reasonably
efficient, deterministic algorithms.

The basic approach for adding counting capabilities extends first-order logic with
some form of generalized quantifiers [35], and we employ here a Lindstrom-type
of quantifier [33] that can express the counting notions of “there are at least/most n
elements with property P”. Counting is first-order expressible, but it requires a first-
order encoding using at least as many symbols as the counts one aims to express.
On the other hand, the number of symbols employed by counting quantifiers is
only proportional to the number of digits of the counts expressed. Hence expressing
counting in first-order logic results in formulas whose size is exponentially larger
than those obtained by using counting quantifiers.

The satisfiability of a logic with counting quantifiers, but limited to a two-variable
fragment with at most binary predicates, is decidable [25, 26] with an EXPTIME-
hard lower bound [2] and a NEXPTIME [40] upper-bound5; recent studies on the
complexity of specific counting problems are found inMartin et al. [34]; Bulatov and
Hedayaty [10]. Focusing on a one-variable fragment containing counting quantifiers
over unary predicates only, the decision problem becomes NP-complete, even when
restricted only to a fragment called Syllogistic Logic, but the decision algorithm used
to show that is inherently non-deterministic [41].

In a previous work, we presented an expressive fragment of first-order logic with
counting quantifiers over unary predicates called CQU [21], which was developed
applying techniques similar to those used in the PSAT case. Here we extend the
work on CQU by introducing CQUEL, for which the satisfiability problem remains
NP-complete even as it partially allows the presence of binary predicates. We start
by presenting CQU, extend it to CQUEL, and then develop decision algorithms for
it, We start with a general example.

Example 3.1 Consider the following group of people with several ages

(a) At most 15 grandparents are married or happy.

(b) At least 10 parents are not happy.

(c) At most 7 parents are not married.

(d) All grandparents are parents.

5Note that the fragment mentioned here has the finite model property [41].
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(e) At most 7 grandparents are unmarried and unhappy.

(f) At least 8 grandparents are unmarried and unhappy.

We would like a way to determine that (a)–(d) are satisfiable. We would also like to
have amethod that allows us to infer (e) from those statements; equivalently, as (f) can
be seen as the negation of (e), determine that (a)–(d) and (f) are jointly unsatisfiable.
These possibilities are all covered by the CQU formalism. Moreover, suppose we
are given a list of parent-children pairs (i.e. a binary relation), and define a parent
as someone who has a child and, likewise, a grandparent as someone who has a
grandchild. To deal with this more general formulation, one needs a more expressive
formalism such as CQUEL. �

In the following, we present the Semantics of CQU (Sect. 3.1) and its extension
CQUEL (Sect. 3.2). Then we present an algebraic formulation of the CQUEL-SAT
problem (Sect. 3.3) which is used as a basis for the algorithms that solve it (Sect. 3.4).

3.1 Semantics and Satisfiability of CQU

We now present formally a function-free one-variable first-order fragment over a
signature containing only unary predicates and constants, extended with explicit
countingquantifiers∃≤n (atmostn) and∃≥n (at leastn),wheren ∈ N is a non-negative
integer. The semantics is tarskian, with models of arbitrarily large cardinality.

The fragment contains two types of sentences over a countable set of variables V .
Let ψ(x) be a Boolean combination of unary predicates p(x), q(x), etc. A counting
sentence has the form ∃≤n x ψ(x) or ∃≥n x ψ(x). A universal sentence has the form
∀xψ(x). A formula ϕ over the fragment of counting quantifiers over unary predicates
(CQU), is a conjunction of any finite number of counting sentencesQ and universal
sentences U , ϕ = 〈Q,U 〉. Note that the universal and counting sentences involve
only one-variable and only unary predicates; when we introduce the CQUEL frag-
ment below a two-variable fragment will be involved, with restricted use of binary
predicates.6

For the semantics, let the domain D be a non-empty set. Let a term be a constant
or a variable. Consider an interpretation I ; when applied to a term t ,I (t) ∈ D and
when applied to a unary predicate p, I (p) ⊆ D; I|x represents an interpretation
that is identical to I , except possibly for the interpretation of x . Let ϕ be a CQU-
formula; by I |= ϕ we mean that ϕ is satisfiable over D with interpretation I ,
defined as

D,I |= p(t) iff I (t) ∈ I (p)

D,I |= ¬ψ iff D,I 
|= ψ

D,I |= ψ ∧ ρ iff D,I |= ψ and D,I |= ρ

D,I |= ∃≤n x ψ iff
∣
∣{I|x(x) ∈ D|D,I|x |= ψ}∣∣ ≤ n

D,I |= ∃≥n x ψ iff
∣
∣{I|x(x) ∈ D|D,I|x |= ψ}∣∣ ≥ n

6First-order one- and two-variable fragments are decidable, but the coding of counting quantifiers
employs several new variables, so decidability is not immediate; see Proposition 3.2.
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The usual definitions apply to other Boolean connectives. Note that the nega-
tion of counting sentences can be expressed within the CQU fragments, namely
¬∃≤n x ψ ≡ ∃≥n+1x ψ and ¬∃≥n+1x ψ ≡ ∃≤n x π . The first-order existential quanti-
fier is expressed as ∃xψ ≡ ∃≥1x ψ and the universal quantifier as ∀xψ ≡ ∃≤0x ¬ψ .
The exact counting quantifier is defined as ∃=n x ψ ≡ ∃≤n x ψ ∧ ∃≥n x ψ .

If there are D and I such that D,I |= ϕ, then ϕ is a satisfiable formula; oth-
erwise it is unsatisfiable. A formula ϕ entails ψ (ϕ |= ψ) iff every pair (D,I ) that
satisfies the former also satisfies the latter. ϕ is equivalent to ψ (ϕ ≡ ψ) iff they
are satisfied by the same pairs (D,I ). The problem CQU-SAT consists of deciding
whether a formula is satisfiable.

If we remove the restriction to conjunctions of universal and counting sentences,
we obtain the fragment called C 1, studied in Pratt-Hartmann [41]. Unlike CQU, C 1

allows for disjunctions between quantified formulas, such as ∃≥7x ψ ∨ ∃≤9y ρ. As
the C 1 fragment has the finite model property and contains CQU, we obtain the
following.

Proposition 3.2 (Pratt-Hartmann [41]) Every satisfiable CQU formula is satisfiable
over a finite domain. Moreover, CQU-SAT is strongly NP-complete. �

StrongNP-completenessmeans that when n in ∃≤n, ∃≥n is given in unary notation,
the decision remains NP-complete. As with probabilistic logic, we propose a normal
form for formulas in the CQU fragment. Existence of such normal form for CQU
will allow us to extend the method to CQUEL.

Definition 3.3 LetU be a finite set of universal sentences and letQ be a finite set of
quantified unary predicates of the form ∃≤n x p(x) or ∃≥n x p(x), where p is a unary
atomic predicate. A normal form CQU formula ϕ = 〈Q,U 〉 is the conjunction of
formulas in Q ∪ U .

In the following we use �� to refer to ≤ or ≥, so the CQU normal form is charac-
terized by counting quantifier sentences of the form ∃��n x p(x). By adding a small
number of extra predicates, any CQU formula can be brought to normal form.

Lemma 3.4 For every CQU formula ϕ there exists a normal form formula ϕ′ such
that ϕ is a satisfiable iff ϕ′ is; the normal form ϕ′ can be built from ϕ in polynomial
time.

Proof Consider ϕ = 〈Q,U 〉. We build ϕ′ = 〈Q′,U ′〉 starting with Q′ = ∅ and
U ′ = U . Then, for every quantified formula ∃��n x ψ , if ψ is an unary predicate,
just add ∃��n x ψ to Q′; otherwise, create a new unary predicate pnew and add
∀x(pnew(x) ↔ ψ) to U ′ and ∃��n x pnew(x) to Q′; at every step ϕ′ is in normal
form, and at its end, by construction, ϕ′ is satisfiable iff ϕ is. �

Example 3.5 Consider Example 3.1, which can be formalized as follows:

(a) ∃≤15x (g(x) ∧ (m(x) ∨ h(x)))

(b) ∃≥10x (g(x) ∧ ¬h(x))
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(c) ∃≤7x (p(x) ∧ ¬m(x))

(d) ∀x(g(x) → p(x))

(e) ∃≤7x (g(x) ∧ ¬m(x) ∧ ¬h(x))

(f) ∃≥8x (g(x) ∧ ¬m(x) ∧ ¬h(x))

Clearly, (e) is the negation of (f); we use only the latter. To bring counting formulas to
normal form, introduce the predicates,q1, q2, q3, q4. LetU = {∀x(q1(x) ↔ (g(x) ∧
(m(x) ∨ h(x))),∀x(q2(x) ↔ (g(x) ∧ ¬h(x)),∀x(q3(x) ↔ (p(x) ∧ ¬m(x)),∀x
(g(x) → p(x)),∀x(q4(x) ↔ (g(x) ∧ ¬m(x) ∧ ¬h(x))}, so that we can have count-
ing quantification over unary predicates only; let Q = {∃≤15x q1(x), ∃≥10x q2(x),

∃≤7x q3(x)}, such thatweexpect 〈Q,U 〉 to be satisfiable and 〈Q ∪ {∃≥8x q4(x)},U 〉
to be unsatisfiable. �

It is important to note that the satisfiability problem for a set of CQU universal
formulas is anNP-complete problem, for it can be reduced to a propositional problem.

In fact, consider a normal form ϕ = 〈Q,U 〉. Consider the k = |Q| unary pred-
icates occurring in Q, p1(x), . . . , pk(x); then there are 2k elementary terms of the
form e(x) = λ1(x) ∧ . . . ∧ λk(x), where each λi (x) is either pi (x) or¬pi (x); an ele-
mentary term e(x) is called susceptible if it is consistent with the universal sentences,
that is, the set {∃xe(x)} ∪ U has a model.

Semantically, each elementary term is interpreted as a domain elementary sub-
set E ⊆ D, E = L1 ∩ . . . ∩ Lk , where each Li is either the interpretation of pi or
its complement with respect to the domain D. In any interpretation that satisfies
ϕ = 〈Q,U 〉, only susceptible elementary terms may be interpreted as non-empty
elementary subsets, otherwise the interpretation falsifies U .

Lemma 3.6 The problem of determining if there exists an elementary domain subset
over the unary predicates in Q that is susceptible with a set of CQU universal
formulas U is NP-complete.

Proof Transform the setU into a propositional formula, by deleting the external ∀x
quantifiers and considering each unary predicate p(x) as a propositional symbol p.
Then determining the existence of a satisfying valuation is an NP-complete problem.
If there is such avaluation,weobtain a susceptible element by considering a satisfying
valuation v restricted to the proposition corresponding to the unary predicates inQ.
In that case, we consider a singleton domain D = {d} and an interpretation I such
that d ∈ I (p) iff v(p) = 1. �

We now expand these results of Finger and Bona [21] to include universal quan-
tification over binary relations. The aim is to maintain the decision problem in NP.

3.2 Expanding CQU into CQUEL

Previous results involving counting quantifiers and binary predicates brought the
complexity of the satisfiability problem into EXPTIME [2]. However those methods
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allowed for counting quantification over sentences involving binary predicates. The
idea here is to maintain counting quantification over unary predicates in Q, but
to expand the set of allowed sentences in U so as to maintain the complexity of
U -satisfiability in NP.

Our idea is to expand U to allow for sentences corresponding to the first-order
translation of statements fromdescription logicDLLight [11], thus lightly expanding
CQU into CQUEL. The satisfiability problem for DL Light is tractable, and we show
here that adding those formulas toU leaves the satisfiability complexity in NP. There
is at least another well known tractable description logic, EL ++, which is however
maximal with respect to tractability, in the sense that extending its language with
the expressivity of CQU universal sentences brings the complexity to EXPTIME-
complete [3].

The first-order signature now contains a finite setP of unary predicates, a finite
setR of binary relations and a finite set C of constants. The set of basic concepts is
the smallest set of unary expressions such that:

• every unary predicate p ∈ P is a basic concept;
• if r ∈ R, then ∃y r(x, y) and ∃y r(y, x) are basic concepts.

Basic concepts form concepts in the following way.

• every basic concept B(x) is a concept;
• if B(x) is a basic concept, then ¬B(x) is a concept;
• if C1(x) and C2(x) are concepts, so is C1(x) ∧ C2(x).

A set E of extended light (EL) constraints is a finite set of universal formulas of
the following form.

(a) Inclusion Assertion (IA): ∀x(B(x) → C(x)), where B(x) is a basic concept and C(x) is a
concept;

(b) Functionality Assertion (FA): Funct(r) and Funct(r−), for r ∈ R. The semantics of
Funct(r) states that if (d, d ′), (d, d ′′) ∈ I (r), then d ′ = d ′′; similarly, the semantics of
Funct(r−) states that if (d ′, d), (d ′′, d) ∈ I (r), then d ′ = d ′′.

(c) Data: p(a), r(a, b) for a, b ∈ C , p ∈ P and r ∈ R.

Note thatELconstraints, except FAs, belong to a two-variablefirst-order fragment;
FAs require the use of three variables, however in a very limited way. It turns out that
a the consistency of a set of EL constraints is not only decidable, but even tractable.

A set of constraints E is negative inclusion (NI) closed if for every IA A =
∀x(B1(x) → ¬B2(x)) above such that E |= A, then A ∈ E . The NI-closure of a set
of EL constraints E , E , is the smallest NI-closed set of constraints that contains
E . The tractability of the satisfiability of a set of EL constraints follows from the
following result.

Proposition 3.7 (Calvanese et al. [11]) The NI-closure E can be computed in poly-
nomial time on the number of EL constraints in E .

The proof of Proposition 3.7 involves defining a normal form for constraints, then
showing that computing the NI-closure of a set of constraints can be reduced in linear
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time to computing the NI-closure of a normalized set of constraints. Then a set of
constraint inference rules is proposed and it is shown that: (a) each rule application
can be decided in polynomial time and the maximum number of rule applications is
polynomial in |E |; (b) each expansion rule inserts only an inferable constraint, from
which soundness follows; (c) the inconsistency of E can be obtained by a simple
pattern search,which can be decided also in polynomial time. By composing all steps,
we have a satisfiability check performed in polynomial time. Details in Calvanese et
al. [11].

Wenowdefine aCQUEL formulaϕ = 〈Q,U ,E 〉 as a conjunction of the counting
sentences inQ, the universal CQU sentences inU and the EL constraints in E . The
semantics of a CQUEL formula ϕ, D,I |= ϕ, is exactly as before, with the addition
of binary predicates as in regular first-order logic.

Example 3.8 Consider Example 3.5, which we now extend with a binary relation
parentOf (x, y) representing the fact that x is a parent of y. Thenwe add the following
set of EL constraints, stating that a parent is a parent-of someone.

E =
{
∀x

(
p(x) ↔ ∃y parentOf (x, y)

)}

The previous result on the existence of normal forms applies to CQUEL too, in
which counting quantification is applied only to unary atomic predicates.

Lemma 3.9 For every CQUEL formula ϕ there exists a polynomial-time computable
normal-form formula ϕ′ = 〈Q,U ,E 〉 such that ϕ is a satisfiable iff ϕ′ is, where Q
contains only counting sentences over unary predicates.

Proof Following Lemma 3.4, the counting and universal sentences in ϕ are brought
to normal form, the EL constraints of ϕ are also brought to normal form and added
as E to ϕ′. Clearly, this can be done in polynomial time and satisfiability is preserved
by Lemma 3.4. �

The following is a step into showing that the complexity of CQUEL is no greater
than that of CQU.

Lemma 3.10 The problem of deciding if a a set of formulas U ∪ E is consistent
is NP-complete, where U is a set of CQU universal formulas and E is a set of EL
constraints.

Proof Extend E into E ′, such that, for every existential constraint there is a new
unary predicate equivalent to it; clearly this extension can be done in linear time
and the input set U ∪ E is satisfiable iff U ∪ E ′ is. Compute the NI-closure E ′
in polynomial time, by Proposition 3.7. The inconsistency of E ′ can be decided in
polynomial time, and if it is inconsistent so is the input set.

If E ′ is consistent, we constructU ′ by extendingU with the IAs in E ′ which con-
tain only unary predicates; that is, there are no binary formulas inU ′. By Lemma 3.6,
the coherence detection ofU ′, and thus its satisfiability, is an NP-complete problem.
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Clearly, ifU ′ is unsatisfiable, so is the input set. If it is satisfiable, then we claim
that U ∪ E is also satisfiable. In fact, if U ′ is satisfiable, there is a model for it and
by the proof of Lemma 3.6 there is a model (D,I ) satisfying U ′. We extend this
model in the following way. Create a set S of facts, initially empty. For each fact
p(a) or r(a, b) in E ′, add this fact to S and start the update propagation process.

The update propagation process consists of the following. If there is a constant
a in S for which I (a) is not defined, create a new element and update I with
the constant and predicate interpretation; then propagate this update up the IA chain
with constraints∀x (B(x) → C(x)) ∈ E ′.We have to deal with four cases. IfC(a) =
pi (a), add pi (a) to S and propagate this change. IfC(a) = ¬pi (a), do not updateI ;
due to the consistency of E ′, we know that pi (a) will never be added to S. If C(a) =
∃yr j (a, y) and there is no pair (I (a), d) ∈ I (r j ) skolemize ∃yr j (a, y) by taking a
fresh constant a′, adding r j (a, a′) to S, and propagate. If C(a) = ¬∃yr j (a, y), do
not update I ; again due to the consistency of E ′, we know that r j (a, b) will never
be added to S. Similarly, no violation of a functionality assertion can occur, due to
the consistency of E ′.

As the number of possible updates is finite, this update propagation process fin-
ishes in a finite number of steps, and we end up with an updated model (D,I ) that
satisfies both E ′ and U ′, and thus satisfies the input set, as desired. �

The proof of Lemma 3.10 gives us an Algorithm 3.1 to determine the joint satis-
fiability of U ∪ E . Line 8 employs a SAT-solver, such as [5, 17].

The basic idea of Algorithm 3.1 is to compose a formula to submit it to a SAT
solver. For that, the NI-closure of the input set of EL constraints is first computed.
If that already shows the problem is unsatisfiable, return. Otherwise construct a
propositional formula based on the “propositional core” of U and E . The final
solution is obtained from applying a SAT-solver to this propositional formula.

For the rest of this work we always assume that formulas are in normal form. In
the following, we look at CQUEL satisfiability in terms of integer linear algebra.

Algorithm 3.1 JointSAT(U ,E )

Input: A set of CQU universal sentences U and a set of EL constraints E .
Output: If satisfiable, return a valuation representing a susceptible term; or “No”, if unsatisfiable.
1: Extend E into E ′, adding for every existential constraint a new unary predicate equivalent to it;
2: Compute the NI-closure E ′;
3: if E ′ is inconsistent then
4: return “No”;
5: end if
6: Extend U into U ′, adding the IAs in E ′ which contain only unary predicates;
7: Transform U ′ into a propositional formula α, removing the quantifiers and variables;
8: Apply SAT solver to α;
9: if α is satisfiable then
10: return satisfying valuation;
11: else
12: return “No”
13: end if
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3.3 Algebraic Formulation of CQUEL-SAT

Consider a normal form CQUEL formula ϕ = 〈Q,U ,E 〉 whose satisfiability
we want to determine. Consider the k = |Q| unary predicates occurring in Q,
p1(x), . . . , pk(x); as in the CQU case, there are 2k elementary terms of the form
e(x) = λ1(x) ∧ . . . ∧ λk(x), where each λi (x) is either pi (x) or ¬pi (x); an ele-
mentary term e(x) is called susceptible if it is consistent with U ∪ E , that is,
the set {∃xe(x)} ∪ U ∪ E has a model. Only susceptible elementary terms may be
interpreted as non-empty elementary subsets, otherwise the interpretation falsifies
U ∪ E .

An integer linear algebraic presentation of CQUEL-SAT is based on encoding
each elementary term e(x) as a {0, 1}-vector e of size k, in which ei = 1 if λi is pi

in e(x) and ei = 0 otherwise. We consider only the set of km susceptible elementary
terms, 0 ≤ km ≤ 2k . Let A be a k × km {0, 1}-matrix, where each column encodes
a susceptible elementary term; note that the i th line corresponds to the i th counting
quantifier expression in Q. Let the i th element in Q be ∃��i ni x pi (x), ��i∈{≤,≥};
let b be a k × 1 integer vector, such that bi = ni , and let x be a km × 1 vector of
integer variables. Then the potentially exponentially large integer linear system that
corresponds to the CQUEL-SAT problem ϕ = 〈Q,U ,E 〉 is:

Ax �� b

x ≥ 0 (5)

x j integer

Lemma 3.11 A normal form ϕ = 〈Q,U ,E 〉 is CQUEL satisfiable iff its corre-
sponding system given by (5) has a solution.

