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Abstract
Clinical information, stored over time, is a potentially rich source of data for 
clinical research. Knowledge discovery in databases (KDD), commonly known 
as data mining, is a process for pattern discovery and predictive modeling in 
large databases. KDD makes extensive use of data mining methods, automated 
processes, and algorithms that enable pattern recognition. Characteristically, 
data mining involves the use of machine learning methods developed in the 
domain of artificial intelligence. These methods have been applied to healthcare 
and biomedical data for a variety of purposes with good success and potential or 
realized clinical translation. Herein, the Fayyad model of knowledge discovery 
in databases is introduced. The steps of the process are described with select 
examples from clinical research informatics. These steps range from initial data 
selection to interpretation and evaluation. Commonly used data mining methods 
are surveyed: artificial neural networks, decision tree induction, support vector 
machines (kernel methods), association rule induction, and k-nearest neighbor. 
Methods for evaluating the models that result from the KDD process are closely 
linked to methods used in diagnostic medicine. These include the use of mea-
sures derived from a confusion matrix and receiver operating characteristic curve 
analysis. Data partitioning and model validation are critical aspects of evalua-
tion. International efforts to develop and refine clinical data repositories are criti-
cally linked to the potential of these methods for developing new knowledge.
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Clinical information, stored over time, is a potentially rich source of data for clinical 
research. Many of the concepts that would be measured in a prospective study are 
already collected in the course of routine healthcare. Based on comparisons of treat-
ment effects, some believe well-designed case-control or cohort studies produce 
results equally rigorous to that of randomized controlled trials, with lower cost and 
with broader applicability [1]. While this potential has not yet been fully realized, 
the rich potential of clinical data repositories for building knowledge is undeniable. 
Minimally, analysis of routinely collected data can aid in hypothesis generation and 
refinement and partially replace expensive prospective data collection.

While smaller samples of data can be extracted for observational studies of clini-
cal phenomena, there is also an opportunity to learn from the much larger, accumu-
lated mass of data. The availability of so many instances of disease states, health 
behaviors, and other clinical phenomena bears an opportunity to find novel patterns 
and relationships. In an exploratory approach, the data itself can be used to fuel 
hypothesis development and subsequent research. Importantly, one can induce exe-
cutable knowledge models directly from clinical data, predictive models that can be 
implemented in computerized decision support systems [2, 3]. However, the statisti-
cal approaches used in cohort and case-control studies of small samples are not 
appropriate for large-scale pattern discovery and predictive modeling, where bias 
can figure more prominently, data can fail to satisfy key assumptions, and p values 
can become misleading.

Knowledge discovery in databases (KDD), also commonly known as data min-
ing, is the process for pattern discovery and predictive modeling in large databases. 
An iterative, exploratory process distinctly differs from traditional statistical analy-
sis in that it involves a great deal of interaction and subjective decision-making by 
the analyst. KDD also makes extensive use of data mining methods, which are auto-
mated processes and algorithms that enable pattern recognition and are characteris-
tically machine learning methods developed in the domain of artificial intelligence. 
These methods have been applied to healthcare and biomedical data for a variety of 
purposes with good success and potential or realized clinical translation.

 The Knowledge Discovery in Databases Process

Casual use of the term data mining to describe everything from routine statistical 
analysis of small data sets to large-scale enterprise data mining projects is perva-
sive. This broad application of the term causes semantic difficulties when attempt-
ing to communicate about KDD-relevant concepts and tools. Though multiple 
models and definitions have been proposed, the terms and definitions used in this 
chapter will be those given by Fayyad and colleagues in their seminal overview of 
data mining and knowledge discovery. The Fayyad model encompasses other lead-
ing models. Fayyad and colleagues define data mining as the use of machine learn-
ing, statistical, and visualization techniques algorithms to enumerate patterns, 
usually in an automated fashion, over a set of data. They clarify that data mining is 
one step in a larger knowledge discovery in databases (KDD) process that includes 
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data mining, along with any necessary data preparation, sampling, transformation, 
and evaluation/model refinement [4]. The encompassing process, the KDD process, 
is iterative and consists of multiple steps, depicted in Fig. 16.1. Data mining is not 
helpful or productive in inducing clinical knowledge models outside of this larger, 
essential process. Unless data mining methods are applied within a process that 
ensures validity, the results may prove invalid, misleading, and poorly integrated 
with current knowledge. As Fig. 16.1 depicts, the steps of KDD are iterative, not 
deterministic. While engaging in KDD, findings at any specific step may warrant a 
return to previous steps. The process is not sequential, as in a classic hypothetical- 
deductive scientific approach.

