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Preface

Heavy alcohol consumption is a risk factor for disease and mortality worldwide. 
According to epidemiological studies, chronic alcohol consumption has also been 
associated with a variety of cancers (oral cavity, pharynx, larynx, esophagus, liver, 
colorectum, breast). It appears that the risk of developing cancer increases in pro-
portion to the amount of alcohol consumed. Enigmatically, alcohol intake decreases 
the risk of thyroid cancer, kidney and lung cancer (with evidence most strongly 
supporting lower risk for light and moderate drinkers) and non-Hodgkins lym-
phoma, and does not appear to affect prostate cancer risk. Based upon these epide-
miological data, it is evident that the capacity for alcohol to influence carcinogenesis 
varies between tissues or organs. This being the case, it is not unreasonable to pro-
pose that the mechanisms by which alcohol promotes or represses cancer is likely to 
be tissue-dependent. In addition, individual risk factors including genetics also 
modify ethanol-mediated carcinogenesis. Given the prevalence of alcohol con-
sumption in societies throughout the world and the challenges associated with effec-
tive cancer treatment, a more complete understanding of the risks associated with 
alcohol exposure use in relation to cancer is particularly important, as is identifica-
tion of the mechanisms by which alcohol influences cancer development. 
Recognizing this, the idea for an international meeting that focused on alcohol and 
cancer was born.

In September 2010, the first International Congress on Alcohol and Cancer was 
held at the German Cancer Research Center (DKFZ) in Heidelberg, Germany. This 
meeting provided a venue for the presentation of research that specifically addressed 
alcohol and cancer. Areas of focus included recent advances in epidemiology, 
molecular mechanisms and biomarkers of alcohol-induced carcinogenesis, as well 
as anticancer therapies.

After the success of the first meeting, additional International Congresses on 
Alcohol and Cancer have been held. The second congress took place in May 2013 
at Breckenridge, Colorado, USA. Summaries of presentations from this meeting 
were published in Advances of Experimental Medicine and Biology 815: 1-436, 
2015). In June 2015, the third congress was held in Hersonissos Crete, Greece, in 
June 2015.
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This book comprises papers presented during the third congress. The research 
described herein documents the significant progress that has been made in our 
understanding of the molecular mechanisms by which alcohol may affect carcino-
genesis, and epidemiological studies examining how alcohol affects the risk of can-
cer development. We anticipate this book will inform the reader about this important 
area of alcohol research and stimulate cancer investigators and clinicians to con-
sider how alcohol consumption may affect their research or patient care endeavors. 
Finally, it is our intention to continue these congresses; the fourth will be held in 
Newport, Rhode Island, USA, on April 14–18, 2019.

New Haven, CT, USA Vasilis Vasiliou
Washington, DC, USA Samir Zakhari
Washington, DC, USA Lopa Mishra
Heidelberg, Germany Helmut K. Seitz

Preface
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Chapter 1
Alcohol Consumption and Risk of Thyroid 
Cancer: A Population Based Case-Control 
Study in Connecticut

Huang Huang, Nan Zhao, Yingtai Chen, Nicole Deziel, Min Dai, Ni Li, 
Robert Udelsman, and Yawei Zhang

Abstract

Background: Studies examining the association between alcohol consumption and 
thyroid cancer risk have been inconsistent, in part due to varying types and amounts 
of alcohol consumption, incomplete information on confounders, and variations in 
genetic susceptibility in study populations.

Methods: The present study analyzed data from a population-based case-control 
study in Connecticut in 2010–2011 including 462 histologically confirmed incident 
thyroid cancer cases and 498 population-based controls. Unconditional logistic 
regression was used to estimate associations between alcohol consumption and risk 
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of thyroid cancer. Potential confounding variables were age, gender, race, educa-
tion, body mass index, family history of cancer among first-degree relatives, history 
of benign thyroid disease, smoking status, and physical activity.

Results: Ever consumption of alcohol was associated with a reduced risk of  thyroid 
cancer (OR = 0.71, 95% CI: 0.54–0.95). The younger age at initiation and increasing 
duration of alcohol consumption were also associated with a reduced risk of thyroid 
cancer in a dose-dependent manner (P for trend = 0.041 and 0.0065, respectively). 
Compared to people who never drank alcohol, people who drank alcohol for 
>31  years were 50% less likely to develop thyroid cancer (OR  =  0.50, 95% CI: 
0.32–0.80). Alcohol consumption was associated with a reduced risk of papillary 
thyroid cancer (OR = 0.66, 95% CI: 0.49–0.88) and thyroid cancer with lager tumor 
size (>1 cm), but no significant association was found between alcohol consumption 
and non-papillary thyroid cancer or thyroid microcarcinoma. Analyses stratified by 
specific subtypes of alcohol demonstrated an inverse association for beer (OR = 0.69, 
95% CI: 0.49–0.96) and wine consumption (OR = 0.71, 95% CI: 0.53–0.96) as com-
pared to participants who never consumed alcohol, but no significant association 
was found for liquor consumption (OR = 0.75, 95% CI: 0.53–1.04).

Conclusions: The study findings suggest an inverse association between alcohol 
consumption and risk of thyroid cancer. Future mechanistic study is warranted to 
elucidate the underlying mechanisms.

Keywords Thyroid cancer · Alcohol consumption · Case-control study

1.1  Introduction

Thyroid cancer has the highest prevalence of all endocrine malignancies, and its 
incidence has been rising faster than any other malignancy in both men and women 
[5]. In the United States, the incidence rate of thyroid cancer has increased since the 
early 1980s and most sharply over the past decade, with an average increase of 6.0% 
per year in men and 6.9% per year in women since 1997 [14]. Some scientists attrib-
uted this increased incidence to an increase in the rate of detection of thyroid cancer, 
especially small papillary carcinomas, by widespread use of ultrasonography [7]. 
However, studies have reported an increased incidence of thyroid cancer among all 
tumor sizes in the United States [5, 31], which suggests that over-diagnosis was not 
the only explanation and that other causes should also be considered [26]. The 
causal factors underlying thyroid cancer are still poorly understood. The most well- 
established risk factors for thyroid cancer include increased age, female gender, 
exposure to ionizing radiation, history of benign thyroid disease, and family history 
of thyroid cancer [10, 11, 22, 27]. Recent studies have identified higher body weight 
and height as risk factors for thyroid cancer [13, 23] and other environmental/occu-
pational factors [3, 29].

H. Huang et al.
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Alcohol is the world’s third common risk factor for disease and disability [4]. 
Alcohol consumption is associated with an increased risk of numerous cancers, such 
as liver cancer, breast cancer, and colorectal cancer. However, the direction of observed 
associations between alcohol consumption and thyroid cancer risk has been inconsis-
tent. Several prospective cohort [1, 18] and case-control studies [8, 16, 24, 25] have 
shown a statistically significant inverse association between alcohol consumption and 
risk of thyroid cancer, while others found no significant association [11, 12, 20, 21, 
28]. A cross-sectional study which conducted in Korea reported that alcohol con-
sumption was significantly associated with an increased risk of thyroid cancer [6]. The 
results from a pooled analysis of 10 case-control studies indicated that alcohol con-
sumption was associated with a slightly reduced risk of thyroid cancer [17], but the 
heterogeneity among the studies was significant. Another pooled analysis showed a 
significantly stronger association between alcohol consumption and a reduced risk of 
thyroid cancer among current smokers as compared to former smokers [14]. Many 
previous studies failed to assess alcohol consumption by different subtypes of alco-
holic beverages. Majority of the previous studies collected incomplete information on 
confounders, such as history of benign thyroid disease and family history of thyroid 
cancer. Additionally, there were few studies examined the independence of the asso-
ciation between alcohol consumption and thyroid cancer risk with respect to smoking 
status, which is inversely associated with thyroid cancer.

Since alcohol consumption is one of the commonest modifiable risk factors, it 
could be of great public health impact to clarify the association between alcohol 
consumption and thyroid cancer risk. Thus, we analyzed data from a population- 
based case-control study in Connecticut with detailed information on alcohol con-
sumption and confounding variables. We also investigated the association by 
smoking status.

1.2  Materials and Methods

The study design has been described previously [3, 30]. Cases were patients with 
newly diagnosed thyroid cancer between 2010 and 2011  in Connecticut. Eligible 
cases were residents from Connecticut, aged between 21 and 84 years at diagnosis, 
had no previous diagnosis of cancer, with the exception of nonmelanoma skin cancer, 
and were alive at the time of interview. Cases were identified through the Yale Cancer 
Center’s Rapid Case Ascertainment Shared Resource (RCA), the agent of Connecticut 
Tumor Registry. All cases were histologically confirmed the subtypes of thyroid can-
cer (papillary, follicular, medullary, and anaplastic). A total of 701 eligible patients 
with thyroid cancer were identified during the study period. Among them, 462 (65.9%) 
patients completed in-person interviews and participated in the present study.

Population-based controls were also residents from Connecticut and were 
recruited using a random digit dialing method. Cases and controls were frequency- 
matched by age (within ±5 years). A  total of 498 individuals participated in the 
study, with a participation rate of 61.5%.

1 Alcohol Consumption and Risk of Thyroid Cancer: A Population Based…
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All study procedures were approved by the Human Investigations Committee at 
Yale and the Connecticut Department of Public Health. The potential participants 
were approached by letter and phone. After initial contact, those who agreed to 
participate were interviewed by trained study interviewers either at the participants’ 
homes or at a convenient location. After obtaining written consent, a standardized 
and structured questionnaire was used to collect information on alcohol consump-
tion and potential confounding variables.

The participants were asked about alcohol consumption by different types of 
alcoholic beverages, such as beer, wine, or liquor, over their entire lives. For each 
type of alcoholic beverage, the participants were asked whether they had ever had at 
least 12 drinks (yes/no). Exposure to alcohol was defined as ever had at least 12 
drinks of any type of alcoholic beverage. For those who had exposed to alcohol, 
further information on the age at initiation (years), duration (years) and intensity 
(drinks/month) of alcohol consumption, and lifetime consumption (drinks) was 
obtained by each type of alcohol.

The frequency distribution of selected characteristics between cases and controls 
was compared by chi-squared test. Multivariate unconditional logistic regression 
models were used to estimate odds ratios (ORs) and 95% confidence intervals (95% 
CIs) for the associations between alcohol consumption and risk of thyroid cancer. 
We also examined the associations by smoking status (smoker or non-smoker), his-
tological subtype (papillary or non-papillary), tumor size (≤10 mm or > 10 mm), 
and type of alcoholic beverage (beer, wine, or liquor). The regression models were 
adjusted for age (continuous), gender, race/ethnicity (whites or others), education 
(high school or less, technical school or college, graduate school, or others), family 
history of cancer among first-degree relatives (yes/no), benign thyroid disease (yes/
no), body mass index (BMI) (<25, 25–29.9, or ≥ 30 kg/m2), and smoking status. For 
the analyses stratified by different types of alcoholic beverages, the models were 
further adjusted for other types of alcohol. All tests were two-sided with α = 0.05. 
All analyses were conducted using SAS software, version 9.3 (SAS Institute, Inc., 
Cary, North Carolina).

1.3  Results

There were 455 (47.4%) participants who reported that they had ever consumed at 
least 12 drinks over their entire lives. Among them, 267 (27.8%) had ever consumed 
at least 12 drinks of beer; 358 (37.3%) had ever consumed at least 12 drinks of wine; 
and 246 (25.6%) had ever consumed at least 12 drinks of liquor.

The distributions of selected characteristics between thyroid cancer cases and 
controls were presented in Table 1.1. Cases were younger and less educated, and 
were more likely to be female, have a family history of thyroid cancer among first- 
degree relatives, have been diagnosed as benign thyroid disease, and have a higher 
BMI. Distributions of race/ethnicity, family income, and smoking status were simi-
lar among cases and controls.

H. Huang et al.
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Ever consuming alcohol was associated with a reduced risk of thyroid cancer 
(OR  =  0.71, 95% CI: 0.54–0.95) (Table  1.2). The younger age at initiation and 
increased duration of alcohol consumption were also associated with a reduced risk 
of thyroid cancer in a dose-dependent manner (P for trend  =  0.041 and 0.0065, 
respectively). Compared to people who never drank alcohol, people who drank alco-

Table 1.1 Distribution of selected characteristics among thyroid

Cases (n = 462) Controls (n = 498)
PNumber % Number %

Age (years) 0.0003
<40 86 18.6 64 12.9
40–49 115 24.9 123 24.7
50–59 149 32.3 139 27.9
60–69 81 17.5 100 20.1
≥70 31 6.7 72 14.5
Gender <0.0001
Male 87 18.8 154 30.9
Female 375 81.2 344 69.1
Race 0.39
White 415 89.8 450 90.4
Black 18 3.9 25 5.0
Other 29 6.3 23 4.6
Education 0.0021
High school or less 129 27.9 88 17.7
Technical school or college 216 46.8 261 52.4
Graduate school 100 21.7 130 26.1
Other 17 3.7 19 3.8
Income 0.71
Below poverty level 21 4.6 28 5.6
Above poverty level 294 63.6 318 63.9
Confidential or unknown 147 31.8 152 30.5
Family history of thyroid cancer 0.025
Yes 55 11.9 38 7.6
No 407 88.1 460 92.4
Benign thyroid disease <0.0001
Yes 62 13.4 14 2.8
No 400 86.6 484 97.2
BMI (kg/m²) 0.0003
<25 145 31.4 203 40.8
25-29.9 146 31.6 168 33.7
≥30 166 35.9 118 23.7
Missing 5 1.1 9 1.8
Smoking status 0.18
Smoker 141 30.5 172 34.5
Non-smoker 321 69.5 326 65.5

1 Alcohol Consumption and Risk of Thyroid Cancer: A Population Based…
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hol for more than 31 years were 50% less likely to develop thyroid cancer (OR = 0.50, 
95% CI: 0.32–0.80). People whose age at initiation was between 19 to 24 years 
were 42% less likely to develop thyroid cancer (OR = 0.58, 95% CI: 0.38–0.88) 
compared to participants who never drank alcohol. Compared to never drinkers, a 
reduced thyroid cancer risk was observed among people who drank <28 drinks per 
month (OR = 0.59, 95% CI: 0.39–0.89) and people whose lifetime consumption was 
5200–16,560 drinks (OR = 0.64, 95% CI: 0.42–0.96). However, no statistically sig-
nificant dose-response relationship was observed for intensity and lifetime alcohol 
consumption.

The association between alcohol consumption and thyroid cancer risk was modi-
fied by smoking status (Table 1.3). A borderline significantly inverse association 
between alcohol consumption and risk of thyroid cancer was observed among non- 
smokers (OR = 0.71, 95% CI: 0.50–1.00). This inverse association was even stron-
ger for papillary thyroid cancer among non-smokers (OR = 0.63, 95% CI: 0.44–0.91) 
(data not shown). However, no significant association was found among smokers. 
Increasing duration of alcohol consumption was associated with a reduced risk of 

Table 1.2 Risk of thyroid cancer associated with alcohol consumption

Cases Controls ORa (95% CI)

Alcohol
Never 274 231 1.00
Ever 188 267 0.71 (0.54–0.95)
Age at initiation (years)
<19 71 99 0.72 (0.49–1.06)
19–24 51 80 0.58 (0.38–0.88)
>24 64 85 0.84 (0.56–1.26)
P for trendb 0.041
Duration (years)
<20 66 76 0.80 (0.52–1.22)
20–31 79 96 0.78 (0.54–1.13)
>31 37 90 0.50 (0.32–0.80)
P for trendb 0.0065
Intensity (drinks/month)
<28 58 87 0.59 (0.39–0.89)
28–60 63 92 0.76 (0.51–1.13)
>60 64 80 0.83 (0.56–1.24)
P for trendb 0.94

Lifetime consumption (drinks)
<5200 68 86 0.68 (0.45–1.01)
5200–16,560 52 87 0.64 (0.42–0.96)
>16,560 62 84 0.84 (0.56–1.25)
P for trendb 0.55

aAdjusted for age (continuous), gender, race, education, family history of thyroid cancer, history of 
benign thyroid disease, BMI, and smoking status.
bEstimated by continuous variables.
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Table 1.3 Risk of thyroid cancer associated with alcohol consumption, stratified by smoking 
status

Smokers Non-smokers
P for 
interactionCases Controls

ORa  
(95% CI) Cases Controls

ORa  
(95% CI)

Alcohol 0.66
Never 70 66 1.00 204 165 1.00
Ever 71 106 0.71 

(0.43–1.16)
117 161 0.71 

(0.50–1.00)
Age at initiation 
(years)

0.55

<19 26 30 0.85 
(0.43–1.67)

45 69 0.67 
(0.41–1.07)

19–24 19 27 0.72 
(0.33–1.54)

32 53 0.52 
(0.31–0.88)

>24 25 47 0.61 
(0.32–1.16)

39 38 1.04 
(0.60–1.79)

P for trendb 0.075 0.22
Duration (year) 0.85
<20 27 34 0.79 

(0.40–1.57)
39 42 0.75 

(0.43–1.29)
20–31 26 37 0.71 

(0.37–1.35)
53 59 0.84 

(0.53–1.31)
>31 16 32 0.61 

(0.28–1.32)
21 58 0.45 

(0.24–0.82)
P for trendb 0.19 0.017
Intensity  
(drink/month)

0.70

<28 26 42 0.54 
(0.28–1.06)

32 45 0.57 
(0.33–0.98)

28–60 25 40 0.76 
(0.39–1.47)

38 52 0.78 
(0.47–1.30)

>60 19 20 1.04 
(0.48–2.22)

45 60 0.78 
(0.48–1.25)

P for trendb 0.28 0.49
Lifetime 
consumption  
(drink)

0.78

<5200 29 42 0.60 
(0.31–1.15)

39 44 0.70 
(0.41–1.17)

5200–16,560 20 37 0.66 
(0.32–1.33)

32 50 0.62 
(0.37–1.06)

>16,560 20 21 1.10 
(0.52–2.32)

42 63 0.77 
(0.47–1.25)

P for trendb 0.53 0.32
aAdjusted for age (continuous), gender, race, education, family history of thyroid cancer, benign 
thyroid disease, and BMI.
bEstimated by continuous variables.
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thyroid cancer in a dose-dependent manner among non-smokers (P for trend = 0.017). 
No statistically significant dose-response relationship was observed among 
smokers.

As shown in Table 1.4, alcohol consumption was associated with a reduced risk 
of papillary thyroid cancer (OR = 0.66, 95% CI: 0.49–0.88) and thyroid cancer with 
lager tumor size (>1 cm) (OR = 0.68, 95% CI: 0.48–0.97), but no significant asso-
ciation was found between alcohol consumption and non-papillary thyroid cancer 
or thyroid microcarcinoma (≤1 cm).Younger age at initiation and increasing dura-
tion of alcohol consumption were associated with a reduced risk of papillary thyroid 
cancer (P for trend = 0.023 and 0.0016, respectively) and thyroid cancer with lager 
tumor size  (P for trend  =  0.036 and 0.035, respectively) in a dose-dependent 
manner.

When the analyses were stratified by the specific subtypes of alcoholic beverage 
(Table 1.5), the inversed association between alcohol consumption and risk of thy-
roid cancer was observed for beer (OR  =  0.69, 95% CI: 0.49–0.96) and wine 
(OR = 0.71, 95% CI: 0.53–0.96), but not liquor (OR = 0.75, 95% CI: 0.53–1.04).

1.4  Discussion

This study found that alcohol consumption was associated with a reduced risk of 
thyroid cancer. The risk decreased with younger age at initiation and increasing 
duration of alcohol consumption. The associations were stronger for papillary thy-
roid cancer and thyroid cancer with larger tumor size. The inverse association 
between alcohol consumption and risk of thyroid cancer was observed for beer and 
wine, but not for liquor. The study also observed that while alcohol consumption 
was associated with a borderline significantly reduced risk of thyroid cancer among 
non-smokers, no such relationship was seen in smokers.

The underlying mechanism linking alcohol consumption and a reduced risk of 
thyroid cancer is currently unclear. Zoeller et  al. reported a blunting  of the 
 thyroid- stimulating hormone (TSH) response to thyrotropin-releasing hormone 
(TRH) among alcoholics (Zoeller et al. 1996) [32], suggesting that the blunting of 
TSH response to TRH could lead to a reduction of thyroid cell proliferation and then 
decrease the risk of thyroid cancer. The mechanism of alcohol-induced reduction in 
TSH secretion to TRH stimulation is still unclear. One possible explanation is the 
down-regulation of TRH receptors due to chronically high TRH concentrations. 
Chronic alcohol consumption is suggested to be associated with a decreased periph-
eral  thyroid hormone levels. This pattern of peripheral low thyroid hormones can 
chronically induce a slightly elevated TRH release and subsequently cause feedback 
suppression of the TRH receptors, thereby  blunting the downstream TSH secre-
tion [4, 9]. Alcohol is also known to have a direct toxic effect on thyroid cells, which 
may account for the reduction in the thyroid volume. This toxic effect of alcohol 
may confer some benefits of thyroid. It has been suggested that alcohol consumption 
may be protective for the development of goiter and solitary thyroid nodules [4, 15].

H. Huang et al.
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Several reasons could contribute to the inconsistent results from previous epide-
miologic studies. Earlier studies included participants who consumed varying sub-
types of alcoholic beverages. A pooled analysis reported a significant trend of 
decreasing thyroid cancer risk among wine and beer consumers [17]. A population- 
based case-control study that investigated each alcoholic beverage (beer, wine, and 
liquor) separately found only wine was associated with a reduced risk of thyroid 
cancer [16]. Another case-control study selected beer, sake, hard liquor, and whisky 
as alcoholic beverages and found no significant association [20]. Our study found a 
reduced risk of thyroid cancer in relation to beer and wine consumption, but the 
association was non-significant for liquor consumption. Therefore, the selected sub-
types of alcoholic beverages and the proportion of each alcoholic beverage among 
study population may exert an influence on the observed association between alco-
hol consumption and thyroid cancer risk.

This study also showed a decreased risk of thyroid cancer with younger age at 
initiation and increasing duration of alcohol consumption. These findings were in 
accordance with those from several previous studies [1, 14, 16, 18, 20]. However, 
two prospective cohort studies reported that the frequency and quantity of alcohol 
consumption was not associated with risk of thyroid cancer [12, 19]. Multiple levels 
of alcohol consumption and incomplete information on confounders might contrib-
ute to the inconsistent results. Kabat et al. modeled the median of each category of 
exposure as a continuous variable to test the trend [12], while Meinhold et al. mod-
eled categories of exposure as continuous variable to test the trend [19]. Our study 
used original values of exposure as continuous variable to test the trend. The major-
ity of previous studies was also lacking information on the well-established risk 
factors for thyroid cancer and did not adjusted for them as potential confounding 
variables in their models. Adjustment for these risk factors drew the observed asso-
ciation toward the null in our study population. There was only one previous study 
investigated the association between alcohol consumption and thyroid cancer risk 
by tumor size and reported an inverse association which was not affected by tumor 
size [8]. However, alcohol consumption was associated with a reduced risk of thy-
roid cancer with lager tumor size (>1 cm), but not thyroid microcarcinoma (≤1 cm) 
in our study.

Given the positive correlation between alcohol consumption and smoking, and 
the evidence linking smoking with a reduced risk of thyroid cancer [18], residual 
confounding effect by smoking may bias the association between alcohol consump-
tion and risk of thyroid cancer away from the null. Therefore, we conducted a strati-
fied analysis by smoking status. Our results showed that alcohol consumption was 
borderline significantly associated with a reduced risk of thyroid cancer among non- 
smokers, but not smokers.

Aschebrook-Kilfoy et  al. found significant interactions between UGT2B7 and 
NAT1 genes and alcohol intake in relation to thyroid cancer risk [2], suggesting that 
genetic polymorphisms in detoxification genes might modify the relationship 
between alcohol intake and risk of thyroid cancer. This could also be potential con-
tributor to the inconsistent results from previous studies.

1 Alcohol Consumption and Risk of Thyroid Cancer: A Population Based…
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Potential limitations should be considered when interpreting the findings of this 
study. Information on alcohol consumption was self-reported. Therefore, potential 
recall bias cannot be ruled out. Additionally, the sample size was limited for more 
detailed analyses, such as estimation of associations between alcohol consumption 
and rarer histological subtypes of thyroid cancer, including follicular, medullary, 
and anaplastic thyroid cancers.

This study also had some strengths. The newly developed thyroid cancer cases 
could be exhaustively identified by the population-based study design and linkage 
to the Connecticut Tumor Registry to identify cases. Potential selection bias could 
be limited. All the cases were histologically confirmed to minimize misclassifica-
tion of outcomes. Alcohol consumption was assessed by each type of alcoholic 
beverage. Finally, detailed information on potential confounding factors were col-
lected and controlled for in the analysis.

In conclusion, this study supports the hypothesis that alcohol consumption is 
associated with a reduced risk of thyroid cancer. The observed protective effect 
needs to be clarified by more prospective studies. Additional studies investigating 
the influence of alcohol intake on thyroid hormone and thyroid function could help 
to improve our understanding of the potential mechanism underlying the inverse 
association.
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Chapter 2
Roles of Cytochrome P450 in Metabolism 
of Ethanol and Carcinogens

F. Peter Guengerich and Narayan G. Avadhani

Abstract Cytochrome P450 (P450) enzymes are involved in the metabolism of 
carcinogens, as well as drugs, steroids, vitamins, and other classes of chemicals. 
P450s also oxidize ethanol, in particular P450 2E1. P450 2E1 oxidizes ethanol to 
acetaldehyde and then to acetic acid, roles also played by alcohol and aldehyde 
dehydrogenases. The role of P450 2E1 in cancer is complex in that P450 2E1 is also 
induced by ethanol, P450 2E1 is involved in the bioactivation and detoxication of a 
number of chemical carcinogens, and ethanol is an inhibitor of P450 2E1. Contrary 
to some literature, P450 2E1 expression and induction itself does not cause global 
oxidative stress in vivo, as demonstrated in studies using isoniazid treatment and 
gene deletion studies with rats and mice. However, a major fraction of P450 2E1 is 
localized in liver mitochondria instead of the endoplasmic reticulum, and studies 
with site-directed rat P450 2E1 mutants and natural human P450 2E1 N-terminal 
variants have shown that P450 2E1 localized in mitochondria is catalytically active 
and more proficient in producing reactive oxygen species and damage. The role of 
the mitochondrial oxidative stress in ethanol toxicity is still under investigation, as 
is the mechanism of altered electron transport to P450s that localize inside mito-
chondria instead of their typical endoplasmic reticulum environment.
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species · Mitochondrial toxicity · Chemical carcinogens
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2.1  Introduction to Cytochrome P450 (P450)

The field of P450 research stemmed from work in the areas of the metabolism of 
steroids, drugs, and carcinogens [18, 29]. The human genome contains 57 P450 
(CYP) genes, of which almost all are expressed in some tissue [29]. The P450s are 
classified into families and subfamilies on the basis of sequence similarity [52]. 
However, sequence similarity may or may not be a guide to function with P450s 
[23, 29].

Another way to classify P450s is by the types of substrates they use (Table 2.1) 
[29]. Even this approach has caveats in that some P450s could be placed in multiple 
categories in Table 2.1 (e.g., P450s 1B1 and 27A1) [29]. Another point to make is 
that several human P450s have yet to have functions identified, i.e. those in the col-
umn labeled “unknown.” These are often termed the “orphans [30]. However, even 
when P450s are classified in the “xenobiotics” category and do happen to be able to 
oxidize a substrate found in the body (e.g. P450 3A4), it is not clear that this reac-
tion has a significant physiological role [29]. In general, the mouse orthologues of 
this column of P450s can be deleted without profound physiological effects [26].

Collectively the P450s catalyze about 75% of all reactions involved in the metab-
olism of drugs [81] (some drugs are not readily metabolized, however, and biologi-
cals are not included in this analysis). In the previous analyses [80, 81], the 3A and 
2C Subfamily P450s were those most involved in drug metabolism (i.e., 3A4, 2C9, 

Table 2.1 Classification of Human P450s Based on Major Substrate Class [29]

Sterols Xenobiotics Fatty acids Eicosanoids Vitamins Unknown

1B1a 1A1a 2J2 4F2 2R1a 2A7
7A1a 1A2a 2U1 4F3 24A1b 2S1
7B1 2A6a 4A11 4F8 26A1 2 W1
8B1 2A13a 4B1b 5A1 26B1 4A22
11A1a 2B6a 4F11 8A1a 26C1 4F22
11B1 2C8a 4F12 27B1 4X1
11B2 2C9a 4V2 27C1 4Z1
17A1a 2C18 20A1
19A1a 2C19a

21A2a 2D6a

27A1 2E1a

39A1 2F1
46A1a 3A4a

51A1a 3A5
3A7
3A43

aX-ray crystal structure(s) reported (for human enzyme)
bRat or rabbit X-ray crystal structure reported

F. Peter Guengerich and N. G. Avadhani
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2C19). This pattern still holds for P450s [64]. Further, when one considers 
 oxidation- reduction reactions with all chemicals (for the human enzymes), P450 
catalyze 95% of the reactions. Again, the 3A and 2C Subfamily P450s are most 
prominent [64].

The localization of individual P450s has been reviewed elsewhere [29]. Those 
P450s involved in critical physiological functions are often found only in a few 
relevant tissues, e.g. many of the steroidogenic P450s are found only in the adrenals, 
gonads, etc. Those involved in bile acid processing are generally localized in the 
liver (e.g. P450 7A1). In general, the xenobiotic-processing P450s are localized 
principally in the liver, and some are never found outside of the liver, e.g. 1A2, 7A1 
[29]. However, some of these are also found at lower levels in many other tissues. 
Some caution should be used in reviewing the literature, however, in that much of 
the work is at the mRNA level, not protein.

One of the reasons for the interest in the P450s is their role in the metabolism of 
toxicants and carcinogens. In general, this process of oxidation (and sometimes 
reduction) aids in the removal of chemicals from the body and may, along with 
transporters, be viewed as a mechanism for the body to use a limited set of genes to 
eliminate natural products that could prove harmful if allowed to accumulate in 
cells (e.g. alkaloids, terpenes, flavonoids). In general, the oxidation and reduction 
reactions catalyzed by P450s detoxicate chemicals. However, these same reactions 
also sometimes create electrophilic species that can react with cellular macromole-
cules and initiate biological damage, general with DNA or proteins. DNA damage 
can be misreplicated and fits into the somatic mutation theory of cancer [10]. The 
relevance of metabolism to chemical carcinogenesis was established largely by the 
late James and Elizabeth Miller in animal studies [50, 51]. This same concept 
applies to the toxicity of drugs, with protein damage generally being considered an 
initial event [24, 37].

Almost all of the information on the roles of human P450s in the metabolism of 
carcinogens has been published in the past 26  years [72, 73]. One classification 
indicates that (human) P450s are involved in ~ 2/3 of the reactions in which chemi-
cal carcinogens are bioactivated (Fig. 2.1a) [63]. Six human P450s recount for ~ ¾ 
of these reactions, i.e. P450s 1A1, 1A2, 1B1, 2A6, 2E1, and 3A4 (Fig. 2.1b) [63]. 
However, P450s are also involved in detoxication of chemical carcinogens [63]. The 
complexity of these systems can be seen in the classic 1952 Richardson experiment, 
in which treatment of rats with one carcinogen induced P450s that detoxicate 
another carcinogen and then had a protective role [65]. We now know that a single 
P450 catalyze both activation and detoxication of a single carcinogenic chemical, 
e.g. P450 3A4 oxidizes the hepatocarcinogen aflatoxin B1 to the 8,9-exo epoxide 
(which reacts efficiently with DNA [36]) and to aflatoxin Q1 (3α-hydroxylation 
product), which does not appear to be a carcinogen [77]. This dichotomy appears to 
be due to the presence of multiple binding modes of the substrate (aflatoxin B1) in 
the enzyme active site.

2 P450s, Ethanol, and Carcinogens
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2.2  P450 2E1

The discovery of P450 2E1 followed largely from work on a microsomal ethanol 
oxidizing system [47, 57]. P450 2E1 was characterized in rabbit [43] and rat liver 
[68]. The enzyme is found at highest abundance in liver but also in numerous other 
tissues of relevance to cancer [25] (Table 2.2).

P450 2E1 is also induced by ethanol [47]. The study of this process has been 
complicated, in that ethanol also inhibits the enzyme (as expected for a substrate) 
[82]. Regulation of the CYP2E1 gene is complex and includes both transcriptional 
and post-transcriptional aspects [25].

P450 2E1 substrates include ethanol, a number of drugs (especially anesthetics), 
N-alkylnitrosamines, vinyl monomers, and halogenated hydrocarbons (Table 2.3) 
[29, 31]. Several of these are of interest in that a number of the nitrosamines, vinyl 
monomers, and halogenated hydrocarbons are carcinogens [31]. Nitrosamines are 

AKR 8% 
COX 2% 

P450 66% 
FMO 1% 

NAT 7% 

SULT 13% Other 4% 

P450 1A1 20% 

P450 1A2 17% 

P450 1B1 11% P450 2A6 8% P450 2E1 11% 

P450 3A4 10% 

Other 23% 

A

B

Fig. 2.1 Human enzymes involved in bioactivation of carcinogens [63]. (a) fractions of enzyme 
classes involved in bioactivation; (b) individual human P450 contributions to carcinogen activa-
tion. FMO microsomal flavin-containing monooxygenase, NAT N-acetyltransferase, SULT sulfo-
transferase, AKR aldo-keto reductase, COX cyclooxygenase (prostaglandin synthase)

Table 2.2 Sites of P450 2E1 
expression [29]

Liver
Brain
Esophagus
Lung
Nasal mucosa
Pancreas
Small intestine

F. Peter Guengerich and N. G. Avadhani
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Table 2.3 Pro-carcinogens 
and suspected carcinogens 
known to be bioactivated by 
P450 2E1 [29, 31, 63]

Acrylonitrile
Aniline
Azoxymethane
Benzene
1,3-Butadiene
Carbon tetrachloride
Chloroform
Cisplatin
1,4-Dichlorobenzene
2,2-Dichloro-1,1,1-trifluoroethane
N,N-Diethylnitrosamine
N,N-Dimethylformamide
1,2-Dimethylhydrazine
N,N-Dimethylnitrosamine
Ethanol
Ethyl carbamate (urethane)
Ethylene dibromide
Ethylene dichloride
Furan
4-Ipomeanol
2-Methoxyaniline
Methylene chloride
4-(Methylnitrosamino)-1-(3- 
pyridyl)-1-butanol (NNAL)
4-(Methylnitrosamino)-1-(3- 
pyridyl)-1-butanone (NNK)
N-Nitrosodi-n-propylamine
N-Nitrosodiethanolamine
N-Nitrosoethylbutylamine
N-Nitrosomethylbutylamine
N-Nitrosomethylethylamine
N-Nitrosomethylpropylamine
N-Nitrosomorpholine
N-Nitrosopyrrolidine
Nornitrosonicotine (NNN)
Propylene dichloride
Styrene
Trichloroethylene
Vinyl bromide
Vinyl carbamate
Vinyl chloride
4-Vinyl-1-cyclohexene
Vinylidene chloride

2 P450s, Ethanol, and Carcinogens
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present in tobacco, and the vinyl monomers and halogenated hydrocarbons are used 
on a large scale in industry. These substrates have the general property of small 
molecular size, consistent with the crystal structure of P450 2E1 [60, 61]. However, 
it should be pointed out that even fatty acids can be substrates [61]. Because of the 
induction and inhibition of P450 2E1 by ethanol, the multiples sites of expression of 
the enzyme (Table 2.2), and the relevance to humans drinking ethanol and exposed 
to carcinogens in Table 2.2, the co-carcinogenicity of ethanol has been considered 
in a number of studies with experimental animals [15, 48]. (Co-carcinogenesis stud-
ies involve simultaneous administration of chemicals, as opposed to initiation- 
promotion regimens, with distinct temporal relationships and mechanisms [58]).

2.3  Ethanol Oxidation by P450 2E1

A general view in the alcohol field has been that alcohol dehydrogenase is the most 
relevant enzyme at low concentrations of ethanol and that P450 (2E1) is more 
involved at higher concentrations, i.e. those that would be relevant with high con-
sumption. The situation is also complicated in that catalase can also contribute to 
ethanol metabolism [14, 76].

Even though ethanol has only two carbons and one oxygen, its oxidation has 
several complexities (Fig. 2.2). The general view in the field is that there are no 
receptors as such for ethanol, and essentially all of its biological effects are related 
to acetaldehyde. In aqueous solution, acetaldehyde exists in a roughly equimolar 
equilibrium with its hydrate, a “gem diol” (Fig. 2.2a) [27, 28].

Fig. 2.2 Possible mechanisms of oxidation of ethanol to acetaldehyde and acetic acid [33]. (a) 
oxidation of ethanol to acetaldehyde. (b) oxidation of acetaldehyde by a perferryloxo mechanism 
(Compund I). C, oxidation of acetaldehyde by a ferric peroxide mechanism

F. Peter Guengerich and N. G. Avadhani
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We were interested in kinetic hydrogen isotope effects (KIEs) for ethanol oxida-
tion because of some reports on KIEs for nitrosamine oxidation by liver micro-
somes [41, 49]. Work with recombinant human P450 2E1 showed, not unexpectedly, 
that α-deuterated ethanol showed a 5-fold KIE, expressed in the Km but not kcat 
(Fig.  2.3) [11]. This was shown to be the result of “burst” kinetics, i.e. a rate- 
determining step following product formation [11, 32]. The kinetic analysis is not 
novel [79], and Km is a constant that obviously has nothing to do with Kd here (a 
general axiom in enzymology) [35, 56]. Km even contains kcat as a variable in this 
case [32]. That is, for the simplified expression

Fig. 2.3 Kinetic deuterium isotope effects with human P450 2E1 [11, 12]. The results are pre-
sented in Hanes-Wolff plots ([S]/v vs. [S]). (a) ethanol to acetaldehyde. CH3CH2OH as substrate 
(kcat, 2.7 (± 0.2) min−1, Km 11 (± 2) mM); CH3CD2OH as substrate (■, kcat 2.4 (± 0.1) min−1, Km 53 
(± 6) mM). (b) acetaldehyde to acetic acid. CH3CHO as substrate (□, kcat 7.5 (± 0.5) min−1, Km 0.50 
(± 0.2) mM); CH3CDO as substrate (◆, kcat 5.0 (± 0.4) min−1, Km 1.5 (± 0.3) mM). This research 
was originally published in Bell, L. C., and Guengerich, F. P. [11] Oxidation kinetics of ethanol by 
human cytochrome P450 2E1. Rate-limiting product release accounts for effects of isotopic hydro-
gen substitution and cytochrome b5 on steady-state kinetics. The Journal of Biological Chemistry 
272, 29,643–29,651 and Bell-Parikh, L. C., and Guengerich, F. P. [12] Kinetics of cytochrome 
P450 2E1-catalyzed oxidation of ethanol to acetic acid via acetaldehyde. The Journal of Biological 
Chemistry 274, 23,833–23,840. © The American Society for Biochemistry and Molecular Biology

2 P450s, Ethanol, and Carcinogens
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Km even contains kcat as a variable in this case [32].
We also showed that (human) P450 2E1 can oxidize acetaldehyde to acetic acid 

[12], in support of reports by others with the rat enzyme [45, 75] (Figs. 2.2, 2.3b, c). 
This oxidation also displays burst kinetics [12] and a KIE in the Km parameter. 
Pulse-chase experiments showed that the conversion of radiolabeled ethanol into 
acetic acid was not attenuated by the addition of unlabeled acetaldehyde. However, 
the results cannot be explained by a high affinity of P450 2E1 for acetaldehyde. A 
scheme involving a slow conformational step after the formation of acetaldehyde 
(and acetic acid) has been proposed [12]. Some similar results were found in the 
oxidation of N,N-dimethyl- and N,N-diethyl nitrosamine by P450 2E1 [17].

2.4  Source of Oxidative Stress Due to P450 2E1 in Tissues

A role for P450 2E1 in generation of reactive oxygen species (ROS) is often assumed 
in much of the literature in the field. Much of this view is based on early studies with 
liver microsomes [22, 62] and studies in cell culture [16]. The ROS field is compli-
cated in that the vast majority of the work is in vitro and many of the methods of 
detecting ROS are not validated, e.g. see [40]. In the field, a “gold standard” is  
F2- isoprostane production, which can be measured both in vitro and in vivo [38, 39].

Treatment of rats with typical P450 enzyme inducers did not produce enhanced 
levels of liver isoprostanes, except in the case of barbiturate-type induction [20]. In 
particular, treatment of rats or mice with isoniazid, an established inducer of P450 
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2E1 [68], did not increase isoprostane levels [20, 21]. Further, Cyp2e1−/− mice had 
very similar levels of liver, kidney, brain, and urinary isoprostanes [21]. Thus, P450 
2E1 does not appear to increase global levels of ROS.  Increased levels of ROS 
related to treatment of animals with ethanol are not linked only to induction of P450 
2E1. Further, although the utilization of reducing equivalents (NADPH) by purified 
P450 2E1 is low, it is not inferior to several other (human) P450s we have worked 
with [74, 84].

As has been suggested in the literature [42, 83], ROS production in the presence 
of ethanol is probably not due to P450 2E1 induction per se but possibly to the gen-
eration (and reaction) of CH3CHO· radicals.

The ROS increases following treatment of rats and mice with barbiturates have 
been attributed to induction of nicotinamide N-methyl transferase and depletion of 
pyridine nucleotides to support ROS destruction [21].

2.5  Roles of Mitochondrial P450s

Of the 57 human P450s (Table 2.1), seven are bona fide mitochondrial enzymes 
(11A1, 11B1, 11B2, 24A1, 27A1, 27B1, 27C1). These P450s have distinct roles in 
the metabolism of sterols and fat-soluble vitamins and they utilize electrons sup-
plied by NADPH-adrenodoxin reductase (ADR) and the iron-sulfur protein adreno-
doxin (Adx) [29].

The other 50 P450 proteins, when expressed, are targeted to the endoplasmic 
reticulum (ER). However, fractions of these P450s can, in some cases, be found in 
mitochondria. This was first shown in rats, where P450 2B1 could be found in mito-
chondria and catalyze the oxidation of aflatoxin B1 [53]. Further studies established 
this phenomenon, i.e. partial localization in mitochondria and catalytic activity 
there [55, 71]. Studies from several groups showed that mitochondrial Adx (plus 
ADR) and bacterial ferredoxin (plus NADPH-ferredoxin reductase) could effi-
ciently donate electrons to mitochondria-localized P450 1A1, 2E1, 2C8, 2B1, 2D6, 
3A4, and 17A1 [5, 6, 9, 19, 59, 70], demonstrating that mitochondria-localized 
P450s are catalytically active. It was also shown that the N-terminal acidic domain 
of Adx interacted with mitochondria-localized P450 1A1 through charge-charge 
interaction [1]. These Adx-interacting domains are conserved in other P450 Family 
1 members and also in P450s 2B1, 2B4, 2D6, 2E1, 3A4, 17A1, and 21A2 [5, 6, 9, 
46, 59, 70].

One of the important factors in signaling proteins for endoplasmic reticulum 
(ER) localization is signal recognition particle (SRP) [69]. SRP interacts with 
hydrophobic residues in the N-terminal regions of proteins declined for ER local-
ization. We reasoned that the introduction of charged residues in the N-terminal 
region of rat P450 2E1 might lead to decreased SRP recognition and increased 
mitochondrial import [7]. This hypothesis was tested, and positive results were 
obtained, particularly with the Mt++ derivative (Fig. 2.4). Mitochondria from cells 

2 P450s, Ethanol, and Carcinogens



24

transfected and expressing the Mt++ variant also showed increased mitochondrial 
ROS production, as judged by isoprostane measurements (Fig. 2.5). When the vari-
ants were expressed in yeast, the cell showed similar phenotypes when the yeast 
were grown in glucose medium regardless of the N-terminal sequence (Fig. 2.6). 
However, with the non-fermentable carbon source lactic acid in the media, the cells 
transfected with the Mt++ variant, localized to the mitochondria, showed selective 
toxicity. The phenotype was petite, indicating a loss of mitochondrial function.

Consistent with the data obtained with COS and yeast cells expressing the Mt++ 
variant of P450 Δ2E1, hepatic mitochondria from rats fed ethanol showed a time- 
dependent increase in F2-isoprostane production, while hepatic microsomal mem-
branes from these rats showed no significant increase [7]. The increased 
mitochondrial ROS production was accompanied by attenuated mitochondrial DNA 
contents, as well as cytochrome c oxidase and other electron transport complex 
activities, suggesting that mitochondrial P450 2E1 promotes alcohol-mediated 
mitochondrial dysfunction [1, 2, 13, 66, 70]. A recent study with livers of alcohol- 
fed mice suggested that mitochondrial P450 2E1 contributes significantly to the 
metabolic profiles of the liver tissue with several P450 2E1 substrates, including 
4-nitrophenol, aniline, and styrene [34].

Studies with rat P450 2E1 [3, 67] showed that the N-terminal 160 amino acid 
region of the protein contained signals for targeting to both the ER and mitochon-
dria. The positively charges residues of immediately upstream of the  transmembrane 

Fig. 2.4 A mutational approach for altering the bimodal targeting efficiency of rat P450 2E1 [7]. 
(a) the WOLFPSORT program was utilized to alter the SRP binding and mitochondria-targeting 
efficiencies of the N-terminal signal regions. (b) predicted targeting efficiencies of WT and mutant 
P450 2E1 proteins. This research was originally published in Bansal, S., Liu, C. P., Sepuri, N. B., 
Anandatheerthavarada, H. K., Selvaraj, V., Hoek, J., Milne, G. L., Guengerich, F. P., and Avadhani, 
N. G. [7] Mitochondria-targeted cytochrome P450 2E1 induces oxidative damage and augments 
alcohol-mediated oxidative stress. The Journal of Biological Chemistry 285, 24,609–24,619.  
© The American Society for Biochemistry and Molecular Biology
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domain of the protein functioned as a cryptic mitochondria targeting signal. 
Furthermore protein kinase A-mediated phosphorylation at Ser-129 enhanced mito-
chondrial translocation of the protein through enhanced affinity for binding to cyto-
solic HSP70 chaperone protein—which has been implicated in presenting 

Fig. 2.5 Ethanol-induced F2-isoprostanes in P450 2E1-expressing cells and in liver fractions from 
ethanol-treated rats [7]. (a) F2-isoprostanes were assayed using gas chromatography-mass spec-
trometry. Asterisks represent significant increase in F2-isoprostanes in ER+, Mt+, and Mt++ cells 
after ethanol treatment (p  <  0.05). Values represent the means ± SD of three assays. B, F2- 
isopreostanes were measured in mitochondria and microsomes isolated from the livers of rats fed 
with alcohol for 2–8 weeks (W) and pair-fed controls. In each case 100 μg of protein was used. The 
means ± SD in the 8-week-fed rats were based on assays carried out in three rats each in control 
and fed groups. Asterisks represent significant difference (p < 0.05) from pair-fed controls. The 
values presented in boxes below the graph indicate the ratios of P450 (CYP) 2E1 contents between 
pair-fed controls and alcohol-fed rat livers. This research was originally published in Bansal, S., 
Liu, C.  P., Sepuri, N.  B., Anandatheerthavarada, H.  K., Selvaraj, V., Hoek, J., Milne, G.  L., 
Guengerich, F. P., and Avadhani, N. G. [7] Mitochondria-targeted cytochrome P450 2E1 induces 
oxidative damage and augments alcohol-mediated oxidative stress. The Journal of Biological 
Chemistry 285, 24,609–24,619. © The American Society for Biochemistry and Molecular Biology
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mitochondrial passenger proteins to mitochondrial outer membrane translocators. 
Subsequent work [7] showed that the hydrophobicity of the N-terminal targeting 
domains of P450 Family 2 proteins determines their affinity for SRP binding and 
thus the level of ER vs. mitochondrial targeting [7]. P450 2E1—with a more hydro-
phobic N-terminus—was mostly targeted to the ER, and proteins with higher hydro-
philicity were increasingly targeted to mitochondria.

