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Chapter 6
Chronic Ethanol Consumption 
and Generation of Etheno-DNA Adducts 
in Cancer-Prone Tissues

Teresa Peccerella, Tatjana Arslic-Schmitt, Sebastian Mueller,  
Kirstin-Berit Linhart, Devanshi Seth, Helmut Bartsch,  
and Helmut K. Seitz

Abstract  Chronic ethanol consumption is a risk factor for several human cancers. A 
variety of mechanisms may contribute to this carcinogenic effect of alcohol includ-
ing oxidative stress with the generation of reactive oxygen species (ROS), formed via 
inflammatory pathways or as byproducts of ethanol oxidation through cytochrome 
P4502E1 (CYP2E1). ROS may lead to lipidperoxidation (LPO) resulting in LPO-
products such as 4-hydoxynonenal (4-HNE) or malondialdehyde. These compounds 
can react with DNA bases forming mutagenic and carcinogenic etheno-DNA adducts. 
Etheno-DNA adducts are generated in the liver (HepG2) cells over-expressing 
CYP2E1 when incubated with ethanol;and are inhibited by chlormethiazole. In liver 
biopsies etheno-DNA adducts correlated significantly with CYP2E1. Such a correla-
tion was also found in the esophageal- and colorectal mucosa of alcoholics. Etheno-
DNA adducts also increased in liver biopsies from patients with non alcoholic 
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steatohepatitis (NASH). In various animal models with fatty liver either induced by 
high fat diets or genetically modified such as in the obese Zucker rat, CYP2E1 is 
induced and paralleled by high levels of etheno DNA-adducts which may be modi-
fied by additional alcohol administration. As elevation of adduct levels in NASH 
children were already detected at a young age, these lesions may contribute to hepa-
tocellular cancer development later in life. Together these data strongly implicate 
CYP2E1 as an important mediator for etheno-DNA adduct formation, and this det-
rimental DNA damage may act as a driving force for malignant disease progression.

Keywords  Cytochrome P4502E1 · Etheno-DNA adducts · Reactive oxygen species 
· NASH · ALD · Esophageal Cancer · Colorectal Cancer

6.1  �Introduction

There is strong evidence that oxidative stress related DNA damage is induced by 
known inherited and acquired cancer risk factors including inflammation [1–3]. 
Pro-mutagenic Lipidperoxidation (LPO)-derived DNA adducts are increased sig-
nificantly in chronic pancreatitis [2], ulcerative colitis, Crohn’s disease [2] as well 
as in viral-Hepatitis [2] and other types of chronic liver disease [4]. Two major 
etheno-DNA adducts 1,N6-etheno-2′-deoxyadenosine (εdA) and 3,N4-etheno-2′-
deoxycytidine (εdC) were quantified as marker lesions and found to accumulate in 
target organs over time, paralleling progression to tumor development [1–3, 5, 6]. 
DNA repair and cellular apoptotic processes contribute to urinary excretion of 
etheno-desoxyribonucleosides, which offer a non-invasive approach to monitor 
LPO-related pathogenic processes in vivo [7].

In this article we review formation and significance of exocyclic etheno DNA 
adducts and their possible role in human and experimental carcinogenesis. Major 
emphasis, however, will be led on the effect of chronic ethanol consumption and the 
generation of these adducts in the liver and other extrahepatic tissues. Finally, the 
relevance of etheno DNA adducts in non-alcoholic fatty liver disease (NAFLD) is 
discussed.

6.2  �Etheno-DNA Adducts: Formation and Significance

Upregulation and overexpression of stress response enzymes such as inducible 
nitric oxide synthase (iNOS), lipoxygenase (LOX) and possibly cyclooxygenase 
(COX)-2 in inflamed tissues proceeds malignant growth. Hereby a self-perpetuating 
stimulation of LPO, over-production of DNA-damaging ROS and reactive nitrogen 
species (RNS), as well as LPO-derived exocyclic-DNA adducts takes place, acting 
as a driving force to malignancy [2] (Abb.1).

This cascade of events was supported by rodent models and adduct-analysis of 
organ tissue/ biopsy samples from cancer-prone patients. In Swiss Jim-Lambert-mice 
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inflammatory-related NO overproduction was found to be associated with signifi-
cant increased etheno-DNA formation; both could be inhibited by the administra-
tion of an iNOS inhibitor [8]. In a multistage mouse skin carcinogenesis model 
etheno-DNA adducts correlated with LOX-catalyzed tumor associated arachidonic 
acid metabolites [9]. Similarly, increased adduct levels were found in target tissues 
of Apc min (multiple intestinal neoplasia) mice [10, 11] as well as in cancer-prone 
patients with familial adenomatous polyposis (FAP) [12].