 Data Selection

KDD projects are typically incepted when there is a clinical or operational decision 
requiring a clear and accurate knowledge model or in order to generate promising 
hypotheses for scientific study. These projects develop around a need to build knowl-
edge or provide some guidance for clinical decision-making. Or lacking a particular 
clinical dilemma, a set of data particularly rich in content and size relevant to a par-
ticular clinical question may present itself. However, the relevant data is usually not 
readily available in a single flat file, ready for analysis. Typically, a data warehouse 
must be queried to return the subset of instances and attributes containing potentially 
relevant information. In some cases, clinical data will be partially warehoused, and 
some data will also need to be obtained from the source information system(s).

Just 20 years ago, data storage was sufficiently expensive, and methods for analy-
sis of large data sets sufficiently immature, that clinical data was not routinely stored 

Selection

Pre-processing

Transformation

Trans-
formed

dataPre-
processed

data
Target
data

Data

Data mining

Interpretation
and

evaluation

Patterns

Knowledge

Fig. 16.1 Fayyad’s knowledge discovery in databases process

16 Nonhypothesis-Driven Research: Data Mining and Knowledge Discovery



344

apart from clinical information systems. However, there has been constant innovation 
and improvement in data storage and processing technology, approximating or 
exceeding that predicted by Moore’s law. The current availability of inexpensive, 
high-capacity hard drives and inexpensive processing power is unprecedented. Data 
warehousing, the long-term storage of data from information systems, is now com-
mon. Transactional data, clinical data, radiological data, and laboratory data are now 
routinely stored in warehouses, structured to better facilitate secondary analysis and 
layered with analytic tools that enable queries and online analytic processing (OLAP).

Since clinical data is collected and structured to facilitate healthcare delivery and 
not necessarily analysis, key concepts may be unrepresented in the data or may be 
coarsely measured. For example, a coded field may indicate the presence or absence 
of pain, rather than a pain score. Proxies, other data attributes that correlate with 
unrepresented concepts, may be identified and included. For example, if a diagnosis 
of insulin-dependent diabetes is not coded, one might use insulin prescription (in 
combination with other attributes found in a set of data) as a proxy for Type I diabe-
tes diagnosis. The use of proxy data and the triangulation of multiple data sources 
are often necessary to optimally represent concepts and identify specific popula-
tions within clinical data repositories [5]. A relevant subset of all available data is 
then extracted for further analysis.

 Preprocessing

It is often said that preprocessing constitutes 90% of the effort in a knowledge discov-
ery project. While the source and basis for that adage is unclear, it does seem accurate. 
Preprocessing is the KDD step that encompasses data cleaning and preparation. The 
values and distribution of values for each attribute must be closely examined, and with 
a large number of attributes, the process is time-consuming. It is sometimes appropriate 
or advantageous to recode values, adjust granularity, ignore infrequently encountered 
values, replace missing values, or to reduce data by representing data in different ways. 
For example, ordinality may be inherent in categorical values of an attribute and enable 
data reduction. An example exists in National Health Interview Survey data, wherein 
type of milk consumed is a categorical attribute. However, the different types of milk 
are characterized by different levels of fat content, and so the categorical values can be 
ordered by % fat content [6]. Each categorical attribute with n possible values consti-
tutes n binary inputs for the knowledge discovery process. By restructuring a categori-
cal attribute like type of milk consumed as an ordinal attribute, the values can be 
represented by a single attribute, and the number of inputs is reduced by n − 1. If 
attributes are duplicative or highly correlated, they are removed.