Analysis of human liver samples from our collection showed varying degrees of 
mitochondrial localization, > 90% in some cases [8] (Fig. 2.7). DNA sequence anal-
ysis showed the presence of nucleotides coding for positively charged residues in 
the N-terminal region of P450 2E1  in these human samples. Liver samples with 
high mitochondrial P450 2E1 contents showed reduced cytochrome c oxidase 

Fig. 2.6 Mitochondrial P450 2E1-induced respiratory deficiency in yeast cells [7]. (a) mitochon-
drial and microsomal CYP2E1 contents in yeast cells stably expressing WT and mutant rat P450 
(CYP) 2E1 cDNA constructs. The mitochondrial and microsomal proteins (50 μg each) were ana-
lyzed using immunoblotting with anti-P450 2E1. Two identically run (parallel) blots were probed 
with antibody to the mitochondria-specific marker Tim23 and the microsome-specific marker doli-
cholphosphate mannose synthase (DPMS). (b), yeast cells expressing ER+, WT, and Mt++ rat P450 
2E1 were grown in yeast extract/peptone/dextrose medium supplemented with appropriate amino 
acids. Cells (~ 2.0 OD600 units) were pelleted and resuspended in 1 ml of sterile water. The culture 
was serially diluted 10 times, and 10 μl of each dilution was spotted onto plates containing 2% 
glucose (w/v) (left panel) and 2% lactate (w/v) (right panel), which were incubated at 30 °C for 
4  days. This research was originally published in Bansal, S., Liu, C.  P., Sepuri, N.  B., 
Anandatheerthavarada, H. K., Selvaraj, V., Hoek, J., Milne, G. L., Guengerich, F. P., and Avadhani, 
N. G. [7] Mitochondria-targeted cytochrome P450 2E1 induces oxidative damage and augments 
alcohol-mediated oxidative stress. The Journal of Biological Chemistry 285, 24,609–24,619.  
© The American Society for Biochemistry and Molecular Biology
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Fig. 2.7 Interindividual variations in P450 2E1 content of human liver samples [8]. (a) immunob-
lotting analysis of mitoplast (Mt) and microsomal (Mc) fractions isolated from human liver sam-
ples (50 μg of protein each) using polyclonal antibodies to human P450 (CYP) 2E1 (1:1000, v/v) 
and the mitochondrial marker protein mtTFA (1:3000, v/v) and a monoclonal antibody to micro-
somal NADPH-P450 reductase (1:1500, v/v). (b) densitometric analysis was performed to deter-
mine the distribution of P450 2E1  in human mitochondria and microsomes. (c) immunoblot 
analysis (with anti-human P450 2E1) of human liver mitochondrial and microsomal proteins from 
liver samples (HL, ‘human liver’) HL114 and HL134, subjected to limited trypsin digestion 
(150 μg/mg protein, 20 min on ice). (d) N-terminal amino acid sequence of human P450 2E1 pro-
tein indicating the ER targeting domain, mitochondrial targeting domain, and proline-rich domain. 
Variations within the putative signal sequence region are shown by the arrows. This research was 
originally published in Bansal, S., Anandatheerthavarada, H.  K., Prabu, G.  K., Milne, G.  L., 
Martin, M. V., Guengerich, F. P., and Avadhani, N. G. [8] Human cytochrome P450 2E1 mutations 
that alter mitochondrial targeting efficiency and susceptibility to ethanol-induced toxicity in cel-
lular models. The Journal of Biological Chemistry 288, 12,627–12,644. © The American Society 
for Biochemistry and Molecular Biology
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 activity and markedly depleted cytochrome c oxidase I, IVi1, and Vb subunits [8]. 
Consisted with observations with the rat P450 2E1, the N-terminal 160 amino acids 
of human P450 2E1 were sufficient to direct the organelle localization of P450s [8]. 
Accordingly, this region could be fused to a reporter protein (dihydrofolate reduc-
tase, DHFR) to monitor membrane localization. Sequence analysis of the N-terminal 
coding regions cDNAs from human liver samples showed W23R and W30R substi-
tutions and, as with rat P450 2E1 [7], the N-terminal sequence variants with the 
more basic residue substitutions (i.e., W23R/W30R) showed higher mitochondrial 
translocation and more mitochondrial ROS production (Fig. 2.8). In other assays, 
mitochondria from HepG2 cells transfected with the mitochondria-directed variants 
showed increased uncoupled respiratory rates and partial mitochondrial DNA deple-
tion (Fig. 2.9). Thus, although the direct role of P450 2E1 in ROS production at the 
whole organ level remains suspect, the mitochondria-targeted P450 2E1 appears to 
augment alcohol toxicity by inducing mitochondrial respiratory dysfunction.

2.6  Future Questions

Collectively, the studies with mitochondria show a selective response of P450 2E1 
localized there, in terms of ROS production. The mitochondrial P450 2E1 showed a 
similar catalytic activity in N,N-dimethylnitrosamine oxidation (as the microsomal 
P450 2E1) [7]. The results, taken collectively, argue for a selective role of mitochon-
drial P450 2E1 in ethanol toxicity. Exactly how this relates to ethanol-linked cancer 
is not clear. P450 2E1 may be generating more mitochondrial DNA adducts, and 
there is evidence for a higher level of DNA adducts in mitochondria with some 
carcinogens [4, 54, 78]. What is not clear is how genetic mutations in the mitochon-
drial DNA would yield tumors, in the context of current theories regarding roles of 
mutations in oncogenes and tumor suppressor genes.

Another basic question is how Adx interacts with mitochondrial P450 2E1 to 
deliver electrons. Several other human P450s have now been found to have signifi-
cant fractions localized in mitochondria (i.e., 1B1, 2C8, 2D6) [5, 6, 9, 29, 70] and 
this is a similar question in these cases. One possibility is that electron transfer to 
the P450 with Adx occurs through a different domain, or with altered efficiency as 
with the normal redox partner NADPH-P450 reductase (an ER protein) and may 
determine the relative activities. Additionally, the mitochondria localized P450s 
1A1, 2B1, and 2E1 show significant changes in their α-helical and β-sheet contents, 
suggesting altered folding. Many of these questions remain to be addressed in a 
more detailed manner.
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Fig. 2.8 Effects of ethanol on cellular toxicity in cells expressing WT and mutant human P450 
2E1 constructs [8] (a) cellular GSH levels (nmol/mg protein). (b) ethanol-induced F2-isoprostanes 
in human P450 2E1-expressing cells, assayed using gas chromatography-mass spectrometry 
(expressed as ng/2 × 106 total cells). (c) mitochondrial membrane potential (ΔΨm) measured spec-
trophotometrically in stable cells using a fluorescent dye, tetramethylrhodamine methyl ester 
(TMRM). Briefly, cells were incubated with and without ethanol and also treated with disulfiram 
(25 μM) overnight. Cells were washed and loaded with 150 nM tetramethylrhodamine methyl ester 
in an assay involving a Chameleon microplate reader (excitation wavelength 535 nm, emission 
wavelength 590 nm). For a control, 10 μM carbonyl cyanide m-chlorophenylhydrazone (CCCP) 
was used in each series. *, p  <0.05; **, p <0.001. Values represent means ± SE from three inde-
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Anandatheerthavarada, H. K., Prabu, G. K., Milne, G. L., Martin, M. V., Guengerich, F. P., and 
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Fig. 2.9 Subcellular distribution and ethanol-mediated ROS in HepG2 cells stably express-
ing WT or mutant human P450 2E1. [8] (a) mitochondria and microsomes from HepG2 cells 
stably expressing human P450 2E1 cDNAs. Mitochondrial and microsomal fractions (50  μg 
of protein) were subjected to immunoblotting analysis (anti- human P450 2E1). The blot was 
also co- developed with anti-NADPH-P450 reductase (a microsomal marker) and porin (a 
mitochondrial marker) to assess relative cross-contamination. (b) percentage subcellular dis-
tribution was calculated based on band intensity. (c) ROS levels in whole cells grown with or 
without ethanol (300 mM) were estimated using the dye dichlorofluorescin (DCF) as the substrate.
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Chapter 3
Glutathione and Transsulfuration  
in Alcohol- Associated Tissue Injury 
and Carcinogenesis
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Abstract Glutathione (GSH) is the most abundant non-protein thiol, attaining cel-
lular concentrations in the millimolar range. GSH functions to protect cells against 
endogenous and exogenous electrophiles. In addition, GSH serves as a cofactor for 
the GSH peroxidase family of enzymes which metabolize H2O2 as well as lipid 
peroxides. Through the action of glutathione S-transferase family of enzymes, GSH 
is conjugated to a variety of electrophilic endogenous compounds and exogenous 
chemicals, and thereby facilitates their efficient and safe elimination. Through the 
transsulfuration pathway, GSH biosynthesis is metabolically linked with cellular 
methylation, which is pivotal for epigenetic gene regulation. Accumulating evi-
dence suggests that the underlying mechanisms of alcohol-associated tissue injury 
and carcinogenesis involve: (i) generation of the electrophilic metabolite acetalde-
hyde, (ii) induction of CYP2E1 leading to the formation of reactive oxygen species 
and pro-carcinogen activation, and (iii) nutritional deficiencies, such as methyl 
groups, resulting in enhanced susceptibility to cancer development. In this context, 
clinical and experimental investigations suggest an intimate involvement of GSH 
and related enzymes in the development of alcohol-induced pathological  conditions. 
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The aim of this review is to provide an overview of the GSH biosynthesis, cellular 
transsulfuration/transmethylation pathways, and their implications in the pathogen-
esis and treatment of alcohol-related disease and cancer.

Keywords Alcoholic · Cancer · Oxidative stress · Glutathione · Transsulfuration · 
Methylation

3.1  Introduction

Glutathione (GSH) is a ubiquitous tripeptide composed of glutamate, cysteine and 
glycine. It presents as the most prevalent non-protein thiol in mammalian cells. 
Extensive research has revealed numerous and diverse cellular functions of GSH 
[1]. It detoxifies xenobiotics and endogenous metabolites through non-enzymatic or 
enzymatic mechanisms. It functions as a major antioxidant to protect cells against 
oxidative damage caused by reactive oxygen species (ROS). As such, it is essential 
in maintaining the intracellular redox balance and the thiol moieties of proteins. 
Through such processes, GSH can modulate protein function via redox post- 
translational modification. It also plays a role in the regulation of nitric oxide 
homeostasis. Through the transsulfuration pathway, GSH participates in cellular 
shuttling of other sulfur amino acids [2]. Given the diversity and importance of 
these functions of GSH, it should come as no surprise that alterations in GSH levels 
have been found to be associated with numerous human pathological conditions, 
including cancer, liver disease, cardiovascular disease, neurological disorders, dia-
betes, and other disease conditions [3].

Oxidative stress occurs when ROS are produced at levels exceeding those 
capable of being sequestered by normal cellular antioxidant processes. Chronic 
ethanol consumption induces oxidative stress in organs via cellular pathways 
that promote the overproduction of reactive molecules (including ROS and elec-
trophilic products, such as acetaldehyde and lipid peroxidation-derived products) 
and/or the diminution of antioxidant defenses, such as GSH [4]. Studies in human 
subjects and animal models have implicated an important mechanistic role for 
disrupted GSH homeostasis in the pathogenesis of alcohol-related non-cancer-
ous diseases, particularly alcoholic liver disease [5]. The involvement of changes 
in the GSH redox homeostasis in alcohol-associated cancers, however, appears 
more complex and remains to be elucidated. This review focuses on the links 
between GSH, the transsulfuration pathway, and alcohol-induced tissue injury, 
and their involvement in the development and therapy of alcohol-related 
cancers.
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3.2  GSH Biosynthesis, Metabolism and Function

GSH is synthesized by two successive enzymatic reactions (Fig. 3.1) [6]. The first 
reaction, catalyzed by glutamate-cysteine ligase (GCL), couples glutamate and cys-
teine to form γ-glutamylcysteine (γ-GC). The second reaction couples γ-GC with 
glycine and is catalyzed by GSH synthase (GSS). Each of these enzymatic reactions 
consumes one molecule of ATP per catalytic cycle. The formation of γ-GC by GCL 
is considered the rate-limiting enzymatic step in GSH biosynthesis. For this reason, 
GCL rather than GSS has been the principal target of drugs designed to inhibit GSH 
biosynthesis [7] and to generate animal models with GSH deficiency [8]. GCL of 
higher eukaryotic organisms, in its most catalytically efficient form, is a heterodi-
mer composed of a catalytic (GCLC) and a modifier (GCLM) subunit, each of 
which is encoded by separate genes. As its name implies, GCLC possesses all of the 
catalytic activity of GCL, and GCLM serves to optimize the kinetic properties of 
GCLC [9]. Both the GCLC and GCLM genes are up-regulated by electrophiles or 
agents that cause oxidant stress [10] via transcriptional mechanisms reminiscent of 
phase II drug metabolizing-enzyme genes. While GCLC and GCLM genes are com-
monly found up-regulated together, cell type-specific differential expression of 

Fig. 3.1 Scheme of γ–glutamyl cycle for glutathione (GSH) biosynthesis and catabolism. 
GSH is synthesized by two successive enzymatic reactions. Glutamate-cysteine ligase (GCL) cou-
ples glutamate (Glu) and cysteine (Cys) to form γ-glutamylcysteine (γ-GC), which is the rate- 
limiting step in GSH synthesis. GSH synthase (GSS) then couples γ-GC with glycine to form 
GSH. GSH can be transported out of the cell where it is catabolized by γ-glutamyl transferase 
(GGT). GGT cleaves the γ-glutamyl amide bond between Glu and Cys releasing cysteinylglycine 
(Cys-Gly) and γ–glutamyl amino acids. Cys-Gly can be further cleaved by an extracellular dipep-
tidase (DP), producing free Cys and Gly for reuse by the cell. γ–glutamyl amino acids can be taken 
up by the cell to form γ-GC, essentially bypassing the need for catalysis by GCL
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GCLC and GCLM transcripts suggest independent regulation of these subunits [8]. 
Current evidence indicates that most, if not all, of the GSH biosynthetic activity 
resides in the cytoplasm [11]. The GSH, thus produced, is further distributed into 
intracellular organelles including the mitochondria, endoplasmic reticulum (ER) 
and nuclei [12].

Due to the presence of a unique γ-glutamyl amide bond between the γ-carbon of 
the glutamate side chain and the amino group of cysteine, GSH cannot be broken 
down by peptidases inside the cell. Rather, GSH must be transported through the 
plasma membrane and out of the cell, where it is metabolized by γ-glutamyl trans-
ferases [GGTs] [6]. These enzymes catalyze the ATP-dependent cleavage of the 
γ-glutamyl amide bond between glutamate and cysteine, and generates cysteinylg-
lycine that can be further cleaved by an extracellular dipeptidase (DP). This reaction 
produces free cysteine and glycine, which can then be used by cells. These reactions 
for synthesis and degradation of GSH form a metabolic pathway known as the 
γ-glutamyl cycle [13] (Fig. 3.1). By way of this cycle, GSH participates in amino 
acid transport for cellular re-synthesis of GSH and other proteins. In addition, it 
represents a salvage pathway by which GSH can be produced independently of 
GCL [14].

GSH is the most abundant cellular thiol, attaining concentrations from 1 to 
10 mM depending on the cell type [11, 15, 16]. The oxidized form of GSH is gluta-
thione disulfide (GSSG). The cellular GSH/GSSG ratio has been used as an index 
of cellular redox status. Under normal circumstances, this ratio exceeds 10:1; a 
decrease in GSH/GSSG ratio is commonly associated with increased cellular oxida-
tive stress [17]. GSH serves to protect cells against toxicity arising from exposure to 
excessive amounts of endogenous and exogenous electrophiles [7]. It scavenges 
hydroxyl radical and superoxide directly, and serves as a cofactor for the glutathione 
peroxidase (GPX) enzymes in metabolizing H2O2, as well as lipid peroxides [18]. 
Through the action of the glutathione S-transferase (GST) family of enzymes, GSH 
may be conjugated to a variety of electrophilic endogenous compounds and exoge-
nous chemicals, and thereby facilitates their efficient and safe elimination [19]. 
Together, GSH and GSSG function as an important cellular redox buffering system 
that has been suggested to be involved in determining cell fate decisions, such as 
proliferation and apoptosis [20].

In subcellular compartments, GSH plays a pivotal role in the normal function-
ing of mitochondria, where oxygen consumption and generation of ROS occurs. 
GSH in the nucleus maintains the redox status of critical protein sulfhydryl 
groups that are necessary for expression, transcription activity, and DNA repair 
[21]. In contrast to other organelles, GSH in the endoplasmic reticulum exists 
more in the oxidized state (GSSG), which is believed to be necessary for 
 providing the appropriate environment for assembly and secretory pathways for 
proteins [22].
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3.3  The Transsulfuration Pathway

Transsulfuration is a biochemical pathway that connects glutathione biosynthesis to 
the metabolism of sulfur-containing amino acids, viz., methionine and cysteine 
(Fig. 3.2) [23]. In the methionine cycle, methionine forms S-adenosylmethionine 
(SAM) in a reaction catalyzed by methionine adenosyltransferase (MAT). SAM is 
converted to S-adenosylhomocysteine (SAH) by the actions of methyltransferases 
(MTs), which transfer the methyl group to accepting molecules. Homocysteine is 
then derived from SAH via a reversible reaction catalyzed by SAH hydrolase 
(SAHH). Methionine can be regenerated from homocysteine by one of two meth-
ylation pathways. In the first, methionine synthase (MS) catalyzes the transfer of a 

Fig. 3.2 Major enzymes and intermediates in cellular transmethylation-transsulfuration 
pathways. In the liver, the transsulfuration pathway connects transmethylation cycle (methionine 
cycle) to glutathione (GSH) biosynthesis. Methionine forms S-adenosylmethionine (SAM), the 
major biological methyl donor, by the action of methionine adenosyltransferase (MAT). SAM is 
then converted to S-adenosylhomocysteine (SAH) by the actions of various methyltransferases 
(MTs). These MTs transfer the methyl group to accepting molecules (e.g., DNA, RNA and pro-
teins) undergoing methylation. Homocysteine is derived from the hydrolysis of SAH by the action 
of SAH hydrolase (SAHH). In the methionine cycle, methionine can be regenerated from homo-
cysteine by one of two remethylation pathways. In one pathway (1), methionine synthase (MS) 
catalyzes the transfer of a methyl group from N5-methyltetrahydrofolate (MTHF) to homocysteine 
creating methionine and tetrahydrofolate (THF); this reaction requires vitamin B12 (B12) as a 
cofactor. In the other pathway (2), betaine is the source of the methyl group transferred to homo-
cysteine, which is catalyzed by a zinc (Zn)-dependent enzyme, betaine homocysteine methyltrans-
ferase (BHMT). The transsulfuration pathway starts with homocysteine being irreversibly 
converted to cystathionine by the enzyme cystathionine-β-synthase (CBS). Cystathionine is further 
converted to cysteine by cystathionine-γ-lyase (CL). Cysteine can then feed GSH biosynthesis
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methyl group from N5-methyltetrahydrofolate (MTHF) to homocysteine creating 
methionine and tetrahydrofolate (THF); this reaction requires vitamin B12 as a 
cofactor. In the second pathway, betaine serves as the source of the methyl group 
transferred to homocysteine, a reaction catalyzed by the zinc-dependent enzyme 
betaine homocysteine methyltransferase (BHMT). The transsulfuration pathway 
involves homocysteine being irreversibly converted to cystathionine by the enzyme 
cystathionine-β-synthase (CBS). Cystathionine is converted to cysteine by 
cystathionine-γ-lyase (CL). The resulting cysteine can then be used for GSH bio-
synthesis. In the liver, approximately 50% of the cysteine used for GSH synthesis is 
derived from the transsulfuration pathway from methionine [24, 25].

The functional importance of these metabolic pathways is underscored by 
their essentiality for cellular methylation and for the maintenance of cellular 
redox homeostasis. The intermediate, SAM, serves as a primary methyl donor 
participating in epigenetic gene regulation, protein stability, and phospholipid 
and neurotransmitter production [26]. Through the transsulfuration pathway, 
SAM has been shown to increase GSH, inhibit lipid peroxidation, and protect 
against oxidative stress associated with ischemia-reperfusion injury in brain tis-
sues [27]. Deficiencies in enzymes of the transsulfuration pathway may lead to 
ROS generation, homocysteine accumulation and macrophage synthesis of proin-
flammatory molecules, and thereby contribute to human pathologies like athero-
sclerosis and tumor development [23]. Homocysteine accumulation induces fibrin 
deposition, oxidant stress, cytokine release and inflammation, promoting athero-
sclerosis [28].

3.4  Glutathione and Transsulfuration in Alcohol-Related 
Non-Cancerous Diseases

Alcohol consumption can cause a variety of health issues. Heavy drinking is asso-
ciated with numerous non-cancerous health conditions, including liver disease, 
cardiovascular disease, disorders of the digestive tract, pulmonary disease, and 
neurobehavioral disorders. Oxidative stress appears to be intimately involved in 
the initiation and progression of these diseases [4]. Alcohol consumption induces 
oxidative stress through a variety of cellular changes; an important one involves 
compromised cellular antioxidant defense mechanisms including alterations in 
GSH [4]. GSH levels and/or its redox status (e.g., GSH/GSSG ratio) in the plasma 
and tissues from ethanol-fed animals and chronic alcoholics have been investi-
gated in numerous studies. In rodents, chronic ethanol consumption caused 
decreases in heart cytosolic and mitochondrial GSH levels and concomitant 
increases in cytosolic and mitochondrial levels of lipid peroxidation and protein 
carbonyls; such compromised oxidant buffering capacity has been proposed to 
contribute to the pathogenesis of alcoholic cardiomyopathy [29]. The impact of 
chronic alcoholism on systemic and pulmonary GSH redox status was investigated 
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in a cohort comprising healthy alcohol- dependent subjects and control subjects 
[30]. Chronic alcoholics showed dramatic oxidant stress in the alveolar space 
manifesting as decreased GSH, increased GSSG, and a corresponding oxidative 
shift in the redox potential of GSH/GSSG. Systemic oxidative stress was observed 
in alcoholics who also smoked. Interestingly, alcohol-induced chronic oxidant 
stress in the alveolar space may sensitize alcohol abusers to acute respiratory dis-
tress syndrome [31].

The liver is a major organ subject to ethanol-induced toxicity. There is a wealth 
of data from studies in human and experimental animals documenting ethanol- 
induced changes in hepatic GSH homeostasis, including GSH/GSSG and GSH- 
related antioxidant enzymes [32–35]. Collectively, these studies suggest that 
depletion of hepatic GSH, particularly mitochondrial GSH, is one of the early 
changes associated with chronic ethanol consumption [36]. Importantly, plasma 
GSH concentrations are inversely correlated with the degree of liver damage and 
hepatic lipid peroxidation [32–34]. Prolonged ethanol consumption has been 
reported to inhibit multiple steps in methionine metabolism and transsulfuration 
pathways in the liver, resulting in increased homocysteine and SAH levels, and a 
lowered heptaic SAM/SAH ratio [37, 38]. Enzymes affected directly or indirectly 
by ethanol include MAT, BHMT and various methytransferases [37, 39]. The detri-
mental consequences of these changes include, but are not limited to, dysregulation 
of gene expression (due to altered DNA methylation), homocysteine-promoted 
inflammation, and inhibition of GSH biosynthesis [37, 39]. Importantly, serum lev-
els of intermediates of the transsulfuration pathway (such as cystathionine) have 
been proposed as diagnostic markers for the severity of alcoholic liver disease 
(ALD) [40].

In a recent study, we utilized a transgenic mouse model to elucidate the role of 
GSH redox homeostasis in the hepatic response to chronic ethanol consumption 
[41]. Global disruption of the Gclm gene (GCLM knockout) results in mice that 
have greatly reduced (10–40% normal) tissue GSH and lower plasma GSH/GSSG 
[42]. In the liver, 85% depletion of GSH results in an oxidative shift of hepatic 
GSH redox potential by 65 mV, 60% decrease in mitochondrial GSH pool and yet 
mitochondrial functioning remains intact [43]. Thus, GCLM knockout (KO) mice 
represent a model of chronic hepatic and systemic oxidative stress. Following 
chronic ethanol consumption, these mice are unexpectedly protected from etha-
nol-induced steatosis and liver damage [41]. At the molecular level, this protective 
phenotype appears to involve following beneficial cellular adaptions: (i) suppres-
sion of lipogenic genes and induction of genes involved in fatty acid oxidation, (ii) 
induction of the nuclear-factor-erythroid 2–related-factor 2 (NRF2) antioxidant 
response, and (iii) activation of the AMP-activated protein kinase (AMPK) meta-
bolic signaling pathway [41]. Our study showed unconventional beneficial cellu-
lar consequences associated with GSH deficiency, implying that hepatic GSH 
homeostasis may function to modulate metabolic and stress responses to ethanol 
consumption.
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3.5  Alcohol-Mediated Carcinogenesis

Ethanol and its direct metabolite acetaldehyde have been identified as human car-
cinogens by the International Agency for Research on Cancer (IARC). Available 
epidemiological studies have established that alcohol consumption is strongly asso-
ciated with an increased risk for cancers of stomach, oropharynx, larynx, oesopha-
gus, head and neck, liver, pancreas, female breast, colorectum, and gallbladder 
[44–46]. In this context, alcohol is estimated to have contributed to 3.2–3.7% and 
5.8% of cancer deaths worldwide and in the United States, respectively [47].

Drinking patterns play an important role in influencing the relationship between 
alcohol and cancer risk. An increased risk of breast cancer is associated with 
chronic alcohol consumption and it occurs in a dose-dependent manner [48, 49]. 
Consumption of 10 g alcohol each day raises the risk by 8% for post-menopausal 
breast cancer, 9% for pre-menopausal breast cancer, and 10% for overall breast 
cancer [49]; risk increases by ≈7% for every additional 10 g alcohol consumed 
each day [49]. A dose-dependent association also exists between lifetime alcohol 
intake and the risk of upper-aero digestive tract (UADT) cancer (e.g., of the oral 
cavity, pharynx, larynx or oesophagus) (multivariable-adjusted relative risk was 
2.67 for an intake of ≥40 g/day, and 1.16 for a 10 g/day increment in intake) [50]. 
For the lower digestive tract, longer duration and higher amount of alcohol con-
sumption were associated with increased colorectal cancer risk (relative risk was 
2.24 for ≥30 g/day) [51–54]. While the main causal factor of hepatocellular car-
cinoma (HCC) is chronic infection with hepatitis B (HBV) and C (HCV) viruses, 
alcohol intake represents an independent risk factor for HCC [55, 56]. Chronic 
ethanol consumption can cause a spectrum of ALDs, which clinically can mani-
fest as steatosis, steatohepatitis, fibrosis, and cirrhosis [57]. Only ≈1~2% of cir-
rhotic patients develop HCC [58]. Daily alcohol ingestion exceeding 20.44 g was 
associated with higher risks of both liver cancer occurring and liver disease mor-
tality [59]. The dose- response relationship between alcohol consumption and 
liver cancer was apparent with relative risks of 1.54 for 50 g/day, 2.14 for 75 g/
day, 3.21 for 100 g/day, and 5.20 for 125 g/day [60]. It should be noted that a 
J-shaped dose-response relationship between alcohol consumption and all-cause 
or all-cancer mortality was observed, implicating a possible beneficial effect of 
light drinking [61–63].

The exact molecular mechanisms causing alcohol-associated carcinogenesis are 
not well understood. Several have been proposed and are reviewed in depth else-
where [58, 64, 65]. Alcohol is thought to exert carcinogenic effects at many levels, 
including acetaldehyde formation, induction of CYP2E1, oxidative stress, epigen-
etic alterations due to a reduced capacity for methyl moiety transfer, and modula-
tion of cellular growth [58]. Alcohol is metabolized primarily via oxidation to 
acetaldehyde through the actions of alcohol dehydrogenases (ADHs) and, to a 
lesser extent, CYP2E1 and catalase. Acetaldehyde is then oxidatively detoxified to 
acetate by the aldehyde dehydrogenase enzymes (ALDHs) [66]. Acetaldehyde is a 

Y. Chen et al.



45

highly reactive molecule capable of adducting DNA and proteins [67, 68]. 
Mitochondrial ALDH2 is the primary ALDH enzyme responsible for the elimina-
tion of acetaldehyde [69]. Human subjects carrying a defective allele of the ALDH2 
gene (ALDH2*2 allele) have a greatly reduced capacity (10–45% normal in hetero-
zygotes and 1–5% normal in homozygotes) to metabolize acetaldehyde [70]. 
Epidemiological studies have revealed these individuals to be highly susceptible to 
the development of gastrointestinal cancers following excessive alcohol consump-
tion [71]. Following chronic ethanol consumption, acetaldehyde-DNA adducts are 
elevated to a greater extent in the liver and stomach of Aldh2 KO mice than in wild-
type mice [72, 73]. Studies in humans and experimental animals have established 
that acetaldehyde- DNA adduct formation is an initial step in ethanol-induced carci-
nogenesis [74]. Alcohol induction of CYP2E1 serves as an important molecular 
pathway by which ethanol can promote carcinogenicity [65]. Specifically, CYP2E1 
activation may bioactivate other procarcinogens and is an important cellular source 
of ROS formation, including superoxide anion, hydrogen peroxide and the lipid 
peroxidation by- products malondialdehyde and 4-hydroxynonenal (4-HNE) [65]. 
4-HNE can form highly mutagenic DNA-adducts; such adducts are more frequently 
observed in advanced stages of ALD [75, 76]. In addition to CYP2E1 activation, 
ethanol- induced oxidative stress can arise from dysfunctional mitochondrial respi-
ration, iron overload, inflammation and/or compromised antioxidant defenses [77]. 
The epigenetic aspect of alcohol-induced carcinogenesis has been the subject of 
extensive studies in recent years and is covered in comprehensive reviews else-
where [78, 79]. Accumulating lines of evidence suggest that ethanol consumption 
causes aberrant patterns of DNA methylation and thereby altered gene expression 
by inhibiting key enzymes involved in SAM bioavailability and DNA methyltrans-
ferases [79]. Finally, chronic ethanol consumption lowers hepatic concentrations of 
vitamin A and retinoic acid, which are critical modulators of cellular growth and 
differentiation. Importantly, an apparent inverse relationship appears to exist 
between serum concentrations of vitamin A and later development of HCC in 
humans [80, 81].

3.6  GSH and Transsulfuration in Cancer Biology 
and Alcohol-Related Cancers

GSH appears to play a paradoxical role in cancer biology. Firstly, oxidative stress 
due to production of ROS and/or electrophilic metabolites is an important muta-
genic mechanism for numerous physical (e.g., ultraviolet light exposure) and chem-
ical (e.g., alcohol) carcinogens [82–84]. GSH scavenges DNA-damaging free 
radicals directly or via enzymatic reactions (e.g., GPXs and GSTs), and in doing so, 
it may contribute to the prevention of tumor initiation [85, 86]. Secondly, some 
oncogenes (e.g., AP-1) and tumor suppressors (e.g., P53) are transcription factors 
that play key roles in controlling cell proliferation and death in response to genomic 
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stress. The DNA-binding activity of these proteins requires the maintenance of 
some crucial cysteine residues in a reduced form [87, 88]. By acting as a major 
homeostatic redox buffer in subcellular compartments, GSH-GSSG couple may 
modulate the activities of tumor suppressors or oncoproteins, thereby contributing 
to tumor promotion [89]. Thirdly, many highly metastatic cancer cells attain high 
intracellular levels of GSH; such a situation is typically associated with higher 
expressions of γ-glutamyl cycle enzymes, such as GCL and GGT [90–92]. These 
biochemical features are believed to function at multiple levels to promote the 
growth advantage and metastasis of neoplastic cells, such as: (a) the γ-glutamyl 
cycle supplies the fast turnover of cysteine and other amino acids for protein synthe-
sis, (b) high GSH helps to maintain mitochondrial functional integrity to meet the 
high metabolic demands of the neoplastic cells, and (c) GSH combats harmful ROS 
or reactive nitrogen species (RNS) released by vascular endothelial cells in response 
to cancer cell contact in the process of metastatic invasion. Lastly, resistance of 
cancer cells to radiation and chemotherapy appears to correlate directly to their 
GSH levels. This is often accompanied by over-expression of multidrug resistance- 
associated proteins (MRPs) and GST enzymes [93–96]. Several mechanisms have 
been proposed for the role of GSH in regulating drug resistance of cancer cells: (a) 
GSH may directly protect against oxidative cytotoxicities elicited by anti-cancer 
treatments, (b) MRPs are a family of ATP-binding cassette membrane transporters 
that mediate the efflux of GSH and GSH-conjugates; GSH may facilitate the export 
of anti-cancer drugs through the actions of MRP proteins, and (c) GSTs are phase II 
detoxification enzymes that catalyze GSH conjugation with different chemothera-
peutic compounds for their safe elimination; GSH may promote GST-mediated 
metabolic elimination of anti-cancer drugs by serving as its cofactor. The latter two 
mechanisms may act independently or cooperatively to diminish the therapeutic 
effects of anticancer drugs in cancer cells expressing high levels of GSH. Taken 
together, GSH seems to have bidirectional functions such that it can protect against 
neoplastic transformation in non-tumor cells while also being able to promote 
metastasis and chemoresistance of neoplastic cells.

Deficiencies in the transsulfuration pathway have been documented to occur in 
cancer cells and cancerous tissues [23]. Genetic polymorphisms in the CBS gene 
(which encodes the enzyme converting homocysteine to cystathionine) have been 
associated with increased risks for breast, gastrointestinal and lung cancers [97–99]. 
The importance of the transsulfuration pathway in cancer biology attributes par-
tially to its metabolic link to the metabolism of cysteine and GSH [23]. The trans-
sulfuration pathway also connects to the methionine cycle through homocysteine. A 
blockade of this pathway results in homocysteine accumulation as well as altered 
cellular transmethylation [23], both of which have been implicated in tumor initia-
tion and progression. Homocysteine is a pro-inflammatory intermediate that causes 
ROS production, cytokine release, and altered expression of adhesion molecules 
[100]. Elevated levels of homocysteine induce chronic inflammation and are an 
established risk factor for coronary heart disease [28]. Many tumor cells both 
require high methionine for growth and export large amounts of homocysteine 
[101]. The elevated production of homocysteine by methionine-dependent cancer 
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cells is proposed to act as an adaptive mechanism that promotes a cancer microen-
vironment for cancer cell survival, colonization and vascular invasion [102, 103]. In 
the methionine cycle, accumulated homocysteine can be converted to SAH that, as 
a potent inhibitor of cellular methylation, can lead to SAM deficiency [104]. In 
agreement with this notion, aberrant DNA methylation is often observed in 
hyperhomocysteinemia- associated pathologies (including cancer) and is considered 
an important causal factor of the disease condition [104].

In the context of alcohol-related cancer, ethanol-induced depletion of the cellular 
GSH pool and inhibition of transsulfuration/transmethylation pathways are of par-
ticular importance for the development of alcoholic HCC. Clinically, low levels of 
hepatocellular GSH and SAM and a low SAM/SAH ratio are commonly observed 
in chronic alcoholics with advanced stage ALD and they correlate with the severity 
of liver damage [32, 37, 38]. The significance of reduced SAM production in the 
development of HCC is supported by several findings: SAM feeding blocked the 
transformation of pre-neoplastic lesions into HCCs [105], SAM administration 
inhibited the expressions of selected proto-oncogenes [106], SAM decreased the 
survival of liver tumor cells in vitro in a dose-dependent manner [107], and SAM 
treatment prevented liver tumor formation in a xenograft model [108]. The proposed 
mechanisms underlying a protective role of SAM against alcoholic HCC, including 
providing precursors for GSH biosynthesis and supplying methyl groups for bal-
anced DNA methylation, are presented and discussed comprehensively in other 
articles [109, 110].

Along with abstinence from alcohol and anti-inflammatory treatment, nutrient 
(e.g., SAM) and antioxidants (e.g., GSH) supplementation represents an important 
element for preventive and therapeutic management of ALD including cancer [111, 
112]. The use of GSH precursors (e.g., N-acetylcysteine) [113, 114], intermediates 
of transmethylation pathway (e.g., SAM, folate and betaine) [110] and compounds 
possessing antioxidant properties (e.g. vitamin E and plant extracts) [115, 116] have 
been investigated in experimental animal models and pilot human studies targeting 
at advanced ALD. These studies have provided inconsistent results in that human 
studies largely showed no beneficial effects in improving clinical markers of chronic 
liver damage or preventing degeneration into hepatocellular carcinoma [117, 118]. 
However, the lack of therapeutic efficacy of these compounds may be related to 
their complex pharmacokinetics in ALD patients. Nevertheless, it has been pro-
posed that long-term use of antioxidants (including SAM) may assume a greater 
role for the treatment of ALD patients who are in the process of achieving sobriety 
and at risk for progression to cirrhosis and HCC.

3.7  Concluding Remarks

Individuals who abuse alcohol on a chronic basis are predisposed to the development 
of numerous diseases including cancer. GSH is a ubiquitous tripeptide that functions 
as a major cellular antioxidant and redox-buffering molecule. The transsulfuration 
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pathway metabolically connects GSH biosynthesis with cellular transmethylation. 
Chronic alcohol consumption results in depletion of the cellular GSH pool and 
inhibition of cellular transsulfuration/transmethylation, which are key pathogenic 
events involved in alcohol-associated tissue injury and carcinogenesis. Molecular 
details of these processes are yet to be defined. Therapeutic strategies targeted at 
improving these metabolic changes are inconclusive and warrant further studies.

Acknowledgement This work was supported in part by the USA National Institutes of Health 
grants K01AA025093, R24AA022057, U01AA021724, and the China Scholarship Council 
No.201508140059.

References

 1. Rana SV, Allen T, Singh R (2002) Inevitable glutathione, then and now. Indian J Exp Biol 
40:706–716

 2. Jung YS (2015) Metabolism of sulfur-containing amino acids in the liver: a link between 
hepatic injury and recovery. Biol Pharm Bull 38:971–974

 3. Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. 
Biomed Pharmacother 57:145–155

 4. Wu D, Cederbaum AI (2003) Alcohol, oxidative stress, and free radical damage. Alcohol Res 
Health 27:277–284

 5. Fernandez-Checa JC, Hirano T, Tsukamoto H, Kaplowitz N (1993) Mitochondrial glutathi-
one depletion in alcoholic liver disease. Alcohol 10:469–475

 6. Meister A (1988) Glutathione metabolism and its selective modification. J  Biol Chem 
263:17205–17208

 7. Meister A (1991) Glutathione deficiency produced by inhibition of its synthesis, and its rever-
sal; applications in research and therapy. Pharmacol Ther 51:155–194

 8. Dalton TP, Chen Y, Schneider SN, Nebert DW, Shertzer HG (2004) Genetically altered mice 
to evaluate glutathione homeostasis in health and disease. Free Radic Biol Med 37:1511–1526

 9. Chen Y, Shertzer HG, Schneider SN, Nebert DW, Dalton TP (2005) Glutamate cysteine ligase 
catalysis: dependence on ATP and modifier subunit for regulation of tissue glutathione levels. 
J Biol Chem 280:33766–33774

 10. Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30:42–59
 11. Meister A (1982) Metabolism and function of glutathione: an overview. Biochem Soc Trans 

10:78–79
 12. Lu SC (1999) Regulation of hepatic glutathione synthesis: current concepts and controver-

sies. FASEB J 13:1169–1183
 13. Njalsson R, Norgren S (2005) Physiological and pathological aspects of GSH metabolism. 

Acta Paediatr 94:132–137
 14. Zhang H, Forman HJ, Choi J (2005) Gamma-glutamyl transpeptidase in glutathione biosyn-

thesis. Methods Enzymol 401:468–483
 15. Kosower NS, Kosower EM (1978) The glutathione status of cells. Int Rev Cytol 54:109–160
 16. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760
 17. Griffith OW (1999) Biologic and pharmacologic regulation of mammalian glutathione syn-

thesis. Free Radic Biol Med 27:922–935
 18. Arthur JR (2000) The glutathione peroxidases. Cell Mol Life Sci 57:1825–1835
 19. Rinaldi R, Eliasson E, Swedmark S, Morgenstern R (2002) Reactive intermediates and the 

dynamics of glutathione transferases. Drug Metab Dispos 30:1053–1058

Y. Chen et al.



49

 20. Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. 
Methods Enzymol 348:93–112

 21. Green RM, Graham M, O’Donovan MR, Chipman JK, Hodges NJ (2006) Subcellular com-
partmentalization of glutathione: correlations with parameters of oxidative stress related to 
genotoxicity. Mutagenesis 21:383–390

 22. Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplas-
mic reticulum. Science 257:1496–1502

 23. Rosado JO, Salvador M, Bonatto D (2007) Importance of the trans-sulfuration pathway in 
cancer prevention and promotion. Mol Cell Biochem 301:1–12

 24. Mosharov E, Cranford MR, Banerjee R (2000) The quantitatively important relationship 
between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway 
and its regulation by redox changes. Biochemistry 39:13005–13011

 25. Vitvitsky V, Dayal S, Stabler S, Zhou Y, Wang H et al (2004) Perturbations in homocysteine- 
linked redox homeostasis in a murine model for hyperhomocysteinemia. Am J Physiol Regul 
Integr Comp Physiol 287:R39–R46

 26. Roje S (2006) S-Adenosyl-L-methionine: beyond the universal methyl group donor. 
Phytochemistry 67:1686–1698

 27. Tchantchou F, Graves M, Falcone D, Shea TB (2008) S-adenosylmethionine mediates gluta-
thione efficacy by increasing glutathione S-transferase activity: implications for S-adenosyl 
methionine as a neuroprotective dietary supplement. J Alzheimers Dis 14:323–328

 28. Ganguly P, Alam SF (2015) Role of homocysteine in the development of cardiovascular dis-
ease. Nutr J 14:6

 29. Ebbe S (1974) Thrombopoietin. Thrombopoietin Blood 44:605–608
 30. Yeh MY, Burnham EL, Moss M, Brown LA (2007) Chronic alcoholism alters systemic and 

pulmonary glutathione redox status. Am J Respir Crit Care Med 176:270–276
 31. Kaphalia L, Calhoun WJ (2013) Alcoholic lung injury: metabolic, biochemical and immuno-

logical aspects. Toxicol Lett 222:171–179
 32. Ucar G, Demir B, Ulug B (2005) Lipid peroxidation and antioxidant enzyme activities in 

erythrocytes of type I and II alcoholics. Cell Biochem Funct 23:29–37
 33. Singh M, Gupta S, Singhal U, Pandey R, Aggarwal SK (2013) Evaluation of the oxidative 

stress in chronic alcoholics. J Clin Diagn Res 7:1568–1571
 34. Gupta S, Pandey R, Katyal R, Aggarwal HK, Aggarwal RP et al (2005) Lipid peroxide levels 

and antioxidant status in alcoholic liver disease. Indian J Clin Biochem 20:67–71
 35. Chen Y, Dong H, Thompson DC, Shertzer HG, Nebert DW et al (2013) Glutathione defense 

mechanism in liver injury: insights from animal models. Food Chem Toxicol 60:38–44
 36. Mantena SK, King AL, Andringa KK, Landar A, Darley-Usmar V et al (2007) Novel interac-

tions of mitochondria and reactive oxygen/nitrogen species in alcohol mediated liver disease. 
World J Gastroenterol 13:4967–4973

 37. Kharbanda KK (2013) Methionine metabolic pathway in alcoholic liver injury. Curr Opin 
Clin Nutr Metab Care 16:89–95

 38. Lu SC, Tsukamoto H, Mato JM (2002) Role of abnormal methionine metabolism in alcoholic 
liver injury. Alcohol 27:155–162

 39. Halsted CH, Medici V (2012) Aberrant hepatic methionine metabolism and gene methylation 
in the pathogenesis and treatment of alcoholic steatohepatitis. Int J Hepatol 2012:959746

 40. Medici V, Peerson JM, Stabler SP, French SW, Gregory JF, 3rd, et al. (2010) Impaired homo-
cysteine transsulfuration is an indicator of alcoholic liver disease. J Hepatol 53: 551–557

 41. Chen Y, Singh S, Matsumoto A, Manna SK, Abdelmegeed MA, et al. (2016) Chronic gluta-
thione depletion confers protection against alcohol-induced steatosis: implication for redox 
activation of AMP-activated protein kinase pathway. Sci Rep 6: 29743

 42. Yang Y, Dieter MZ, Chen Y, Shertzer HG, Nebert DW et al (2002) Initial characterization 
of the glutamate-cysteine ligase modifier subunit Gclm(−/−) knockout mouse. Novel model 
system for a severely compromised oxidative stress response. J Biol Chem 277:49446–49452

3 Glutathione and Transsulfuration in Alcohol-Associated Tissue Injury…



50

 43. Kendig EL, Chen Y, Krishan M, Johansson E, Schneider SN et al (2011) Lipid metabolism 
and body composition in Gclm(−/−) mice. Toxicol Appl Pharmacol 257:338–348

 44. Connor J (2017) Alcohol consumption as a cause of cancer. Addiction 112:222–228
 45. Jayasekara H, MacInnis RJ, Hodge AM, Room R, Milne RL et al (2016) Is breast cancer 

risk associated with alcohol intake before first full-term pregnancy? Cancer Causes Control 
27:1167–1174

 46. Wang X, Cheng W, Li J, Zhu J (2016) A meta-analysis of alcohol consumption and thyroid 
cancer risk. Oncotarget 7:55912–55923

 47. Praud D, Rota M, Rehm J, Shield K, Zatonski W et al (2016) Cancer incidence and mortality 
attributable to alcohol consumption. Int J Cancer 138:1380–1387

 48. Scoccianti C, Lauby-Secretan B, Bello PY, Chajes V, Romieu I (2014) Female breast cancer 
and alcohol consumption: a review of the literature. Am J Prev Med 46:S16–S25

 49. Liu Y, Nguyen N, Colditz GA (2015) Links between alcohol consumption and breast cancer: 
a look at the evidence. Womens Health (Lond) 11:65–77

 50. Jayasekara H, MacInnis RJ, Hodge AM, Hopper JL, Giles GG et al (2015) Lifetime alcohol 
consumption and upper aero-digestive tract cancer risk in the Melbourne collaborative cohort 
study. Cancer Causes Control 26:297–301

 51. Laffoy M, McCarthy T, Mullen L, Byrne D, Martin J (2013) Cancer incidence and mortality 
due to alcohol: an analysis of 10-year data. Ir Med J 106:294–297

 52. Cho S, Shin A, Park SK, Shin HR, Chang SH et al (2015) Alcohol drinking, cigarette smok-
ing and risk of colorectal cancer in the Korean multi-center cancer cohort. J Cancer Prev 
20:147–152

 53. Hawkins NA, Berkowitz Z, Rodriguez JL (2015) Awareness of dietary and alcohol guidelines 
among colorectal cancer survivors. Am J Prev Med 49:S509–S517

 54. Klarich DS, Brasser SM, Hong MY (2015) Moderate alcohol consumption and colorectal 
cancer risk. Alcohol Clin Exp Res 39:1280–1291

 55. Chitapanarux T, Phornphutkul K (2015) Risk factors for the development of hepatocellular 
carcinoma in Thailand. J Clin Transl Hepatol 3:182–188

 56. Testino G, Leone S, Borro P (2014) Alcohol and hepatocellular carcinoma: a review and a 
point of view. World J Gastroenterol 20:15943–15954

 57. Bellentani S, Saccoccio G, Costa G, Tiribelli C, Manenti F et  al (1997) Drinking hab-
its as cofactors of risk for alcohol induced liver damage. The Dionysos study group. Gut 
41:845–850

 58. Seitz HK, Stickel F (2007) Molecular mechanisms of alcohol-mediated carcinogenesis. Nat 
Rev Cancer 7:599–612

 59. Schwartz LM, Persson EC, Weinstein SJ, Graubard BI, Freedman ND et al (2013) Alcohol 
consumption, one-carbon metabolites, liver cancer and liver disease mortality. PLoS One 
8:e78156

 60. Chuang SC, Lee YC, Wu GJ, Straif K, Hashibe M (2015) Alcohol consumption and liver 
cancer risk: a meta-analysis. Cancer Causes Control 26:1205–1231

 61. Cai S, Li Y, Ding Y, Chen K, Jin M (2014) Alcohol drinking and the risk of colorectal cancer 
death: a meta-analysis. Eur J Cancer Prev 23:532–539

 62. Di Castelnuovo A, Costanzo S, Bagnardi V, Donati MB, Iacoviello L et al (2006) Alcohol 
dosing and total mortality in men and women: an updated meta-analysis of 34 prospective 
studies. Arch Intern Med 166:2437–2445

 63. Jin M, Cai S, Guo J, Zhu Y, Li M et al (2013) Alcohol drinking and all cancer mortality: a 
meta-analysis. Ann Oncol 24:807–816

 64. Seitz HK, Mueller S (2015) Alcohol and cancer: an overview with special emphasis on the 
role of acetaldehyde and cytochrome P450 2E1. Adv Exp Med Biol 815:59–70

 65. Seitz HK, Wang XD (2013) The role of cytochrome P450 2E1 in ethanol-mediated carcino-
genesis. Subcell Biochem 67:131–143

 66. Heit C, Dong H, Chen Y, Shah YM, Thompson DC et al (2015) Transgenic mouse models for 
alcohol metabolism, toxicity, and cancer. Adv Exp Med Biol 815:375–387

Y. Chen et al.



51

 67. Seitz HK, Homann N (2007) The role of acetaldehyde in alcohol-associated cancer of the 
gastrointestinal tract. Novartis Found Symp 285:110–119 discussion 119–114, 198–119

 68. Seitz HK, Stickel F (2010) Acetaldehyde as an underestimated risk factor for cancer develop-
ment: role of genetics in ethanol metabolism. Genes Nutr 5:121–128

 69. Steinmetz CG, Xie P, Weiner H, Hurley TD (1997) Structure of mitochondrial aldehyde 
dehydrogenase: the genetic component of ethanol aversion. Structure 5:701–711

 70. Yoshida A, Huang IY, Ikawa M (1984) Molecular abnormality of an inactive aldehyde dehy-
drogenase variant commonly found in orientals. Proc Natl Acad Sci U S A 81:258–261

 71. Matsumoto A, Thompson DC, Chen Y, Kitagawa K, Vasiliou V (2016) Roles of defective 
ALDH2 polymorphism on liver protection and cancer development. Environ Health Prev 
Med 21:395–402

 72. Matsuda T, Matsumoto A, Uchida M, Kanaly RA, Misaki K et al (2007) Increased forma-
tion of hepatic N2-ethylidene-2′-deoxyguanosine DNA adducts in aldehyde dehydrogenase 
2-knockout mice treated with ethanol. Carcinogenesis 28:2363–2366

 73. Nagayoshi H, Matsumoto A, Nishi R, Kawamoto T, Ichiba M et al (2009) Increased forma-
tion of gastric N(2)-ethylidene-2′-deoxyguanosine DNA adducts in aldehyde dehydrogenase-
 2 knockout mice treated with ethanol. Mutat Res 673:74–77

 74. Yu HS, Oyama T, Isse T, Kitagawa K, Pham TT et al (2010) Formation of acetaldehyde- 
derived DNA adducts due to alcohol exposure. Chem Biol Interact 188:367–375

 75. Hu W, Feng Z, Eveleigh J, Iyer G, Pan J et al (2002) The major lipid peroxidation product, 
trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 
gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis 23:1781–1789

 76. Frank A, Seitz HK, Bartsch H, Frank N, Nair J (2004) Immunohistochemical detection of 
1,N6-ethenodeoxyadenosine in nuclei of human liver affected by diseases predisposing to 
hepato-carcinogenesis. Carcinogenesis 25:1027–1031

 77. Albano E (2008) Oxidative mechanisms in the pathogenesis of alcoholic liver disease. Mol 
Asp Med 29:9–16

 78. French SW (2013) Epigenetic events in liver cancer resulting from alcoholic liver disease. 
Alcohol Res 35:57–67

 79. Varela-Rey M, Woodhoo A, Martinez-Chantar ML, Mato JM, Lu SC (2013) Alcohol, DNA 
methylation, and cancer. Alcohol Res 35:25–35

 80. Leo MA, Lieber CS (1982) Hepatic vitamin a depletion in alcoholic liver injury. N Engl 
J Med 307:597–601

 81. Yu MW, Hsieh HH, Pan WH, Yang CS, CJ CH (1995) Vegetable consumption, serum retinol 
level, and risk of hepatocellular carcinoma. Cancer Res 55:1301–1305

 82. Ray G, Batra S, Shukla NK, Deo S, Raina V et al (2000) Lipid peroxidation, free radical 
production and antioxidant status in breast cancer. Breast Cancer Res Treat 59:163–170

 83. Ohshima H (2003) Genetic and epigenetic damage induced by reactive nitrogen species: 
implications in carcinogenesis. Toxicol Lett 140–141:99–104

 84. Sander CS, Chang H, Hamm F, Elsner P, Thiele JJ (2004) Role of oxidative stress and the 
antioxidant network in cutaneous carcinogenesis. Int J Dermatol 43:326–335

 85. Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916–921
 86. Jakobisiak M, Lasek W, Golab J  (2003) Natural mechanisms protecting against cancer. 

