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Chapter 3
Spatial Reasoning: A Critical Problem-
Solving Tool in Children’s Mathematics 
Strategy Tool-Kit

Beth M. Casey and Harriet Fell

Abstract  This chapter reviews the spatial literature from the perspective of poten-
tial mechanisms for widening the range of spatially-based strategies available when 
solving math problems. We propose that teaching generalized spatial skills, discon-
nected from specific math content, may not be the best direction to go in future 
spatial interventions. Students who do not start out with strong spatial skills may 
need to learn to develop different types of “spatial sense” specific to each content 
area. Thus, acquiring and applying spatial strategies may depend in part on develop-
ing spatial sense within these specific math domains. In this chapter, we present an 
overview of evidence for different types of spatial sense that may serve as a prereq-
uisite for effectively applying spatial strategies within these math content areas. The 
chapter also provides examples of math activities designed to help children acquire 
spatial sense and apply spatial strategies when solving diverse types of math 
problems.
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The strong association between spatial skills and mathematics achievement has 
been demonstrated across a wide range of mathematics content areas and ages (Mix 
& Cheng, 2012; Wai, Lubinski, & Benbow, 2009). One dynamic in this association 
may be that students with good spatial skills have access to a unique subset of strate-
gies utilizing spatial sense and spatial reasoning, which enables them to draw upon 
critical tools in their problem-solving tool set that are not available to students with 
poorer spatial skills. We would argue that this advantage is not just due to higher 
fluid reasoning ability, i.e., the ability to draw on novel and effective problem solv-
ing strategies in general, but instead is based on the unique association between 
spatial and mathematical processing (Li & Geary, 2017). We further propose that 
spatial reasoning can be improved through the development of mathematics activi-
ties that facilitate the acquisition of spatial sense and the use of spatially based 
strategies within different content areas. This approach should eventually result in 
greater potential by students to draw on spatially based strategies when approaching 
difficult mathematics problems across a range of mathematics content areas.

In the first part of the chapter, we start by examining the literature on early arith-
metic strategy use in relation to spatial processing. We will present an overview of 
research on the relation between early spatial processing and the early use of higher-
level mental arithmetic strategies as predictors of mathematics performance. We 
briefly address the literature on early spatial skills and mathematics, and then focus 
mainly on the role of spatial skills in acquiring the use of advanced mental strate-
gies, and how use of these spatially based mental strategies is beneficial to greater 
strategy-choice flexibility and mathematics achievement at later points in time.

In the second part of the chapter, we address the question of how students may 
develop the ability to apply spatially based strategies when solving diverse types of 
mathematics problems. We consider the importance of developing “spatial sense” 
within particular mathematics content areas as a prerequisite to applying spatially 
based strategies in these areas. In particular, we briefly review the literature on the 
ability to generate images as a critical component of developing spatial sense within 
the following mathematics content areas: (1) visual representations of magnitude 
with respect to fractions, (2) the ability to translate verbal descriptions into visual 
representations, and (3) the ability to generate and maintain images of 2-d and 3-d 
visualizations in relation to one another when solving mathematics problems. Each 
content area is followed by instructional examples for ways of teaching these differ-
ent types of image generation/visualization activities.

�Part 1: Spatial Processing and Arithmetic Strategy Choices

This section focuses on spatial sense and strategy-choice related to early arithmetic 
skills. The goal is to discuss the link between spatial skills and the use of high-level 
mental arithmetic strategies as a possible mechanism for encouraging young learn-
ers to apply spatially based strategies when approaching arithmetic problems.
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�Relation Between Early Spatial Skills and Mathematics 
Achievement

Early spatial skills are related to the development of mathematical skills via multi-
ple pathways, involving both early number line and calculation skills (Gunderson, 
Ramirez, Beilock, & Levine, 2012; LeFevre et al., 2013). Moss and her associates 
recently implemented an extensive spatial intervention for 4-to-8 year olds, consist-
ing of approximately 46 h of in-class time over the academic year. The geometry 
intervention involved carrying out lessons and activities designed to primarily target 
spatial visualization skills (i.e., forming, maintaining, and manipulating visual-
spatial information) (Hawes, Moss, Caswell, Naqvi, & MacKinnon, 2017; Moss, 
Bruce, Caswell, Flynn, & Hawes, 2016). Results revealed that compared to an 
active control group, children in the spatial intervention demonstrated gains on three 
separate measures of spatial thinking; spatial language, visual-spatial geometrical 
reasoning, and 2-d mental rotation. Interestingly, while there were no group differ-
ences on a non-symbolic magnitude comparison task or a number knowledge test, 
children in the intervention group demonstrated significant gains relative to the con-
trol group on a symbolic magnitude comparison task with a substantial effect size. 
More of this type of intensive spatial intervention research needs to be conducted in 
the future to experimentally examine the effects of early spatial skills on mathemat-
ics achievement.