The distribution of values is also important because highly skewed distributions 
do not behave well mathematically with certain data mining methods. Attributes with 
highly skewed distributions can be adjusted to improve results, typically through 
normalization. The distribution of values is also important so that the investigator(s) 
is familiar with the representation of different concepts in the data set and can deter-
mine whether there are adequate instances for each attribute-value pair.
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 Transformation

Transformation is the process of altering the coded representation of data as input in 
order to reduce dimensionality or the number of rows and columns. Dimensionality 
reduction is often necessary in order to avoid combinatorial explosion or simply to 
improve computational efficiency during knowledge discovery. Combinatorial 
explosion is the vast increase in the number of possible patterns/solutions to a clas-
sification problem that occur with increases in the number of attributes. If a data set 
contains n input attributes, the number of possible combinations of attribute-value 
pairs that could be used to predict an outcome is  2n. For a mere 16 inputs (n =  16), 
the number of possible combinations is   65,536. Every additional input results in 
increased computational demand. For knowledge discovery involving very large 
data sets, it is often necessary to create an alternate representation of the original 
input data, a representation that is computationally more manageable. Methods of 
transformation include wavelet transformation, principal components analysis, and 
automated binning (discretization) of interval attributes.

 Data Mining

Data mining is the actual application of statistical and machine learning methods to 
enumerate patterns in a set of data [4]. It can be approached in several different 
ways, best characterized by the type of learning task specified. Artificial intelligence 
pioneer Marvin Minsky [7] defined learning as “making useful changes in our 
minds.” Data mining methods “learn” to predict values or class membership by 
making useful, incremental model adjustments to best accomplish a task for a set of 
training instances. In unsupervised learning, data mining methods are used to find 
patterns of any kind, without relationship to a particular target output. In supervised 
learning, data mining methods are used to predict the value of an interval or ordinal 
attribute or the class membership of a class attribute (categorical variable).

Examples of unsupervised learning tasks:

• Perform cluster analysis to identify subgroups of patients with similar demo-
graphic characteristics.

• Induce association rules that detect novel relationships among attribute-value 
pairs in a pediatric injury database.

Examples of supervised learning tasks:

• Predict the blood concentration of an anesthetic given the patient’s body weight, 
gender, and amount of anesthetic infused.

• Predict smoking cessation status based on health interview survey data.
• Predict the severity of medical outcome for a poison exposure, based on patient 

and exposure characteristics documented at the time of initial call to a poison 
control center.
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Data mining methods are numerous, and it is important to understand enough 
about each method to use it appropriately. Some methods are highly flexible, capa-
ble of modeling very complex decision boundaries (artificial neural networks, sup-
port vector machines), while other methods are advantageous because they can be 
readily understood (classification and regression trees, association rules). Bayesian 
methods are distinctive in modeling dependencies among data. A comprehensive 
description of data mining methods is beyond the scope of this chapter but can be 
found in any data mining textbook. This chapter includes only a brief description of 
several important methods.

 Artificial Neural Networks

Artificial neural networks constitute one of the oldest and perpetually useful data 
mining methods. The most fundamental form of an artificial neural network, the 
threshold logic unit, was incepted by McCulloch and Pitts at the University of 
Chicago during the 1930s and 1940s as a mathematical representation of frog neu-
ron [8]. Contemporary artificial neural networks are multilayer networks composed 
of processing elements, variations of McCulloch and Pitt’s original TLUs (Fig. 16.2). 
Weighted inputs to each processing element are summed, and if they meet or exceed 
a certain threshold value, they produce an output. The sum of the weighted inputs is 
a probability of class membership, and when deployed, the threshold of artificial 
neural networks can be adjusted for sensitivity or specificity.