Immunol Lett 90:103–122
 87. Nikitovic D, Holmgren A, Spyrou G (1998) Inhibition of AP-1 DNA binding by nitric oxide 

involving conserved cysteine residues in Jun and Fos. Biochem Biophys Res Commun 
242:109–112

 88. Wu HH, Momand J (1998) Pyrrolidine dithiocarbamate prevents p53 activation and promotes 
p53 cysteine residue oxidation. J Biol Chem 273:18898–18905

 89. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell 
survival. Antioxid Redox Signal 10:1343–1374

 90. Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL et al (2013) Role of glutathione in 
cancer progression and chemoresistance. Oxidative Med Cell Longev 2013: 972913, 1, 10

3 Glutathione and Transsulfuration in Alcohol-Associated Tissue Injury…



52

 91. Corti A, Franzini M, Paolicchi A, Pompella A (2010) Gamma-glutamyltransferase of cancer 
cells at the crossroads of tumor progression, drug resistance and drug targeting. Anticancer 
Res 30:1169–1181

 92. Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev 
Clin Lab Sci 43:143–181

 93. Gatti L, Zunino F (2005) Overview of tumor cell chemoresistance mechanisms. Methods 
Mol Med 111:127–148

 94. Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug 
resistance. Oncogene 22:7369–7375

 95. Oudard S, Levalois C, Andrieu JM, Bougaran J, Validire P et al (2002) Expression of genes 
involved in chemoresistance, proliferation and apoptosis in clinical samples of renal cell 
carcinoma and correlation with clinical outcome. Anticancer Res 22:121–128

 96. Chaichenko GM, Tomilina LI (1990) Analysis of the process of learning in the formation of 
the conditioned reflex of avoidance in rats. Fiziol Zh 36:77–83

 97. Shames JM, Dhurandhar NR, Blackard WG (1968) Insulin-secreting bronchial carcinoid 
tumor with widespread metastases. Am J Med 44:632–637

 98. Zhao H, Li Q, Wang J, Su X, Ng KM et  al (2012) Frequent epigenetic silencing of the 
folate-metabolising gene cystathionine-beta-synthase in gastrointestinal cancer. PLoS One 
7:e49683

 99. Shen M, Rothman N, Berndt SI, He X, Yeager M et al (2005) Polymorphisms in folate meta-
bolic genes and lung cancer risk in Xuan Wei, China. Lung Cancer 49:299–309

 100. Austin RC, Lentz SR, Werstuck GH (2004) Role of hyperhomocysteinemia in endothelial 
dysfunction and atherothrombotic disease. Cell Death Differ 11(Suppl 1):S56–S64

 101. Cellarier E, Durando X, Vasson MP, Farges MC, Demiden A et al (2003) Methionine depen-
dency and cancer treatment. Cancer Treat Rev 29:489–499

 102. Wu LL, Wu JT (2002) Hyperhomocysteinemia is a risk factor for cancer and a new potential 
tumor marker. Clin Chim Acta 322:21–28

 103. Beylot C, Feuillatre F, Doutre MS (1987) Local corticotherapy in children. Rev Prat 
37:2713–2718

 104. James SJ, Melnyk S, Pogribna M, Pogribny IP, Caudill MA (2002) Elevation in 
S-adenosylhomocysteine and DNA hypomethylation: potential epigenetic mechanism for 
homocysteine-related pathology. J Nutr 132:2361s–2366s

 105. Pascale RM, Simile MM, Satta G, Seddaiu MA, Daino L et al (1991) Comparative effects of 
L-methionine, S-adenosyl-L-methionine and 5′-methylthioadenosine on the growth of pre-
neoplastic lesions and DNA methylation in rat liver during the early stages of hepatocarcino-
genesis. Anticancer Res 11:1617–1624

 106. Dobritsa AP, Mikhailova TG, Dubovaya VI (1985) Physical and genetic structure of the IncN 
plasmid R15. Plasmid 14:99–105

 107. Oliva J, Zhong J, Buslon VS, French SW (2012) The effect of SAMe and betaine on Hepa 
1-6, C34 and E47 liver cell survival in vitro. Exp Mol Pathol 92:126–130

 108. Lu SC, Ramani K, Ou X, Lin M, Yu V et al (2009) S-adenosylmethionine in the chemopre-
vention and treatment of hepatocellular carcinoma in a rat model. Hepatology 50:462–471

 109. Lu SC, Mato JM (2005) Role of methionine adenosyltransferase and S-adenosylmethionine 
in alcohol-associated liver cancer. Alcohol 35:227–234

 110. Purohit V, Abdelmalek MF, Barve S, Benevenga NJ, Halsted CH et  al (2007) Role of 
S-adenosylmethionine, folate, and betaine in the treatment of alcoholic liver disease: sum-
mary of a symposium. Am J Clin Nutr 86:14–24

 111. Lieber CS (2003) Relationships between nutrition, alcohol use, and liver disease. Alcohol 
Res Health 27:220–231

 112. Kattie AL, Cottrel M, Le Cabellec MT, Kerebel LM (1989) The structure, ultrastructure and 
physicochemical analysis of the hard dental tissues of the Viperidae. Bull Group Int Rech Sci 
Stomatol Odontol 32:217–225

Y. Chen et al.



53

 113. Nguyen-Khac E, Thevenot T, Piquet MA, Benferhat S, Goria O et al (2011) Glucocorticoids 
plus N-acetylcysteine in severe alcoholic hepatitis. N Engl J Med 365:1781–1789

 114. Ronis MJ, Hennings L, Stewart B, Basnakian AG, Apostolov EO et al (2011) Effects of long- 
term ethanol administration in a rat total enteral nutrition model of alcoholic liver disease. 
Am J Physiol Gastrointest Liver Physiol 300:G109–G119

 115. Kaur J, Shalini S, Bansal MP (2010) Influence of vitamin E on alcohol-induced changes in 
antioxidant defenses in mice liver. Toxicol Mech Methods 20:82–89

 116. Adewusi EA, Afolayan AJ (2010) Effect of Pelargonium reniforme roots on alcohol-induced 
liver damage and oxidative stress. Pharm Biol 48:980–987

 117. Rambaldi A, Gluud C (2006) S-adenosyl-L-methionine for alcoholic liver diseases. Cochrane 
Database Syst Rev:CD002235

 118. Stewart S, Prince M, Bassendine M, Hudson M, James O et al (2007) A randomized trial 
of antioxidant therapy alone or with corticosteroids in acute alcoholic hepatitis. J Hepatol 
47:277–283

3 Glutathione and Transsulfuration in Alcohol-Associated Tissue Injury…



55© Springer Nature Switzerland AG 2018 
V. Vasiliou et al. (eds.), Alcohol and Cancer, Advances in Experimental 
Medicine and Biology 1032, https://doi.org/10.1007/978-3-319-98788-0_4

Chapter 4
Fatty Liver Disease and Hepatocellular 
Carcinoma: The Pathologist’s View

Dina G. Tiniakos, João Maurício, and Helen L. Reeves

Abstract Chronic alcohol misuse and progressed nonalcoholic fatty liver disease 
(NAFLD) due to the metabolic syndrome and resulting to nonalcoholic steatohepatitis 
(NASH) are prime causes of hepatocellular carcinoma (HCC) in Western 
industrialized countries. The incidence of HCC in NASH-cirrhosis is lower than 
that of HCC occuring in HCV-related or alcoholic cirrhosis. Up to 20% of cases of 
alcohol-associated HCC may develop in pre-cirrhotic liver while HCC is also 
increasingly recognised in pre-cirrhotic NASH raising questions on appropriate 
surveillance measures for these patient populations. The recently described 
steatohepatitic subtype of HCC presents with higher frequency in NAFLD compared 
to alcoholic liver disease (ALD) patients. This review will mainly focus on 
histopathology and summarize current data on the epidemiology, pathogenesis, 
diagnosis and management of NAFLD- and ALD-related HCC.

Keywords Alcoholic · Nonalcoholic · Fatty Liver Disease · Steatohepatitis · 
Hepatocellular Carcinoma · Histopathology · Pathogenesis · Diagnosis

4.1  Introduction

Hepatocellular carcinoma (HCC) accounts for 70–85% of the total primary liver 
cancer burden and it usually arises in a background of chronic liver disease of 
hepatitis B virus (HBV), hepatitis C virus (HCV) or alcoholic aetiology [43, 46]. It 
is the fifth most common cancer in men and the ninth most common one in women. 
In 2012, 782,000 cases were estimated to have occurred globally, with 83% of these 
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in less developed regions. HCC was the second most common cause of cancer- 
related death worldwide, with approximately 746, 000 deaths (9.1% of all cancer 
deaths in 2012). The prognosis for the majority of those affected with primary liver 
cancer is poor, with an overall mortality to incidence ratio of 0.95 [21, 46]. Most 
HCC cases (>75%) occur in Southeast Asia and sub-Saharan Africa, while Southern 
European countries have intermediate incidence rates and North/South America and 
Northern Europe present the lowest incidence rates (<5 per 100,000 individuals) 
[31]. HBV and HCV infections are the main aetiological factors of cirrhosis and 
HCC in Southeast Asia and sub-Saharan Africa. Chronic alcohol misuse and 
progressed nonalcoholic fatty liver disease (NAFLD) due to the metabolic syndrome 
and resulting to nonalcoholic steatohepatitis (NASH) are the prime causes of HCC 
in Western industrialized countries [69].

4.2  Epidemiology

4.2.1  ALD-related HCC

Hepatocellular carcinoma (HCC) reportedly develops in 5–15% of alcoholic 
patients with cirrhosis [35]. Alcoholic liver disease (ALD) is the commonest 
aetiology of HCC in industrialized countries, being responsible for 32–45% of cases 
[47]. A population-based USA study of nearly 7000 cases of HCC and > 250,000 
controls found the risk of HCC (odds ratio – OR) to increase 4-fold in ALD patients 
and 2.5-fold in patients with NAFLD-associated diabetes and/or obesity [77].

Alcohol is also a recognized potentiating factor for HCC development in patients 
with chronic HCV-infection [25, 64, 76]. The 10-year cumulative occurrence rate of 
HCC in HCV-infected patients with alcoholic cirrhosis drinking >120 g alcohol per 
day is 80.7%, in contrast to 18.5% in alcoholic cirrhotics without evidence of HCV 
infection and 56.5% in non-drinkers with HCV-related cirrhosis [82]. Chronic 
alcohol consumption >80 g/day for >10 years increases the risk of HCC almost five- 
fold; chronic hepatitis C (CHC) patients who drink alcohol have double the risk of 
developing HCC compared to non-drinking HCV-infected patients [47]. A hospital- 
based, case-control study led by Hassan et al. [25] and involving 115 HCC patients 
and 230 non-liver cancer controls showed significant synergy between heavy 
alcohol consumption and CHC (OR 53.9) and diabetes mellitus (OR 9.9).

Data from human studies on the association between HBV infection and alcohol 
consumption are limited. In a French study evaluating the mortality related to HCV 
and HBV infections in 2001, 95% of HCV-infected patients who died had cirrhosis 
and 33% had HCC; 35% had reported excessive alcohol consumption. Similarly, in 
the HBV infection group, 93% and 35% of the individuals had cirrhosis had HCC, 
respectively and 5% had a history of excessive alcohol use. The mean age at death 
of both HCV- and HCV-infected patients who drunk excessively was significantly 
lower compared to non-drinkers or patients who drank modestly. Human 
immunodeficiency virus (HIV) infection was also a significant co-factor [42]. The 
risk of HCC development in ALD is increased if iron overload is also present [26].
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4.2.2  NAFLD-related HCC

NASH-related cirrhosis may be complicated by HCC [6, 63, 68]. In NAFLD, older 
age, severity of insulin resistance and diabetes, and iron overload reportedly 
predispose to HCC [54]. Studies from various geographical areas have shown that 
the incidence of HCC in NASH-cirrhosis is lower than that of HCC developing in 
HCV-related or alcoholic cirrhosis [5, 32, 50]. Similarly, the risk of developing 
HCC is lower in NASH-related cirrhosis (1.3–2.4-fold) compared to that of HCV- 
cirrhosis (13–19-fold). However, in the last decades, the incidence of NASH-related 
HCC has been increasing worldwide, possibly as a consequence of the obesity and 
type 2 diabetes epidemic [57, 68]. In the United States, NAFLD is the fastest 
growing aetiology of HCC, especially among patients listed for liver transplantation 
[58, 79], while the number of NAFLD-associated HCC cases increases at a rate of 
approximately 9% per year [87]. In ALD patients, obesity and the metabolic 
syndrome appear to increase the incidence and mortality of HCC [14]. Pais et al. 
[52] have shown that the risk of HCC is higher in patients with alcohol-related 
cirrhosis in need for liver transplantation who also have NAFLD.  In NAFLD 
patients, moderate alcohol use may potentiate the development of HCC [5].

A study by Marrero et al. [44] stated that NAFLD is the causal aspect of 13–38.2% 
of patients presenting with HCC not linked to viral infection or alcohol. In Northeast 
England, the overall incidence of HCC increased 1.8-fold from 2000 to 2010, with 
the astounding realisation that there was a > 10-fold increase in NAFLD-related 
HCC, accounting for 34.8% of all the cases in 2010. NAFLD thus became the most 
common background aetiology in this region [17]. Furthermore, irrespective of the 
underlying aetiology of HCC associated liver disease, over 50% of patients had type 
2 diabetes and two thirds had either type 2 diabetes and/or obesity, defined as a body 
mass index >30 [17].

The prevalence of HCC is approximately 0.5% in nonalcoholic steatosis and 
2.8% in NASH [68]. Studies in Japanese patients indicate that a greater length of 
follow-up may be necessary for determining the true prevalence of HCC [32]. 
According to a recent meta-analysis, the annual incidence of HCC in NAFLD 
patients is 0.44 per 1000 person-years, while in patients with NASH it rises to 5.29 
per 1000 person-years [88]. In one of the first follow-up studies of NAFLD patients, 
HCC was reported in only one patient [55]. Shimada et al. [63] reported that 13 
(7.3%) out of 82 cases of biopsy-proven NASH had cirrhosis and six of these (47% 
of cirrhotics) had HCC. In the same year, Bugianesi et al. [10] found that 44 out of 
641 cirrhosis-associated HCC arose in cryptogenic cirrhosis, with cryptogenic 
cirrhotics having a higher prevalence of obesity, diabetes, markers of insulin 
resistance and increased triglycerides. This was the first study proposing the 
inclusion of cryptogenic cirrhosis and HCC in the natural history of NASH. In two 
subsequent studies, the incidence of HCC in patients with cryptogenic cirrhosis 
ranged from 18% [44] to 27% [56]. In both these studies, associated clinical features 
of metabolic syndrome implicated NAFLD as the underlying aetiology of 
cryptogenic cirrhosis.
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4.3  Pathogenesis

4.3.1  ALD-related HCC

As mentioned above, HCC frequently arises in patients with a combination of alco-
holic and viral liver disease related to HBV and/or HCV [33], but is also often 
described in patients without evidence of hepatotropic viral infection [81]. Alcohol 
is known to cause genetic alterations [34] but it can also act as a co-carcinogen by 
inducing the hepatic microsomal isoenzyme cytochrome P450 2E1 (CYP2E1), 
leading to activation of pro-carcinogens present in tobacco smoke, alcoholic 
beverages and food [22, 24, 69]. Alcohol, tobacco and obesity have been shown to 
be independent and synergistic risk factors for HCC development in patients with 
cirrhosis [45].

The mechanisms leading to HCC in either ALD or NAFLD background are nota-
bly similar. In ALD, there are several possible mechanisms by which alcohol can 
drive the development of HCC. These comprise, in addition to CYP2E1 induction 
that may activate pro-carcinogens as mentioned above, dietary or environmental 
carcinogens ingested alongside alcoholic drinks, toxicity of acetaldehyde, intensi-
fied lipid peroxidation due to reactive oxygen species (ROS), growth factor and 
cytokine milieu, deregulated immune responses, and DNA lesions caused by oxida-
tive stress by-products [69].

Genetic factors can also play a role regarding predisposition for the develop-
ment of HCC.  A sequence variation within the gene coding for patatin-like 
phospholipase domain-containing protein 3 (PNPLA3, p.I148M) was shown to 
modify steatosis, necroinflammation and fibrosis in ALD [70]. Similar to 
PNPLA3, there may be a role for a transmembrane 6 superfamily member 2 
(TM6SF2) gene variant across the ALD spectrum from steatosis, through cir-
rhosis to HCC [4]. Other polymorphisms implicated in the development of 
ALD-related HCC include genes involved in ROS formation (myeloperoxidase 
and superoxide dismutase 2) [49] and in inflammation (CCL5) [13].

Chronic alcohol use can also modulate microRNAs (miRNA/miR) expression 
influencing ALD progression [71]. For instance, miR-212 is involved in alcohol- 
induced gut permeability [72], miR-217 is implicated in steatosis via regulation of 
SIRT1 [86] and miR-199 is associated with an increase in endothelin-1 and hypoxia- 
inducible factor-1α, which play vital roles in inflammation and steatosis [85]. 
Several abnormally expressed miRNAs have been reported in HCC, including 
upregulation of miR-221, miR-21, miR-22 and miR-517a and downregulation of 
miR-29, miR-24a, miR-26a, miR15-a/b, miR-150, miR-195, miR-122, miR-20 
family, miR-124 and let-7 family [71].
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4.3.2  NAFLD-related HCC

Recent reviews have focused on mechanisms of hepatocarcinogenesis in NAFLD 
[43, 57, 89]. Fatty liver shows increased susceptibility to lipid peroxidation with 
subsequent production of free radicals that may cause DNA mutations. In obesity, 
fatty liver may be susceptible to carcinogens as a result of impaired ATP production, 
defective autophagy mechanisms, deregulation of energy and/or hormonal balance, 
hypoxia and systemic inflammation. In NAFLD, increased susceptibility of the 
steatotic liver to carcinogenic insults may be related to metabolic derangements 
related to the ‘metabolic syndrome’, hyperinsulinemia and the presence of insulin- 
like growth factor receptors in HCC, the systemic effects of deranged cytokines and 
adipokines, immune dysregulation and alteration in gut microbiota [43, 57, 89]. 
Genetic factors may also be responsible for increasing the risk of HCC in NAFLD 
patients [4]. Carriers of the PNPLA3 p.I148M variant are known to be at increased 
risk of progressive fibrosis and steatohepatitis of none alcoholic or alcoholic 
aetiology [59, 67]. Recently, a strong association has emerged between the common 
PNPLA3 p.I148M variant and the risk of developing HCC in NAFLD patients [38, 
39, 65], reporting that the variant increased 3-fold the risk of progression to NASH 
and, most notably, 12-fold that of developing HCC [38, 39]. Another genetic variant, 
rs58542926  in TM6SF2, was found to be linked with NAFLD-related HCC in 
univariate analysis [38, 39].

In experimental models of hepatocarcinogenesis steatosis alone is not sufficient 
for HCC development [57]. Additional inflammation may be necessary as shown in 
mice under prolonged choline-deficient high fat diet that developed spontaneous 
HCC [78]. Alterations in the pro-inflammatory nuclear factor kappa B (NF-κB) 
signalling may play a significant role [57]. In a non-obese inbred mouse model with 
spontaneous fatty liver and steatohepatitis, hepatocellular adenomas and HCC 
emerge with time in up to 40% of male mice but <10% of female mice supporting 
gender predilection in HCC development [66].

4.4  Diagnosis

HCC is the only major cancer in which diagnosis and indication for treatment are 
not regularly established by histology. If a liver mass/nodule is detected on 
ultrasound then the most trustworthy imaging diagnostic tools for the detection of 
HCC are four-phase computed tomography (CT) and/or dynamic contrast enhanced 
magnetic resonance imaging (MRI). According to current guidelines [18], diagnosis 
of HCC in cirrhotic liver of any aetiology can be established if a mass > 2 cm shows 
specific imaging pattern (arterial hyper-enhancement followed by contrast washout 
in the venous/delayed phase) with one of the above mentioned techniques (positive 
predictive value and specificity >90–95%); in masses measuring 1–2 cm use of two 
imaging techniques (CT and MRI) is required and the accuracy of non-invasive 
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diagnosis is 73–88% [41]; a focal hepatic mass with atypical imaging characteristics, 
or a focal hepatic mass detected in a non-cirrhotic liver, should undergo biopsy [15, 
20]. However, imaging diagnostic quality outside tertiary centres may not be as 
expertly assessed as the data which formed the basis of the guidelines, which was 
generated in carefully controlled and supervised multicentre trials. Although many 
cases of suspected HCC are referred to specialist centres for expert review, one 
recent study suggested that approximately 20% of presumed HCC nodules are 
incorrectly diagnosed by non-invasive techniques [51]. α-fetoprotein (AFP) serum 
levels >200 ng/mL have high specificity for HCC diagnosis in patients with cirrhosis 
and radiologic evidence of focal hepatic lesions, although AFP serum testing is not 
universally advocated owing to poor sensitivity – particularly in cases with early 
stage disease. Combination serum tests have been suggested, but have yet to impact 
clinical practice [7, 8, 29].

The specificity of liver biopsy for HCC diagnosis is 100%, with a superior over-
all sensitivity of 86–93%, although in nodules <1 cm the sensitivity falls to 83%. In 
approximately 2–11% of the cases a diagnosis cannot be made because of specimen 
inadequacy [48]. Immunohistochemical staining for glypican-3, heat-shock 
protein-70 and glutamine synthetase may aid diagnosis when conventional histology 
is not conclusive [15]. Liver biopsy in suspected HCC offers in addition to superior 
diagnostic sensitivity and specificity, precise histological typing/subtyping, 
prognostic and predictive information, and data for molecular classification. 
Molecular signatures from gene expression profiling based on HCC tissue material 
may be used in the future as biomarkers for prognosis and/or treatment stratification 
in HCC following careful validation [16, 40, 75].

The diagnosis of HCC frequently occurs at a late stage, a fact that may be 
explained by underutilisation of surveillance, delayed follow-up and suboptimal 
effectiveness of surveillance tests [31].

4.5  Histopathology

4.5.1  ALD-related HCC

HCC in ALD usually develops in a background of macronodular cirrhosis [35] 
(Fig.  4.1). However, up to 20% of cases of alcohol-associated HCC may also 
develop in precirrhotic liver disease [26]. Generally, HCC has acinar, pseudoglandular, 
trabecular and/or compact growth patterns, frequently with multiple histological 
patterns seen within a single tumour. Intracellular Mallory-Denk bodies (MDB) are 
frequent within ALD-related HCC and the incidence of HCC is significantly higher 
in ALD-cirrhosis with MDBs than without [69]. MDB contain p62 and other 
proteins, including keratins 8 and 18 and ubiquitin. p62 is an autophagy substrate 
and its overexpression is considered a marker of impaired autophagy implicated in 
the development of human HCC [2]. In the background surrounding liver, ALD 
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shares several histological features with NAFLD, such as steatosis and mixed 
parenchymal inflammation, and in the presence of steatohepatitis hepatocyte 
ballooning with or without Mallory-Denk bodies (MDB) and sinudoidal/pericellular 
fibrosis with a perivenular predominance [31, 74].

Dysplastic nodules in cirrhosis may be the precursor lesion for HCC in the mul-
tistage process of hepatocarcinogenesis [37, 73]. Dysplastic features, such as 
increased nuclear density ratio of >1.5, small-cell change and clear cell change have 
been associated with increased risk of progression of image-detected hepatic 
nodules to HCC in a prospective liver biopsy study [73].

The presence of large cell change, referring to groups of enlarged hepatocytes 
with mild nuclear pleomorphism, hyperchromasia and/or multinucleation, has been 
reported as an independent risk factor for HCC, with an estimated odds ratio of 3.3 
[36]. However, in non-HBV related chronic liver disease, large cell change is not 
thought to be a dysplastic lesion and therefore a direct precursor of HCC; it is rather 
indicative of an increased risk for tumour development [30, 36, 37]. Histopathology 
reports of specimens from cirrhotic livers should always include a comment on the 
presence (or absence) of both small cell and large cell change [74].

Fig. 4.1 Gross appearance of hepatocellular carcinoma (arrow) in segment VII of an explant liver 
with mixed micronodular and macronodular alcoholic cirrhosis
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Intrahepatic cholangiocarcinoma may occur in cirrhotic liver and its incidence is 
increasing [12]. Biliary intraepithelial neoplasia, a precursor of cholangiocarcinoma, 
has been described in the liver of patients with alcoholic cirrhosis, supporting its 
role in the development of biliary malignancy in this background [80].

4.5.2  NAFLD-related HCC

It is increasingly recognized that HCC may develop in non-cirrhotic liver in patients 
with NAFLD [11, 74] (Fig. 4.2). The first three cases were reported in 2008, in 
patients with features of the metabolic syndrome and steatosis without NASH or 
significant fibrosis [23]. In 2009, Paradis et  al. reported 31 HCC arising in non- 
cirrhotic NAFLD patients with metabolic syndrome; of these, only one patient had 
NASH and 65% had mild fibrosis. Alexander et al. [3] have studied 157 patients 
with non-cirrhotic HCC and showed a strong association with the presence of 
NAFLD in the background liver. Compared to HCC in NAFLD-cirrhosis, tumours 
in non-cirrhotic NAFLD are usually larger and of lower histologic grade [53]. Male 
gender is a risk factor for HCC in non-cirrhotic NASH-related HCC in cohorts from 
France [53] and Japan [83, 84]. Other risk factors include type 2 diabetes and pre-
existing hepatocellular adenoma [53]. In Japan, 21–28% of NAFLD-related HCC 
developed in patients without advanced fibrosis. Currently, screening and surveil-
lance of patients with advanced NAFLD are reserved only for those with cirrhosis, 

Fig. 4.2 Hepatocellular carcinoma (left) in non-cirrhotic liver (H-E, x100)
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raising concern over the management of non-cirrhotic patients [6, 17, 27]. The 
insufficiency of early detection screening methods in non-cirrhotic NAFLD may 
explain the fact that most NAFLD-related HCC present at an advanced stage [79].

A special HCC subgroup with steatohepatitic morphology (SH-HCC) has 
recently been described (Fig. 4.3) [60, 61], presenting a higher frequency in NAFLD 
compared to ALD [28, 62]. In SH-HCC, >5% of tumour cells contain fat, there is 
widespread ballooning with or without MDB, interstitial fibrosis and foci of mixed 
inflammation, including neutrophils. Steatohepatitic features have been reported in 
13.5–36% of HCC and are more commonly seen in tumours from patients with 
metabolic risk factors and steatosis or steatohepatitis in the surrounding non- 
neoplastic liver [3, 28, 60–62]. The presence of steatohepatitic morphology does not 
affect HCC prognosis [28, 62].

4.6  Management

Management decisions for HCC, independent of aetiology, are widely based on the 
Barcelona Clinic for Liver Cancer (BCLC) staging system - which incorporates an 
assessment of patient liver function and performance status in addition to tumour 
burden, linked to a treatment algorithm [18]. BCLC staging enables stratification of 
patients to those fit for potentially curative treatments (resection, transplantation 
and ablation) and those better served by transarterial chemoembolization or systemic 

Fig. 4.3 Steatohepatitic hepatocellular carcinoma: many tumour cells are steatotic and some are 
ballooned and contain Mallory-Denk bodies (H-E, x200)
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therapies such as [31]. Nowadays, curative therapies can improve survival in patients 
diagnosed at an early stage and provide a possible long-term cure. Surgical resection 
is the first-line option for patients with solitary HCC without clinically relevant 
portal hypertension; patients with portal hypertension and early stage HCC defined 
as within Milan criteria (1 lesion <5  cm or 3 lesions <3  cm) are considered for 
transplantation. Patients with intermediate stage HCC may benefit from hepatic 
arterial therapies delivering treatment preferentially to the tumour rather than non- 
tumour tissues - typically an embolising agent in combination with doxorubicin or 
cisplatin. Longer term follow up of these patients has yet to be reported and 
presently, the lack of tissue assessment pre-transplant has hampered the identification 
and validation of predictive biomarkers with the potential to identify patients with 
downstaged disease who are more likely to benefit from transplantation. Patients 
diagnosed at advanced stages may benefit from sorafenib, a multikinase inhibitor 
with antiangiogenic and anti-proliferative effects [15]. Sorafenib was the first and 
still is the only approved systemic therapy targeting pathways involved in 
hepatocarcinogenesis as the majority of subsequent phase III randomised trials have 
with molecular inhibitors have failed [16]. The tide may have turned recently, as a 
sorafenib-like multikinase inhibitor has been shown to have benefit 2nd in patients 
whose tumours progress on sorafenib [9]. Enrichment trials stratifying patients 
expressing c-MET on liver biopsy to treatment or not with a MET inhibitor are 
awaited (www.clinicaltrials.gov). Furthermore, early studies with immune 
checkpoint blockade, targeting the tumour inhibition of cytotoxic T cell responses, 
have shown promise in some patients with HCC [1, 19]. The need to identify 
biomarkers that will aid patient stratification to one therapy over another may yet 
drive the need for tumour biopsy in the not too distant future.

4.7  Epilogue

HCC in the setting of NAFLD is increasing and associations with the metabolic 
syndrome, diabetes and obesity are well established. The recently described 
steatohepatitic subtype of HCC presents with higher frequency in NAFLD compared 
to ALD patients. In contrast to ALD, HCC in NAFLD frequently develops in non- 
cirrhotic liver raising questions on appropriate surveillance measures for this 
population. On the other hand, surveillance for HCC in alcoholics with cirrhosis is 
less effective because of socioeconomic reasons. Patient and tumor characteristics 
in NAFLD-associated HCC are different compared to HCC of other aetiology, with 
older age and cardiovascular disease posing problems in therapeutic decisions and 
limiting available treatment choice. However, early stage HCC in NAFLD-patients 
has an excellent outcome and curative therapy should be applied in suitable patients. 
Prevention of obesity and underlying metabolic conditions, early HCC diagnosis 
through targeted surveillance programs and more effective treatment modalities are 
clearly needed for reducing the burden and improving the outcome of NAFLD- 
related HCC. The burden of ALD-related HCC is entirely preventable by reducing 
the prevalence of harmful and/or hazardous alcohol use.
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Chapter 5
Alcoholic Liver Disease Accelerates Early 
Hepatocellular Cancer in a Mouse Model

Gyongyi Szabo

Abstract HCC is a rapidly increasing cancer worldwide. Most HCC rises in the 
setting of chronic and advanced liver disease caused by viral hepatitis, alcohol use, 
non-alcoholic liver disease or their combination. We found that in the mouse model, 
alcohol alone does not induce HCC, however, it can promote HCC development 
after a carcinogen exposure. Multiple mechanisms are involved in carcinogenesis 
and alcohol affects many of those including epithelial-mesenchymal transition, can-
cer stem marker expression and inflammation as evidenced in our HCC model.

Keywords Inflammation · miR-122 · DEN · Macrophage polarization · Neutrophil 
leukocyte · Biliary cyst · Alpha fetoprotein · Stemness · Hypoxia-inducible 
factor-1alpha

5.1  Introduction

Hepatocellular cancer (HCC) is the fastest growing cancer in the US and worldwide 
[1, 9, 25]. However, therapeutic options and effectiveness of therapy are limited for 
HCC. Epidemiology and natural history studies have found that most HCC develops 
in patients with cirrhosis and end-stage liver disease and thus, all factors that lead to 
liver cirrhosis are correlated with development of HCC. The most frequent etiology 
of liver disease leading to HCC include chronic viral hepatitis with hepatitis C or 
hepatitis B infection, alcoholic liver disease and non-alcoholic steatohepatitis 
(NASH) [1, 9, 19, 25]. Importantly, recent studies suggest HCC development in 
NASH without the presence of cirrhosis [13]. In cases of chronic HBV infection, 
HCC development can also be seen in the absence of cirrhosis and this is largely 
attributed to the fact that HCV as a DNA virus, can integrate into the host genome 
thereby causing direct carcinogenic effects [18].

G. Szabo (*) 
Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
e-mail: Gyongyi.Szabo@umassmed.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98788-0_5&domain=pdf
mailto:Gyongyi.Szabo@umassmed.edu


72

Chronic alcohol use alone increases the risk of HCC particularly in men and 
alcohol significantly accelerates HCC in patients with chronic HCV infection sug-
gesting that alcohol can act as a co-factor in the presence of other tumorigenic fac-
tors [19, 24].

5.2  New Model of HCC in Mice with Alcoholic Liver Disease

Animal models of HCC have been developed with the aims to provide a model of 
human HCC, accelerate mechanistic understanding of HCC, and provide a tool for 
preclinical testing of new potential therapeutics for HCC [5, 14]. The classical 
tumor inducer, DEN, was shown to lead to HCC when injected into neonatal mice. 
In addition to HCC, however, these mice develop other types of cancers as well 
indicating that this model is not a liver-specific carcinogen. Using the DEN model, 
McKillop’s group reported increased tumor development when mice received 
chronic low doses of alcohol in the drinking water [6]. In this model, mice that 
received alcohol and no DEN, showed no liver damage that is very different from 
the human condition where alcohol-related HCC develops in the liver with alco-
holic hepatitis and/or alcoholic cirrhosis [24].

To mimic the underlying element of human HCC, alcoholic liver disease, we have 
developed a new model where DEN was combined with chronic alcohol administra-
tion that results in features of human alcoholic liver disease [2]. In this new alcohol-
HCC model, 4-week old male C57bl6 mice received weekly doses of DEN (75 mg) 
for three doses followed by another 3 weekly doses of DEN (100 mg) as described 
[3, 6]. Alcohol feeding was started on week 6 of DEN administration and the Lieber-
DeCarli alcohol (4% ethanol) or pair-fed diet was administered for 7 weeks [2, 3].

5.3  Liver Damage, Histology and Tumor Characteristics

Even the first DEN administration induced liver damage as indicated by increased 
serum ALT levels and the ALT increase was sustained throughout the DEN admin-
istration indicating the presence of alcoholic liver disease [2]. Chronic alcohol feed-
ing with the Lieber-DeCarli diet resulted in significant increase in serum ALT and 
bilirubin levels compared to pair-fed diet. The combination of alcohol and DEN 

Table 5.1 Liver fibrosis markers

Pair-fed Alcohol-fed
No DEN DEN No DEN DEN

ALT − ↑ ↑ ↑↑
Sirus red staining − ↑ ↑ ↑↑↑
α SMA − ↑ − ↑↑
TGFβ − ↑ − ↑↑
Pro-/collagen-1 − ↑ ↑ ↑↑↑
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induced the highest levels of ALT that was significantly greater than ALT increased 
by DEN or alcohol alone suggesting an additive effect (Table 5.1). CyP2E1, that is 
involved in the metabolism of alcohol was increased by alcohol and DEN, respec-
tively; however, alcohol plus DEN administration showed no additive effect at the 
end of the 7 weeks of alcohol feeding [2].

Liver triglyceride measurements, hematoxylin eosin and oil-red-O staining of 
livers revealed fatty liver disease after alcohol alone administration compared to 
pair-fed controls. DEN alone resulted in no significant steatosis and, interestingly, 
livers from DEN plus alcohol-fed mice had less steatosis compared to alcohol alone 
treated mice [2, 3].

Consistent with the greater extent of liver damage in DEN plus alcohol fed mice, 
we found the most extent of liver fibrosis on Sirius red staining in this group com-
pared to others (Table 5.1). Markers of liver fibrosis including alpha-smooth muscle 
actin, TGBß and pro-collagen1 expression levels were increased by alcohol or DEN 
alone and showed significantly higher levels in DEN plus alcohol treated animals 
compared to any other groups (Table 5.1) [2, 3]. It is notable that in human disease 
progression of alcoholic liver disease to cirrhosis, the extent of steatosis also shows 
a decreasing trend compared to early alcoholic steatohepatitis.

Hepatic tumor development was found in mice with DEN plus alcohol treatment. 
DEN alone resulted in no hepatic dysplastic nodules indicating early HCC but alco-
hol pus DEN treated mice had significantly higher numbers of hepatic nodules [2, 
3]. We also observed biliary cysts in DEN treated mice (average of cysts/ livers) that 
was significantly higher in alcohol plus DEN treated mice [2, 3]. Hepatic tumor 
development was also confirmed by liver MRI analysis [2, 3]. Serum alpha fetopro-
tein, a marker of hepatocyte proliferation and HCC, was significantly increased by 
alcohol and DEN alone, respectively, with a synergistic increase after DEN plus 
alcohol combination (Table 5.2).

Table 5.2 Markers of stemness and carcinogenosis

Pair-fed Pair-fed Alcohol-fed Alcohol-fed
No DEN DEN No DEN DEN

AFP — ↑ ↑ ↑
CYCLIN D — — — ↑
P53 — ↑ ↑ ↑↑
Vimentin — ↑ ↑ ↑↑
N-cathedrin — ↑ — ↑↑↑
E-cathedrin — — ↓ ↓↓
Gli1 — ↑ — ↑↑↑
Ccnd2 — ↑ — ↑↑
Osteopontin — ↑ — ↑↑↑
CD44 — ↑ — ↑↑
Shh — — — ↑
CD133 — ↑ ↑ ↑↑↑
Nanog — ↑ — ↑↑
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5.4  Role of Inflammation in HCC

A critical feature of alcoholic liver disease and alcoholic hepatitis is recruitment and 
activation of inflammatory cells in the liver [11, 22]. Furthermore, chronic inflam-
mation has been identified as a significant driving factor in development of hepato-
cellular cancer [12]. Both DEN and chronic alcohol feeding increased the expression 
of pro-inflammatory cytokines, TNFα, IL-6, MCP-1, IL-17a at the mRNA and pro-
tein levels in the liver [2]. The combination of DEN plus alcohol was additive in 
MCP-1 and IL-17 protein induction (Table 5.3). This correlates with findings in 
human HCC where increased serum levels of IL-17 and MCP-1 were associated 
with HCC [15, 17].

Alcohol alone and, to a significantly greater extent in combination with DEN, 
resulted in increased neutrophil leukocyte recruitment in the liver indicated by 
increased mRNA levels of Ly6G, E-selectin and myeloperoxidase; the latte was 
confirmed by immunohistochemistry staining [2] (Table 5.3). Macrophages were 
also activated in the liver after chronic alcohol feeding indicate by increased F4/80 
and CD68 mRNA expression (Table 5.3). The significantly higher CD68 expression 
after the combination of alcohol plus DEN indicated significantly increased recruit-
ment of macrophages to the liver. Macrophages can express different phenotypes in 
response to various stimuli from their tissue environment [17]. The spectrum of MØ 
phenotypes includes pro-inflammatory macrophages that produces mediators, cyto-
kines in tissue inflammation while the opposite spectrum is “repair” macrophages 
that participate in tissue remodeling and resolution of inflammation [15, 17]. We 
found evidence for the presence of both of these phenotypes after alcohol, DEN or 
their combination (Table 5.3). We noted that the combination of alcohol plus DEN 
preferentially increased the expression of IL-10 and CD206 that are markers of 

Table 5.3 Markers of inflammation in early HCC accelerated by ALD

Pair-fed Pair-fed Alcohol-fed Alcohol-fed
No DEN DEN No DEN DEN

TNFα — ↑ ↑ ↑↑
IL-6 ↑ ↑ ↑↑
MCP-1 — ↑ ↑ ↑↑
IL-17A — ↑ ↑ ↑↑
iNOS — ↑ ↑ ↑↑
ARG1 — ↑ — ↑
IL-10 — ↑ — ↑
F4/80 — ↑ — ↑
CD68 — ↑ — ↑↑
CD163 — ↑ — ↑
CD206 — ↑ — ↑↑
Ly6G — ↑ — ↑↑
MPO — ↑ — ↑↑
E-selectin — ↑ — ↑↑
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tumor-associated macrophages (TAMs) (Table 5.3). These results suggested that in 
alcoholic liver disease and in alcohol-induced HCC, both M1 and M2-type macro-
phages are induced and further understanding of the specific role of these MØ phe-
notypes in HCC might be important in future therapeutic interventions.

5.5  Markers of Stemness and Carcinogenesis

An increased frequency of liver lesions indicating early HCC was detected by MRI, 
and AFP in DEN treated plus alcohol-fed mice compared to DEN alone, alcohol 
alone or pair-fed controls [2, 3]. AFP increase was present in the serum as well as in 
the liver as determined by immunohistochemistry staining (Table  5.2). AFP is 
expressed at increased levels in proliferating and de-differentiated hepatocytes and 
this notion was supported by increased expression of PCNA on liver histology [2]. 
Recent reports suggest that HCC development occurs from the growth of a small 
population of cancer stem cells or tumor initiating cells (TICs). These are character-
ized by expression of the molecular stemness markers, CD133 and nanog [16, 23]. 
While both CD133 and nanog mRNA levels were increased by alcohol or DEN 
alone, there was a significant increase in the livers with DEN induction followed by 
alcohol treatment compared to any other experimental groups (Table 5.2). This cor-
related with increased liver expression of cytokeratin 7 and cytokeratin 9 [3]. The 
tumor markers, cyclin D1, p53 as well as markers of epithelial mesenchymal transi-
tion (EMT), vimentin and n-cathedrin were significantly increased in livers with the 
highest tumor numbers after DEN plus alcohol treatment (Table 5.2).

