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Chapter 5
What Processes Underlie the Relation 
Between Spatial Skill and Mathematics?
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Abstract  In this chapter, we review approaches to modeling a connection between 
spatial and mathematical thinking across development. We critically evaluate the 
strengths and weaknesses of factor analyses, meta-analyses, and experimental lit-
eratures. We examine those studies that set out to describe the nature and number of 
spatial and mathematical abilities and specific connections among these abilities, 
especially those that include children as participants. We also find evidence of 
strong spatial-mathematical connections and transfer from spatial interventions to 
mathematical understanding. Finally, we map out the kinds of studies that could 
enhance our understanding of the mechanism by which spatial and mathematical 
processing are connected and the principles by which mathematical outcomes could 
be enhanced through spatial training in educational settings.

Keywords  Process modeling · Cognitive processes · Factor analysis · Spatial 
skills · Spatial cognition · Cognitive development · Mathematical concepts · Latent 
structure · Spatial visualization · Cognitive science · Education · Spatial ability · 
Mathematical ability · Individual differences · Intelligence · Number concepts · 
Common Core State Standards for Mathematics · Exploratory factor analysis · 
Confirmatory factor analysis · Multidimensionality · Meta-analysis

C. Young (*) 
Consortium on School Research, University of Chicago, Chicago, IL, USA 

S. C. Levine 
Departments of Psychology, and Comparative Human Development and Committee on 
Education, University of Chicago, Chicago, IL, USA 

K. S. Mix 
Department of Human Development and Quantitative Methodology, University of Maryland, 
College Park, MD, USA
e-mail: youngcj@uchicago.edu

The original version of this chapter was revised. The correction to this chapter is available at  
https://doi.org/10.1007/978-3-319-98767-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98767-5_5&domain=pdf
https://doi.org/10.1007/978-3-319-98767-5_5
mailto:youngcj@uchicago.edu
https://doi.org/10.1007/978-3-319-98767-5_19


118

�Introduction

Many parents, teachers, and members of the public at large believe that learning 
mathematics is primarily focused on remembering arithmetic facts. This is despite 
a general push from professional mathematics organizations and advisory commit-
tees, like the National Council of Teachers of Mathematics, arguing that mathemat-
ics instruction should incorporate more spatial thinking, with less focus on the 
solving routine number problems and less teaching largely rote skills (e.g., CCSSI, 
2010; NCTM, 2000; NRC, 2005). Teachers’ spatial skills are correlated with their 
motivation and interest in teaching mathematics and students’ spatial skills are cor-
related with their persistence in learning mathematics (Edens & Potter, 2013). 
Moreover, teachers are amenable to teaching spatial skills when they are informed 
about their importance (Krakowski, Ratliff, Gomez, & Levine, 2010). A recent 
meta-analysis shows that spatial skills can be improved via a variety of interven-
tions (e.g., Uttal et al., 2013). Improving spatial skills pays off in the longer term; 
an individual’s spatial skill predicts the likelihood he or she will enter a Science, 
Technology, Engineering and Mathematics (STEM) field beyond both verbal and 
mathematical abilities (Casey, Nuttall, & Pezaris, 2001; Casey, Nuttall, Pezaris, & 
Benbow, 1995; Wai, Lubinski, & Benbow, 2009). Adding spatial skills to our con-
ventionally number-focused mathematics instruction may be a way to increase stu-
dents’ mathematics understanding, and prompting teachers to support students’ 
spatial thinking may be an attainable and effective way to improve mathematics 
achievement.

In this chapter, we describe how spatial thinking relates to mathematical think-
ing. To do so we will need to address several questions along the way. First, what 
are spatial and mathematical abilities, and which skills comprise them? Second, 
what are the strengths and limitations of the factor analytic approach used to 
describe the interconnected structures of spatial skills and of mathematical skills? 
Third, how can cognitive science help us to understand the connections between 
spatial skill and mathematics? Finally, what are the educational implications of 
these connections? In answering these questions, we will illustrate a pathway for 
future research and provide guiding principles for the design of future studies and 
implementation of effective educational practices that leverage the connection 
between spatial skills and mathematics instruction.

�What Are Spatial and Mathematical Abilities and What Skills 
Comprise Them?

We begin by briefly discussing the methods psychologists have used to analyze the 
relations among cognitive abilities. Early psychologists first attempted to define 
“intelligence” by analyzing the “structure of the intellect,” specifically whether cer-
tain cognitive components were irreducible and unique (Spearman, 1927; Thurstone, 
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1938; Guilford, 1967). This work relied on factor analysis, a procedure that identi-
fies “latent” factors that can account for co-variation in many tasks. This method 
provides a simple, quantitative solution to the question we, and earlier theorists, ask: 
what are the fewest and most important skills needed to describe an ability?

In the next section, we describe past efforts to describe and analyze spatial and 
mathematical abilities. There have been multiple attempts to isolate independent 
skills in each ability, as well as meta-analyses that have looked across many studies 
in order to validate the strongest theories about the nature of those skills. 
Understanding the constellation of unique skills and how they relate to one another 
is a critical first step to understanding how spatial thinking may be advantageous 
when thinking of mathematics problems. Specifically, these relations may guide 
hypotheses about the best candidate spatial skills to strengthen in order to improve 
specific aspects of mathematical thinking.

�Skills Making Up the Spatial Domain

Spatial skill is most broadly defined as “how individuals deal with materials pre-
sented in space-whether in one, two or three dimensions, or how individuals orient 
themselves” (Carroll, 1993). More concretely, “spatial ability” has been defined as 
the “ability to generate, retain, retrieve, and transform well-structured visual 
images” (Lohman, 1994). The NSF Spatial Intelligence and Learning Center pro-
posed a 2 × 2 framework that categorized spatial skills by whether the transforma-
tion was dynamic or static and whether it occurs within an object or between 
multiple objects (e.g., a dynamic-within object spatial problem is imagining an 
image turning clockwise and a static-between object spatial problem is reading a 
map, Newcombe & Shipley, 2015). Spatial skills vary widely in terms of the stimuli 
that they operate on and the type of transformation that is performed, leading to the 
widely held belief that there are multiple, distinct spatial processes (Linn & Petersen, 
1985; Voyer, Voyer & Bryden, 1995; Hegarty & Waller, 2005). In many cases, simi-
lar spatial tasks vary in the spatial skills they require (e.g., the dissociation in imag-
ining a different perspective vs. imagining an object rotating, Hegarty & Waller, 
2004) and as abilities change throughout development they take on different charac-
teristics (e.g., sex differences in two-dimensional but not three-dimensional mental 
rotation, Neubauer, Bergner, & Schatz, 2010). In short, spatial ability is a broad 
domain and relating spatial skills to mathematical ones is a complicated task (for a 
more thorough review of a variety of spatial skills and mathematical skills, see Mix 
& Cheng, 2011).

Multiple large-scale factor analyses were conducted over the twentieth century 
with the aim of differentiating specific intelligences from “g” or general intelli-
gence. L.L. Thurstone investigated the issue primarily by factor analyzing a battery 
of cognitive tasks. He described the resulting factors as “primary mental abilities,” 
two of which were “spatial visualization” and “number facility” (Thurstone, 1933; 
Thurstone, 1938). Following his efforts, theorists began to assume that spatial 
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intelligence exists, and attempted to better describe its characteristics, and how spa-
tial skills might further explain variance across a variety of spatial measures.