Artificial neural networks make incremental adjustments to the weights according 
to feedback of training instances during a procedure for weight adjustment. Weight 
settings are initialized with random values, and the weighted inputs feed a network 
of processing elements, resulting in a probability of class membership and a 
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prediction of class membership for each instance. The predicted class membership is 
then compared to the actual class membership for each instance. The model is incre-
mentally adjusted, in a method specific to one of many possible training algorithms, 
until all instances are correctly classified or until the training algorithm is stopped. 
Because artificial neural networks incrementally adjust until error is minimized, they 
are prone to overtraining, modeling nuances, and noise in the training data set, in 
addition to valid patterns. In order to avoid overtraining, predictions are also incre-
mentally made for a portion of data that has been set aside, not used for training. 
Each successive iteration of weights is used to predict class membership for the hold-
out data. Initially, successive iterations of weight configurations will result in 
decreased error for both the training data and the holdout data. As the artificial neural 
network becomes overtrained, error will increase for the holdout data and continue to 
decrease for the training data. This transition point is also the stopping point and is 
used to determine the optimal weight configuration (Fig. 16.3). Over multiple experi-
ments, artificial neural networks can assume very different weight configurations but 
with varied configurations demonstrating equivalent performance.

Deep learning, [9] a powerful method for knowledge discovery used when very 
large amounts of data and training examples are available, is based upon artificial 
neural networks. In deep learning, the networks may have numerous layers and 
inputs, including multiple representation layers; the representation layers are refined 
in a “pre-training” step. This approach allows for effective, automatic identification 
of features, and so it effectively eliminates the need for more laborious forms of 
feature selection. Deep learning has led to extraordinary breakthroughs in image 
and language processing [10]. Its utility in modeling human behavior and health 
outcomes is not yet well characterized.
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 Decision Trees

Decision trees, methods including classification and regression trees (CART) and an 
almost identical method known as C4.5, developed in parallel by Quinlan and others 
in the early 1980s [11]. These methods are used for supervised learning tasks and 
induce tree-like models that can be used to predict the output values for new cases. 
In this family of decision tree methods, the data is recursively partitioned based on 
attribute values, either nominal values or groupings of numeric values. A criterion, 
usually the information gain ratio of the attributes, is used to determine the order of 
the attributes in the resulting tree. Unless otherwise specified, these methods will 
induce a tree that classifies every instance in the training data set, resulting in an 
overtrained model. However, models can be post-pruned, eliminating leaves and 
nodes that handle very few instances and improving the generalizability of the model.

Decision trees are readily comprehensible and can be used to understand the 
basic structure of a pattern in data. They are sometimes used in the preprocessing 
stage of data mining to enhance data cleaning and feature subset selection. The use 
of decision tree induction methods early in the KDD process can help identify the 
persistence of rogue variables highly correlated with the output that are inappropri-
ate for inclusion. However, ensembles of multiple decision trees, such as those uti-
lized in random forest methods, tend to outperform single decision trees.

 Support Vector Machines

Support vector machine methods were developed by Vapnik and others in the 1970s 
through the 1990s [12–14]. Support vector machines, like artificial neural networks, 
can be used to model highly complex, nonlinear solutions; however, they require the 
adjustment of fewer parameters and are less prone to overtraining. The method 
implements a kernel transformation of the feature space (attributes and their values) 
and then learns a linear solution to the classification problem (or by extension, 
regression) in the transformed feature space. The linear solution is made possible 
because the original feature space has been transformed to a higher-dimensional 
space. Overtraining is avoided through the use of maximal margins, margins that 
parallel the optimal linear solution and that simultaneously minimize error and 
maximize the margin of separation.

 k-Nearest Neighbor

The k-nearest neighbor classification method (a common classification method and 
so-called “hot deck” method in missing value imputation) infers binary class mem-
bership on the basis of known class membership for similar instances. The output is 
inferred based on the majority class value for similar instances. This is a relatively 
simple algorithmic approach to classification. It has been shown robust in the 
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presence of missing values and with large numbers of attributes [15]. It is a case-
based reasoning method that learns pattern in the training data only when it is 
required to classify each new testing instance.