The intracellular signaling pathways associated with HCC were also increased. 
We found significant increase in key elements of hedgehog signaling in DEN plus 
alcohol treated mice. The mRNA expression of Gli1, Ccnd2 and osteopontin were 
all significantly increased in livers after DEN plus chronic alcohol feeding com-
pared to DEN or alcohol alone (Table 5.2) [3].

5.6  MicroRNA-122

MicroRNAs are 22 nucleotide small RNAs that regulate post-transcriptional gene 
expression via RNA silencing [4, 20]. Different microRNAs have been found to be 
up or downregulated in HCC [7, 10, 27]. In normal hepatocytes, miR-122 is 
expressed at high levels and it represents about 70% of the total miRNA pool in 
hepatocytes [4, 7, 10, 20, 27]. We found a significant reduction in liver miR-122 
levels after DEN plus alcohol feeding, however, serum levels of miR-122 were sig-
nificantly increased (Table 5.4) [3]. This suggested that in early HCC hepatocytes 
most likely release miR-122 into the circulation. While the biological significance 
of increased circulating miR-122 is yet to be defined, increase in circulating miRNA-
 122 deserves consideration as an early biomarker of liver injury and HCC [21]. Our 
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previous study indicates that increase in serum miR-122 levels show a significant 
correlation with liver damage indicated by increased ALT, the tumor marker, alpha 
fetoprotein (AFP), and the EMT marker, CD133 (Table 5.5). Circulating miRNAs 
are being exploited as biomarkers and may serve as a “liquid biopsy” for HCC and 
liver disease [26].

The functional effect of decreased miR-122 in livers with early HCC was further 
evaluated in our studies and we found that the miR-122 target, hypoxia-inducible 
factor 1α was affected. HIF-1α was recently identified as a miR-122 target [8] and 
HIF-1α upregulation has received interest as a therapeutic target in HCC [27]. There 
was a significant increase in HIF-1α levels and DNA binding in livers with early 
HCC after DEN plus chronic alcohol feeding (Table 5.4) [3]. The increase in HIF-1α 
is important considering that the tumor microenvironment is often hypoxic provid-
ing another likely mechanism for upregulation of HIF-1α.

5.7  Summary and Relevance to Human Disease

HCC is a rapidly increasing cancer worldwide. Most HCC rises in the setting of 
chronic and advanced liver disease caused by viral hepatitis, alcohol use, non- 
alcoholic liver disease or their combination. We found that in the mouse model, 
alcohol alone does not induce HCC, however, it can promote HCC development 
after a carcinogen exposure. Multiple mechanisms are involved in carcinogenesis 
and alcohol affects many of those including epithelial-mesenchymal transition, can-
cer stem marker expression and inflammation as evidenced in our HCC model. It is 
important to note, that we found acceleration of HCC development in livers with 
alcoholic liver disease and not in mice that received alcohol without a carcinogen 
(DEN). Our data and that of others suggest that alcohol acts at multiple levels in 
acceleration of HCC including increasing inflammation in the liver, interfering with 

Table 5.4 MicroRNA-122 and targets

Pair-fed Pair-fed Alcohol-fed No Alcohol-fed
No DEN DEN DEN DEN

Liver miR-122 — ↓ ↓ ↓↓
Serum miR-122 — ↑ — ↑↑
Ccng I — ↑ ↑ ↑↑
Bclw — ↑ — ↑↑
HIF1α — ↑ — ↑↑
VEGF — — — ↑

Table 5.5 Serum concentration

ALT AFP CD133

miR-122 r = 0.7413 r = 0.6742 r = 0.5148
P < 0.001 P < 0.0001 P < 0.01
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liver regeneration, increasing stemness and EMT and decreasing liver mRNA levels 
(Summarized in Fig. 5.1). This is important when extrapolating to human disease 
because in humans only excessive chronic alcohol use is associated with HCC that 
results in liver cirrhosis and end-stage liver disease. Moderate alcohol use is not 
associated with HCC in humans unless some other chronic liver diseases is also 
present. Thus, alcohol appears to be a co-factor and not a primary initiator of HCC.

Similar to many other HCC models, there are some limitations of this new model 
as well. While human HCC develops in livers with alcoholic cirrhosis and typically 
not without significant fibrosis, alcoholic liver disease in mice does not progress to 
the same extent of fibrosis that is seen in human disease. However, we found that 
administration of DEN together with the prolonged alcohol feeding resulted in the 
greatest extent of liver fibrosis compared to alcohol or DEN alone. It remains to be 
determined whether human HCC is associated with the extent of the fibrosis/cir-
rhosis in ALD or with the time factor of alcohol-induced damage to hepatocytes and 
stem cells that also contribute to the development of cirrhosis. Studies with tumor 
stem cells indicate that alcohol-induced damage and modification of stem cells is a 
key factor in HCC development. Indeed, we found upregulation of cyclin D1 and 
p53 in the liver with DEN plus chronic alcohol treatment.

Funding NIH NIAAA R01 AA011576 to G.S.

Alcoholic liver disease accelerates HCC development

chronic alcohol 
↓

alcoholic liver disease

steatosis, fibrosis 
inflammation

neutrophils, macrophages M1/M2

carcinogen exposure 
↓  (DEN)

Impaired regeneration/carcinogenosis
↑ stemness: CD133 , nanog, cxcl
↑  progenitors: AFP, CK7, CK19
↑ EMT: vimentin, N-cathedrin, hedgehog signaling
↓ liver miR-122 – HIF1α, Cyclin D1 

Early HCC

Fig. 5.1  Alcoholic liver disease accelerated HCC development in mice. Factors contributing 
include alcohol-induced steatosis, inflammation, macrophage and neutrophil activation in addition 
to DEN-induced carcinogenesis and impaired liver regeneration
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Chapter 6
Chronic Ethanol Consumption 
and Generation of Etheno-DNA Adducts 
in Cancer-Prone Tissues

Teresa Peccerella, Tatjana Arslic-Schmitt, Sebastian Mueller,  
Kirstin- Berit Linhart, Devanshi Seth, Helmut Bartsch,  
and Helmut K. Seitz

Abstract Chronic ethanol consumption is a risk factor for several human cancers. A 
variety of mechanisms may contribute to this carcinogenic effect of alcohol includ-
ing oxidative stress with the generation of reactive oxygen species (ROS), formed via 
inflammatory pathways or as byproducts of ethanol oxidation through cytochrome 
P4502E1 (CYP2E1). ROS may lead to lipidperoxidation (LPO) resulting in LPO-
products such as 4-hydoxynonenal (4-HNE) or malondialdehyde. These compounds 
can react with DNA bases forming mutagenic and carcinogenic etheno- DNA adducts. 
Etheno-DNA adducts are generated in the liver (HepG2) cells over- expressing 
CYP2E1 when incubated with ethanol;and are inhibited by chlormethiazole. In liver 
biopsies etheno-DNA adducts correlated significantly with CYP2E1. Such a correla-
tion was also found in the esophageal- and colorectal mucosa of alcoholics. Etheno-
DNA adducts also increased in liver biopsies from patients with non alcoholic 
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steatohepatitis (NASH). In various animal models with fatty liver either induced by 
high fat diets or genetically modified such as in the obese Zucker rat, CYP2E1 is 
induced and paralleled by high levels of etheno DNA- adducts which may be modi-
fied by additional alcohol administration. As elevation of adduct levels in NASH 
children were already detected at a young age, these lesions may contribute to hepa-
tocellular cancer development later in life. Together these data strongly implicate 
CYP2E1 as an important mediator for etheno-DNA adduct formation, and this det-
rimental DNA damage may act as a driving force for malignant disease progression.

Keywords Cytochrome P4502E1 · Etheno-DNA adducts · Reactive oxygen  species 
· NASH · ALD · Esophageal Cancer · Colorectal Cancer

6.1  Introduction

There is strong evidence that oxidative stress related DNA damage is induced by 
known inherited and acquired cancer risk factors including inflammation [1–3]. 
Pro-mutagenic Lipidperoxidation (LPO)-derived DNA adducts are increased sig-
nificantly in chronic pancreatitis [2], ulcerative colitis, Crohn’s disease [2] as well 
as in viral-Hepatitis [2] and other types of chronic liver disease [4]. Two major 
etheno-DNA adducts 1,N6-etheno-2′-deoxyadenosine (εdA) and 3,N4-etheno-2′-
deoxycytidine (εdC) were quantified as marker lesions and found to accumulate in 
target organs over time, paralleling progression to tumor development [1–3, 5, 6]. 
DNA repair and cellular apoptotic processes contribute to urinary excretion of 
etheno-desoxyribonucleosides, which offer a non-invasive approach to monitor 
LPO-related pathogenic processes in vivo [7].

In this article we review formation and significance of exocyclic etheno DNA 
adducts and their possible role in human and experimental carcinogenesis. Major 
emphasis, however, will be led on the effect of chronic ethanol consumption and the 
generation of these adducts in the liver and other extrahepatic tissues. Finally, the 
relevance of etheno DNA adducts in non-alcoholic fatty liver disease (NAFLD) is 
discussed.

6.2  Etheno-DNA Adducts: Formation and Significance

Upregulation and overexpression of stress response enzymes such as inducible 
nitric oxide synthase (iNOS), lipoxygenase (LOX) and possibly cyclooxygenase 
(COX)-2 in inflamed tissues proceeds malignant growth. Hereby a self-perpetuating 
stimulation of LPO, over-production of DNA-damaging ROS and reactive nitrogen 
species (RNS), as well as LPO-derived exocyclic-DNA adducts takes place, acting 
as a driving force to malignancy [2] (Abb.1).

This cascade of events was supported by rodent models and adduct-analysis of 
organ tissue/ biopsy samples from cancer-prone patients. In Swiss  Jim-Lambert- mice 
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inflammatory-related NO overproduction was found to be associated with signifi-
cant increased etheno-DNA formation; both could be inhibited by the administra-
tion of an iNOS inhibitor [8]. In a multistage mouse skin carcinogenesis model 
etheno-DNA adducts correlated with LOX-catalyzed tumor associated arachidonic 
acid metabolites [9]. Similarly, increased adduct levels were found in target tissues 
of Apc min (multiple intestinal neoplasia) mice [10, 11] as well as in cancer-prone 
patients with familial adenomatous polyposis (FAP) [12].

Induction of cytochrome P-450 2E1 as in alcoholic liver disease (ALD) and 
NAFLD may also result in ROS and etheno-DNA adduct formation [13, 14]. 
Although ethanol is primarily oxidized via alcohol dehydrogenase, a small percent-
age is metabolized via the microsomal ethanol oxidizing system (MEOS) which is 
CYP2E1 dependent. This pathway increases when ethanol is consumed chronically. 
Besides acetaldehyde, the first metabolite of ethanol oxidation, ROS are generated 
which trigger lipid peroxidation (LPO), leading to DNA adduction that likely par-
ticipates in tumourigenesis (Fig. 6.1).

Fig. 6.1 Simplified pathophysiology of reactive oxygen species (ROS) and etheno DNA 
adduct formation. Inflammation driven cytokine secretion results among others in an activation of 
NADPH oxidase and via NFκB in an activation of lipoxygenase (LOX) and cyclooxygenase 2 
(COX-2). As a result ROS are generated, which lead to lipidperoxidation with the occurrence of 
lipidperoxidation products such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). 
These adducts react with DNA bases to form exocyclic etheno-DNA adducts. Chronic alcohol 
consumption results in the induction of cytochrome P4502E1 (CYP2E1), which is involved in etha-
nol oxidation via the microsomal ethanol oxidizing pathway. During this reaction ROS is generated 
without inflammation. To a minor degree ethanol may result in ROS formation through inflamma-
tion (alcoholic hepatitis). On the other hand, in NASH ROS is primarily formed through inflam-
mation and to a minor degree through C YP2E1 induction via acetone (diabetes mellitus) and/or 
free fatty acids (FFA)

6 Chronic Ethanol Consumption and Generation of Etheno-DNA Adducts…
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Thus, current evidence supports the paradigm that cancer predisposing condi-
tions (see above) lead to the ROS/RNS generation with subsequent LPO and pro-
duction of by-products such as malondialdehyde (MDA), 4-hydroxynonenal 
(4-HNE), 4-hydoxyhydroperoxy-2-nonenal (HPNE) (Fig. 6.2). These lipidperoxi-
dation products react with DNA either directly or through bifunctional intermedi-
ates to form various promutagenic exocyclic etheno-DNA adducts [13]. 
LPO-products derived mainly from gamma-linoleic acid, include 4-HNE, a major 
LPO product and its electrophilic epoxy-, hydroperoxy-, and oxo-enal intermedi-
ates can react with the DNA bases A, C, and G. This yields the unsubstituted etheno- 
DNA adducts, 1,N6-etheno-2′-deoxyadenosine (εdA), 3, N4-etheno-2′-deoxycytidine 
(εdC), 1,N2-etheno-2′-deoxyguanosine (1,N2εdG), and N2,3-etheno-2′-
deoxyguanosine (N2,3εdG). In addition, substituted base adducts are formed such 
as HNE-dG carrying a fatty acid chain residue. 2,N4-etheno-5-methyl-2′-
deoxycytidine (ε5mdC), an endogenous LPO-derived adduct was recently identified 
in human tissue DNA, possibly playing a role in epigenetic mechanisms of carcino-
genesis [1, 15–22]. DNA is also modified directly by ROS and RNS to yield 8-nitro-
 dG and 8-Oxo-dG [16]. All of these products in DNA changes have been detected 
in human specimens [4, 7, 23–26]. Exocyclic etheno-DNA adducts exhibit strong 
mutagenic properties in most organisms tested so far, producing various types of 
base pair substitution mutations and other types of genetic damage [27–32].

Fig. 6.2 1,N6-etheno-2′-deoxyadenosine(εdA), and 3, N4-etheno-2′-deoxycytidine (εdC), two 
important etheno-DNA adducts (a). Immunohistochemistry of εdA in the nuclei of hepatocytes in 
a patient with ALD (b)
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εdA can lead to AT → GC transition and AT → TA and AT → CG transversions 
[29, 30]. εdC cause CG → AT transversions and CG → TA transition [31, 32]. N2,3 
εdA leads to GC → AT transition [32]. Incorporation of a single εdA in either DNA 
strand of HeLa cells showed a similar miscoding frequency and was more muta-
genic than 8-oxo-dG [33].

Etheno adducts are poorly repaired in some tissues stressing their biological rel-
evance [34]. Strong support that etheno-DNA adducts play a causal role in the ini-
tiation and progression of liver carcinogenesis comes from the formation of εdA 
and εdC in vivo by the human liver carcinogen vinyl chloride [35] and by the potent 
multiorgan, multispecies carcinogen urethane; hereby reaction with DNA occurs 
via their metabolic epoxy-intermediates [36]. The biological importance of etheno- 
DNA adducts is further stressed as they are preferentially formed in codon 249 of 
TP53 (which encodes p53), leading to a mutation that renders cells more resistant to 
apoptosis and provides them some growth advantage [37].

LPO-derived reactive products and their macromolecular interactions have been 
so far characterized primarily by in vitro studies, making it difficult, to pinpoint the 
main precursors and pathways involved in the generation of cancer-relevant DNA 
damage in human in vivo. For this reason, earlier studies analyzed εdA and εdC in 
human specimens to serve as a lead marker for other exocyclic adducts formed 
in vivo, but for which sensitive detection methods were not yet available at that 
time. Using ultrasensitive and specific detection methods [24], two miscoding 
etheno-DNA adducts εdA and εdC were first unequivocally identified in human 
DNA (Fig.  6.3) Subsequently, surgical tissue samples collected from “at risk” 
patients, i.e. affected by chronic inflammatory processes, persistent viral infections, 
iron storage- and alcohol-related diseases or exposed to inherited/acquired cancer 
risk factors were analyzed. Adduct levels increased 10–100-fold progressively in 
human cancer-prone organs including liver, bile duct, esophagus, colon and pan-
creas. Consistent results were also observed in rodent tumor models, that mimic 
human disease [3]. Taken together these data incriminate LPO-derived DNA adducts 
formed endogenously as strongly mutagenic and potentially cancer-causing lesions. 
The chemical structure of εdA and εdC as well as the immunohistochemical appear-
ance of εdA in the liver of a patient with ALD is shown in Fig. 6.3.

6.3  Etheno-DNA Adducts in ALD and NAFLD: The Role 
of CYP2E1 Induction and Inflammation

Oxidative stress is a major pathogenetic factor in ALD and in NAFLD. In both dis-
eases inflammatory driven oxidative stress occurs, which is predominant in non- 
alcoholic steatohepatitis (NASH) [13] as well as in alcoholic hepatitis (ASH), a 
clinical syndrome with high mortality [38]. In addition, CYP2E1 is found to be 
induced by chronic ethanol ingestion [39] as well as in NASH [40]. The intensity of 
ethanol mediated CYP2E1 induction differs interindividually [41]. In NASH, an 
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inflammatory liver disease associated primarily with the metabolic syndrome (over-
weight, diabetes mellitus, hypertension, and hypercholesterolemia) hepatic acetone 
(observed in diabetes mellitus) and free fatty acids (present in fatty liver) also induce 
CYP2E1, since there metabolism is catalyzed by CYP2E1 [42].

Ethanol metabolism through CYP2E1 generates not only acetaldehyde, but also 
ROS which can react with proteins and DNA affecting their structure and function. 
ROS can also initiate LPO which leads to formation of several byproducts such as 

Fig. 6.3 Effect of a high fat diet with and without ethanol (16% of total calories on the level of 
εdA (a) and CYP2E1 (b). The high fat diet alone increased both εdA and CYP2E1 significantly, 
while the addition of ethanol did not further increase the two parameters. HFD = high fat diet, 
HFS = high fat diet plus alcohol
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MDA and 4-HNE. After reaction with DNA bases exocyclic etheno DNA adducts 
are generated (Figs.  6.1 and 6.3). CYP2E1 induction in NASJH as compared to 
ALD was found to be less pronounced, whereas inflammation was predominant 
[13] This led to the assumption that DNA adduct formation in NASH is primar-
ily driven by inflammatory processes, whilst in ALD, CYP2E1 induction is much 
stronger and inflammation generally milder. AH seems to be an exception, whereby 
in ALD etheno adducts are primarily formed via CYP2E1-mediated ROS formation.

6.4  Etheno DNA Adducts (εdA) in Alcohol Consuming 
Rodent Models and ALD Patients

Various animal experiments have underlined that in ALD CYP2E1 is responsible 
for the generation of ROS and DNA damage in disease causation: a) CYP2E1 
knock-out mice do not develop ALD with the same severity as wild-type mice when 
they ingested alcohol for more than 4 weeks [43, 44]; b) inhibition of CYP2E1 by 
chlormethiazole (CMZ), a selective CYP2E1 inhibitor decreases ROS/RNS signifi-
cantly, resulting in an inhibition of ALD [44, 45]; c) CYP2E1 knock-out mice also 
developed less oxidized DNA products as compared to wild type mice when both 
received ethanol [46]; d) Transgenic mice over-expressing CYP2E1 showed an 
enhancement of hepatic injury following chronic ethanol administration [43, 47, 
48]; e) in (HepG2) liver cells over-expressing CYP2E1, incubation with rising etha-
nol concentrations led to a linear increase of εdA levels in DNA, which was inhib-
ited by small amounts of CMZ [49].

Liver biopsies from patient with varying degree of ALD severity were immuno-
histochemically analyzed for CYP2E1, 4-HNE, and εdA adducts. Again, we found 
a significant positive correlation for CYP2E1 vs. 4-HNE as well as for CYP2E1 vs. 
εdA [49].

In an ongoing study analysis of liver biopsies from about hundred ALD patients 
confirmed at a high level of significance these correlations and the association 
between hepatic fibrosis, CYP2E1 and εdA (Seitz, personal communication). These 
data strongly implicate CYP2E1 as an important mediator for etheno DNA adduct 
formation and this detrimental DNA damage may act as a driving force for ALD 
progression.

Since chronic ethanol consumption is also a risk factor for esophageal and 
colorectal cancer we also measured CYP2E1 and εdA in these tissues. In 37 patients 
with esophageal cancer esophageal biopsies adjacent to the tumor were analyzed 
and were compared to control biopsies from 12 non-alcohol drinkers [50]. In the 
esophageal mucosa a significant correlation between the quantity of alcohol intake 
and CYP2E1 induction as well as etheno-DNA adduct formation was found. Both 
etheno-adducts εdA and εdC correlated significantly with CYP2E1 [50], while con-
trol patients did not show CYP2E1.

CYP2E1 can also induced in the colorectal mucosa. In our study in heavy and 
light drinkers no difference in CYP2E1 and εdA levels was observed, possibly due 
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to dietary modulators that affect CYP2E1, LPO, and adduct production in situ. 
However, when the data of all patients (controls and alcoholics) were pooled, a 
significant correlation between CYP2E1 and εdA became apparent [51].

6.5  Etheno DNA Adducts in Animal Models of NASH 
with and Without Additional Alcohol Administration 
and in NASH Patients

Based solely on histomorphology NASH and ASH are very difficult to distinguish. 
In both ALD and NASH CYP2E1 was reported to be induced [39–41], this induc-
tion in NASH is less expressed than in ALD for reasons that we investigated.

Formation of εdA in a cohort of patients with NASH has clearly been established 
[38], but the etheno adducts did not correlated with CYP2E1. To explain this unex-
pected finding we assume that in NASH inflammation predominates rather than 
CYP2E1 induction, and etheno adducts are formed via ROS generated during 
inflammatory processes (Fig.  6.1) In this context it is noteworthy that in NASH 
patients a significant correlation was noted between CYP2E1 and hypoxemia and 
ß-hydoxybutyrate [52].

In a further study we investigated etheno-DNA adducts in 21 children and ado-
lescents who were diagnosed with NASH with and without diabetes [53]. In 3 out 
of 21 children etheno DNA adducts were extremely high. Since alcohol consump-
tion even at social levels increase the risk for hepatocellular cancer in NASH it 
would be important to monitor these children for HCC further in life.

In a series of animal experiments where NASH was induced either in genetically 
modified rodents or by feeding a high fat diet we further investigated the formation 
of etheno-DNA adducts. When obese Zucker-rats who are leptin deficient and insu-
lin resistant received alcohol as Lieber-DeCarli-diets etheno-DNA adducts increased 
to a much higher degree in obese as compared to lean Zucker-rats and this increase 
was further enhanced when alcohol was administered. Etheno adduct formation was 
highly significant and paralleled by the level of hepatic CYP2E1 [49].

When Sprague-Dawley-rats received a Lieber-DeCarli-high-fat-diet with 71% 
energy from fat NASH was produced within 6 weeks. Afterwards these rats were 
continuously fed with high fat diet (55% total energy from fat) or high fat plus alco-
hol diet (55% energy from fat and 16% energy from ethanol) for another 4 weeks 
[54]. High fat diet alone increased hepatic inflammation and apoptosis as compared 
to a control diet, and nearly doubled the level of hepatic etheno-DNA adducts and 
of CYP2E1. The addition of ethanol did not significantly affect parameters associ-
ated with lipid peroxidation, inflammation and apoptosis, and no further increase in 
etheno-adducts and of CYP2E1 was noted [55] (Fig. 6.4).

A similar observation was made in a mouse model [56] where multiple binge- 
drinking with an ethanol intake of 2 g/kg body weight twice a week for 12 weeks 
increased etheno-DNA adducts in the liver only to a minor degree as compared to a 
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single binge of 6 g/kg body weight in an alcoholic steatosis model [56]. However, 
when multiple binges were combined with a high fat diet (45% of total calories 
from fat) a striking elevation of etheno DNA adducts was found. Interestingly, these 
etheno-DNA adducts occurred in clusters within the liver (Fig. 6.4).
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Chapter 7
Role of TGF-β in Alcohol-Induced Liver 
Disease

Wilma Jogunoori and Lopa Mishra

Abstract Over 90% of hepatocellular carcinoma (HCC) occurs against a back-
ground of chronic liver disease or cirrhosis induced from viral hepatitis to alcohol 
injury. One third of patients with cirrhosis will develop HCC during their lifetime, 
with a 3–5% annual incidence. However, little is known about the key mechanisms 
by which toxins mediate DNA damage in the liver. Recent studies support a central 
role for TGF-β signaling in conferring genomic stability yet the precise mechanism 
of action and the specific stages of tumor suppression remain unclear (Bornstein S, 
White R, Malkoski S, Oka M, Han G, Cleaver T, Reh D, Andersen P, Gross N, 
Olson S, Deng C, Lu SL, Wang XJ. J Clin Invest 119:3408–3419 (2009); Korc M. J 
Clin Invest 119:3208–3211 (2009); Glick A, Popescu N, Alexander V, Ueno H, 
Bottinger E, Yuspa SH.  Proc Natl Acad Sci U S A 96:14949–14954 (1999)). 
Furthermore, it has recently been shown that β2SP+/− and β2SP+/−/Smad3+/− mice 
phenocopy a hereditary human cancer syndrome, the Beckwith-Wiedemann syn-
drome (BWS), which has an 800 fold risk of cancers including HCC, hepatoblas-
toma, and a range of liver disorders. Identifying key biological pathways and 
mechanisms for suppressing alcohol-induced stem cell injury and HCC will be criti-
cal for enhancing patient care and the employment of new therapeutic approaches.
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7.1  Background and Significance

Currently, alcohol is consumed by nearly 75% of the population in the U.S.; world-
wide, approximately 2.5 million people die each year from alcohol-related causes 
(WHO “Global Status Report on Alcohol and Health.”). Nearly 20% of these deaths 
result from end-stage liver disease or cirrhosis. The complex detoxifying function of 
the liver renders it to phenomenal cellular and genotoxic stress that needs to be 
overcome to prevent cirrhosis and malignancy. The transforming growth factor β 
(TGF-β) signaling pathway is instrumental in mammalian development as well as in 
tumor suppression, through inhibition of proliferation and induction of apoptosis in 
multiple cell types. TGF-β has also been linked to detoxification and DNA repair 
mechanisms in the liver. Yet paradoxically TGF-β has a Jekyll and Hyde role in 
tumorigenesis—though TGF-β signaling deters the initiation of cancer, it also pro-
motes tumor cell invasiveness and metastasis through modulating the immune sys-
tem as well as the microenvironment. Molecular mechanisms and clinical relevance 
of the tumor suppressive effects of TGF-β are becoming increasingly evident. 
However, insight into the context dependent roles of this powerful pathway will be 
critical for the efficacious development of new therapeutics.

Detoxification and DNA repair are critical functions of the liver, and need to be 
tightly regulated to maintain homeostasis. However, we are only beginning to 
understand the mechanisms that occur when detoxification and DNA repair are dis-
rupted through acute and chronic insults. Elucidating the links between TGF-β sig-
naling and DNA repair could potentially lead to the identification and validation of 
new causative targets and signaling pathways underlying alcohol-induced liver 
injury and tumorigenesis that are urgently needed. Over 90% of HCC occurs against 
a background of chronic liver disease and cirrhosis from viral hepatitis to alcohol 
injury. Identifying key biological pathways and mechanisms for suppressing alco-
hol-induced injury and HCC could lead to new therapeutics—as new approaches 
have used PARP inhibitors for BRCA1 mutant breast cancers.

7.2  Overview of TGF-β Signaling

TGF-β was first discovered in 1986 and has generated a vast number of studies with 
over 50,000 publications in part due to its multiple and often paradoxical functions. 
Signal transduction mediated by TGF-β related factors is a classic example of recep-
tor serine/threonine kinase cell signaling. Simply, ligand binding initiates dimeriza-
tion of the type II to the type I receptor which in turn activates Smad proteins and 
thus transcription (Fig. 7.1). Bone Morphogenic Protein (BMP) signaling is closely 
related to TGF-β, but each pathway differs in their ligands, Smad involvement, and 
in the regulation of developmental and cellular processes [12, 24, 31, 46]. Activins, 
Nodals, and TGF-βs are the ligands that initiate signal transduction in the TGF-β 
pathway through regulatory Smads (R-Smads), namely Smad2/3, Smad4 (co-smad) 
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or antagonize through inhibitory Smad6/7 [3, 18, 23, 30]. Ligand binding stimulates 
type II receptors (TGF-βRII, ACVR2A/B) to dimerize with type I receptors 
(ALK4/5/7) which phosphorylate the last two serine residues within a highly con-
served SSXS motif at the carboxyl terminus of R-Smads [1, 32, 37, 38, 55]. Once 
phosphorylated, R-Smads associate with the common Smad, Smad4 [62] and medi-
ate nuclear translocation of the heteromeric complex. In the nucleus, the Smad com-
plexes mediate transcription through cooperative interactions with transcription 
factors to regulate developmental processes during embryogenesis including 
growth, differentiation, wound repair, cell polarity, and apoptosis. TGF-β has been 
shown to suppress tumor formation through genetic studies in murine knockout 
models of TGFβ type I and type II receptors, as well as the common mediator 
Smad4 [40, 45, 18, 56, 58]. However, persistent high levels of TGF-β promote 
malignancies and metastases. The multifaceted effects of TGF-β are due to the 
multi-level regulation at each step in the signaling cascade as well as the cellular 
context [11, 20, 28, 54].

7.3  Modulation of TGF-β Signal Transduction

As TGF-β signaling has been identified as a major signaling pathway throughout 
development and disease, much attention has been given to the key regulators of this 
pathway. In the cytoplasm, Smad function is modulated by adaptor proteins such as 
SARA, β2SP, filamin, and others [45, 57, 26]. The function of SARA is to recruit 
R-Smads to the type I receptor, to facilitate Smad phosphorylation and activation. 
The Smad adaptor β2SP, also phosphorylated by type I receptors, binds the acti-
vated R-Smad together with common Smad4 and translocates to the nucleus to acti-
vate transcription [45, 56, 26] (Fig. 7.1).

Smad binding is required to activate transcription of target genes, through inter-
actions with sequence specific transcription factors and co-activators P300/CBP, 
despite the fact that Smads have a 100-fold lower affinity than the interacting high 
affinity DNA binding transcription factors. Through interactions with a variety of 
transcription factors, TGF-β signaling is able to promote transcriptional networks 
with high specificity. For example, the AP1 transcription factor is needed for TGF-β 
induced PAI-1 and collagenase expression [15, 27]. TGF-β mediated transactivation 
of cyclin-dependent kinase inhibitors p21 (Datto et al. 1995) and p15 involves the 
SP1 transcription factor [36]. The tumor suppressor protein TCS2 also interacts 
with Smad2 and Smad3 and potentiates the transcriptional regulation of p21 and 
p27, while repressing cyclin A expression and thus eliciting growth arrest [9].

TSC2 is an established downstream effector of the LKB1 tumor suppressor, and 
mediates the anti-proliferative effects of LKB1 in epithelial cells [2]. These findings 
represent an interesting point of convergence between two major tumor suppressor 
pathways, TGF-β and LKB1. In response to the Activin ligand, the FAST-1 tran-
scription factor binds Smad2 and recruits Smad4. Upon nuclear translocation, these 
proteins become part of a larger complex known as the Activin Response Factor 
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(ARF); which is a critical regulator of early embryogenesis [12]. Interestingly, 
recent studies have shown that TGF-β signaling regulates the CTCF, an insulator 
protein that plays a critical role in chromatin structure, in a β2SP dependent manner 
[13]. Altogether these findings highlight the tumor suppressor functions of TGF-β 
signaling, and implicate this pathway as a guardian of genomic stability.

TGF-β signaling is negatively regulated by other proteins on many levels. Though 
inhibitory ligands and Smads play a role, there are other mediators further down-
stream. A classic example of this is negative regulation by Ski/SnoN, which pre-
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Fig. 7.1 Overview of TGF-β signaling. TGF-β ligand binds to Type II serine threonine kinase 
receptor and initiates the dimerization to Type I receptor. The activated receptor complex phos-
phorylates Regulatory Smads (R-Smads) which are recruited to the receptors with the help of 
adaptor proteins such as SARA and β2SP. Activated R-Smads then bind to the Common Smad 
(Co-Smad) and translocate to the nucleus where the Smad complex binds specific transcription 
factors (TF) and histone acetyltransferase P300/CBP to activate target genes transcription. This 
signaling cascade can be regulated by inhibitory Smads (I-Smads), Ski/SnoN and E3 ligase. 
I-Smads compete with R-Smads for receptor binding and halt the signaling cascade. Ski/SnoN  
blocks P300/CBP binding to the Smad complex, and recruits NCoR to silence transcription. 
De-phosphorylation of β2SP and R-Smads facilitates transport back to the cytosol. The E3 ubiqui-
tin ligase such as SCF type E3 ubiquitin ligase complex BRTC targets R-Smads for proteosomal 
degradation, while Prajal targets both β2SP and R-Smads for degradation. Arrows indicate signal 
flow and are color coded: orange for ligand and receptor activation, blue for Smad activation, and 
purple for ubiquitin mediated protein stability. Ubiquitin is depicted as grey circles
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vents P300/CBP binding and recruits the transcriptional co-repressor NCoR to gene 
promoters to instill gene repression [17]. Balance of the ubiquitin-proteosome  
pathway is also critical as proteins are targeted for degradation by various E3 ubiq-
uitin ligases. Smad3 stability is mediated by a specific SCF ubiquitin ligase com-
plex, BTRC, while β2SP is targeted by the RING-domain E3 ligase Praja [39].

7.4  Alcohol Induced TGF-β Signaling

As the detoxifying organ of the body, the liver is subjected to an immense amount 
of cytotoxic and genotoxic stress. This stress becomes magnified upon repeated 
exposure to alcohol, as well as in the context of hepatitis. Though different cell 
types within the liver respond to this stress in different ways, each cell type seems 
to have defense mechanisms in place to overcome acute exposure to alcohol—
though these programs become deregulated with repeated or chronic insults.

Hepatocytes, or parenchymal cells, are the most abundant cell type in the liver. 
These cells facilitate many important metabolic functions including glycogen stor-
age, as well as detoxification of ammonia and alcohol. In a mouse model of acute 
alcohol exposure, and to a lesser extent in chronic alcohol exposure, PAI-1 was 
required for protection against hepatic steatosis [41]. Given that TGF-β signaling 
positively regulates the expression of PAI-1, TGF-β signaling may have a protective 
effect of hepatocytes in response to alcohol [15, 27]. Through chronic exposure to 
alcohol, TGF-β signaling has an adverse effect on hepatocyte metabolism. In the 
livers from mice treated with chronic ethanol insults, TGF-β activation led to an 
increase in stress response and fibrotic transcriptional programs.

Interestingly, TGF-β induction led to a decreased expression of alcohol dehydro-
genase I (ADH1) which subverted these metabolites towards other pathways, and 
promoted steatosis of the liver [14].

Stellate cells of the liver have opposing reactions to alcohol induced stress 
depending on the exposure level. In the context of acute alcohol exposure, TGF-β 
signaling promotes transcriptional programs of wound healing. However, upon 
chronic exposure of alcohol, stellate cells no longer provide TGF-β induced wound 
healing; instead, these cells illicit a pro-fibrotic response through TGF-β mediated 
activation of p38-MAPK signaling [39, 19].

The liver is also home to a variety of immune cells including the resident macro-
phages called Kupffer cells, as well as lymphocytes including natural killer cells 
(NK) and dendritic cells (DC). Upon acute exposure to alcoholic stress the immune 
cells in the liver collectively balance the secretion of pro-inflammatory cytokines, 
such as tumor necrosis factors (TNFs) and interferons (INFs), with anti-inflamma-
tory responses through interleukins such as IL-10 [50]. Upon chronic alcoholic 
exposure, however, TGF-β mediates the immune cells to change their response and 
favor the secretion of pro- inflammatory cytokines.
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7.5  Defective TGF-β Signaling in Cirrhosis 
and Hepatocellular Carcinoma

TGF-β exerts bi-modal effects acting in a tumor suppressive or oncogenic fashion 
depending on the stage of the disease. Upon chronic alcohol exposure, this signaling 
pathway promotes cirrhosis through encouraging steatosis, fibrosis, and inflamma-
tion. In early oncogenesis, especially in hepatocellular carcinoma (HCC), TGF- β 
mainly elicits tumor suppressive actions, while in later stages of HCC it promotes 
metastases [39]. In a cirrhotic and pre-malignant condition, the persistent exposure 
to alcohol reinforces a pro-inflammatory feedback loop in Kupffer cells and 
CD133+/CD49f+ tumor initiating cells (TICs). Alcohol induces serum endotoxin 
levels which stimulate TLR4 on both Kupffer cells and TICs to promote inflamma-
tion, in the absence of TGF-β signaling. Interestingly, pluripotency factors such as 
OCT4 and NANOG are required for this mechanism. The NANOG transcription 
factor promotes IGF2BP3, which in turn promotes YAP phosphorylation, and 
together IGF2BP3 and YAP inhibit the phosphorylation and subsequent nuclear 
translocation of Smad3 [60, 39].

These data coincide with the role of insulin-like growth factor (IGF) signaling in 
tumorigenesis. IGF signaling plays a major role in mammalian organismal growth, 
and activation of IGF2 and IGF1R have been observed in various epithelial cancers 
[35, 25, 52].

Moreover cells lacking IGF1R are unable to undergo oncogenic transformation. 
Thus, signaling through the IGF pathway appears to be a key oncogenic component, 
and has been implicated in resistance to certain anti-cancer regimes [6, 44, 51, 53]. 
In the context of defective TGF-β signaling, from either β2SP+/− or β2SP+/−/
Smad3+/− tissues and tumors, IGF2 expression markedly increased. In the malignant 
state, the IGF pathway presumably functions through activation of the PI3K/Ras/
MAPK/ERK pathways to promote proliferation and induce anti-apoptotic effects—
both of which are required for tumor growth [13, 61]. Altogether, the dampening of 
TGF-β signaling and the activation of IGF signaling is critical for the initiation of 
HCC. Furthermore, these findings substantiate the development of small molecule 
inhibitors for the IGF pathway and highlight this approach as a promising avenue in 
cancer therapy.

However, the role of TGF-β is reversed in metastatic HCC. Levels of this cyto-
kine are low in non-metastatic HCC, however the levels drastically increase in 
patients with aggressive metastatic disease. A hallmark mechanism of metastases, 
from solid tumors, is epithelial to mesenchymal transition (EMT) in which cells are 
more prone to migrate through loss of cell-to-cell adhesions. In metastatic HCC, 
TGF-β promotes the transcription of a key regulator of EMT called SNAI1 [21]. 
Given its extreme and context dependent roles in the initiation and progression of 
cancer, caution should be taken when considering direct pharmacological inhibition 
of TGF-β signaling.
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7.6  The Role of TGF-β in Genomic Stability and Stem Cell 
Disorder Beckwith-Wiedemann Syndrome

It has been proposed that TGF-β functions as an extracellular sensor of damage 
caused by UV and ionizing radiation [5, 4]. Multiple studies have demonstrated that 
TGF-β plays a role in the interstrand crosslink (ICL) repair system—more specifi-
cally the Fanconi anemia/Breast cancer 1 (Fanc/Brca1) DNA repair pathway. Smad4 
conditional knockout mice have demonstrated that Smad4 regulates the expression 
of Fanconi related genes [10, 43]. Moreover, β2SP associates with Fanconi group 
proteins and localizes to interstand crosslinks (ICL)—confirming that TGF-β sig-
naling is sensitive to DNA damage and promotes DNA repair through ICL repair 
systems [42, 33]. One of the most formidable of post replication DNA lesions is the 
replication fork lesion—a barrier to chromosome duplication—which leads to 
mitotic catastrophe, complex chromosome rearrangements, and cell death. These 
lesions are managed by ICL repair mechanisms such as Fanc/Brca1 to prevent rep-
lication fork progression [16]. This complex repair mechanism has central compo-
nents including the Fanconi complex, an E3 ligase, and at least 4 other factors. The 
central complex in this pathway is formed by the FAD2 (FANC D2) and FAI 
(FANCI) proteins forming the ID complex that are phosphorylated by the ATR 
kinase (Fig. 7.2). The failed response to toxins such as alcohol was observed in null 
models of Fanconi genes, and led to the production of reactive aldehydes and 
adducts that directly damaged DNA, which ultimately led to the development of 
cancer [34]. Given that TGF-β signaling promotes the expression of and interacts 
with members of this repair pathway, it is clear to see how defective TGF-β signal-
ing can lead to genomic instability and oncogenesis.

Recently, a dramatic finding has implicated the TGF-β signaling pathway in the 
development of a stem cell disorder called Beckwith-Wiedemann Syndrome (BWS). 
This syndrome is an overgrowth disorder associated with an increased risk of neo-
plasm development, estimated between 4% and 21%, as initially described by 
Beckwith in 1963 [7,8]. However, no causal mutation has been linked with the 
development of BWS. Through genetically engineered mouse models, it has been 
demonstrated that β2SP+/- and β2SP+/-/Smad3+/- mice develop a phenotype that is 
nearly identical to BWS, as mice develop visceromegaly and multiple tumors 
including metastatic pancreatic cancer and hepatocellular carcinoma, among others 
[13]. Considering that BWS has an incidence of 1 per 6-10,000 births in the US, and 
may be rising 3-4 fold in children from in vitro conception in some countries, under-
standing the precise involvement of TGF-β signaling in this disorder may provide 
opportunities for intervention [48, 59].

When examined further, cell lines made from β2SP+/- and β2SP+/-/Smad3+/- mice 
showed an upregulation of pluripotency markers such as SOX2 and CD34, similar 
to human BWS cell lines. Interestingly, all of these cell lines also harbor overex-
pression of IGF2 and a downregulation of H19. This finding further validated the 
β2SP+/- and β2SP+/-/Smad3+/- mice as models of BWS. A hallmark of BWS is loss of 
imprinting (LOI) on chromosome 11 at the 11p15 locus, encoding BWR1C, 
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CDKN1C, and IGF2, among others. Intriguingly, defective TGF-β signaling may 
play a causative role in the LOI of IGF2, considering the previously established link 
in HCC. Therefore understanding the epigenetic deregulation that occurs simultane-
ous to the LOI is critical for a better understanding of the molecular etiology of 
BWS. Recent studies implicate CTCF as a link between these data. β2SP and Smad3 
are required for CTCF stability in the liver, and these proteins directly interact in 
HepG2 cells upon exogenous stimulation by TGF-β [13]. Moreover, CTCF—an 
evolutionarily conserved 11-zinc finger, DNA-binding nuclear phosphoprotein—is 
involved in multiple aspects of normal gene regulation that include chromatin insu-
lation, transcriptional repression and activation, gene silencing, and regulation of 
imprinted sites [47, 49]. In the context of β2SP and Smad3, CTCF transcriptionally 
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repressed the TERT locus. In BWS and in β2SP+/-/Smad3+/- mice, the dysfunction 
and deregulation of the β2SP/Smad3/CTCF complex caused an increase in TERT 
expression and enhanced the tumorigenesis of CD133+ tumor initiating cells. It is 
possible that BWS may result directly from β2SP mutations, and that the β2SP+/-, 
β2SP+/-/Smad3+/- mutant mice represent a novel pathway for BWS. It is plausible 
that imprinting plays a significant role in the observed phenotype and that the tumors 
arise due to deregulation of TGF-β mediated pathways including IGF signaling, 
more specifically IGF2.
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Chapter 8
NANOG-Dependent Metabolic 
Reprogramming and Symmetric Division 
in Tumor-Initiating Stem-like Cells

Keigo Machida

Abstract Alcohol abuse synergistically heightens the development of the third 
most deadliest cancer hepatocellular carcinoma (HCC) in patients infected with 
hepatitis C virus (HCV). Ectopically expressed TLR4 promotes liver tumorigenesis 
in alcohol-fed HCV Ns5a or Core transgenic mice. CD133+/CD49f  +  tumor- 
initiating stem cell-like cells (TICs) isolated from these models are tumorigenic 
have p53 degradation via phosphorylation of the protective protein NUMB and its 
dissociation from p53 by the oncoprotein TBC1D15. Nutrient deprivation reduces 
overexpressed TBC1D15 in TICs via autophagy-mediated degradation, suggesting 
a possible role of this oncoprotein in linking metabolic reprogramming and 
self-renewal.

Keywords HCC · Cancer stem cells · Tumor-intiating stem-like cells (TICs) · 
NUMB

8.1  Introduction

Major risk factors for HCC are HCV, HBV, alcoholism, and obesity [12, 31]. 
Alcoholic liver disease (ALD) and viral hepatitis (HBV and HCV) are associated 
with development of hepatocellular carcinoma (HCC) [30] as more than 170 million 
people are infected with HCV worldwide [30, 31, 45]. HCV proteins (Nucleocapside 
Core and others) are linked to transformation through overproduction of reactive 
oxygen species which may cause mitochondrial or nuclear DNA damage [19, 28, 
31]. The core protein also inhibits microsomal triglyceride transfer protein activity 
and VLDL secretion [32], which contributes the genesis of fatty liver. The core also 
induces insulin resistance in mice and cell lines, and this effect may be mediated by 
degradation of insulin receptor substrates (IRS) 1 and 2 via up regulation of SOCS3 
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[16] in a manner dependent on PA28γ 73, or via IRS serine phosphorylation [5]. 
HCV-induced mechanisms promotes HCC risk with non-alcoholic fatty liver dis-
ease (NAFLD) (9). HCV/HBV infection, ALD, and NAFLD share common patho-
physiological events such as oxidant stress, organelle stress, and metabolic 
dysregulation which may contribute to their oncogenic activities.

Refractoriness to chemotherapy after HCC treatment is challenging via genesis 
of tumor-initiating stem cell-like cells (TICs) or so-called cancer stem cells (CSCs). 
Stem cells have three major characteristics, self-renewal, asymmetric division 
(clonality), and plasticity. Forty percent of HCC are assumed to have clonality and 
to originate from progenitor/stem cells [1, 34, 39, 48]. CD133+/CD49f + cells in 
liver tumors correlate with tumorigenesity and the expression of “stemness” genes, 
such as Wnt/β-catenin, Notch, Hedgehog/SMO, and Oct3/4 [6, 9, 40]. Indeed, 
CD133+/CD49f + HCC TICs are chemoresistant [35], survive during an initial ther-
apy. Although an encouraging therapeutic response may be seen, survived TICs 
eventually establish a clonal expansion and tumor recurrence. This chemoresistance 
may be caused by the plasticity of TICs with dysregulated signaling and gene 
expression. Several oncogenic signaling pathways are activated in HCC or TICs, 
including PI3K/AKT [24], signal transducer and activator of transcription 3 (STAT3) 
[43, 46], and hedgehog [37, 38] while defective tumor suppressor transforming 
growth factor-beta (TGF-β) pathway is also implicated [18, 29]. Another pivotal 
mechanism is asymmetric division of TICs producing dormant daughter cells which 
are less sensitive to chemotherapeutic drugs.

8.2  Synergistic Risk Factors for Alcohol-Associated HCCs

Co-existence of alcohol abuse or obesity, increases the HCV risk of developing 
HCC by additional eight fold, culminating to an overall 45–55 fold increase in the 
risk as compared to normal subjects (10,11). As alcohol and obesity continue to 
dominate as leading life-style factors for disease burdens around the world (12), 
heightened HCC incidence caused by synergistic interactions of these factors with 
hepatitis viruses, represents the most predictable and devastating global health 
issue. Compelling evidence identifies a synergism between obesity/alcohol and 
HCV infection with the associated risk of developing HCC [47]. The risk of HCC 
increases from 8–12 to 48–54 by co-morbidities such as alcoholism or obesity [47]. 
Obesity and alcoholism increase gut permeability leading to endotoxemia, which in 
turn activates Toll-like receptor 4 (TLR4) in the liver with production of cytokines 
and an inflammatory response. This leads to subsequent development of obesity/
alcohol-related liver disease [13]. Therefore, to develop better therapeutics, the 
underlying molecular mechanisms regulating obesity/alcohol/HCV-induced hepa-
tocarcinogenesis should be elucidateds.
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8.3  Genesis of TICs Induced by Alcohol Exposures

Liver-specific expression of the HCV NS5A protein in mice fed alcohol for 
12  months develop liver tumors in a TLR4-dependent manner [11]. Circulating 
endotoxin binds CD14-TLR4 complex, activates hepatocytes/hepatoblasts and 
induces the stem cell marker NANOG.  This process generates TLR4/NANOG- 
dependent, chemoresistant tumor-initiating stem-like cells (TICs; CD133+), which 
can induce HCC in mice [11].