Induction of cytochrome P-450 2E1 as in alcoholic liver disease (ALD) and 
NAFLD may also result in ROS and etheno-DNA adduct formation [13, 14]. 
Although ethanol is primarily oxidized via alcohol dehydrogenase, a small percent-
age is metabolized via the microsomal ethanol oxidizing system (MEOS) which is 
CYP2E1 dependent. This pathway increases when ethanol is consumed chronically. 
Besides acetaldehyde, the first metabolite of ethanol oxidation, ROS are generated 
which trigger lipid peroxidation (LPO), leading to DNA adduction that likely par-
ticipates in tumourigenesis (Fig. 6.1).

Fig. 6.1  Simplified pathophysiology of reactive oxygen species (ROS) and etheno DNA 
adduct formation. Inflammation driven cytokine secretion results among others in an activation of 
NADPH oxidase and via NFκB in an activation of lipoxygenase (LOX) and cyclooxygenase 2 
(COX-2). As a result ROS are generated, which lead to lipidperoxidation with the occurrence of 
lipidperoxidation products such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). 
These adducts react with DNA bases to form exocyclic etheno-DNA adducts. Chronic alcohol 
consumption results in the induction of cytochrome P4502E1 (CYP2E1), which is involved in etha-
nol oxidation via the microsomal ethanol oxidizing pathway. During this reaction ROS is generated 
without inflammation. To a minor degree ethanol may result in ROS formation through inflamma-
tion (alcoholic hepatitis). On the other hand, in NASH ROS is primarily formed through inflam
mation and to a minor degree through C YP2E1 induction via acetone (diabetes mellitus) and/or 
free fatty acids (FFA)
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Thus, current evidence supports the paradigm that cancer predisposing condi-
tions (see above) lead to the ROS/RNS generation with subsequent LPO and pro-
duction of by-products such as malondialdehyde (MDA), 4-hydroxynonenal 
(4-HNE), 4-hydoxyhydroperoxy-2-nonenal (HPNE) (Fig. 6.2). These lipidperoxi-
dation products react with DNA either directly or through bifunctional intermedi-
ates to form various promutagenic exocyclic etheno-DNA adducts [13]. 
LPO-products derived mainly from gamma-linoleic acid, include 4-HNE, a major 
LPO product and its electrophilic epoxy-, hydroperoxy-, and oxo-enal intermedi-
ates can react with the DNA bases A, C, and G. This yields the unsubstituted etheno-
DNA adducts, 1,N6-etheno-2′-deoxyadenosine (εdA), 3, N4-etheno-2′-deoxycytidine 
(εdC), 1,N2-etheno-2′-deoxyguanosine (1,N2εdG), and N2,3-etheno-2′-
deoxyguanosine (N2,3εdG). In addition, substituted base adducts are formed such 
as HNE-dG carrying a fatty acid chain residue. 2,N4-etheno-5-methyl-2′-
deoxycytidine (ε5mdC), an endogenous LPO-derived adduct was recently identified 
in human tissue DNA, possibly playing a role in epigenetic mechanisms of carcino-
genesis [1, 15–22]. DNA is also modified directly by ROS and RNS to yield 8-nitro-
dG and 8-Oxo-dG [16]. All of these products in DNA changes have been detected 
in human specimens [4, 7, 23–26]. Exocyclic etheno-DNA adducts exhibit strong 
mutagenic properties in most organisms tested so far, producing various types of 
base pair substitution mutations and other types of genetic damage [27–32].

Fig. 6.2  1,N6-etheno-2′-deoxyadenosine(εdA), and 3, N4-etheno-2′-deoxycytidine (εdC), two 
important etheno-DNA adducts (a). Immunohistochemistry of εdA in the nuclei of hepatocytes in 
a patient with ALD (b)
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εdA can lead to AT → GC transition and AT → TA and AT → CG transversions 
[29, 30]. εdC cause CG → AT transversions and CG → TA transition [31, 32]. N2,3 
εdA leads to GC → AT transition [32]. Incorporation of a single εdA in either DNA 
strand of HeLa cells showed a similar miscoding frequency and was more muta-
genic than 8-oxo-dG [33].

Etheno adducts are poorly repaired in some tissues stressing their biological rel-
evance [34]. Strong support that etheno-DNA adducts play a causal role in the ini-
tiation and progression of liver carcinogenesis comes from the formation of εdA 
and εdC in vivo by the human liver carcinogen vinyl chloride [35] and by the potent 
multiorgan, multispecies carcinogen urethane; hereby reaction with DNA occurs 
via their metabolic epoxy-intermediates [36]. The biological importance of etheno-
DNA adducts is further stressed as they are preferentially formed in codon 249 of 
TP53 (which encodes p53), leading to a mutation that renders cells more resistant to 
apoptosis and provides them some growth advantage [37].