 Association Rules

Association rule induction is a method used for unsupervised learning. This method 
is used to identify if-then relationships among attribute-value pairs of any kind. For 
example, a pattern this algorithm could learn from a data set would be If 
COLOR = red, then FRUIT = apple. Higher-order relationships can also be found 
using this algorithm. For example, If COLOR = red and SKIN = smooth, then 
FRUIT = apple. Relationships among any and all attribute-value combinations will 
be described, regardless of importance. Many spurious relationships will typically 
be described, in addition to meaningful and informative relationships. The analyst 
must set criteria and limits for the order of relationships described, the minimum 
number of instances (evidence), and percentage of instances for which the relation-
ship is true (coverage).

 Bayesian Methods

Bayesian networks (in general) are networks of variables that describe the condi-
tional probability of class membership based on the values of other attributes in the 
data. For example, a Bayesian network to predict the presence or absence of a dis-
ease would model P (disease symptoms). That conditional probability is then used 
to infer class membership for new instances. The structure and probabilities of the 
network can be directly induced from data, and the structure can be specified by 
domain experts with probabilities derived from actual data. These models become 
complex as join probability distributions become necessary to model dependencies 
among input data. Naïve Bayes is the most fundamental form of these methods, in 
which conditional independence between the input variables is assumed (thus the 
descriptor “naïve”).

 Interpretation and Evaluation

For supervised learning tasks, an output is specified, and a predictive model is 
induced. The error of induced models in predicting the output, whether the output is 
a real number or class membership, is used to evaluate the models. These metrics 
can be calculated by applying the model to predict outputs for data where actual 
output is known and comparing the predicted outputs to the actual outputs. For real 
number outputs, the error is the difference between the actual and predicted outputs. 
Error terms, including LMS error and RMSE, are used to quantify error.

16 Nonhypothesis-Driven Research: Data Mining and Knowledge Discovery
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For class variable outputs, error is misclassification. Each prediction constitutes 
a true positive, true negative, false positive, or false negative, and a confusion matrix 
is constructed from which various accuracy metrics are derived. Many data mining 
methods produce models that calculate a probability of class membership, to which 
a threshold is applied. At any given threshold, the confusion matrix may change. A 
higher threshold will result in fewer false positives, while a lower threshold will 
maximize sensitivity. This is advantageous in that the threshold can be adjusted in 
order to optimize these parameters for clinical applications. However, the predictive 
performance of the model cannot be adequately represented by metrics calculated 
with a single threshold confusion matrix. Instead, receiver operating curve (ROC) 
analysis is used.

An ROC curve is derived from the confusion matrix, by plotting the true-positive 
fraction vs. the false-positive fraction. Hanley and McNeil [16] define the index 
known as the area under the ROC curve as the probability that a randomly chosen 
subject of a given class will be predicted to belong to that class versus a randomly 
chosen subject that does not belong to that class [16]. ROC analysis originated in 
Great Britain during World War II, as a method of quantifying the ability of subma-
rine sonar operators to distinguish signal indicating the presence of enemy ships. It 
was later adopted in radiology to quantify diagnostic accuracy. A detailed discus-
sion of ROC analysis, specific to knowledge discovery and data mining in biomedi-
cal informatics, is found in Lasko et al. [17].

In order to obtain unbiased estimates of accuracy, it is necessary to calculate 
accuracy of model performance on a set of data that has not been used in training, 
testing, or model selection. This validation data set must be set aside before data 
mining methods are applied. Validation data sets differ from testing data sets. While 
validation data sets are not used during the data mining step, testing data sets are 
used in an interactive fashion to select model parameters and architecture. When 
cross validation is used, each testing instance also serves as a training instance. 
Even if cross validation is not used, and testing data sets do not contribute training 
instances, testing data sets are certainly used to compare and make choices about 
model parameters during the data mining step of the KDD process, so any estimates 
of accuracy calculated using testing data are biased. It is necessary to calculate 
accuracy using an entirely separate body of data, the validation set. Data partition-
ing, the assignment of available instances to training, testing, and validation data 
sets, is critical to interpretation and evaluation in KDD.

 Applications of Knowledge Discovery and Data Mining 
in Clinical Research

Knowledge discovery and data mining methods have been used in numerous ways 
to generate hypotheses for clinical research.

