
127© Springer Nature Switzerland AG 2018 
V. Vasiliou et al. (eds.), Alcohol and Cancer, Advances in Experimental 
Medicine and Biology 1032, https://doi.org/10.1007/978-3-319-98788-0_10

Chapter 10
ALDH1L1 and ALDH1L2 Folate  
Regulatory Enzymes in Cancer

Sergey A. Krupenko and Natalia I. Krupenko

Abstract Epidemiological studies implicate excess ethanol ingestion as a risk fac-
tor for several cancers and support the concept of a synergistic effect of chronic 
alcohol consumption and folate deficiency on carcinogenesis. Alcohol consumption 
affects folate-related genes and enzymes including two major folate-metabolizing 
enzymes, ALDH1L1 and ALDH1L2. ALDH1L1 (cytosolic 10- formyltetrahydrofolate 
dehydrogenase) is a regulatory enzyme in folate metabolism that controls the overall 
flux of one-carbon groups in folate-dependent biosynthetic pathways. It is strongly 
and ubiquitously down-regulated in malignant tumors via promoter methylation, 
and recent studies underscored this enzyme as a candidate tumor suppressor and 
potential marker of aggressive cancers. A related enzyme, ALDH1L2, is the mito-
chondrial homolog of ALDH1L1 encoded by a separate gene. In contrast to its cyto-
solic counterpart, ALDH1L2 is expressed in malignant tumors and cancer cell lines 
and was implicated in metastasis regulation. This review discusses the link between 
folate and cancer, modifying effects of alcohol consumption on folate- associated 
carcinogenesis, and putative roles of ALDH1L1 and ALDH1L2 in this process.

Keywords Folate · Cancer · Alcohol · ALDH1L1 · ALDH1L2 · Methylation · 
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10.1  Introduction

Epidemiological studies implicate excess ethanol ingestion as a risk factor for sev-
eral cancers and support the concept of a synergistic effect of chronic alcohol 
consumption and folate deficiency on carcinogenesis [1]. Alcohol consumption 
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itself impairs folate metabolism through the enhanced coenzyme degradation or 
the inhibition of absorption, as well as through the influence on folate-related 
genes and enzymes [1, 2]. Among these targets, two major folate-metabolizing 
enzymes, ALDH1L1 and ALDH1L2, were considered. This review discusses the 
link between folate and cancer, modifying effects of alcohol consumption on 
folate-associated carcinogenesis, and putative role of ALDH1L1 and ALDH1L2 in 
this process.

10.2  Folate: Overview

Folate coenzymes are vital for cellular homeostasis due to their key role in trans-
ferring one-carbon groups in reactions of de novo nucleotide biosynthesis, 
metabolism of serine, glycine and histidine, and the regeneration of methionine 
from homocysteine [3]. The methionine biosynthesis is linked to the production 
of S-adenosylmethionine, a universal methyl donor in more than a hundred meth-
ylation reactions in the cell [4]. Folates also participate in the clearance of for-
mate as CO2 [5] and the formylation of methionyl-tRNA [3]; the latter process is 
essential for translation initiation in eukaryotic mitochondria [6]. Humans are 
unable to synthesize this coenzyme and must obtain it from the diet. Insufficient 
folate intake has dramatic consequences for the cell, including: deregulation of 
methylation processes [7]; altered protein expression [8]; and decreased DNA 
repair capability and accumulation of DNA damage leading to increased chromo-
somal aberrations and fragility [9, 10]. These mechanisms underlie reduced 
growth rate and impaired cell division caused by folate deficiency. Low folate 
status has been linked to increased risk for several types of cancer, neural tube 
defects, and cardiovascular diseases [7] though the association between folate 
and carcinogenesis, as well as cardiovascular diseases, is inconclusive at present. 
For the reason of the prevention of neural tube defects, in 1996 the FDA approved 
a mandatory fortification of several types of grain foods in the US with a syn-
thetic form of the vitamin, folic acid. Though the overall importance of folate for 
human health was known for long time, the underlying molecular mechanisms 
are not fully understood and continue to emerge. This is exemplified by recent 
studies, which have underscored the significance of folate metabolism for ES 
cells [11], the contribution of folate-dependent carbon oxidation into the cellular 
energy balance [12, 13], and the role of folate enzymes in cancer progression and 
metastasis [14–19]. To further complicate the picture, a concept that parental 
folate intake or folate status can modify disease risk in offspring later in life has 
been recently proposed [20].
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10.3  Interactions Between Alcohol Consumption and Dietary 
Folate: Implication for Cancer