Of four large-scale factor analyses in the latter part of the twentieth century that 
included a wide range of spatial measures, all four found evidence for a spatial 
visualization factor, generally dealing with imagistic transformations (Carroll, 
1993; Lohman, 1988; McGee, 1979; Michael, Guilford, Fruchter, & Zimmerman, 
1957). This factor consistently included tasks such as paper folding, a task measur-
ing the ability to predict the result of a series of folds to a piece of paper and a hole 
punch, and form board, which measured the ability to pick the shapes needed to 
assemble a larger shape (Carroll, 1993; Lohman, 1988; McGee, 1979; Michael 
et al., 1957). Another task, cube comparisons, which measured the ability to deter-
mine whether a set of drawings of dice-like stimuli are two different views of the 
same object, loaded on the spatial visualization factor in two of the four studies, but 
in earlier studies loaded on separate spatial relations and orientation factor, which 
generally captured tasks that required perceiving the relative positions and angle of 
nearby objects. The other factors that were extracted across these studies were inter-
preted as various forms of specialized perceptual and motoric factors (kinesthetic 
imagery, Michael et al., 1957; closure speed, flexibility of closure, perceptual speed, 
and visual memory, Carroll, 1993). Thus, these initial studies all found a similar 
spatial visualization factor, but differed in terms of other factors  they extracted, 
likely because they included different tasks in the analysis.

More recent factor analytic research has investigated how spatial skills relate to 
other cognitive abilities. For instance, Miyake, Friedman, Rettinger, Shah, and 
Hegarty (2001) examined the connection of spatial skills to working memory, the 
ability to remember and manipulate information, and executive functioning, the 
ability to monitor one’s own behavior and to select among choices to achieve spe-
cific goals. The three spatial skills tested were spatial visualization, which involves 
complex mental manipulations of objects, spatial relations, which involve simpler, 
speeded two-dimensional transformations, and visuospatial perceptual speed, which 
involves quickly perceiving and making judgments about stimuli, such as whether a 
particular shape is present in a complex image. Each of these skills differ in the 
time-scale they act on and the type of transformations they require, rather than being 
defined by content or whether they rely on visual or kinesthetic information. These 
skills not only loaded on separate factors, but each also related differentially to 
working memory and executive function (i.e., both spatial visualization and spatial 
relations were significantly related to executive functioning, while visuospatial per-
ceptual speed alone was significantly related to working memory, Miyake et  al., 
2001).

Evidence that each of the spatial skills have divergent connections to other skills 
provides external validation that they are in fact separate. It is also useful to contex-
tualize the different kinds of spatial skill with respect to their potential roles in 
mathematics problems; some skills seem to be more basic and could have important 
role in imagining the transformations signified by arithmetic operations, while oth-
ers might be more related to choosing an effective, spatially grounded strategy to 
solve problems involving numbers. Thus, developing an accurate understanding of 
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our primary spatial abilities is critical if we hope to improve our understanding and 
use of the pathway from spatial skill to mathematics achievement. In the next sec-
tion, we look at characteristics of mathematical skills, as a way of identifying poten-
tial skill to skill connections between spatial and mathematical thinking.

�Skills Making Up Mathematical Domain

Mathematical ability, like spatial ability, is highly complex and multifaceted; 
humans must learn and use a variety of concepts, from how to differentiate and 
represent approximate magnitudes (Feigenson, Dehaene & Spelke, 2004) to a basic 
understanding of what a “natural number” is and how it relates to fundamental prin-
ciples of arithmetic, such as commutativity (Rips, Bloomfield & Asmuth, 2008). 
Mathematical problems also vary widely in the property of numerical magnitudes 
involved in the problem (e.g., parity, rationality, size) and the operation applied to 
these magnitudes. In addition, even for specific magnitudes and operations, there 
are marked differences in the efficiency of the strategies used to solve these prob-
lems (Siegler, 1999). Further, different numerical skills take on greater importance 
in schooling across development, and in some cases the connection of basic skills to 
applied, mathematical reasoning depends on the exact way a mathematical problem 
is framed (Libertus, Feigenson, & Halberda, 2013; Landy, Brookes, & Smout, 
2011).

The effort to extract primary mental abilities that was applied to spatial abilities 
was also applied to mathematical skills, resulting in a factor that was dubbed “facil-
ity with numbers” (Thurstone, 1938). Follow-up factor analyses carried out on 
purely mathematical measures over various ages during development extracted fac-
tors that seemed to be less-than-pure mathematical factors (e.g., deductive reason-
ing and adaptability to a new task, in a study of tenth grade students understanding 
of algebra, Kline, 1960; abstraction, analysis, application, in a study of elementary 
school students mathematical reasoning, Rusch, 1957). These early results are also 
notable in that many theorists found evidence of a spatial factor in mathematics 
(e.g., Kline, 1960; Werdelin, 1966) or else argued that there was a spatial senso-
rimotor intelligence factor important to mathematical reasoning (Aiken Jr, 1970; 
Coleman, 1960; Skemp, 1961).

Few studies have examined mathematical measures broadly enough to reveal 
separate skills. Yet this examination is vital because mathematics is frequently 
divided by differences in content rather than skills. For instance, the recently 
adopted Common Core State Standards for Mathematics (CCSS-M, 2010) in first 
grade creates a domain called “Counting and Cardinality,” which includes perfor-
mance standards that are nominally connected but that actually require a variety of 
different skills and conceptual understandings. Memorizing and reciting the count 
list is quite different from an active process of “counting on” from a number besides 
one. Further, understanding that the count list is used to determine the exact the 
number of items in a set requires more than knowledge of the count list, and is 
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achieved well after young children can count fluently from 1 to 10 or higher (e.g., 
Sarnecka & Carey, 2008). These three skills are also distinct from the ability to 
identify and interpret numerals, yet these are placed in the same domain (CCSS-M, 
2010).

On the whole, the factor analytic approach has not identified the kinds of distinct 
mathematical skills that have emerged from cognitive science research, which 
makes it difficult to identify skill-to-skill connections between spatial skill and par-
ticular aspects of mathematics. As summarized above, factor analytic studies of 
spatial tasks researchers have found evidence of multiple spatial skills, albeit with 
some inconsistency from study to study. Attempts to identify the structure of math-
ematical skills have been less successful, with some studies revealing factors that 
are related to solving mathematics problems, like deductive reasoning, and others 
revealing factors related to generic cognitive functions, like adaptability to a new 
task (Kline, 1960). In addition, in both the spatial and mathematical domains, 
researchers have sometimes found evidence of only a single, domain-wide factor 
(Mix et al., 2016; Mix et al., 2017). The absence of strong evidence of distinct skills 
and ambiguity of the results highlights the limitations of the factor analytic approach. 
Nonetheless, this approach does have some strengths—in particular providing a 
way to delimit hypotheses about how skills within and across domains relate to each 
other. In the next section, we further explore these strengths and limitations.

�Strengths and Limitations of the Factor Analytic Approach

As we have seen, researchers have relied on factor analysis to define precisely what 
we mean by spatial skills, mathematical skills, and their overlap. This information 
is potentially important for educators as it could guide the development of effective 
approaches to improving mathematics learning, but can we trust the results these 
analyses yield?

The central strength of the factor analytic approach is that it explains the covari-
ance in scores from a large set of correlated tasks, omitting random error and vari-
ance associated with each task, unlike correlational and regression approaches 
(Bollen, 1989). Factor analysis also has a built-in method of rejecting unnecessary 
skills (e.g., the Kaiser rule, only skills that explain significant covariation are kept, 
Kaiser, 2016). It also provides a way to decide among competing theories about the 
nature of factors (comparing models with different skills statistically is implicit in 
any factor analysis; Tomarken & Waller, 2005).