Knowledge discovery and data mining methods are especially important in 
genomics, a field rich in data but immature in knowledge. In this area of biomedical 
research, exploratory approaches to hypothesis generation are accepted, even 
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necessary, in order to accelerate knowledge development. Data mining methods are 
often used to identify genetic markers of disease and genotype-phenotype associa-
tions for closer examination. For example, microarray analysis employs automated 
machine learning and statistical methods to identify patterns and associations in 
gene expression relevant for genetic epidemiology, pharmacogenomics, and drug 
development [18].

While KDD and data mining methods have demonstrated their ability to discern 
patterns in large, complex data, their usefulness in identifying patterns across bio-
medical, behavioral, social, and clinical domains is tempered by the disparate ways 
in which data is represented across research databases. It is difficult to aggregate 
clinical and genomic data, for instance, from diverse sources because of differences 
in coding and a lack of syntactic and semantic interoperability. Currently, a great 
deal of effort is being devoted to development of systems and infrastructure to facil-
itate sharing and aggregation of data.

 Commonly Encountered Challenges in Data Mining

 Rare Instances

Rare instances pose difficulty for knowledge discovery with data mining methods. 
In order for automated pattern search algorithms to learn differences that distin-
guish rare instances, there must be adequate instances. Also, during the data mining 
step of the KDD process, rare instances must be balanced with no instances for pat-
tern recognition. If only 1 out of every 100 patients in a healthcare system has a fall 
incident, a sample of instances would be composed of 1% fall and 99% no-fall 
patients. Any classification algorithm applied to this data could achieve 99% accu-
racy by universally predicting that patients do not fall. If the sample is altered so that 
it is composed of 50% fall and 50% no-fall patients or if weights are applied, true 
patterns that distinguish fall patients from no-fall patients will be recognized. 
Afterwards, the models can be adjusted to account for the actual prior probability of 
a fall. In cases where inadequate instances exist, rare instances can be replicated, 
weighted, or simulated.

 Sources of Bias

Mitigation of bias is a continual challenge when using clinical data. Many diverse 
sources of bias are possible in secondary analysis of clinical data. Verification bias 
is a type of bias commonly encountered when inducing predictive models using 
diagnostic test results. Because patients are selected for diagnostic testing on the 
basis of their presentation, the available data does not reflect a random sample of 
patients. Instead, it reflects a sample of patients heavily biased toward presence of a 
disease state. Another troublesome source of bias relates to inadequate reference 
standards (gold standards). Machine learning algorithms are trained on sets of 
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instances for which the output is known, the reference standard. However, clinical 
data may not include a coded, sufficiently granular representation of a given disease 
or condition. Even then, the quality of routinely collected clinical data can vary 
dramatically [6]. Diagnoses may also be incorrect, and source data, such as lab and 
radiology results, may require review by experts in order to establish the reference 
standard. If this additional step is necessary to adequately establish the reference 
standard, the time and effort necessary to prepare an adequate sample of data may 
be substantial. For an extended discussion of these and other sources of bias, the 
reader is referred to Pepe [19].

Many concepts in medicine and healthcare are not precisely defined or consis-
tently measured across studies or clinical sites. Changes in information systems 
certainly influence the measurement of concepts and the coding of the data that 
represents those concepts. When selecting a subset of retrospective clinical data for 
analysis, it is wise to consult with institutional information technology personnel 
who are knowledgeable about changes in systems and databases over time. They 
may also be aware of documents and files describing clinical data collected using 
legacy systems, information that could be crucially important.

 Limitations

The limitations in using repositories of clinical data for research are related to data 
availability, data quality, representation and coding of clinical concepts, and avail-
able methods of analysis. Since clinical information systems only contain data 
describing patients served by a particular healthcare organization, clinic, or hospi-
tal, the data represent only the population served by that organization. Any analysis 
of data from a single healthcare organization is, in effect, a convenience sample and 
may not have been drawn from the population of interest.