Proof (⇒) If ϕ has an interpretation, let x j be the number of elements in the ele-
mentary subset corresponding to the j th susceptible elementary term; clearly x j is a
non-negative integer. As all elements in Q are satisfied, all inequalities in Ax �� b
are satisfied.

(⇐) If system (5) has a solution, we construct a finite interpretation by inserting
x j elements in each subset corresponding to a susceptible elementary term. We can
then compute an interpretation for all predicates inQ, and as all inequalities in (5) are
satisfied, so is Q; furthermore, as only susceptible elementary terms have non-zero
elements, U ∪ E is also satisfied. �

To determine if an elementary term is susceptible, apply Algorithm 3.1, and con-
sider the part of the returned valuation corresponding to the predicates in Q, as
illustrated in the following example.

Example 3.12 Consider the normal form formula ϕ = 〈Q,U ,E 〉 presented in
Examples 3.5 and 3.8. The linear algebraic rendering of the problem shows it is
CQUEL satisfiable:
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q1

q2

q3

g
p
m
h

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦ ·

0 1 0
1 0 1
1 0 0
0 1 1

⎡

⎣
10
0
0

⎤

⎦
≤ 15
≥ 10
≤ 7

Then first three columns {0, 1}-columns of size 7 are valuations over all unary predi-
cates satisfyingU ∪ E ; each valuation represents an elementary domain over pred-
icates which are assigned 1 and the complement of the 0-assigned predicates. Each
line corresponds to a predicate, indicated on the left. The top three lines contain
the quantified restrictions in Q and the matrix-vector product satisfies the counting
inequalities; the last four lines correspond to the predicates whose count are not
quantified in Q. The three . This solution implies that the first four conditions of
Examples 3.1 and 3.5 are satisfiable.

However, to show that adding the last condition leads to an unsatisfiable set of
sentences, we would have to exhaustively consider the 24 valuations over predi-
cates q1, . . . , q4 and show that that exponentially large system cannot satisfy the 4
inequalities. �

The exponential size of the proof search alluded byExample 3.12 can be avoided if
there is a guarantee that all satisfiable CQUEL formulas have polynomial-sizedmod-
els. In the case of Probabilistic Satisfiability (PSAT), which does not have the restric-
tion on integral solution, the existence of polynomial-size models is guaranteed by
Caratheodory’s Theorem [16]. In the discrete case, we have the following analogue,
which provides a polynomial-sized bound for models of satisfiable CQUEL-SAT.

Proposition 3.13 (Pratt-Hartmann [41], Eén andSörensson [18]) Consider a system
of inequalities of the format (5) that has a positive integral solution. Then it has a
positive integral solution with at most

(
5
2k log k + 1

)
non-zero entries.

As presented in Algorithm 3.1, the satisfiability of U ∪ E can be represented
by a {0, 1}-valuation representing a susceptible term over its predicates. Let {0, 1}-
matrix A be as in (5); A’s j th column A j is satisfying if it represents the bits of a
valuation returned by Algorithm 3.1 on inputU ∪ E restricted toQ’s. Lemma 3.11
and Proposition 3.13 yield the following.

Lemma 3.14 Consider a normal form CQUEL-SAT instance ϕ = 〈Q,U E 〉. Then
ϕ is satisfiable iff there exists a solvable system of inequalities of the form

Ak×km · xkm×1 �� bk×1 (6)

where km ≤ ⌈
5
2 (k log k + 1)

⌉
, A is a {0, 1}-matrix whose columns satisfy U ∪ E . �

This serves as a basis for effective algorithms for CQUEL-SAT.
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3.4 A CQUEL-SAT Solver Based on Integer Linear
Programming

The polynomial-size format of solutions given by Lemma 3.14 provides a way to
reduce a CQUEL-SAT to SAT; that is, an instance ϕ = 〈Q,U 〉 of a CQUEL-SAT
decision problem is polynomially translated to an instance of SATby encoding the set
of inequalities in (6) such that the CQUEL-SAT is satisfiable iff its SAT translation
is. This approach is described in Finger and Bona [21], but the high number of
variables in the translated SAT formulas, which is O(k3 log k), makes this approach
impractical in the critical areas of hard problems. So a different approach, based
on integer linear programming (ILP) and the branch-and-bound algorithm will be
pursued.

The algebraic formulation of CQUEL-SAT on input ϕ = 〈Q,U ,E 〉 given by (5)
is apparently suited for Integer Linear Programming (ILP), finding a solution to
Ax �� b, where x j ∈ N. However, there are two important facts in (5) that have to
be addressed, namely

• Matrix A may be exponentially large.
• As a consequence, we do not represent matrix A explicitly; instead we deal with
it partially and implicitly.

In fact, A’s columns consists of {0, 1}-valuations representing susceptible terms
satisfying U ∪ E , which are costly to compute and there may be exponentially
many, e.g. whenU = E = ∅. To avoid these problems, we propose to solve the ILP
problem via a simplified version of the branch-and-bound algorithm [42], which
solves relaxed (continuous) linear programs. As in the case of PSAT, we generate
A’s column as needed, in the process of column generation [31] which takes place
at each relaxed problem created by the branch-and-bound approach. For an ILP of
the form (5), it is not necessary to search for an optimal integer solution, one only
needs to find a feasible one or show none exists.

The branch-and-bound method traverses an implicit search tree of relaxed prob-
lems. The top level of this search method is shown in Algorithm 3.2. It starts in the
root of the search tree with a unary set of problems containing the input CQUEL
formula, and it loops until either a feasible integer solution to the corresponding
linear algebraic problem given by (6) is found or the set of problems becomes empty,
in which case an unsatisfiability decision is reached. In the main loop (lines 3–15), a
problem is heuristically selected from the set of problems (line 4), and its relaxed ver-
sion is solved, which consists of the same problem without the restriction of integral
solutions. The heuristics implemented orders the problems according to the relaxed
solutions to its parent in the tree, giving preference to solutions with the largest
number of integer components.

If the relaxed problem has no solution, it is just removed from the set, which cor-
responds to closing a branch in the search tree, and the next iteration starts searching
at an open branch. If there is an integer solutio, the problem is satisfiable and the
loop ends. Otherwise, a solution with at least one non-integral element exists. A sec-
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Algorithm 3.2 CQUELBranchAndBound(ϕ)

Input: A normal form CQUEL formula ϕ = 〈Q,U , E 〉.
Output: A solution satisfying (6); or “No”, if unsatisfiable.
1: CQUELSet = {ϕ}
2: SAT = false
3: while not SAT and CQUELSet is not empty do
4: CQUELProblem = RemoveHeuristically(CQUELSet)
5: solution = SolveRelaxedViaColGen(CQUELProblem)

6: if no solution found then
7: continue
8: else if integral solution then
9: SAT = true
10: else
11: var = choseBranchVar(solution)

12: newCQUELs = boundedProblems(CQUELProblem, var)

13: CQUELSet = CQUELSet ∪ newCQUELs
14: end if
15: end while
16: if SAT then
17: return solution
18: else
19: return “No”
20: end if

ond heuristics is used to find a variable xi with a non-integral solution zi on which
to branch (line 11), creating two new branches on the search tree. This heuristics
chooses xi∗ for which the non-integral zi∗ is closer to either �zi∗� or �zi∗�.

The branching generates two new bounded problems ϕ′ = 〈Q′,U ′,E 〉, ϕ′′ =
〈Q′′,U ′′,E 〉 (line 12), with the creation of a new unary predicate pnew. Note that the
set of constraints E is never changed. We make U ′ = U ′′ = U ∪ {∀x(pnew(x) ↔
ei∗(x))}, where ei∗(x) is the elementary term corresponding to column i∗ and Q′ =
Q ∪ {∃≤�zi∗ �x pnew(x)} and Q′′ = Q ∪ {∃≥�zi∗ �x pnew(x)}. These new formulas ϕ′
and ϕ′′ are then dealt with as integer linear problems of larger size. However, if their
size exceeds the limit given by Lemma 3.14, the problem is not inserted.

The largest part of the processing in CQUELBranchAndBound occurs during the
calls to the relaxed solver (line 5), SolveRelaxedViaColGen(ϕ), in which column
generation takes place. This process is analogous to that used for PSAT column
generation, and it takes as input a CQUEL formula, eventually expanded by the
bounding operation and is described in Algorithm 3.3. Its output may contain some
non-integral values, but the objective function, whichminimizes the solution cost has
to be 0 for success to be achieved. Thus SolveRelaxedViaColGen(ϕ) aims at solving
the following linear program [4]:

minimize c′ · x
subject to A · x �� b and x ≥ 0

(7)
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Algorithm 3.3 SolveRelaxedViaColGen(ϕ)

Input: A normal form CQUEL formula ϕ = 〈Q,U , E 〉.
Output: A relaxed solution (A, x) , if it exists; or “No”, if unsatisfiable.
1: A(0) = I ; compute cost vector c(0); x (0) = b
2: for s = 0; c(s)′ · x (s) > 0; s++ do
3: z(s) = DualSolution(A(s), �� b, c(s))

4: y(s) = CQUELGenerateColumn(z,U , E )

5: return “No” if column generation failed
6: A(s+1) = append − column(A(s), y(s))

7: c(s+1) = append(c(s), 0)
8: end for
9: return A(s), x (s) such that A(s)x (s) �� b // Successful termination

In the linear program (7), {0, 1}-matrix A’s columns consist of all possible valu-
ations over k = |Q| predicates and it has 2k columns. The cost vector c and solution
vector x also have size 2k , so neither is represented explicitly. Instead, Algorithm 3.3
starts with a square matrix and iterates by generating the columns of A in such a way
as to decrease the objective function (lines 2–8).

As Algorithm 3.3 is very similar to the column generation process for PSAT
presented by Algorithm 2.1, we only discuss here the main differences between the
two.

As we do not have a restriction to “add to one” of PSAT, the initial size of A is
k × k, and similarly the cost function c starts with size k and the bound vector b has
size k = |Q|. As for the initialization (line 1), A receives the identity matrix I , and
the solution x receives b. The initialization of the {0, 1}-cost vector, like in PSAT, is
such that c j = 1 iff column A j is (U ∪ E )-unsatisfiable. The added columns will
always be (U ∪ E )-satisfiable and receive cost 0 (line 7).

As for the similarities, the steps within the loop are exactly the same for both
algorithms, and for the same reason. The goal of those steps is to decrease the cost
function until it becomes 0, or fail if this is not possible.

The only important difference in the loop is the column generation method. Like
in the PSAT case, it uses the dual solution z to compute an inequality based on the
reduced cost:

z′ · y ≥ 0 (8)

Then it encodes the inequality (8) to a propositional formula, which can be seen
as a universal formula over unary predicates U ′. It then calls Algorithm 3.1 in the
form JointSAT(U ∪ U ′,E ) and if it is satisfiable, returns a valuation for its unary
predicates.

Theorem 3.15 Algorithms 3.2, 3.3 and GenerateColumn provide a decision proce-
dure for the CQUEL-SAT problem.

Proof (Sketch) The proof is a simplification of the correctness of the branch-and-
bound method for ILP [42], due to the fact that CQUEL-SAT requires only a single
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feasible integer solution instead of searching for optimality in the lattice of feasible
integer solutions. Details omitted. �

There is an open source implementation7 for CQU, that is CQUEL with E = ∅.
It was developed in C++ and employs an open source linear programming solver8

and the MiniSAT solver9 as part of the column generation process. More details can
be found at Finger and Bona [21].

3.5 Future Challenges for Counting Quantifiers

We have shown that similar methods can be applied both for Probabilistic Logic
and for Counting Quantifiers over unary predicates. Three immediate challenges are
suggested by this work.

The first one, which is a direct application of the expansion fromCQU to CQUEL,
is the application of the counting quantifier techniques developed here to the domain
of Description Logics. In particular, it would be nice to have an implementation for
CQUEL and its deployment together with the existing tools for Description Logic
Reasoning.

The second challenge is more foundational and comes directly from a comparison
between results for Probabilistic Logic and Counting Quantifiers, namely, the search
for a de Finetti-like notion of coherence for counting quantifiers. In other words, this
research topic searches for a betting foundation on counting quantifier statements in
analogy to the Probabilistic Logic results described in Sect. 2.2.

The third challenge also comes by analogy with Probabilistic Logic, and it has to
do with the existence of inconsistency measures for logic bases involving counting
quantifiers. This future investigationmay take into consideration that it is possible that
the analogy between probabilities and discrete counting breaks at this level, for the
simple reason that inconsistency measures for probabilistic bases are continuous and
may be approached by convex optimization methods [6], while counting quantifier
treatment is discrete and based on integer linear programming techniques, are non-
convex.

4 Łukasiewicz Infinitely-Valued Logic and Probabilities

Łukasiewicz Infinitely-valued logic is arguably one of the best studied many-valued
logics [12]. It has several interesting properties; semantically, formulas can be seen
as taking values in the interval [0, 1]; the semantics is truth functional, so then truth
value of compound formula is function of the truth values of its components, and

7Available at http://cqu.sourceforge.net.
8http://www.coin-or.org/.
9http://minisat.se/.

http://cqu.sourceforge.net
http://www.coin-or.org/
http://minisat.se/
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that function is continuous over the interval [0, 1]; in fact, it is piecewise linear.
When truth values of propositional symbols are restricted to {0, 1}, the semantics
of formulas is that of classical logic; furthermore, it possesses a well developed
proof-theory and an algebraic semantics base on MV-algebras.

We present the essentials of Łukasiewicz (always propositional) logic (Ł∞) and its
underlying probability theory.We then introduce the notion of LIP-coherence, which
is inspired on de Finetti’s notion of a coherent betting system. We define and solve
the LIP-satisfiability problemmimicking our analysis of the PSAT and CQUEL-SAT
problems.

4.1 Łukasiewicz Infinitely-Valued Logic

Consider a finite set of propositional symbolsP = {p1, . . . , pn}. We employ � and
⊕ for Łukasiewicz conjunction and disjunction and write ¬ for negation. Usually,
only ¬ and ⊕ are considered basic connectives. So all propositional symbols are
formulas and if α and β are formulas in Ł∞, so are ¬α and α ⊕ β. Define α � β as
¬(¬α ⊕ ¬β) and Łukasiewicz implication α → β as ¬α ⊕ β; it is also,possible to
express the lattice connectives α ∧ β as¬(α ⊕ ¬β) ⊕ α and α ∨ β as¬(¬α ∧ ¬β).

The semantics of Ł∞-formulas is given in terms of the rational (or real) interval
[0, 1]. A valuation is a map v : P → [0, 1] which is truth functionally extended to
all Ł∞-formulas in the following way:

v(¬α) = 1 − v(α)

v(α ⊕ β) = min(1, v(α) + v(β))

v(α � β) = max(0, v(α) + v(β) − 1)

The third line above can, of course, be obtained from the definition of � in
terms of ¬ and ⊕. Similar truth functional expressions can be obtained for the other
connectives:

v(α → β) = min(1, 1 − v(α) + v(β))

v(α ∧ β) = min(v(α), v(β))

v(α ∨ β) = max(v(α), v(β))

A formula α is valid if v(α) = 1 for every valuation v, a formula α is satisfiable
(sometimes called 1-satsfiable) if there exists a v such that v(α) = 1; otherwise it is
unsatisfiable. A set of formulas Γ is satisfiable if there exists a v such that v(γ ) = 1
for all γ ∈ Γ . If v(α) = 1, we say that α is satisfied by v.

It mis easy to see that α → β is satisfied by v iff v(a) ≤ v(b). If we define α ↔ β

as an abbreviation for (α → β) ∧ (β → α), it follows that α ↔ β is satisfied by v
iff v(α) = v(β).
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4.2 Łukasiewicz Infinitely-Valued Probabilistic Logic
and Ł∞-Coherence

Ł∞-valuations over propositional symbols {p1, . . . , pn} can be seen as points in and
n-cube [0, 1]n . To apply the ideas and methods of Quantitative Logic Reasoning to
probabilistic Ł∞, we follow the approach and terminology of Mundici [37]. Define a
convex combination of a finite set of valuations v1, . . . , vm as a function on formulas
into [0, 1] such that

C(α) = λ1v1(α) + · · · + λmvm(α)

where λi ≥ 0 and
∑m

i=1 λi = 1.
In this sense, we define a Łukasiewicz Infinitely-valued Probabilistic (LIP) assign-

ment as an expression of the form

Σ =
{

C(αi ) = qi | qi ∈ [0, 1], 1 ≤ i ≤ k
}

.

The LIP assignment is satisfiable if there exists a convex combination C on a set of
valuations in the n-cube that jointly verifies all inequalities in Σ . This can be seen in
linear algebraic terms as follows. Given a LIP assignment Σ , let q = (q1, . . . , qk)

′
be the vector of values assigned in Σ , and suppose we are given Ł∞-valuations
v1, . . . , vm and let λ = (λ1, . . . , λm)′ be a vector of C-coefficients. Then consider
the k × m matrix A = [ai j ] where ai j = v j (αi ). Then Σ is satisfiable if there are
v1, . . . , vm and λ such that the set of algebraic constrains (9):

A · λ = q
∑

λ j = 1 (9)

λ ≥ 0

Conditions (9) are analogous to the PSAT constraints in (1).
Note that the number m of columns in A is initially unknown, but the following

consequence of Carathéodory’s Theorem [16] yields that if (9) has a solution, than
it has a “small” solution.

Proposition 4.1 If a set of restrictions of the form (9) has a solution, then there are
k + 1 columns of A such that the system A(k+1)×(k+1)λ = q(k+1)×1 has a solution
λ ≥ 0. �

Given a set of pairs of formulas and bets 〈α1, q1〉, . . . , 〈αk, qk〉, we say that there
is a Ł∞-Dutch book against the bookmaker (Alice) if the gambler (Bob) can place
stakes σ1, . . . , σk ∈ Q in such a way that, for all valuations v

k∑

i=1

σi (qi − v(αi )) < 0.
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Intuitively, in a Dutch Book, Alice’s bets C(α1), . . . , C(αk) result in financial
disaster for her, for any possible world v.

Definition 4.2 Given a probability assignment to propositional formulas {C(αi ) =
qi |1 ≤ i ≤ k}, the LIP assignment is Ł∞-coherent if there are no Dutch Books
against it.

The following extensionof deFinetti’sDutchbook theoremcharacterizes coherent
LIP-assignments:

Proposition 4.3 (Mundici [36])Given a LIP assignment Σ = {C(αi ) = qi |1 ≤ i ≤
k}, the following are equivalent:

(a) Σ is a Ł∞-coherent assignment.
(b) Σ is a satisfiable LIP assignment.

It has been shown [9] that the decision problem Ł∞-coherent LIP-assignments is
NP-complete. So, in the case of Łukasiewicz Infinitely-valued ProbabilisticLogic,
to decide if a LIP assignment is Ł∞-coherent, we can again employ linear algebraic
methods to solve it. In fact, NP-completeness of LIP satisfiability can be seen as
a direct corollary of Proposition 4.1. As Proposition 4.3 asserts that deciding Ł∞-
coherence is the same as determining LIP assignment satisfiability, we refer to this
problem as LIPSAT.

4.3 Applying Quantitative Logic Reasoning Methods
to LIPSAT

Based on the Quantitative Logic Reasoning approach employed in Sects. 2 and 3, a
possible strategy to solve the LIPSAT problem is as follows.

1. Generate a normal form for LIPSAT instances.
2. Provide an algebraic formulation for a normal form LIPSAT.
3. Develop a column generation algorithm based on the algebraic formulation.
4. Implement the algorithm and investigate important empirical properties.

Here we present a development of the first two items. The last two items are
currently under progress.

4.4 Algebraic Methods for LIPSAT

In total analogy to PSAT, define a LIPSAT instance as in (propositional) normal
form if it can be partitioned in two sets, 〈Γ,Ψ 〉, where Γ = {C(γi ) = 1|1 ≤ i ≤
r} and Ψ = {C(ai ) = qi |ai is a propositional symbol, 1 ≤ i ≤ k}, with 0 < qi < 1.
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The partition Γ is the satisfiable part of the normal form, usually represented only
as a set of propositional formulas and Ψ is the propositional LIP assignment part.
Given a LIP-assignment Σ , it is immediate that there exists a normal form LIPSAT
instance 〈Γ,Ψ 〉 that is LIP-satisfiable iff Σ is.

Example 4.4 Reconsider Example 2.1 about a doctor who formulates a hypothesis
on the need of at least two out of three genes g1, g2, g3 to be active for the disease
D to occur. In the classical probabilistic case, it was shown that this hypothesis was
inconsistent with the fact that each gene was present in 60% of D-patients.

However, ifwemodel this problem inŁukasiewicz Infinitely-valued Probabilistic-
logic, which allows for “partial truths”, the hypothesis no longer contradicts the data.
In fact, we can have a formulation of the problem directly in normal form, with
Γ = {x1 ⊕ x2, x1 ⊕ x3, x2 ⊕ x3} and Ψ = {C(x1) = C(x2) = C(x3) = 0.6}.