Spatial reasoning depends in part on good visuospatial memory resources 
(Miyake, Friedman, Rettinger, Shah, & Hegarty, 2001), and visuospatial memory 
pathways have been shown to be critical predictors of numerical skills (Geary, 2011; 
Li & Geary, 2013, 2017; Nath & Szücs, 2014). After controlling for non-verbal IQ 
and verbal memory measures, Nath and Szücs (2014) found that the association 
between Lego block-building skills and numerical achievement in 7-year olds was 
mediated by visuospatial memory. Further, controlling for the central executive, IQ, 
and phonological memory, Li and Geary (2013, 2017) found that growth in visuo-
spatial memory skills from first-to-fifth grade was predictive of later numerical 
operations, but not reading achievement. This visuospatial memory/mathematics 
association extends into high school with visuospatial memory becoming even more 
important to numerical operations across successive grades (Li & Geary, 2017).

In kindergarten and first grade, the association between visuospatial memory and 
mathematics achievement is not as strong as in later grades, with phonological and 
linguistic processing showing a greater relation with numerical development at this 
age (LeFevre et al., 2010; Li & Geary, 2013). This may be in part because the type 
of mathematics assessed at this early age (e.g., number words and numerals) may 
require less spatial processing (Li & Geary, 2013). In fact, Krajewski and Schneider 
(2009) found that in kindergarten, phonological awareness had a stronger impact on 
lower numeric competencies in first grade (i.e., when number words were isolated 
from quantities) than for higher numerical competencies (i.e., when number words 
needed to be linked with quantities). The reverse was true for kindergarten 
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visuospatial memory skills, which predicted the higher level numeric competencies 
at first grade.

Stronger early spatial-mathematics associations are found when more complex 
spatial reasoning processes (such as forming, maintaining, and manipulating visual-
spatial information to solve mathematics problems) are examined in the literature. 
Mix and her colleagues (Mix et al., 2016) found that at kindergarten, mental rotation 
performance was a better predictor of mathematical performance than visuospatial 
memory performance. Studies have shown that as early as preschool, kindergarten, 
and first grade, these more complex spatial reasoning skills (e.g., mental rotation, 
spatial visualization, and block building) relate to numeracy and addition and sub-
traction skills (Casey, Dearing, Dulaney, Heyman, & Springer, 2014; Gunderson 
et al., 2012; Mix et al., 2016; Nath & Szücs, 2014; Verdine et al., 2014).

In summary, there is critical evidence for an association between early use of 
spatial skills and numeracy and addition and subtraction skills. The next step is to 
consider the pathways through which early spatial skills might impact these math-
ematics skills. One such pathway is the application of spatial skills when solving 
addition and subtraction problems by using mental arithmetic strategies that draw 
upon visuospatial memory processes and spatial reasoning.

�Spatial Processing and Use of Higher Level Arithmetic 
Strategies

What are the mechanisms by which spatial reasoning skills might impact early addi-
tion and subtraction? One connection may occur through developing ability to visu-
alize quantity along the mental number line. Researchers found that children’s 
spatial skill (i.e., mental transformation ability) at the beginning of first and second 
grades predicted improvement in linear number line knowledge over the course of 
the school year. Second, in a separate sample, children’s spatial skill at age 5 pre-
dicted their performance on an approximate symbolic calculation task at age 8 and 
this relation was mediated by children’s linear number line knowledge at age 6 
(Gunderson et al., 2012).

Arithmetic strategy choices.  Another mechanism connecting spatial skills to 
early mathematics may be through the strategies that children use to solve addition 
and subtraction problems (Foley, Vasilyeva, & Laski, 2017; Laski et  al., 2013; 
Siegler & Shrager, 1984). There are a variety of strategies that children use to solve 
arithmetic problems. When it comes to solving basic addition and subtraction prob-
lems, children generally choose from among four different strategies: count-all, 
count-on, decomposition, and retrieval (Laski et al., 2013). The count-all strategy 
involves counting out the first number, then counting out the second number, and 
then finally counting the total of the two numbers (e.g., to solve 7 + 5, one would 
first count to 7, then count to 5, and then finally count from 1 to 12). A slightly more 
sophisticated strategy is count-on, which involves counting up from one number the 
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value of the other number (e.g., to solve 7 + 5, one would start from 7 and count 8, 
9, 10, 11, 12).