TICs are rare, highly malignant cells that are present in diverse tumor types and 
play a central role in tumorigenesis, malignant progression, and resistance to che-
motherapy [25, 35]. Sorafenib, a multi-kinase inhibitor, is the most commonly used 
monotherapy agent for the treatment of HCC; however, resistance to sorafenib 
eventually occurs in patients [41]. We recently reported that treatment with sorafenib 
made TICs more susceptible to tumor growth retardation, with a decrease in tumor 
size by ~55% when combined with knockdown of NANOG-inducible proto- 
oncogenes (including YAP1, which induces antioxidant gene programs) [11]. 
However, the underlying mechanism of chemoresistance and self-renewal of TICs 
remains incompletly understood.

8.4  TLR4/NANOG-Dependent TICs Give Rise to Tumors

Mouse-derived tumors contain double-positive cells for NANOG and CD133 or 
CD49f (24). TLR4 silencing reduces heightened expression of stemness genes and 
cell proliferation [10]. CD133+/CD49f + cells are TLR4/NANOG-dependent TICs 
and that Tlr4 is a putative proto-oncogene involved in the genesis/maintenance of 
TICs and liver tumor in HCV Tg models. Hepatoblastic HCC subtype with poor 
prognosis has a gene expression profile with markers of hepatic oval cells [3, 8, 20, 
44]. HCC often recurs after chemotherapy due presumably to the presence of 
chemo-resistant TICs [33].

8.5  Metabolic Reprogramming and TIC Self-Renewal

Toll-like receptor 4 (TLR4) signaling phosphorylates E2F1 to transactivate 
NANOG. Down-regulation of Nanog reduces tumor progression. NANOG ChIP- 
seq identified genes associated with NANOG-dependent mitochondrial metabolic 
pathways to maintain tumor-initiating stem-like cells (TICs). The causal roles of 
NANOG in mitochondrial metabolic reprogramming occurred through the inhibi-
tion of oxidative phosphorylation (OXPHOS) with decreased production of 
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mitochondrial ROS and activation of fatty acid oxidation (FAO), which was required 
for self-renewal and drug resistance [10]. Restoration of OXPHOS activity and inhi-
bition of FAO rendered TICs susceptible to a standard care chemotherapy drug, 
sorafenib [10].

Complementary NANOG ChIP-seq and metabolomics studies of TICs demon-
strated that NANOG induced by TLR4 suppressed mitochondrial OXPHOS and 
activated FAO, thus inhibiting OCR and ROS production. This conferred a tumor 
chemoresistant state which could be abrogated by NANOG-targeted gene silencing. 
Our findings demonstrated a NANOG-dependent downstream effect on mitochon-
drial function in TICs that contributed to the mechanism of chemotherapy resis-
tance [10]. These metabolic reprogramming promoted self-renewal/oncogenesis, 
and explained how NANOG activation inhibited therapy-mediated apoptosis by 
quenching ROS production. Restoration of OXPHOS and activation of decreased 
FAO reduces tumorigenic capacity of TICs and increases susceptibility to chemo-
therapy [10].

As TICs rely on active FAO for their maintenance and function, FAO inhibitor 
suppresses self-renewal of leukemiainitiating cells (LICs) [36]. We experimentally 
reversed the effects of FAO gene silencing and restored the original TIC phenotype 
by overexpression of FAO genes. Thus the fate of stem cells is metabolically 
switched by FAO [14]. Potential mechanisms by which elevation of FAO maintains 
self-renewal ability include: (i) shunting of long-chain FA away from lipid and cell 
membrane synthesis; (ii) downregulation of ROS through production of NADPH to 
avoid loss of TICs; and (iii) reduction of metabolic resistance to chemotherapy. By 
these criteria, NANOG function could be construed to serve as a gatekeeper for 
FAO activity.

8.6  Cell Fate Determinant NUMB and Oncogenesis in TICs

Stem cell populations are maintained through self-renewing divisions in which one 
daughter cell commits to a particular fate while the other retains the multipotent 
characteristics of its parent. Tumor-initiating cells (TICs) contribute to oncogenesis 
and progression to treatment-refractory metastatic disease [22, 23, 42] with the 
heightened expression and activation of a pluripotency-associated transcription fac-
tor (TF) network [15]. The p53 tumor suppressor regulates pluripotency and stem 
cell division. Genetic deletion or shRNA-mediated depletion of p53 enhances cel-
lular reprogramming to the pluripotent state [4, 17, 27] and p53 can directly repress 
the expression of pluripotency-associated TFs [21]. p53 is also required to maintain 
asymmetry and cell polarity in proliferating stem cells and interacts directly with 
the NUMB protein. A polarity determinant NUMB is distributed asymmetrically in 
dividing stem cells and is segregated into the daughter cell which undergoes differ-
entiation. The association with a tumor suppressor Numb stabilizes p53 [7, 26]. 
Regulation of the assembly or stability of the Numb-p53 complex mediates TIC- 
derived oncogenesis. NUNB-associated oncoproteins MDM2 E3 ubiquitin ligase 
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destabilize the Numb-p53 complex and promote proteolysis of p53 [2]. The NUMB, 
a tumor suppressor, in conjunctions with another tumor suppressor protein p53, 
preserves this property and acts as a barrier against deregulated expansion of Tumor- 
associated stem cells. In this context, NUMB-p53 interaction plays a crucial role to 
maintain the proper homeostasis of both stem cells, as well as differentiated cells. 
As the molecular mechanism governing the assembly and stability of the NUMB-p53 
interaction/complex are poorly understood, we tried to identify the molecule/s gov-
ern this process. Using cancer cell lines, tumor-initiating cells (TICs) of liver, the 
mouse model and clinical samples, we identified that phosphorylations of NUMB 
destabilize p53 and promotes self-renewal of TICs by pluripotency-associated tran-
scription factor NANOG dependent manner. NANOG phosphorylates NUMB via 
aPKCζ, through the direct induction of Aurora A kinase (AURKA) and the repres-
sion of an aPKCζ inhibitor, LGL-2. Phosphorylation of NUMB by aPKCζ destabi-
lizes the NUMB-p53 interaction, p53 proteolysis and to deregulate self-renewal in 
TICs Fig. 8.1.

8.7  Conclusions and Discussions

We successfully isolated CD133+/CD49f + TICs which activate a unique TLR4- 
NANOG pathway as an integral component for their self-renewal and tumorigenic 
activities. These TICs are also identified in HCC sections of alcoholic HCV patients 
by immunostaining and isolated from such patients to validate induction of TLR4- 
dependent stemness genes and transformation. Based on this renewed concept, our 
studies have offered two novel insights into the molecular mechanisms of NANOG- 
mediated p53 degradation by disengagement from the protective NUMB protein via 
TBC1D15 interaction. Posttranslational modification of NUMB by NANOG- 
AURKA- aPKCζ pathway is an important event in TICs self-renewal and tumori-
genesis. Hence, our work identifies the NANOG-NUMB-p53 signaling axis is an 
important regulatory pathway for TICS event in TICs self-renewal and liver tumori-
genesis and suggest a therapeutic strategy by targeting NUMB-phosphorylation. 
However, further in depth in vivo and clinical studies are warranted to verify this 
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suggestion. These studies are now exploring potential mechanistic connections to 
metabolic programming known to occur in cancer cells and TICs in promoting and 
maintaining “stem cell fate” via molecular, genetic, and epigenetic mechanisms.

NANOG maintains chemotherapy resistance of TICs involving not only the 
direct activation of self-renewal via stemness genes, but also the subsequent meta-
bolic reprogramming in these cells leading to amplification of TIC oncogenic activ-
ity and their overall survival. Our data showed that NANOG reprogramming of 
mitochondrial metabolism was indeed responsible for human TIC oncogenicity and 
chemoresistance. The metabolic bases of altered cell functions and cell fate in TICs 
define potentially new approaches for chemo-sensitization and elimination of TICs 
for more efficacious HCC therapies. These studies have led to a paradigm shift in 
our understanding the underlying basis of alcohol/HCV-associated cancer, thus 
facilitating future development of new personalized treatment strategies targeted 
towards NANOG+ TICs arising from obesity, alcohol, or HCV-related HCC. The 
studies provide insights into the mechanisms of NANOG-mediated generation of 
TICs, tumorigenesis and chemo-resistance due to metabolic reprograming of mito-
chondrial functions.
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Chapter 9
Diet Supplementation with Soy Protein  
Isolate, but Not the Isoflavone Genistein, 
Protects Against Alcohol-Induced Tumor 
Progression in DEN-Treated Male Mice

K. E. Mercer, C. F. Pulliam, L. Hennings, M. A. Cleves, E. E. Jones,  
R. R. Drake, and M. J. J. Ronis

Abstract Diethylnitrosamine-treated male mice were assigned to 4 groups: a 
casein-based 35% high fat ethanol liquid diet (EtOH), an EtOH diet made with soy 
protein isolate protein (EtOH/SOY), an EtOH liquid diet supplemented with genis-
tein (EtOH/GEN) and a chow group. EtOH feeding, final concentration 5% (v/v), 
continued for 16 wks. EtOH increased incidence and multiplicity of basophilic 
lesions and adenomas compared to the chow group, (p < 0.05). The EtOH/SOY 
group had reduced adenoma progression when compared to the EtOH and EtOH/
GEN group, (p < 0.05). Genistein supplementation had no protective effect. Soy 
feeding significantly reduced serum ALT concentrations (p  <  0.05), decreased 
hepatic TNFα and CD-14 expression and decreased nuclear accumulation of NFκB 
protein in EtOH/SOY-treated mice compared to the EtOH group (p < 0.05). With 
respect to ceramides, high resolution MALDI-FTICR Imaging mass spectrometry 
revealed changes in the accumulation of long acyl chain ceramide species, in par-
ticular C18, in the EtOH group when compared to the EtOH/SOY group. 
Additionally, expression of acid ceramidase and sphingosine kinase 1 which degrade 
ceramide into sphingosine and convert sphingosine to sphingosine-1-phosphate 
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(S1P) respectively and expression of S1P receptors S1PR2 and S1PR3 were all 
upregulated by EtOH and suppressed in the EtOH/SOY group, p < 0.05. EtOH feed-
ing also increased hepatocyte proliferation and mRNA expression of β-catenin tar-
gets, including cyclin D1, MMP7 and glutamine synthase, which were reduced in 
the EtOH/SOY group, p < 0.05. These findings suggest that soy prevents tumorigen-
esis by reducing inflammation and by reducing hepatocyte proliferation through 
inhibition of EtOH-mediated β-catenin signaling. These mechanisms may involve 
blockade of sphingolipid signaling.

Keywords Ethanol · Hepatocarcinogenesis · Diethylnitrosamine · Soy · Genistein 
· Sphingosine · β-Catenin

9.1  Introduction

Alcohol-induced liver cancer occurs via several different interacting mechanisms at 
the level of both initiation and promotion [1, 2]. Formation of acetaldehyde and 
reactive oxygen species results in DNA damage as the result of ethanol (EtOH) 
metabolism by alcohol dehydrogenase and CYP2E1, and reduced DNA methyla-
tion as a result of disruption of one carbon metabolism may result in tumor initiation 
[2]. In addition, there is data demonstrating that EtOH can act as a tumor promoter 
[3, 4]. Our laboratory and others have shown that EtOH stimulates hepatocyte pro-
liferation in rodent models coincident with development of liver injury and deple-
tion of hepatic retinoid stores [4]. Treatment with retinoic acid can reverse the 
increase in hepatocyte proliferation after EtOH exposure [5]. Down regulation of 
retinoic acid receptor (RAR) signaling by use of a dominant negative has also been 
shown to increase hepatocyte proliferation and liver tumor promotion as a result of 
increased Wnt-β-catenin signaling [6]. Recently, we have developed a mouse model 
of EtOH-induced liver tumor promotion in which, in combination with tumor initia-
tion during early development by the nitrosamine chemical carcinogen diethylnitro-
samine (DEN). In this model, EtOH consumption during adulthood results in 
increased multiplicity of liver adenomas [4, 7]. We have shown that increased tumor 
promotion was associated with necroinflammatory injury, fibrosis, retinoid deple-
tion and increased β-catenin signaling in both hepatocytes and the tumors in this 
model [4, 7]. Clinically, a significant percentage of liver tumors from alcoholics 
have also been shown to be β-catenin positive [8]. In many of these cases, mutations 
have been found in β-catenin, the phosphorylation site of GSK3β or in Axin result-
ing in β-catenin stabilization [9]. However, we did not observe β-catenin mutations 
in the mouse DEN-EtOH model [4, 7]. Transgenic mice expressing mutations in the 
β-catenin pathway do not have increased tumor initiation suggesting, consistent 
with our EtOH model, that increased Wnt-β-catenin signaling contributes to tumor 
promotion [8].

If this hypothesis is correct, then compounds which inhibit β-catenin signaling 
should be tumor protective in the mouse DEN-EtOH model. In this regard, there is 
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ample epidemiological evidence and experimental data to suggest that dietary 
 factors found in soy foods such as soy protein isolate (SOY) are cancer protective in 
multiple tissues. Meta-analyses have demonstrated reductions in risk of mammary, 
prostate and colon cancer in soy consumers [10]. In addition, animal studies of 
chemical carcinogenesis have shown protection against DMBA- and NMU-induced 
mammary tumors and against AOM-induced colon tumors after consumption of 
SOY [11–13]. Cancer protective effects of SOY have been ascribed to the presence 
of the isoflavone genistein in soy foods [14] working via several pathways including 
inhibition of cellular proliferation; induction of apoptosis; inhibition of angiogene-
sis and through anti-oxidant effects [14]. Genistein and SOY have also been sug-
gested to interfere with Wnt-β-catenin signaling in a rat model of AOM-induced 
colon cancer coincident with significant decreases in formation of aberrant crypts 
[15]. In addition, in cell culture studies, genistein has been shown to inhibit various 
components of the Wnt-β-catenin signaling pathway [16–18] and has been shown to 
induce apoptosis in hepatocellular carcinoma cell lines [19]. The present study was 
designed to determine if feeding SOY or pure genistein at concentrations found in 
SOY diets are protective against EtOH-induced liver tumorigenesis in the mouse 
DEN-ETOH model and if protection was observed, it was associated with inhibition 
of β-catenin activation.

9.2  Materials and Methods

9.2.1  In Vivo Mouse Model of DEN-EtOH Liver Tumor 
Promotion

DEN-treated and saline-treated male C57Bl6 mice received EtOH-containing 
LieberDe Carli diets for 16 wks as previously described [29]. Briefly, DEN-injected 
mice (PND 13) were randomly assigned to four weight-matched diet groups: a 
chow diet (n = 10, chow), an EtOH-containing liquid diet (n = 21, EtOH) and an 
EtOH-containing liquid diet containing soy protein isolate (n = 23, EtOH/SOY), 
and an EtOH-containing liquid diet containing genistein, 250 mg/kg diet, a level 
comparable to the concentration of genistein in SOY (n  =  24, EtOH/GEN). All 
groups had access to water ad libitum. Liquid diets were formulated according to 
the LiebeDeCarli diet of 35% of energy from fat, 18% from protein, and 47% from 
carbohydrates (Dyets, Inc., Bethlehem, PA). EtOH was added to the Lieber-DeCarli 
liquid diet slowly by substituting EtOH for carbohydrate calories in a stepwise man-
ner until 28% total calories were reached as previously described [4]. This dose 
constitutes a final EtOH concentration of 5.0% (v/v). Additionally, saline-injected 
mice were randomized into three liquid diet groups, a chow diet (n = 5), an EtOH 
(n = 10), an EtOH/SOY (n = 10) for 16 wks [29].
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9.2.2  Tumor Pathology

For each DEN-treated mouse, formalin fixed lobes were embedded in paraffin, sec-
tioned at 4 μm, stained with H&E, and examined under a light microscope and 
scored in a blinded manner by a veterinary pathologist (L.H). Within each lobe, 
lesions were counted at 40x magnification. Tumors were defined as follows – ade-
nomas, a compressive lesion of any size without evidence of invasion or other crite-
ria of malignancy; hepatocellular carcinoma, a compressive and invasive lesion with 
criteria of malignancy [4].

9.2.3  Biochemical Analysis of Liver Injury and Inflammation

Liver necrosis was assessed by measurement of serum alanine amino transferase 
(ALT) activity as described previously [4]. Kupffer cell activation (CD14 mRNA 
expression) and inflammation (expression of cytokine TNFα and IL-6 mRNA and 
the chemokine CXCL2 mRNA) were measured by real time RT-PCR analysis of 
expression of individual cDNA samples prepared from each group using SYBR 
green and an ABI 7500 sequence detection system (Applied Biosystems, Foster 
City, CA). Primer sequences are given in Table 9.1. Gene expression was normal-
ized against 18S rRNA. In addition, nuclear fraction and cytosolic fractions were 
isolated from livers using NE-PER Nuclear and Cytoplsmic Extraction kit (Thermo 
Fisher Scientific) as per manufacturer’s instructions. Nuclear proteins were sepa-
rated by SDS-PAGE and Western blotted with antibodies against the p65 subunit of 
NFκB (Cell Signaling, Danvers, MA). Protein loading was corrected for by staining 
for total protein with 0.1% amido black.

Table 9.1 Real-Time RT-PCR primer sequences

Gene Forward Sequence (5'-3') Reverse Sequence (5'-3')

TNFα GACGTGGAACTGGCAGAAGAG GCCACAAGCAGGAATGAGAAG
IL-6 CTTCACAAGTCGGAGGCTTAAT GCAAGTGCATCATCGTTGTTC
CXCL-2 TAAGCACCGAGGAGAGTAGAA GTCCAAGGGTTACTCACAACA
CD14 CTAAGTATTGCCCAAGCACACTCA CCCAACTCAGGGTTGTCAGACA
CyclinDl TGCTGCAAATGCAACTGCTTCTTG AAGGTCTGTGCATGTTTGCGGATG
GluS TATTCCTCGTGCCCAGTTAATC AAGAAAGGGTTGGTGTGTAGAG
MMP-7 GACTTGCCTCGGTTCTTAGTAG3 CCC TTGCGAAGCCAATTATG
SPTLC2 CAGGAGCGTTCTGATCTTACAG CCGGACACGATGTTGTAGTT
CerSl GCCTGACATTCCGTACTACTTC GTCTTCCAGTTCACGCATCT
SPKH1 GGTACGAGCAGGTGACTAATG GGACAGACTGAGCACAGAATAG
ASAH1 GTCCTCAACAAGCTGACTGTAT CTATACAAGGGTCTGGGCAATC
S1PR1 TTCACTCTGCTCCTGCTTTC CTGGCCTTGGAGATGTTCTT
S1PR2 CAACGGAGGCACTGACTAAT TGGCAAATGTCTAGCCCTAAG
S1PR3 GGGAGGCGTGATGTAGTTATTT CAGAGGTGTCTTCTACGCATTT
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9.2.4  Analysis of Ceramide-Sphingosine Signaling

Ceramide species were detected in the livers of saline-treated mice receiving an 
EtOH or EtOH/SOY diet by MALDI-FTICR imaging mass spectrometry as previ-
ously described [21, 29]. MALDI-IMS analysis was performed using a Bruker 
Solarix 7 T FTICR mass spectrometer, equipped with a SmartBeam II laser oper-
ating at 1000 Hz, collecting spectra across the entire tissue in positive ion mode 
between (m/z 200–2000). A laser spot size of 25 μm, and a raster width of 200 μm 
for general profiling or 75 μm for high resolution images was empolyed collecting 
800 shots per pixel. Data was reduced to .98 ICR reduction and loaded into 
FlexImaging 4.0 software (Bruker Daltonics) for data analysis, and generation of 
lipid images of interest. Within FlexImaging, all data was normalized using root 
mean square and intensities were thresholded appropriately. Lipid species were 
assigned by mass accuracy, both to an internal ceramide database and to an exter-
nal database Lipid Maps. mRNA expression of enzymes and receptors involved in 
ceramide-sphingosine signaling were quantitated by real time RT-PCR analysis of 
expression of individual cDNA samples prepared from each group using SYBR 
green and an ABI 7500 sequence detection system (Applied Biosystems, Foster 
City, CA). Primer sequences are given in Table 9.1. Gene expression was normal-
ized against the housekeeping gene GAPDH mRNA.  In addition, liver micro-
somes were prepared as previously described [20] and used for Western blot 
analysis with an antibody against sphingosine kinase H1 (Cell Signaling, Danvers, 
MA). Protein loading was corrected for by staining total protein with 0.1% amido 
black.

9.2.5  Hepatocyte Proliferation and β-Catenin Signaling

Hepatocyte proliferation was measured by histochemical analysis of PCNA staining 
as described previously [22]. Nuclear expression of β-Catenin protein was mea-
sured by Western blot [4]. In addition, mRNA expression of known downstream 
β-Catenin target genes cyclin D1, glutamine synthase (GluS) and matrix metallo-
proteinase 7 (MMP7) were measured by real time RT-PCR as described above and 
expressed relative to GAPDH mRNA.

9.2.6  Data and Statistical Analysis

Data are presented as mean  ±  SEM.  For ALT, gene and protein expression data 
multiple group comparisons were made by One Way ANOVA or ANOVA of Ranks 
followed by Student-Neuman-Keuls post-hoc analysis. Adenoma incidence was 
determined using Fisher’s Exact Test. Multiplicity was determined One-Way 
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ANOVA followed by Mann-Whitney U rank-sum test for post hoc comparisons. 
Statistical analysis was performed using Sigma Plot software package 11.0 (Systat 
Software, Inc. San Jose, CA) and Stata statistical software 13.1 (Stata Corporation, 
College Station, TX). Statistical significance was set at P < 0.05.

9.3  Results and Discussion

There is strong epidemiological data that alcohol can act as a tumor promoter. 
Chronic alcohol consumption increases the risk of HCC a further 2-fold when com-
bined with factors such as HCV/HBV infection or diabetes [2]. We have developed 
a mouse model which replicates this phenomenon in which increased adenoma mul-
tiplicity occurs in mice where tumors are initiated with DEN on PND 13 and EtOH 
is administered chronically for 16 weeks in Lieber DeCarli liquid diets beginning in 
adulthood [4, 7]. We have previously shown that at a final concentration of 28% 
total calories, the blood alcohol concentrations attained in this model average 
75 mg/dL which is comparable to the human 80 mg/dL limit for DWI [7]. Tumor 
promotion was accompanied by appearance of steatohepatitis, fibrosis and stimula-
tion of Wnt-β-cantenin-dependent hepatocyte proliferation coincident with loss of 
hepatic retinoids [4, 7]. In the current study, we examined the possible protective 
effects of feeding soy protein isolate and of a major soy-associated phytochemical 
genistein in the DEN-EtOH mouse tumor promotion model based on literature 
showing ant-tumorigenic effects and inhibition of Wnt-β-catenin signaling in other 
cancer models. As expected, chronic EtOH feeding of adult mice as part of Lieber 
DeCarli liquid diets resulted in appearance of adenomas in 81% of DEN-treated 
mice with a multiplicity of 2 tumors/mouse (Fig. 9.1). When the protein source in 
the EtOH-Lieber DeCarli diet was switched from casein to SOY, adenoma inci-
dence was reduced to 26% and multiplicity was reduced by 75% (P < 0.05) (Fig. 9.1). 
Surprisingly, supplementation of the EtOH-Lieber DeCarli diet with 250 mg/kg diet 
genistein, a level comparable to that found in SOY actually increased adenoma inci-
dence to 92% and multiplicity to 5 tumors/mouse (P < 0.05). These data suggest that 
SOY contains factors that inhibit EtOH-induced tumor promotion but that the bio-
active component may be either a phytochemical other than genistein or a protein/
peptide. SOY contains over 100 phytochemicals and peptides and the major soy 
storage protein β-conglycenin may also give rise to bioactive peptides after diges-
tion [23, 24]. Identification of this cancer protective component of SOY remains the 
subject of future studies.

We conducted further analyses to examine the molecular mechanisms underly-
ing the promotional protection afforded by feeding SOY with EtOH. In saline- 
treated mice, the EtOH/SOY group had significantly reduced necroinflammatory 
injury and Kupffer cell activation with lower levels of serum ALT, hepatic mRNA 
expression of CD14, TNFα, IL-6, CXCL-2 and nuclear expression of the NFκB p65 
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subunit when compared to the EtOH group (P < 0.05) (Table 9.2). EtOH feeding 
increased hepatic concentrations of ceramide and hepatic mRNA expression of 
enzymes involved in synthesis of ceramide, sphingosine and  sphingosine-1- phosphate 
(S1P); (ceramide synthase 1 – CERS1; acid ceramidase – ASAH1; serine palmitoyl 
transferase and sphingosine kinase-1 –SPKH1); compared to chow controls 
(P < 0.05) and increased SPKH1 protein expression (Table 9.3, Fig. 9.2). In addition 
mRNA encoding S1P receptors S1PR2 and S1PR3 were increased in the EtOH 
group relative to chow controls (Table 9.3). In contrast, feeding SOY with EtOH 

Fig. 9.1 Adenoma incidence (a) and tumor multiplicity (b) in DEN-treated male mice receiving a 
standard LieberDeCarli EtOH liquid diet using casein (EtOH) or soy protein isolate (EtOH/SOY) 
as the sole protein source as previously published [29]; and with a third group (EtOH/GEN) receiv-
ing the EtOH liquid diet supplemented with (250 mg/kg diet) genistein for 16 wks. Data expressed 
as mean ± SEM. Adenoma incidence was determined using Fisher’s Exact Test. Multiplicity was 
determined One-Way ANOVA followed by Mann-Whitney U rank-sum test for post hoc compari-
sons, *p < 0.05 EtOH vs. EtOH/SOY, **p < 0.05 EtOH vs. EtOH/GEN

Table 9.2 Biochemical analysis of liver injury and inflammatory response in saline-treated male 
mice receiving EtOH or EtOH/SOY diets for 16 wks [29].

ALT

TNFα 
mRNA 
expression

IL6 mRNA 
expression

CD 14 
mRNA 
expression

CXCL2 
mRNA 
expression

NFκB 
nuclear 
expression

Chow 8.63 ± 0.89a 0.15 ± 0.03a 0.05 ± 0.12a 1.31 ± 0.27a 0.09 ± 0.01a –
EtOH 37.65 ± 3.62b 2.36 ± 0.51b 2.26 ± 0.34b 43.37 ± 0.37b 0.91 ± 0.15c 1.07 ± 0.16
EtOH/
SOY

8.67 ± 1.58a 1.23 ± 0.21a 0.72 ± 0.13a 2.71 ± 0.29a 0.46 ± 0.11a,b 0.55 ± 0.08*

Data is expressed as mean ± St.Err; Groups: chow (n = 5), EtOH (n = 10), EtOH/SOY (n = 10).
Liver injury was assessed by measuring serum alanine transferase (ALT), in S.F. units/ml [30].
Gene expression was determined by real-time RT-PCR as previously described [29], Significance, 
a<b<c, (p<0.05).
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blocked the effects of EtOH on CERS1 mRNA and reduced hepatic ceramide 
 concentrations compared to the EtOH group (P < 0.05) (Fig. 9.2). In addition, the 
EtOH/SOY group had lower SPKH1 mRNA and protein and reduced expression of 
S1PR2 and S1PR3 mRNA (Table 9.3). As previously reported, coincident with its 
promotional effects, EtOH increased hepatocyte proliferation in a β-catenin- 
dependent manner. EtOH increased expression of cyclin D1 mRNA and mRNA 
expression of other downstream β-catenin targets MMP7 and glutamine synthase 
(P < 0.05) (Fig. 9.3). In saline-treated mice, feeding SOY with EtOH reversed these 
effects (P < 0.05). Relative the EtOH group, the EtOH/SOY group had lower nuclear 
β-catenin protein (P < 0.05) (Fig. 9.3) and PCNA staining of proliferating hepato-
cytes was reduced from 2.5 ± 0.4 to 0.9 ± 0.1% (P < 0.0.5). These data suggest that 
reduction in EtOH-dependent tumor promotional stimuli after SPI feeding are 
linked to lower necroinflammatory injury and normalization of ceramide/sphingo-
sine signaling. Proliferative and regenerative repair responses are generally observed 
in the liver after injury [25]. It has been suggested that hepatocyte proliferation is a 
Wnt-regulated process linked to reduced retinoid signaling [5]. Sphingosine 
1- phosphate signaling has been shown to negatively cross talk with retinoids and 
has been shown to activate hepatic stellate cells [26, 27]. Moreover, Wnt signals 
from other hepatic cell types including Kuffper cells have been shown to regulate 
hepatocyte proliferation under conditions of partial hepatectomy [28]. It remains to 
be seen if similar signals from activated Kupffer or stellate cells regulate hepatocyte 
and hepatic tumor cell proliferation after EtOH consumption and if the molecular 
mechanisms whereby SOY prevents these mechanisms are related to its effects on 
ceramide/sphingosine signaling pathways.

Table 9.3 Changes in hepatic sphingosine signaling mediators in response to EtOH and EtOH/
SOY diets in saline-treated male mice [29].

SPKH1 
membrane 
expression

mRNA expression (fold change)

SPKH1 ASAH1 S1PR1 S1PR2 S1PR3

Chow – 1.00 ± 0.05a 1.00 ± 0.04a 1.00 ± 0.16a 1.00 ± 0.10a 1.00 ± 0.14a

EtOH 1.60 ± 0.15 23.45 ± 5.67b 1.70 ± 0.29a,b 0.96 ± 0.22a 3.59 ± 0.93b 2.64 ± 0.54b

EtOH/
SOY

0.70 ± 0.08* 9.12 ± 2.20a 0.79 ± 0.17a 0.54 ± 0.09a 1.31 ± 0.28a 1.36 ± 0.30a

Data is expressed as mean ± St.Err; Groups: chow (n=5), EtOH (n=10), EtOH/SOY (n=10). Gene 
expression and protein determination were determined as previously described (Mercer et  al. 
2016), Significance, a<b<c, (p<0.05), Student’s T-Test, *p<0.05.
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Fig. 9.2 Alcohol feeding 
increased de novo 
ceramide synthesis as 
demonstrated by increased 
mRNA expression of (a) 
serine palmitoyltransferase; 
EtOH-specific increases in 
C18 ceramide (d18:1/18:0) 
as observed by (b) high 
resolution MALDI-FTICR 
imaging mass 
spectrometry, and (c) 
increased ceramide 
synthase 1 mRNA 
expression were prevented 
in EtOH/SOY-treated mice 
[29]. Significance 
a < b < c, (p < 0.05)
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Chapter 10
ALDH1L1 and ALDH1L2 Folate  
Regulatory Enzymes in Cancer

Sergey A. Krupenko and Natalia I. Krupenko

Abstract Epidemiological studies implicate excess ethanol ingestion as a risk fac-
tor for several cancers and support the concept of a synergistic effect of chronic 
alcohol consumption and folate deficiency on carcinogenesis. Alcohol consumption 
affects folate-related genes and enzymes including two major folate-metabolizing 
enzymes, ALDH1L1 and ALDH1L2. ALDH1L1 (cytosolic 10- formyltetrahydrofolate 
dehydrogenase) is a regulatory enzyme in folate metabolism that controls the overall 
flux of one-carbon groups in folate-dependent biosynthetic pathways. It is strongly 
and ubiquitously down-regulated in malignant tumors via promoter methylation, 
and recent studies underscored this enzyme as a candidate tumor suppressor and 
potential marker of aggressive cancers. A related enzyme, ALDH1L2, is the mito-
chondrial homolog of ALDH1L1 encoded by a separate gene. In contrast to its cyto-
solic counterpart, ALDH1L2 is expressed in malignant tumors and cancer cell lines 
and was implicated in metastasis regulation. This review discusses the link between 
folate and cancer, modifying effects of alcohol consumption on folate- associated 
carcinogenesis, and putative roles of ALDH1L1 and ALDH1L2 in this process.

Keywords Folate · Cancer · Alcohol · ALDH1L1 · ALDH1L2 · Methylation · 
SNPs · Tumor suppressor

10.1  Introduction

Epidemiological studies implicate excess ethanol ingestion as a risk factor for sev-
eral cancers and support the concept of a synergistic effect of chronic alcohol 
consumption and folate deficiency on carcinogenesis [1]. Alcohol consumption 
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itself impairs folate metabolism through the enhanced coenzyme degradation or 
the inhibition of absorption, as well as through the influence on folate-related 
genes and enzymes [1, 2]. Among these targets, two major folate-metabolizing 
enzymes, ALDH1L1 and ALDH1L2, were considered. This review discusses the 
link between folate and cancer, modifying effects of alcohol consumption on 
folate-associated carcinogenesis, and putative role of ALDH1L1 and ALDH1L2 in 
this process.

10.2  Folate: Overview

Folate coenzymes are vital for cellular homeostasis due to their key role in trans-
ferring one-carbon groups in reactions of de novo nucleotide biosynthesis, 
metabolism of serine, glycine and histidine, and the regeneration of methionine 
from homocysteine [3]. The methionine biosynthesis is linked to the production 
of S-adenosylmethionine, a universal methyl donor in more than a hundred meth-
ylation reactions in the cell [4]. Folates also participate in the clearance of for-
mate as CO2 [5] and the formylation of methionyl-tRNA [3]; the latter process is 
essential for translation initiation in eukaryotic mitochondria [6]. Humans are 
unable to synthesize this coenzyme and must obtain it from the diet. Insufficient 
folate intake has dramatic consequences for the cell, including: deregulation of 
methylation processes [7]; altered protein expression [8]; and decreased DNA 
repair capability and accumulation of DNA damage leading to increased chromo-
somal aberrations and fragility [9, 10]. These mechanisms underlie reduced 
growth rate and impaired cell division caused by folate deficiency. Low folate 
status has been linked to increased risk for several types of cancer, neural tube 
defects, and cardiovascular diseases [7] though the association between folate 
and carcinogenesis, as well as cardiovascular diseases, is inconclusive at present. 
For the reason of the prevention of neural tube defects, in 1996 the FDA approved 
a mandatory fortification of several types of grain foods in the US with a syn-
thetic form of the vitamin, folic acid. Though the overall importance of folate for 
human health was known for long time, the underlying molecular mechanisms 
are not fully understood and continue to emerge. This is exemplified by recent 
studies, which have underscored the significance of folate metabolism for ES 
cells [11], the contribution of folate-dependent carbon oxidation into the cellular 
energy balance [12, 13], and the role of folate enzymes in cancer progression and 
metastasis [14–19]. To further complicate the picture, a concept that parental 
folate intake or folate status can modify disease risk in offspring later in life has 
been recently proposed [20].
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10.3  Interactions Between Alcohol Consumption and Dietary 
Folate: Implication for Cancer

The link between folate and cancer has been investigated for decades but this issue 
is complicated by the phenomenon that while in general folate intake protects 
against tumorigenesis, it also can promote the proliferation of existing neoplastic 
lesions [21]. This adverse effect is primarily associated with the increased demand 
of rapidly proliferating cancer cells for folate coenzymes to support enhanced 
nucleotide biosynthesis towards unlimited DNA replication. Thus, there is a 
dilemma that folate intake above basal requirements may increase the incidence of 
malignancies and cancer-related death, which has been increasingly recognized by 
the experts in folate field [22]. The tumorigenic response to dietary folate depends 
on numerous factors, including cancer subtypes, the timing or duration of vitamin 
administration, its dose and ingested form (synthetic folic acid vs. natural folate) [4, 
21]. End-point effects of the vitamin could be further modified by other factors such 
as age, the status of vitamins B6/B12, and individual genotypic features including 
polymorphisms in folate enzymes [4, 20]. One of the factors known to affect folate 
metabolism is chronic alcohol consumption [1, 2].

Alcoholism is typically associated with folate deficiency due to reduced dietary 
folate intake [2]. Heavy alcohol consumption also decreases folate absorption, 
enhances urinary folate excretion and inhibits enzymes pivotal for one-carbon 
metabolism [1, 2]. While folate metabolism is involved in numerous key biochemical 
pathways (Fig. 10.1), the aberrant DNA methylation, due to the deficiency of methyl 
donors, was widely considered as a common downstream target of the folate-medi-
ated effect of ethanol [23]. The negative effects of low intakes of nutrients, which 
provide dietary methyl groups, with high intakes of alcohol are additive in general 
[24]. In support of such association, it has been reported that the low methionine, 
low-folate diets and alcohol consumption increase the risk for colorectal cancer in 
men [25]. Therefore, to counteract the negative effects of alcohol consumption, the 
increased intake of nutrients providing dietary methyl groups is recommended [24].

In agreement with this notion, a protective effect of folate on alcohol-impaired 
processes has been demonstrated in experiments with cultured mouse embryos, 
where addition of the vitamin, in the form of folic acid, blocked ethanol-induced 
teratogenesis [26]. The microarray profiling further indicated that the effect of pre-
natal ethanol exposure on teratogenesis in mice, and associated mental retardation, 
were induced through alterations in the expression pattern of several micro RNAs in 
fetal brain. In line with this mechanism, increased folic acid prevented micro RNAs 
changes in response to ethanol. Though it is not clear whether a similar mechanism 
mediating the interaction between dietary folate and alcohol consumption could be 
activated in carcinogenesis, SNPs (single nucleotide polymorphisms) in the micro 
RNA bindings sites of thymidylate synthase were associated with gastric cancer risk 
and patient survival [27]. Perhaps the interaction between folate status and alcohol 
consumption in carcinogenesis involves multiple mechanisms and is likely 
 cancer- type specific. Four main alcohol-associated cancers are liver, colon, breast 
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and upper aerodigestive tract [23]. In agreement with such etiology, recent prospec-
tive cohort study indicated that the folate pathway is likely to be involved in alcohol- 
related colorectal cancer development [28]. Higher folate intake can also ameliorate 
the effect of alcohol consumption on the development of HCC (hepatocellular car-
cinoma) [29] and the risk of breast cancer [30]. A prospective study of alcohol 
consumption and the risk of colorectal cancer before and after folic acid fortifica-
tion in the US showed that fortification may attenuate this risk [31]. Another case- 
control study indicated that folate-related enzyme polymorphisms modify the 
association between drinking habit and pancreatic cancer risk [32]. Studies of other 
cancer types did not provide a clear association between folate status, alcohol con-
sumption and cancer risk [33, 34].
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Fig. 10.1 Folate metabolism. Folate is taken up by the cell as folic acid (FA, supplements or forti-
fied foods) or 5-methyl-THF (5-MTHF, natural diet). In the cell, FA is sequentially converted to 
dihydrofolate (DHF) and the active form of the coenzyme, tetrahydrofolate (THF) in reactions 
catalyzed by DHFR (dihydrofolate reductase). Acceptance of a one-carbon group (comes from 
serine, glycine, histidine or formate) converts THF to coenzymes directly participating in biosyn-
thetic reactions (10-FTHF, 10-formyl-THF; CH2-THF, 5,10-methylene-THF). HCY, homocyste-
ine; SAM, S-adenosylmethionine; MS, methionine synthase; TS, thymidylate synthase; MTHFR, 
methylenetetrahydrofolate reductase. Reaction catalyzed by MS converts 5-MTHF to THF (dotted 
arrow). Overall, folate coenzymes provide one-carbon groups for three biosynthetic pathways: (i) 
methionine production; (ii) de novo purine generation; (iii) TMP synthesis. Mitochondrial folate 
metabolism provides one-carbon groups, derived from the degradation of serine, glycine, sarcosine 
(Sarc) or dimethylglycine (DMG), to the cytosolic folate pathways in the form of formate. 
Processes inhibited by ethanol are indicated by (⊥). Degradation of 5-methyl-THF is accelerated 
by ethanol (indicated by “+”)
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The effect of ethanol on folate metabolism could be direct, through the enhanced 
coenzyme degradation or the inhibition of absorption, as well as indirect, through 
the influence on folate-related genes and enzymes. The intracellular folate pool con-
sists of several major forms of the coenzyme, which differ in the oxidation level of 
the bound one-carbon group and are interconvertible through multiple reactions 
catalyzed by more than a dozen enzymes (Fig. 10.1). Enzymes of folate metabolism 
bring one-carbon groups to the folate pool, oxidize/reduce the folate-bound groups, 
or utilize these groups in biosynthetic reactions. The role of folate enzymes in can-
cer is well established and some of them, including DHFR and thymidylate syn-
thase, are canonical chemotherapeutic targets [35]. An additional association 
between folate enzymes and cancer is provided by epidemiologic studies, which 
linked SNPs in the MTHFR gene with the risk of several cancer types [23]. The 
combination of folate intake and SNPs in genes associated with methionine biosyn-
thesis may contribute to breast [36] and gastric [37] cancer risk, indicating that 
folate intake-associated cancer risk can be further modified by gene-nutrient inter-
actions. Towards this line, a cross-sectional analysis of 19 human studies indicated 
a role for folate enzymes and their SNPs in response to alcohol consumption [38]. 
The direct inhibitory effect of ethanol on the activities of MTHFR and MTR in an 
animal model was demonstrated as well [39]. As a likely cause of decreased liver 
SAM and reduced methylation capacity, this mechanism can contribute to carcino-
genesis [23]. Of note, ethanol also decreases thymidylate synthase mRNA levels in 
regenerating liver after partial hepatectomy [40], the effect which could be trans-
lated into the impaired DNA synthesis and repair.

10.4  ALDH1L1 Role in Cancer

One of the most abundant folate enzymes is cytosolic 10-formyltetrahydrofolate 
dehydrogenase (FDH, ALDH1L1) [41]. Levels of this enzyme can reach about 
1.2% of the total protein in rat liver cytosol [42, 43], suggesting an important role 
(proposed functions for the enzyme are summarized in Fig. 10.2). ALDH1L1 con-
verts 10-formyl-THF to THF (tetrahydrofolate) and carbon dioxide in a NADP+-
dependent reaction (Fig. 10.2). This reaction clears one-carbon groups (in the form 
of CO2) from the cell thus limiting their flux toward folate-dependent biosynthetic 
reactions (Fig. 10.1) [44, 45]. It is also important for replenishing the pool of THF 
[46], which is the only folate coenzyme capable of accepting one-carbon groups and 
thus is central to folate metabolism [47]. In agreement with such function of 
ALDH1L1, genome-wide association studies revealed that SNPs in this gene are 
associated with serine to glycine ratio in serum [48] (THF is required for the reac-
tion of the conversion of serine to glycine, Fig.  10.1). Furthermore, ALDH1L1 
might regulate de novo purine biosynthesis [44, 49], formate degradation [5] and 
methylation status of the cell [45]. Another function originally proposed for this 
enzyme is to serve as the folate depot, though this hypothesis is primarily based on 
the phenomenon that the protein was purified in complex with THF [42].
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ALDH1L1 is not ubiquitously expressed in human tissues: highest levels of its 
mRNA were detected in liver, kidney and pancreas while the levels in several tissues 
including placenta, spleen, thymus, small intestine, leukocytes, testis, and ovary 
were undetectable [44, 50]. Interestingly, ALDH1L1 is also differentially expressed 
in central nervous system during development: most quiescent cells in developing 
mouse brain are ALDH1L1 positive while proliferating cells do not express this 
protein [51]. Curiously, levels of this protein also significantly fluctuate (up to about 
seven-fold change) in the liver of golden-mantled ground squirrel depending on 
seasonal stages [52]. In further support of highly regulated expression of this pro-
tein, its levels were decreased in rat liver by clofibrate, a peroxisome proliferator 
[53] and increased in zebrafish embryos exposed to ethanol [54].

Perhaps most striking example of the ALDH1L1 regulation is its silencing in 
malignant tumors [44], which is achieved through methylation of the CpG island 
within the ALDH1L1 promoter [55]. It contains 96 CpG pairs and covers the region 
between −525 and +  918  bp of the ALDH1L1 gene including the promoter, the 
entire exon 1, and a part of intron 1 immediately downstream of the exon. Bisulfite 
sequencing analysis revealed extensive methylation of the island (76%–95% of 
CpGs) in cancer cell lines. Analysis of the samples from patients with lung adeno-
carcinomas demonstrated methylation of the ALDH1L1 CpG island in tumor sam-
ples and a total lack of methylation in respective normal tissues. The same 
phenomenon was observed in liver tissues: the CpG island was methylation free in 
DNA extracted from normal hepatocytes but was extensively methylated in a 
 hepatocellular carcinoma. Levels of ALDH1L1 mRNA and protein correlated with 
the methylation status of the island, with tumor samples demonstrating down- 
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Fig. 10.2 Reaction catalyzed by ALDH1L1 and ALDH1L2 and proposed biological roles for the 
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regulation of expression or even complete silencing of the gene. The down-regula-
tion of ALDH1L1 mRNA in NSCLC (non-small cell lung cancer) [56], cervical 
cancer [57] and renal cell carcinoma [58] associated with the gene methylation was 
also demonstrated by microarray assays. The regulation of ALDH1L1 through the 
promoter methylation could also be a common cellular response to the environmen-
tal conditions. Thus, it has been reported that the prolonged exposure to isoflavone 
through dietary supplementation significantly reduces Aldh1l1 promoter methyla-
tion in rat mammary tissue [59]. In addition, the methylation of ALDH1L1 could be 
responsible for the individual variation in the protein expression. For example, 
higher CpG methylation in the body of the ALDH1L1 gene was significantly cor-
related with its lower transcript expression in normal breast tissue in women [60].

In agreement with the phenomenon that ALDH1L1 is down-regulated in prolif-
erating tumors, re-expression of the protein in cancer cells produces drastic antipro-
liferative effects including cell cycle arrest and apoptosis [44, 49, 61–63]. These 
findings indicated that ALDH1L1 is a key regulator of proliferation and an implica-
tion has been made in the literature that this protein is a candidate tumor suppressor 
[44, 55, 57, 58, 64]. Furthermore, under-expression of this gene could be a marker 
of a more aggressive tumor phenotype. Thus, decreased expression of ALDH1L1 
was associated with aggressive subtypes of sporadic pilocytic astrocytoma [64], 
poor prognosis in hepatocellular carcinoma [65], and low overall survival in neuro-
blastoma [66], while high expression of ALDH1L1 mRNA correlates with better 
overall survival in breast cancer patients [67]. It should be mentioned that the asso-
ciation between decreased ALDH1L1 expression and malignant tumor progression 
could be cancer type-specific [68]. For example, though decreased expression of 
ALDH1L1 was demonstrated in NSCLC [55, 56], cervical cancer [57], renal cell 
carcinoma [58] and peripheral cholangiocarcinoma [69], the extent of its expression 
in other cancers is not clear. In line with the idea that ALDH1L1 prognostic role 
could be cancer type-specific, SNPs in the ALDH1L1 gene were significantly asso-
ciated with altered risk of breast cancer [70] and increased risk of hepatocellular 
carcinoma [71] and non-Hodgkin lymphoma [72–74] but no SNPs were associated 
with the risk of prostate cancer [75].