A second strength of factor analysis is that it allows a researcher to choose 
whether the skills can be related to one another not. Specifically, one can choose 
whether skills are allowed to be correlated rather than totally distinct to each other 
(geomin rotation, e.g., in a case where skills are thought to rely on common cogni-
tive resources) or that tasks should only load strongly on one factor and not others 
(varimax rotation, e.g., in a case where skills are thought to be wholly distinct, 
Browne, 2010). While the number and overall strength of each skill will not change, 
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rotation may cause a change in which tasks will be related to each skill. This strength 
requires that the researcher make a principled choice about the domain being con-
sidered because multiple rotation methods will fit the data equally well, and each 
will lead to different interpretations.

A third strength of the approach is the simplicity of checking preliminary explor-
atory factor analysis (EFA) with a confirmatory factor analysis (CFA). While many 
other methods could be used to replicate a finding, the use of an initial EFA, to 
identify a pattern of loadings, followed by CFA, where that specific pattern is tested, 
has a proven track record (e.g., Gerbing & Hamilton, 1996). This well-worked path 
of substantiating claims about the structure of skills is particularly useful given that 
investigating the large number of tasks that measure spatial and numerical reason-
ing is a costly effort, and a variety of different, and at times conflicting, factor struc-
tures emerged from earlier studies that did not use this approach (e.g., three broad 
factors in Michael et al., 1957 versus seven specific factors in Carroll, 1993).

Despite these benefits, the factor analytic approach also has limitations—practi-
cal, statistical, and interpretive. Practically, researchers must select enough tasks to 
cover the domain of interest, but also be selective about those tasks to ensure that 
they are reliable. Oversampling tasks that are closely related is problematic because 
it may cause a spurious skill to be extracted because of the similarities in the tasks, 
or even lead to multiple skills being extracted when absent oversampling there 
would be only one (as noted by Hegarty & Waller, 2005). Conversely, including 
tasks that are multidimensional (e.g., that rely on both spatial and non-spatial rea-
soning), will make loadings more difficult to interpret. Similarly, selecting tasks that 
are strongly affected by the way participants respond, such as those that include 
multiple choice questions, may result in extracting “methods” factors that capture 
variance not as a result of similar underlying processes but rather as a result of using 
the same test format (e.g., Maul, 2013).

Factor analyses are also limited by statistical power and sample considerations. 
Researchers must collect data concurrently on a large number of participants, as 
smaller sample factor analyses on few participants do not always recover stable fac-
tor structure in empirical studies (MacCallum, Widaman, Zhang, & Hong, 1999) or 
true factors in simulation studies (Preacher & MacCallum, 2002). Approximately 
20 observations per task are needed to achieve adequate power (Hair Jr, Anderson, 
Tatham, & Black, 1995). Missing data in any one task requires more complicated 
statistical procedures, like imputation (Little & Rubin, 1989) or relying on the 
remaining data to reveal the factor structure through maximum likelihood estima-
tion (Tucker & Lewis, 1973). Even a stable factor structure may arise from random 
sampling error, which would lead to the same pattern of loadings not being found in 
a second sample (Cliff & Pennell, 1967). In short, factor analysis reveals true skills 
only when a large sample of representative and complete data is collected.

Finally, the interpretation of a factor analysis is a complicated issue. The nature 
of each factor in a solution is decided by the researcher based on the tasks that load 
on that factor as well as based on the tasks that do not load on that factor (Rummel, 
1970). These types of decisions are highly subjective and the researcher’s biases 
may lead them to interpret random patterns as meaningful (Armstrong & Soelberg, 
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1968). The researcher must decide how and why the tasks that load on a skill could 
be logically connected and in most cases the data are correlational and cannot reveal 
a causal relation. In the next section, we discuss how factor analysis can be used in 
concert with a cognitive science informed and process-oriented view of spatial and 
numerical ability to better understand their connection.

�How Can Cognitive Science Help Us to Understand 
the Connections Between Spatial Skill and Mathematics?

An alternative to an approach that relies solely on the measurement of skills through 
factor analysis is a multi-faceted cognitive science approach that focuses on mental 
processes. This approach asks more specific questions using a variety of tools. 
“Which theories explain differences within spatial and mathematical skills?” can be 
addressed through meta-analysis of many studies. “What skills are used in both 
spatial and mathematical problems?” can be answered by a cross-domain factor 
analysis. “What components of a spatial skill allows a child to solve a mathematics 
problem?” can be addressed with process models of skills.

We apply this approach to the present question, first by examining theoretical 
distinctions among characteristics of skills through meta-analytic studies. We will 
then discuss a recent analysis of the connection between spatial and mathematical 
tasks using factor analysis, and the kinds of process models that follow from this 
analysis. Finally, we examine how the components of spatial skills might influence 
mathematical reasoning by training spatial skills and examining the benefits to 
mathematical problem solving.

�Which Theories Explain Differences Among Spatial 
and Mathematical Skills?

�Meta-analysis and Divisions Among Skills

Although factor analytic studies have provided insights into the relations of various 
skills, there are considerations that factor analysis can miss because it is a primarily 
data-driven approach. Cognitive science counters this deficiency by incorporating 
more theory-driven research that takes into account the expertise of content experts 
as well as consistent findings in the field to articulate theories about the nature of 
skills and then makes predictions and tests critical assumptions. These assumptions 
are best tested with as much evidence as possible, which requires aggregating mul-
tiple studies, even some that were not conducted to explicitly test the theory in ques-
tion, in a meta-analysis. With regard to examining the relation of spatial and 
numerical skills, one important way in which this theory testing has taken place is 
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in the form of resolving factor analysis with frequently reported differences associ-
ated with gender (e.g., Casey et al., 1995) and with prevailing theories about the 
structure of each domain.

Gender differences in spatial skills.  Linn and Petersen (1985) tested differ-
ences in three spatial skills that were chosen to test the theory that there were gender 
differences in particular kinds of spatial thinking: spatial perception, in which sub-
jects must determine spatial relations in spite of distractors, mental rotation, the 
ability to quickly rotate two- or three-dimensional objects, and spatial visualization, 
which included multistep, complex spatial transformations, excluding mental rota-
tion. Linn and Petersen’s categorization schema was validated by their analysis of 
age and gender-based differences between categories: while mental rotation showed 
sex differences across the lifespan, spatial perception never did, and spatial visual-
ization showed differences only in samples older than 18 years (Linn & Petersen, 
1985). Similarly, Voyer, Voyer, and Bryden (1995) organized spatial skills in the 
same way and found that both mental rotation and spatial perception showed much 
more frequent, and larger, effect sizes based on gender than did spatial perception. 
These results suggest that there may be gender differences in spatial skills, from 
genetic and/or environmental causes (Levine, Foley, Lourenco, Ehrlich, & Ratliff, 
2016), which may be relevant to the design of effective interventions that address 
gender gaps in mathematics achievement (Casey et al., 1995).

Differentiating spatial skills: Static or dynamic? Within or between 
objects?.  Uttal and colleagues (2016) conducted a theory-driven meta-analysis, 
beginning with a process-oriented account reflected by a typology with orthogonal 
dimensions that had support from behavioral (Newcombe & Shipley, 2015) and 
neurological evidence (e.g., Chatterjee, 2008). Specifically, Uttal et  al. (2016) 
argued that spatial relations between objects are processed differently than process-
ing the spatial properties of the objects themselves, known as the intrinsic-extrinsic 
division. Further, they argued that spatial information that is accessible from sta-
tionary frames is processed differently than spatial information that involves move-
ment and change, the static-dynamic division. This theoretical frame relies on direct 
evidence of dissociations, such as occurs based on whether tasks are large or small 
scale (e.g., Hegarty, Montello, Richardson, Ishikawa, & Lovelace, 2006) or imagin-
ing movement of an object versus changing perspective in relation to a scene con-
taining multiple objects (Hegarty & Waller, 2004; Huttenlocher & Presson, 1973). 
The results of the meta-analysis showed that spatial training leads to unique transfer 
both within each cell of the typology (e.g., from mental to rotation training to other 
dynamic, intrinsic measures), but also transfer between cells (e.g., from mental rota-
tion training to perspective taking), suggesting that the underlying processes in the 
various cells are not entirely distinct.