The link between folate and cancer has been investigated for decades but this issue 
is complicated by the phenomenon that while in general folate intake protects 
against tumorigenesis, it also can promote the proliferation of existing neoplastic 
lesions [21]. This adverse effect is primarily associated with the increased demand 
of rapidly proliferating cancer cells for folate coenzymes to support enhanced 
nucleotide biosynthesis towards unlimited DNA replication. Thus, there is a 
dilemma that folate intake above basal requirements may increase the incidence of 
malignancies and cancer-related death, which has been increasingly recognized by 
the experts in folate field [22]. The tumorigenic response to dietary folate depends 
on numerous factors, including cancer subtypes, the timing or duration of vitamin 
administration, its dose and ingested form (synthetic folic acid vs. natural folate) [4, 
21]. End-point effects of the vitamin could be further modified by other factors such 
as age, the status of vitamins B6/B12, and individual genotypic features including 
polymorphisms in folate enzymes [4, 20]. One of the factors known to affect folate 
metabolism is chronic alcohol consumption [1, 2].

Alcoholism is typically associated with folate deficiency due to reduced dietary 
folate intake [2]. Heavy alcohol consumption also decreases folate absorption, 
enhances urinary folate excretion and inhibits enzymes pivotal for one-carbon 
metabolism [1, 2]. While folate metabolism is involved in numerous key biochemical 
pathways (Fig. 10.1), the aberrant DNA methylation, due to the deficiency of methyl 
donors, was widely considered as a common downstream target of the folate-medi-
ated effect of ethanol [23]. The negative effects of low intakes of nutrients, which 
provide dietary methyl groups, with high intakes of alcohol are additive in general 
[24]. In support of such association, it has been reported that the low methionine, 
low-folate diets and alcohol consumption increase the risk for colorectal cancer in 
men [25]. Therefore, to counteract the negative effects of alcohol consumption, the 
increased intake of nutrients providing dietary methyl groups is recommended [24].