This LIP assignment has many satisfying pairs of valuations and convex combi-
nation. The simplest one contains just one valuation v1 such that v1(x1) = v1(x2) =
v1(x3) = 0.6 and λ1 = 1. It is immediate that v1 satisfies all three formulas in Γ and
λ1v1 verifies all three equalities in Ψ . �

The algebraic formalization of LIPSAT (9) when the input LIP assignment is in
normal form yields the interesting property that the columns of matrix A can be
extended to Γ -satisfying valuations, that is, there is a valuation v over all proposi-
tional symbols in Γ such that v satisfies all formulas in Γ and when v is restricted
to the symbols a1, . . . , ak in Ψ , it agrees with the respective values in A’s column.

This property is used to propose a linear program that allows us to decide the
LIP satisfiability of a given LIP assignment. The linear program solves (9) without
explicitly representing the large matrix A, using once again a column generation
method. For that, consider the following linear program:

min c′ · λ

subject to A · λ = q
A’s columns are a1, . . . , ak Ł∞ − valuations
λ ≥ 0 and

∑
λi = 1

(10)

As in Sect. 2.3, the cost vector c in (10) is a {0, 1}-vector such that ci = 1 iff
column A j is Γ -unsatisfying. Thus, the column generation process proceeds by
generating Γ -consistent columns. The result of this minimization process reaches
total cost c′ · π = 0 iff the input instance is satisfiable, as stated by the following
result.

Theorem 4.5 A normal form LIPSAT instance Σ is LIP-satisfiable iff the cor-
responding linear program of the form (10) terminates with minimal total cost
c′ · λ = 0.

Proof (⇐) If the program terminates, then clearly λ is a convex combination of the
columns of A verifying the restriction in Σ .

(⇐) If Σ is satisfiable, then by Proposition 4.1 there exists a small k-dimension
matrix A and a λ that verifies its restrictions. Note that λ can be seen as a linear
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combination of the columns of A, which are Ł∞-valuations by (10); furthermore,∑
λi = 1, so λ is a convex combination of Ł∞-valuations. As column generation is

able to eventually generate cost-decreasing columns, the total cost will reach 0, at
which point the program terminates. �

Corollary 4.6 (LIPSAT Complexity) The problem of deciding the satisfiability of a
LIP-assignment is NP-complete.

Despite the fact that solvable linear programs of the form (10) always have poly-
nomial size solutions, with respect to the size of the corresponding normal form
LIP-assignment, the elements of linear program itself (10) may be exponentially
large, rendering the explicit representation of matrix A impractical.

Theorem 4.5 serves as a basis for the development of a LIPSAT-solver and its
implementation.

4.5 A LIPSAT-Solving Algorithm

The general strategy employed here is similar to that employed to PSAT solving [20,
22], but the column generation algorithm is considerably distinct and requires an
extension of Ł∞-decision procedure.

From the input 〈Γ,Θ〉, we implicitly deal with matrix A and explicitly obtain the
vector of probabilities q mentioned in (10). The basic idea of the simplex algorithm
is to move from one feasible solution to another one with a decreasing cost. The pair
〈B, λ〉 consisting of the basis B and a LIP probability distribution λ is a feasible
solution if B · λ = q and λ ≥ 0. We assume that qk+1 = 1 such that the last line of B
forces

∑
G λ j = 1, where G is the set of B columns that are Γ -satisfiable. Each step

of the algorithm replaces one column of the feasible solution 〈B(s−1), λ(s−1)〉 at step
s − 1 obtaining a new one, 〈B(s), λ(s)〉. The cost vector c(s) is a {0, 1}-vector such that
c(s)

j = 1 iff B j isΓ -unsatisfiable. The column generation and substitution is designed
such that the total cost is never increasing, that is c(s)′ · λ(s) ≤ c(s−1)′ · λ(s−1).

Algorithm 4.1 presents the top level LIPSAT decision procedure. Lines 1–3
present the initialization of the algorithm. We assume the vector q is in ascending
order. Let the Dk+1 be a k + 1 square matrix in which the elements on the diagonal
and below are 1 and all the others are 0. At the initial step we make B(0) = Dk+1, this
forces λ

(0)
1 = q1 ≥ 0, λ

(0)
j+1 = q j+1 − q j ≥ 0, 1 ≤ j ≤ k; and c(0) = [c1 · · · ck+1]′,

where ck = 0 if column j in B(0) is Γ -satisfiable; otherwise c j = 1. Thus the initial
state s = 0 is a feasible solution.

Algorithm 4.1 main loop covers lines 4–12 which contain the column generation
strategy, detailed bellow. If column generation fails the process ends with failure in
line 7. Otherwise a column is removed and the generated one is inserted in a process
called merge at line 9. The loop ends successfully when the objective function (total
cost) c(s)′ · λ(s) reaches zero and the algorithm outputs a probability distribution λ

and the set of Γ -satisfiable columns in B, at line 13.
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Algorithm 4.1 LIPSAT-CG: a LIPSAT solver via Column Generation
Input: A normal form LIPSAT instance 〈Γ,Θ〉.
Output: No, if 〈Γ,Θ〉 is unsatisfiable. Or a solution 〈B, λ〉 that minimizes (10).
1: q := [{qi | C(pi ) = qi ∈ Θ, 1 ≤ i ≤ k} ∪ {1}] in ascending order;
2: B(0) := Dk+1;
3: s := 0, λ(s) = (B(0))−1 · q and c(s) = [c1 · · · ck+1]′;
4: while c(s)′ · λ(s) 
= 0 do
5: y(s) = GenerateColumn(B(s), Γ, c(s));
6: if y(s) column generation failed then
7: return No; {LIPSAT instance is unsatisfiable}
8: else
9: B(s+1) = merge(B(s), b(s))

10: s++, recompute λ(s) and c(s);
11: end if
12: end while
13: return 〈B(s), λ(s)〉; {LIPSAT instance is satisfiable}

The procedure merge is part of the simplex method which guarantees that given
a k + 1 column y and a feasible solution 〈B, λ〉 there always exists a column j in B
such that if B[ j := y] is obtained from B by replacing column j with y, then there
is λ′ such that 〈B[ j := y], λ′〉 is a feasible solution.

Column generation method takes as input the current basis B, the current cost c,
and the Ł∞ restrictions Γ ; the output is a column y, if it exists, otherwise it signals
No. The basic idea for column generation is the property of the simplex algorithm
called the reduced cost of inserting a column y with cost cy in the basis. The reduced
cost ry is given by

ry = cy − c′ B−1y (11)

the objective function is non increasing if ry ≤ 0. The generation method always
produces a column y thay is Γ -satisfiable so cy = 0. We thus obtain

c′ B−1y ≥ 0 (12)

which is an inequality on the elements of y. To force λ to be a convex combination,
we make yk+1 = 1, the remaining elements yi are valuations of the variables inΘ , so
that we are searching for solution to (12) such that 0 ≤ yi ≤ 1, 1 ≤ i ≤ k. To finally
obtain column y we must extend a Ł∞-solver that generates valuations satisfying Γ

so that it also respects the linear restriction (12). In fact this is not an expressiveness
extension of Ł∞ as the McNaughton property guarantees that (12) is equivalent to
some Ł∞-formula on variables y1, . . . , yk [12]. The practical details on how this can
be implemented is detailed in Finger and Preto [23], which also details this final
result.

Theorem 4.7 Consider the output of Algorithm 4.1 with normal form input 〈Γ,Θ〉.
If the algorithm succeeds with solution 〈B, λ〉, then the input problem is satisfiable
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with distribution λ over the valuations which are columns of B. If the program outputs
no, then the input problem is unsatisfiable. Furthermore, there are column selection
strategies that guarantee termination.

5 Conclusion

In this paper we have brought out similarities between three decisions problems in
probabilistic logics and counting. The problems deal with satisfiability decision and
employ similar linear algebraic methods, fine-tuned for the needs of each specific
logic problem. In this way, we belerve that we have elicited grouping them in a class
which we named quantitative-logic systems.

There are several other topics were not covered in this work which pertain to all
those quantitative logics dealt by this work. Among such topics is the existence of
inconsistency measurements, which have been developed for classical probabilistic
theories, but not for the other systems. Also, the existence of a phase transition for
implementations of the decision procedures described here have been described, but
such topic has an empirical nature and thus remains outside the scope of this article.
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Reconciling First-Order Logic
to Algebra

Walter Carnielli, Hugo Luiz Mariano and Mariana Matulovic

Abstract We start from the algebraic method of theorem-proving based on the
translation of logic formulas into polynomials over finite fields, and adapt the case of
first-order formulas by employing certain rings equipped with infinitary operations.
This paper defines the notion of M -ring, a kind of polynomial ring that can be
naturally associated to each first-order structure and each first-order theory, bymeans
of generators and relations. The notion of M -ring allows us to operate with some
kind of infinitary version of Boolean sums and products, in this way expressing
algebraically first-order logic with a new gist. We then show how this polynomial
representation of first-order sentences can be seen as a legitimate algebraic semantics
for first-order logic, an alternative to cylindric and polyadic algebras and closer to
the primordial forms of algebraization of logic. We suggest how the method and
its generalization could be lifted successfully to n-valued logics and to other non-
classical logics helping to reconcile some lost ties between algebra and logic.

1 Introduction

Algebraic logic has emerged as a sub-discipline of Algebra, trying to reflect (in the
mirror of algebra) theorems of mathematical logic. As it is well accepted nowadays,
George Boole deeply influenced the development of logic by his algebraic approach
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to logic with the publication of his “The Mathematical Analysis of Logic” of 1847.
Boole not only provided a calculus for logic, but offered different interpretations
for this calculus. Influenced by Boole’s work, De Morgan introduced the very first
calculus of relations.

G. Boole’s attempts were soon to be extended by Charles Peirce and Ernest
Schröder. However, a successful leap from propositional calculus to the beginnings
of first-order logic had to wait for the developments by Charles Peirce and Gottlob
Frege, who independently contribute towards disconnecting the notion of quantifiers
from propositional connectives and giving them an appropriate symbolic expression.
Peirce used the symbol Σ for the existential quantifier, suggesting a sum, and Π for
the universal quantifier, suggesting a product, in certain cases regarding a formula
with an existential quantifier as an infinitely long propositional formula.

However, as remarked in [19], the logics considered from 1879 to 1923 (such
as those championed by Frege, Peirce, Schröder, Löwenheim, Skolem, Peano, and
Russell) were generally richer than the contemporary versions of first-order logic.
One of the reasons for such richness was the use of infinitely long expressions
especially by Peirce and Schröder (but subsequently also by Hilbert, Löwenheim,
and Skolem).

Such infinitely long expressions, understandably, disappeared from contemporary
(finitary) first-order predicate calculus. On the other hand, the algebraic approach
to propositional classical logic seemed to be naturally extended to first-order logic.
The most important steps in this direction are the polyadic algebras of Halmos [15],
and the cylindric algebras of Tarski [16, 17], both starting in the 1950s with different
emphasis and evoking some alternative approaches such as relation algebras ([17],
Chap. 5) and the one presented in [20]. Cylindric algebras are essentially Boolean
algebras equipped with unary cylindric operations Cx intended to capture (or to
mock) the existential quantifiers (∃x), while polyadic algebras constitute another
approach towards an algebraic representation of first-order logic. It is noteworthy to
mention that, concerning modern forms of “algebraizing a Logic”, as expounded in
[4], the class of cylindric algebras is essentially the equivalent algebraic semantics of
a “tame version” of FOL: See TheoremC.1, p. 71, in [4], for a precise statement. This
theorem shows that FOL is algebraizable as a particular case of Blok and Pigozzi’s
method, which explores the relationship between metalogical properties enjoyed by
a class of logical systems, and their corresponding algebraic properties. As it will be
clear, our approach departs radically from this tradition.

However, despite their intrinsic interest and all the papers written on the topic,
generalizing these notions and showing connections to other areas, they can hardly
be called “natural”: the conceptual difficulties involved and the complex methods of
proof make them to stay far away from the earliest algebraic approaches to logic.

Our intention is this paper is, first, to suggest that this disjuncture between first-
order logic and its intended algebraic counterpart may be due to the reluctance of
modern logicians in using infinitely long expressions of first-order logic, as exempli-
fied by expressing existential quantifiers (essentially infinitary objects) in cylindric
algebras by means of the operations Cx. However, infinitary expansions of special
mathematical objects (namely, functions) are present in the mathematical milieu
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at least since their formal introduction by James Gregory and Brook Taylor at the
beginning of the seventeenth century. One of the main features of Taylor series is
a representation of a function as an infinite sum of terms of lower complexity: the
infinite expansion of simpler terms expresses a more complicated function.

Our second intention here is to take charge of this intuition by presenting a treat-
ment of first-order logic by means of formal infinitary polynomials, in the intuitive
spirit of Taylor series. Such a polynomial representation of logic is shown to be com-
plete, offering a new proof method to first-order logic comparable to the well-known
analytic tableaux procedure. We then show how this polynomial representation of
first-order formulas could be seen as a legitimate algebraic semantics for first-order
logic, alternative to cylindric and polyadic algebras and that is closer to the primeval
forms of algebraization of logic.

A recurring point in our research is the distinction between Boolean rings and
Boolean algebra. A common confusion is to be deceived by the inter-definability
between these structures; in fact, although Boolean algebras and Boolean rings are
inter-definable mathematical structures, they are not isomorphic structures (they are
just isomorphic categories). It should be noted that the definition of isomorphism
requires that isomorphic structures share the same signature (language), which does
not occur in this case.

But, more importantly, the inter-definability is maintained just for the bivalent
case. For the n-valued case, Boolean rings are generalized in an immediate and
natural way via polynomial rings over Galois Field, which does not happen with the
Boolean algebras.

The algebraicmethod of theorem-proving based on the reduction of first-order for-
mulas within certain rings equipped with infinitary operations that we deal with here
(where the notion of logical derivability is characterized by the notion of algebraic
solubility) constitutes in this way a viable candidate for a new tool for algebraizing
logic. The method could be successfully lifted to n-valued logics.

The structure of the paper is the following: Sect. 1.1 presents the polynomial
ring calculus as an alternative for algebraization logics, defines the Polynomial Ring
Calculus (PRC) for propositional logics and provides some examples of deductions.
Section 2 introduces the notion ofM -ring,1 that allows us to operate with some kind
of infinitary version of Boolean sums and products. Section 3 shows a polynomial
version of First Order Logic (FOL) that completely encodes the notions of Tarskian
truth and of derivability inside a first-order theory. Some remarks are offered in
Sect. 4, closing this paper.

1In this paper “ring” always means commutative ring with unity.
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1.1 Polynomial Rings as an Alternative to Algebraizing
Logics

What is called “algebraic logic” is a variant of logical reasoning obtained by the
association of logic with classes of algebras and other algebraic mathematical struc-
tures, relating the properties of logics with algebraic properties of the associated
algebras. There is always the risk of confusing this notion with “algebra of logic”,
“algebraization of logics” and “algebraic semantics”. The distinctions are very tech-
nical and subtle to deal with in an article, but we can at least say that, in its algebraic
counterpart, our work can be seen as inserted in the tradition of “algebraic logic”.

The research in algebraic logic proceeds in twodifferent, but often related avenues.
One of the approaches studies algebraic structures (or simply algebras) which are
relevant to logic(s), e.g. algebraswhichwereobtained from logics.A secondapproach
also studies algebras, e.g. deals with the methodology of solving logical problems by
translating them to algebra, solving the algebraic problem and translating the result
back to logic.

The algebra of logic (a term coined by Boole) was designed to provide an algorith-
mic alternative to the traditional approach of Aristotelian logic, as developed in his
Mathematical Analysis of Logic: Being an Essay Towards a Calculus of Deductive
Reasoning, [5].

In Boole’s hands, the addition operation was treated as the union of disjoint
sets, obeying the commutative law, x + y = y + x. Themultiplication operation was
defined as the intersection of two classes, relatingwith the addition by the distributive
law, z(x + y) = zx + zy, and also obeying the following laws:

• Commutativity: xy = yx.
• Index law: x2 = x.

The Index Law occupied a central position in the theory of Boole, who considered
it a fine example of how a fundamental law of metaphysics, x2 = x, could be seen
as just a consequence of the laws of thought. In other words, x2 = x ⇒ x2 − x =
0 ⇒ x(x − 1) = 0 represents the law of non-contradiction, that is, the fact that the
conjunction of “x” and “not-x” is impossible.

It is interesting to note that, in [5], Boole accepted (in principle) generalization of
the index law, e.g, xn = x, for some n ∈ N. However, in “The Laws of Thought” such
generalizations were rejected. This happened because of the fact that xn = x caused
him some trouble. As an example, x3 = x leads to x3 − x = 0, or x(x2 − 1) = 0. In
this way, both x = 1 and x = −1 are roots of this equation. But this posed a problem
to Boole’s views, because (−1) is not a valid term in the theory developed by Boole,
since it does not obey the index law (−1)2 �= (−1).

The fact that prevented the advancement of Boole was not the failure in noticing
that the index law could be generalized to xn = x, but the fact that Boole was unable
to make sense of it with the mathematical environment of the nineteenth century. In
other words, without running the risk of anachronism, we can say that the absence
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of the concept of algebraic field has prevented Boole from seeing that his algebra of
logic could be realized in distinct universes.2

In [5], (in Chap. Of Hypotheticals, pp. 48–59), Boole defines propositional logic
operators in the following polynomial translations:
not X: 1 − x
X and Y: x . y
X or Y (not exclusive): x + y − x . y
X or Y (exclusive): x + y − 2x . y
If X then Y: 1 − x + x . y.

Burris in [7] even says that the algebra of logic developed by Boole was not
Boolean algebra. In the nineteenth century the study of symbolic systems for sets
was referred to as the “algebra of logic”, as Boole called it. In the 1880s C.S. Peirce
referred to it as “Boolean algebra”, but by that he meant whatever Boole had done.
Schröder, a follower of Peirce’s work, wrote up an excellent treatment of the subject
in 1890 titled Vorlesungen über die Algebra der Logik. In this monumental work
Schröder refers to Hugh MacColl as one of his most important precursors; see [21]
for details. In 1904 Huntington wrote a paper giving several axiom systems for the
algebra of logic (for sets). It was in this paper that he considered arbitrary models of
the axioms, an important step for the modern subject of Boolean algebra. In 1913, in
a follow-up to Huntington’s paper, Sheffer [22] referred to the models of any such
system of axioms for the algebra of logic as Boolean algebras.

1.1.1 The Method of Polynomial Ring Calculi

The method of Polynomial Ring Calculus (PRC) aims to investigate, at the same
time, algebraic notions of proof and new semantic interpretations for classical and
non-classical logics. Both, the algebraic versions of proof-theory and the seman-
tic aspects of logic are based on translating logic formulas of a given language L
into polynomial rings, typically a ring F[X ] of polynomials in one or more vari-
ables X with coefficients in a field F , where the translation is provided by a certain
map ( )∗ : Form(L ) → F[X ]. The proof method based on polynomial rings is an
algebraic proof mechanism that works by performing deductions via polynomial
operations on the translated formulas. The elements of the field F represent truth-
values, with a given a subset ∅ �= D ⊆ F to represent distinguished values (usually
D = {1}). Polynomials may be regarded as the possible truth-values that formulas
can take: this makes possible that truth conditions on formulas can be determined
by controlling polynomials through certain algebraic operations (the PRC rules).
PRC can be regarded as an algebraic semantics, in which the structure of polyno-
mials reflects the structure of truth-value conditions for logic formulas; it can also
be seen as a proof method (much as a tableau calculus can be viewed either as a
proof-theoretical or as a model-theoretical device).

2Distinct, obviously, from Boolean algebras.



278 W. Carnielli et al.

Definition 1 (a) A PRC-interpretation h of polynomial forms F[X ] into a field F is
a ring homomorphism which assigns to each polynomial form of the PRC a value in
the field F , h : F[X ] → F .

(b) A set of polynomials S ⊆ F[X ] is soluble iff its image under some PRC-
interpretation is subset of D.

(c) A set of polynomials S ⊆ F[X ] is valid iff its image under every PRC-
interpretation is a subset of D. A polynomial p ∈ F[X ] is said to be invalid if and
only if it is not soluble.

(d) A polynomial p ∈ F[X ] is a semantic consequence of the set of polynomials
S ⊆ F[X ], notation: S |≈ p, when for all interpretations h : F[X ] → F , if h[S] ⊆ D
then h(p) ∈ D.