Data quality can vary widely and is strongly related to the role of data entry in 
workflow. For example, one preliminary study of data describing smoking status 
revealed that the coded fields describing intensity and duration of smoking habit 
were completed by minimally educated medical assistants, instead of nurse practi-
tioners or physicians. Data describing intensity and duration of smoking habit were 
also plagued by absurdly large values. These values may have been entered by med-
ical assistants when the units of measurement enforced by the clinical information 
system did not fit descriptions provided by patients. For example, there are 20 ciga-
rettes in a pack. When documenting the intensity of the smoking habit, a medical 
assistant may have incorrectly entered “10” instead of “0.5” into a field with the unit 
of measurement “packs per day,” not “number of cigarettes per day” [6].

 Infrastructure for Knowledge Discovery

The power of the KDD process, and of data mining methods, to enable large-scale 
knowledge discovery lies in their singular capacity to identify previously unknown 
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patterns, in data sets too large and complex for human pattern recognition. However, 
in order to identify true and complete patterns, all the relevant concepts must be 
represented in the data. Representations of key concepts, whether gene expression, 
environmental exposure, or treatment, often exist. However, they exist in siloed data 
repositories, owned by different scientific groups. Development of systems and 
infrastructure to support sharing and aggregation of scientific data is essential for 
understanding complex multifactorial relationships in biomedicine. The potential of 
KDD for advancing biomedical knowledge will not be fully realized until these 
systems and infrastructure are in place.

One earlier and influential infrastructure project in the United States was caBIG®, 
the cancer biomedical informatics grid. This project addressed barriers posed by 
lack of interoperability and siloed data by promoting fundamental change in the 
way clinical research is conducted. caBIG® collaborators developed open-source 
tools and architecture that enable federated sharing of interoperable data, using an 
object-oriented data model and standard data definitions. In early 2009, the 
University of Edinburgh became the first European university to deploy a caBIG 
application, caTISSUE repository [20]. However, in 2012, caBIG in the United 
States was reassessed.1 The activities of the cancer Biomedical Informatics Grid 
(caBIG) program of the National Cancer Institute (NCI) were integrated into the 
Institute’s new National Cancer Informatics Program (NCIP). NCIP provides many 
biomedical informatics resources for the cancer research community.

Another major approach to facilitating biomedical knowledge discovery has been 
that of the semantic web [21]. The semantic web is an extension of current web-based 
information retrieval that enables navigation and retrieval of resources using seman-
tics (meaning) in addition to syntax (specific words or representations). Development 
of the semantic web is broadly important for information retrieval and use but specifi-
cally valuable for biomedical research because of its ability to make scientific data 
retrievable and usable across disciplines and scientific groups. In a recent method-
ological review, Ruttenberg and colleagues emphasized the importance of scientific 
ontology, standards, and tools development for the semantic web in order for biomedi-
cal research to realize the benefits. All-purpose semantic web schema languages 
RDFS and OWL can be used to manage relationships among data elements in infor-
mation systems used to manage clinical studies. “Middle” ontologies are being devel-
oped to specifically address data relationships in scientific work [21].

Enterprise data warehouses (EDW) are repositories of clinical and operational 
data, populated by source systems but completely separate from those systems. 
EDWs facilitate secondary analysis by integrating data from diverse systems in a 
single location. The data is not used to support patient care or operations. It exists in 
a stand-alone repository optimized for secondary analysis. Typically, a layer of ana-
lytic tools is used to support queries and OLAP (online analytic processing). In 
some healthcare organizations, all clinical data may be warehoused. In other orga-
nizations, data collected by certain systems may be excluded, or certain types of 

1 Kush R. Where is caBIG Going? [Internet]. CDISC Website. 2012. Available from: http://www.
cdisc.org/where-cabig-going?
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data may be excluded. In these cases, data extracted from the EDW may need to be 
aggregated with data stored only in source systems. It is crucially important that 
data warehouses be optimized to facilitate scientific analytics. The way in which the 
data is stored and the development of powerful tools for examining and extracting 
the data directly influence the feasibility and quality of knowledge discovery using 
the data.