In agreement with this notion, a protective effect of folate on alcohol-impaired 
processes has been demonstrated in experiments with cultured mouse embryos, 
where addition of the vitamin, in the form of folic acid, blocked ethanol-induced 
teratogenesis [26]. The microarray profiling further indicated that the effect of pre-
natal ethanol exposure on teratogenesis in mice, and associated mental retardation, 
were induced through alterations in the expression pattern of several micro RNAs in 
fetal brain. In line with this mechanism, increased folic acid prevented micro RNAs 
changes in response to ethanol. Though it is not clear whether a similar mechanism 
mediating the interaction between dietary folate and alcohol consumption could be 
activated in carcinogenesis, SNPs (single nucleotide polymorphisms) in the micro 
RNA bindings sites of thymidylate synthase were associated with gastric cancer risk 
and patient survival [27]. Perhaps the interaction between folate status and alcohol 
consumption in carcinogenesis involves multiple mechanisms and is likely 
 cancer- type specific. Four main alcohol-associated cancers are liver, colon, breast 
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and upper aerodigestive tract [23]. In agreement with such etiology, recent prospec-
tive cohort study indicated that the folate pathway is likely to be involved in alcohol- 
related colorectal cancer development [28]. Higher folate intake can also ameliorate 
the effect of alcohol consumption on the development of HCC (hepatocellular car-
cinoma) [29] and the risk of breast cancer [30]. A prospective study of alcohol 
consumption and the risk of colorectal cancer before and after folic acid fortifica-
tion in the US showed that fortification may attenuate this risk [31]. Another case- 
control study indicated that folate-related enzyme polymorphisms modify the 
association between drinking habit and pancreatic cancer risk [32]. Studies of other 
cancer types did not provide a clear association between folate status, alcohol con-
sumption and cancer risk [33, 34].
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Fig. 10.1 Folate metabolism. Folate is taken up by the cell as folic acid (FA, supplements or forti-
fied foods) or 5-methyl-THF (5-MTHF, natural diet). In the cell, FA is sequentially converted to 
dihydrofolate (DHF) and the active form of the coenzyme, tetrahydrofolate (THF) in reactions 
catalyzed by DHFR (dihydrofolate reductase). Acceptance of a one-carbon group (comes from 
serine, glycine, histidine or formate) converts THF to coenzymes directly participating in biosyn-
thetic reactions (10-FTHF, 10-formyl-THF; CH2-THF, 5,10-methylene-THF). HCY, homocyste-
ine; SAM, S-adenosylmethionine; MS, methionine synthase; TS, thymidylate synthase; MTHFR, 
methylenetetrahydrofolate reductase. Reaction catalyzed by MS converts 5-MTHF to THF (dotted 
arrow). Overall, folate coenzymes provide one-carbon groups for three biosynthetic pathways: (i) 
methionine production; (ii) de novo purine generation; (iii) TMP synthesis. Mitochondrial folate 
metabolism provides one-carbon groups, derived from the degradation of serine, glycine, sarcosine 
(Sarc) or dimethylglycine (DMG), to the cytosolic folate pathways in the form of formate. 
Processes inhibited by ethanol are indicated by (⊥). Degradation of 5-methyl-THF is accelerated 
by ethanol (indicated by “+”)
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The effect of ethanol on folate metabolism could be direct, through the enhanced 
coenzyme degradation or the inhibition of absorption, as well as indirect, through 
the influence on folate-related genes and enzymes. The intracellular folate pool con-
sists of several major forms of the coenzyme, which differ in the oxidation level of 
the bound one-carbon group and are interconvertible through multiple reactions 
catalyzed by more than a dozen enzymes (Fig. 10.1). Enzymes of folate metabolism 
bring one-carbon groups to the folate pool, oxidize/reduce the folate-bound groups, 
or utilize these groups in biosynthetic reactions. The role of folate enzymes in can-
cer is well established and some of them, including DHFR and thymidylate syn-
thase, are canonical chemotherapeutic targets [35]. An additional association 
between folate enzymes and cancer is provided by epidemiologic studies, which 
linked SNPs in the MTHFR gene with the risk of several cancer types [23]. The 
combination of folate intake and SNPs in genes associated with methionine biosyn-
thesis may contribute to breast [36] and gastric [37] cancer risk, indicating that 
folate intake-associated cancer risk can be further modified by gene-nutrient inter-
actions. Towards this line, a cross-sectional analysis of 19 human studies indicated 
a role for folate enzymes and their SNPs in response to alcohol consumption [38]. 
The direct inhibitory effect of ethanol on the activities of MTHFR and MTR in an 
animal model was demonstrated as well [39]. As a likely cause of decreased liver 
SAM and reduced methylation capacity, this mechanism can contribute to carcino-
genesis [23]. Of note, ethanol also decreases thymidylate synthase mRNA levels in 
regenerating liver after partial hepatectomy [40], the effect which could be trans-
lated into the impaired DNA synthesis and repair.