While the typology’s clear dimensions might be intuitively useful as they are 
clearer than highly interpreted factors, they may miss the mark in terms of empirical 
support. For instance, a line of research regarding the cognitive styles of children 
and adults has provided evidence that the extrinsic-intrinsic dimension is useful for 
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understanding how individuals process spatial information, but also adds to it an 
algorithmic, verbal form of processing spatial information, and does not distinguish 
between dynamic and static imagery (e.g., Kozhevnikov, Kozhevnikov, Yu, & 
Blazhenkova, 2013). A direct test of the typology seems to confirm this, with evi-
dence for the extrinsic/intrinsic continuum but not the static/dynamic one (Mix, 
Hambrick, Satyam, Burgoyne, & Levine, 2018). Similarly, Atit, Shipley, and Tikoff 
(2013) tested the dimensions in the typology by measuring adults on a variety of 
mental transformation tasks, including mental rotation, paper folding, and a “break-
ing” test, and found that an additional orthogonal axis, between rigid and non-rigid 
transformations was needed to explain their results. Thus, there appear to be a vari-
ety of competitors to the original 2 × 2 typology of spatial skill categories, and it 
seems that neither the factor-analytical nor the theory-driven approach has arrived 
at a final solution about the number and types of spatial skills. The addition of this 
theoretical framing to the original data-driven factor analysis provides new ways to 
describe and explain differences spatial reasoning skill, which we can probe using 
both experiments and modeling.

Theoretical approach to mathematical skills.  While the factor analytic 
approach applied to mathematics resulted in multiple skills, different studies contra-
dicted one another regarding the nature of those skills. Several theoretically moti-
vated lines of research have used other methods to determine how understanding of 
mathematical concepts and basic representation of numerical magnitude interact 
with each other, effectively providing more process-oriented dimensions and a more 
detailed hierarchy of basic and composite numerical skills. This work focuses our 
attention on skills that are likely to have the greatest effect on mathematical achieve-
ment over time. We review this literature by highlighting a few illustrative studies 
that will help us to focus our efforts.

Mathematics as concepts vs. procedures.  Researchers have for years debated 
whether teaching students to be fluent in mathematical procedures is helpful for 
improving their understanding of mathematics or if it merely causes children to 
demonstrate rote-learning skills (Schoenfeld, 2014). While some research suggests 
that promoting a conceptual grounding of mathematics is of greatest important 
(e.g., Star, 2005) others argue for a more measured approach, wherein concepts and 
procedures are more mutually supportive (e.g., Baroody, 2003; Rittle-Johnson, 
Siegler, & Alibali, 2001). Recent research suggests that certain mathematical con-
cepts that are often overlooked early on might have an outsized role in later mathe-
matics achievement, e.g., patterning skill in early elementary school predicts 
mathematics achievement later, above and beyond more procedural acts, like count-
ing (Rittle-Johnson, Fyfe, Hofer, & Farran, 2016). The relative importance of teach-
ing concepts versus procedures to mathematical achievement is an important issue 
to raise because certain spatial skills might be more important when learning 
numerical concepts than for learning numerical procedures, and vice versa (e.g., 
certain gestures highlight conceptual groupings for young children’s addition, 
Goldin-Meadow, Cook, & Mitchell, 2009, while undergrads benefit more from 

C. Young et al.



127

abstract than concrete examples when learning modulo Kaminski, Sloutsky, & 
Heckler, 2009).

Thinking symbolically vs. non-symbolically.  Recent debate has also focused 
on how mathematics achievement relates to our basic sense of numerical magni-
tude, frequently indexed by non-symbolic magnitude comparisons and ordering 
(e.g., Barth, Beckmann, & Spelke, 2008; Mazzocco, Feigenson, & Halberda, 2011; 
Mundy & Gilmore, 2009; Rousselle & Noël, 2007). While some argue that this 
number sense is strongly related to our ability to represent number in more complex 
number skills (Mazzocco et al., 2011), recent large-scale studies have also shown 
that our symbolic sense of number is the strongest predictor of mathematics achieve-
ment across the elementary school years (comparing in first grade, ordering in sixth 
grade, Lyons, Price, Vaessen, Blomert, & Ansari, 2014). Meta-analysis confirmed a 
significantly larger relation of our symbolic number sense to our ability to under-
stand more complex mathematics subject areas non-symbolic number sense 
(Schneider et al., 2016) and thus may be a better target for training. However, the 
question of whether spatial skills training can be used to train symbolic and/or non-
symbolic number sense remains open, particularly if certain mathematical skills, 
like understanding fractional magnitude depend on earlier developing non-symbolic 
ratio or proportional reasoning (Matthews, Lewis, & Hubbard, 2016; Möhring, 
Newcombe, & Frick, 2015).

These strands of research together suggest that there are many important divi-
sions in spatial and mathematical skills that have not been detected by the basic 
factor analyses of each domain, but nevertheless could play a role in the relation 
between spatial and mathematical thinking. In the next section, we consider what 
can be learned from studies that examine the connection of spatial and mathematical 
skills. Specifically, we look at recent studies that use factor analysis on both math-
ematical and spatial domains, to determine whether there is evidence for hybrid 
spatial-mathematical skills and/or evidence for specific spatial skills that are closely 
related to general mathematical skills. We then outline how process models of spa-
tial skills can help build out theories about how spatial skills may support mathe-
matical achievement.

�What Skills Are Used in Both Spatial and Mathematical 
Problems?

A number of studies have examined the relation between specific spatial skills and 
mathematical achievement (for a review, see Mix & Cheng, 2012: Visuospatial 
working memory, Raghubar, Barnes, & Hecht, 2010; Mental Rotation, Kyttälä, et al., 
2003; Block Design, Markey, 2009; Patterning, Rittle-Johnson et al., 2016). Some 
other spatial skills, often those less researched, have not shown the same connection 
to mathematics, despite in some cases clear areas where it seems like there might be 
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overlap. For instance, we might expect interpreting maps or solving problems of 
scale (e.g., DeLoache, Uttal, & Pierroutsakos, 1998; Huttenlocher, Newcombe, & 
Vasilyeva, 1999), which both involve symbolic thinking, to be useful for under-
standing numerical symbols. We might also expect that those individuals skilled in 
disembedding shapes from visual scenes might be better able at analyzing charts 
and graphs (Clark III, 1988). However, such connections have not been frequently 
reported.

An obstacle to identifying mechanisms that connect specific mathematical 
and spatial skills is the high degree of interrelation among skills. Even in rare 
cases where multiple measures of spatial skills are included in studies with math-
ematical outcomes, it can be difficult to interpret the result because all spatial 
skills are correlated with mathematical outcomes. This type of evidence fails to 
provide support for the theory that certain specific spatial skills are important for 
mathematics achievement nor how they enable better performance and learning 
of mathematical skills.

�Cross-Domain Factor Analysis of Spatial Reasoning 
and Mathematical Reasoning

In this section, we focus on two questions central to the goal of this chapter: first, 
are the spatial and mathematically domains connected generally or by specific 
skills, and second, is there evidence for shared processes used in both domains? We 
highlight a pair of studies conducted by the authors that addressed these questions 
by using factor analysis to determine whether skills in the spatial and mathematical 
domain load on a single or multiple factors across children’s kindergarten to sixth 
grade education. To our knowledge, there have not been studies that have systemati-
cally examined how spatial and mathematical skills, and their interconnections, 
change over developmental time.