Success in aggregating data from diverse sources representing the spectrum of 
factors that affect human health, such as genomics, geography and community char-
acteristics, social and behavioral determinants of health, environmental exposures, 
and healthcare, could enable unprecedented system-level insight into human health, 
using methods of knowledge discovery and data mining. In fact, the National 
Institutes of Health has launched a large initiative, the Child Health Outcomes 
(ECHO) Program, to create the infrastructure to support large cohort studies that 
can accomplish these types of analyses [22]. Pediatric asthma is an example of a 
disease thought to be influenced by multiple factors, including genomics, social and 
behavioral determinants of health, healthcare, and environmental air quality. In 
recent years, the NIH National Institute for Biomedical Imaging and Bioengineering 
funded PRISMS (Pediatric Research Using Integrated Sensor Monitoring Systems), 
a large scientific project aimed at achieving system-level insight in pediatric asthma. 
The PRISMS project is advancing the development of air quality sensors, both per-
sonal and environmental, optimized for use in research. However, it is also devoting 
resources to the development of informatics centers such as University of Utah’s 
Utah PRISMS Center. The Utah PRISMS Center along with a partner informatics 
center located at the University of California, Los Angeles, is developing an infor-
matics platform capable of receiving, processing, and storing the large quantities of 
data generated by sensors and producing data sets for analysis. A data coordinating 
center, currently based at the University of Southern California, then facilitates data 
integration and analysis. This project will enable exposomic research related to 
pediatric asthma, at varied spatiotemporal scale [23, 24].

 Conclusion

Knowledge discovery and data mining methods are important for informatics 
because they link innovations in data management and storage to knowledge devel-
opment. The sheer volume and complexity of modern data stores overwhelms sta-
tistical methods applied in a more traditional fashion. In the past, the inductive 
approach of data mining and knowledge discovery has been criticized by the statis-
tical community as unsound. However, these methods are increasingly recognized 
as necessary and powerful for hypothesis generation, given the current data deluge. 
Hypotheses generated through the use of these methods, and unknown without 
these methods, can then be tested using more traditional statistical approaches. As 
the statistical community increasingly recognizes the advantages of machine learn-
ing methods and engages in knowledge discovery, the line between the statistical 
and machine learning worlds becomes increasingly blurred [25].
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Much criticism is tied to the iterative and interactive nature of the knowledge 
discovery process, which is not consistent with the very sequential scientific method. 
Indeed, it is very important that data mining studies be replicable. In order for stud-
ies to be replicable, it is important that the analyst keep detailed records, particularly 
as data is transformed and sampled. It is also crucial that domain experts be involved 
in decision-making about data selection and feature selection and transformation, as 
well as the iterative evaluation of models. The quality of resultant models is evi-
denced by performance on new data, and models should be validated on unseen data 
whenever possible. Models also must be calibrated for the target population with 
which they are being used. Uncalibrated models will certainly lead to increased 
error [26].

While the data deluge is very real, our technology for optimally managing and 
structuring that data lags behind. In clinical research, data mining and knowledge 
discovery awaits the further development of high-quality clinical data repositories. 
Many data mining application studies in the biomedical literature find that model 
performance is limited by the concepts represented in the available data. For opti-
mal use of these methods, all relevant concepts in a particular area of interest must 
be represented. The old adage “garbage in, garbage out” applies. If a health behav-
ior (i.e., smoking) is believed to be related to biological, social, behavioral, and 
environmental factors, a data set composed of only biological data will not suffice. 
Additionally, much of the data being accumulated in data warehouses is of varied 
quality and is not collected according to the more rigorous standards employed in 
clinical research. As more sophisticated systems for coding and sharing data are 
devised, we find ourselves increasingly positioned to apply data mining and knowl-
edge discovery methods to high-quality data repositories that include most known 
and possibly relevant concepts in a given domain.

In the ever-intensifying data deluge, knowledge discovery methods represent one 
of several pivotal tools that may determine whether human welfare is advanced or 
diminished. It is important for scientists engaged in clinical research to develop 
familiarity with these methods and to understand how they can be leveraged to 
advance scientific knowledge. It is also critical that clinical scientists recognize the 
dependence of these methods upon high-quality data, well-structured clinical data 
repositories, and data sharing initiatives.
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