(e) A polynomial p ∈ F[X ] is a syntactic consequence of the set of polynomials
S ⊆ F[X ], notation: S |∼ p, when from the hypothesis (s ≈ d), for each s ∈ S and
some d ∈ D, through the application of basic rules to each s ∈ S, can be derived
that (p ≈ d), for some d ∈ D. Thus a PRC-proof is a (finite) sequence of equations
justified by the basic rules of PRC.3 A polynomial p ∈ F[X ] is a theorem, when it is
syntactic consequence of the empty set.

(f) A PRC is compact, when for each S ∪ {p} ⊆ F[X ], S |≈ p iff exists S ′ ⊆fin S
such that S ′ |≈ p.

(g) A PRC is sound, when for each S ∪ {p} ⊆ F[X ], S |∼ p ⇒ S |≈ p.
(h) A PRC is complete, when for each S ∪ {p} ⊆ F[X ], S |≈ p ⇒ S |∼ p.
(i) A PRC is semantically adequate, when for each Γ ∪ {α} ⊆ Form(L ), Γ � α

⇔ Γ ∗ |≈ α∗.
(j) A PRC is syntactically adequate, when for each Γ ∪ {α} ⊆ Form(L ), Γ � α

⇔ Γ ∗ |∼ α∗.

We define a particular (p,m)-Polynomial Ring Calculus ((p,m)-PRC ) for a given
propositional logic system L , based on the Galois Field, GF(pm) for p prime and
m a natural number other than zero, by the following clauses:

1. All the (p,m)-PRC terms are variables, and all its formulas are polynomials in
GF(pm)[X ];

2. Operations in (p,m)-PRC are governed by a set of rules. They are:

a. Index Rules.
• p.x ≈ 0, where (p.x) means (x + x + · · · + x), such addition being per-
formed p times.

• xi.xj ≈ xk(modq(x)) in that q(x) is a convenient primitive polynomial that
defines GF(pm), and k = i + j(mod pm − 1).

b. Ring rules, uniform substitution and Leibniz rules (for equality).4

3The operator |∼ clearly induces a finitary closure operator ( ) : Parts(F[X ]) → Parts(F[X ]), in
particular, S |∼ p iff exists S ′ ⊆fin S such that S ′ |∼ p.
4The symbol |∼denotes “reduction bymeans of polynomial rules”; in order to ease reading, however,
we shall use the symbol ≈ everywhere when there is no danger of misunderstanding.
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In this way, the (p,m)-Polynomial Ring Calculus for a given logic L (written
simply as PRCwhen there is no danger of confusion) basically consists in translating
formulas of L into polynomials with coefficients in a finite field, and performing
deductions through operations (governed by the set of rules defined above) on those
polynomials. We say that the polynomial rules prove a certain sentence α in L if
its translation in reduced form via application of the rules (the polynomial α∗ with
coefficients in the Galois field GF(pm)) never outputs values outside the set D of
distinguished truth-values.

In summary, defining a concrete PRC for a specific logic L consists in:

• Selecting a suitable finite field, GF (pm), to represent the truth-values, specifying
a subset of distinguished (also called designated in the literature) truth-values.

• Defining a translation function from formulas of L into polynomials, with vari-
ables in the set X and coefficients in GF (pm), namely, ( )∗ : Form(L ) →
GF (pm) [X ].

• In certain cases, some constraints on translations will have to be added, as in the
cases where modal logic are expressed in polynomial format (see [1]) .

The procedure for obtaining a polynomial representation for a (deterministic or
non-deterministic) finite-valued logic begins with the construction of truth-tables for
each connective in the language that will be translated. From this point on, in order
to characterize the polynomials corresponding to formulas, there are two algorithmic
options according to which one may proceed: by means of Lagrange interpolation
or directly by solving linear systems over finite fields.5

1.2 The Polynomial Ring Method in Classical Propositional
Logic

A PRC for classical propositional logic (or calculus), CPC – over the set of propo-
sitional variables {Pi : i ∈ N} – is a translation of formulas FORM (CPC) in finite
polynomialswith coefficients in thefieldZ2 andvariables in the set X = {Xi : i ∈ N},
begins with the translation ( )∗ : Form(CPC) → Z2[X ], such that:

• (Pi)
∗ = Xi, i ∈ N;

• (α ∧ β)∗ = α∗.β∗;
• (α ∨ β)∗ = α∗.β∗ + α∗ + β∗;
• (α → β)∗ = α∗.β∗ + α∗ + 1;
• (¬α)∗ = α∗ + 1;

Remark 2 Note that the inductive clauses in map ( )∗ are the same clauses that
transforms a Boolean ring (BR) over the a set R, R = (R, .,+,−, 0, 1) into a

5It is convenient to show that any finite function can be expressed by means of polynomials over
finite fields using two different methods for this: Lagrange interpolations and by solving linear
systems. For more details, see [11, 18].
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Boolean algebra (BA) over the same set R, B(R) = (R,∧,∨,→,¬, 0, 1). Remem-
ber that, on the other hand, ifB = (B,∧,∨,→,¬, 0, 1) is a Boolean algebra, then
R(B) = (B, .,+,−, 0, 1) is a Boolean ring where:

a.b := a ∧ b, a + b := ¬(a → b) ∨ ¬(b → a), −a := a.

Moreover, a map is a homomorphism of Boolean algebras (respectively, of Boolean
rings) iff it is a homomorphism of the associated Boolean rings (respectively, of
Boolean algebras). In this way it obtains a pair of inverse isomorphism of categories
BR � BA, that “commutes over the category Set”. �

We will see that the translation of propositional formulas into polynomials is
faithful, i.e., the operations on the ring of polynomials corresponding to connec-
tives exactly represent the semantic conditions for classical propositional logic (i.e.,
faithfully reflects the propositional valuations).

For each valuation v : {Pi : i ∈ N} → Z2, consider:

• vF : Form(CPC) → Z2, the unique extension of v, that is a homomorphism of
algebraic structures of type (2,2,2,1) over C = (∧,∨,→,¬)6;

• vR : Z2[{Xi : i ∈ N}] → Z2, the unique ring homomorphism such that vR(Xi) =
v(Pi), i ∈ N.

Then:

Fact 3 It is clear that:

• themapping v �→ vF establishes a bijection between valuations {Pi : i ∈ N} → Z2

and C-homomorphisms Form(CPC) → Z2;
• the mapping v �→ vR establishes a bijection between valuations {Pi : i ∈ N} → Z2

and ring homomorphisms Z2[{Xi : i ∈ N}] → Z2.
• for each valuation v, the diagrambelowcommutes,where i and j denote the obvious
injective maps.

�

6In more details, vF is recursively defined by: vF (Pi) := v(Pi), vF (α ∧ β) := vF (α) ∧
vF (β), vF (α ∨ β) := vF (α) ∨ vF (β), vF (α → β) := vF (α) → vF (β), vF (¬α) := ¬vF (α).
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Theorem 4 (a) Let v : {Pi : i ∈ N} → Z2 be a valuation, then: vF = vR ◦ ( )∗.
(b) The mapping − ◦ ( )∗ : Homring(Z2[{Xi : i ∈ N}], Z2) → C − Hom(Form
(CPC), Z2), h �→ h ◦ ( )∗, is a bijection.

Proof Item (b) follows from (a) and the bijections in Fact 3. We will now prove
vF(ψ) = vR((ψ)∗), by induction on the complexity of ψ ∈ Form(CPC).

• compl(ψ) = 0. Then:
(i) ψ = Pi for some i ∈ N.
Then vF (Pi) = v(Pi) = vR(Xi) = vR(P∗

i ).• compl(α) = n + 1. Then it holds exactly one of the alternatives below:
(ii) ψ = ¬α, with compl(α) = n:
Then vF (¬α) =

def vF
¬vF (α) =

IH
¬vR((α)∗) =

def Z2

1 + vR((α)∗) =
def vR

vR(1 +
(α)∗) =

def ( )∗
vR((¬α)∗).

(iii) ψ ∈ {α ∨ β, α ∧ β, α → β}, with compl(α) + compl(β) = n:
We will prove only the disjunction case (the other connectives are similar):
vF (α ∨ β) =

def vF
vF(α) ∨ vF (β) =

IH
vR((α)∗) ∨ vR((β)∗) =

def Z2

vR((α)∗)

vR((β)∗) + vR((α)∗) + vR((β)∗) =
def vR

vR((α)∗(β)∗ + (α)∗ + (β)∗) =
def ( )∗

vR((α ∨ β)∗). �

The notions of tautology, valid formulas, etc, on polynomials are defined as in
the case of formulas of propositional language, interpreting 1 ∈ Z2 as true value and
0 ∈ Z2 as the false value. Thus:

Corollary 5 Let Γ ∪ {ψ} ⊆ Form(CPC).
(a) For each valuation v, Γ �vF ψ ⇔ Γ ∗ |≈vR ψ∗.
(b) Semantic adequacy of PRC(CPC): Γ � ψ ⇔ Γ ∗ |≈ ψ∗. �

Fact 6 On the Lindenbaum construction on CPC:

(a) As is well known, the Lindenbaum algebra of CPC,Lind(CPC) :=
Form(CPC)/��, is a quotient C-algebra that is a Boolean algebra. Then:
[α] = [β] ∈ Lind(CPC) iff α �� β iff � α ↔ β iff � α ↔ β iff α =||= β iff
for all C-homomorphism V : Form(CPC) → Z2, V (α) = V (β) iff
(α, β) ∈ ⋂{ker(V ) : for a C-homomorphism V : Form(CPC) → Z2} iff
for all ring homomorphism h : Z2[X ] → Z2, h((α)∗) = h((β)∗).

(b) The inclusion functor BA ↪→ C − str admits a left adjoint functor: i.e., for
each C-structure S there is a Boolean algebra B(S) and a C-homomorphism uS :
S → B(S) with the universal property that, for each a Boolean algebra B and C-
homomorphism h : S → B, there is a unique Boolean homomorphism h̃ : B(S) → B
such that h̃ ◦ uS = h: Consider E(S) = ⋂{E : E is a C-congruence relation in S and
S/E is a Boolean algebra}, as the subclass of Boolean algebras is closed in C − str
under isomorphisms, substructure and products, then S/E(S) is a Boolean algebra
and it follows from the “Theorem of Homomorphism” for C-structures that the
quotient C-homomorphism qS : S � S/E(S) has the desired universal property. In
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particular, asForm(CPC) is the (absolutely) freeC-structure over the set {Pi : i ∈ N},
then Form(CPC)/E(S) is the free Boolean algebra over the set {Pi : i ∈ N} and is
also the free Boolean ring over that set.

(c) Let S be an C-structure and consider E′(S) := ⋂{ker(V ) : for some C-
homomorphism V : S → Z2}, then E′(S) = E(S). Since Z2 ∈ BA, it is clear that
E(S) ⊆ E′(S). As B(S) = S/E(S) is a Boolean algebra, by the Stone representation
theorem, the evaluation BA-homomorphism isinjective evS : B(S) �
{0, 1}HomBA(B(S),{0,1}) which is equivalent to E(S) = ⋂{M : M is a C-congruence
relation in S and S/M ∼= Z2} = ⋂{ker(V ) : for a C-homomorphism V : Form
(CPC) → Z2}. In particular, as Form(CPC) is the (absolutely) freeC-structure over
the set {Pi : i ∈ N}, then Lind(CPC) = Form(CPC)/E′(S) is the free Boolean alge-
bra over the set {Pi : i ∈ N} and is also the free Boolean ring over that set.

(d) For each commutative ring with 1, R, denote I(R) the ideal of R generated
by the subset {a2 − a : a ∈ R}, then: R/I(R) is a Boolean ring and the quotient
homomorphism q : R � R/I(R) has the universal property: for each Boolean ring B
and each ring homomorphism f : R → B, there is a unique ring homomorphism f̄ :
R/I(R) → B such that f̄ ◦ q = f . By the “Stone representation Theorem for Boolean
rings”, I(R) = ⋂{Z(h) = h−1[{0}] : for some ring homomorphism h : R → Z2}.
If X = {Xk : k ∈ K} then: I(Z2[X ]) = 〈{X 2

k − Xk : k ∈ K}〉, I(Z[X ]) = 〈{1 + 1} ∪
{X 2

k − Xk : k ∈ K}〉 and, as Lind(CPC) is the free Boolean ring over {Pk : k ∈ N},
then Lind(CPC) ∼= Z2[X ]/I(Z2[X ]) ∼= Z[X ]/I(Z[X ]).

As a consequence, we have:

Theorem 7 (a) Compactness of PRC(CPC)
(b) Soundeness and Completeness of PRC(CPC): For notion of polynomial

proof obtained from the the basic rules

• (commutative, with unity) ring rules.
• Index rules:
1 + 1 |∼ 0;
X 2
i |∼ Xi, i ∈ N.

(c) Syntactical adequacy of PRC(CPC)

Proof (a) It is enough to prove: if S |≈ p , then there is a finite S ′ ⊆ S such that
S ′ |≈ p. We will prove this contrapositively.

Note that S �|≈ p iff S ∪ {1 + p} has a solution iff there exists an interpretation
(i.e., a ring homomorphism) h : Z2[X ] → Z2 such that h[{1 + s : s ∈ S} ∪ {p}] =
{0} iff there exists an interpretation h such that {1 + S} ∪ {p} ⊆ Z(h) = h−1[{0}].
As Z2[X ]/I(Z2[X ]) is a Boolean ring with I(Z2[X ]) = ⋂{Z(g) : for some ring
homomorphism g : Z2[X ] → Z2} = 〈{q2 − q : q ∈ Z2[X ]}〉, and themaximal ideals
in Boolean rings induce a quotient ring ∼= Z2, the maximal idealsM of Z2[X ] of the
formM = Z(h) for some interpretation h are precisely the maximal ideals such that
I(Z2[X ]) ⊆ M .

Now suppose that for each S ′ ∈ Partsfin(S), it is not the case that S ′ |≈ p, then
the subset {q2 − q : q ∈ Z2[X ]} ∪ {1 + S ′} ∪ {p} generates a proper ideal of J (S ′) ⊆
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Z2[X ]. As (Partsfin(S),⊆) is an upward directed poset, the set J := ⋃{J (S ′) : S ′ ∈
Partsfin(S)} is an ideal of Z2[X ] that is proper (as 1 /∈ J ), thus J can be extended
to a maximal ideal M . Note that {q2 − q : q ∈ Z2[X ]} ∪ {1 + S} ∪ {p} ⊆ J ⊆ M ,
thusM = Z(h) for some ring homomorphism h : Z2[X ] → Z2 and {1 + S} ∪ {p} ⊆
Z(h): this means that it is not the case that S |≈ p.

(b) Consider FX , the absolutely free algebra in the language R = (.,+,−, 0, 1)
over the setX = {Xi : i ∈ N}, i.e. |FX | = ⋃

n∈N Fn, where:F0 = {0, 1} ∪ {Xi : i ∈ N}
and Fn+1 = Fn ∪ {(−, p), (+, p, q), (., p, q) : p, q ∈ Fn}, |FX | are endowed with the
obvious operations. The free (commutative, with 1) ring over the set X is Z[X ] and
the ring rules expresses precisely the R-congruence E(X ) over FX such that Z[X ] ∼=
FX /E(X ). The index rule (1 + 1 |≈ 0) describes Z2[X ] as a quotient ring Z2[X ] ∼=
Z[X ]/〈1 + 1〉 and the index rule X 2

k |≈ Xk , k ∈ N, describes the free Boolean ring
Lind(CPC) ∼= Z2[X ]/I(Z2[X ]) over X , where I(Z2[X ]) = 〈{X 2

k − Xk : k ∈ N}〉.
By the semantic compactness, item (a) above, it is enough to prove S |≈ p ⇔

S |∼ p, for each S ∪ {p} ⊆fin Z2[X ]. Note that:
• For S finite:
S |≈ p iff {∏ S} |≈ p,7 because h[S] = {1} iff h(∏ S) = ∏

h[S] = 1, for each ring
homomorphism h : Z2[X ] → Z2.
S |∼ p iff {∏ S} |∼ p, because {[s] : s ∈ S} = {[1]} ∈ Z2[X ]/I(Z2[X ]) iff [∏ S] =∏{[s] : s ∈ S} = [1] ∈ Z2[X ]/I(Z2[X ]).8
• For S = {s}: s |≈ p iff for all interpretation h, h(s) = 1 entails h(p) = 1 iff
for all interpretation h, h(sp) = h(s) iff for all interpretation h, h(sp + s) = 0 iff
for all interpretation h, h(s → p) = h(sp + s + 1) = 1 iff sp + s ∈ I(Z2[X ]) iff
(sp + s) ≈ 0 (iff (s → p) |∼ 1) iff ([s] → [p]) = ([s][p] + [s] + [1]) = [sp + p +
1] = [1] ∈ Z2[X ]/I(Z2[X ]) ∼= Lind(CPC) iff ([s] = [1] entails [p] = 1) iff s |∼ p.

(c) For each Γ ∪ {ψ} ⊆ Form(CPC):
Γ � ψ ⇔

sound+complete CPC
Γ � ψ ⇔

Corollary 5
Γ ∗ |≈ ψ∗ ⇔

item (b)
Γ ∗ |∼ ψ∗. �

Remark 8 Recall that the quotient map q : Form(CPC) � Lind(CPC) induces a
bijective correspondence between the consequence closed subsets T ⊆ Form(CPC)

and the ideals J ⊆ Lind(CPC) and that these are in bijective correspondence with
the ideals J̄ ⊆ Z2[X ] that contain I(Z2[X ]), we get a “relative version” of transla-
tions modulo a CPC-theory T ⊆ Form(CPC), ( )∗T : Form(CPC) → Z2[X ]/J̄T into
a “relative” ring of polynomials. �

We finish this subsection with some examples:

Example 9 (a) The formula (Pi ∨ Pj → Pi) is satisfiable, i.e. the polynomial (Pi ∨
Pj → Pi)

∗ has a solution:
Let h : Z2[X ] → Z2 be a ring-homomorphism, then:

h((Pi ∨ Pj → Pi)
∗) = 1 ⇔ h((Xi.Xj + Xi + Xj).Xi + (Xi.Xj + Xi + Xj) + 1) = 1 ⇔

7By definition,
∏

S = 1 whenever S = ∅.
8In aBoolean ring, ab = 1 iffa = b = 1. Indeed: ifab = 1, then 1 = ab = a2b = a(ab) = a.1 = a.
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(h(Xi)h(Xj) + h(Xi) + h(Xj))h(Xi) + (h(Xi)h(Xj) + h(Xi) + h(Xj)) = 0 ⇔

0 = h(Xi)h(Xj) + h(Xj) = (h(Xi) + 1)h(Xj) ⇔ h(Xi) = 1 or h(Xj) = 0

This means that for the valuations v : {Pk : k ∈ N} → Z2, where v(Pi) = 1 or
v(Pj) = 0, the formula (Pi ∨ Pj → Pi) is satisfiable.

(b) The formula (Pi ∧ Pj → Pi) is valid.

(Pi ∧ Pj → Pi)
∗ = (XiXj).Xi + XiXj + 1 ≈ XiXj + XiXj + 1 ≈ 1.

This is equivalent to prove that for any assignment of truth values to the variables Pi

and Pj, the polynomial (Pi ∧ Pj → Pi)
∗ has a solution.

(c) The formula (Pi ∧ ¬Pi) is invalid, because:
Let h : Z2[X ] → Z2 be a ring-homomorphism, then:

h((Pi ∧ ¬Pi)
∗) = 1 ⇔ h(Xi(Xi + 1)) = 1 ⇔ h(Xi).(h(Xi) + 1) = 1 ⇔ h(Xi)

2 + h(Xi) = 1 ⇔ 0 = 1

This means that there isn’t a valuation v : {Pk : k ∈ N} → Z2, that validates the
formula (Pi ∧ ¬Pi). �

1.3 The Potential of the PRC

The method of proof by polynomial ring, as expounded in [18], is designed to be a
universal method of proof, in the sense of providing a general proof procedure, apt
to be used in many different logical systems, such as in propositional many-valued
logics (deterministic and non-deterministic), paraconsistent logics, modal logic and
First Order Logic.

There are other senses of universality that do not coincide with this, but are
related.What is known as “universal logic” is the field of logic that is concerned with
investigating what the common characteristics are to all logical structures. Relevant
references about this are [2, 3].

The universal logic is not a new logic, but a general theory of logic, considered
as mathematical structures. The name was introduced in the 1990s by J.-Y Béziau,
but the theme also refers to Alfred Tarski and other Polish logicians such as Adolf
Lindenbaum, who have developed a general theory of logic in the late 1920s, based
on consequence operators of and matrix logics.

It is also interesting to see the method of polynomial functions as a unifying tool,
since it offers a single mathematical object, to wit, polynomials, to compare various
aspects of the same logic, as done in [18] with some paraconsistent logics.

Another important aspect of the method is its ability to specify the characteristics
of each system to which it is applied. That is, if we are working with truth-functional
systems, the polynomials reflect this characteristic; on the other hand, for semi-
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truth-functional logics, new (so-called hidden) variables can be introduced so that
the polynomials reflect such characteristics.