Surveying the field of spatial and mathematical connections.  Mix and col-
leagues conducted a two-stage, exploratory and confirmatory factor analysis of data 
collected over the 2012–2013 and 2013–2014 school years (Mix et al., 2016; Mix 
et al., 2017). The goal of the studies was to examine what latent factors explain covari-
ation in age-appropriate mathematics measures and spatial measures. In each study, 
tasks that had the greatest likelihood of showing spatial-mathematical connections 
based on the existing literature were included, e.g., between spatial visualization and 
complex mathematical relations, between form perception and symbolic reasoning, 
and between spatial scaling and a number line representations (Thompson, Nuerk, 
Moeller, & Kadosh, 2013; Landy & Goldstone, 2010; Slusser, Santiago & Barth, 
2013, respectively). As shown in Fig. 5.1, by design these spatial skills fall into differ-
ent places along the dimensions described by the spatial typology (e.g., Uttal, et al., 
2016), which should allow us to pick up on differential connections between, for 
instance, extrinsic versus intrinsic spatial skills and mathematical skills.
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Selection of measures of spatial and mathematical skill.  Each task, with 
some grade appropriate modifications, was administered to kindergarten, third and 
sixth grade children, which allowed for the possibility of detecting developmental 
shifts in the relation of spatial and mathematical skills. In addition, the data were 
collected from students across a wide variety of school settings to ensure the results 
were generalizable. The specific tasks and their sources are shown in Table 5.1.

Separate but correlated spatial and mathematical factors.  In both studies 
spatial and mathematical processing, as measured by their latent factors, were found 
to be separate but highly correlated from kindergarten through sixth grade, control-
ling for general cognitive ability as measured by a vocabulary test. The processes 
that are accessed when performing a broad range of spatial tasks are highly related 
to those accessed when performing a broad range of mathematical tasks across 
development. It was perhaps surprising that separate, domain-specific factors were 
obtained, given that the covariance among tasks might have been based on one of 
many other shared task characteristics. For instance, factors may have instead 
tracked to the way in which children responded to tasks (e.g., productive vs. recep-
tive), or to form of stimuli (symbolic vs. non-symbolic), or to the cognitive resources 
required (high vs. low executive function), or, as some have previously theorized, 
we might have found no differentiation between spatial and mathematical skills at 
all (e.g., a single factor that all measures loaded on). These results show that spatial 

Fig. 5.1  Measures included in EFA/CFA within Spatial Typology (Uttal et al., 2013)
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Table 5.1  Skills measured in Mix et al. (2016)

Skill
Description, kindergarten and 
third grade–sixth grade variants Reference

Mental rotation Select 2 scrambled letters that 
match a target with mirror 
distractors/
Select 2 block figures, that 
match a target with mirror 
distractors

Neuburger et al. (2011)/Peters et al. 
(1995)

Block design Recreate a complex pattern with, 
multisided, multicolored blocks

Wechsler et al. (2004)

Visual spatial working 
memory

Recall positions of an 
increasingly large array of 
objects

Kaufman and Kaufman (1983)

Visuomotor integration Copy images of geometric forms Beery and Beery (2004)
Perspective taking Select photo matching view 

from other's perspective/
Draw arrow showing the 
direction from object 1 to object 
2 when facing object 3

Frick, Möhring, and Newcombe 
(2014)/Hegarty and Waller (2004); 
Kozhevnikov and Hegarty (2001)

Map reading Identify a location on a model 
using a scale map, sometimes 
from a rotated map/
Identify a location on a map 
from photographs

Liben and Downs (1989)

Place value/rational 
numbers

Compare, order, & interpret 
multidigit numerals,
match numerals to expanded 
equivalents/
Interpret and translate between 
different numerical formats (e.g. 
decimals, tractions)

Novel/Hresko, Schlieve, Herron, 
Swain, and Sherbenou (2003)

Word problems/
problem solving

Answer word problems testing 
age appropriate math concepts/
Answer word problems testing 
age appropriate math concepts

Ginsburg and Baroody (2003)

Calculation Solve arithmetic problems (K: 
Addition &. Subtraction, 3rd: 
Operations through Division)/
Solve arithmetic problems 
(Operations through Division, 
more digits)

Novel/Hresko et al. (2003)

Missing terms/algebra Solve arithmetic problems with 
missing addends, minuends or 
subtrahends/
Solve problems involving 
algebraic concepts and 
procedures

Novel/Hresko et al. (2003)

(continued)
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and mathematical domains are separate, but closely related, and this appears to be 
the case across the entire elementary school age period.

Cross-loading tasks.  We also found that a few specific spatial tasks cross-
loaded on the mathematical factor beyond the general connection, which changed 
over the course of the three grades. In kindergarten, mental rotation was signifi-
cantly related to the mathematical factor, whereas in sixth grade, visuospatial work-
ing memory and visuo-motor integration took on a significant relation. These tasks 
in particular may have special significance in mathematics education at their respec-
tive years, should these relationships prove to be causal when tested in training 
studies. The relative loadings of each task to the general factor in each grade appear 
remarkably stable across development, which suggests that each task continues to 
rely on the same resources and processes over the course of development. The few 
spatial tasks that do show cross-loadings draw at first from dynamic processes 
(mental rotation) and later from more static processes (visuo-spatial working mem-
ory and visuo-motor integration), and in terms of previously identified spatial fac-
tors, from spatial visualization to those more associated with perception and working 
memory.

Open questions.  While these factor analyses provided greater certainty of find-
ing shared processing when we examine spatial or mathematical tasks in the same 
factor analysis, they raised many important questions that remain to be answered. 
One key question is how spatial skills can influence mathematical reasoning, by 
what processes or components? While we did find a few cross-loadings between the 
numeric and spatial factors on spatial and mathematical skills, most spatial skills 
did not cross-load to mathematical ability, except through the general factor rela-

Table 5.1  (continued)

Skill
Description, kindergarten and 
third grade–sixth grade variants Reference

Number line estimation Estimate position of numbers on 
a line(K: (0–100, 3rd: 0–1000)/
Estimate position of numbers on 
a line (0–100,000)

Siegler and Opfer (2003); Booth 
and Siegler (2006)/Thompson and 
Opfer (2010)

Fractions (no K 
equivalent)

Answer comparison and 
calculation problems with 
fractions,
Estimate numbers on a straight 
line with labelled endpoints 
(0–1)

Novel/Hresko et al. (2003)

Proportional reasoning 
(Wave 2 only)

Choose rectangle matching 
target in proportion (Distant 
Foils)/
Choose rectangle matching 
target in proportion (Close Foils)

Boyer and Levine (2012)

Fraction identification 
(added to fractions 
wave 2 only)

Select picture that matches a 
symbolic traction / No additional 
6th grade items

Miura, Okamoto, Vlahovic-Stetic, 
Kim, and Han (1999);
Paik and Mix (2003)
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tion. Still, measures like mental rotation in kindergarten, and visuospatial working 
memory and visuo-motor integration in sixth grade may be the best candidates for 
training, even taking the instability of the cross-loadings into account. By focusing 
our training efforts on those specific measures, we can begin to flesh out more causal 
models that provide a mechanism to the results observed in the correlational factor 
analysis (see Mix, Levine, Cheng, & Stockton, under review). In the next section, 
we focus on process models, which can help to identify what components of spatial 
skills could be important for mathematical reasoning.