10.4  ALDH1L1 Role in Cancer

One of the most abundant folate enzymes is cytosolic 10-formyltetrahydrofolate 
dehydrogenase (FDH, ALDH1L1) [41]. Levels of this enzyme can reach about 
1.2% of the total protein in rat liver cytosol [42, 43], suggesting an important role 
(proposed functions for the enzyme are summarized in Fig. 10.2). ALDH1L1 con-
verts 10-formyl-THF to THF (tetrahydrofolate) and carbon dioxide in a NADP+-
dependent reaction (Fig. 10.2). This reaction clears one-carbon groups (in the form 
of CO2) from the cell thus limiting their flux toward folate-dependent biosynthetic 
reactions (Fig. 10.1) [44, 45]. It is also important for replenishing the pool of THF 
[46], which is the only folate coenzyme capable of accepting one-carbon groups and 
thus is central to folate metabolism [47]. In agreement with such function of 
ALDH1L1, genome-wide association studies revealed that SNPs in this gene are 
associated with serine to glycine ratio in serum [48] (THF is required for the reac-
tion of the conversion of serine to glycine, Fig.  10.1). Furthermore, ALDH1L1 
might regulate de novo purine biosynthesis [44, 49], formate degradation [5] and 
methylation status of the cell [45]. Another function originally proposed for this 
enzyme is to serve as the folate depot, though this hypothesis is primarily based on 
the phenomenon that the protein was purified in complex with THF [42].

10 ALDH1L1 and ALDH1L2 Folate Regulatory Enzymes in Cancer
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ALDH1L1 is not ubiquitously expressed in human tissues: highest levels of its 
mRNA were detected in liver, kidney and pancreas while the levels in several tissues 
including placenta, spleen, thymus, small intestine, leukocytes, testis, and ovary 
were undetectable [44, 50]. Interestingly, ALDH1L1 is also differentially expressed 
in central nervous system during development: most quiescent cells in developing 
mouse brain are ALDH1L1 positive while proliferating cells do not express this 
protein [51]. Curiously, levels of this protein also significantly fluctuate (up to about 
seven-fold change) in the liver of golden-mantled ground squirrel depending on 
seasonal stages [52]. In further support of highly regulated expression of this pro-
tein, its levels were decreased in rat liver by clofibrate, a peroxisome proliferator 
[53] and increased in zebrafish embryos exposed to ethanol [54].

Perhaps most striking example of the ALDH1L1 regulation is its silencing in 
malignant tumors [44], which is achieved through methylation of the CpG island 
within the ALDH1L1 promoter [55]. It contains 96 CpG pairs and covers the region 
between −525 and +  918  bp of the ALDH1L1 gene including the promoter, the 
entire exon 1, and a part of intron 1 immediately downstream of the exon. Bisulfite 
sequencing analysis revealed extensive methylation of the island (76%–95% of 
CpGs) in cancer cell lines. Analysis of the samples from patients with lung adeno-
carcinomas demonstrated methylation of the ALDH1L1 CpG island in tumor sam-
ples and a total lack of methylation in respective normal tissues. The same 
phenomenon was observed in liver tissues: the CpG island was methylation free in 
DNA extracted from normal hepatocytes but was extensively methylated in a 
 hepatocellular carcinoma. Levels of ALDH1L1 mRNA and protein correlated with 
the methylation status of the island, with tumor samples demonstrating down- 
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Fig. 10.2 Reaction catalyzed by ALDH1L1 and ALDH1L2 and proposed biological roles for the 
enzymes. THF tetrahydrofolate; THF-CHO 10-formyl-THF
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regulation of expression or even complete silencing of the gene. The down-regula-
tion of ALDH1L1 mRNA in NSCLC (non-small cell lung cancer) [56], cervical 
cancer [57] and renal cell carcinoma [58] associated with the gene methylation was 
also demonstrated by microarray assays. The regulation of ALDH1L1 through the 
promoter methylation could also be a common cellular response to the environmen-
tal conditions. Thus, it has been reported that the prolonged exposure to isoflavone 
through dietary supplementation significantly reduces Aldh1l1 promoter methyla-
tion in rat mammary tissue [59]. In addition, the methylation of ALDH1L1 could be 
responsible for the individual variation in the protein expression. For example, 
higher CpG methylation in the body of the ALDH1L1 gene was significantly cor-
related with its lower transcript expression in normal breast tissue in women [60].