Let us consider, as an example, the particular case of three-valued paraconsistent
logic of Sette, P1

3. For this system, we have a set of polynomials in the field resulting
Z3 or ring Z3[X ], referring to the truth-functional logic three-valued P1

3, given by:

(¬α)∗ = 2x2 + x + 2;
(α → β)∗ = 2x2y2 + x2 + 2

And we also have another polynomial obtained in Z2[X ∪ X ′], where X ′ is a set
of hidden variables, resulting from the translation of formulas of the system bivalued
reduced from P1

3, by what is called Suszko Reduction. The polynomials in question
are:

(¬α)∗ = α∗ · xα + 1, where xα is a hidden variable.
(¬¬α)∗ = (α∗ · xα + 1) · xα + 1.

We can observe that these polynomials have completely different natures, reflect-
ing the fact that two groups of distinct polynomials can be used to characterize a
same system.

We could think of using polynomial rings as a new algebraic system which would
give amore direct algebraic meaning to several logical systems, in amore natural and
intuitive way. This “new algebraization” could then rescue the algebraic side of log-
ical systems, something lost by the contemporary algebraic formalization proposed
in the literature, especially for many-valued and paraconsistent logics.9

Finally, the polynomialmethod can be seen as a heuristic device, useful sometimes
for discovering new logics or newproperties of logic systems, as shown in [12],where
the author defines “half-logics and quarter-logics”, based on the no-truth-functional
connectives developed by Jean-Yves Béziau.

2 M-Rings

LetM be an arbitrary set. We introduce the notion ofM -ring as a ring equipped with
two enumerable families of (infinitary, partial) operators, that allows us to operate
with a infinitary version of Boolean products and sums. A structure that is aM -ring
for some set M will be called a generically an RNG.

Definition 10 A proto M -ring is a structure R := (R,+, ·,−, 0, 1, (Ai)i∈N,

(Ei)i∈N) where:

• (R,+, ·,−, 0, 1) is a structure for the language of rings with unity;

9However, it must be noted that a heterodox proposal to algebraize paraconsistent logics is proposed
in [6].
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• for each i ∈ N, Ai,Ei : Di → R are partial operations on R with commom domain
Di ⊆ RM , such that

s ∈ Di ⇒ 1 + s ∈ Di and s + 1 ∈ Di

(where 1 + s := (1 + sa)a∈M ) �
Definition 11 A M -ring R := (R,+, ·,−, 0, 1, (Ai)i∈N, (Ei)i∈N) is a proto M -ring
such that:

• (R,+, ·,−, 0, 1) is a commutative ring with unity and characteristic 2;
• for each i ∈ N and each s ∈ Di, 1 + Ai(s) = Ei(1 + s)

�
Remark 12 Let R be aM -ring and s ∈ RM :
(a) 1 + s = s + 1;
(b) s ∈ Di ⇔ 1 + s ∈ Di;
(c) Ei(s) + 1 = Ai(s + 1). �

The fundamental example of M -ring is:

Example 13 For each set M , the set Z2 = {0, 1} can be endowed with a natural
structure of M -ring.

• The structure 〈Z2,+, ·, 0, 1〉 is Boolean ring with unity (i.e., s2 = s), in particular,
it is a commutative ring with unity and characteristic 2.

• For each i ∈ N, take Di := Z
M
2 and consider the (total) operations given by the

usual order structure on Z2:

Ai : Z
M
2 → Z2, (sa)a∈M = s �→

∧

a∈M
sa

Ei : Z
M
2 → Z2, (sa)a∈M = s �→

∨

a∈M
sa

Then
(1 +

∧

a∈M
sa) =

∨

a∈M
(1 + sa),

because:

(1 +
∧

a∈M
sa) = ¬(

∧

a∈M
sa) =

∨

a∈M
(¬sa) =

∨

a∈M
(1 + sa)

�
Remark 14 Clearly, for each setM , the example above can be generalized for each
Boolean algebra (or Boolean ring) B and each set M ; moreover, if B is a complete
Boolean algebra, then its associated M -ring has total operations Ai,Ei : BM → B,
i ∈ N. �
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A key point in this work is the construction, for each L-structureM , of anM -ring
denoted by R(M ) (with M = |M |) that is a kind of “free” construction given by
generators and relations à la Lindenbaum algebra construction. Thus we will need
a notion ofM -homomorphism, and to develop some constructions in the fashion of
universal algebra.

Definition 15 Let R and R ′ be proto M -rings. A function h : R → R′ is a
M -homomorphism fromR intoR ′ iff it respects all datas involved. More explicitly:

• h : (R,+, ·,−, 0, 1) → (R′,+′, ·′,−′, 0′, 1′) is an homomorphism for the lan-
guage of rings with unity;
For each i ∈ N

• s ∈ Di ⇒ hM (s) := ((h(sa))a∈M ∈ D′
i;• h(Ai(s)) = A′

i(h
M (s))

• h(Ei(s)) = E′
i(h

M (s)) �

It is clear that the class of proto-M -rings andM -homomorphisms – with obvious
composition and identities – is a category, that will be denoted by proto − M − ring.
We shall write M − ring for the full subcategory of proto − M − ring, determined
by the subclass of all M -rings. If cBA denote the category of complete Boolean
algebras and complete homomorphisms, then there is a (faithful) functor B(M ) :
cBA −→ proto − M − rings.

Definition 16 Let P be a proto-M -ring. An M -congruence C in P is an equiva-
lence relation on P (C ⊆ P × P) such that:

• C is a congruence for the underlying structure (P,+, ·,−, 0, 1)10;
• For each i ∈ N and s, t ∈ Di, such that (sa, ta) ∈ C, for every a ∈ M :

(Ai(s),Ai(t)) ∈ C and (Ei(s),Ei(t)) ∈ C. �

The following result is straightforward:

Fact 17 Let P,P ′ be proto-M -rings, C be a M -congruence on P and h : P →
P ′ be aM -homomorphism.

1. The intersection of any family ofM -congruences onP is aM -congruence inP .
The setM − cong(P) of allM -congruences inP , endowed with the inclusion
relation, is a complete lattice.

2. If C ′ ⊆ P′ × P′ is a M -congruence on P ′, then h	(C ′) := {(s, t) ∈ P × P :
(h(s), h(t)) ∈ C ′} is a M -congruence in P . In particular, ker(h) = {(s, t) ∈
P × P : h(s) = h(t) ∈ P′} is aM -congruence on P .

3. M -congruence generated by a relation: For each relation S ⊆ P × P, there is
the least M -congruence relation 〈S〉 onP that is above S.

10I.e., if (p, p′) ∈ C and (q, q′) ∈ C, then: (−p,−p′) ∈ C, (p + q, p′ + q′) ∈ C, (p.q, p′.q′) ∈ C.
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4. Quotient of proto-M -rings: There is a unique structure of proto-M -ring on the
quotient set P/C, denoted P/C, such that qC : P � P/C is a
M -homomorphism and with D̄i := (qC)M [Di], for each i ∈ N. Moreover, P/C
is aM -ring whenever P is aM -ring.

5. Theorem of M -homomorphism: The mapping H ∈ M − hom(P/C,P ′) �→
H ◦ qC ∈ {h ∈ M − hom(P,P ′) : C ⊆ ker(h)} is a bijection. �

As a direct consequence of the Theorem of M -homomorphism, we obtain the
following:

Proposition 18 The (full) subcategoryM − rings ↪→ proto − M − rings is reflec-
tive. In more detail: for each proto M -ring P , consider CP the M -congruence
generated by the the relation ∼
• The laws of commutative rings with unity and characteristic 2 are satisfied modulo

∼, for instance: (s + (r + t)) ∼ ((s + r) + t) , (s.1) ∼ s , (s.t) ∼ (t.s) , (s.(r +
t)) ∼ ((s.r) + (s.t)) , (s) ∼ (−s).

• For each i ∈ N and s ∈ Di, (1 + Ai(s)) ∼ (Ei(1 + s)).

Then P/CP is a M -ring, and the quotient M -homomorphism qP : P �
P/CP has the universal property:
For eachM -ringR ′ and eachM -homomorphism h : P → R ′, there is a uniqueM -
homomorphism h̃ : P/CP → R ′, such that h̃ ◦ qP = h, i.e., the following diagram
commutes: �

Remark 19 Let R be a (proto) M -ring, R ′ be a (proto) M ′-ring and j : M −→
M ′ be any function. A function f : R ′ −→ R (note the reversing) is a j-morphism
of (proto)RNG when: (i) it preserves 0, 1,−,+, ·; (ii) If s′ ∈ D′

i ⊆ R ′M ′
, then f ◦

s′ ◦ j ∈ Di ⊆ RM , i ∈ N; (iii) If s′ ∈ D′
i ⊆ R ′M ′

, then f (A′
i(s

′)) = Ai(f ◦ s′ ◦ j) and
f (E′

i(s
′)) = Ei(f ◦ s′ ◦ j), i ∈ N. It is clear that an idM -morphism is just an ordinary

M -ring homomorphism and if j′ : M ′ −→ M ′′ is a function and f ′ : R ′′ −→ R ′ is a
j′ morphism, then f ◦ f ′ : R ′′ −→ R is a j′ ◦ j-morphism. It is easy to check that, in
this way, we obtain the category pRNG (respec. RNG), the category of all pRNGs
(resp., of all RNGs) with “change of base”-morphisms between them. �
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2.1 M-Rings Associated to FO-Languages, FO-Theories and
FO-Structures

Let L be a first-order language and M be an arbitrary set; we will define below, by
generators and relations: a (free) proto-M -ring F(M ) and consider its associated
“polynomial”M -ring, where the atomic L(M )-formulas are in the role of variables,
R(M ) := F(M )/CF(M ). In particular:
(i) for a certain “canonical” set ML associated with the language L, we obtain a
proto-ML-ringF (L) and the ML-ringR(L);
(ii) for a certain “canonical” set ML

T associatedwith a theoryT ⊆ Form(L), we obtain
a proto-ML

T -ring F (L)T and the ML
T -rings R(L)T ;

(iii) to each L-structure M , if M = |M | is the underlying set of M , we obtain
F(|M |) and R(|M |).
20 Notations:
(i) By technical convenience, consider first the identifications (= inverse bijec-

tions) Terms(L∪̇{a : a ∈ M }) 


�
�

ClosedTerms(L∪̇{a : a ∈ M }∪̇{ki : i ∈ N}), given
by xi � ki, i ∈ N.
(ii) We will use the capital letters A(belard) and E(loise) to mark the corresponding
quantifier symbols ∀ and ∃. �

Definition 21 The set |F(M )|: The underlying set ofF(M ) is given by a cumulative
hierarchy defined by recursion:

• |F(M )| := ⋃
n∈N Fn, where:

1. F0 = {0} ∪ {1} ∪ {Xt1=t2} ∪ {Xr(t1,...,tn) : some n ∈ N and r a n-ary relational
symbol}, where ti is a closed term in the language L∪̇{a : a ∈ M }∪̇{ki : i ∈ N}.

2. Fn+1 = Fn ∪ {〈−, p〉 , 〈+, p, q〉 , 〈·, p, q〉 ,
〈
A,

〈
Si,a(p)

〉
a∈M

〉
,
〈
E,

〈
Si,a(p)

〉
a∈M

〉 :
p, q ∈ Fn, i ∈ N}

• The rank of p ∈ |F(M )| is the least j ∈ N such that p ∈ Fj.
• For each i ∈ N and a ∈ M , the compatible family of functions p ∈ Fn �→

Si,a(p) ∈ Fn, with n ∈ N – the substitution of the individual variable xi by a ∈ M – is
defined, simultaneously with the sequence (Fj)j∈N, by recursion on the rank of p11:

1. Si,a(0) := 0 , Si,a(1) := 1.
2. Si,a(Xt1=t2) := Xt1(ki |a)=t2(ki |a)
3. Si,a(Xr(t1,...,tn)) := Xr(t1(ki |a),...,tn(ki |a))
4. Si,a(−, p) := (−, Si,a(p))
5. Si,a(+, p, q) := (+, Si,a(p), Si,a(q))
6. Si,a(·, p, q) := (·, Si,a(p), Si,a(q))
7. Si,a(A,

〈
Sj,b(p)

〉
b∈M ) := (A,

〈
Si,a(Sj,b(p))

〉
b∈M )

11Note that the gluing Si,a : |F(M )| → |F(M )| preserves rank.
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8. Si,a(E,
〈
Sj,b(p)

〉
b∈M ) := (E,

〈
Si,a(Sj,b(p))

〉
b∈M ) �

Remark 22 By the result above, it becomes clear that the definition of Si,a(A, . . .)

and Si,a(E, . . .) indeed determine elements of |F(M )|. �

Lemma 23 The family of substitution functions on |F(M )| satisfies:
(a) Si,a ◦ Sj,b = Si,b, if i = j;
(b) Si,a ◦ Sj,b = Sj,b ◦ Si,a, if i �= j.

Proof By induction on the rank of p ∈ |F(M )|.
We will just provide the proof, when p = (A,

〈
Sk,c(q)

〉
c∈M ), for some q ∈ |F(M )|.

• i = j = k
Si,a(Sj,b(p)) =

def
(A, (Si,a(Sj,b(Sk,c(q))))c∈M ) =

IH
(A, (Si,a(Sj,c(q))c∈M )) =

IH

(A, (Si,c(q))c∈M ) =
IH

(A, (Si,b(Sk,c(q))c∈M )) =
def

Si,b(p)

• i = j �= k
Si,a(Sj,b(p)) =

def
(A, (Si,a(Sj,b(Sk,c(q))))c∈M ) =

IH
(A, (Si,a(Sk,c(Sj,b(q))))c∈M ) =

IH

(A, (Sk,c(Si,a(Sj,b(q))))c∈M ) =
IH

(A, (Sk,c(Si,b(q)))c∈M ) =
IH

(A, (Si,b(Sk,c(q)))c∈M )

=
def

Si,b(p)

• i �= j = k
Si,a(Sj,b(p)) =

def
(A, (Si,a(Sj,b(Sk,c(q))))c∈M ) =

IH
(A, (Si,a(Sj,c(q)))c∈M ) =

IH

(A, (Sj,c(Si,a(q)))c∈M ) =
IH

(A, (Sj,b(Sk,c(Si,a(q))))c∈M ) =
IH

(A, (Sj,b(Si,a(Sk,c

(q))))c∈M )

=
def

Sj,b(Si,a(p))

• j �= i = k
Sj,b(Si,a(p)) =

def
(A, (Sj,b(Si,a(Sk,c(q))))c∈M ) =

IH
(A, (Sj,b(Si,c(q)))c∈M ) =

IH

(A, (Si,c(Sj,b(q)))c∈M ) =
IH

(A, (Si,a(Sk,c(Sj,b(q))))c∈M ) =
IH

(A, (Si,a(Sj,b(Sk,c

(q))))c∈M )

=
def

Si,a(Sj,b(p))

• i �= j, j �= k, k �= i
Si,a(Sj,b(p)) =

def
(A, (Si,a(Sj,b(Sk,c(q))))c∈M ) =

IH
(A, (Sj,b(Si,a(Sk,c(q))))c∈M ) =

def

Sj,b(Si,a(p)) �

Definition 24 (The proto-M -ring F(M )) The set |F(M )| := ⋃
n∈N Fn is endowed

with an obvious structure of proto-M -ring:
(i) 0, 1 are the constants.
(ii) − : F(M ) → F(M )

p �→ 〈−, p〉
(iii) + : F(M ) × F(M ) → F(M )

(p, q) �→ 〈+, p, q〉
(iv) · : F(M ) × F(M ) → F(M )

(p, q) �→ 〈·, p, q〉
(v) For each i ∈ N, let
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Di = {〈
Si,a(p)

〉
a∈M : p ∈ F(M )

} ⊆ (F(M ))M ,

then:

Ai : Di → F(M ),

〈
Si,a(p)

〉
a∈M �→ (A,

〈
Si,a(p)

〉
a∈M )

Ei : Di → F(M ),

〈
Si,a(p)

〉
a∈M �→ (E,

〈
Si,a(p)

〉
a∈M )

By the definition of Si,a above, for each p ∈ F(M ), 1 + Si,a(p) = Si,a(1 + p) and
Si,a(p) + 1 = Si,a(p + 1), then s ∈ Di ⇒ {1 + s, s + 1} ⊆ Di and F(M ) is indeed a
proto-M ring. �

Definition 25 (TheM -ring R(M )) For each setM , we define theM -ring R(M ) as
the following quotient set: R(M ) := F(M )/CF(M ), such that:
(i) 0 := [0], 1 := [1].
(ii)

+ : R(M ) × R(M ) → R(M )

([p], [q]) �→ [p + q]

(iii)
· : R(M ) × R(M ) → R(M )

([p], [q]) �→ [p · q]

(iv)
− : R(M ) → R(M )

[p] �→ [−p]

(v) For each i ∈ N, let

D̄i = {〈[Si,a(p)]a∈M
〉 : p ∈ F(M )

} ⊆ (R(M ))M ,

then:

Ai : D̄i → R(M ),
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〈[Si,a(p)]
〉
a∈M �→ [(A,

〈
Si,a(p)

〉
a∈M )]

Ei : D̄i → R(M ),

〈[Si,a(p)]
〉
a∈M �→ [(E,

〈
Si,a(p)

〉
a∈M )]

�

Definition 26 Let L be a language and let T ⊆ Form(L) be a first-order theory (i.e.,
a subset closed under consequence).

(i) SetML := ClosedTerms(L).Wewill denoteF (L) := F(ML),R(L) := R(ML).
(ii) SetML

T := ClosedTerms(L)/ ≈T , where for each closed termsu0, u1,u0 ≈T u1
iff (u0 = u1) ∈ T . We will denote F (L)T := F(ML

T ), R(L)T ) := R(ML
T ). �

Let M be an L-structure and consider the set M := |M |. The proto-M -rings
F(M ) and R(M ) can carry more information on the L-structure M than just on
its universe M = |M |: it is natural to consider special M -homomorphism from
these proto-M -rings that preserve, in some sense, that additional information. As in
the polynomial method for Logics of Formal Inconsistency- LFIs- [13, 18], some
restrictions on homomorphisms and constraints on translations are needed (such as
[14]). The adequate constraint for obtaining a polynomial ring version of FOL is
given by the notion of coherent-homomorphism below.

27 Let v : {xi : i ∈ N} → M be a valuation on M ; denote vM : Terms(L) → M
be the unique extension (defined by recursion on term complexity) of v : {xi :
i ∈ N} → M ; extend vM to ṽ : Terms(L ∪ {a : a ∈ M }) → M by ṽ(a) = a, for

each a ∈ M ; now, by the identifications Terms(L∪̇{a : a ∈ M }) 


�
�

ClosedTerms

(L∪̇{a : a ∈ M }∪̇{ki : i ∈ N}), consider v̂ : ClosedTerms(L∪̇{a : a ∈ M }∪̇{ki :
i ∈ N}) → M the corresponding function. �

Definition 28 Let M be a L-structure.

(a) AnM -homomorphism, h : F(M ) → Z2, is calledM -coherent, or simply an
M -homomorphism, when:

1. h recovers M , i.e.:
- for each L-constant symbol c, h(Xc=a) = 1 iff cM = a;
- for each n-ary L-functional symbol f , h(Xf (a1,...,an)=a) = 1 iff f M (a1, . . . ,
an) = a;
- for each n-ary L-relational symbol r, h(Xr(a1,...,an)) = 1 iff (a1, . . . , an) ∈ rM .