Higher-level mental strategies involve retrieval and decomposition. The retrieval 
strategy involves recalling the solution purely from memory (Laski et al., 2013). 
The decomposition strategy involves breaking the numbers down into simpler math-
ematics facts that the child knows, and then adding or subtracting the value that 
remains. For example, to solve 7 + 5, one might first add 5 + 5 to get 10 and then 
add the remaining 2 to arrive at 12. A retrieval strategy is typically applied to single 
digit addition and subtraction. When a mathematics fact is not known, use of a 
decomposition strategy is often applied. Decomposition strategies are typically 
applied to addition and subtraction problems involving mixed digit (one single digit 
and one double digit number) or two double digit arithmetic problems.

Decomposition and retrieval are generally considered more advanced strategies 
for a number of reasons. Decomposition and retrieval are more efficient because 
they require less time to arrive at an answer than do concrete counting strategies 
(Ashcraft & Fierman, 1982). In addition, decomposition and retrieval are more 
sophisticated strategies because they avoid use of concrete counting strategies with 
fingers and other manipulatives, and instead depend on mental processes, drawing 
on memory-based mental representations of numerical information that depend on 
prior knowledge of mathematics facts (Geary, 2011).

Furthermore, frequency of use of decomposition and retrieval in solving arithme-
tic problems tends to be linked with higher mathematics performance. For example, 
Carr, Hettinger Steiner, Kyser, and Biddlecomb (2008) examined the association 
between strategy use and mathematics competence as measured by standardized 
test scores in a group of second grade students. They found that uses of higher-level 
cognitive strategies (retrieval and/or decomposition) were stronger predictors of 
mathematics competence above and beyond fluency and accuracy of solving basic 
mathematics facts. Both attempted and accurate uses of higher-level cognitive strat-
egies were the strongest predictors of mathematics competency.

A number of longitudinal investigations of the relation between arithmetic strat-
egy use in early grades and later mathematics achievement suggest that mental 
arithmetic strategies used in first and second grades, such as decomposition and 
retrieval, positively predicted mathematics performance in third, fourth, and fifth 
grades (Carr & Alexeev, 2011; Fennema, Carpenter, Jacobs, Franke, & Levi, 1998; 
Geary, 2011). Carr and Alexeev (2011) followed a group of children longitudinally 
from second grade through fourth grade. They found better mathematics outcomes 
in fourth grade for students who had attempted to use higher-level mental strategies 
previously when solving the basic arithmetic problems in second grade. As mea-
sured by standardized test scores in fourth grade, those children who attempted to 
use and those who correctly used mental strategies in second grade had an increased 
probability that they would meet or exceed the standards set for the mathematics 
competency test in fourth grade. These findings suggest that early preferences for 
these types of mental strategies may have long-term influences on mathematics 
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competency. Studies also show that both retrieval and decomposition strategy-use 
increase with age (Bjorklund & Rosenblum, 2001; Siegler, 1987).

Spatial skills and arithmetic strategy choice.  Both decomposition and 
retrieval depend on retrieving mathematics facts, and may draw on visuospatial 
memory processes and spatial reasoning. In a study of the association between spa-
tial reasoning skills (mental rotation and spatial visualization) and arithmetic strat-
egy preferences, Laski and Casey and associates (Laski et  al., 2013) found that 
among first grade girls, these early spatial reasoning skills were positively related to 
use of both retrieval and decomposition. Furthermore, spatial skills were negatively 
associated with the count-all strategy and unrelated to the count-on strategy. Verbal 
skills were related to decomposition, but not retrieval. In a longitudinal study, 
M. Carr (personal communication, May 19, 2017) also found evidence of an asso-
ciation between 2-d spatial visualization skills and use of the decomposition strat-
egy from first through fourth grades.

When Geary used measures from the Working Memory Test Battery for Children 
as predictors of frequency of decomposition strategy choice in first grade, he found 
a visuospatial measure (the Mazes Memory task) to be the strongest predictor at that 
age (D. C. Geary, personal communication, May 10, 2017). Foley et al. (2017) pro-
pose that visuospatial memory can serve as a mental sketchpad for storing problem 
information. They suggest that this may be particularly important for decomposition 
as, “a child’s capacity for holding information in short-term memory—the storage 
component of working memory (Baddeley & Hitch, 1974; Gathercole, Pickering, 
Ambridge, & Wearing, 2004)—may contribute to his or her selection of decomposi-
tion because it requires maintenance of intermediate solutions and procedures” 
(p. 4). They found that short-term visuospatial memory was positively related to the 
frequency of children’s decomposition use in second and fourth graders, while ver-
bal memory was not. Most importantly, frequency of use of decomposition medi-
ated the relation between visuospatial memory and arithmetic accuracy.