In agreement with the phenomenon that ALDH1L1 is down-regulated in prolif-
erating tumors, re-expression of the protein in cancer cells produces drastic antipro-
liferative effects including cell cycle arrest and apoptosis [44, 49, 61–63]. These 
findings indicated that ALDH1L1 is a key regulator of proliferation and an implica-
tion has been made in the literature that this protein is a candidate tumor suppressor 
[44, 55, 57, 58, 64]. Furthermore, under-expression of this gene could be a marker 
of a more aggressive tumor phenotype. Thus, decreased expression of ALDH1L1 
was associated with aggressive subtypes of sporadic pilocytic astrocytoma [64], 
poor prognosis in hepatocellular carcinoma [65], and low overall survival in neuro-
blastoma [66], while high expression of ALDH1L1 mRNA correlates with better 
overall survival in breast cancer patients [67]. It should be mentioned that the asso-
ciation between decreased ALDH1L1 expression and malignant tumor progression 
could be cancer type-specific [68]. For example, though decreased expression of 
ALDH1L1 was demonstrated in NSCLC [55, 56], cervical cancer [57], renal cell 
carcinoma [58] and peripheral cholangiocarcinoma [69], the extent of its expression 
in other cancers is not clear. In line with the idea that ALDH1L1 prognostic role 
could be cancer type-specific, SNPs in the ALDH1L1 gene were significantly asso-
ciated with altered risk of breast cancer [70] and increased risk of hepatocellular 
carcinoma [71] and non-Hodgkin lymphoma [72–74] but no SNPs were associated 
with the risk of prostate cancer [75].

10.5  Role of Mitochondrial ALDH1L2 Enzyme in Cancer

Folate pathways are compartmentalized within the cell, mainly between cytoplasm 
and mitochondria [3, 76], though the compartmentalization was recently extended 
to the nucleus, where folate-dependent TMP biosynthesis takes place [77]. It has 
been suggested that the mitochondrial pathways mainly serve to provide one-carbon 
groups, in the form of formate, for incorporation into the cytosolic folate pool where 
they are utilized for biosynthetic purposes [3]. While some folate-dependent reac-
tions are unique to cytoplasm or mitochondria, several of them take place in both 
compartments and are catalyzed by homologous enzymes, which are products of 
distinct genes [3, 78]. The oxidation of 10-formyl-THF to THF and CO2 is one of 
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such reactions. Mitochondrial 10-fTHF dehydrogenase is encoded by the ALDH1L2 
gene, which originated via the duplication of the ALDH1L1 gene and acquired a 
mitochondrial leader sequence [50]. Accordingly, two proteins share about 72% 
identity of the amino acid sequence and are close structurally and enzymatically 
[50, 79]. Their biological roles, however, could be quite different. While cytosolic 
ALDH1L1 is involved in the regulation of cellular proliferation, through the control 
of folate pools, ALDH1L2 is the key enzyme to provide reduced NADPH in mito-
chondria [12]. NADPH produced in this mitochondrial reaction is required for the 
reduction of oxidized glutathione, and the loss of ALDH1L2 shifts the ratio of GSH/
GSSG. This in turn decreases the capacity of mitochondria to eliminate reactive 
oxygen species leading to oxidative stress [19].