2. It induces a valuation vh on M :
for each i ∈ N, there is a unique a ∈ M such that h(Xki=a) = 1, then define:

vh(xi) = a iff h(Xki=a) = 1
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3. The following coherence conditions are satisfied:

h(Xt1=t2) = 1 ⇔ v̂h(t1) = v̂h(t2) ∈ M

h(Xr(t1,...,tn) = 1 ⇔ (v̂h(t1), . . . , v̂h(tn)) ∈ rM

(b) An M -homomorphism, H : R(M ) → Z2, is called M -coherent, or simply
anM -homomorphism, when H ◦ qM : F(M ) → Z2 is M -coherent. �

Remark 29 For each L-structure M , we have analogies between: (i) the “free con-
structions”Form(L) andF(M ); (ii) the “realizationmaps” i.e. valuations v : {xi : i ∈
N} → M and coherentM -homomorphisms h : F(M ) → Z2. In the sameway that is
defined the set freevar(ϕ) ⊆ {xi : i ∈ N} of variables that occur free in ϕ ∈ Form(L),
can be defined the set freekcons(p) ⊆ {ki : i ∈ N} of k-constants that occur free
in p ∈ F(M ). In the same way that is given an inductive proof (on complexity
of formulas) that M �v1 ϕ ⇔ M �v2 ϕ, whenever v1 	freevar(ϕ)= v2 	freevar(ϕ), can
be given an inductive proof (on rank of p ∈ F(M )) that h1(p) = h2(p), whenever
h1(q) = h2(q) for each q ∈ F(M ) with rank(q) = 0 such that q occur in p and
k − constants(q) ⊆ freekcons(p), in particular, every coherent M -homomorphism
into Z2 coincide on “M -sentences” elements (i.e. on elements p ∈ F(M ) with
freekcons(p) = ∅). �

The result below, corresponds to Fact 3 for FOL, establishes a precise relation
between valuations and coherent homomorphisms:

Theorem 30 Let M be a L-structure. Then:
(a) For each valuation v onM , the mapping hv : F(M ) → Z2 defined (by recur-

sion on rank) below, is an M -coherent M -homomorphism:

• rank(p) = 0
(i)

hv(0) := 0 ∈ Z2;

hv(1) := 1 ∈ Z2;

(ii)
hv(Xt1=t2) = 1 ⇔ v̂(t1) = v̂(t2) ∈ M ;

hv(Xr(t1,...,tn)) = 1 ⇔ (
v̂(t1), . . . , v̂(tn)

) ∈ rM

• rank(p) = n + 1
(iii) - if rank(r) = n, hv(−r) := −hv(r);
- if max{rank(r), rank(s)} = n, hv(r + s) := hv(r) + hv(s), hv(r.s) := hv(r).
hv(s);
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- if rank(r) = n, s = (Si,a(r))a∈M ∈ Di, hv(Ai(s)) := Ai 〈hv(sa)〉a∈M , hv(Ei(s))
:= Ei 〈hv(sa)〉a∈M 12

(b) The mappings h �→ vh and v �→ hv are inverse bijections between the set of
all valuations {xi : i ∈ N} → M and the set of M -coherent M -homomorphisms
F(M ) → Z2.

(c) There is a (induced) bijection between the set of all valuations {xi : i ∈ N} →
M and the set of M -coherent M -homomorphisms R(M ) → Z2.

Proof (c) directly follows from (b) and Proposition 18, since Z2 is anM -ring.
(a) We will prove that hv : F(M ) → Z2 is anM -coherentM -homomorphism by

induction on the rank of elements of F(M ).

• hv is an M -homomorphism by the items (i) and (iii) in its recursive definition.
• hv recovers M , i.e.:
- for each L-constant symbol c, hv(Xc=a) = 1 ⇔

item (ii)
v̂(c) = v̂(a) ⇔

def . v̂
cM = a;

- for each n-ary L-functional symbol f , h(Xf (a1,...,an)=a) = 1 ⇔
item (ii)

v̂(f (a1, . . . ,

an)) = v̂(a) ⇔
def . v̂

f M (a1, . . . , an) = a;

- for each n-aryL-relational symbol r, h(Xr(a1,...,an)) = 1 ⇔
item (ii)

(
v̂(a1), . . . , v̂(an)

)

∈ rM ⇔
def . v̂

(a1, . . . , an) ∈ rM .

• It induces a valuation vhv on M (moreover vhv = v):
for each i ∈ N and a ∈ M , hv(Xki=a) = 1 ⇔

item (ii)
v̂(ki) = v̂(a) ⇔

def . v̂
v(xi) = a;

thus there is as unique a ∈ M such that hv(Xki=a) = 1 and vhv (xi) = a = v(xi).
• The following coherence conditions are satisfied:
- hv(Xt1=t2) = 1 ⇔

item(ii)
v̂(t1) = v̂(t2) ⇔

item above
v̂hv (t1) = v̂hv (t2) ∈ M ;

- h(Xr(t1,...,tn) = 1 ⇔
item(ii)

(v̂(t1), . . . , v̂(tn)) ∈ rM ⇔
item above

(v̂hv (t1), . . . , v̂hv

(tn)) ∈ rM

(b) In the proof of (a)was established that vhv = v.Wewill prove now, by induction
on the rank of p ∈ F(M ), that hvh(p) = h(p), for anM -coherentM -homomorphism
h : F(M ) → Z2.

• rank(p) = 0
(i) As hvh and h areM -homomorphisms:

hvh(0) = 0 = h(0) ∈ Z2;

hvh(1) = 1 = h(1) ∈ Z2;

12Remember that rank(Si,a(r) = rank(r).
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(ii) hvh(Xt1=t2) = 1 ⇔
by item (ii) in (a)

v̂h(t1) = v̂h(t2) ∈ M ⇔
by coherence conditions on h

h(Xt1=t2) = 1;
hvh(Xr(t1,...,tn)) = 1 ⇔

by item (ii) in (a)
(v̂h(t1), . . . , v̂h(tn)) ∈ rM ⇔

by coherence conditions on h

h(Xr(t1,...,tn)) = 1
• rank(p) = n + 1
(iii) As hvh and h are M -homomorphisms:

hvh(−r) := −hvh(r) =
IH

−h(r) = h(−r);

hvh(r + s) := hvh(r) + hvh(s) =
IH

h(r) + h(s) = h(r + s);

hvh(r.s) := hvh(r).hvh(s) =
IH

h(r).h(s) = h(r.s);

hvh(Ai(s)) := Ai
〈
hvh(sa)

〉
a∈M =

IH
Ai 〈h(sa)〉a∈M = h(Ai(s));

hvh(Ei(s)) := Ei
〈
hvh(sa)

〉
a∈M =

IH
Ei 〈h(sa)〉a∈M = h(Ei(s)).

�
We finish this subsection with the notions corresponding to Definition 1 for FOL.

As 1 + 1 ≈ 0 ∈ R(M ), for each L-structure M , it is natural consider D = {1} ⊆
R(M ) as the set of designated values.

Definition 31 Let L be a language.
(a) A PRC(L)-interpretation of L is an M -homomorphism M -coherent H :

R(M ) → Z2, for some L-structureM .
(b) A subset S ⊆ R(M ) is soluble iff its image under some PRC(L)-interpretation

H : R(M ) → Z2 is D = {1}.
(c) A subset S ⊆ R(M ) is valid iff its image under every PRC(L)-interpretation

H : R(M ) → Z2 is {1}. s ∈ R(M ) is said to be invalid if and only if it is not soluble.
(d) Let S ∪ {r} ⊆ R(M ) and H : R(M ) → Z2 an interpretation.

Denote S |≈(R(M ),H ) r ⇔ H [S] = {1} ⇒ H (r) = 1. r ∈ R(M ) is semantic con-
sequence of the set S ⊆ R(M ), notation: S |≈M p, when for all interpretations
H : R(M ) → Z2, S |≈(R(M ),H ) r. �

3 A Polynomial Encoding of FOL

Nowwedefine the adequate notion of translation of first-order formulas intoM -rings.

Definition 32 Let L be a language and M be a set.
(a) The proto-M -translation is the function defined below by recursion on com-

plexity of L-formulas
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τM : Form(L) → F(M )

1. τM (u1 = u2) = Xu

1=u


2

13

2. τM (r(u1, . . . , un)) = X
(r(u


1,...,u


n))

3. τM (ϕ ∧ ψ) = τM (ϕ).τM (ψ)

4. τM (ϕ ∨ ψ) = τM (ϕ).τM (ψ) + τM (ϕ) + τM (ψ)

5. τM (¬ϕ) = τM (ϕ) + 1
6. τM (ϕ ∧ ψ) = τM (ϕ).τM (ψ)

7. τM (ϕ → ψ) = τM (ϕ).τM (ψ) + τM (ϕ) + 1
8. τM (∀xiϕ) = Ai

(〈
Si,a (τM (ϕ))

〉
a∈M

)

9. τM (∃xiϕ) = Ei
(〈
Si,a (τM (ϕ))

〉
a∈M

)

(b)TM : Form(L) → R(M ) is theM -translation iffTM = qM ◦ τM for the proto-
M -translation τM : Form(L) → F(M ). �

Remark 33 Note that: varfreevar(ψ) = ∅ ⇒ freekcons(τM (ψ)) = ∅, for eachψ ∈
Form(L). �

We will need the following technical result:

Lemma 34 Let v : {xi : i ∈ N} → M be a valuation on M and denote v(xi|a) the
unique valuation on M such that v(xi|a)(xi) = a and, when j �= i, v(xi|a)(xj) =
v(xj). Then for each p ∈ F(M ), hv(xi |a)(p) = hv(Si,a(p)).

Proof By induction on the rank of p.

• rank(p) = 0
(i)
hv(xi |a)(0) = 0 = hv(0) = hv(Si,a(0))
Likewise: hv(xi |a)(1) = hv(Si,a(1))

(ii) Note that, by induction of the complexity of t ∈ ClosedTerms(L ∪ {a : a ∈
M } ∪ {ki : i ∈ N}), v̂(xi|a)(t) = v̂(t(ki|a)). Then:
hv(xi |a)(Xt1=t2) = 1 ⇔ v̂(xi|a)(t1) = v̂(xi|a)(t2) ⇔ v̂(t1(ki|a)) = v̂(t2(ki|a)) ⇔ 1
= hv(Xt1(ki |a)=t2(ki |a)) = hv(Si,a(Xt1=t2)

Likewise: hv(xi |a)(Xr(t1,...,tn)) = 1 ⇔ hv(Si,a(Xr(t1,...,tn))) = 1
• rank(p) = n + 1
(iii)
hv(xi |a)(r + s) = hv(xi |a)(r) + hv(xi |a)(s) =

IH
hv(Si,a(r)) + hv(Si,a(s)) = hv(Si,a(r+s))

Likewise: hv(xi |a)(−r) = hv(Si,a(1))(−r), hv(xi |a)(r.s) = hv(Si,a(r.s)).

(iv) For p = (A, (
〈
Sj,b(q)

〉
b∈M )), for some q ∈ F(M ) with rank(q) = n:

hv(xi |a)(A, (
〈
Sj,b(q)

〉
b∈M )) = Aj((hv(xi |a)(Sj,b(q)))b∈M ) =

IH

13Remember the identifications in Exercise 27.
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Aj((hv(Si,a(Sj,b(q))))b∈M )

- If i = j:
Aj((hv(Si,a(Sj,b(q))))b∈M ) =

34.(a)
Aj((hv(Si,b(q)))b∈M ).

Then hv(A, (Sj,b(q))b∈M ) = 1 ⇔ Aj((hv(Si,b(q)))b∈M ) = 1 ⇔
def Z2

∀b ∈ M , hv(Si,b(q)) = 1 =
34.(a)

∀b ∈ M , hv(Si,a(Sj,b(q))) = 1 ⇔
IH

∀b ∈ M , hv(xi |a)(Sj,b(q)) = 1 ⇔
def Z2

Aj(hv(xi |a)(Sj,b(q))) = 1 ⇔
hv(xi |a)(A, (Sj,b(q))) = 1.

- If i �= j:

hv(Si,a(A, (Sj,b(q))b∈M )) = Aj((hv(Si,a(Sj,b(q))))b∈M ) = 1 ⇔
def Z2

∀b ∈ M , hv(Si,a(Sj,b(q))) = 1 ⇔
IH

∀b ∈ M , hv(xi |a)(Sj,b(q)) = 1 ⇔
def Z2

Aj(hv(xi |a)(Sj,b(q))b∈M ) = 1 ⇔ hv(xi |a)(A, (Sj,b(q))b∈M ) = 1.
Likewise: hv(xi |a)(E, (

〈
Sj,b(q)

〉
b∈M )) = hv(Si,a(Ej(

〈
Sj,b(q)

〉
b∈M )) �

The result above is analogous to Theorem 4 for FOL.

Theorem 35 (Tarski’s true in the polynomial form) Let v be a valuation onM and
ϕ be an L-formula. Are the following equivalent:
(a) M �v ϕ;
(b) hv(τM (ϕ)) = 1;
(c) h̃v([τM (ϕ)]) = 1

Proof The equivalence between (b) and (c) follows directly from the definitions.
We will establish (a) ⇔ (b) by induction on the complexity of the L-formula ϕ:

• compl(ϕ) = 0

(i)
If M �v (u1 = u2) ⇔ vM (u1) = vM (u2) ∈ M ⇔

notation 27
v̂(u


1) = v̂(u

2) ∈ M

⇔
def hv

hv(Xu

1=u


2
) = 1 ⇔

def τM
hv(τM (u1 = u2)) = 1.

Likewise:
M �v r(u1, . . . , un) ⇔

def hv
hv(Xr(u


1,...,u


n
)) = 1 ⇔

def τM
hv(τM (r(u1, . . . , un))) = 1

• compl(ϕ) = n + 1

(ii)
If ϕ = (¬α), with compl(α) = n:
M �v (¬α) ⇔ M �v α ⇔

IH
hv(τM (α)) �= 1 ⇔ hv(τM (α)) = 0 ⇔

def Z2

hv

(τM (α)) + 1 = 1 ⇔
M−hom

hv(τM (α) + 1) = 1 ⇔
def τM

hv(τM (¬α)) = 1.

If ϕ = (α ∨ β), with compl(α) + compl(β) = n:
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M �v (α ∨ β) ⇔ (M �v (α) orM �v (β)) ⇔
IH

(hv(τM (α)) = 1 or hv(τM (β))

= 1) ⇔
def Z2

(hv(τM (α)).hv(τM (β)) + hv(τM (α)) + hv(τM (β))) = 1 ⇔
M−hom

hv

(τM (α).τM (β) + τM (α) + τM (β)) = 1 ⇔
def τM

hv(τM (α ∨ β)) = 1.

Likewise: if compl(α) + compl(β) = n, then
M �v α ∧ β ⇔ hv(τM (α ∧ β)) = 1
M �v α → β ⇔ hv(τM (α → β)) = 1.
(iii)
If ϕ = ∀xiψ , with compl(ψ) = n, then:
M �v ∀xiψ ⇔ for all a ∈ M ,M �v(xi |a) ψ ⇔

IH
for all a ∈ M , hv(xi |a)(τM (ψ)) = 1

⇔
Lemma 34

for all a ∈ M , hv(Si,a(τM (ψ))) = 1 ⇔
def Z2

Ai((hv(Si,a(τM (ψ))))a∈M ) = 1

⇔
M−hom

hv(A, (Si,a(τM (ψ)))a∈M ) = 1 ⇔
def τM

hv(τM (∀xiψ)) = 1.

Likewise:
if ϕ = ∃xiψ , with compl(ψ) = n, then M �v ∃xiψ ⇔ hv(τM (∃xiψ)) = 1. �

With the notation in Definition 31, by the combination of Theorems 30.(c) and
35, we obtain our main results:

Theorem 36 (a) Let Δ ⊆ Form(L). Then: Δ is satisfiable, if and only if, exists L-
structure M such that TM [Δ] ⊆ R(M ) is soluble.
(b) For each L-structure M and each valuation v on M , Γ �(M ,v) ψ ⇔ TM [Γ ]
|≈(R(M ),h̃v)

TM (ψ).
(c) For each L-structure M , Γ �M ψ ⇔ TM [Γ ] |≈R(M ) TM (ψ).
(d) Semantic adequacy of PRC(FOL): Γ � ψ ⇔ (for each M , TM [Γ ] ≈ 1 ⇒
for each M , TM (ψ) ≈ 1). �

Remark 37 Let M be an L-structure, consider a map b : {Pi : i ∈ N} → R(M ) and
denote B : Z2[{Xi : i ∈ N}] → R(M ) the unique ring homomorphism that extend b.
Then: H ∈ HomCoher(R(M ), Z2)) �→ H ◦ B ∈ Hom(Z2[{Xi : i ∈ N}], Z2). Thus,
for each S ∪ {p} ⊆ Z2[{Xi : i ∈ N}], S |≈ p ⇒ B[S] |≈R(M ) B(p); in particular for
each r ∈ R(M ), r.r ≈||≈

R(M )

r: this means that the “index rule” r.r ≈ r14 can be added

as “correct rule” in PRC(FOL).15

For each map a : {Pi : i ∈ N} → Form(L), consider ba := TM ◦ a : {Pi : i ∈ N}
→ R(M ) and denote:

A : Form(CPC) → Form(L), the recursively defined (unique) extension of a;
Ba : Z2[{Xi : i ∈ N}] → R(M ), the unique ring homomorphism that extends ba.

14This rule is equivalent to r → r ≈ 1, since (r → r) = r.r + r + 1 and R(M ) is, by construction,
a ring of characteristic 2, i.e. the “index rule” r + r = 0 is already true in R(M ).
15I.e., for each M -homomorphism M -compatible H : R(M ) → Z2, the left and the right side of
the rule have the same image under H .
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It can be proved by induction on the complexity ofα ∈ Form(CPC) that the following
diagram commutes:

Thus each logical map of CPC into FOL, A : Form(CPC) → Form(L), has
a polynomial extension Ba : Z2[{Xi : i ∈ N}] → R(M ). Moreover for Γ ∪ {ψ} ⊆
Form(CPC), the implication Γ �CPC ψ ⇒ A[Γ ] �FOL A(ψ), has a polynomial
version (Γ )∗ |≈ ψ∗ ⇒ Ba[(Γ )∗] |≈R(M ) Ba(ψ

∗). �

Let us now provide some examples:

Example 38 1. For each L-structureM , p, q, r1, . . . , rn ∈ F(M ), i, j ∈ N, the fol-
lowing “rules are R(M )-correct”:
(a) (A, Si,a(A, (Sj,b(p))b∈M )a∈M ) = (A, Sj,b(A, (Si,a(p))a∈M )b∈M ), by Definition
21 and Lemma 23. In particular, for each L-formula ψ(xi, xj), the L-formula

∀xi∀xjψ(xi, xj) ↔ ∀xj∀xiψ(xi, xj),

is valid. Note that is enough to show that τM (left side) = τM (right side):

τM (∀xi∀xjψ(xi, xj)) =df .27 Ai(Si,a(τM (∀xjψ(xi, xj)))a∈M ) =df .27

Ai(Si,a(Aj(Sj,b(τM (ψ(xi, xj)))b∈M ))a∈M ) =df .17

Ai(Aj(Si,a(Sj,b(τM (ψ(xi, xj)))b,a∈M ))) =lem.19 Ai(Aj(Sj,b(Si,a(τM (ψ(xi, xj)))a,b∈M ))) =df .20

Aj(Ai(Sj,b(Si,aτM (ψ(xi, xj))a,b∈M ))) = τM (∀xj∀xiψ(xi, xj))

(b) [(A, (Si,a(p)))a∈M ].[(A, (Si,b(q)))b∈M ] ≈ [(A, (Si,c(p.q)))c∈M ]: by a direct
calculation with binary and infinitary infs;
(c) “Infinite products are closed under finite sums”:
[(A, (Si,a(p)))a∈M ].[(A, (Si,b(r1)))b∈M + · · · (A, (Si,b(rn)))b∈M ]
≈ [(A, (Si,c(p.r1)))c∈M + · · · + (A, (Si,c(p.rn)))c∈M ]: by (b) above and the dis-
tributive law in the ring R(M ).

2. ∀xiϕ(xi) → ∃xiϕ(xi) is a valid L-formula, by the PRC(FOL).
Indeed, we will show that for each L-structure M , the M -translation of this
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L-formula,TM (∀xiϕ(xi) → ∃xiϕ(xi)) ∈ R(M ), can be reduced to 1 by the alge-
braic laws satisfied by R(M ) and some applications of correct rules:
TM (∀xiϕ(xi) → ∃xiϕ(xi)) =df .32 TM (∀xiϕ(xi)).TM (∃xiψ(xi))+
TM (∀xiϕ(xi)) + 1 =df .32

Ai(Si,a(T M (ϕ(xi)))a∈M ).
(
Ei(Si,a(TM (ϕ(xi)))a∈M )

) +
Ai(Si,a(T M (ϕ(xi)))a∈M ) + 1 =df .11

Ai(Si,a(T M (ϕ(xi)))a∈M ).(1 + Ai(1 + Si,a(T M (ϕ(xi))))a∈M )+
Ai(Si,a(T M (ϕ(xi)))a∈M ) + 1 =16

Ai(Si,a(T M (ϕ(xi)))a∈M ).Ai(1 + Si,aT M (ϕ(xi)))a∈M ) + 1 =df .21

Ai(Si,a(T M (ϕ(xi))))a∈M .Ai(Si,a(1 + T M (ϕ(xi)))a∈M ) + 1 ≈correct rule in 1.(b)

Ai(Si,a(T M (ϕ(xi)) .(1 + T M (ϕ(xi))))a∈M ) + 1 ≈17 0 + 1 = 1.
3. By the use of the “correct rules” to make shortcuts, the PRC(FOL) can establish

the validity of the L-formulas:
(a) ∃xi∀xjψ(xi, xj) → ∀xj∃xiψ(xi, xj);
(b) ∀xi(α(xi) → β(xi)) → (∀xiα(xi) → ∀xiβ(xi)). �

Remark 39 The above polynomial encoding of Tarskian semantics is compatible
with the elementary embeddings of L-structures. More precisely, let j : M −→ M ′
be an elementary embeddings of L-structures. Then the proto-M ′-ring F(M ′)
has an underlying proto-j[M ]-ring, F(M ′)M given (recursively) by functions Un :
Fn(M ′) −→ Fn(M ′)M , n ∈ N, satisfying obvious conditions and Un+1(A, (Si,a′

(p′))a′∈M ′) = (A, (Si,j(a)(Un(p′)))j(a)∈j[M ]). Clearly, j : M ∼=−→ j[M ] induces a kind

of “relative” (M , j[M ])-isomorphism of proto-rings, F(M ′)M
∼=−→ F(M ); com-

posing this bijection with the map U : F(M ′) −→ F(M ′)M above, we obtain an
induced map Uj : F(M ′) −→ F(M ) (note the reversing of arrows). This map
Uj : F(M ′) −→ F(M ) factors uniquely through the projections q : F(M ) � R(M )

and q′ : F(M ′) � R(M ′) given an well defined map Ūj : R(M ′) −→ R(M ). Uj and
Ūj are j-morphisms (see Remark 19). If L − struc� denotes the category of L-
structures and elementary embeddings, we get, in this way, two contravariant func-
tors U : L − struc� −→ pRNG and Ū : L − struc� −→ RNG.