Use of decomposition.  Decomposition differs from other arithmetic strategies 
because it does not just involve implementation of rote procedures, such as counting 
with fingers or recalling mathematics facts, but also requires active problem solving 
and a more complex series of reasoning processes. Thus, using decomposition for 
solving arithmetic problems in the early grades may provide a foundation for later 
mathematics problem solving.

Mix and her associates in a detailed analysis of kindergarten, third, and sixth 
grade spatial-mathematics associations proposed that across grade levels, the 
spatial-mathematics association is stronger when students are encountering novel 
problems and decrease as skills become more automatic or procedural (Mix et al., 
2016). Therefore, at the start, as children begin to learn to apply complex decompo-
sition strategies when trying to solve addition and subtraction problems, the ability 
to draw on spatial processes may be particularly beneficial.

Other longitudinal research has shown that the early use of decomposition arith-
metic strategies (specifically in first grade) is a strong predictor of later numerical 
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mathematics performance when controlling for intelligence, working memory, and 
processing speed (Geary, 2011). In a recent longitudinal study on first grade girls 
(Casey, Pezaris, Fineman, Pollock, Demers, & Dearing, 2015), we compared early 
spatial, verbal, and arithmetic skills as predictors of two types of mathematics rea-
soning skills 4 years later in fifth grade: (1) geometry and measurement problems 
specifically selected and designed to tap spatial mathematics reasoning skills, and 
(2) numerical and algebraic problems specifically selected and designed to tap ana-
lytical logical deductive mathematics reasoning (Casey et al., 2015). As expected, 
we found that early spatial skills predicted later geometry and measurement, but 
were more surprised that first grade spatial skills were also the strongest predictors 
of performance on later numerical and algebra problems in fifth grade. Furthermore, 
the pathway between early spatial skills and later numerical/algebraic mathematics 
reasoning was both a direct and an indirect pathway. Of importance here, is that the 
indirect pathway led from first grade spatial skills to greater frequency of use of first 
grade decomposition strategies and then to mathematics reasoning in fifth grade. 
Thus, it was the early relation between spatial skills and decomposition (not the 
early relation between spatial skills and retrieval) that predicted later numerical and 
algebraic mathematics reasoning in fifth grade (Casey, Lombardi, Pollock, Fineman, 
Pezaris, & Dearing, 2016).

There are a number of studies indicating that early use of decomposition is a 
particularly strong predictor of mathematics performance (Casey et al., 2016; Foley 
et al., 2017; Geary, 2011). In a longitudinal study that followed children from first 
grade through third grade, Fennema et al. (1998) investigated the relation between 
children’s use of the invented algorithm (a form of decomposition) in first and sec-
ond grade and performance on “extension” problems, or more advanced mathemat-
ics problems that involved money and three-digit numbers, in third grade. They 
found that by third grade, the second graders who had preferred the invented algo-
rithm showed better performance than children who had used the standard algo-
rithm. A recent study found that the frequency with which first graders use a 
decomposition strategy predicted their accuracy on complex addition problems and 
mediated cross-national differences in accuracy on these complex arithmetic prob-
lems (Vasilyeva, Laski, & Shen, 2015).

Gender differences.  There is an interesting parallel between the early develop-
ment of spatial skills and the early development of decomposition use in solving 
arithmetic problems—both show evidence of early gender differences. In a recent 
review of the literature on early gender differences in spatial skills, Levine and her 
colleagues (Levine, Foley, Lourenco, Ehrlich, & Ratliff, 2016) found that there is 
evidence for gender differences favoring boys in young children’s mental transforma-
tion and mental rotation skills, but the gender effects are not obtained as consistently 
when compared to older ages, where strong support for gender differences on mental 
rotation and transformation tasks has been found (Casey, 2013; Wai et al., 2009). 
Early evidence for spatial gender differences can vary depending on age and type of 
task, with most of the evidence for gender differences occurring at age 5 or above and 
involving mental rotation of abstract shapes (Casey et  al., 2008; Cronin, 1967; 
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Ehrlich, Levine, & Goldin-Meadow, 2006; Frick, Ferrara, & Newcombe, 2013; 
Levine, Huttenlocher, Taylor, & Langrock, 1999; Tzuriel & Egozi, 2010). Two stud-
ies with kindergarten and first grade students (Casey, Erkut, Ceder, & Mercer Young, 
2008; Tzuriel & Egozi, 2010) have used extended spatial interventions to improve 
spatial skills. Both studies found that the boys in the control groups improved in 
their spatial skills without the intervention, while the girls improved only with the 
intervention.