The ALDH1L2 gene was discovered relatively recently and its studies are limited 
so far. Of note, it can be up-regulated by certain drugs, though mechanism of this 
response were not studied. For example, ALDH1L2 mRNA levels are strongly 
increased (up to 6.8-fold) in immortalized human B cells treated with ER stress 
inducers thapsigargin or tunicamycin [80]. ALDH1L2 mRNA was also significantly 
up-regulated in human adrenocortical NCI-H295R cells treated with mitotane, an 
adrenolytic drug extensively used in combination with other cytotoxic drugs and as 
an adjuvant monotherapy in the treatment of adrenocortical carcinoma [81]. This 
effect, however, is hard to correlate with the pharmacological action of the drug. 
ALDH1L2 mRNA was also up-regulated more than three-fold in mouse neonatal 
ovaries exposed to 3-methylcholanthrene, a potent ovotoxicant [82]. The question of 
whether the regulatory effects of these drugs on the ALDH1L2 gene are associated 
with the cellular response to oxidative stress awaits further investigation. Curiously, 
the ALDH1L2 gene expression was lost in CCL-131 Neuro-2a malignant neuroblas-
toma cells at acidic pH [83]. Likewise, levels of the ALDH1L2 protein were dra-
matically decreased in nonalcoholic steatohepatitis in rats fed fat-rich diet [84]. 
Another study has reported a different effect for ALDH1L2: the protein was elevated 
about two-fold in fibroblasts of the patient with short-chain acyl-CoA dehydroge-
nase deficiency [85]. Thus, it appears that levels of ALDH1L2 inversely correlate 
with fatty acid oxidation. It has been also suggested that both acidic pH and fatty 
acid oxidation deficiency induce metabolic reprogramming, driving the switch to 
OXPHOS and less glucose utilization in the former case and to biosynthetic pro-
cesses in the latter case. In this regard, ALDH1L2 could be differentially regulated 
depending on the cellular demand for the energy production. Alternatively, the regu-
lation could be driven by ROS levels as well as the ratio of reduced/oxidized gluta-
thione but precise mechanisms controlling ALDH1L2 expression remain elusive.

Of note, ALDH1L2 has a different tissue-expression pattern than ALDH1L1 and 
in contrast to the cytosolic enzyme is highly expressed in cancer cell lines [50]. It 
has been recently reported that ALDH1L2 is up-regulated in human colorectal 
tumor tissues compared to normal tissues [86]. Furthermore, rates of recurrence- 
free survival and overall survival in patients with high expression of ALDH1L2 tend 
to be lower than in patients with low expression of the enzyme, the situation oppo-
site to cytosolic ALDH1L1. Considering that ALDH1L2 is a mitochondrial protein, 
it should be pointed out that numerous recent studies specifically underscored the 
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role of mitochondrial folate pathways in cancer with the emphasis on folate- 
dependent metabolism of serine and glycine [14–16, 87–90]. In this regard, 
ALDH1L2 might be an important component providing THF for the serine to gly-
cine conversion in mitochondria and for glycine degradation (Fig. 10.1).

Intriguingly, ALDH1L2 was implicated as a metastasis-regulatory gene [18]. Thus, 
in a mouse melanoma metastasis model, a striking increase in the expression of this 
protein in liver, pancreas and lung metastases compared to subcutaneous tumors has 
been shown [18]. Of note, other folate enzymes tested in this study did not demon-
strate such trend. In further support of the metastasis-promoting role of ALDH1L2, 
the silencing of the gene in melanoma by shRNA significantly reduced the frequency 
of circulating melanoma cells in blood and overall metastatic burden [18]. 
Interestingly, the reduced invasion of MDA-MB-435 cells after the treatment with 
anti-inflammatory agent indomethacin was associated with a significant elevation of 
ALDH1L2 mRNA [91]. While the mechanism by which indomethacin leads to 
ALDH1L2 gene up-regulation is not clear, it could be a compensatory cellular 
response to the increased ROS production caused by the drug. The cytosolic isoform, 
ALDH1L1, could be also associated with the metastatic potential of cancer cells [92]. 
In contrast to ALDH1L2, however, the cytosolic isoform inhibits cellular migration 
and invasion, the phenomenon rather associated with the decreased metastasis [93].

10.6  Effect of Ethanol on ALDH1L1/L2 Genes and Proteins

One of the folate-related effects of alcohol consumption could be the interaction of 
ethanol or its metabolites with folate enzymes [39]. Since the decrease of the 
ALDH1L1 expression could be associated with tumor promotion, metabolites 
inhibiting the activity of the enzyme or causing down-regulation of its expression 
would have pro-tumorigenic effect. Though studies of the effect of ethanol on 
ALDH1L1 are scarce, a role for the enzyme in mediation of the effect of alcohol 
intake on oral carcinogenesis has been proposed [94]. In another study, levels of 
ALDH1L1 were changed after liver transplant in recipients with alcoholic cirrhosis 
[95], implying the effect of chronic alcohol consumption on the enzyme. 
Interestingly, a recent study reported that alcohol consumption is associated with 
differentially methylated CpGs in the ALDH1L1 gene in breast tissue of healthy 
women [60]. Furthermore, women carrying an allelic variant of the gene were more 
likely to have hypermethylated ALDH1L1, the phenomenon correlated with lower 
gene expression. These findings point toward a potential mechanism by which alco-
hol implements its folate-mediated tumorigenic effect in mammary tissue.