Concerning (proto) translations, it is straightforward to check that

Uj ◦ τM ′ = τM and Ūj ◦ TM ′ = TM .

If v : {xi : i ∈ N} −→ M is a valuation inM , then the equivalence

M �v φ(x̄) ⇔ M ′ �j◦v φ(x̄)

is encoded by the equivalent equations

hv ◦ τM = hj◦vτM ′ ; h̃v ◦ TM = h̃j◦vTM ′ .

16By the distributive law in R(M ) and r + r = 0.
17By the correct rule r.(1 + r) ≈ 0.
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Remark 40 The “syntactic” map ( )∗ : Form(CPC) → Z2[X ] gives a (free) ring
version of the absolutely free algebra Form(CPC); we saw in Fact 6 and Theorem 7,
that the “semantical reduction” of this map establishes an isomorphism of (free)
Boolean rings Lind(CPC) ∼= Z2[X ]/I(Z2[X ]) that encodes a sound and complete
proof-theoretic counterpart of the logical and polynomial version of CPC.

It is natural to pose the question of whether there is a sound and complete polyno-
mial version of FOL for each language L that is encoded by a semantical reduction of
a syntactical map. In particular, is there a “privileged”mapTM : Form(L) → R(M )?
The word “privileged” may suggest a category-theoretic interpretation in the style
of “satisfying a universal property”.

For each L-structureM , there is an well-defined function iM : ML =
ClosedTerms(L) −→ |M | and, if M is a model of a theory T ⊆ Form(L), then
there is an induced function on the quotient set iMT : ML

T = ClosedTerms(L)/ ≈T−→
|M |; see Definition 26 and the notation therein. There are (recursively defined)
induced functions IM : F(ML) −→ F(|M |) and ĪM : R(ML) −→ R(|M |) given
by “inclusion of atomic expressions” and, concerning translations, they satisfy the
equations:

IM ◦ τML = τ|M | , ĪM ◦ TML = T|M |.

A “mod T” relative statement can be given and, concerning translations, holds for
an analogous pair of equations.

It is natural consider the ML-congruence J L := ⋂{ker(H ◦ IM ) : for some M -
homomorphismM -coherentH : R(M ) → Z2 and someL-structureM }.We can see
that J L has a role analogous to the ideal I(Z2[X ]) ⊆ Z2[X ] concerning a definition of
a sound and complete polynomial version of the first-order theory over the language
L.We can consider also a “mod T” relative statement concerning theML-congruence
J L
T := ⋂{ker(H ◦ IM ) : for someM -homomorphismM -coherentH : R(M ) → Z2

and some L-structure M such that M satisfies T }. �

4 Final Remarks and Future Work

This paper has offered some new and, we hope, interesting views on the role of
algebraizing logics based on the uses of formal polynomials. This section makes
some observations on the paper’s key points, listing firstly some more technical
remarks.

Remark 41 The encoding of Tarski’s true in the M -rings R(M ) is such that allows
us to transfermodel-theoretical methods of FOL into this algebraic setting.More pre-
cisely, one of themain characteristics ofmodel theory of FOL is the (useful) variation
of languages, in particular, the addition of new constants to a language: this aspect can
be faithfully represented in the algebraic theory developed above. For instance, let
j : L → L′ be a morphism of languages (i.e. j = (jC, jF , jR) where jC : C → C ′, jF :
F (n) → F ′(n) , jR : R(n) → R′(n),n ∈ N). Then denote: jT : Terms(L) → Terms(L′) the
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(recursively defined) induced map on terms; jF : Form(L) → Form(L′) the (recur-
sively defined) induced map on formulas. Consider the map between classes18

j	 : L′ − struc → L − struc such that for each L′-structureM ′:

• |j	(M ′)| = |M ′| := M ′;
• c ∈ C �→ cj

	(M ′) := (jC(c))M
′ ∈ M ′;

• f ∈ F (n) �→ f j
	(M ′) := (jF(f ))M

′ : M ′n → M ′;
• r ∈ R(n) �→ rj

	(M ′) := (jR(r))M
′ ⊆ M ′n.

Let v : {xi : i ∈ N} → M ′ and consider the (recursively defined) extensions: vM ′ :
Terms(L′) → M ′, vj	(M ′) : Terms(L) → M ′. Then:

• vM
′
(jT (u)) = vj

	(M ′)(u), for each u ∈ Terms(L);
• M ′ �L′

v jF(ψ) ⇔ j	(M ′) �L
v ψ , for each ψ ∈ Form(L).

With notations in Exercise 27, by Theorem 35 the (meta-logical) equivalence in
the item just above corresponds to the (algebraic) equation:
(EQ) hM

′
v (τM ′(jF(ψ))) = hj

	(M ′)
v (τj	(M ′)(ψ)), for each ψ ∈ Form(L).

Moreover, as |j	(M ′)| = |M ′| := M ′, both constructionsF(j	(M ′)) ,F(M ′) are
proto-M ′-rings. Denote j+T : ClosedTerms(L ∪ M ′ ∪ K) → ClosedTerms(L′ ∪ M ′ ∪
K) the induced map on (extended, closed) terms. Let jF : F(j	(M ′)) → F(M ′) the
unique M ′-homomorphism such that, for each ti ∈ ClosedTerms(L ∪ M ′ ∪ K) :

Xt1=t2 �→ Xj+T (t1)=j+T (t2);
Xr(t1,...,tn) �→ XjR(r)(j+T (t1),...,j

+
T (tn)), r ∈ R(n), n ∈ N.

By induction on complexity of L-formulas, can be shown that the diagram (1) below
commutes.
By the universal property of qj	(M ′) : F(j	(M ′)) → R(j	(M ′)), there is a unique
homomorphism of M ′-rings jR : R(j	(M ′)) → R(M ′) such that the diagram (2)
below commutes.
For v : {xi : i ∈ N} → M ′, denote : HM ′

v : R(M ′) → Z2, the M ′-homomorphism

M ′-coherent;Hj	(M ′)
v : R(j	(M ′)) → Z2, theM ′-homomorphism j	(M ′)-coherent

both corresponding to v (recall Exercise 27). Then diagram (3) commutes.

18In fact, j	 constitutes a contravariant from the category of L′-structures and L′-homomorphisms
into the category of L-structures and L-homomorphisms: if h : M ′ → N ′ is a L′-homomorphism,
then the same map h : j	(M ′) → j	(N ′) is an L-homomorphism.
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The commutativity of the external diagram is the content of the equation
(EQ) above.

An extension of this theme, that deserves future considerations, is to deter-
mine the behavior of the polynomial encoding of FOL under interpretations of
theories. �

Remark 42 We have already pointed out, in Remark 14, that any Boolean algebra
naturally becomes an M -ring. It will be interesting to express (and to explore) the
Boolean-valued models technique in the polynomial setting, as we did above for the
usual Tarskian semantics, i.e., for the Boolean algebra Z2. In particular, it will be
interesting to consider a polynomial version of the following situation:

Let L be a first-order language for each theory and T be a theory (i.e., a subset
closed under consequence) in Form(L). Consider SL the Boolean space whose ele-
ments are the maximal consistent theories in Form(L) and denote SL

T := {W ∈ SL :
T ⊆ W }; since SL

T is a closed subset of SL, then SL
T is a Boolean (sub)space. Denote

BT := Clopen(SL
T ), the Boolean algebra dual to the Boolean space SL

T . BT is not,
in general, a complete Boolean algebra, but we can still consider the BT -Boolean
valued models of the theory T .19 It will be interesting to compare: on one hand, the
polynomial version of T given byR(L)T (see Definition 26) and, on the other hand,

19I.e., the class of pairs M = (M , [[−]]), where M is set, [[−]] is a map (φ(x1, . . . , xk ) ∈
Form(L)) �→ ([[φ(x̄)]] : Mk −→ BT ), satisfying the usual (but conditional, since BT may not be
complete) compatibility requirements of Boolean valued models and, moreover, if φ(x1, . . . , xk ) ∈
T , then [[φ(x̄)]] = 1BT .
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the polynomial encodings of the (proper) class of Boolean valuedmodels canonically
associated to T , as above. �

Although there is still much work to be done — for instance: to make precise
comparisons with other algebraizations of FOL and to develop in further details the
theory ofM -rings– we believe that the proposal launched in this paper might help to
see the relationship between algebra and logic in a new light, overcoming the gulf
that separated them in the last centuries, and make the algebraic version of certain
logic systems look more natural. This is the case not only with FOL, but with most
propositional many-valued and paraconsistent logics. Our aim is that the polynomial
method, and certainly their generalizations,might help to reconcile algebra and logic.
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Plug and Play Negations

Sérgio Marcelino, Carlos Caleiro and Umberto Rivieccio

Abstract Westudy an array of logics defined on a small set of connectives (including
an implication → and a bottom particle ⊥) by modularly considering subsets of a
set of inference rules that we fix at the start of the game. We provide complete
semantics based on possibly non-deterministic logicalmatrices and complexity upper
bounds for the considered logics. As a consequence of the techniques applied,we also
obtain completeness results for the negation-only fragments (obtained by defining the
negation connective as ¬p := p → ⊥, as usual) of all the above-mentioned logics,
and analyze their possible paraconsistent character.

1 Introduction

Wepropose to study the negations (¬), defined by the usual abbreviation¬p := p →
⊥ that uses implication (→) and bottom (⊥), on a class of logics modularly defined
by considering different subsets of a given fixed set of six Hilbert-style inference
rules. We also consider the unary consistency operator (◦) stemming from the study
of logics of formal inconsistency (LFIs) [6], together with one additional new rule
for it.

Our strategy will highlight how some key features of negation are inherited from
the primitive connectives employed in its definition. Letting the negation connective
be defined by means of the abbreviation ¬p := p → ⊥ is a fairly standard choice,
and allows us to capture not just classical and intuitionistic negation, but also weaker
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Fig. 1 The playing board

connectives defined from the residuated implications of fuzzy/substructural systems
(see [8, 10]). Indeed, we provide a fine-grained analysis showing how certain features
of negation depend on properties of the underlying implication connective but also
of the bottom nullary connective.

The title of the present paper is meant as a suggestion for the reader to go through
it as if he were watching a game being played on a board containing the 7 inference
rules depicted in Fig. 1. Each configuration of the board consists of the simultaneous
activation of a subset of the rules. Instead of considering all the possible 27 = 128
systems, we shall focus on 12 of the most interesting choices.

We analyze the effect of adding/removing rules from a given configuration, and
as an outcome provide simple matrix-based semantics and complexity upper bounds
for the logics considered. We shall pay special attention to the resulting negation
connectives, and to the way in which the explosiveness/paraconsistency opposition
arises in this context. Our analysis will allow us to obtain semantics, and Hilbert
style axiomatizations, for each of the negation connectives obtained. We single out
6 distinct negations, 3 of which are paraconsistent. Our choices are summarized in
Fig. 4.

From a technical point of view, this paper is an application of recent and fairly
general results and techniques aiming at characterizing finite-valuedness in logic [5,
12], the semantics of logics obtained by disjoint fibring and their decidability [4, 13].
Together these results offer us an effective toolkit for the analysis of Hilbert-style
systems, especially those obtained by joining calculi for disjoint sets of connectives,
providing in particular semantics based on non-deterministic logical matrices (Nma-
trices) [2, 3, 13]. Without those techniques it would be hard to analyze these logics
in a systematic way, despite the familiar look of the inference rules under considera-
tion. Instead, taking advantage of them, we will be able to obtain complete semantics
and coNP-complexity upper bounds (which, using results from [4], we manage to
tighten down to P in a few cases) for each of the logics under consideration. We shall
also isolate the negation-only fragments of the considered logics, and show that they
can all be characterized by a single finite matrix or a single finite non-deterministic
matrix where no finite deterministic matrix would be sufficient [2, 3, 5]. We abstain
from including in this paper the definitions and results used, referring the reader to
the original papers, but still we will illustrate some of the concepts and constructions
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by means of suitable examples. This choice has the advantage of keeping the plug
and play game at the forefront at all times.

We should mention that some of the results obtained here are not new, but our
main aim is to illustrate a strategy for analyzing in a modular way similar situations
by direct application of general technical tools.

The game shall proceed as follows. In Sect. 2 we lay down the basic board layout.
Section3 is devoted to studying configurations obtained while retaining explosive-
ness of the bottom connective. Section4 parallels the preceding one, but focuses on
configurations of the game obtained by getting rid of explosiveness of the bottom.
We conclude in Sect. 5 with a brief discussion concerning future work.

2 Basics of the Game

The setup of our plug and play game is quite easy. We will consider logics defined
from two primitive connectives only: the binary → implication and the nullary con-
nective⊥. Negation is defined in all cases as¬p := p → ⊥. Later on wewill further
consider a unary consistency-type operator.

We assume that the reader is familiar with consequence relations, logical matrices
(deterministic and non-deterministic) and many-valued logics; for all unexplained
terminology we refer the reader to [3, 9, 17].

We will use CL and IL to denote, respectively, classical and intuitionistic propo-
sitional logic. Given any subset S of the connectives of a logic L, we will denote by
LS its corresponding S-fragment. Since CL⊥ = IL⊥, we will dub ⊥, for bottom, the
bottom-only fragment of both logics (which is actually the same for every non-trivial
logic with an explosive nullary connective).

2.1 The Game Board

Our game board, depicted in Fig. 1, consists of the 7 rules defined in Fig. 2, which are
all very simple and mostly familiar. The core, consisting ofmodus ponens (mp) plus
the axioms (a1)-(a3), allows us to define the implication-only fragments of classical
or intuitionistic logic, depending on whether we (un)plug axiom (a3), as well as
the implication fragments of other substructural logics. The board is extended at the

bottom with 2 rules concerning ⊥: the ex falso rule (xf) and the axiom (
−→
xf ) which

involves the implication too. Notice that, in the presence of (mp), (
−→
xf ) subsumes

(xf). Finally, we extend the board to the left with one additional rule (cmp) which
involves the consistency operator, and can be viewed as a form of cautious modus
ponens.
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Fig. 2 Inference rules

2.2 Classical and Intuitionistic Logics

In the initial configuration of the game board only (cmp) is switched off, and the

rules (mp) (a1) (a2) (a3) (xf) (
−→
xf ) are all switched on. The logic thus defined is well

known to be the {→,⊥}-fragment of CL, which we will also call CL.
A complete semantics for CL is provided by the standard {0, 1}-valued Boolean

matrix CL (with 1 as designated value) given by the tables:

→ 0 1
0 1 1
1 0 1

⊥
0

The {¬}-fragment ofCL obtained by defining¬p := p → ⊥ is classical negation
(CL¬) which can be axiomatized by the rules of double negation introduction, double
negation elimination, and ex contradictione:

p

¬¬p
(di)

¬¬p

p
(de)

p ¬p

q
(xc)

Semantically, classical negation is characterized by the reductCL¬ of the 2-valued
Boolean matrix:

¬
0 1
1 0

The game goes on by switching on or off some of the rules, thus changing the
configuration of the board. An obvious first move is to switch Peirce’s axiom (a3) off.
The resulting logic (mp) (a1) (a2) (xf) (

−→
xf ) is the {→,⊥}-fragment of intuitionistic

logic, which we also1 dub IL. This calculus is complete with respect to the class of
all matrices 〈A, {1}〉 where A is Hilbert algebra with minimum element, i.e. A is

1Note that in CL this is quite natural as all the other classical connectives are definable from →
and ⊥. In IL this is not the case, as for example neither conjunction nor disjunction can be defined
from → and ⊥. Still, for neatness of presentation, we commit this abuse of notation also here.
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the {→,⊥}-subreduct of a Heyting algebra, with ⊥ interpreted as the minimum and
having 1 as maximum.2

The {¬}-fragment of IL, denoted IL¬, can be axiomatized by weakening the rule
of double negation elimination (de) into (wde):

p

¬¬p
(di)

¬¬¬p

¬p
(wde)

p ¬p

q
(xc)

Also, IL¬ is is characterized by the {0, 1
2 , 1}-valued matrix3 G¬

3 with 1 designated
given by the table

¬
1 0
1
2 0
0 1

Another natural move in the game would be to switch (xf) off. However, since
(xf) is subsumed by the joint efforts of (mp) and (

−→
xf ), the logic would simply not

change, both in the classical and in the intuitionistic case. A more interesting move

is to switch (
−→
xf ) off, which we are going to do in the next section.

3 Ex falso Logics

We now switch the (
−→
xf ) rule off for good.

3.1 Intuitionistic Negation

We start with the following configuration: (mp) (a1) (a2) (a3) (xf). The resulting
logic is denoted byCL→ • ⊥ and corresponds to the disjoint fibring [13] of the {→}-
fragment with the {⊥}-fragment of classical logic. The following proposition shows
that CL→ • ⊥ is four-valued.

Proposition 1 CL→ • ⊥ is characterized by the matrixM4 with D = {11} given by
the tables

2The class of Hilbert algebras [11] is the algebraic semantics of the {→}-fragment of intuitionistic
logic. Hilbert algebras, also called (positive) implication(al) algebras [1, 15], correspond to {→}-
subreducts of Heyting algebras and thus have a definable natural order which has 1 as maximum
element but need not have a minimum.
3Which is the {¬}-reduct of G3, corresponding to three-valued Gödel logic, see [9].



312 S. Marcelino et al.

→ 00 01 10 11
00 11 11 11 11
01 10 11 10 11
10 01 01 11 11
11 00 01 10 11

⊥
10

(notice that ⊥ is not interpreted as 00 as one might expect).

Proof CL→-soundness of the matrix follows from the fact that the implication is
defined as in the product Boolean algebra 2 × 2, and any matrix that interprets ⊥
outside of D is ⊥-sound.

As to completeness, note that in the logic CL→ • ⊥ we have that Γ � ϕ if and
only ifΓ � ϕ, or elseΓ � ⊥, in both cases using only the rules (mp) and (a1)-(a3) of
CL→. Therefore, assuming thatΓ �� ϕ, and taking⊥ as an additional atomic particle,
we know that there are valuations v1, v2 over the implication-reduct of the 2-valued
Boolean matrix such that v1(Γ ) = v2(Γ ) = {1} and v1(ϕ) = v2(⊥) = 0. Hence, we
can define a valuation over the 4-valued matrix as follows:

v(ψ) =
{
1v1(ψ) if v1(⊥) = 0

v1(ψ)v2(ψ) if v1(⊥) = 1
.

When v1(⊥) = 0 it is clear that v is such that, for any formulaψ , v(ψ) = 1v1(ψ) =
11 if and only if v1(ψ) = 1 (of course, v(⊥) = 1v1(⊥) = 10). Thus, v(Γ ) = {11}
and v(ϕ) = 1v1(ϕ) = 10 �= 11.

When v1(⊥) = 1, similarly, v is such that, for any formulaψ , v(ψ) = v1(ψ)v2(ψ)

= 11 if and only if v1(ψ) = v2(ψ) = 1 (of course, v(⊥) = v1(⊥)v2(⊥) = 10). Thus,
again, v(Γ ) = {11} and v(ϕ) = v1(ϕ)v2(ϕ) = 0v2(ϕ) �= 11.