10.5  Role of Mitochondrial ALDH1L2 Enzyme in Cancer

Folate pathways are compartmentalized within the cell, mainly between cytoplasm 
and mitochondria [3, 76], though the compartmentalization was recently extended 
to the nucleus, where folate-dependent TMP biosynthesis takes place [77]. It has 
been suggested that the mitochondrial pathways mainly serve to provide one-carbon 
groups, in the form of formate, for incorporation into the cytosolic folate pool where 
they are utilized for biosynthetic purposes [3]. While some folate-dependent reac-
tions are unique to cytoplasm or mitochondria, several of them take place in both 
compartments and are catalyzed by homologous enzymes, which are products of 
distinct genes [3, 78]. The oxidation of 10-formyl-THF to THF and CO2 is one of 
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such reactions. Mitochondrial 10-fTHF dehydrogenase is encoded by the ALDH1L2 
gene, which originated via the duplication of the ALDH1L1 gene and acquired a 
mitochondrial leader sequence [50]. Accordingly, two proteins share about 72% 
identity of the amino acid sequence and are close structurally and enzymatically 
[50, 79]. Their biological roles, however, could be quite different. While cytosolic 
ALDH1L1 is involved in the regulation of cellular proliferation, through the control 
of folate pools, ALDH1L2 is the key enzyme to provide reduced NADPH in mito-
chondria [12]. NADPH produced in this mitochondrial reaction is required for the 
reduction of oxidized glutathione, and the loss of ALDH1L2 shifts the ratio of GSH/
GSSG. This in turn decreases the capacity of mitochondria to eliminate reactive 
oxygen species leading to oxidative stress [19].

The ALDH1L2 gene was discovered relatively recently and its studies are limited 
so far. Of note, it can be up-regulated by certain drugs, though mechanism of this 
response were not studied. For example, ALDH1L2 mRNA levels are strongly 
increased (up to 6.8-fold) in immortalized human B cells treated with ER stress 
inducers thapsigargin or tunicamycin [80]. ALDH1L2 mRNA was also significantly 
up-regulated in human adrenocortical NCI-H295R cells treated with mitotane, an 
adrenolytic drug extensively used in combination with other cytotoxic drugs and as 
an adjuvant monotherapy in the treatment of adrenocortical carcinoma [81]. This 
effect, however, is hard to correlate with the pharmacological action of the drug. 
ALDH1L2 mRNA was also up-regulated more than three-fold in mouse neonatal 
ovaries exposed to 3-methylcholanthrene, a potent ovotoxicant [82]. The question of 
whether the regulatory effects of these drugs on the ALDH1L2 gene are associated 
with the cellular response to oxidative stress awaits further investigation. Curiously, 
the ALDH1L2 gene expression was lost in CCL-131 Neuro-2a malignant neuroblas-
toma cells at acidic pH [83]. Likewise, levels of the ALDH1L2 protein were dra-
matically decreased in nonalcoholic steatohepatitis in rats fed fat-rich diet [84]. 
Another study has reported a different effect for ALDH1L2: the protein was elevated 
about two-fold in fibroblasts of the patient with short-chain acyl-CoA dehydroge-
nase deficiency [85]. Thus, it appears that levels of ALDH1L2 inversely correlate 
with fatty acid oxidation. It has been also suggested that both acidic pH and fatty 
acid oxidation deficiency induce metabolic reprogramming, driving the switch to 
OXPHOS and less glucose utilization in the former case and to biosynthetic pro-
cesses in the latter case. In this regard, ALDH1L2 could be differentially regulated 
depending on the cellular demand for the energy production. Alternatively, the regu-
lation could be driven by ROS levels as well as the ratio of reduced/oxidized gluta-
thione but precise mechanisms controlling ALDH1L2 expression remain elusive.

Of note, ALDH1L2 has a different tissue-expression pattern than ALDH1L1 and 
in contrast to the cytosolic enzyme is highly expressed in cancer cell lines [50]. It 
has been recently reported that ALDH1L2 is up-regulated in human colorectal 
tumor tissues compared to normal tissues [86]. Furthermore, rates of recurrence- 
free survival and overall survival in patients with high expression of ALDH1L2 tend 
to be lower than in patients with low expression of the enzyme, the situation oppo-
site to cytosolic ALDH1L1. Considering that ALDH1L2 is a mitochondrial protein, 
it should be pointed out that numerous recent studies specifically underscored the 
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role of mitochondrial folate pathways in cancer with the emphasis on folate- 
dependent metabolism of serine and glycine [14–16, 87–90]. In this regard, 
ALDH1L2 might be an important component providing THF for the serine to gly-
cine conversion in mitochondria and for glycine degradation (Fig. 10.1).

Intriguingly, ALDH1L2 was implicated as a metastasis-regulatory gene [18]. Thus, 
in a mouse melanoma metastasis model, a striking increase in the expression of this 
protein in liver, pancreas and lung metastases compared to subcutaneous tumors has 
been shown [18]. Of note, other folate enzymes tested in this study did not demon-
strate such trend. In further support of the metastasis-promoting role of ALDH1L2, 
the silencing of the gene in melanoma by shRNA significantly reduced the frequency 
of circulating melanoma cells in blood and overall metastatic burden [18]. 
Interestingly, the reduced invasion of MDA-MB-435 cells after the treatment with 
anti-inflammatory agent indomethacin was associated with a significant elevation of 
ALDH1L2 mRNA [91]. While the mechanism by which indomethacin leads to 
ALDH1L2 gene up-regulation is not clear, it could be a compensatory cellular 
response to the increased ROS production caused by the drug. The cytosolic isoform, 
ALDH1L1, could be also associated with the metastatic potential of cancer cells [92]. 
In contrast to ALDH1L2, however, the cytosolic isoform inhibits cellular migration 
and invasion, the phenomenon rather associated with the decreased metastasis [93].

10.6  Effect of Ethanol on ALDH1L1/L2 Genes and Proteins

One of the folate-related effects of alcohol consumption could be the interaction of 
ethanol or its metabolites with folate enzymes [39]. Since the decrease of the 
ALDH1L1 expression could be associated with tumor promotion, metabolites 
inhibiting the activity of the enzyme or causing down-regulation of its expression 
would have pro-tumorigenic effect. Though studies of the effect of ethanol on 
ALDH1L1 are scarce, a role for the enzyme in mediation of the effect of alcohol 
intake on oral carcinogenesis has been proposed [94]. In another study, levels of 
ALDH1L1 were changed after liver transplant in recipients with alcoholic cirrhosis 
[95], implying the effect of chronic alcohol consumption on the enzyme. 
Interestingly, a recent study reported that alcohol consumption is associated with 
differentially methylated CpGs in the ALDH1L1 gene in breast tissue of healthy 
women [60]. Furthermore, women carrying an allelic variant of the gene were more 
likely to have hypermethylated ALDH1L1, the phenomenon correlated with lower 
gene expression. These findings point toward a potential mechanism by which alco-
hol implements its folate-mediated tumorigenic effect in mammary tissue.

Chronic ethanol ingestion was reported to decrease hepatic ALDH1L1 dehydro-
genase activity in rats [96]. The ethanol treatment also affected ALDH1L1 activities 
in brain and hepatic tissues of chicken embryos [97, 98]. It has been further demon-
strated that the ALDH1L1 enzymatic activity is inhibited by acetaldehyde in vitro 
[99], which could be a mechanism of the ethanol effect on the enzyme and one of 
the mechanisms by which alcohol consumption changes folate status. It should be 
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noted that ALDH1L1 is capable, at least in vitro, to metabolize acetaldehyde to 
acetic acid [100], which would argue against such inhibitory effect. This reaction 
still could interfere with the folate-related catalysis of the enzyme thus affecting 
folate metabolism. ALDH1L1 has been also reported as a target for acetaminophen, 
which covalently modifies a key cysteine of the enzyme; this effect could contribute 
to the drug toxicity [101]. Since excessive alcohol consumption is a risk factor for 
acetaminophen-induced hepatotoxicity [102], ALDH1L1 could be a dual target 
towards liver damage. Whether this effect would contribute to carcinogenesis is not 
clear at present. Interestingly, ALDH1L1 can also counteract the effect of ethanol 
on folate metabolism by protecting THF from degradation [103]. The metabolism 
of acetaldehyde by xanthine oxidase generates superoxide radicals, which can 
cleave folates [104]. Of note, 5-methyl-THF, the most common form of natural 
folate, is highly susceptible to the degradation by superoxide [104]. In agreement 
with the mechanism of folate protection by ALDH1L1, up-regulation of the 
ALDH1L1 gene prevented folate degradation and alleviated the oxidative stress 
induced by ethanol exposure in zebrafish embryos [54].

The role of ALDH1L2 in alcohol response and ethanol metabolism is even less 
clear due to the lack of corresponding studies. By analogy with the ALDH1L1 gene, 
it can be hypothesized that ALDH1L2 is relevant to the interaction between ethanol 
and folate metabolism. Indeed, the implication that this gene is a part of alcohol 
dependence mechanism has been made in the literature [105]. Thus, in the study of 
genome-wide DNA methylation in discordant sib pairs with alcohol dependence, 
the deregulation of ALDH1L2 gene through the promoter hypomethylation was 
associated with alcohol dependence [105].

10.7  Conclusion

ALDH1L1 and ALDH1L2 are key enzymes in the regulation of folate metabolism as 
well as downstream processes associated with folate-dependent biochemical reac-
tions. While both enzymes catalyze the same reaction, their compartmentalization 
leads to the differential effect on overall cellular metabolism, regulating either reduced 
folate pools and purine biosynthesis (cytosolic ALDH1L1) or NADPH production and 
oxidative stress (mitochondrial ALDH1L2). Both enzymes were implicated in the pro-
liferation of malignant tumors, though with opposite roles, tumor suppression in the 
case of the cytosolic enzyme and metastasis promotion in the case of the mitochon-
drial isoform. These enzymes were also implicated in the cellular response to alcohol 
consumption. Taking into account that both enzymes have essentially identical struc-
tural organization and enzymatic mechanism, it is likely that the direct effect of etha-
nol or its metabolites on ALDH1L1 and ALDH1L2 would be similar in both cases. 
However, considering differential regulation of the two isoforms, the overall effect of 
alcohol consumption on two enzymes would be more complex and not so direct. 
Clearly, more studies are needed to address the role of ALDH1L1 and ALDH1L2 in 
biology of malignant tumors and in potential mediation of the alcohol effect.
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Chapter 11
Developmental Morphogens & Recovery 
from Alcoholic Liver Disease

Anna Mae Diehl

Abstract Alcohol-induced steatohepatitis (ASH) increases the risk for both 
clinically- severe acute alcoholic hepatitis and eventual cirrhosis. The mechanisms 
that control ASH pathogenesis and progression are unclear but processes that regu-
late liver cell plasticity seem to be critically involved. In injured adult livers, mor-
phogenic signaling pathways that modulate cell fate decisions during fetal 
development and in adult liver progenitors become reactivated. Overly-exuberant 
activation of such morphogenic signaling causes dysregulated liver repair and 
increases short- and long-term mortality by promoting acute liver failure, as well as 
progressive fibrosis. Hence, these pathways may be novel therapeutic targets to 
optimize liver cell reprogramming and prevent defective regenerative responses that 
cause acute liver failure and cirrhosis.

Keywords Steatohepatitis · ASH pathogenesis · Cirrhosis · Liver failure

Alcoholic liver disease encompasses a spectrum of liver pathology with very differ-
ent prognoses [1]. Steatosis (i.e., lipid accumulation in hepatocytes) is a common 
consequence of chronic alcohol consumption and it generally has a benign liver 
prognosis. However, some individuals with steatosis develop hepatic inflammation, 
hepatocyte injury and death, a condition termed steatohepatitis. Steatohepatitis is a 
dynamic process. It can regress to steatosis, smolder indolently for decades, or 
incite progressive fibrosis that ultimately results in cirrhosis. Steatohepatitis per se 
is typically not associated with overt manifestations of liver disease and thus, often 
is diagnosed only after liver damage has advanced to cirrhosis with portal hyperten-
sion. However, sometimes individuals with steatohepatitis exhibit florid features of 
acute liver failure with extreme liver-related morbidity and 30 day mortality rates as 
high as 30% [2]. This clinical syndrome has been dubbed acute alcoholic hepatitis. 
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The factors that determine the course of alcohol-related liver pathology are not 
well-understood but clarifying this issue is critical in order to develop effective 
interventions to prevent acute alcoholic hepatitis and cirrhosis, the two main causes 
of alcohol-related liver morbidity and mortality.

Differences in risk for liver-related death can be used to segregate alcoholic liver 
disease into two major subgroups: isolated steatosis (which has a generally good 
prognosis) and steatohepatitis (which increases risk for acute and chronic liver fail-
ure). Liver cell injury and death distinguish steatohepatitis from steatosis, suggesting 
that dying hepatocytes may determine liver outcomes in alcoholic liver disease. This 
concept is plausible given that organ failure generally results when cell death exceeds 
cell replacement. To avoid liver failure, dying hepatocytes release signals that trigger 
their replacement and promote eventual recovery of functional liver parenchyma [3]. 
These wound healing responses are multi-faceted and transiently enrich the liver with 
regenerative cell types that are not abundant in healthy livers. For example, inflam-
matory cells are recruited to clear death-related debris, endothelial cells are activated 
for vasculogenesis to optimize tissue blood flow, myofibroblasts accumulate to 
remodel the matrix to support repair, and liver progenitors emerge and differentiate 
to replace dead hepatocytes. An orderly progression of wound healing responses is 
essential for successful regeneration. Acute liver failure results when the wound heal-
ing response fails to launch or if the repair process stalls in the midst of tissue-recon-
struction when the liver is repopulated by immature liver cells. Chronically futile 
regenerative responses promote progressive scarring that leads to cirrhosis.

Liver histology has helped to identify which of the various repair-related cell 
types is mainly responsible for orchestrating regeneration by revealing that myofi-
broblast accumulation is rare in steatosis, typical in steatohepatitis, and even more 
conspicuous in cirrhosis. Myofibroblasts (MF) derived from hepatic stellate cells 
are known to produce most of the fibrosis that is characteristic of alcohol-induced 
cirrhosis [4], suggesting that cross-talk between dying hepatocytes and hepatic stel-
late cells (HSC) guides the regenerative process. Hepatic stellate cells are a type of 
tissue-resident pericyte with characteristics of mesenchymal stem cells, including 
high plasticity that enables reversible acquisition of myofibroblastic features [5–7]. 
As discussed subsequently, animal studies demonstrated that transient accumulation 
of myofibroblasts is necessary for effective liver regeneration while sustained myo-
fibroblast accumulation causes cirrhosis. Evidence linking excessive accumulation 
of MF-HSC with defective liver repair raises the intriguing possibility that mecha-
nisms that regulate fate decisions in hepatic stellate cells determine the outcomes of 
alcoholic steatohepatitis. This presentation summarizes data which prove that 
Hedgehog, a developmental morphogenic signaling pathway, regulates adult stellate 
cell fate and which demonstrate that dysregulated Hedgehog pathway activity pro-
motes the pathogenesis of acute alcoholic hepatitis and alcohol-induced cirrhosis.

Hedgehog (Hh) regulates tissue construction during fetal development by con-
trolling fate decisions (e.g., proliferation, migration, differentiation, viability) in 
stem/progenitor cells [8]. Hh signaling is highly conserved across evolution and can 
be activated in Hh-responsive cells via both paracrine and autocrine mechanisms. In 
developing fly larvae, for example, epithelial cells produce Hh ligand which  interacts 
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with Hh receptors (dubbed Patched) on Hh-responsive stromal cells to activate the 
co-receptor (Smoothened) and promote intracellular signaling cascades that culmi-
nate in the nuclear localization of the Hh-regulated transcription factor, Glioma- like 
(Gli). When Hh ligands are absent, Patch represses Smoothened activity and Gli is 
degraded. Binding of Hh ligand to Patch alleviates its repressive actions on 
Smoothened and permits Gli accumulation. Gli activity controls the expression of 
multiple genes that modulate fly morphogenesis. The pathway is heavily regulated 
by lipids: lipids influence ligand availability, ligand-receptor interaction, and 
Smoothened (Smo) activation [9–12]. Mammals have three Hh ligands (Sonic 
hedgehog, Shh, Indian hedgehog, Ihh, and Desert hedgehog, Dhh), two Hh recep-
tors (Patched 1, Patched 2) and three Gli transcription factors (Gli1, Gli2, and Gli3), 
as well as several accessory molecules that regulate pathway activity at various 
steps in the activation process. In all species, the Hedgehog pathway regulates its 
own activity by directly controlling expression of pathway components (e.g., Patch, 
Gli1) and other factors (Hh inhibitory protein, Hhip) that modulate Hedgehog signal 
transduction. Hedgehog pathway activity, in turn, also regulates (and is regulated 
by) other important morphogenic pathways, including Notch, Wnt, TGFb, and 
Hippo-Yap. Like dysregulation of these other pathways, Hedgehog pathway dys-
regulation has long been known to occur in various types of cancer [13, 14]. 
However, its role in adult tissue repair has been recognized relatively recently.

Our studies in adult Patched-reporter mice were the first to demonstrate that the 
Hedgehog pathway is active adult liver by identifying Hh signaling in resident sub- 
populations of pericytes (a.k.a., hepatic stellate cells) [5]. A decade later, studies in 
Gli-reporter mice confirmed this finding and provided additional evidence that resi-
dent pericyte populations in multiple tissues (e.g., kidney, skin, lung, pancreas) 
could be identified by their Hh pathway activity [6]. Previous research had already 
proven that Hh activation stimulated hepatic stellate cells (HSC) to become more 
myofibroblastic, proliferative and fibrogenic [5, 15, 16]. Further, this work had 
shown that inhibiting Hh signaling permitted MF-HSC to re-acquire a less myofi-
broblastic, more quiescent phenotype reminiscent of most of the HSC in healthy 
adult livers. In addition to validating the earlier findings, a number of recent studies 
confirmed that inhibiting Hh signaling improved fibrosis in various mouse models 
of organ fibrosis, including liver cirrhosis [17–20]. Hence, there is now general 
consensus that the Hh pathway controls the accumulation of MF and fibrosis in 
many adult tissues, including liver, identifying this pathway as a therapeutic target 
in alcoholic cirrhosis.

The role of Hh pathway dysregulation in acute liver failure, including that caused 
by acute alcoholic hepatitis is less-studied. Our research in mouse models has 
proven that the Hedgehog pathway is abruptly activated, and then subsides, as adult 
livers regenerates to fully recover functional liver mass after an acute 70% (partial) 
hepatectomy (PH) [21, 22]. Importantly, effective regeneration also involves tran-
sient expansion of hepatic myofibroblast populations and both processes are abro-
gated by conditional disruption of the Hh signaling pathway in MF-HSC [22]. 
Rather than regenerating, MF-depleted livers become progressively necrotic. These 
findings indicate that transient expansion of Hh-dependent liver MF populations is 
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necessary to replace resected hepatocytes so that the liver can regenerate. More 
recent research from our lab has revealed that this effective regenerative process 
also involves transient de-differentiation of some of the hepatocytes in the liver 
remnant via mechanisms that are orchestrated by autocrine/paracrine activation of 
the Hedgehog and Hippo-Yap signaling pathways [23]. This is intriguing because 
experimental manipulations that cause sustained Yap activation in hepatocytes have 
been reported to drive hepatocytes to de-differentiate to a stem-like state in which 
mature hepatocyte functions are lost and liver fibrosis eventually accrues [24–28]. 
Progenitors and MF accumulate in livers of patients with severe acute alcoholic 
hepatitis and our group reported that this process parallels the level of hepatic Hh 
pathway activity and correlates with clinical predictors of acute mortality [29]. We 
also showed that mice that are genetically predisposed to excessive Hedgehog path-
way activity develop worse steatohepatitis than wild type mice that are able to regu-
late the Hedgehog pathway appropriately during liver injury [30].

Transcriptomic analysis of liver biopsies from patients with severe acute alco-
holic hepatitis demonstrated dramatic enrichment with stem/progenitor cell markers 
[31], suggesting that this condition might reflect dysregulated repair of alcohol- 
induced liver injury. One of the over-expressed progenitor cell markers, Fn14, 
encodes a TNF superfamily receptor member that engages the pro-inflammatory 
cytokine, Tweak (TNF weak-apoptosis inducing factor) [32]. Pro-inflammatory 
cytokines are increased in severe acute alcoholic hepatitis, suggesting that 
Tweak-Fn14 signaling would be highly active in this context. Like TNF receptor 
inhibition, Fn14 deficiency has been reported to inhibit liver regeneration in other-
wise healthy mice subjected to acute toxin-induced liver injury or PH [33]. Failed 
regeneration associated with severely reduced outgrowth of progenitors, suggesting 
that Tweak-Fn14 signaling normally promotes accumulation of progenitors that 
eventually become replacement hepatocytes to permit recovery from liver injury. 
Subsequent studies of explanted livers from patients undergoing liver transplanta-
tion for severe acute alcoholic hepatitis support this concept by revealing that exces-
sive Fn14 expression is accompanied by marked expansion of liver progenitor 
populations [34]. While progenitor accumulation is necessary for eventual recovery 
from liver damage, the resultant relative deficiency of mature hepatocytes in livers 
with high pro-inflammatory activity would be expected to compromise liver- specific 
functions in the short-term and promote acute liver failure. Hence, clinically severe 
acute alcoholic hepatitis might have occurred because regeneration stalled when the 
liver was repopulated by immature liver cells.

The possibility that the liver acutely fails in acute alcoholic hepatitis because it 
has become repopulated by immature hepatocytes has therapeutic implications. 
Namely, it suggests that mechanisms that promote progenitor accumulation are 
overly-active and hence, interventions that constrain those processes might be ben-
eficial. As discussed previously, work in animal models has demonstrated that 
increased Hedgehog signaling, Yap activation, and Tweak-Fn14 induction play criti-
cal roles in expanding progenitor populations during liver repair. Pharmacologic 
agents that are able to inhibit each of these targets are already available [35–37], but 
none have been tested as treatments for acute liver failure due to alcoholic hepatitis 
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or other etiologies. It has not yet been possible to model human severe acute alco-
holic hepatitis in rodents and thus, the preclinical research would need to test these 
agents in other types of acute liver failure. If benefits were observed, pilot studies in 
patients could be considered. The available data also underscore the importance of 
further research to better delineate the fundamental mechanisms that control liver 
cell plasticity. There is growing evidence that cellular reprogramming is regulated 
epigenetically and those mechanisms seem to be influenced by age, gender, and 
genetic factors [38–40], suggesting that it might be possible to profile individuals 
who are at particularly high risk for bad outcomes of alcohol-induced 
steatohepatitis.

11.1  Summary

Alcohol-induced steatohepatitis is a dynamic process. Although it can regress to 
steatosis or smolder at sub-clinical levels for decades, it also increases the risk for 
both clinically severe acute alcoholic hepatitis and cirrhosis. The mechanisms that 
control the outcomes of steatohepatitis are poorly understood but emerging evi-
dence suggests that some of the heterogeneity might reflect differences in processes 
that control liver cell plasticity. Morphogenic signaling pathways that control cell 
fate decisions during fetal development, such as the Hedgehog pathway, become 
reactivated to resume similar functions in injured adult livers. Overly-exuberant 
activation of these pathways correlates with dysregulated liver repair and increases 
short- and long-term mortality by promoting acute alcoholic hepatitis or cirrhosis. 
Manipulating signaling via these pathways may be a novel therapeutic approach to 
optimize liver cell reprogramming and thus, prevent defective regenerative responses 
that cause acute and chronic liver failure.
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Chapter 12
Suppressed Fat Mobilization Due  
to PNPLA3 rs738409 -Associated Liver 
Damage in Heavy Drinkers: The Liver 
Damage Feedback Hypothesis

Vanessa Rausch and Sebastian Mueller

Abstract PNPLA3 variant rs738409 has been identified as important progression 
factor in patients with ALD and NAFLD, the most common liver diseases world-
wide. These findings point towards similarities between metabolism of alcohol and 
fat with regard to the PNPLA3 gene. However, despite many efforts, neither the 
mechanisms of PNPLA3-related liver damage nor the physiological role of PNPLA3 
are fully understood. Based on a large monocentric cohort of Caucasian heavy 
drinkers we could recently provide evidence that PNPLA3 GG primarily correlated 
with signs of liver damage (steatohepatitis, ballooning) but less with steatosis. 
Moreover, upon alcohol withdrawal, PNPLA3 GG carriers showed a delayed 
inflammation-associated resolution of liver stiffness. In line with the histological 
findings, hepatic fat content as quantified by CAP (controlled attenuation parame-
ter) did not depend on PNPLA3 status and decreased equally in all genotypes by ca. 
30 dB/m during alcohol withdrawal. Preliminary additional analysis from this large 
cohort indicates that PNPLA3 GG carriers (8.2%) drink significantly less high per-
centage beverages (23% vs 55%, p < 0.001) but show no metabolic phenotype such 
as increased weight, BMI or diabetes. On the molecular level, key molecules, 
important for lipolysis and flow of free fatty acids to the liver were drastically 
reduced in G carriers. These included the liver-synthesized serum ApoA1, the 
LD-associated protein perilipin5 and the recently identified hepato-protective tran-
scriptional cofactor transducin beta-like-related 1 (TBLR1). Based on these find-
ings, we here introduce the liver damage feedback hypothesis. Accordingly, 
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PNPLA3-mediated liver damage (e.g. by enhanced metabolic activity) suppresses 
the mobilization of fat towards the liver at various levels (reduced serum lipid flux 
to the liver and fat mobilization from peripheric adipose tissues, suppressed hepato-
cyte fat release and avoidance of high percentage alcohol beverages). Finally, the 
liver damage feedback hypothesis identifies a novel and central role of liver damage 
on systemic fat homeostasis, which has not been appreciated so far.

Keywords Liver damage · Fatty liver · Steatosis · Fat mobilization · PNPLA3 · 
TBLR1 · Perilipin · Lipid droplet · Lipolysis · Diabetes · Alcoholic liver disease · 
Fatty acids · Obesity

12.1  Introduction

Alcoholic liver disease (ALD) is the most common chronic liver disease in the 
Western world [1]. ALD encompasses a broad spectrum of partly overlapping dis-
orders ranging from simple steatosis evolving in nearly all drinkers, to severe forms 
of liver injury, including alcoholic steatohepatitis, fibrosis and cirrhosis. Most 
patients will eventually die from alcoholic cirrhosis with hepatocellular carcinoma 
(HCC, 1–2% per year) as the most common complications of cirrhosis. Although 
the majority (80–90%) of heavy drinkers with an alcohol consumption >80 g per 
day develop steatosis, only 35% show signs of inflammation and about 8–20% 
progress to cirrhosis [2]. Thus, only a small number of drinkers develop severe liver 
disease suggesting the existence of disease modifiers, which may determine an indi-
vidual’s risk for disease progression while heavy alcohol consumption. The under-
lying mechanisms are complex and still not fully understood, but suggest interactions 
between polygenic backgrounds and environmental factors as well as drinking hab-
its (pattern and amount of alcohol consumption) and other liver-related comorbidi-
ties such as adiposity or hepatitis infection [3, 4].

12.2  Health Statistics of ALD

Chronic alcohol consumption is one of the major risk factors worldwide affecting 
significantly both mortality and years of life loss (YLL) [5]. In 2012, nearly half 
of the world’s population consumed alcohol with about 3.3 million deaths (5.9% 
of all global deaths) attributable directly to alcohol (Global Status Report on 
Alcohol and health, WHO, 2014). Most of the world’s population displays a stable 
five-year trend in recorded alcohol consumption, while in the African region and 
the South- East Asia region an increase can be noted (WHO, 2014). Although alco-
hol affects many other organ systems such as the heart, nervous system, pancreas, 
breast, the liver remains the major target organ of alcohol consumption and more 
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than 80% of drinkers will ultimately die from liver-related causes. According to 
the Global Burden of Disease study 2010 alcohol-attributable liver cirrhosis was 
responsible for nearly half a million deaths (157,000 female and 336,000 male 
deaths) [6]. Alcohol-attributable liver cancer was responsible for over 80,000 
deaths and liver cancer ranked at position 12 and 16 in the actual death statistics 
[7]. In 2010 ca. one million people died from liver cirrhosis with nearly 50% of 
those were directly attributed to alcohol. This is a considerable number when 
comparing for instant with coronary heart disease with about ten million deaths 
ranking the leading cause of mortality in the global death statistics. In Central 
Europe, liver cirrhosis even ranks at the fourth position of YLL and hepatocellular 
carcinoma (HCC) is now the most common fatal complication of patients with 
alcoholic liver cirrhosis. Taken together, these dramatic numbers of liver-related 
death due to alcohol generate high interest in the molecular mechanisms and 
gene-related factors that drive the disease in only a minority of individuals.

12.3  Genetic Confounders: (Role of PNPLA3)

The role of genetic confounders that render the liver sensitivity to alcohol is under-
lined by various findings (ALD): First, monozygotic twins have a higher risk to 
develop alcoholic cirrhosis than dizygotic ones [8, 9]. Second, female drinkers are 
more sensitive to alcohol when exposed to the same amounts of alcohol than males 
[10] and third, the white men and women of Hispanic origin are at higher risk for 
developing alcoholic cirrhosis and have the highest mortality rate when compared 
to non-Hispanics [11]. In the last decades, continued research and increasing knowl-
edge of genetic variations, the availability of new analytical methods and decreasing 
costs for genetic studies raises the possibilities to search for genetic factors influenc-
ing the course of alcohol-induced liver disease progression. Various candidate genes 
were identified in case control studies comparing allelic and/or genotypic frequen-
cies of certain genetic variants like single nucleotide polymorphisms (SNP) between 
individuals with a background of alcohol dependence and ALD [12]. Most human 
sequence variation is attributable to SNPs, which are found in 1% of the population 
and occur on average every 1.9 kilobases within the human genome. As a conse-
quence, about 1.42 million SNPs are found in the total human genome [13, 14]. A 
SNP is a variation in a single nucleotide (e.g. A → C) leading to an altered base 
triplet potentially coding for a different amino acid, thereby eventually changing the 
genetic code. This is not always the case due to degeneracy of the genetic code. 
Variations in the coding region of genes can alter the function of the generated pro-
tein; if the SNP changes the amino acid sequence of a protein this is called non- 
synonymous SNPs, whereas synonymous SNPs do not affect the protein sequence. 
However, most polymorphisms (>99%) are located in non-coding regions of the 
genome and have no direct known impact on the phenotype of an individual, but 
may still affect gene splicing or transcription factor binding [15].
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12.4  Discovery of the PNPLA3 Polymorphism rs738409 
and Its Role in ALD

Due to genome-wide association studies (GWAS) it was possible to analyze rela-
tionships between a given phenotype/disease and millions of SNPs in thousands of 
different individuals [16]. Using this hypothesis-free approach, a GWAS using a 
map of SNPs found an association between patatin-like phospholipase domain con-
taining 3 (PNPLA3/Adiponutrin) and plasma levels of liver transaminases in 2008 
[17]. Another GWAS performed in the same year by Romeo et al. identified a non- 
synonymous SNP out of 9229 SNPs, the rs738409 variant, that encodes for an iso-
leucine to methionine substitution at position 148 (I148M) in the PNPLA3 gene as 
genetic variant associated with hepatic triglyceride content (steatosis, P = 5.9x10−10) 
and enhanced inflammation (P = 3.7x10−4) in 2111 multiethnic participants of the 
Dallas Heart study. Individuals heterozygous for this allele had higher hepatic fat 
levels compared to wild-type carriers, whereas possession of two copies of the 
148M allele had a multiplicative effect. This allele was most common in Hispanics, 
the ethnic group that is also most susceptible to NAFLD and remained highly sig-
nificant after adjusting for BMI, diabetes mellitus, alcohol abuses as well as global 
and local ancestry [18, 19]. These findings were quickly confirmed by several popu-
lation based-studies around the world [20].

In addition, Sookoian et al. showed that this variant also predisposes towards all 
stages of liver damage starting from simple steatosis to steatohepatitis and progres-
sive fibrosis elevated by histological assessment of liver biopsies [21]. Singal et al. 
even demonstrated in a meta-analysis that PNPLA3 is associated with an increased 
risk of advanced fibrosis among patients with different underlying liver disease and 
is an independent risk factor for hepatocellular carcinoma (HCC) in patients with 
nonalcoholic steatohepatitis or alcohol-related cirrhosis [22].

Because of the similarities between NAFLD and ALD, these findings stimulated 
similar genetic analysis in patients with ALD. Tian and coworkers confirmed an 
association between PNPLA3 and steatohepatitis to cirrhosis in a large Mestizo 
population (mixed European and Native American ancestry, n = 1221) [23–25]. The 
study of the genetic variant in the well-characterized Heidelberg ALD cohort of 521 
patients (148 females/ 369 males, age range 22–87 years) revealed a significant cor-
relation between the GG genotype with histological steatohepatitis (r  =  0.404, 
P < 0.005), ballooning (r = 0.319, P < 0.005) but less with steatosis (r = 0.264, 
P < 0.05) (Fig. 12.1) [26]. Furthermore, we found that GG genotype carriers had a 
shorter duration of alcohol consumption (17.2 vs 18.3 years, Fig. 12.2a) and gener-
ally consumed less alcohol than CC type carriers without reaching significance (181 
vs. 194 g/day)(Fig. 12.2b and Table 12.1). To our surprise, GG carriers showed also 
a different drinking behavior; interestingly GG Carriers demonstrated significantly 
reduced consumption of high percentage beverages such as liquor (23% vs 55%, 
P < 0.001, Fig. 12.2c). This was not due to advanced liver disease or age. No signifi-
cant differences were recorded for beer and wine intake (data not shown).

V. Rausch and S. Mueller



157

Porta
l In

fla
mmati

on

Klei
ner 

Stea
tosis

Chev
all

ier
 Sco

re 
(fib

ro
sis

)

Klei
ner 

Sco
re 

(fib
ro

sis
)

Ball
ooning (K

8/1
8)

Stea
tohep

ati
tis

 (K
8/1

8)

Morp
hometr

y c
olla

gen

Mall
ory 

Den
k B

odies

Apoptosis
 (M

30
)

Lobular
 In

fla
mmati

on

Meg
am

ito
ch

ondria

Micr
ogran

ulomas
0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

's
 rh

o

**
**

**
**

* *
*

ns

**

**
**

ns

Fig. 12.1 Spearman rank correlation analysis of PNPLA3 GG genotype carriers with histological 
parameters. * p < 0.05; ** p < 0.01; ns = not significant
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Fig. 12.2 Alcohol drinking characteristics such as (a) duration, (b) daily consumption, (c) liquor 
for ALD patients depending on the PNPLA3 genotype. GG carrier drink significantly less high 
percentage alcoholic beverages such as liquor. ** p < 0.001
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Table 12.1 Characteristics of ALD sub-cohorts based on genotype distribution of rs738409 
polymorphism

Parameters
PNPLA3 CC 
(n = 204)

PNPLA3 CG 
(n = 274)

PNPLA3 GG 
(n = 43)

PNPLA3 G 
(CG + GG) 
(n = 317)

Demographic characteristics

Patients (%) 39.2 52.6 8.2 60.8
Age (years) 49.5 ± 11.0 50.7 ± 11.8 50.1 ± 9.7 50.7 ± 11.5
Risk factors
BMI (kg/m2) 25.4 ± 4.9 25.1 ± 4.5 25.6 ± 3.9 25.2 ± 4.4
H/W ratio 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.1
Alcohol consumption  
(g/day)

194 ± 136.1 190.8 ± 146.2 181.2 ± 116.1 189.4 ± 142

Duration (years) 18.3 ± 13.3 20.9 ± 13.1 17.2 ± 14.2 20.4 ± 13.3
Noninvasive parameters

Hepatic steatosis (0–3, 
US)

1.8 ± 0.9 2.0 ± 0.8 1.9 ± 0.8 2.0 ± 0.8

Liver stiffness (kPA) 13.1 ± 17.7 17.6 ± 23.0* 17.2 ± 22.2 17.5 ± 22.9+
CAP (dB/m) 288 ± 52 290 ± 56 298 ± 49 291 ± 55
Laboratory parameter

AST (U/l) 95.2 ± 100.8 102.8 ± 111.4 111.2 ± 116.2 104.0 ± 111.9
ALT (U/l) 66.0 ± 59.4 71.9 ± 93.0 75.1 ± 60.3 72.4 ± 89.1
GGT (U/l) 406.4 ± 572.2 365.9 ± 516.1 525.9 ± 863.0 388.4 ± 578.4
AP (U/l) 105.5 ± 76.2 111.6 ± 75.8 111.5 ± 72.1 111.6 ± 75.2
Bilirubin (mg/dl) 1.2 ± 2.8 1.4 ± 3.0 0.9 ± 1.1 1.3 ± 2.8
Albumin (g/dL) 4.7 ± 4.7 5.3 ± 7.2 4.5 ± 0.5 5.2 ± 6.7
INR 1.4 ± 5.4 1.0 ± 0.4 0.9 ± 0.2 1.0 ± 0.4
Urea 20.6 ± 10.8 24.6 ± 20.2* 20.1 ± 9.9 24.0 ± 19.2+
Creatinine 0.7 ± 0.2 0.7 ± 0.3 0.7 ± 0.2 0.7 ± 0.3
Hemoglobin (g/dl) 14.2 ± 1.8 14.2 ± 2.5 14.6 ± 2.0 14.2 ± 2.4
Platelets (/nl) 216.7 ± 92.7 201.1 ± 80.0* 224.2 ± 91.4 204.5 ± 82.0
Glucose (mg/dL) 112.0 ± 46.2 107.7 ± 28.5 110.7 ± 34.6 108.1 ± 29.3
HbA1C (%) 5.6 ± 1.1 5.6 ± 0.8 5.8 ± 1.3 5.6 ± 0.9
Triglycerides (mg/dL) 190.6 ± 202.2 192.0 ± 205.8 240.9 ± 230.4 198.7 ± 209.6
Cholesterol (mg/dL) 219.9 ± 55.0 213.1 ± 61.1 222.9 ± 53.4 214.4 ± 60.1
HDL cholesterol  
(mg/dL)

73.2 ± 35.9 71.4 ± 37.6 75.6 ± 37.3 71.9 ± 37.5

LDL cholesterol  
(mg/dL)

113.5 ± 46.3 112.4 ± 45.5 118.0 ± 44.7 113.0 ± 45.3

Lipase (U/L) 48.5 ± 45.9 75.9 ± 216.5 45.3 ± 26.0 72.0 ± 202.7
Ferritin (ng/ml) 546.1 ± 611.6 599.6 ± 668.3 685.2 ± 708.2 610.8 ± 673.1
CRP (mg/dl) 4.7 ± 11.1 7.1 ± 18.9 6.0 ± 12.0 7.0 ± 18.1

(n = 521). Data are presented as mean +/− SD or in %
*p < 0.05 (CC vs CG); + p < 0.05 (CC vs G)
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12.5  Role of PNPLA3 rs738409 in Alcoholic  
Cirrhosis/Advanced Fibrosis

Tian et al. was the first who reported that PNPLA3 rs738409 GG is strongly associ-
ated with alcoholic liver disease, especially with clinically evident alcoholic cirrho-
sis in Mestizo subjects (unadjusted OR = 2.25, P = 1.7 x10−10; ancestry-adjusted 
OR = 1.79, P = 1.9x10−5) [23]. A small study in 266 patients with alcoholic cirrhosis 
and 182 heavy drinkers from the UK and Australia confirmed the results in 
Caucasians and demonstrated that carrying of the PNPLA3 rs738409 G allele and 
GG genotype were also significantly associated with alcoholic cirrhosis (OR = 2.2, 
P = 2x10−5 and OR = 5.57, P = 1.2x10−3) [27, 28]. A similar study with a Belgian 
ALD cohort and corresponding controls (n  =  328) showed that the PNPLA3 
rs738409 G allele was more frequent in ALD patients and identified as risk factor 
for cirrhosis (OR = 2.1, P = 0.001) [29]. Furthermore, a large European study per-
formed by Stickel et al. in alcoholics from different centers in Germany also identi-
fied an association between PNPLA3 rs738409 GG genotype and liver cirrhosis 
(OR  =  2.79, Pgenotype  =  1.2x10−5 and Pallele  =  1.6x10−6) [24]. Falleti as well as 
Rosendahl et  al. confirmed that PNPLA3 rs738409 G allele is more frequent in 
Caucasians in a study with 483 cirrhotic patients from Italy [30] or 135 patients with 
alcoholic cirrhosis from Germany and the Netherlands [31]. In addition, Falleti was 
also the first who identified this SNP as risk factor for HCC development in alco-
holic patients with cirrhosis. Only one Asian study in Indians with 120 alcoholics 
(60 with cirrhosis and 60 without) and 100 controls, confirmed the association 
between PNPLA3 rs738409 and cirrhosis [32]. The most recent study (n = 387 alco-
holics including 206 cirrhotics) performed by Way and Morgan found also an asso-
ciation between GG genotype and cirrhosis with an OR  =  2.71 [33]. We also 
confirmed a weak association in our ALD study cohort and calculated an OR to 
develop cirrhosis corrected for age, gender and BMI of 1.295 (95% CI 0.787–2.131) 
for the G genotype [26]. Taken together, all studies including a recent meta-analysis 
showed an association between PNPLA3 rs738409 G carrier and cirrhosis in 
patients with alcoholic liver disease (Table 12.2) [34].

12.6  Role of PNPLA3 in Cancer Progression (HCC)

Since PNPLA3 rs738409 was shown to be associated with advanced fibrosis and 
cirrhosis and this is accompanied in 8–20% of alcoholic cirrhotics with the develop-
ment of HCC, it was tempting to speculate that this sequence variation might play 
also a role in liver carcinogenesis. Therefore, case control studies were conducted in 
ALD patients complicated by HCC or not. Most studies were performed in Europe 
including Caucasians, except one study performed in 2013  in Japan including 
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patients diagnosed with HCC without confounding virus infections (hepatitis B or 
C)(n = 104) [37]. Falleti et al. was the first who identified this SNP as risk factor for 
HCC development in 483 alcoholic patients from Italy where 166 had cirrhosis and 
calculated an overall OR of 1.76 (95% CI 1.06–2.92, P < 0.05) [30]. Nischalke and 
Hamza et al. who calculated a 2.8 and 2.6 fold higher HCC risk in patients with 
ALD confirmed these findings [38, 39]. Trepo et al. even reported a stronger pre- 
disposing effect of PNPLA3 genotype and HCC risk in ALD patients [40]. Another 
study by Guyot et  al. also provides data that confirm the influence of PNPLA3 
rs738409 G genotype on the occurrence of HCC in patients with alcoholic cirrhosis 
with a slightly lower OR of 1.72 (95% CI 1.21–2.45, P = 0.002) [41]. A recent meta- 
analysis of individual patient data from candidate gene association studies (GWAS) 
found that PNPLA3 rs738409 is strongly associated with overall HCC and found 
that this association was more pronounced in ALD (OR = 2.20, 95% CI 1.80–2.67) 
than in patients with HCV-related HCC [40]. Two subsequent meta-analyses con-
firmed this association [22, 42]. To conclude, several case-control studies and recent 
meta-analyses have confirmed that PNPLA3 rs738409 G allele is associated with an 
around two fold HCC risk in alcoholic cirrhotics, but also other modifiers are likely 
to play a role in liver carcinogenesis (Table 12.3).

Table 12.2 ORs and 95% CIs of studies analyzing the association between PNPLA3 rs738409 
and advanced fibrosis/cirrhosis (adapted from Stickel et al. 2016)

Study (reference)
Type of 
study

Cases-controls 
(cirrhotics)

OR or HR  
(95% CI) P

Tian et al. 2010 [23] Case- 
control

1221 (482) 2.25 (1.74–2.90) 1.7x10−10

Seth et al. 2010 [27] Case- 
control

448 (266) 5.57 (1.68–18.43) 1.2x10−3

Trepo et al. 2011 [29] Case- 
control

658 (256) 2.08 (1.15–3.77) 0.02

Stickel et al. 2011 [35] Case- 
control

1043 (210) 2.79 (1.55–5.04) 1.2x10−5

Falleti et al. 2011 [30] Case- 
control

911 (483) 1.76 (1.06–2.92 0.02

Nguyen-Khac et al. 2011 [36] Case- 
control

210 (40) 2.5 (1.4–4.4) 0.002

Rosendahl et al. 2012 [31] Case- 
control

1510–2781 (135) 2.3 (1.6–3.3) <0.0001

Dutta et al. 2013 [32] Case- 
control

120–100 (60) 2.12 (1.29–3.4) 0.037

Way and Morgan et al. 2013 [33] Case- 
control

1106–1058 (212) 2.13 (1.66–2.73) 1.46x10−9

OR, odds ratio; HR, Hazardous ratio; CI, confidence interval
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12.7  Potential Physiological Functions of PNPLA3

So far, the physiological function of PNPLA3 and the effect of the amino acid sub-
stitution remain controversial and the structure of PNPLA3 has never been resolved 
by crystallization or nuclear magnetic resonance spectroscopy [28]. A clear associa-
tion of the genetic variant between the GG genotype was found with various liver 
disease stages including steatosis, steatohepatitis (inflammation and ballooning), 
fibrosis and cancer [26, 28]. PNPLA3 (adiponutrin) is located on chromosome 22 
and encodes a 53 kDa protein with 481-aa length that is closely related to PNPLA2 
(also called ATGL), the major hormone-sensitive TAG hydrolase of adipose tissue, 
sharing 56% amino acid identity in the patatin-like domain [47, 48]. The progenitor 
of this family, patatin, is a major storage protein of potato tubers but also involved 
in lipolysis of fatty acids. Structural analysis demonstrated, that the mutation has no 
influence on the catalytic center but the substrate-binding groove, thereby possibly 
blocking the access of substrates to the catalytic center [49]. In humans, PNPLA3 is 
expressed in adipocytes, hepatocytes and hepatic stellate cells [50–53]. PNPLA3 is 
localized on membranes suggesting an involvement in receptor-like interactions 
with extracellular signals [54], but also associated with the endoplasmatic reticulum 

Table 12.3 ORs or HR and 95% CIs of studies analyzing the association between PNPLA3 
rs738409 and HCC development (adapted from Trepo et al. 2016)

Study (reference)
Type of study (n = number 
of studies in meta-analysis)

Cases 
(cirrhotics)

OR or HR 
(95% CI) P

Falleti et al. 2011 [30] Case-control 483 (166) 1.76 
(1.06–2.92

<0.05

Nischalke et al. 2011 [38] Case-control 350 (160) 2.83 
(1.24–6.42)

0.013

Hamza et al. 2012 [39] Case-control 304 2,59 
(1.29–5.20)

0.007

Trepo et al. 2012 [40] Case-control 571 4.7 
(2.63–8.42

1.83x10−7

Guyot et al. 2013 [41] Prospective 279 1.72 
(1.21–2.45)

0.02

Trepo et al. 2014 [43] Meta-analysis (n = 5) 1374 2.20 
(1.80–2.67)

4.71x10−15

Nischalke et al. 2014 [44] Case-control
(with replication)

864
(+229)

2.32 
(1.36–4.68)

0.00002

Singal et al. 2014 [22] Meta-analysis (n = 9) 2937 1.4 
(1.12–1.75

n.i.

Salameh et al. 2015 [42] Meta-analysis (n = 4) 1207 2.81 
(1.57–5.01)

n.i.