�Spatial Processes in Mathematics Achievement

The cross-loadings revealed by the factor analyses indicate that there is a link 
between mental rotation and mathematics in kindergarteners. Other research cor-
roborates this relation as a fruitful connection to explore. For example, Gunderson, 
Ramirez, Levine, and Beilock (2012) showed that performance on a number line 
estimation task mediated the relation between performance on a spatial transforma-
tion task and an approximate calculation task. However, this finding leads to the 
questions about the specific processes involved in each of the tasks (number line 
estimation, spatial transformation, and approximate calculation). Which processes 
explain the connections seen in these studies? For example, spatial transformation 
relies on both being able to rotate objects mentally and to match features, either of 
which might explain its relation to number line estimation, which is itself multifac-
eted, requiring both an ordinal awareness of numerical magnitude and a mapping 
from numerical magnitude to spatial extent. Clarifying the specific relations between 
these measures is important because a well-specified mechanism is key to a well-
designed and effective educational intervention.

There is also reason to move beyond the results of both the factor analyses and 
other previous studies that only analyze summary scores in order to build a theory 
about spatial-mathematical connections. Each of the measures tested in the previ-
ously described factor analyses was comprised of a complicated set of underlying 
processes and may have relied on integrating multiple orthogonal dimensions of 
difficulty (e.g., see Cheng, Mix, Reckase, Levine, & Freer, under review, regarding 
the automatic and deliberate elements of visuospatial working memory). Theorists 
often tend to assume that specific processes elicit a single, specific type of process, 
for instance that a mental rotation task reflects dynamic spatial visualization and not 
static, form perception, but is this actually the case? Moreover, even if it is, which 
of these processes is also important for young children’s mathematical skills? 
Despite this, we know that we should take care not to reify the processes we mea-
sure with tasks. By modeling the underlying processes involved in a task we are 
better able to understand what proficiency on a task actually indicates. Our ultimate 
goal when examining spatial tasks for their underlying processes is to answer basic 
questions asked in developmental research: which spatial processes are causally 
related to the development of mathematical reasoning (Overton & Reese, 1973)?
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Models of cognitive processes break down tasks into interacting components. 
These models have been used to understand performance and growth on a wide 
range of tasks, from remembering lists (Henson, 1998) to analogical reasoning 
(Doumas, Hummel, & Sandhofer, 2008), to simple arithmetic (Ashcraft, 1987). For 
example, Thompson, Ratcliff, and Mckoon (2016) used a diffusion model to com-
pare children’s and adults’ symbolic and non-symbolic number discrimination. The 
model parameters showed differences in how adults and children, beyond simple 
performance differences between groups. That is, the diffusion model indicated that 
the reason adults could respond faster than children was because adults acquired 
enough information to decide whether magnitudes were different more quickly than 
children, regardless of whether those magnitudes were dots or numerals.

Mental rotation.  The question of whether young children connect the dynamic 
transformation process used in a mental rotation to numerical tasks has been asked 
since at least since the 1970s. Marmor (1977) asked whether children who are better 
at mental rotation perform better on number conservation and Davidson (1987) 
asked whether children who are better at rotational displacement problems perform 
better on arithmetic problems. While correlations have been observed between tasks 
requiring mental rotation and a variety of mathematical tasks, it is not clear why this 
is the case. Below, we will use models of mental rotation to describe potential con-
nections to mathematical concepts and procedures. We also review recent studies 
that attempt to determine whether training processes that underlie mental rotation 
performance are beneficial to mathematical reasoning.

A process view of mental rotation. It is useful to first describe the process typi-
cally assumed during mental rotation. Imagining the rotation of an object may feel 
intuitive but it is not so simple to verbally describe how it is done. Even the most 
general definition of the process involved, e.g., “MR involves transforming a repre-
sentation held in visual short-term memory” (Provost & Heathcote, 2015) is not 
wholly uncontroversial, in that the speed, automaticity, and number of transforma-
tions are not specified. Mental rotation was hypothesized as a cognitive construct 
after Shepard and Metzler (1971) reported that the speed with which participants 
could determine if a three-dimensional block stimulus matched a target was a func-
tion of the angular disparity between the presented object and the target. Evidence 
suggests that participants intuitively rotate the object in the direction that requires 
the least amount of angle to match its target (Cooper & Shepard, 1973), which 
shows that participants can quickly identify their target in its typical orientation, and 
that they are not confused by similar objects (Corballis, 1988). Mental rotation tasks 
are often treated as if they reflect a “pure” ability to imagine rotations, but cognitive 
models reveal that mental rotation involves diverse subcomponents, which are rel-
evant to our understanding of why mental rotation is related to mathematics.

Angular disparity. The best-fitting process model of behavioral data suggests 
participants actually engage in multiple, small but variable rotations in succession, 
almost as if they were grasping and turning an object until the participant reaches 
his or her limit of manual flexibility, then repeats (Provost & Heathcote, 2015). The 
analogy to actual manual rotation is supported by neuroimaging work that shows 
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that the pattern of activation when participants enact mental rotation is similar to 
activity when participants actually move objects (Thayer & Johnson, 2006; Zacks, 
2008). Models also suggest participants need increasing evidence as a function of 
the angle of disparity in order to make a decision (i.e., when the stimulus is rotated 
far from the target, participants need to gradually accumulate evidence about the 
stimuli’s angle, causing them to take longer to be certain of their choice, Provost & 
Heathcote, 2015).

Different processes for complex and simple stimuli. There are also important dif-
ferences among mental rotation tasks that reveal different processes at work beyond 
a purely “rotational” process. When comparisons must be made between stimuli 
that are more complex, reaction times are slower than between simple stimuli 
(Bethell-Fox & Shepard, 1988; Shepard & Metzler, 1988). Similarly, studies that 
include MR tasks with distractors find the most frequent incorrect choice in MR 
tasks is the choice of the mirror image of the correct choice rotated to the same 
degree as the correct choice (e.g., Kelley, Lee, & Wiley, 2000). Cognitive models 
account for this with a component that allows for confusability between the target 
and its mirror (e.g., confusing a “d” for a “b”), particularly when the stimuli are 
complex. These results and models suggest that all mental rotation stimuli are not 
equal, and that a separate process of “abstraction” of complex stimuli might need to 
occur within some mental rotation trials (Lovett & Schultheis, 2014). Thus, it is 
possible that abstraction, and not angular disparity, could be the source of connec-
tion between performance on mental rotation tasks and mathematics rather than the 
rotation process per se.

Not mental rotation at all. Participants’ own descriptions of their strategies in 
mental rotation more frequently involve description of matching features of targets 
and choices, rather than mental rotation (Shepard, 1978). It is also clear that for a 
non-trivial number of trials of a mental rotation task, choices are made without 
engaging in mental rotation, particularly for 2D objects for which participants may 
use a fast flipping transformation (Cooper & Shepard, 1973; Kung & Hamm, 2010; 
Searle & Hamm, 2012). This suggests that the overall performance curve reflects a 
mixture of slower, rotational trials, and faster, non-rotational trials, overall resulting 
in the canonical bowed out curve that relates angular disparity to rotation speed 
(Searle & Hamm, 2017). Perhaps it is the quicker type of transformation, or the abil-
ity to pull out relevant feature of a spatial stimuli, which actually relate to mathe-
matics, and not the angle-specific transformation.

Influence of mental rotation on mathematical reasoning.  When we consider 
the form of the mental rotation task that was administered to children in kindergar-
ten through third grade in the factor analytic studies (Mix et al., 2016), a number of 
potential processing models need to be considered. Participants were presented two-
dimensional, scrambled alpha-numeric characters and were instructed to choose 
two of four stimuli that matched a target. The angles of rotation of the choices 
included both small and large angular disparities. Thus, it seems likely that non-
rotational strategies might be available to children who engaged in the task, but also 
that both complexity of stimuli and angle might be critical to the relation to mathe-
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matical skill. Sixth grade children completed a three-dimensional mental rotation 
task with cube stimuli, which are potentially less solvable by non-rotational pro-
cesses, and neither they nor third graders showed any specific cross-loading between 
mental rotation and mathematical ability.