LPO-derived reactive products and their macromolecular interactions have been 
so far characterized primarily by in vitro studies, making it difficult, to pinpoint the 
main precursors and pathways involved in the generation of cancer-relevant DNA 
damage in human in vivo. For this reason, earlier studies analyzed εdA and εdC in 
human specimens to serve as a lead marker for other exocyclic adducts formed 
in vivo, but for which sensitive detection methods were not yet available at that 
time. Using ultrasensitive and specific detection methods [24], two miscoding 
etheno-DNA adducts εdA and εdC were first unequivocally identified in human 
DNA (Fig.  6.3) Subsequently, surgical tissue samples collected from “at risk” 
patients, i.e. affected by chronic inflammatory processes, persistent viral infections, 
iron storage- and alcohol-related diseases or exposed to inherited/acquired cancer 
risk factors were analyzed. Adduct levels increased 10–100-fold progressively in 
human cancer-prone organs including liver, bile duct, esophagus, colon and pan-
creas. Consistent results were also observed in rodent tumor models, that mimic 
human disease [3]. Taken together these data incriminate LPO-derived DNA adducts 
formed endogenously as strongly mutagenic and potentially cancer-causing lesions. 
The chemical structure of εdA and εdC as well as the immunohistochemical appear-
ance of εdA in the liver of a patient with ALD is shown in Fig. 6.3.

6.3  �Etheno-DNA Adducts in ALD and NAFLD: The Role 
of CYP2E1 Induction and Inflammation

Oxidative stress is a major pathogenetic factor in ALD and in NAFLD. In both dis-
eases inflammatory driven oxidative stress occurs, which is predominant in non-
alcoholic steatohepatitis (NASH) [13] as well as in alcoholic hepatitis (ASH), a 
clinical syndrome with high mortality [38]. In addition, CYP2E1 is found to be 
induced by chronic ethanol ingestion [39] as well as in NASH [40]. The intensity of 
ethanol mediated CYP2E1 induction differs interindividually [41]. In NASH, an 
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inflammatory liver disease associated primarily with the metabolic syndrome (over-
weight, diabetes mellitus, hypertension, and hypercholesterolemia) hepatic acetone 
(observed in diabetes mellitus) and free fatty acids (present in fatty liver) also induce 
CYP2E1, since there metabolism is catalyzed by CYP2E1 [42].

Ethanol metabolism through CYP2E1 generates not only acetaldehyde, but also 
ROS which can react with proteins and DNA affecting their structure and function. 
ROS can also initiate LPO which leads to formation of several byproducts such as 

Fig. 6.3  Effect of a high fat diet with and without ethanol (16% of total calories on the level of 
εdA (a) and CYP2E1 (b). The high fat diet alone increased both εdA and CYP2E1 significantly, 
while the addition of ethanol did not further increase the two parameters. HFD = high fat diet, 
HFS = high fat diet plus alcohol
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MDA and 4-HNE. After reaction with DNA bases exocyclic etheno DNA adducts 
are generated (Figs.  6.1 and 6.3). CYP2E1 induction in NASJH as compared to 
ALD was found to be less pronounced, whereas inflammation was predominant 
[13] This led to the assumption that DNA adduct formation in NASH is primar-
ily driven by inflammatory processes, whilst in ALD, CYP2E1 induction is much 
stronger and inflammation generally milder. AH seems to be an exception, whereby 
in ALD etheno adducts are primarily formed via CYP2E1-mediated ROS formation.

6.4  �Etheno DNA Adducts (εdA) in Alcohol Consuming 
Rodent Models and ALD Patients

Various animal experiments have underlined that in ALD CYP2E1 is responsible 
for the generation of ROS and DNA damage in disease causation: a) CYP2E1 
knock-out mice do not develop ALD with the same severity as wild-type mice when 
they ingested alcohol for more than 4 weeks [43, 44]; b) inhibition of CYP2E1 by 
chlormethiazole (CMZ), a selective CYP2E1 inhibitor decreases ROS/RNS signifi-
cantly, resulting in an inhibition of ALD [44, 45]; c) CYP2E1 knock-out mice also 
developed less oxidized DNA products as compared to wild type mice when both 
received ethanol [46]; d) Transgenic mice over-expressing CYP2E1 showed an 
enhancement of hepatic injury following chronic ethanol administration [43, 47, 
48]; e) in (HepG2) liver cells over-expressing CYP2E1, incubation with rising etha-
nol concentrations led to a linear increase of εdA levels in DNA, which was inhib-
ited by small amounts of CMZ [49].