Starting as early as kindergarten and first grade, evidence for gender differences 
in arithmetic strategy use has been found as well, such that boys are more likely than 
girls to use the more advanced strategies of retrieval and/or decomposition, while 
girls are more likely than boys to use concrete manipulatives such as counters or 
fingers to solve arithmetic problems (Carr & Davis, 2002; Carr & Jessup, 1997; 
Fennema et al., 1998; Shen, Vasilyeva, & Laski, 2016). Carr et al. (2008) reported 
similar findings among a group of second-grade students. They found that boys 
were more likely to use cognitive strategies (e.g., mental count-on, decomposition) 
and girls were more likely to use manipulative strategies. Carr and Davis (2002) 
found that in a free-choice condition, girls were more likely than boys to correctly 
use and attempt to use counting strategies, whereas boys were more likely than girls 
to correctly use retrieval. When children were forced to use retrieval strategies, boys 
were more likely than girls to use them correctly.

The well-documented link between higher-level mental strategies and later 
mathematics performance suggests that girls’ early preference for counting strate-
gies may put them at risk for poorer mathematics achievement in later grades, and 
it may possibly have socio-emotional effects as well. Research suggests that a male 
mathematics gender stereotype is acquired quite early, and that it influences emerg-
ing mathematics self-concepts prior to ages at which there are actual gender differ-
ences in mathematics achievement (Cvencek, Metzoff, & Greenwald, 2011). One 
obvious and observable difference among students in classrooms is whether they 
are still counting on their fingers or doing the addition mentally. Even if boys and 
girls are equally accurate on arithmetic problems, gender differences in use of 
higher level mental strategies may well impact gender-based early mathematics 
self-concepts.

A recent international study found evidence for gender differences in arithmetic 
strategy use in Russian and US first graders, but not in Taiwanese first graders (Shen 
et al., 2016). Among the Taiwanese students, there were no gender differences in 
accuracy, and girls used decomposition more than boys, while both genders outper-
formed students from the other two countries. In both Russia and the US, boys were 
more likely to use decomposition on complex arithmetic problems and have higher 
accuracy scores on the arithmetic problems (Shen et al., 2016). Most importantly, 
the researchers found that it was the preferred use of a decomposition strategy in 
boys that mediated the gender difference in accuracy for the US and Russian stu-
dents. Thus, early gender differences in strategy choice may have long-term impacts 
for later gender differences.
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In conclusion, evidence of early gender differences in both spatial skills and use 
of decomposition for solving arithmetic problems suggest that use of spatially based 
instruction tools (such as the number line) to teach and represent decomposition 
strategy procedures may be a fruitful approach for girls, in particular. This can begin 
the process of introducing spatial visualization and problem solving at the outset of 
arithmetic instruction.

Developmental changes in strategy choice.  A major theoretical analysis of 
developmental changes in arithmetic strategy choice was proposed by Siegler 
(Lemaire & Siegler, 1995). According to Siegler’s Adaptive Strategy Choice Model, 
as children develop over time in strategy use, they: (1) acquire a wider range of strat-
egies, (2) make more adaptive choices among strategies, (3) increase frequencies of 
more efficient strategies, and (4) make more efficient use of pre-existing strategies. 
Siegler argues that strategy preference is as important as whether the children are 
accurate in using a particular strategy. Even low frequency use of higher level strate-
gies is considered beneficial, and may be a positive early indicator of later effective 
flexible strategy-use. According to Siegler (2005) “…children usually choose adap-
tively among strategies; that is, they choose strategies that fit the demands of prob-
lems and circumstances and that yield desirable combinations of speed and accuracy, 
given the strategies and available knowledge that children possess.” (p. 771).

A number of researchers have proposed that a major role of educators is to nur-
ture children’s adaptive strategy choices, i.e., the ability to solve mathematical tasks 
flexibly by being able to draw on a range of strategies when approaching mathemat-
ics problems (Siegler, 2007; Torbeyns, Verschaffel, & Ghesquière, 2005). Children 
with a wider range of strategies available to them may have a later advantage in 
terms of greater flexibility in strategy choice when task demands favor some strate-
gies over others (Siegler, 1987). Thus, at first grade, even those children who have 
low frequency of use of decomposition may eventually show greater adaptive 
choices relating to this strategy later on as they encounter more complex problems.

Summary of Part 1.  We propose here that having strong spatial skills at an 
early age may result in more arithmetic strategy-choice flexibility later on. Children 
with higher spatial skills have greater ability to draw on spatial as well as analytical 
strategies when solving mathematical problems. Researchers studying use of men-
tal imagery in solving word problems have argued that use of advanced spatial skills 
should enable children to more easily generate and manipulate mental representa-
tions (Boonen, van der Schoot, van Wesel, DeVries, & Jolles, 2013; Hegarty & 
Kozhevnikov, 1999; Krawec, 2012). A relation between spatial skills and decompo-
sition is likely to occur because students may use spatial representation as an ele-
ment of their decomposition strategy when solving mathematics problems.