Friedrich et al. 2015 [45] Retrospective 421 2.4 
(1.29–4.46)

0.008

Falleti et al. 2016 [46] Case-control 226 2.20 
(1.03–4.66)

0.039

OR, odds ratio; HR, Hazardous ratio; CI, confidence interval; n.a. not indicated
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and lipid droplets (LD) most likely due to the Brummer box [55]. Lipid droplets are 
the main organelles responsible for neutral lipid storage (primarily TAG and choles-
teryl ester) and hydrolysis. Studies demonstrated an upregulation during adipocyte 
differentiation, and a response to fasting and feeding cycles pointing towards a role 
in regulation of energy mobilization and lipid storage in adipose tissue and the liver 
[56]. Furthermore, PNPLA3 mRNA expression was increased in subcutaneous and 
visceral adipose tissue of obese subjects [57].

12.7.1  Enzyme Function

Three independent ex vivo studies demonstrated that the isolated PNPLA3 protein 
has an enzymatic activity on triglycerides (TG) by using radiolabeled triolein and 
measuring the release of oleic acid. In two studies they used SF-9 insect cells and 
one study examined the enzyme function in a yeast system (Pichia pastoris) [49, 58, 
59]. Although the enzyme showed a predominant lipase activity with oleic acid as 
major substrate which was also confirmed in Huh7 cells [60], Pingitore et al. found 
a mild lysophosphatidic acid acyltransferase activity (LPAAT). In addition, Jenkins 
et al. also described an acylglycerol transacylase activity for PNPLA3. In sum, all 
three papers demonstrated membrane localization and that the I148M mutation 
results in a loss of function mutation.

Most in vitro studies are performed in immortalized hepatoma cell lines, since 
this protein is highly expressed in the liver. In these studies PNPLA3 seems to 
possess triacyl-hydrolase activity on TG embedded in lipid droplets in Huh7 cells 
and the overexpression of the I148M isoform led to a marked reduction of this 
enzyme activity when compared with wild type PNPLA3 pointing also towards a 
loss-of- function mutation and resulting in an accumulation of TG, but not those 
newly synthesized and thereby trapping lipids in the liver [52]. Furthermore, it 
has been proposed that PNPLA3 148 M may promote intracellular lipid accumu-
lation by reducing hepatic very low density lipoprotein (VLDL) synthesis [61]. 
VLDLs are particles highly enriched in TG and secreted by the liver to provide 
different lipids for peripheral tissues [62]. Retention of VLDLs in the liver causes 
increased hepatic fat content [63]. These findings were also confirmed in humans 
by measuring hepatic VLDL secretion by injection of stable isotypes in different 
PNPLA3 carriers [28]. Furthermore, studies showed that silencing of the 
 carbohydrate response element- binding protein (ChREBP) abolished the induc-
tion of PNPLA3 mRNA by glucose in immortalized human hepatocytes suggest-
ing a glucose dependent  regulation of PNPLA3 [64]. Finally, a recent study by 
Pirazzi et  al. suggested a retinyl- palmitate hydrolase activity for PNPLA3  in 
hepatic stellate cells in humans [53] and demonstrated that I148M mutation is 
associated with reduced levels of retinol binding protein 4 (RBP4), the major 
transport protein for vitamin A in the blood [65]. It is known that HSCs lose their 
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retinol-storing ability while activation and differentiation into myofibroblasts-
like cells that secrete collagen thereby contributing to liver fibrosis. However, 
this indicates a potential novel link between HSCs, retinoid metabolism and 
PNPLA3 in determining the susceptibility to chronic liver disease whereas the 
specific role of PNPLA3 in this process remains still unclear.

12.7.2  In Vivo Studies

However, in vivo studies using genetically modified mice overexpressing or silenc-
ing PNPLA3 (knockout mice models) proved to be difficult, since deletion of 
PNPLA3 lead to no altered phenotype, suggesting a distinct enzyme function in 
mice or that other enzymes may compensate for the lack of PNPLA3 activity. The 
first approach studying PNPLA3 function in vivo was performed via adenoviral 
PNPLA3 overexpression. He et  al. observed that overexpression of wild type 
PNPLA3 in mouse liver showed no obvious phenotype and did not lead to reduced 
hepatic TG content, while the I148M mutant protein increases liver fat content [52]. 
This could suggest a gain of function and a lipogenic role for PNPLA3 that is 
enhanced in the presence of the mutant variant. In addition, two other studies per-
formed in PNPLA3 knockout mice indicated no major role for PNPLA3 in steatosis 
development [66, 67]. However, studies in transgenic mice overexpressing the sterol 
regulatory element binding protein-1c (SREBP-1c) showed an upregulation of 
PNPLA3 mRNA implicating an important link between PNPLA3 and the insulin 
signaling pathway, since SREBP-1c is a downstream target [68]. Another study per-
formed in high-fat diet fed rats, in which endogenous PNPLA3 was silenced using 
specific antisense oligonucleotides also pointed towards a possible role of 
PNPLA3 in insulin signaling [69]. Furthermore, in obese humans PNPLA3 I148M 
mutation was shown to be associated with an increased risk of type 2 diabetes [70]. 
A more recent knock-in mouse model used to either overexpress the mouse I148M 
mutant protein or the S47A variant resulted in hepatic lipid droplets accumulation 
and steatosis development when mice were fed with a high sucrose diet, indicating 
a loss of function mutation [71]. Today, this mouse model is the one most closely 
resembling the human physiologic condition.

12.8  Recent Findings from the Heidelberg Mono–Center 
Cohort of Heavy Drinkers – The Role of Alcohol 
Withdrawal

We recently analyzed the role of the PNPLA3 genotype in over 500 Caucasian heavy 
drinkers admitted for alcohol detoxification. Expression levels of various mRNA 
transcripts, histology, serum markers and many clinical parameters including 
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fibrosis (transient elastography, Fibroscan) and steatosis (CAP, controlled attenua-
tion parameter) were performed. The PNPLA3 rs738409 genotype distribution for 
CC, CG and GG was 39.2%, 52.6% and 8.2%. Mean LS was lowest in CC carriers 
(13.1 kPa) as compared to CG and GG carriers (17.6 and 17.2 kPa) (Table 12.1). 
Interestingly, almost no change was observed in CC carriers after alcohol withdrawal 
(12.0  kPa, LS2) while LS significantly decreased in CG carriers to comparable 
12.7 kPa. Despite a longer observation interval of 6.6 days, LS decreased slower in 
GG most likely due to sustained inflammation/liver injury as reflected by enhanced 
AST levels (26). Moreover, hepatic fat content (CAP) was only non- significantly 
increased in GG carriers and it decreased equally in all groups by 30  dB/m 
(Table 12.1). Like LS, no significant decrease of CAP was seen in GG carriers (26). 
In summary, LS was highest in G (GG and CG) carriers resolving to baseline levels 
comparable to the CC genotype after alcohol withdrawal. In contrast, fat content as 
measured by CAP was almost identical and decreased equally in all groups after 
alcohol detoxification. In conclusion, in heavy drinkers, PNPLA3 GG primarily cor-
relates with liver damage but not steatosis resulting in a delayed inflammation-asso-
ciated resolution of LS as reflected by increased AST levels. Consequently, sustained 
LS elevation could be a major risk factor in PNPLA3 GG carriers.

12.9  Evidence of Suppressed Fat Mobilization 
in the Heidelberg Cohort

Interestingly, we could identify several lines of evidence that the PNPLA3 GG asso-
ciated liver damage is associated with reduced fat mobilization to prevent further 
hepatic fat loading at various levels. First, we detected that the recently discovered 
transcriptional cofactor transducin beta-like-related 1 (TBLR1), identified as pro-
tective factor against hepatic steatosis in the metabolic syndrome was drastically 
reduced (Fig. 12.3a) and correlated negatively with the GG genotype (r = −0.537; 
p < 0.01) (Table 12.4). Its ligand TBL1 was also negatively correlated although not 
reaching levels of significance. Surprisingly, the C genotype was significantly asso-
ciated with liver-synthesized ApoA1 (r = 0.38; p < 0.01, data not shown), which is 
known to promote fat efflux from adipose tissues. Significantly decreased ApoA1 
levels were seen in G carriers (Table 12.5). In addition, analysis of the expression of 
lipid droplet-associated proteins of the perilipin family that regulate lipid droplet 
biogenesis, maintenance and degradation in hepatocytes revealed that Plin5 mRNA 
was markedly reduced in CG carriers and in the G genotype while no significant 
differences were observed for Plin3, though both perilipins represent exchangeable 
proteins shuttling between cytoplasm and lipid droplets dependent on functional 
state of cells (Straub et al. in press). Similar results were found for plin5 on protein 
level, where Plin5 was less recruited to lipid droplets in CG and in GG carriers 
showing a rather diffuse weak staining (Fig.  12.3c and Straub et  al. in press). 
Likewise, Spearman correlation analysis demonstrated a significant negative 
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Fig. 12.3 PNPLA3 genotype-dependent expression of (a) TBLR1 mRNA, (b) serum ApoA1 lev-
els and (c) perilipin (plin1, 2, 3 and 5) mRNAs. TBLR1, ApoA1 and plin5 are suppressed in GG 
carriers. Data are presented as mean+/− SD. * p < 0.05. mRNA expression analysis of n = 24 liver 
biopsy samples
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correlation between plin5 and GG type (r = −0.443; p < 0.05) (Table 12.4). In line 
with our findings, a recent study showed that PNPLA3 I148M is associated with 
lower de novo lipogenesis and a reduction of liver SREBP-1c mRNA levels, despite 
increased hepatic fat content [72]. This may point towards a compensatory mecha-
nism of hepatic fat increase in subjects with the I148M allele. Taken together, our 
findings on liver-expressed ApoA1, TBLR1 and plin5 point towards reduced hepa-
tocellular lipolysis and fatty acid mobilization in the liver in PNPLA3 GG carriers. 
Furthermore, the data on decreased plin5 levels in PNPLA3 G genotype could pro-
vide a novel link between PNPLA3 pathophysiology on lipid droplet-formation.

Table 12.4 Spearman rank 
correlation analysis of 
PNPLA3 GG genotype 
carriers with clinical, 
morphological, histological 
and molecular parameters

PNPLA3 GG
Parameter Method rho

Ballooning Histology 0.332**
Microgranulomas Histology 0.315**
Steatosis (Kleiner score) Histology 0.235*
ALT (U/L) 2 Serum 0.106*
Triglycerides (mg/dL) Serum 0.096*
Liver size Ultrasound 0.089
AST (U/L) 2 Serum 0.087
TBLR1 Liver mRNA −0.537**
Plin5 Liver mRNA −0.442*
Portal inflammation Histology −0.186
Liquor Medical history −0.167**

* p < 0.05; ** p < 0.01; 1 = before alcohol withdrawal, 
2 = after alcohol withdrawal

Table 12.5 Lipid stores and parameters in PNPLA3 genotypes

Compartment Parameter PNPLA3 CC PNPLA3 CG PNPLA3 GG

Peripheral fat BMI (kg/m2) 25.4 ± 4.9 25.1 ± 4.5 25.6 ± 3.9
Serum lipids Triglycerides (mg/dL) 190.6 ± 202.2 192.0 ± 205.8 240.9 ± 230.4

Cholesterol (mg/dL) 219.9 ± 55 213.1 ± 61.1 222.9 ± 53.4
Lipid trafficking ApoA1 (mg/dL) 139.4 ± 43 105.6 ± 39.2* 114.5 ± 37.6*

MLDP/Plin5 4.4 ± 1.3 4.0 ± 2.0 2.0 ± 0.2*
TBLR1 1.0 ± 0.2 1.0 ± 0.3 0.4 ± 0.4*

Liver fat Steatosis (US) 1.8 ± 0.9 2.0 ± 0.8 1.9 ± 0.8
Steatosis (histology) 1.9 ± 1.0 1.9 ± 0.1 2.6 ± 0.5*
Steatosis (CAP) 288 ± 52 290 ± 56 298 ± 49

Liver damage AST (U/L) (bw) 95.2 ± 100.8 102.8 ± 111.4 111.2 ± 116.2
AST (U/L) (aw) 47.8 ± 32.8 52.6 ± 45.9 82.8 ± 87.8*
Ballooning (histology) 0.7 ± 0.7 0.8 ± 0.8 1.4 ± 0.5*
Steatohepatitis (histology) 1.1 ± 0.8 1.1 ± 0.7 2.0 ± 0.0*

Data are presented as mean +/− SD
*p < 0.05 (CC vs CG or CC vs GG)
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12.10  Reduced Fat Mobilization Due to PNPLA3-Associated 
Liver Damage: The Liver Damage Feedback 
Hypothesis

Based on the observations above we propose the following hypothesis named 
liver damage feedback hypothesis: In heavy drinkers PNPLA3 G seems to predis-
pose to primary liver damage leading to reduced backflow of fatty acids to the 
liver via ApoA1 (serum lipid trafficking) and inhibited fatty acid utilization via 
TBLR1 (hepatocellular lipolysis signaling) and plin5 (regulation of fat flux to 
mitochondria) (Fig. 12.4), which may be a compensatory negative feedback loop 
in G carriers to prevent further hepatic lipid loading. To sum up, the naturally 
occurring mutation in PNPLA3 leads to inflammation and fibrosis development 
combined with disturbed intrahepatic lipid remodeling via suppressed lipolysis 
and fatty acid mobilization. Due to the similarities between NAFLD and ALD 
pathophysiology, and the fact that alcohol directly converts into fat, it is reason-
able to assume, that the latter is the real problem. Since the variant of PNPLA3 is 
not directly linked with insulin sensitivity or BMI and does not affect related 
metabolic disorders such as dyslipidemia or type 2 diabetes [73], and we cannot 
detect a significant difference in liver fat content in heavy drinking G carriers 
(CAP), we hypothesize that they might have a facilitated/accelerated fatty acid 
oxidation which in addition increases liver disease progression. This facilitated 
FA/TG hydrolysis might be under the control of Plin5 acting as a lipolytic barrier 
to prevent uncontrolled TG mobilization/shuttling and FA oxidation in the mito-
chondria [74, 75]. It remains unclear whether the I148M substitution indepen-
dently of fibrosis directly causes steatosis, lipotoxicity, or both and how it 
influences hepatocarcinogenesis.
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Fig. 12.4 The liver damage feedback hypothesis: PNPLA3 GG seems to cause primary liver dam-
age leading to reduced backflow of fatty acids to the liver via ApoA1 (serum lipid trafficking) and 
inhibited FA utilization via TBLR1 (hepatocellular lipolysis signaling) and plin5 (regulation of fat 
flux to mitochondria)
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12.11  Other Genetic Variations that Promote ALD

In 2015, a GWAS performed by Buch et al. in patients with ALD comparing 1426 
heavy drinkers without indicated liver injury to 712 patients with alcohol-induced 
cirrhosis in Europeans with a subsequent validation in two independent European 
cohorts (922 controls and 1148 cases) reported that TM6SF2 (P = 7.89x10−10) and 
MBOAT7 (P = 1.03x10−9) are important risk loci for alcohol-related cirrhosis and 
confirmed the role of rs738409 in PNPLA3 (P = 1.54x10−48) at a genome-wide level 
of significance. These three independent loci are all involved in lipid metabolism, 
suggesting that lipid turnover is important in the pathogenesis of alcohol-related 
cirrhosis [76]. Furthermore, Falleti et  al. identified TM6SF2  in conjunction with 
PNPLA3 as potential genetic risk factors for developing HCC in alcohol-related 
cirrhosis (P = 0.0007) [46]. Overall, it is likely that in future more GWAS studies 
are performed leading to the identification of additional variants robustly associated 
with alcohol-induced liver damage.

12.12  Conclusion and Future Perspectives

In the search for genetic risk factors rendering man more susceptible for-alcohol- 
induced liver disease, PNPLA3 was the first locus to be reproducibly and strongly 
associated with steatosis, fibrosis/cirrhosis in various liver diseases with different 
etiologies including NAFLD, ALD, and CHC and even HCC. The various studies 
on PNPLA3 allow the conclusion that PNPLA3 rs738409 GG carrier represent a 
subpopulation of high-risk subjects susceptible to develop ALD and cirrhosis. 
Genetic association studies highlighted a role of PNPLA3 in fat metabolism and a 
major impact on the development of liver disease but lipodomic analyses have not 
been performed, yet. If lipid turnover by the mitochondria is disturbed or another 
mechanism/pathway is influenced by the I148M variant still remains an open ques-
tion and definitely needs further investigations.
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Chapter 13
Aldo-Keto Reductases: Multifunctional 
Proteins as Therapeutic Targets in Diabetes 
and Inflammatory Disease

Kun-Che Chang and J. Mark Petrash

Abstract Aldose reductase (AR) is an NADPH-dependent aldo-keto reductase that 
has been shown to be involved in the pathogenesis of several blinding diseases such 
as uveitis, diabetic retinopathy (DR) and cataract. However, possible mechanisms 
linking the action of AR to these diseases are not well understood. As DR and cata-
ract are among the leading causes of blindness in the world, there is an urgent need 
to explore therapeutic strategies to prevent or delay their onset. Studies with AR 
inhibitors and gene-targeted mice have demonstrated that the action of AR is also 
linked to cancer onset and progression. In this review we examine possible mecha-
nisms that relate AR to molecular signaling cascades and thus explain why AR 
inhibition is an effective strategy against colon cancer as well as diseases of the eye 
such as uveitis, cataract, and retinopathy.

Keywords Aldose reductase · Inflammation · Diabetes · Cancer · Inhibitor · 
Cataract · Retinopathy · Nephropathy · Neuropathy

13.1  Introduction

Aldo-keto reductases (AKRs) are a superfamily of enzymes involved in phase 1 
metabolism of carbonyl substrates such as sugars, lipid aldehydes, keto-steroids and 
keto-prostaglandins [1–4]. The AKR superfamily contains 16 families (AKR1–16) 
[5] based on their high sequence similarity and common protein fold structure 
[AKR website: http://www.med.upenn.edu/akr/]. Enzymes within this family share 
many catalytic and structural properties. As a group, AKRs are nicotinamide 
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adenine dinucleotide (phosphate) (NAD(P)H)-dependent oxidoreductases and are 
expressed as 34–37 kDa polypeptides [6].

The AKR family 1 includes: AKR1A (aldehyde reductases) [7], AKR1B (aldose 
reductases) [8], AKR1C (hydroxysteroid dehydrogenases) [9], AKR1D (steroid 
5β-reductases) [9], and AKR1E (1,5-anhydro-D-fructose reductase) [10]. Among 
enzymes in the AKR family 1, AKR1B is the most well-studied with well over 6000 
reports published in PubMed (as of September 2016). Three AKR1B subfamily 
enzymes include AKR1B1 (human aldose reductase, HAR), AKR1B10 (human 
small intestine-like aldose reductase, HSIR) and AKR1B15 that are all encoded by 
genes localized to chromosome 7 [11] see Table 13.1. Since it is so well-studied 
among aldo-keto reductases, this review will focus primarily on recent studies on 
the role of aldose reductase (AR, AKR1B1) in human health, cancer, and ocular 
disease.

13.2  Function of AR in Cellular Responses

13.2.1  Inflammation

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a tran-
scription factor that controls gene expression affecting cellular processes such as 
cell cycle regulation, apoptosis [12], and activation of genes involved with inflam-
mation [13]. In unstimulated cells, NF-κB is localized mainly in the cytoplasm [14]. 
Following cellular activation, NF-κB translocates into the nucleus and becomes 
acetylated by histone acetyltransferase (HATs) including CREB-binding protein 
(CBP) or its homolog p300 [15, 16]. Studies have shown that acetylation enhances 
both DNA-binding ability and transcriptional activity of NF-κB [17]. Removal of 
acetyl groups, catalyzed by a family of deacetylating proteins, can also influence the 
activity of transcription factors. SIRT1 (silent mating type information regulation 2 
homolog) 1, the sirtuin 1 protein in mammals, is an NAD+-dependent deacetylase 
that has been known to inhibit NF-κB transcription signaling by removing acetyla-
tion from its subunit RelA/p65 at lysine 310 [18]. Therefore, activity of SIRT1 plays 
a crucial role in regulating inflammatory responses by influencing the acetylation, 
and thus the activation state of NF-κB, the key transcription factor controlling 
expression of proinflammatory genes.

Table 13.1 The table for human aldo-keto reductase family 1B

Gene Protein
Also known 
as

Chromosomal 
localization

AKR1B1 Aldose reductase AR, ALR2 7q33
AKR1B10 Small intestine-like aldose reductase HSIR, ALRl 7q33
AKR1B15 Aldo-keto reductase family 1, member 

B15
AKR1B10L 7q33
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Pioneering studies by Ramana and Srivastava and their colleagues demonstrated 
a possible connection between AR and NF-κB activation when they showed that 
ARIs suppress the endotoxin-induced activation of NF-κB in macrophages [19]. 
Ramana and Srivastava have studied the intersection of AR and NF-κB by focusing 
on the role of AR in the NADPH-dependent detoxification of reactive aldehydes 
[20, 21]. AR has been shown to play a role in the reduction of toxic aldehydes such 
as 4-hydroxy-trans-2-nonenal (HNE) and its glutathione adducts (GS-HNE). Under 
oxidative stress conditions characterized by increased levels of lipid peroxidation, 
AR converts HNE and GS-NHE to 1,4-dihydroxynonene (DHN) and GS-DHN, 
respectively [22]. GS-DHN is the predominant metabolite derived from HNE due to 
the high reactivity of the aldehyde with glutathione. GS-DHN is a potent activator 
of the phospholipase C (PLC)/protein kinase C (PKC)/NF-κB pathway [23, 24]. 
Therefore, several studies indicated that AR can play an important role in the activa-
tion of the PLC/PKC/NF-κB cascade: AR inhibition suppresses these signaling 
events [23, 25–27]. In ocular models of endotoxin-induced uveitis, injection of LPS 
induces NF-κB activation in the anterior or posterior chambers of the eye [28, 29]. 
Clinically, topical corticosteroids, which act by suppressing NF-κB signaling [30], 
represent the primary treatment strategy for patients with noninfectious anterior 
uveitis [31, 32].

13.2.2  Intersection of Glucose Metabolism and Inflammatory 
Signaling

Hyperacetylation of NF-κB is well known to drive expression of inflammatory sig-
naling genes [33]. Among many factors, high glucose has been shown to cause 
increased acetylation of NF-κB [34]. We hypothesize that the polyol pathway may 
provide a functional link between glucose metabolism, protein acetylation, and 
NF-κB activation. In the first step of the polyol pathway, AR catalyzes the NADPH- 
dependent conversion of glucose to sorbitol, which is then converted to fructose by 
the NAD+-dependent sorbitol dehydrogenase (SDH) [35]. Thus, accelerated glucose 
flux through the polyol pathway results in a reduction in the redox ratio of NAD+/
NADH.  Consequently, lower levels of NAD+ could be expected to attenuate the 
NAD+-dependent deacetylase activity of sirtuin-1 (Sirt-1), resulting in higher levels 
of NF-κB acetylation and therefore higher activity of Sirt-1 as an activator of inflam-
matory gene transcription. Thus, the imbalance between NAD+/NADH provides a 
plausible linkage between polyol pathway activation and accumulation of acetyl- 
NF- κB, leading to an inflammatory phenotype (Fig.  13.1). We hypothesize that 
blockade of the poylol pathway by inhibition of either AR or SDH would prevent 
the high glucose-induced redox imbalance and thereby support the higher deacety-
lase activity of sirtulin 1. This would result in reduced levels of activated NF-κB and 
thereby lower expression of inflammatory genes.
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Our studies are in concordance with those mentioned previously by Ramana and 
Srivastava [36–38], demonstrating that AR inhibition prevents endotoxin-induced 
inflammation in the eye [39, 40]. However, further studies will be needed to eluci-
date whether AR inhibition protects against the inflammatory response through its 
control of lipid derived aldehydes or alternatively through its influence on NAD+/
NADH ratios and acetylation status of transcription factors such as NF-κB. It is also 
possible that AR is involved in the inflammatory response via both pathways.

13.2.3  Oxidative Stress

Hyperglycemia is a leading cause of oxidative stress in diabetic organs such as 
heart, kidney and eye. Pathways of hyperglycemia-induced oxidative stress include 
polyol pathway, mitochondrial electron transport system, protein kinase C (PKC) 
and advanced glycation end products (AGEs) (Fig. 13.2) [23]. During hyperglyce-
mia, increased flux of AR-mediated reduction of glucose into sorbitol in a NADPH- 
dependent reaction was observed [41, 42]. NADPH plays reductive roles in 
metabolic steps, such as detoxification of reactive oxygen species (ROS) by the 
glutathione reductase/glutathione peroxidase system [43]. Therefore, excessive uti-
lization of NADPH by the polyol pathway could compromise the ability of cells to 
protect themselves from oxidative stress.

Fig. 13.1 Linkage 
between polyol pathway 
activation and induction of 
inflammatory signaling. 
Glucose metabolism 
through the polyol pathway 
results in a reduced NAD+/
NADH ratio, which lowers 
the ability of Sirt1 to 
deacetylate NF-κB
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In the secondary part of the polyol pathway, sorbitol is converted to fructose by 
SDH resulting in decreased ratio of NAD+/NADH. Elevation of cytosolic NADH/ 
NAD+ ratio leads to induction of ROS via mitochondrial NADH dependent pathway 
[44]. Increased NADH could also enhance the synthesis of diacylglycerol (DAG), 
which activates PKC and subsequently induces oxidative stress via PKC-dependent 
activation of NAD(P)H oxidase [45].

In addition to pyridine cofactor imbalances, AGEs resulting from hyperglycemia 
also contribute to oxidative stress [46]. AGEs are formed by nonenzymatic glyca-
tion reactions involving addition of a carbohydrate to a protein under high glucose 
conditions typical of diabetic individuals [46]. A study using glucose and fructose 
in comparison of the ability of forming AGEs showed that fructose forms AGE- 
BSA much faster than glucose [47]. This observation indicates that elevation of 
fructose from increased flux of the polyol pathway is another contributor for oxida-
tive stress. Collectively, reduction of the ratio of NADPH/NADP+ and  NAD+/
NADH, and induction of AGEs are the major causes of oxidative stress in hypergly-
cemic environment (Fig. 13.3).

13.3  AR and Complications of Diabetes and Chronic 
Hyperglycemia

Many studies implicate AR in inflammatory responses in immune cells [36–40], in 
heart [48], in kidney [49, 50] and in the eye [39, 51–53]. Additionally, AR is a major 
factor that causes a variety of diabetic complications such as autonomic neuropathy 
[54–58], ischemic myocardial injury [59–68] cardiomyopathy [48, 69, 70], nephrop-
athy [71–73], cataract [74–79] and retinopathy [80–84] see Table  13.2. 
Pharmacological inhibition of AR or genetic deficiency in animal models with 

Fig. 13.2 Hyperglycemia-induced oxidative stress is contributed by mitochondrial electron trans-
port system, polyol pathway, PKC and AGEs
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targeted disruption of the AR gene (AR knock out) brings about protection against 
these complications of diabetes and therefore provide a valuable tool for investigat-
ing pathogenesis caused by endotoxin or diabetic hyperglycemia. In this review, we 
will focus on AR inhibitors’ effects on the major complications of diabetes mellitus.

13.3.1  Heart

13.3.1.1  Myocardial Ischemic Injury

Myocardial ischemia is a heart disease caused by lack of oxygen to cardiac muscle, 
usually due to blockage of blood vessels. Diabetic patients have high incidence of 
cardiovascular disease and myocardial infarction [85, 86]. In diabetic patients, more 

Table 13.2 The table for the 
role of AKR1B1 in health 
and disease

Organ Associated disease

Heart Myocardial ischemic injury

Cardiomyopathy

Kidney Diabeitc Nephropathy

Acute Kidney Injury

Nerve Diabetic peripheral neuropathy

Cardiac autonomic neuropathy

Eye Uveitis

Diabetic cataract

Diabetic retinopathy

Posterior Capsular Opacification

Fig. 13.3 Increased flux of polyol pathway initiates oxidative stress by reducing the ratio of 
NADPH/NADP+ and NAD+/NADH, and inducing AGEs production
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sorbitol accumulation and a decrease of NADPH, from a flux of glucose through the 
polyol pathway, have been considered a causal factor in cardiac dysfunction [56, 
87]. Many AR inhibitors such as Zopolrestat [59–61, 64], Tolrestat [63, 67] and 
Sorbinil [63, 67] have been reported effectively against myocardial ischemic injury 
in mice [64], rat [59, 60, 67] and rabbit [61, 63] models in both diabetic and non-
diabetic conditions. To further understand the influence of AR in the heart, 
Ramasamy [62] and Bhatnagar [66] groups conducted experiments to measure AR 
activity and kinetic properties between normal and ischemic heart. They both found 
that ischemia increases myocardial AR activity, with higher Kcat and Vmax due to 
oxidative stress, without affecting Km [62]. In addition, the expression and activity 
of AR was significantly higher in aged hearts than young ones in a rat model [68]. 
Treating aged rats with AR inhibitor reduced ischemic injury and improved cardiac 
function in aged hearts [68]. Therefore, there is still a need for developing AR inhib-
itors on myocardial ischemia therapy.

13.3.1.2  Cardiomyopathy

Cardiomyopathy is degeneration of the myocardium, which causes severe cardiac 
failure and arrhythmia [88]. Studies showed that AR activation induces oxidative 
stress [39, 80] which could further trigger the NF-κB pathway [36, 38, 48]. The 
NF-κB pathway is involved in inflammatory condition which contributes to cardio-
vascular dysfunction [89]. Sakamoto and Sugamoto observed the upregulation of 
AR-like gene in heart of cardiomyopathic rodent [70]. Ramana and colleagues also 
reported that AR inhibition is capable of preventing endotoxin-induced cardiomy-
opathy [48]. In addition, AR inhibition is able to prevent acute hyperglycemia- 
induced cardiac contractile dysfunction by reducing oxidative stress [69]. Taken 
together, observations above indicate that blockade of NF-κB pathway and oxida-
tive stress through AR suppression could be a therapeutic strategy for preventing 
cardiomyopathy.

13.3.2  Kidney

13.3.2.1  Nephropathy

Diabetes has high influences in kidney complications and approximately 30% of 
diabetic patients have diabetic nephropathy, which is a leading cause of kidney fail-
ure in US [90, 91]. A strong immunohistochemical staining of AR was found in 
diabetic individuals, when compared to non-diabetic individuals, indicating that the 
level of AR is increased in the kidney of diabetics [92]. Supportive studies reported 
that high glucose in blood or cultured condition induces AR expression that leads to 
renal sorbitol accumulation [93–95], reactive oxygen species (ROS) production [96, 
97] and inflammation [96] in nephropathy kidney or renal cells culture. Thus, a 
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variety of AR inhibitors had been utilized for treating nephropathy by inhibiting the 
polyol pathway [73] but showed no influences on kidney weight, body weight or 
blood glucose [72]. In vivo studies utilizing AR null mice showed that genetic abla-
tion of AR plays a strong protective role in preventing diabetic nephropathy [71]; 
however, the AR deletion in kidney came with abnormal functioning of the inner 
medulla [98]. Kidneys from diabetic patients also highly express TGF-β [99], which 
is an inducer of epithelial-mesenchymal-transition (EMT) [100]. Evidence from 
human mesangial cells showed that AR inhibition prevents transforming growth 
factor-beta 1 (TGF-β1)-induced fibronectin expression [101], which is an EMT 
marker that leads to kidney fibrosis. Another study conducted in renal proximal 
tubular cells showed that AR inhibition attenuated hyperglycemia-induced fibronec-
tin elevation [93]. Collectively, AR inhibition could be a therapeutic strategy by 
preventing ROS production and EMT marker expression in patients of 
nephropathy.

13.3.2.2  Acute Kidney Injury

Acute kidney injury (AKI), also called acute renal failure (ARF), is a rapid onset 
loss of kidney function that may arise from an intense inflammatory process. In AKI 
mouse model, endotoxin injection increases the levels of blood urea nitrogen, cre-
atinine and cytokines which cause vacuolar degeneration, apoptosis of renal tubular 
cells and immune cells infiltration [50]. Pretreatment with Fidarestat, an ARI, was 
able to ameliorate LPS-induced AKI by reducing inflammation and increase sur-
vival rate [49, 50]. The polyol pathway has recently been implicated in ischemia/
reperfusion tissue injury. Hindlimb ischemia in mice revealed accumulation of sor-
bitol and fructose in ischemic muscles accompanying secretion of TNF-α and 
IL-6 in serum, which led to AKI [49]. Treatment with the AR inhibitor was effective 
at suppressing inflammatory reactions and renal failure [49]. These results suggest 
that AR inhibition may be a potential therapeutic strategy for treatment of AKI.

13.3.3  Peripheral Nervous System Disorders

13.3.3.1  Diabetic Peripheral Neuropathy

Diabetic peripheral neuropathy (DPN) is nerve damage that affects the 50% of 
patients with both Type 1 and Type 2 diabetes [102] and causes loss of sensation in 
the arms, hands, legs and feet [103]. DPN is considered one of the most painful 
complications affecting diabetic patients [104]. Patients usually feel painful prick-
ling, burning, electrical, sharp, or jabbing sensation [105]. Assessing sensory nerve 
conduction velocity (SNCV) and motor nerve conduction velocity (MNCV) allows 
clinicians to determine the degree of neuronal activity or damage [106]. Measurement 
of F-wave latency is the most common procedure to diagnose peripheral neuropathy 
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[107]. The efficacy of treatment on DPN is determined using electrophysiological 
measurements of three key nerves—median motor, tibial motor, and median sen-
sory nerves. A variety of strategies have been explored for management of DPN 
including the use of oriental medicine and natural products [108]. Conventional 
treatments of DPN include the commonly known analgesic drug such as non-steroi-
dal anti-inflammatory drugs (NSAIDs) and opiates [109, 110]. Among the medicine 
in the management of DPN, tramadol is often used as an analgesic. Tramadol is a 
semisynthetic opium-derived compound that binds to μ and δ opioid receptors and 
interferes the re-uptake of serotonin and norepinephrine [111, 112]. However, clini-
cal use of tramadol is not recommended due to the high risk of epileptic seizures and 
psychiatric disorders. Other analgesic, in particular opium-derived, also has revealed 
physical and psychological side effects [113]. Therefore, alternative medicine is 
still an urgent need for management of DPN. Many natural compounds have been 
reported in the management of DPN.  These compounds include phenolic com-
pounds [114], cannabinoids [115, 116], vanilloids [117, 118] and essential fatty acid 
[119].

In the diabetic patient, AR is overexpressed in a variety of organs/tissues, par-
ticular in peripheral nerve [92], suggesting a possible link between AR and 
DPN. Sorbitol is the metabolite of glucose converted by AR in polyol pathway. Oka 
and Kato reported that increased accumulation of sorbitol results in the decrease of 
myo-inositol in the peripheral nerve [120]. Downregulatoin of myo-inositol subse-
qucetly results in lower Na+, K+ -ATPase activity, which is important for nerve con-
duction [120]. Therefore, blocking sorbitol accumulation by inhibiting AR polyol 
pathway is a strategy being considered for DPN treatment. Genetic studies support 
this concept, as AR knockout mice appear to be protected from delayed motor nerve 
conduction velocity [71]. Pharmacological inhibition of AR also showed encourag-
ing or convincing results for clinical use. Epalrestat has been approved for use in the 
treatment of diabetic neuropathy in Japan [121]. Several clinical trials with epalres-
tat showed that 150 mg/day improves MNCV and SNCV, and subjective symptoms 
in patients with DPN [122, 123]. Two additional AR inhibitors, Fidarestat [124–
126] and Rainrestat [124, 127, 128], also provide encouraging experimental and/or 
clinincal results in treatment of DPN and diabetic sensorimotor polyneuropathy 
(DSP), respectively. With these promising results of AR inhibitors, more about their 
efficacy and safety will need to be investigated to promote them in the U.S. market. 
Therefore, the natural products with lower cytotoxicity are potential candidates in 
AR inhibitor development for DPN treatment.

13.3.3.2  Cardiac Autonomic Neuropathy

Cardiac autonomic neuropathy (CAN) is characterized by dysfunction in the car-
diac autonomic nerves causing dysregulation of heart rate. CAN results in higher 
incidence of heart failure and sudden death in diabetic patients [129]. In diabetic 
animal models, sorbitol accumulation from polyol pathway has been considered a 
major contributor to diabetic neuropathy [130]. Since it is considered an effective 
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AR inhibitor, Sorbinil was used as a therapeutic agent in diabetic patients exhibiting 
improvement in CAN symptoms [54–56]. Other AR inhibitors such as Epalrestat 
[131–133], Ponalrestat [134–136] and Tolrestat [137, 138] were also reported as 
therapeutic agents against CAN. In 1981, Kline et al. developed a useful method 
entitled I-123 Meta-Iodobenzylguanidin (MIBG) to facilitate imaging the myocar-
dium. This method provides quantitative information of heart rate [139] and is a 
useful tool in investigating diabetic autonomic disorder in patients [139]. Using 
MIBG, AR inhibition was observed to alleviate CAN progression in diabetic rats 
[57] and patients [58]. As a result, AR inhibitors might be a promising treatment for 
CAN. Thus, development of novel, effective, and nontoxic AR inhibitors is still 
necessary for slowing the progression of diabetic autonomic neuropathy [140].

13.3.4  Ocular Disorders

13.3.4.1  Uveitis

Uveitis is an ocular inflammatory disease of the uvea, the middle layer of the eye 
that consists of the iris (anterior uveitis), ciliary body (intermediate uveitis) and 
choroid (posterior uveitis), that contributes about 10 to 20% legal blindness per year 
[82]. Therefore, the aim of uveitis treatment is to prevent inflammatory responses. 
Topical eye drops or oral administration of glucocorticoid steroids is the most com-
mon treatment for uveitis [141]. In animal studies, lipopolysaccharide (LPS) is 
commonly used for induction of experimental uveitis, or so-called endotoxin- 
induced uveitis (EIU) [39, 51, 52, 142, 143]. LPS injection results in induction of 
TNF-α [51, 52, 142], ROS [51, 142], cyclooxygenase-2 (COX-2) [51, 52, 143], 
inducible nitric oxide synthase (iNOS) [51, 52, 143] and NF-κB activation [51, 143] 
in rodent eyes. Experimental autoimmune uveoretinitis (EAU) is another model for 
the investigation of ocular inflammatory response [52, 144]. Within these two uve-
itis models, secretion of proinflammatory cytokines is thought to play an important 
role resulting in damage to ocular tissue [52, 142]. Regarding the effects of AR on 
inflammatory responses, many studies using macrophages demonstrated that phar-
macological inhibition or genetic ablation of AR attenuates LPS-induced cytokines 
secretion, oxidative stress and cell migration by suppressing MMP-9 and NF-κB 
activation [36–40]. In addition, studies also reported that downregulation of AR by 
enzymatic activity or gene expression is capable of preventing experimental models 
of EIU or EAU [39, 51, 52]. In the eye, retinal microglia (RMG) are one of the 
major immune cells that participate in surveillance in retinal environment. While 
they are typically located in the inner and outer plexiform layers in a healthy condi-
tion [145, 146], in uveitis they become activated [147] leading to morphological 
transformation [142] and migration into the outer nuclear layer (photoreceptor 
layer) where they secrete cytokines and peroxynitrites [144, 146]. In vitro studies 
using primary cells showed that RMG can be activated by LPS exposure [40, 148] 
and such activation can be suppressed by addition of an AR inhibitor or in mice 
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lacking the functional allele of the AR gene [40]. For these reasons, we propose that 
AR could be a therapeutic target for uveitis.

13.3.4.2  Diabetic Cataract

In 2010, it was estimated that around 285 million people worldwide had diabetes 
[149]. There is an estimation that around 552 million people, which is one in ten, 
will have diabetes by 2030 [150]. Many studies have shown that diabetes is associ-
ated with higher prevalence of cataracts, which remains a major cause of blindness 
in the world [151–153]. Tight glycemic control is known to reduce the risk of cata-
racts in subjects with type 2 diabetes [154]. Among the factors thought to induce 
lens opacification, oxidative damage is thought to be a major mechanism in the 
onset or progression of diabetic cataract (DC) [155]. Thus, researchers observed 
that the use of dietary antioxidant alleviates the cataract progression [156, 157]. 
Galactose is another substrate metabolized by AR and results in accumulation of 
galactitol, which also causes cataract formation. Studies on the anterior part of eyes 
showed that AR activation plays a key role in DC formation [158, 159]. AR inhibi-
tors prevent cataract formation in streptozotocin (STZ)-diabetic animal models [77, 
78] and galactose-fed rats [76]. Other than the effect of sorbitol, fructose metabo-
lized from glucose in AR polyol pathway is another precursor that initiates produc-
tion of AGE [79], which contributes to cataractous lenses of human subjects with 
diabetes [74]. Therefore, there is still an urgent need for ARI development. Since 
AR expression is low in wildtype mice, even in diabetes, Lee and colleagues gener-
ated the human AR expressing mice to accelerate cataractogenesis for the sugar 
cataract study [159]. We recently generated human AR transgenic (AR-Tg) mice 
that can shorten the time for DC formation by STZ injection [160], thus providing a 
useful laboratory model for studying DC formation and prevention. The role for AR 
in DC formation was further substantiated when it was observed that a lower level 
of diabetic cataract formed in AR null mice compared to wild type [161].

13.3.4.3  Diabetic Retinopathy

Diabetic retinopathy (DR) is one of the major complications of diabetes and has 
become the leading cause of blindness in people of working age in the past century 
[75, 162]. Clinical features of DR are macular edema, retinal ischemia, retinal hem-
orrhages and microaneurysms, formation of intraretinal microvascular abnormali-
ties, growth of neovascular vessels onto the retina, and retinal detachment [163]. 
Patients with DR experience a decline of visual acuity that affects many activities of 
daily living. Among the factors causing DR, vascular endothelial growth factor 
(VEGF) is considered a major one that leads to neovascularization in retina [164, 
165]. Animal studies have also shown a correlation between elevated VEGF and 
diabetic vasculopathy [166]. Clinical trials have shown that use of the VEGF neu-
tralizing antibodies by intravitreal injection improves visual acuity [167, 168]. 
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Although anti-VEGF therapy has revolutionized management of DR, this procedure 
requires repeated injections, often monthly for 2 years, and may lead to impaired 
survival of neuronal and vascular cells [169]. Thus, alternative strategies are being 
sought to offset VEGF-driven pathology in the diabetic retina, such as reduction of 
VEGF protein production. In animal studies, genetic ablation of VEGF in Muller 
cells reveals the important role of VEGF production in retinopathy [170, 171]. 
Genetically predisposed diabetic mice (db/db) carrying a mutation in leptin receptor 
are type 2 diabetic models for investigation of DR [172–174]. Elevation of VEGF in 
the diabetic retina is decreased when the AR null mutation is introduced into db/db 
mice, which further prevents blood-retinal barrier (BRB) breakdown and apoptosis 
in retina [175]. Deletion of AR also prevents mice from streptozotocin-induced DR 
by inhibiting retinal capillary degeneration and superoxide generation [83]. 
Reduction of AR activity using inhibitors helps to normalize VEGF levels [166], 
suppressing VEGF-induced tube formation in retinal endothelial cells [84] and alle-
viating hyperglycemia-induced damage in retinal pigment epithelial cells [80].

Considering the source of VEGF, Muller cells are believed to be the major 
immune cells that secrete VEGF in the diabetic eye [81]. However, our current 
unpublished studies show that genetic ablation of AR reduces hypoxia-induced 
VEGF secretion by attenuating COX-2 expression in retinal microglia (RMG) indi-
cating that RMG could be another source of VEGF in retina.

Other than anti-VEGF therapy, intravitreal injection of steroids is also used for 
treatment of diabetic macular edema [176]. Steroids are well-known to reduce 
inflammatory responses by suppressing NF-κB pathway [177, 178]. In the clinic, 
patients treated with intravitreal injections of steroids such as triamcinolone and 
dexamethasone showed improvement in diabetic macular edema by reducing cen-
tral macular thickness [179]. However, these treatments have the side effects of 
causing cataracts. Nevertheless, suppression of NF-κB pathway is an effective strat-
egy for prevention of onset and/or progression of DR which can be a blinding dis-
ease if left untreated.

Systemic inflammation is considered to be an intrinsic response to diabetes 
[180]. Inflammatory cytokines like interleukin-1β (IL-1β) and TNF-α are increased 
in the vitreous of patients with DR [181]. Increased TNF-α in retina leads to retinal 
vascular permeability [182], microglia activation [183] and induction of apoptotic 
protein markers [183] in retina. Collective data suggested that anti-inflammatory 
treatment with glucocorticoids [184] or minocycline [183] attenuates severity of 
retinopathy and helps to restore the BRB. Muller cells and RMG are thought to 
contribute to inflammatory responses in retina [163]. Our previous study showed 
that downregulation of AR reduces inflammatory responses in RMG [40] suggest-
ing AR inhibition plays an alternative role in preventing DR by suppressing inflam-
matory responses in the diabetic eye.

Advanced glycation end-products (AGEs) have been shown to induce VEFG pro-
duction [81] and matrix metalloproteinases (MMPs) [185] in the diabetic retina. 
Induction of MMPs alters the BRB by initiating morphological changes in retinal 
endothelial cells [185], which is often observed in DR. Amadori-glycated protein is 
the precursor to AGEs [46]. Patients with diabetes have increase of Amadori- glycated 
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albumin (AGA) in serum [186] which correlates with higher risk of retinopathy 
[187]. Animal studies also showed the increase of AGA in the diabetic retina [188]. 
Inflammation in diabetic individuals could be induced by AGEs in kidney via NF-κB 
pathway [189] or by AGA in retina through Mitogen-activated protein kinases 
(MAPK) pathway [188]. Previous studies showed that AR inhibition or genetic defi-
ciency suppresses the NF-κB [36–38] and MAPK pathways [39]. Therefore, it would 
be an interesting question whether AR mediates AGE or AGA- induced inflammatory 
responses in diabetic retina. Recent studies have shown that RMG were activated in 
the presence of AGE [190, 191] and AGA [188], and follow the induction of TNF-α. 
Our current unpublished data observed that AR inhibition suppresses AGA-induced 
TNF-α secretion and cell migration in RMG suggesting that AR is involved in AGA-
mediated DR.