In thinking about how mental rotation related process might more generally 
relate to early numeric processes and tasks, it is useful to examine where these con-
nections have been observed. The majority of studies where mental rotation has 
been connected to mathematics skills were conducted with adults or older chil-
dren—more comparable to the older children in our studies (third and sixth grad-
ers), who performed three-dimensional cube rotations. These other studies reported 
relations of performance on such mental rotation tasks to performance in broad 
areas of mathematics such as geometry (Battista, 1990; Delgado & Prieto, 2004; 
Kyttälä & Lehto, 2008), mental arithmetic (Kyttälä & Lehto, 2008; Reuhkala, 
2001), problem solving (Hegarty & Kozhevnikov, 1999), and even to number sense 
in adults (Thompson et al., 2013). In addition, most of those studies included mul-
tiple other spatial measures and many of them were correlated with mathematical 
and verbal measures. Perhaps these correlations actually represent variation not spe-
cific to mental rotation skill or even solely related to spatial skill, rather reflecting a 
relation of mathematics performance to general intelligence or other domain gen-
eral cognitive skills.

In the few studies that have focused on relations between mental rotation and 
mathematics in younger children or that have attempted to train mental rotation in 
order to improve mathematics, only a few have shown a connection (Kyttälä, Aunio, 
Lehto, Van Luit, & Hautamäki, 2003; Cheng & Mix, 2014; Lowrie, et al., 2017). It 
is interesting to note that the study that found a null relation (Carr, Steiner, Kyser, & 
Biddlecomb, 2008) used a 3-D measure of mental rotation, which models suggest 
would decrease the incidence of non-rotational responding such as the use feature 
matching strategies (Hawes, Moss, Caswell, & Poliszczuk, 2015; Xu & LeFevre, 
2016). However, it is also possible that a 3D mental rotation task is too difficult for 
young children, and therefore suppresses individual differences (Neuburger, Jansen, 
Heil, & Quaiser-Pohl, 2011).

One possible explanation for the kindergarten connection between mental rota-
tion and mathematics is that it reflects the ability to detect form or imagine transfor-
mations that could be useful for early mathematics concepts (e.g., better 
discriminating and encoding of numerical symbols; better imagining of transforma-
tions of quantities involved in arithmetic problems; a more easily visualized “men-
tal number line” representation). This last connection was recently substantiated 
directly; adults who performed better at mental rotation had stronger spatial-numeric 
associations (Thompson et al., 2013). The subcomponents of mental rotation, both 
the recognition of parts of objects (affected by the complexity of those objects, as in 
a computational model of mental rotation, Lovett & Schultheis, 2014) and the 
process of mentally rotating those objects could be differently engaged throughout 
mathematical activities. Some processes involved in mental rotation and other spa-
tial visualization type skills, whether they are the processes used in slow rotations 
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or fast transformations, may be more important than others for mathematical rea-
soning, and this could vary depending on the particular mathematics problems 
being examined and the ages of the participants—a rich set of questions in need of 
further study.

Visuospatial working memory.  Working memory is a construct that was initially 
proposed to address gaps in previous theories of memory (Baddeley & Hitch, 1974). 
Previous theories had suggested that for very recently activated information, short-
term memory provided a place to hold in mind a small amount of information without 
rehearsal, but with considerable loss due to decay of information, before it was con-
solidated in long-term memory (Broadbent, 2018). In contrast, working memory 
models proposed buffer areas that come into play as a sort of way-station between 
perception and processing where information is selectively acted upon. A shared fea-
ture of models of working memory was the central executive function, which essen-
tially coordinates all of the different functions that must be carried out (shifting 
attention, processing, storing, updating, and maintaining information) and some have 
characterized this model as requiring a sort homunculus rather than providing a real 
mechanism by which all of these functions are carried out (Wingfield, 2016).

Modality specificity of visuospatial working memory. Competing theories have 
contested how much of the processing of visuospatial working memory is just re-
presentation of sensory modality information that will become important later in 
processing. They have also questioned when and how information is retained, 
culled, and transformed, in what is generally described as executive function 
(Miyake et al., 2001; Smith & Jonides, 1999). Experimental evidence suggests that 
age has disparate effects on different working memory functions; shifting focus 
shows age-related improvement, whereas the number of errors due to interference 
or substitution of information does not change over development (Carriedo, Corral, 
Montoro, Herrero, & Rucián, 2016; Lendínez, Pelegrina, & Lechuga, 2015). A 
more detailed understanding of how working memory carries out processing of 
complex spatial stimuli is needed, particularly in how it handles uniquely spatial 
information, to fully explain its relation to mathematical processing, and how math-
ematical tasks impose spatial processing demands.

Insights from visuospatial working memory process models. Working memory is 
necessary for basic attentional processes, such as keeping the perceptual representa-
tion of a recent stimulus activated, and localized processing of different types of 
stimuli (e.g., verbal vs spatial, comprising movement and location information, vs 
object, comprising static images; Johnson et  al., 2005). Meta-analysis of brain 
imaging studies showed working memory activation for spatial “where” content 
was handled by specific brain regions, as was verbal content, while object related 
activation was not consistently tied to particular brain regions (Nee et al., 2013), 
suggesting it is handled by many brain regions. Further, areas that are activated for 
spatial content tend to have differentiated functional roles, with one, the superior 
frontal sulcus, activating most strongly to refresh a location in memory rather than 
when perceiving location (Johnson et al., 2005). This suggests that different pro-
cessing may occur more readily for certain spatial content, which further suggests 
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that how one thinks about mathematical problems may depend on its spatial charac-
teristics (e.g., the size of symbols in a mathematics problem affects an individual’s 
answers and errors to that problem, Landy & Goldstone, 2010).

Visusospatial working memory as a measure of discarding irrelevant informa-
tion. Models of working memory have shown that the function of visuospatial 
working memory is more dedicated to active maintenance, particularly removal of 
unneeded information, than to processing novel information (Ecker, Lewandowsky, 
& Oberauer, 2014). Further, while the efficiency and overall strength of memory is 
often measured by the number of items one can keep in mind, the model reveals that 
how many items we remember is unrelated to how quickly we can remove items 
from memory. This conforms with other models that suggest the removal of 
unwanted information, and visuospatial processing more generally, relates directly 
to “fluid intelligence,” not because of shared processing but rather because both 
systems must update continuously to what are described as “top-down processing 
goals” (e.g., inferential reasoning, Shipstead, Harrison, & Engle, 2016). It is possi-
ble that VSWM is related to mathematics because, particularly for mathematics 
problems given to older children, information must be changed and relations among 
numerical variables are fluid (e.g., the identity of “x” in algebra, whether an opera-
tion involving a fraction represents an increase or decrease in magnitude).

Influence of visuospatial working memory on mathematics.  In contrast to 
the specific relation of mental rotation and mathematics in kindergarteners, in sixth 
graders VSWM is specifically related to mathematics. As with mental rotation there 
are some basic implications that process models might make for the results of the 
cross-domain factor analysis. First, one limitation of our visuospatial working 
memory task was that it plausibly involved both spatial storage and processing and 
central executive functions associated with working memory or fluid intelligence. 
Our primary measure of working memory was a measure of the location of stimuli, 
which makes it likely that children were responding with the “where” pathway of 
working memory rather than the “what,” object focused form of working memory. 
The iterative nature of the task, wherein children were required to respond to many 
trials of increasingly populated arrays, also suggests that we were not purely mea-
suring the capacity of children’s memory, and their ability to maintain items in 
memory, but also their ability to “actively forget” information from previous trials.