These findings suggest the possibility that the use of a decomposition strategy 
may depend in part upon the application of effective spatial skills and memory pro-
cesses, and that interventions involving use of decomposition strategies may be one 
way of teaching students how to reason mathematically by drawing on their spatial 
reasoning and memory abilities. Clearly, this needs to be tested empirically through 
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intervention research, but the present review suggests a possible direction for future 
studies to examine the benefits of using spatially based mathematics strategies at an 
early age.

�Part 2: Development of Visualization Strategies 
Across Mathematics Content Areas

Before students can apply spatially based strategies to mathematics problems they 
need to first acquire sufficient spatial sense in relation to a wide range of mathemat-
ics content areas in order to be able to draw on their spatial problem-solving skills. 
Image generation/visualization is an important component of spatial sense. The 
concept of spatial sense is linked most frequently to geometry problem solving 
(NCTM, 2000) involving the ability to: spatially visualize and represent geometri-
cal relations, hold images in spatial working memory, and mentally transform geo-
metric shapes. Measurement sense means that students have a conceptual 
understanding of the processes underlying measurement procedures (Joram, 2003; 
Shaw & Pucket-Cliatt, 1989). For example, in terms of measurement sense, Battista 
(2003) describes the underlying processes in gaining competence in measuring area 
and volume as understanding how to enumerate arrays of squares and cubes. He 
identifies two mental processes essential to meaningful structuring of arrays: (1) 
forming and using mental models and (2) spatial structuring. Thus, he proposes that 
effective measurement performance involves an understanding of the underlying 
spatial nature of measurement, as well as the numerical and procedural competence 
to use measuring tools and apply formulas. Number sense also requires an under-
standing of magnitude through the generation of mental visual arrays displaying the 
relation of numbers to one another in terms of relative magnitude along a contin-
uum. Recent research has documented the importance of generating a mental num-
ber line as a mechanism for spatially representing this relation (Gunderson et al., 
2012; LeFevre et al., 2013). Thus, there is substantial literature documenting the key 
role of image generation/visualization skills as an important underpinning for con-
ceptual understanding within these mathematics content areas.

In the last half of this chapter, we give a brief overview of the literature on visu-
alization skills within three mathematics content areas. These mathematics areas 
include: (1) visual representations of magnitude with respect to fractions, (2) the 
ability to translate verbal descriptions into visual representations with respect to 
mathematics word problems and geometry, and (3) the ability to translate images 
from one type of representation into another when solving geometry problems, i.e., 
moving from 3-d representations to 2-d images, or vice versa.

In the present chapter, we have made the argument that rather than spatial skills 
being taught in isolation as abstract concepts, they should be taught within the 
framework of specific mathematics content areas. Although individuals with strong 
spatial skills may be able to apply spatial strategies across mathematics content 
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areas, this may well not be true for those students who are gradually acquiring spa-
tial reasoning skills. Within each mathematics area, the focus should be on the type 
of spatial sense that is key for that content area, drawing on this spatial reasoning to 
teach effective spatial strategies in approaching these mathematics problems.

Within each of these mathematics content areas, we will provide examples of 
mathematics activities that can be used to develop image generation skills likely to 
develop both spatial sense and increase use of spatially based mathematics strate-
gies. Many of these examples are similar to ideas introduced already into mathemat-
ics curricula and into the Common Core State Standards for Mathematics (National 
Governors Association Center for Best Practices, Council of Chief State School 
Officers, 2011). Other examples are less common.

Many of the examples here, connecting spatial skills to mathematics within the 
different mathematics content areas, depend in part on physical instantiations/con-
crete models or manipulatives, which are arguably also spatial models (Mix, 2010). 
Mix proposed that rather than depending on abstract number and language-based 
symbolic representations and known algorithms, these objects construe mathemat-
ics as spatial relations and provide spatial tools with which to reason about mathe-
matics. There is disagreement in the literature as to how effective manipulatives are, 
and Mix (2010) points out that even those who advocate the use of manipulatives 
caution that it depends on the way they are implemented. In particular, it depends on 
whether the children can move beyond a dependence on manipulatives. Researchers 
have not yet identified the critical elements that make manipulative effective. 
Nevertheless, in the present chapter, we continue to use a number of examples that 
employ concrete manipulatives, in order to teach children about spatial representa-
tions and spatial strategic approaches to mathematics problem solving.