Chronic ethanol ingestion was reported to decrease hepatic ALDH1L1 dehydro-
genase activity in rats [96]. The ethanol treatment also affected ALDH1L1 activities 
in brain and hepatic tissues of chicken embryos [97, 98]. It has been further demon-
strated that the ALDH1L1 enzymatic activity is inhibited by acetaldehyde in vitro 
[99], which could be a mechanism of the ethanol effect on the enzyme and one of 
the mechanisms by which alcohol consumption changes folate status. It should be 
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noted that ALDH1L1 is capable, at least in vitro, to metabolize acetaldehyde to 
acetic acid [100], which would argue against such inhibitory effect. This reaction 
still could interfere with the folate-related catalysis of the enzyme thus affecting 
folate metabolism. ALDH1L1 has been also reported as a target for acetaminophen, 
which covalently modifies a key cysteine of the enzyme; this effect could contribute 
to the drug toxicity [101]. Since excessive alcohol consumption is a risk factor for 
acetaminophen-induced hepatotoxicity [102], ALDH1L1 could be a dual target 
towards liver damage. Whether this effect would contribute to carcinogenesis is not 
clear at present. Interestingly, ALDH1L1 can also counteract the effect of ethanol 
on folate metabolism by protecting THF from degradation [103]. The metabolism 
of acetaldehyde by xanthine oxidase generates superoxide radicals, which can 
cleave folates [104]. Of note, 5-methyl-THF, the most common form of natural 
folate, is highly susceptible to the degradation by superoxide [104]. In agreement 
with the mechanism of folate protection by ALDH1L1, up-regulation of the 
ALDH1L1 gene prevented folate degradation and alleviated the oxidative stress 
induced by ethanol exposure in zebrafish embryos [54].

The role of ALDH1L2 in alcohol response and ethanol metabolism is even less 
clear due to the lack of corresponding studies. By analogy with the ALDH1L1 gene, 
it can be hypothesized that ALDH1L2 is relevant to the interaction between ethanol 
and folate metabolism. Indeed, the implication that this gene is a part of alcohol 
dependence mechanism has been made in the literature [105]. Thus, in the study of 
genome-wide DNA methylation in discordant sib pairs with alcohol dependence, 
the deregulation of ALDH1L2 gene through the promoter hypomethylation was 
associated with alcohol dependence [105].

10.7  Conclusion

ALDH1L1 and ALDH1L2 are key enzymes in the regulation of folate metabolism as 
well as downstream processes associated with folate-dependent biochemical reac-
tions. While both enzymes catalyze the same reaction, their compartmentalization 
leads to the differential effect on overall cellular metabolism, regulating either reduced 
folate pools and purine biosynthesis (cytosolic ALDH1L1) or NADPH production and 
oxidative stress (mitochondrial ALDH1L2). Both enzymes were implicated in the pro-
liferation of malignant tumors, though with opposite roles, tumor suppression in the 
case of the cytosolic enzyme and metastasis promotion in the case of the mitochon-
drial isoform. These enzymes were also implicated in the cellular response to alcohol 
consumption. Taking into account that both enzymes have essentially identical struc-
tural organization and enzymatic mechanism, it is likely that the direct effect of etha-
nol or its metabolites on ALDH1L1 and ALDH1L2 would be similar in both cases. 
However, considering differential regulation of the two isoforms, the overall effect of 
alcohol consumption on two enzymes would be more complex and not so direct. 
Clearly, more studies are needed to address the role of ALDH1L1 and ALDH1L2 in 
biology of malignant tumors and in potential mediation of the alcohol effect.
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