Liver biopsies from patient with varying degree of ALD severity were immuno-
histochemically analyzed for CYP2E1, 4-HNE, and εdA adducts. Again, we found 
a significant positive correlation for CYP2E1 vs. 4-HNE as well as for CYP2E1 vs. 
εdA [49].

In an ongoing study analysis of liver biopsies from about hundred ALD patients 
confirmed at a high level of significance these correlations and the association 
between hepatic fibrosis, CYP2E1 and εdA (Seitz, personal communication). These 
data strongly implicate CYP2E1 as an important mediator for etheno DNA adduct 
formation and this detrimental DNA damage may act as a driving force for ALD 
progression.

Since chronic ethanol consumption is also a risk factor for esophageal and 
colorectal cancer we also measured CYP2E1 and εdA in these tissues. In 37 patients 
with esophageal cancer esophageal biopsies adjacent to the tumor were analyzed 
and were compared to control biopsies from 12 non-alcohol drinkers [50]. In the 
esophageal mucosa a significant correlation between the quantity of alcohol intake 
and CYP2E1 induction as well as etheno-DNA adduct formation was found. Both 
etheno-adducts εdA and εdC correlated significantly with CYP2E1 [50], while con-
trol patients did not show CYP2E1.

CYP2E1 can also induced in the colorectal mucosa. In our study in heavy and 
light drinkers no difference in CYP2E1 and εdA levels was observed, possibly due 
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to dietary modulators that affect CYP2E1, LPO, and adduct production in situ. 
However, when the data of all patients (controls and alcoholics) were pooled, a 
significant correlation between CYP2E1 and εdA became apparent [51].

6.5  �Etheno DNA Adducts in Animal Models of NASH 
with and Without Additional Alcohol Administration 
and in NASH Patients

Based solely on histomorphology NASH and ASH are very difficult to distinguish. 
In both ALD and NASH CYP2E1 was reported to be induced [39–41], this induc-
tion in NASH is less expressed than in ALD for reasons that we investigated.

Formation of εdA in a cohort of patients with NASH has clearly been established 
[38], but the etheno adducts did not correlated with CYP2E1. To explain this unex-
pected finding we assume that in NASH inflammation predominates rather than 
CYP2E1 induction, and etheno adducts are formed via ROS generated during 
inflammatory processes (Fig.  6.1) In this context it is noteworthy that in NASH 
patients a significant correlation was noted between CYP2E1 and hypoxemia and 
ß-hydoxybutyrate [52].

In a further study we investigated etheno-DNA adducts in 21 children and ado-
lescents who were diagnosed with NASH with and without diabetes [53]. In 3 out 
of 21 children etheno DNA adducts were extremely high. Since alcohol consump-
tion even at social levels increase the risk for hepatocellular cancer in NASH it 
would be important to monitor these children for HCC further in life.

In a series of animal experiments where NASH was induced either in genetically 
modified rodents or by feeding a high fat diet we further investigated the formation 
of etheno-DNA adducts. When obese Zucker-rats who are leptin deficient and insu-
lin resistant received alcohol as Lieber-DeCarli-diets etheno-DNA adducts increased 
to a much higher degree in obese as compared to lean Zucker-rats and this increase 
was further enhanced when alcohol was administered. Etheno adduct formation was 
highly significant and paralleled by the level of hepatic CYP2E1 [49].

When Sprague-Dawley-rats received a Lieber-DeCarli-high-fat-diet with 71% 
energy from fat NASH was produced within 6 weeks. Afterwards these rats were 
continuously fed with high fat diet (55% total energy from fat) or high fat plus alco-
hol diet (55% energy from fat and 16% energy from ethanol) for another 4 weeks 
[54]. High fat diet alone increased hepatic inflammation and apoptosis as compared 
to a control diet, and nearly doubled the level of hepatic etheno-DNA adducts and 
of CYP2E1. The addition of ethanol did not significantly affect parameters associ-
ated with lipid peroxidation, inflammation and apoptosis, and no further increase in 
etheno-adducts and of CYP2E1 was noted [55] (Fig. 6.4).

A similar observation was made in a mouse model [56] where multiple binge-
drinking with an ethanol intake of 2 g/kg body weight twice a week for 12 weeks 
increased etheno-DNA adducts in the liver only to a minor degree as compared to a 
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single binge of 6 g/kg body weight in an alcoholic steatosis model [56]. However, 
when multiple binges were combined with a high fat diet (45% of total calories 
from fat) a striking elevation of etheno DNA adducts was found. Interestingly, these 
etheno-DNA adducts occurred in clusters within the liver (Fig. 6.4).
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