�Representing Fraction Magnitudes by Generating Mental Visual 
Arrays

Siegler and his colleagues have conducted recent research showing that fractions 
have magnitudes that can be ordered and assigned specific locations on a mental 
number line just as whole numbers can (Siegler, Thompson, & Schneider, 2011). 
Recently, Hurst and Cordes (2016) found that fractions, decimals, and whole num-
bers can be used to represent the same rational-number values, and that adults con-
ceive of these rational-number magnitudes as lying along the same ordered spatial 
mental continuum. Thus, development of successful number sense and fraction 
sense and decimal sense in students depends in part on the ability to successfully 
represent magnitude spatially in terms of generating mental visual arrays.

It is proposed here that once students acquire more experience generating images 
involving spatial arrays across different types of magnitude estimations, they will be 
able to more effectively draw on spatially based strategies for solving a wider range 
of mathematics problems. Understanding of fractions is particularly important 
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because elementary students’ fraction knowledge has been found to uniquely pre-
dict their knowledge of algebra and overall mathematics achievement 5–6  years 
later (even after controlling for other key variables) (Siegler et al., 2012).

A brief overview of the theory and research related to fraction magnitude repre-
sentations, along with suggested mathematics activities to further develop fraction 
magnitude sense will be presented next. Fraction sense involves conceptualizing 
fractions as a unit rather than perceiving them as separate numerators and denomi-
nators (Schneider & Siegler, 2010). A recent study by Hamdan and Gunderson 
(2017) found that training using a number line estimation of unit fractions showed 
significant transfer to an untrained fraction magnitude task, whereas equivalent 
training using an area model estimation task (unit fractions within a pie chart) did 
not. Research on fraction magnitude representations has shown that performance on 
these types of linear spatial representations correlates strongly with fraction arith-
metic proficiency and general mathematics achievement scores (Siegler et  al., 
2011). This is somewhat surprising, as fraction magnitude knowledge is reported to 
be assessed little if at all on typical school mathematics assessments (Siegler et al., 
2011).

In addition, fraction magnitude representations account for substantial variance 
in achievement scores above and beyond that explained by fraction arithmetic pro-
ficiency (Siegler et al., 2011). Furthermore, recent intervention research on at-risk 
fourth graders (Fuchs et al., 2013; Fuchs et al., 2014) found that fraction magnitude 
interventions, involving placing fractions on number lines as well as comparing and 
ordering magnitudes, resulted in both greater improvement in fraction arithmetic 
proficiency and conceptual understanding when compared to control group taught 
fractions through a school-based mathematics textbook. It was found that the gap 
between at-risk and low-risk students narrowed for the intervention group, but not 
the control group.

Examples of linear mental fraction line fraction games and activities.  In this 
next section, a series of examples of mathematics games and activities are described 
that can be used to teach students how to generate images of fractions in order to 
develop fraction sense. The idea is for students to learn to represent fractions as a 
unit, and to compare them to other fractions along a mental number line. The cur-
riculum, Everyday Mathematics (University of Chicago School Mathematics 
Project, 2007) includes lots of activities with fraction cards—including using them 
along a number line. The goal for presenting these particular games in the present 
chapter is to provide examples of how to apply this type of spatial sense as a basis 
for generating effective spatial strategies when solving fraction arithmetic 
problems.

Use of fraction card games. These games are based on the traditional card game 
“War.” They encourage children to recognize common fractions, where they fit on 
the number line, and how they compare with each other. The materials are shown in 
Fig. 3.1.
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Card game 1: Solitaire. Children can get used to the materials by playing soli-
taire games, e.g., shuffle the deck and turn up cards one at a time then do one of the 
following:

•	 place the card where it goes on the number line,
•	 place the card to the left, right, or on ½ as appropriate, or
•	 put the cards in order (no number line needed)

Card game 2: Two-person practice game. The deck is divided as evenly as pos-
sible with the cards dealt one at a time face down. Each player places his stack of 
cards face down, in front of him. Players each turn up a card at the same time and 
the one who places it correctly on the number line first gets both cards. If they place 
the cards correctly at the same time, they each keep their own card. The play can 
proceed with or without a number line. Whoever has the most cards at the end of 
some time period is the winner.

Alternate play—non-competitive. Proceed as with solitaire but taking turns, show 
where the fraction goes on the number line (see Fig. 3.2), or arrange the cards in 
order (see Fig. 3.3).

Card game 3: Two-person simpler practice game. The deal proceeds as above 
but the goal is to place the cards, as quickly as possible, into piles: <1/2, =1/2, >1/2.

Card game 4: Fraction Game WAR. Players each turn up a card at the same time 
and the player with the higher card takes both cards and puts them, face down, on 
the bottom of his stack.