Note that we implicitly use the fact that the valuation that sends every formula to
1 is a sound model for →. Indeed, our construction in this proof would apply not
just to classical →, but mutatis mutandis to any truth-preserving connective. �

ThematrixM¬
4 for negation inCL→ • ⊥ that we can derive from the above matrix

is given by the table
¬

00 11
01 10
10 11
11 10

In fact, M¬
4 defines the same logic as G¬

3 . To see this, notice that, since the four-
valued negation is sound with respect to the inference rules (di) (wde) (xc) of IL¬,
we know that the {¬}-fragment of CL→ • ⊥ is at least as strong as intuitionistic
negation. To see that the two are in fact the same, it is then enough to observe that
M¬

4 is the quotient of M4 by the matrix congruence that identifies (only) the elements
00 and 10.
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It might come as a surprise that the negation of CL→ • ⊥ coincides with the
intuitionistic one; but given this, one easily sees that further removing (a3) from
CL→ • ⊥ does not affect its negation fragment. So let us consider the configuration
given by the rules (mp) (a1) (a2) (xf), which gives us the logic IL→ • ⊥. This is the
disjoint fibring of the {→}-fragment with the {⊥}-fragment of intuitionistic logic.

In order to check that the negation fragment of IL→ • ⊥ also coincideswith IL¬, we
shall prove a stronger result, namely that this happens for a larger class logics: in fact,
for all logics between IL→ • ⊥ and its strengthening with (a3) (that is,CL→ • ⊥) and

also for all the logics between IL→ • ⊥ and its strengthening with (
−→
xf ) (that is, IL).

Denote by [L1,L2] the class of all logics (in the {→,⊥}-language) that are stronger
than L1 and weaker than L2.

Proposition 2 For every logic L ∈ [IL→ • ⊥,CL→ • ⊥] ∪ [IL→ • ⊥, IL], defining
as usual ¬p := p → ⊥, we have L¬ = IL¬.

Proof As already noted in [14], IL→ • ⊥ is given by the class of all matrices 〈A, {1}〉
where A is a Hilbert algebra with 1 as maximum and ⊥ is interpreted as any non-
designated element (not necessarily the minimum, which may not even exist).

Any Hilbert algebra satisfies, for all a, b ∈ A, the following (in)equalities:

1 → a = a

a ≤ (a → b) → b

((a → b) → b) → b ≤ a → b.

These easily imply that everymatrix 〈A, {1}〉 is soundwith respect to the rules in RIL¬ .
That is, it is not possible to have both v(¬ϕ) := v(ϕ) → v(⊥) = 1 and v(ϕ) = 1,
that v(ϕ) = 1 implies (v(ϕ) → v(⊥)) → v(⊥) = 1, and that v(¬¬¬ϕ) = ((v(ϕ) →
v(⊥)) → v(⊥)) → v(⊥) = 1 implies v(¬ϕ) = v(ϕ) → v(⊥) = 1.

Since IL→ • ⊥ is (strictly) weaker that IL it must also define the intuitionistic
negation (fragment). Since we have already seen that intuitionistic negation is also
the (defined) negation fragment of CL→ • ⊥, the result follows. �

Although all the logics mentioned in Proposition 2 share the same negation frag-
ment, it is worth noting that they can differ significantly over the full language.
The class [IL→ • ⊥,CL→ • ⊥] ∪ [IL→ • ⊥, IL] obviously contains logics that are
not disjoint fibrings, e.g. all the {→,⊥}-fragments of Gödel-Dummett finite and
infinite-valued logics [10].

From a complexity point of view, we may also observe that while for instance
CL→ • ⊥ is coNP-complete (like classical logic), IL→ • ⊥ and IL are PSPACE-
complete [16]. It is also easy to see that in the class [IL→ • ⊥,CL→ • ⊥] ∪ [IL→ •
⊥, IL] there are undecidable logics as well.
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3.2 Isolating ex Contradictione

When we further drop (a2) we are left with the rules (mp) (a1) (xf) which charac-
terize the disjoint fibringMP1 • ⊥, whereMP1 denotes the logic given by the rules
(mp) (a1).

Proposition 3 MP1 cannot be characterized by any finite Nmatrix.

Proof It is enough to show that MP1 is not finitely-determined in the sense of [5,
Definition 3.1]. Although [5] considers only deterministic matrices, it is easy to see
that a logic given by a finite Nmatrix must also be finitely-determined.

Define, for every natural n,

γ (p1, . . . , pn) = p1 → (p2 → . . . (pn−1 → pn) . . .)

ψ(p1, . . . , pn+1) = γ (p1, . . . , pn) → (p1 → γ (p2, . . . , pn+1))

n = {p1, . . . , pn}
Γ = {ψ(p1, . . . , pn+1)

σ | σ : n + 1 → n + 1, σ �= Idn+1}

It is not hard to check thatΓ �� ψ(p1, . . . , pn+1). However,Γ τ �� ψ(p1, . . . , pn+1)
τ

for every τ : n + 1 → n as ψ(p1, . . . , pn+1)
τ ∈ Γ τ . �

We are now going to introduce a (necessarily infinite) Nmatrix MP1 that does
characterizeMP1. LetFm denote the set of formulas ofMP1 built fromadenumerable
set of propositional variables P . The universe of ourmatrix is A = Fm × {0, 1}, with
designated elements D = Fm × {1}. The implication is given by

(ϕ, a) → (ψ, b) = {(ϕ → ψ, c) :
if a = 1 and b = 0 then c = 0, (1)

if b = 1 then c = 1, (2)

if ψ = ψ ′ → ϕ and a = 0 then c = 1
}
. (3)

Proposition 4 MP1 is characterized by the saturated Nmatrix MP1.

Proof Note that for every formula and valuation over MP1 we have that π1(v(ϕ)) =
ϕσv where σv : P → Fm is given by σv(p) = π1(v(p)).

Let us check that MP1 is sound with respect to MP1. (mp)-soundness follows
immediately from (1). To see that it is also (a1)-sound, we just have to consider
two cases, either v(ϕ) = (ϕσv , 1) or v(ϕ) = (ϕσv , 0). In both cases we obtain that
v(ϕ → (ψ → ϕ)) = ((ϕ → (ψ → ϕ))σv , 1), either by invoking (2), or by invoking
(twice) (3).

To show that MP1 is saturated and characterizes MP1, it is enough to check that
for every MP1-theory we have that the map vT : Fm → A defined as
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vT (ϕ) =
{

(ϕ, 1) if ϕ ∈ T,

(ϕ, 0) otherwise,

is a valuation over MP1. We leave the straightforward details to the reader. �

By [13, Theorem 1], we have then thatMP1 • ⊥ is characterized by the Nmatrix
MP1 	 Bot, that is, the strict product (as defined in [13]) of the matrices MP1 and
Bot, the latter denoting just the {0, 1}-valued matrix over the language {⊥} that
interprets ⊥ as 0. This Nmatrix is equivalently presented by just extendingMP1 with
a non-deterministic ⊥ interpreted outside the set of designated values, that is, over
Fm × {0}. It is not hard to check that every formula ψ in the negation only fragment
is of (unravels to) the form ψ = (((p → ⊥) . . . → ⊥) → ⊥ for some variable p,
therefore is never an instance of (a1), and thus (3) of Proposition 4 never applies.
This implies that for each choice of ⊥ = (ψ, 0) we obtain an Nmatrix equivalent to
MP¬

1 given by the following table with designated 1:

¬
0 {0, 1}
1 {0}.

The resulting logic is therefore characterizedby the aboveNmatrix and is axiomatized
by the single rule

p ¬p

q
(xc)

which is the principle of explosion known in the literature as ex contradictione
quodlibet. Logics which do not satisfy (xc) are usually called paraconsistent. We
shall call a negation satisfying only (xc), explosion-only negation.

We now remove also (a1), thus being left with (mp) and (xf). This configuration
defines the disjoint fibring MP • ⊥. The {→}-factor in this fibring is the logic of
modus ponens MP, which is not complete with respect to any finite matrix,4 but is
characterized by the Nmatrix MP (where 1 is the only designated element) given by
the table:

→ 0 1
0 {0, 1} {0, 1}
1 {0} {0, 1}

It is not hard to show that MP is saturated, hence we could, as before, obtain a table
for the resulting negation (this time over MP 	 Bot) and conclude that it still defines
the same negation as MP1 	 Bot (we actually obtain the same table). It is however
enough to observe that (xc) is derivable in MP • ⊥, and since MP • ⊥ is weaker
than MP1 • ⊥, it cannot have a stronger negation: hence the negations of the two
logics must coincide.

4This easily follows from [5] and the fact thatMP is weaker than IL.
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3.3 Playing Ball

If we drop (mp) and consider configurations of the board involving only the rules
(a1) (a2) (a3) (xf), then all the resulting negations coincide and are given by the empty
set of rules. We shall call this negation logic the free negation. Obviously, over larger
languages interactions may appear, but only as theorems and not as proper inference
rules. For example, ⊥ → ¬⊥ is a theorem whenever (a1) is on. Free negation is
paraconsistent in the sense that (xc) is not valid, but it is not very interesting because
such paraconsistency is due to the fact that the logic is extremely weak.

As we shall see in the next section, dropping (xf) (with (
−→
xf ) still off) leads to

paraconsistent logics that retain some reasoning power. In the remainder of this
section, we shall however focus on an alternative way of achieving paraconsistency.
That is,we replace (mp) by its cautious version (cmp) displayed in Fig. 2, introducing
the consistency operator ◦. In this way the rule that would produce explosion can only
be applied if the antecedent of the implication is not only true but also “consistent”.

Consider then the configuration having only (cmp) and (xf) on. The corresponding
logic is MP◦ • ⊥. The next proposition states that its {→, ◦}-fragment MP◦ can be
characterized by the three-element Nmatrix MP◦ with operations defined as below,
with values A = {0, 1

2 , 1} and designated elements D = { 12 , 1}.
→ 0 1

2 1
0 A A A
1
2 A A A
1 {0} A A

◦
0 A
1
2 {0}
1 A

Proposition 5 MP◦ is characterized by the saturated Nmatrix MP◦.

Proof Let us verify that MP◦ is complete and saturated. Soundness is routine check-
ing. We prove completeness and saturation at once by defining, for every theory T
closed under (cmp), a valuation v as follows: for any formula ψ ,

v(ψ) =

⎧⎪⎨
⎪⎩
1 if {ψ, ◦ψ} ⊆ T
1
2 if ψ ∈ T and ◦ ψ /∈ T

0 if ψ /∈ T .

We show by induction that v is a valuation over the above defined matrix. For atomic
formulas there is nothing to check. Let ψ be a compound formula, and suppose
ψ = ◦ψ1. Assume ψ ∈ T , and let us show that v(ψ) �= 0 respects the structure
of the Nmatrix. Now v(ψ) = 0 would be forced only by v(ψ1) = 1

2 , which would
imply (by the induction hypothesis) that ◦ψ1 /∈ T , contradicting our assumption.
Conversely, if ψ /∈ T , then regardless of v(ψ1), evaluating v(ψ) = 0 will respect the
structure of the Nmatrix. Let now ψ = ψ1 → ψ2. Assume ψ ∈ T . Now v(ψ) = 0
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would be forced only by v(ψ1) = 1 and v(ψ2) = 0. By induction hypothesis, this
would mean that ψ1, ◦ψ1 ∈ T and ψ2 /∈ T , which is precisely the case that the rule
of MP◦ forbids. Conversely, assuming ψ /∈ T , then regardless of v(ψ1) and v(ψ2),
evaluating v(ψ) = 0 will respect the structure of the Nmatrix. �

By [13, Theorem 1], we then have that MP◦ • ⊥ is characterized by the strict
productMP◦ 	 Botwith underlying set A′ = {00, 1

21, 11}, designated elements D =
{ 121, 11} and operations given by the tables below.

→ 00 1
21 11

00 A′ A′ A′
1
21 A′ A′ A′
11 {00} A′ A′

◦
00 A′
1
21 {00}
11 A′

⊥
00

The defined negation is given by the table

¬
00 A′
1
21 A′
11 {00}

Since 1
21 is designated, one easily obtains that the negation fragment of MP◦ • ⊥

coincides with the free negation as happened withMP • ⊥, and it is axiomatized by
the empty set of rules. The {¬, ◦}-fragment is more interesting, and is given by the
single rule

◦p p ¬p

q
(gxc)

which is the “Finite Gentle Principle of Explosion” considered for example in [6,
Section3.2].

4 Dropping ex Falso

After exploring various outcomes of the board configurations with (xf) on, we study
the effect of turning (xf) off on each of the previously considered configurations.
On the semantical side, this amounts to allowing ⊥ to be interpreted as a designated
element. This fact has already been observed in [14], where the free ⊥ is called
botop and denoted ⊥�. Let then ⊥� be the logic of the free nullary connective (for
which we keep the same name ⊥), that is, the logic axiomatized by the empty set
of rules. Clearly, ⊥� is characterized by Botop, the {0, 1}-valued Nmatrix where ⊥
is interpreted (freely) as {0, 1}. So all the logics considered in this section result
from expanding the ⊥-free fragments of any logic L examined before with a free
⊥. This corresponds to the disjoint fibring L→ • ⊥�. This construction was shown
in [13, Proposition 1] to be captured semantically by adding a free operator to the
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Nmatrices characterizing the initial logic. Expanding anNmatrixMwith a free nullary
connective corresponds to the strict product M 	 Botop. When the matrix we started
with is deterministic, this idea can be mimicked deterministically (for a nullary
connective such as ⊥) by considering one matrix for each possible choice of value
for ⊥.

4.1 Johansson’s Minimal Negation

Here we consider various configurations of the board, all defining the {¬}-fragment
of Johansson’s minimal logic, which we dub Johansson’s minimal negation. As we
shall see, this logic is axiomatized by the rules of introduction and elimination of
intuitionistic negation (di) and (wde), and (wxc), a gentler version of the explosion
rule (xc):

p

¬¬p
(di)

¬¬¬p

¬p
(wde)

p ¬p

¬q
(wxc)

We can therefore say that this negation is a paraconsistent intuitionistic negation. It
is relevant to note that we also conclude that this negation is definable in a {→,⊥}-
Nmatrix with four values.

Let us go back to the configuration having all rules for classical implication
(mp) (a1) (a2) (a3) on, but all rules involving the other connectives off. The {→,⊥}-
fragment of the resulting logic corresponds to CL→• ⊥�. As mentioned above, this
logic is characterized by the expansion of the matrix of classical implication with a
free nullary connective ⊥. Or, deterministically, this can be accomplished with two
{0, 1}-valued matrices, both having a classical implication, and such that ⊥ takes, in
each matrix, one of the two possible values. The resulting negation is given by the
matrices CL¬ and M¬

2 :

¬
0 1
1 0

¬
0 1
1 1

Valuations over CL¬ are classical, while overM¬
2 valuations can only refute proposi-

tional variables because all negated formulas are always designated. The rule (de) is
thus not sound in M¬

2 , but its intuitionistic version (wde) is. It is straightforward to
check that the above matrices are sound with respect to the rules (di), (wde) and
(wxc).

To see that these rules actually capture the negation of CL→• ⊥�, let T be the
closure of Γ under (di), (wde) and (wxc), and let ϕ /∈ T . It is easy to see that if
ϕ = p (is a variable), the map v defined, for all propositions ψ , by
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v(ψ) =
{
1 if ψ �= ϕ

0 otherwise,

is a valuation over M2, and that v(Γ ) = {1} and v(ϕ) = 0. Otherwise, ϕ = ¬n p for
some n > 0, and therefore, from (wxc) we know there is no ψ such that ψ ∈ T and
¬ψ ∈ T . Consider the valuation over CL¬, v given by

v(q) =
{
1 if ¬q /∈ T

0 otherwise.

From (di) and (wde) we conclude that v(Γ ) = {1} and v(ϕ) = 0.
As (di) and (wde) are the rules of introduction and elimination of intuitionistic

negation and (wxc) is a gentler version of the explosion rule (xc), we may call this
negation a paraconsistent intuitionistic negation. Let us show that it coincideswith the
{¬}-fragment of Johansson’s minimal logic. The {→,⊥}-fragment of Johansson’s
minimal logic corresponds to IL→• ⊥�, as observed in [14]. This logic is given by the
rules left after dropping (a3) from the current configuration, that is, (mp) (a1) (a2).
Again, we know that IL→• ⊥�, is characterized by the class of Hilbert algebras in
which⊥ can be interpreted as any element. However, when dealingwith intuitionistic
negation we observed that valuations of the defined negation over Hilbert algebras
where ⊥ is not the maximum element are captured by valuations over G¬

3 . It is
also easy to see that if ⊥ is the maximum element then every negated formula is
designated. We can therefore conclude that Johansson’s minimal negation is given
by the two matrices G¬

3 and M¬
2 introduced earlier.

To see that both pairs of matrices define the same logic, it is enough to note that
G¬
3 is sound for the rules (di) (wde) (wxc) and, since IL→• ⊥� is (strictly) weaker

than CL→• ⊥�, it cannot define a stronger negation.

4.2 Isolating Weak ex Contradictione

We now further remove (a2), being left with only (mp) and (a1), which gives us
the logicMP1• ⊥�. As mentioned above,MP1• ⊥� is characterizable by freely inter-
preting ⊥ over the matrix MP1. Note that when ⊥ is non-designated we obtain the
NmatrixMP¬

1 as discussed in Sect. 3.2, and when it is a designated element we obtain
a Nmatrix equivalent to M¬

2 as every negation becomes designated. Hence, the nega-
tion fragment ofMP1• ⊥� is characterized by the two Nmatrices MP¬

1 and M¬
2 . This

negation is axiomatized by the weak explosion rule alone:

p ¬p

¬q
(wxc)
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Fig. 3 Negation rules

4.3 Free Negation Again

The same strategy can of course be applied when we further remove (a1) and are left
with just (mp). The resulting logic MP• ⊥� is characterizable by freely interpreting
⊥ over MP. The negation ofMP• ⊥� is characterized by the two Nmatrices given by
the tables corresponding to each of the MP columns:

¬
0 {0, 1}
1 {0}

¬
0 {0, 1}
1 {0, 1}

We shall denote by F¬ the matrix given by the second table. It is easy to see that
F¬ defines the free negation introduced in Sect. 3.3, and that any class of matrices
containing F¬ will define the same logic. And so, where before (in Sect. 3.2) we had
obtained a negation captured simply by the rule of explosion, here we obtain the
negation characterized by the empty set of rules.

4.4 Playing Ball Again

The logic MP◦• ⊥� is given by freely interpreting ⊥ as any element in A = {0, 1
2 , 1}

over the matrix MP◦ with operations defined as below and designated elements D =
{ 12 , 1}.

→ 0 1
2 1

0 A A A
1
2 A A A
1 {0} A A

◦
0 A
1
2 {0}
1 A

The resulting negation is given by three matrices, one for each column (i.e. each
choice for the element interpreting ⊥) of the implication table. The rule (gxc) is
not sound in MP◦ 	 Botop, and in fact the {¬, ◦}-fragment defined over MP◦• ⊥� is
axiomatized by the empty set of rules. To see this, it is sufficient to observe that the
free matrix (where ¬a = ◦a = A for each element in A) is saturated with respect to
the logic defined by the empty set of rules.
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Fig. 4 Logics and results (∗ means that the logic is characterizable by a single infinite matrix, but
not by a finite set of finite Nmatrices, and ∗∗ means that the logic is characterizable by a single
infinite Nmatrix but not by a finite set of finite Nmatrices.)

5 Concluding Remarks

The main purpose of this paper has been to illustrate the usefulness of some recently-
developed techniques in the study of logics defined via Hilbert-style rules. We have
focused on the negation fragments of logics which result from different possible
choices of well-known rules involving the connectives {→,⊥}, with a few variations.
Our results are summarized in Fig. 4. Further, all the negations defined by making
¬p := p → ⊥, in these logics are characterized by subsets of the rules in Fig. 3
below.

We have shown that all the negation-only logics obtained are characterized by
finite (N)matrices, which immediately implies that their decision problem is in coNP.
As a matter of fact, it is not hard to see that all of these logics are actually in P.

We have quite different complexities for the environment logics from which we
have obtained the negations. It is easy to see thatMP,MP◦, ⊥ and ⊥� are in P. Since
P is closed under disjoint fibring [4], it follows that the logics MP • ⊥, MP◦ • ⊥,
MP• ⊥� andMP◦• ⊥� are also inP. Notice that,while IL→ • ⊥ and IL are inPSPACE,
and CL→ • ⊥ is in coNP, in [IL→ • ⊥,CL→ • ⊥] ∪ [IL→ • ⊥, IL] there are even
undecidable logics.

While the topics we have touched on certainly deserve to be pursued in a more
systematic fashion, we hope that our playful explorationmay be useful and insightful
on the nature of negations and their paraconsistent character.

The gamewe played is obviously not limited to the connectives and logics consid-
ered here, and can be recast in more general contexts. One such obvious possibility
is the study of modalities, which have well-known connections with negations [7].
It is however fair to mention that we are still far from completely understanding the
mechanics of Hilbert-style calculi. In [12] we describe the semantics for disjoint
fibring, but we still fall short of the general case.
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