Among the studies that have connected working memory to specific numerical 
skills, a variety have found general connections to mathematical skills (Reuhkala, 
2001; Szűcs, Devine, Soltesz, Nobes, & Gabriel, 2014; Kyttälä & Lehto, 2008; Bull, 
Espy, & Wiebe, 2008; Casey et  al., 1995; Primi, Ferrão, & Almeida, 2010). 
Fortunately, several of these studies have specifically probed verbal and visuospatial 
memory, as well as some form of executive functioning, and have shown that 
VSWM is the construct at work. Studies that provide an account of which function(s) 
of working memory (e.g., attending, storage capacity, etc.) actually connect to 
numerical skills are rare (but see Dulaney, Vasilyeva, & O'Dwyer, 2015, showing 
storage and attention are related to mathematics achievement). One clue to a func-
tional role to analysis and manipulation of specifically spatial information comes 
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from a recent study; fourth graders who specifically fared poorly on mathematical 
problem-solving had poor spatial working memory, and could not access or envi-
sion spatial relations, but performed normally on visual working memory tasks 
(Passolunghi & Mammarella, 2010). One important venue of future research should 
look at what about mathematical problem solving in fourth through sixth grades 
relies on this VSWM.

Several theorists have posited that visuospatial processes facilitate learning 
numerical skills through specific routes. One suggests that VSWM enables more 
abstract or conceptual thought (e.g., Nath & Szücs, 2014) while another suggests it 
provides a resource that allows for more complex and useful numerical strategies 
(Foley, Vasilyeva, & Laski, 2017). By these accounts the additional storage and 
visuospatial analysis resources work over time to facilitate learning and improved 
performance. One possibility is that these resources allow one to first form mental 
models or to imagine more useful mental models of mathematical problems.

Other longitudinal work examining the relational between several components of 
working memory and mathematics achievement is consistent with our finding of a 
significant relation of VSWM to mathematics in sixth graders but not in kindergar-
teners or third graders. Specifically, Li and Geary (2013) observed no relation 
between any component of working memory and mathematics ability in first grade, 
but that those children who increased the most in their visuospatial memory from 
first to fifth grade scored significantly higher than their peers on measures of numer-
ical operations, while other spatial measures were not significant predictors. These 
results provide longitudinal evidence of the increasing importance of visuospatial 
working memory, mirroring the cross-sectional findings that emerged through con-
firmatory factor analysis (Mix et al., 2017).

�What Are the Educational Implications of Relations 
Between Mathematical and Spatial Skills?

Several studies have investigated whether training spatial skills can improve numer-
acy or, more generally, mathematical achievement. In this section, we review recent 
efforts to include spatial skills in educational settings and interventions to improve 
mathematical outcomes. We then describe general principles to improve mathemati-
cal education by incorporating spatial skill instruction.

�Spatializing the Mathematics Curriculum

As shown by a meta-analysis carried out by Uttal et al. (2013), spatial skills are mal-
leable. Moreover, training a particular spatial skill leads not only to improvement in 
that spatial skill but also to spatial skills more generally. However, training of 
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specific spatial skills in order to improve specific mathematical skills sometimes 
works (e.g., Cheng & Mix, 2014; Nath & Szücs, 2014; Foley et  al., 2017; 
Lowrie, Logan, and Ramful, 2017) and sometimes does not (e.g., Hawes, et  al., 
2013; Simons, et al., 2016; Xu & LeFevre, 2016). Further, teaching-specific spatial 
skills to students may present a tall order in actual educational settings, both because 
these skills are generally outside the bounds of required curricula, and because 
existing research does not support clear prescriptions about when specific kinds of 
spatial training would be beneficial.

A more recent effort to improve mathematics education is a more kitchen sink 
approach, where spatial skills are focused on more generally in their own right. This 
approach has proven successful at attenuating the effects of low spatial reasoning on 
mathematics performance in undergraduate students (Sorby, Casey, Veurink, & 
Dulaney, 2013) as well as providing a core of spatial skills that appear to be gener-
ally advantageous for success in the STEM disciplines (Sorby, 2009; Miller & 
Halpern, 2013). Another effective method of promoting spatial skills quickly and 
early has been to infuse this kind of thinking into play activities like block play 
(Casey et al., 2008). Evidence suggests that children’s experience with basic spatial 
play activities like puzzles and blocks has early connections to performance on 
spatial tasks such as mental rotation (Levine, Ratliff, Huttenlocher, & Cannon, 
2012) and to foundational mathematics concepts and practices (Verdine, Irwin, 
Golinkoff, & Hirsh-Pasek, 2014).

Classroom interventions that incorporate spatial skills training more generally 
have had some success in early education. Students in one school program that was 
provided with spatial training activities over the course of the school year showed 
substantial growth in spatial and mathematical domains (Bruce & Hawes, 2015). 
Providing 9- to 10-year-old students with weekly lessons that emphasized different 
aspects of working memory, including VSWM, was also effective in increasing stu-
dents’ visual perception abilities, span, and addition accuracy (Witt, 2011). A more 
integrated approach to including spatial skills in the classroom focuses on providing 
teachers with formative assessments, feedback, and professional development 
geared at making pre-kindergarten teachers aware of spatial skills and their connec-
tion to mathematical achievement, with promising preliminary results (Young, 
Raudenbush, Fraumeni, & Levine, 2017). We believe that these forms of early inter-
vention, which help to get children’s spatial and numerical skills on track early, are 
especially important to closing later gaps in achievement across STEM areas.

�General Principles for Leveraging Spatial Skills to Improve 
Education

A number of studies provide evidence that spatial training is particularly useful 
when learning new content, as in the case when college students begin visualization 
intensive organic chemistry (Stieff, 2013). This was born out by the results of 
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regressions analyses conducted after the exploratory factor analysis of space and 
mathematics. In all three grade levels the authors studied (K, 3rd, and 6th), the 
results suggested that spatial skills were more closely related to novel mathematical 
content (Mix et al., 2016). In addition, teaching using spatial tools, such as gesture, 
rich spatial language, diagrams, and spatial analogies, (Newcombe, 2010), as well 
as 3D manipulatives (Mix, 2010) has been shown to be helpful to student mathemat-
ics learning (e.g., Richland, Stigler, & Holyoak, 2012; Levine, Goldin-Meadow, 
Carlson & Hemani-Lopez, 2018). Further, those tools appear to be particularly 
effective in helping students understand difficult concepts and procedures when 
they are combined (e.g., spatial language and gesture, Congdon, Novack, Brooks, 
Hemani-Lopez, O’Keefe, Goldin-Meadow, 2017). By providing rich spatial infor-
mation in multiple ways, educators can help students create a lexicon of spatial 
relations, terms, and connections to mathematics, which can be utilized again and 
again as the child encounters novel problems.

�Conclusions

In this chapter, we have provided a review of the literature suggesting that spatial 
skills can be organized into factors and also divided along several meaningful 
dimensions. We argue that these divisions can help us to understand a set of skills 
that widely differ and should motivate further exploration of spatial processing. We 
also believe that more attention should be paid to the way that spatial skills differ in 
their connection to other cognitive abilities and in how malleable and easily trained 
they are. We have shown that children’s numerical and spatial abilities are related at 
the level of shared underlying processes across development, yet remain function-
ally distinct at each time. We have argued for a more fine-grained, process oriented 
view of spatial numeric relations which does not reify cognitive constructs but 
breaks them down to search for mechanism. We argue that combining information 
gained from factor analyses (in this case showing the correlated, overlapping struc-
ture of spatial and mathematical skills) with methods and models from cognitive 
science highlights a way to uncover mechanisms and causal connections between 
basic processes and achievement. We also believe that these process accounts can be 
leveraged for educational gains. The research we have reviewed suggests that spa-
tial skills hold promise as pathways by which numerical skills can be improved and 
mathematics achievement can be maximized.
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