13.3.4.4  Posterior Capsule Opacification

Posterior capsule opacification (PCO), which is a relatively common complication 
of cataract surgery [192], results from abnormal proliferation and migration of lens 
epithelia cells (LECs) [193] in the central posterior capsule resulting in degraded 
visual acuity. LECs undergo differentiation from an epithelial to a myofibroblast 
phenotype [100] and matrix contraction [194], which further leads to opacification. 
TGF-β overexpression in Tg mice led to morphological changes in lens that resem-
bled PCO in human [195]. In the process of PCO, TGF-β plays an important role in 
developing epithelial-to-mesenchymal-transition (EMT) [100], resulting in expres-
sion of EMT related markers such as α-smooth muscle actin (α-SMA) [194], and 
forming cells with a spindled-shaped myofibroblastic morphology [100]. TGF-β 
also induces MMPs such as MMP-2 and -9, which has been demonstrated that can 
be induced under mechanical trauma of cataract surgery [194]. Therefore, suppres-
sion of EMT and MMPs activation could lead to prevention of PCO. Previous works 
showed that AR inhibition suppresses LPS or high glucose-induced MMP-9 activa-
tion [40, 196, 197]. Kidney studies further reported that TGF-β-induced MMPs and 
EMT activations were attenuated by AR inhibitor treatment in renal cells [101, 
198]. Yadav and colleagues reported a study using pig capsule that AR inhibitor 
were shown to reduce LECs proliferation and expression EMT markers [199]. 
SMAD signaling pathway has been identified as playing a critical downstream role 
in TGF-β- mediated signaling [200]. TGF-β interaction with its receptor leads to 
SMADS phosphorylation and subsequent translocation to the nucleus to trigger 
EMT process [201]. Recently, an encouraging study in LECs showed that AR inhi-
bition suppresses TGF-β2-induced SMADs phosphorylation and its downstream 
regulatory pathways including cell migration, EMT initiation and MMPs activation 
[202]. A novel function of AR was reported, involving AR interaction with SMADs. 
This novel model offers a possible mechanism to explain how AR inhibitor treat-
ment suppresses SMADs activation [202]. This finding indicated the AR facilitates 
TGF-β/SMADs pathway and AR inhibitor disrupts AR-SMADs interaction. 
Accordingly, AR could be a therapeutic target for PCO.
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13.4  Summary and Future Directions

13.4.1  Novel AR Inhibitors

In the view of AR inhibitor and ocular inflammation, we determined whether 
β-glucogallin (BGG), isolated from Indian gooseberry, is an efficacious AR inhibi-
tor. We observed that BGG is a potential anti-inflammatory agent against endotoxin- 
induced uveitis in an experimental mouse model. BGG not only alleviated 
inflammatory responses in macrophages but also suppressed infiltration of immune 
cells into the eye [39]. However, our extensive research showed the instability of 
BGG in thermal acidic condition [203]. We observed that the ester linkage in BGG 
(glycosyl 1-ester) is labile in aqueous solution. Thus, our collaborators Dr. Daniel 
LaBarbera and his lab designed β-glucogallin amide (BGA), a derivative of BGG 
produced by replacing the ester with an amide linkage to join the gallic acid and 
glucose ring. BGA demonstrated similar inhibitory activity in vitro and ex vivo but 
much better stability under thermal acidic condition [203]. With compatible activity 
and greatly improved stability, BGA holds a promise to be an attractive therapeutic 
lead toward the treatment of ocular inflammation. Further structure-based drug 
design is presently ongoing to improve the pharmacological profile of BGA, and 
more sophisticated animal models will be used to test BGA efficacy in vivo.

Our studies of BGG were motivated by strong animal study results which showed 
that this AR inhibitor can prevent complications of diabetes mellitus. Clinical trials 
of many AR inhibitors have been unsuccessful in part due to toxicity from their 
metabolic breakdown products. In our studies of the effect of AR inhibition on 
inflammation associated with endotoxin-induced uveitis, we included Sorbinil as a 
positive AR inhibitor control. Sorbinil is no longer considered a candidate for 
human therapy because previous clinical studies showed that microsomal metabo-
lites of Sorbinil are cytotoxic [204]. Similarly, other AR inhibitors such as Imirestat 
[205], Tolrestat [206, 207] and Zoporestat [207] also failed in clinical trials due to 
liver and/or renal toxicity. So far, only Epalrestat has been shown to be safe and 
efficacious against diabetic peripheral neuropathy and is now marketed in Japan 
[121, 207]. Therefore, the encouraging results of BGG and preliminary data from 
BGA provide a new direction for development of AR inhibitors based on a novel 
pharmacophore structurally unrelated to previously failed AR inhibitors. Since 
BGG is abundant in many fruits consumed by humans (gooseberry, rhubarb), it is 
likely that it will not cause liver and renal complications.

In the study of DR, we wanted to know whether BGG is capable of preventing 
diabetic complications. We developed hyperglycemic condition using high glucose 
medium on ARPE-19 cells. We found that BGG is an efficacious AR inhibitor 
reducing hyperglycemia-induced cell death, ROS production, ER stress and mito-
chondrial dysfunction [80]. Hyperglycemia also elevates the level of advanced gly-
cation end products (AGEs) in the serum of diabetic patients [186]. A study on 
AGEs has been known to induce ocular inflammation by triggering RMG activation 
[148]. Our preliminary studies showed that AR inhibition attenuates amadori 
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 glycated albumin (AGA)-induced inflammatory responses in RMG. The mecha-
nism behind this finding remains unknown and should be studied. Since low cyto-
toxicity of BGG has been shown in cell line model [39], extensive studies of BGG 
in animal study are feasible. Diabetes shows higher risk in elevating VEGF in retina 
that causes neovascularization [164, 165]. Our preliminary showed that pharmaco-
logical inhibition or genetic ablation of AR prevents hypoxia-induced VEGF secre-
tion from RMG. Based on our previous study of ARI on RMG, we believe that BGG 
and BGA are a potential therapeutics for diabetic complication by preventing RMG 
activation in diabetic retina. However, to further apply BGA to next step, more phar-
maceutical kinetics and toxicity experiments are necessary. Although BGA is 
derived from natural compound, the toxicity in vivo has not been studied. Animal 
toxicity study of BGA injection should be conducted before BGA’s further applica-
tion. Since BGA was designed for its higher stability, in vivo pharmaceutical kinet-
ics should also be studied in the future.

13.4.2  A role for AR in Ocular Inflammation

In the eye, RMG is one of the immune cells that normally reside in the inner retina. 
However, under inflammatory conditions, RMG can be found in higher numbers in 
the subretinal space between photoreceptor outer segments and the RPE. Activated 
RMG secrete chemokines and/or cytokines to damage neural and retinal cells in the 
eye. Therefore, regulation of RMG may be critical for preventing ocular inflamma-
tion. To investigate a more specific area of the eye, we conducted an ex vivo study 
to examine a potential role for AR in the response of RMG to endotoxin exposure. 
We observed that inflammatory responses in RMG following exposure to endotoxin 
were substantially suppressed when cells were treated with AR inhibitors or were 
genetically deficient for AR gene expression. These results demonstrated that phar-
macological inhibition or genetic ablation of AR prevents endotoxin-induced 
inflammation in the retina by suppressing RMG activation [40]. An MMP-9 inhibi-
tor, designed to inhibit gelatinase activity, was shown to prevent LPS-induced cell 
migration. By a different route, AR inhibition prevents cell migration by reducing 
MMP-9 protein expression. Therefore, one would expect additive effects of com-
bined treatment with AR and MMP inhibitors on preventing cell migration. A pre-
liminary animal study was extensively performed using CX3CR1 transgenic mice, 
a strain in which monocytes, including RMG, constitutively express green fluores-
cence protein and therefore are easily observed in ocular tissue sections. We 
observed that LPS injection triggers RMG activation and migration into inner and 
outer nuclear layers (Fig. 13.4). Co-injection with Sorbinil alleviated LPS-induced 
RMG activation and migration in the retina (Fig. 13.4) indicating that AR inhibition 
is valid in vivo to prevent ocular inflammation. In inflammation, TNF-α plays a 
robust role in causing apoptosis. We have previously shown that downregulation of 
AR by either pharmacological inhibition or genetic ablation reduces TNF-α secre-
tion in RMG as well as apoptosis in co-cultured RPE cells [40]. Studies on the 
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detection the level of TNF-α secretion and apoptosis in retina should be conducted 
in the future. Since we have AR null mice, genetic effects of AR on LPS-induced 
RMG activation would be a convincing experiment to confirm the role of AR in reti-
nal inflammation. The study of RMG provides a therapeutic target in the retina for 
AR-associated ocular inflammatory diseases such as uveitis and retinopathy. In 
addition, Muller cells are the glial cells that have immune functions in the eye. AR 
was also reported to express in the Muller cells [208, 209]. Several studies showed 
that Muller cells are involved in uveitis, proliferative vitreoretinopathy (PVR) and 
DR [210–212]. Therefore, the effect of AR on Muller cells is an interesting study to 
be conducted in the future.

In the experimental uveitis model or hyperglycemic stress experiment, we treated 
the mice or cell line at the same time while uveitis or hyperglycemic stresses were 
being induced. However, in real practice, treatment is always applied after disease 
occurs. Based on this point, the efficacy of AR inhibitors after stressor such as LPS 
or hyperglycemia needs to be tested. Although we haven’t conducted experiments 
regarding this issue, administration of AR inhibitors after retinal inflammation or 
hyperglycemia would better mimic the treatment paradigm in uveitis or diabetes 
management. It is possible that the effect of post-treatment would be less effective 
than pre-treatment due to some possible irreversible changes that may have occurred 
or the disease may have gone to a more advanced stage that is less susceptible to 
ARI therapy.

Fig. 13.4 AR inhibition prevents RMG activation and migration under LPS exposure. Cx3Cr1 
transgenic mice were injected with LPS (500 ug / mouse) for 24 h with or without Sorbinil co-
injection. Green spots indicate RMG in retinas. White arrows indicate RMG migration into inner 
or outer nuclear layers. Figure adapted by Chang and Petrash from Biochem Biophys Res Commun. 
2016; 473(2):565–571
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We observed that AR inhibitors lowered the abundance of inflammatory cells in 
the vitreous of endotoxin-treated animals. One possibility is that inhibitors reduce 
expression of MMPs and thereby reduce the ability of cells to migrate toward their 
targets. Another possible explanation for reduced immune cell infiltration may 
relate to their ability to pass through the vascular endothelium. Adhesion molecules 
are cell surface receptors that facilitate the binding of immune cells to endothelial 
cells and penetration [213]. These adhesion molecules include intracellular adhe-
sion molecule 1 (ICAM-1) and vascular cell adhesion molecule (VCAM). TNF-α is 
an inflammatory cytokine that mediates pathological endothelial changes which 
cause induction of adhesion molecule expression and vascular leakage at the site of 
inflammation [214]. Ramana and colleagues reported that AR inhibition prevents 
TNF-α-induced increases of ICAM-1 and VCAM in human umbilical vein endothe-
lial cells (HUVECs) as well as decreases monocytes adhesion to these cells [215]. 
This observation may provide another explanation for the effect of AR inhibitors on 
prevention of inflammatory cells infiltration into the eye.

13.4.3  Studies of AR as a Mediator of EMT During 
Development of Posterior Capsule Opacification

Regarding the effect of AR inhibitor on PCO development, we proposed a novel 
idea of AR with a noncatalytic function. We observed AR interacts with Smads in a 
NADPH-dependent pathway but in a manner not requiring enzymatic activity [202]. 
This is the first paper that reports a non-enzymatic function of AR. We also found 
that AR inhibition or genetic ablation prevents TGF-β2-induced Smads activation 
and expression of EMT markers, thus indicating a potential therapeutic strategy for 
prevention of PCO development. However, remaining unknown are the details of 
how AR interacts with Smads and whether there is a distinct interaction site. 
Sequence deletion could be used for understanding the possible site or domain. 
Since AR null mice are available, we can develop PCO in either wildtype or AR null 
mice to confirm the hypothesis in vivo. Sorbinil disruption of AR-Smads interaction 
could be resulted from an AR conformational change or actual blocking of a protein- 
protein interaction site. In this study, we only tested the noncatalytic function of AR 
using Sorbinil. However, whether other ARIs such as BGG also contribute similar 
effect is still unknown. Other ARIs may fail to disrupt AR-Smads interaction due to 
different results of conformational change or blocking site. Therefore, more studies 
on different ARIs on noncatalytic effect need to be conducted to elucidate the 
hypothesis.

Most of the published studies surrounding Sorbinil as an anti-inflammatory 
agent implicitly presume its efficacy derives from inhibition of AR catalytic activity. 
In our PCO study, we showed that a catalytically inactive mutant of AR was able to 
facilitate TGF-β2-induced Smad activation, demonstrating that the ability of 
Sorbinil to downregulate Smad activation was unrelated to its ability to inhibit AR 
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catalysis. Therefore, the effect of Sorbinil can be segregated into its effects on cata-
lytic and noncatalytic functions of AR. Previous studies reported that AR plays a 
catalytic role in reduction of aldehydes during lipid peroxidation pathway following 
NF-κB activation [20, 21] and AR inhibitors such as Sorbinil suppress this pathway 
[23, 25–27]. However, the noncatalytic role of AR in NF-κB activation has not been 
studied to date. Going forward, it would be possible to address this question by 
transfecting AR null cells with wildtype AR (wtAR) or an active site mutant AR 
(mutAR) and treat the cells with or without AR inhibitors (Sorbinil or BGG) under 
LPS exposure. If LPS induces the same level of NF-κB activation in mutAR group 
compared to wtAR group, one could conclude that AR facilitates NF-κB activation 
in a noncatalytic fashion. Similarly, if Sorbinil treatment prevented NF-κB activa-
tion in both groups, it would be consistent with the notion that an AR interaction 
domain overlapping the ARI binding site is important for NF-κB activation in a 
manner similar to our findings with AR and Smad activation.

AR has been studied extensively as a catalyst that results in sorbitol accumula-
tion and contributes to pathogenesis of diabetic complications. Our current pharma-
cological studies confirm the importance of AR through its role as a regulator of 
glucose metabolism through the polyol pathway (catalytic function). In addition, we 
have compelling results which point to AR as a component of the TGF-β signaling 
pathway (noncatalytic function). It will be exciting to see the results of future stud-
ies which aim to further clarify the mechanism linking AR to TGF-β signaling and 
possible therapeutic strategies to prevent TGF-β-associated disease.
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Abstract Excessive consumption of alcohol is a leading cause of lifestyle-induced 
morbidity and mortality worldwide. Although long-term alcohol abuse has been 
shown to be detrimental to the liver, brain and many other organs, our understanding 
of the exact molecular mechanisms by which this occurs is still limited. In tissues, 
ethanol is metabolized to acetaldehyde (mainly by alcohol dehydrogenase and cyto-
chrome p450 2E1) and subsequently to acetic acid by aldehyde dehydrogenases. 
Intracellular generation of free radicals and depletion of the antioxidant glutathi-
one (GSH) are believed to be key steps involved in the cellular pathogenic events 
caused by ethanol. With continued excessive alcohol consumption, further tissue 
damage can result from the production of cellular protein and DNA adducts caused 
by accumulating ethanol-derived aldehydes. Much of our understanding about the 
pathophysiological consequences of ethanol metabolism comes from genetically-
engineered mouse models of ethanol-induced tissue injury. In this review, we pro-
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vide an update on the current understanding of important mouse models in which 
ethanol-metabolizing and GSH-synthesizing enzymes have been manipulated to 
investigate alcohol-induced disease.

Keywords Transgenic · Alcohol · Aldehyde dehydrogenase · Glutathioine · Cancer 
· Tumor · Acetaldehyde

14.1  Introduction

Alcoholic beverages have long been an integral part of our society, and serve many 
functions in medicine and social interactions. Not surprisingly, the effect of alcohol 
on human health and society has been subject to intensive research. Alcohol con-
sumed in moderation (7 glasses/wk) is considered to have only a minor impact on 
health [1]. There is even some evidence that ethanol consumption (depending on the 
nature and speed at which it was consumed) may have health benefits [1]. However, 
excessive consumption of alcohol (or alcohol abuse) can lead to a plethora of 
adverse health outcomes, including injuries, violence, suicide, poisoning, cirrhosis, 
cancer, and possibly hemorrhagic stroke [2, 3]. Because of this, levels of alcohol 
consumption have been established by the NIAAA that represent abuse, i.e., typi-
cally ≥5 alcoholic drinks/day for males and ≥ 4 alcoholic drinks per day for females 
[4]. Alcohol abuse-related deaths total ≈ 3.3 million per year worldwide (equaling 
nearly 6% of total deaths), making it the fourth leading cause of preventable death 
[5]. Alcohol places a significant financial burden on the economy; its estimated 
healthcare costs surpassed $223 billion in 2006 in the United States alone [1]. The 
development of interventions that prevent or treat diseases associated with alcohol 
consumption is dependent upon our understanding of the mechanisms by which 
ethanol induces pathophysiological changes. Consumed alcohol (ethanol) is metab-
olized to acetaldehyde, primarily by alcohol dehydrogenase (ADH) and cytochrome 
p450 2E1 (CYP2E1). Aldehyde dehydrogenases (ALDHs) eliminate acetaldehyde 
by oxidizing it to acetate (Fig. 14.1). Acetaldehyde is toxic in large quantities, and 
clinically causes a flushing syndrome manifesting as facial flushing, nausea, and 
tachycardia [6]. At the cellular level, it leads to increases in reactive oxygen species 
(ROS), depletion of antioxidants (e.g., glutathione), and formation of DNA and 
protein adducts. Acetaldehyde is classified as an Interntional Agency for Research 
on Cancer (IARC) group I carcinogen [7] and has been shown to promote cancer 
[8]. In addition, byproducts of ethanol metabolism are hazardous to human health. 
For example, the accumulation of ROS, DNA adducts and lipid peroxidation prod-
ucts can cause significant tissue damage by interfering with normal tissue functions. 
Genetically-modified mouse models have served as important tools for enhancing 
our understanding of the mechanisms by which alcohol induces tissue injury. While 
significant progress has been made, we still have much to discover regarding how 
specific mechanisms, such as stress, inflammation and cell signaling pathways 
interact and lead to alcohol-related pathologies, such as alcoholic liver disease, pan-
creatitis, cardiovascular disease, and diabetes mellitus, as well as various cancers, 
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including oral, colorectal, liver, pancreatic, aerodigestive, breast, and colon [2–7]. 
We present here an update on the mouse models that hold the potential to lead to a 
deeper understanding of the pathways involved in the metabolism of ethanol and of 
the mechanisms that make cells vulnerable to alcohol-induced damage.

14.2  Animal Models for Alcohol-Induced Cancer

The pathological consequences of alcohol abuse occur over a spectrum. Aside from 
a few pathologies, such as acute steatohepatitis, prolonged alcohol use is usually 
associated with chronic disease. Specific lifestyle and genetic factors can increase 
the likelihood that alcohol consumption leads to disease [9]. Much research has 
been done on ethanol’s contribution to esophageal, head and neck and oral cancers 
[10–12]. Heavy drinkers (i.e., those who have consumed 3 ethanol-containing bev-
erages/day for women and 7 ethanol-containing beverages/day for men, for more 

Fig. 14.1 Description of enzymes that participate in ethanol metabolism. Ethanol is metabolized 
to acetaldehyde by catalase (CAT), alcohol dehydrogenase (ADH) and/or cytochrome P450 2E1 
(CYP2E1). A lack of any of these enzymes will diminish the rate of synthesis of acetaldehyde and 
delay the elimination of ethanol. Acetaldehyde is primarily metabolized to acetic acid by aldehyde 
dehydrogenase 2 (ALDH2), although ALDH1B1 and ALDH1A1 may also contribute. Reductions 
in the activity of these enzymes result in elevated levels of acetaldehyde after ethanol consumption. 
ALDH1B1 and ALDH1A1 also participate in the metabolism of retinaldehyde to retinoic acid. 
Reactive oxygen species (ROS), by-products of ethanol metabolism, are scavenged by glutathione 
(GSH)-dependent mechanisms. Enzymes involved in GSH synthesis, such as glutamate-cysteine 
ligase catalytic (GCLC) and modifier (GCLM) subunits are integral to neutralizing and maintain-
ing homeostatic ROS levels that are generated after ethanol consumption preventing the deleteri-
ous effects of ethanol (adapted from [17])
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for ≥5 days in the past month) appear to be at an increased risk for these cancers; 
they retain this increased risk even after 10 years of abstinence [13]. While a wealth 
of epidemiological data exists that relate alcohol consumption to cancer risk, a lack 
of appropriate experimental models has hindered our progress in understanding the 
molecular mechanisms by which ethanol promotes cancer formation [14]. 
Nevertheless, strong evidence suggests that acetaldehyde and free radical produc-
tion from ethanol metabolism are significant contributors to alcohol-associated 
tumorigenesis [8]. The genetically-modified mouse models of ethanol, acetalde-
hyde and glutathione metabolism (presented herein, Table 14.1) hold the potential 
to facilitate the elucidation of the mechanisms by which ethanol promotes cancer 
development.

14.3  Mouse Models with Genetic Deficiencies  
in Ethanol- Metabolizing Enzymes

Ethanol is first oxidized to acetaldehyde through the enzymatic action of multiple 
isozymes of cytosolic alcohol dehydrogenase (ADH). This occurs primarily in the 
liver. Catalase and cytochrome p450 2E1 (CYP2E1) can also metabolize ethanol to 
acetaldehyde, albeit when ethanol is present in high concentrations, or in cells that 
only poorly express ADH [15]. The products of these reactions (e.g., acealdehyde, 
ROS) are rapidly metabolized to less harmful products. Aldehyde dehydrogenase 
(ALDH) converts acetaldehyde to acetate (which enters into the citric acid cycle). 
Antioxidants, such as glutathione, are produced to detoxify the ROS generated from 
CYP2E1.

14.3.1  Adh1 Global Knockout

As noted, alcohol dehydrogenase (ADH) is primarily responsible for the metabo-
lism of ethanol to acetaldehyde. ADH1 catalyzes unbranched alcohols to their cor-
responding aldehydes. Duester and colleagues generated the Adh1−/− mouse line 
[16]. Through evolution, humans have gained three genes for ADH1, viz. ADH1A, 
ADH1B, and ADH1, while mice retain just one ADH1 gene [11]. Adh1−/− mice are 
phenotypically normal and fertile but have a limited capacity to oxidize ethanol 
and retinol. They have been reviewed in [17]. Upon ethanol feeding, Adh1−/− mice 
exhibit reduced blood ethanol clearance, demonstrating that ADH1 has ethanol 
dehydrogenase activity [18]. These mice have been used successfully in mouse 
model studies of vitamin deficiencies and ethanol-induced tissue damage studies 
to elucidate the mechanism of action of retinoid dehydrogenases and aldehyde 
dehydrogenases.
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Table 14.1 Overview of the phenotypes of the differing genetic strains of mice in the Vasiliou Lab

Strain
Genetic 
background Phenotype Reference

Catalase global 
knockout

C57BL6 Do not express catalase. Ho 2004, Heit 2017
Develop normally, i.e., exhibit no gross 
abnormalities. Brain mitochondria show 
deficiencies in respiration.
Have age-related weight gain when fed 
regular chow.

Cyp2e1 global 
knockout

C57BL6 Do not express CYP2E1. Rindler 2016, 
Abdelmegeed 2013, 
Lu 2015

Viable and develop normally.
Exhibit a lower sensitivity to the 
deleterious hepatic effects of 
acetaminophen.
Are protected against apoptosis and 
steatohepatitis and autophagy in a 
chronic ethanol-fed model.

Cat and Cyp2e1 
global 
double- 
knockout

C57BL6/129 
mixed

Do not express catalase or CYP2E1. Unpublished
Are viable, fertile and show no gross 
abnormalities. We are currently 
investigating alcohol metabolism, 
ethanol-induced sleep times and 
preference in these mice.

Aldh2 global 
knockout

C57BL6 Do not express ALDH2. Isse 2005, Kiyoshi 
2009, Jamal 2016, 
Matsumoto 2014, 
Oyama 2007

Are viable and develop normally.
Exhibit lower ethanol and acetaldehyde 
clearance than wild-type mice.
Ethanol administration causes 
dose-dependent reduction in lifespan, 
body weight, and increased serum ALT 
activity.
More sensitive to the toxic effects of 
inhaled acetaldehyde.

Aldh1b1 global 
knockout

C57BL6J Do not express ALDH1B1. Singh 2015, 
Anastasiou 2016Are viable and develop normally.

Exhibit lower acetaldehyde clearance.
Show glucose intolerance and 
hyperglycemia.

Aldh1a1 global 
knockout

C57BL6 Do not express ALDH1A1. Fan 2003
Are viable and develop normally.
Following retinol treatment, livers 
display reduced retinoic acid synthesis 
and increased serum retinal levels.

Aldh3a1 global 
knockout

C57BL6 Do not express ALDH3A1. Koppaka 2016, Chen 
2015Are viable and develop normally.

Develop cataracts or corneal hazing

(continued)
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14.3.2  Catalase Global Knockout

A small proportion of alcohol consumed is metabolized by catalase. The main bio-
logical role of catalase is the conversion of hydrogen peroxide (an important, harm-
ful ROS metabolite) to water and oxygen. The catalase knockout (Cat−/−) mouse 
strain was developed and characterized by Ho and colleagues [19]. These mice do 
not express catalase and develop normally, i.e., exhibit no gross abnormalities [17]. 
However, brain mitochondria of these animals show deficiencies in respiration. In 
spite of the absence of catalase, these animals do not show increased vulnerability 
to hyperoxia-induced lung injury [19]. Nevertheless, catalase appears to modulate 
ethanol sensitivity in the brain [20, 21]. Administration of 10% ethanol in drinking 
water to Cat−/− mice (considered binge ethanol administration) increases serum ala-
nine aminotransferase activity, plasma homocysteine levels, indicating liver dam-
age, hepatic fat accumulation, and lipid peroxidation. Catalase has a role  in 
protecting the liver against binge ethanol exposure [22]. Through the use of an 

Table 14.1 (continued)

Strain
Genetic 
background Phenotype Reference

Aldh1a1 and 
Aldh3a1 double 
knockout

C57BL6 Do not express ALDH1A1 or 
ALDH3A1.

Koppaka 2016

Are viable and develop normally.
Develop cataracts

GCLC 
conditional 
(Gclcf/f) 
knockout

C57BL6 Do not express GCLC in cre-targeted 
tissues.

Chen 2010,  
Chen 2014

Mice are produced at expected 
mendillian ratios.
Gclch/h mice die from liver failure due to 
lack of proper mitochondrial function
Gclcle/le mice have defects in ocular 
development

GCLM global 
(Gclm−/−) 
knockout

C57BL6 Do not express GCLM. Yang 2002
Viable, fertile and develop normally.
Protected against liver injuries induced 
by a variety of hepatic insults

Gclm and Nrf2 
knockout mice

C57BL6 Do not express GCLM or NRF2. Unpublished
Are viable and reach maturity; however, 
have yet to produce progeny.
May develop hepatitis by 6 months of 
age.

Mice still under 
investigation

ApcF/FCdx2ERT2-Cre/Aldh1b1−/− mutant 
line, Aldh1b1 and Aldh1a1 double 
knockout, Aldh1b1 and Aldh2 double 
knockout, Aldh3a1 C244A knock-in, 
Aldh1a1C303A knock-in mouse strain
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anti-catalase shRNA gene-coding lentiviral vector, acetaldehyde was shown to be 
important in influencing preference for ethanol in rats [23]. Recently, it was revealed 
that in Cat−/− mice fed a high-fat diet, mitochondrial-derived H2O2 is responsible for 
diminished insulin signaling in the heart [24]. Rindler and colleagues identified 
catalase as an important component of the immediate antioxidant response [25]. 
Thus, the Cat−/− mice (alone or in combination with the other knockouts) are a valu-
able tool for examining determinants of ethanol drinking preference as well as 
ethanol- induced tissue damage.

14.3.3  Cyp2e1 Global Knockout

Cytochrome p450 2E1 (CYP2E1) is an ethanol-inducible enzyme with a role in 
hepatic ethanol oxidation. By genetically ablating exon 2 of the Cyp2e1 gene, 
Gonzalez and colleagues developed Cyp2e1−/− mice [26]. These mice do not express 
the CYP2E1 enzyme but develop normally [26]. Interestingly, they show a reduced 
sensitivity to the deleterious hepatic effects of the analgesic acetaminophen [26]. As 
one of the primary xenobiotic/endobiotic-metabolizing cytochrome P450 enzymes, 
CYP2E1 protects against a variety of endogenous or exogenous pathogens. Using 
the Cyp2e1−/− mouse model, CYP2E1 has been shown to play a pivotal role in medi-
ating ethanol-induced hepatotoxicity [27, 28]. Cyp2e1−/− and Cyp2e1 knock-in 
mice have been used to examine the potentiation of ethanol-induced hypoxia. 
Cyp2e1 knock-in mice exhibited the lowest levels of hypoxia and HIF1-α protein 
expression compared to both WT mice and Cyp2e1−/− mice [29]. In humans, up to 
60% of ethanol metabolism can be attributed to CYP2E1 in excessive alcohol con-
sumers; it has a higher Km for alcohol than ADH and its activity is induced by 
chronic alcohol ingestion [30–32]. It has been reported that the regulatory sequences 
in the promoter of CYP2E1 may play a role in the pre-absorptive metabolism of 
alcohol [33]. Cyp2e1−/− mice are protected against apoptosis and steatohepatitis 
[34], and autophagy [35] in a chronic ethanol-fed mouse model. Similarly, ethanol- 
induced fatty liver and oxidant stress are blunted in these mice [36]; this study 
confirmed the important role CYP2E1 plays in ethanol-induced liver toxicities. 
Cyp2e1−/− mice also display longer ethanol-induced sleep time [15], reinforcing the 
relevance of the Cyp2e1−/− mouse line for the study of the CYP2E1 enzyme in etha-
nol toxicities and alcohol-related drinking preference.

14.3.4  Cat and Cyp2e1 Global Double-Knockout

We have recently generated the Cat−/− and Cyp2e1−/− double-knockout mouse line 
by crossing the two single knockout mouse lines (Matsumoto A, Chen Y, Vasiliou V 
et al., manuscript in preparation). No expression of catalase and CYP2E1 proteins 
were detectable in their liver or brain. These mice are viable, fertile and show no 
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gross abnormalities. We are currently investigating alcohol metabolism, ethanol- 
induced sleep times and ethanol preference in these mice.

14.4  Mouse Models with Genetic Deficiencies 
in Acetaldehyde-Metabolizing Enzymes

After the first step of ethanol metabolism to acetaldehyde by ADH, aldehyde dehy-
drogenases (ALDHs) metabolize this toxic intermediate to a less active byproduct, 
acetate. This is normally a rapid step; however, under conditions of excessive etha-
nol consumption, acetaldehyde may accumulate, leading to increased ROS, lipid 
peroxidation, DNA adducts and physical manifestations, such as flushing and 
tachycardia. Multiple ALDH isozymes metabolize ethanol-derived acetaldehyde. 
The majority of acetaldehyde generated from ethanol is metabolized by ALDH2 in 
the mitochondria. Cytosolic ALDH1A1 also metabolizes acetaldehyde, but to a 
lesser extent than ALDH2. The ALDH1B1 isozyme shares 72% amino acid 
sequence homology with ALDH2 and has been shown to have an affinity for both 
acetaldehyde and retinaldehyde [1].

14.4.1  Aldh2 Global Knockout

The Aldh2−/− strain was first developed and characterized by Isse et al. [37, 38]. 
These mice are fertile and display no overt phenotype. Following oral administra-
tion of ethanol, Aldh2−/− mice exhibit higher ethanol and acetaldehyde levels and 
lower acetate levels in the blood, brain, and liver [39–41], and show a dose- 
dependent reduction in lifespan, body weight, and increased serum ALT activity 
[42]. Aldh2−/− mice are also more sensitive to the toxic effects of inhaled acetalde-
hyde [43] and to the genotoxic effects of exposure to the biofuel ethyl tert-butyl 
ether (which generates acetaldehyde in the body) [44]. In addition, beneficial effects 
of low to moderate ethanol consumption, such as increased HDL-cholesterol levels 
and cardioprotection, are not observed in Aldh2−/− mice [45, 46]. Aldh2−/− mice 
show altered liver function under basal conditions [47] and after ethanol exposure 
[48]. Conversely, higher levels of hepatic antioxidant proteins have been found in 
naive Aldh2−/− mice fed standard chow [49]. Bone structure alterations have also 
been observed in naïve Aldh2−/− mice [50] and in those treated with alcohol [51]. 
Cardiac function of Aldh2−/− mice is more adversely affected by exposure to an 
endoplasmic reticulum stress inducer [52] or alcohol [53]. On the other hand, 
Aldh2−/− mice show diminished compensatory cardiac hypertrophy in an aortic liga-
tion model [54]. Hence, there is no consensus on a positive or negative effect of 
ALDH2 absence on cardiac function. A diabetes phenotype induced in Aldh2−/− 
mice exhibit more severe energy metabolism impairments and diastolic dysfunction 
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[55]. Aldh2−/− mice show higher acetaldehyde-DNA adducts in the esophagus [56, 
57], stomach [58, 59] and liver [60, 61] after ethanol administration. In addition, 
mice with a polymorphism in ALDH2 (i.e., ALDH2*2) are more prone to liver 
tumor formation [62]. This suggests that acetaldehyde generation is likely involved 
in the pathogenesis of upper gastrointestinal, gastric and liver cancer. All of these 
findings demonstrate that the value of Aldh2−/− mice as a strain that can be used to 
identify the contribution of ALDH2 to ethanol metabolism and toxicity.

14.4.2  Aldh1b1 Global Knockout

Our laboratory generated the Aldh1b1−/− strain [63]. These mice develop and breed 
normally without any overt phenotype. In agreement with the alcohol hypersensitiv-
ity and aversion associated with the ALDH1B1 polymorphism in Caucasians and 
with the catalytic properties of ALDH1B1 (i.e., the second lowest Km for acetalde-
hyde oxidation) [64–66], Aldh1b1−/− mice exhibit slower acetaldehyde clearance. 
Microarray analysis of a murine whole embryo culture model revealed ALDH1B1 
to be expressed only in the ethanol-treated embryos with open neural tubes [67]. 
These findings suggest a crucial role of ALDH1B1 in ethanol toxicity during embry-
onic development. The Aldh1b1−/− mouse strain represents the first animal model 
that allows the study of ALDH1B1 in ethanol-induced tissue injury. We found that 
ALDH1B1 may promote tumor formation by downregulating the Wnt/β-catenin, 
Notch and PI3K/Akt signaling pathways [63]. ALDH1B1 is expressed in embry-
onic and adult pancreatic progenitor murine cells and has been proposed as a marker 
for these cells. Anastasiou and colleagues [68] showed alterations in beta cell func-
tionality in the pancreas of Aldh1b1−/− mice with decreased glucose sensing, 
stimulus- secretion coupling and secretory granule biogenesis, as well as decreased 
expression of Nrf2 and other genes related to oxidative stress protection. Such 
changes may underlie the glucose intolerance and hyperglycemia that manifests in 
Aldh1b1−/− mice over the long term [69, 70]. Centroacinar-like cells that express 
ALDH1B1 are present in the adult mouse pancreas, and their number increases 
dramatically following experimental pancreatic injury, such as that caused by caeru-
lein or streptozotocin treatment [69]. These cells are also believed to be involved in 
pancreatic cancer initiation [69]. Recently, we showed that ALDH1B1 is strongly 
expressed in human pancreatic adenocarcinoma cells and is crucial for their prolif-
eration [71]. As such, ALDH1B1 may play a central role in pancreatic development, 
regeneration and cancer [69–71]. The Aldh1b1−/− mouse model provides an oppor-
tunity to examine the link between alcohol consumption and diabetes.
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14.4.3  ApcF/FCdx2ERT2–Cre/Aldh1b1–/– Mutant

ALDH1B1 expression is confined to the base of crypts in the normal colon near (or 
in) the stem cells. In addition, it is highly expressed in human colon adenocarcino-
mas [72]. Our laboratory has shown that shRNA-mediated suppression of 
ALDH1B1 in a human colon cancer cell line (SW480) resulted in a decreased num-
ber and size of spheroids in 3D-matrigel culture, and in reduced sizes of xenograft 
tumors in nude mice [63]. We are currently breeding the Aldh1b1−/− and the ApcF/F- 
Cdx2ERT2- Cre mouse lines to generate an ApcF/FCdx2ERT2-cre/Aldh1b1−/− mouse line. 
ApcF/FCdx2ERT2-cre mice carry a CDX2P-NLS Cre recombinase and a loxP-targeted 
Apc allele. These mice develop tumors predominantly in the large intestine (espe-
cially in distal colon and rectum). Tumors in ApcF/FCdx2ERT2-cre mice resemble 
human colorectal cancers in distribution, molecular changes and gender predisposi-
tion, i.e., are more common in males than in females [73]. Due to the finding that 
ALDH1B1 may be involved in tumor formation, crossing Aldh1b1−/− mice with 
ApcF/FCdx2ERT2-cre mice will allow us to more quickly study the role of ALDH1B1 in 
the process of tumor formation induced by ethanol feeding. Accordingly, ApcF/

FCdx2ERT2-Cre/Aldh1b1−/− mutant mice will make an ideal model to study alcohol- 
induced colorectal cancer.

14.4.4  Aldh1a1 Global Knockout

The Aldh1a1−/− strain was developed and originally characterized by Fan and co- 
workers [74]. Aldh1a1−/− mice are viable and develop normally. Following retinol 
treatment, livers from these mice display reduced retinoic acid synthesis and 
increased serum retinal levels [74], supporting a key role for hepatic Aldh1a1 in 
oxidizing retinaldehyde. Interestingly, Aldh1a1−/− mice are protected against diet- 
induced obesity and its comorbidity, and showed insulin resistance, suggesting that 
ALDH1A1 may regulate the metabolic response to a high-fat diet [75]. ALDH1A1 
is highly expressed in the cornea, and its protective role in the eye is illustrated by 
the observation that Aldh1a1−/− mice develop cataracts [76]. Gene expression pro-
filing has shown Aldh1a1 to be highly expressed in mouse hematopoietic stem 
cells [77, 78]. Interestingly, hematopoietic stem cells from Aldh1a1−/− mice exhibit 
increased sensitivity to cyclophosphamide (a chemotherapy agent) and its 
decreased metabolism in the liver [79]. Based upon these results, it has been sug-
gested that ALDH1A1 may be an important regulator of stem cell function. 
ALDH1A1 is also associated with metabolism of catecholamines and is expressed 
in the neurons of the mesencephalon where it converts potentially toxic 
3,4- dihydroxyphenylacetaldehyde (DOPAL) metabolites to a non-toxic metabo-
lite, 3,4-dihydroxyphenylacetic acid (DOPAC). Hence, by altering the metabolism 
of catecholamines, loss of ALDH1A1 expression can potentially increase neuro-
toxicity [80]. In humans, genetic variants of ALDH1A1 that exhibit low enzyme 

S. Marshall et al.



213

activity have been associated with increased alcohol sensitivity [81]. In addition, 
ALDH1 promoter polymorphisms have been proposed to contribute to the observed 
protection against alcohol disorders in Southwest California Indians [82]. In the 
Finnish population, alcohol consumption behavior and alcohol dependence risk are 
influenced by genetic variations in ALDH1A1 [83]. Therefore, the Aldh1a1−/− 
mouse line represents a useful animal model for investigation of the ALDH1A1 
enzyme in ethanol and retinol toxicities.

14.4.5  Aldh1b1 and Aldh1a1 Double Knockout

ALDH1A1 is highly expressed in some commonly-occurring carcinomas and is a 
marker for poor prognosis in humans (see Tomita et al. for review [84]). ALDH1B1 
is expressed in several carcinomas that also express ALDH1A1; in some of these, 
the level of ALDH1B1 is higher than ALDH1A1, especially in colon adenocarci-
noma [72]. An Aldh1b1 and Aldh1a1 double knockout (Aldh1b1−/−/Aldh1a1−/−) is 
being developed to identify the role of retinaldehyde- and acetaldehyde- metaboliz-
ing enzymes in carcinogenesis. This strain will be the product of the crossbreeding 
of Aldh1b1−/− and Aldh1a1−/− mice.

14.4.6  Aldh1b1 and Aldh2 Global Double-Knockout

Beyond the pancreatic impairment that manifests over the long term, the normality 
of the phenotype of Aldh1b1−/− mice could be attributable to compensatory changes 
in the activity of redundant enzymes, such as ALDH2. The Aldh1b1 and Aldh2 
double knockout strain (Aldh1b1−/−/Aldh2−/−) is being developed to allow examina-
tion of the physiological and pathophysiological consequences of complete removal 
of mitochondrial acetaldehyde oxidation activity. This animal model will be the 
product of the breeding of Aldh2−/− and Aldh1b1−/− mice.

14.4.7  Global Aldh3a1 Single and Aldh1a1/Aldh3a1 Double 
Knockouts

Aldh3a1 is a member of the mouse aromatic hydrocarbon receptor (AHR) gene bat-
tery, which encode a highly regulated and coordinated group of drug-metabolizing 
enzymes [85]. The highest expression of Aldh3a1 occurs in the cornea, stomach, 
colon, urinary bladder, and skin of the mouse [86]. Numerous studies suggest a role 
for ALDH3A1 in a variety of homeostatic mechanisms, including cell proliferation, 
differentiation and apoptosis, and in resistance to chemotherapeutics used to treat 
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human breast, hepatocellular or prostate adenocarcinoma [87–89]. ALDH3A1 
appears to mediate these effects through both enzymatic and non-enzymatic proper-
ties. Enzymatically, ALDH3A1 is involved in the detoxification of lipid peroxida-
tion by-products and aromatic aldehydes [90]. Acetaldehyde is not a substrate for 
ALDH3A1, which is seemingly in line with the observation that ALDH3A1 protein 
is undetectable in the liver [91]. However, a recent report showed that pharmaco-
logical activation of ALDH3A1 facilitated acetaldehyde metabolism in vivo, sug-
gesting that ALDH3A1 may contribute to cellular mechanisms that detoxify 
acetaldehyde [92]. A global Aldh3a1 knockout (Aldh3a1−/−) strain was originally 
generated by Nees and co-workers [93] and has been crossbred into B6 background 
[93]. Aldh3a1−/− mice in the mixed background develop cataracts at one month of 
age [76] and B6 Aldh3a1−/− mice display a phenotype of corneal haze [94]. Much 
like the Aldh3a1−/− mice, the Aldh1a1/Aldh3a1 double knockouts (Aldh1a1−/−/
Aldh3a1−/−) mice develop cataracts, but to a more severe extent [76]. As such, the 
majority of the research using these mouse strains has focused on elucidating the 
enzymatic and non-enzymatic functions of ALDH3A1 and ALDH1A1 in the cornea 
[95]. Given the recent experimental evidence, Aldh3a1−/− and Aldh1a1−/−/Aldh3a1−/− 
strains may provide new insights into the interactive actions of these ALDH iso-
zymes in alcohol metabolism and toxicities.

14.4.8  Aldh3a1C244A and Aldh1a1C303A Knock-in Mice

A large body of evidence supports the notion that the accumulation of high concen-
trations of ALDH3A1 and ALDH1A1 proteins in the cornea exert multifaceted 
functions involving both enzymatic and non-enzymatic properties of these proteins 
[91], the latter of which has been proposed to involve direct protein-protein interac-
tions [96]. To elucidate the specific enzymatic and/or non-enzymatic functions of 
ALDH3A1 and ALDH1A1, our group has recently generated knock-in (KI) mouse 
lines for Aldh3a1 and Aldh1a1, respectively. These strains were developed by intro-
ducing a Cys→Ala mutation at the catalytically-essential site of ALDH3A1 (codon 
244) and ALDH1A1 (codon 303) proteins, respectively (unpublished work) and this 
results in the mice expressing enzymatically-inactive forms of these ALDH iso-
zymes. These KI mouse strains may serve as additional models for alcohol research 
and are of particular utility for exploring non-enzymatic (or structural) functions of 
ALDH3A1 and ALDH1A1 in alcohol metabolism and toxicities.

14.5  Mouse Models with Glutathione Deficiency

It is well accepted that the generation of free radicals, such as ROS, during exces-
sive consumption of ethanol depletes glutathione (GSH). It is believed that reduc-
tions in hepatic GSH levels are a key pathogenic event mediating ethanol-induced 
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liver injury [97–99]. Glutathione is a ubiquitous antioxidant and is essential for 
maintaining cellular redox homeostasis by detoxifying reactive xenobiotics and 
scavenging ROS derived from cellular metabolism. Due to its abundance in the 
liver, GSH plays a crucial role in defending against oxidative liver injuries. It is 
synthesized by two sequential reactions, the first and rate-limiting step of which is 
catalyzed by the enzyme glutamate-cysteine ligase (GCL). In higher eukaryotes, 
GCL comprises a catalytic (GCLC) and a modifier (GCLM) subunit. GCLC pos-
sesses all of the catalytic activity of GCL, and GCLM serves to optimize the kinetic 
properties of GCLC. Due to its essential role in GSH biosynthesis, GCL has been 
the principal target for generating animal models with GSH deficiency. 
Comprehensive reviews on GSH metabolism and functions and the GCL enzyme 
can be found elsewhere [100, 101].

14.5.1  Gclc Conditional (Gclcf/f) Knockout

The global gene knockout of Gclc results in embryonic lethality, indicating that 
GSH is indispensable for early mouse development [102]. The Gclc floxed (Gclcf/f) 
strain was developed and originally characterized by Chen and colleagues [103]. 
The pathophysiological role of GSH deficiency in hepatocytes was investigated 
using the hepatocyte-specific Gclc knockout (Gclch/h) mice created by intercrossing 
Gclcf/f and Alb-Cre mice [103]. Gclch/h mice experience almost complete loss of 
hepatic GSH (~5% of normal) and die from acute liver failure when mitochondrial 
failure occurs [103]. Chronic administration of N-acetylcysteine, a treatment that 
promotes only a small increase in liver GSH levels (to 8% of normal), partially 
preserves the mitochondrial GSH pool and function, and allows Gclch/h mice to 
survive to adulthood, albeit with the serious liver pathologies fibrosis and cirrhosis 
[104]. The Gclcf/f mice represent a unique model that can be used to elucidate cell- 
specific functions of GSH in ethanol metabolism and toxicity.

14.5.2  Global Gclm (Gclm–/–) knockout

The Gclm−/− strain was developed and originally characterized by Yang and cowork-
ers [79]. These mice are viable and fertile, despite having only 9–16% of the normal 
GSH levels in liver, lung, pancreas, erythrocytes, and plasma [105]. Except when 
challenged with oxidant stress [106, 107], Gclm−/− mice exhibit no overt phenotype, 
making them a useful model for studying the pathophysiological roles of chronic 
GSH depletion. Interestingly, these mice are protected against liver injuries induced 
by a variety of hepatic insults, including chronic ethanol treatment [101]. In addi-
tion, these mice are completely protected from  ethanol -induced steatosis [108]. 
Thus, Gclm−/− mice represent an animal model wherein the effects of significant 
depletion of GSH on interventions, such as alcohol, can be examined.
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14.5.3  Gclm and Nrf2 Global Double-Knockout

In examining the effects of GSH effects on alcohol metabolism, Nrf2 was shown to 
be upregulated upon ethanol treatment of Gclm−/− mice [108]. In a state of chronic 
GSH depletion, the Keap1-Nrf2-ARE signaling pathway appears necessary for the 
paradoxical resilience to ethanol-induced liver toxicity [109]. Nrf2−/− mice are 
highly sensitive to ethanol toxicity and show increased morbidity and mortality 
upon ethanol treatment [110]. Our group has cross-bred Nrf2−/− mice with the 
Gclm−/− mice and have preliminary data to suggest that the resultant Nrf2−/−/Gclm−/− 
mice develop more serious hepatitis as they age than Gclm−/− or WT mice. 
Nrf2−/−/Gclm−/− mice are viable and reach maturity; however, they do not produce 
progeny. This strain is an excellent model for exploring spontaneous development 
of hepatitis.

14.6  Concluding Remarks

Alcohol’s deleterious effects have been implicated in various diseases, such as ste-
atohepatitis, chronic liver disease, and cancers, such as those involving the mouth, 
liver, pancreas, colorectal region, and breast. Because alcohol metabolism is multi-
faceted, the genetically-engineered mouse models (discussed in this review) repre-
sent valuable tools that allow the further exploration of the mechanisms by which 
ethanol elicits its deleterious pathophysiological effects. Our diverse mouse model 
inventory contains a genetic variation for each step of the ethanol metabolic path-
way, facilitating the way for the creation of novel therapeutic interventions to treat 
diseases associated with alcohol consumption.
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