If the cards have the same value, e.g., 1/2 and 2/4, it is War. Each player turns up 
one card face down and one card face up. The player with the higher cards takes 
both piles (six cards). If the turned-up cards are again the same rank, each player 
places another card face down and turns another card face up. The player with the 

The denominators might go from 2 to 10 (54 cards) or higher.  Fractions might also represent
numbers greater than 1.

Each card shows one proper fraction. The decks will vary dependent on the age, grade, or
abilities of the children involved. The deck might be suitable for children in K through 2.

Fraction Number Line

The Deck

Fig. 3.1  Materials for the fraction card games
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higher card takes all 10 cards, and so on. The game ends when one player has won 
all the cards.

Adding fractions using graphing.  Another way to develop fraction sense is to 
use spatial representations through graphing. In these exercises, students use graph 
paper in two ways. They use a grid, e.g. 10 × 10 or 12 × 12, to color in regions to 
represent each fraction in a sum. They can also make a standard x vs. y graph to 
show a running sum of fractions, the x-axis showing the number of fractions added 
and the y-axis showing the sum so far.

Use of graphing to add fractions: convergent series. Though infinite series 
sounds pretty advanced, the idea of adding up fractions that follow a pattern is really 
pretty simple and keeping track of the sums visually provides another playful way 
for children to think about fractions. Note, this material is based on ideas from 
Cohen (1989).

Convergent series: First example. 
1

2

1

4

1

8

1

16

1

32
+ + + +   The three dots mean 

“and so on.” Each 8 × 8 square represents one whole (see Fig. 3.4).

•	 Shade in the squares to show the numbers above them.
•	 Show the sum as a fraction.
•	 Show the sum as a decimal.
•	 Can you tell what the sum would be if we kept adding similar terms?

	

1

2

1

4

1

8

1

16

1

32

1

64
+ + + + + +

	

Fig. 3.2  Show where the cards go on the number line

Fig. 3.3  Arrange the cards 
in order
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•	 What is the next term?
•	 What is the pattern of the denominators?

	

1

2

1

2

1

4

1

2

1

4

1

8

1

2

1

4

1

8

1

16
+ + + + + +

	

Convergent series: Second example. 
1

3

1

9

1

27

1

81

1

243
+ + + +   This time, each 

denominator is three times the last one. Shade the box below (see Fig. 3.5) to show 

the sum of 
1

3

1

9

1

27

1

81

1

243
+ + + + . Notice that the blue lines divide the box into 

thirds horizontally and vertically. There are nine small boxes across and down in 
each blue box. Use a different color for each fraction you add on.

•	 What fraction represents one small black box? (answer 1/729)

•	 Express each of the partial sums as a single fraction, e.g., 
1

3

1

9

4

9
+ =  and 

1

3

1

9

1

27

13

27
+ + = .

•	 How big do you think the sum will get if you keep on adding more similar terms?
•	 Will it ever get bigger than 1?
•	 Will it ever get bigger than 4/9?

Fig. 3.4  Graphic representation of successive sums of 1/2 + 1/4 + 1/8 + 1/16

Fig. 3.5  Graphic representation of successive sums of 1/3 + 1/9 + 1/27 + 1/81 + 1/243
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Convergent series: Third example. For something really different, think about 

this simple looking sum 
1

2

1

3

1

4

1

5

1

6
+ + + + 

•	 Does it get bigger than 1? (Yes, just add the first 3 terms.)
•	 Does it get bigger than 2? (Yes, if you keep adding on 1/n it grows to infinity.)
•	 This is not a convergent series. It does not add up to a finite sum.

�Translating Verbal Descriptions into Visual Representations

In the everyday world, visualization often involves translation of information you 
hear or read into a mental image, and in mathematics it also involves using that 
mental image to reason about a solution to a problem. Recently, there has been a 
focus on research addressing the benefits of translating words into images for math-
ematics word problems. In the initial research, Hegarty and Kozhevnikov (1999) 
clarified that the effectiveness of image generation depends on the type of imagery 
used; while schematic spatial representations were associated with success in math-
ematical word problems, use of pictorial representations was negatively correlated 
with success. Schematic representations encode the spatial relations described in a 
word problem, while pictorial representations encode the visual appearance of the 
objects described in the problem. Use of schematic representations was also signifi-
cantly correlated with spatial ability, while pictorial representations were not. van 
Garderen (2006) obtained similar findings when comparing gifted, average, and 
learning disabled students, with gifted students tending to use more schematic rep-
resentations. When examining pathways between spatial skills and word problems 
in sixth graders, Boonen and associates (Boonen et al., 2013) found that 21% of the 
association between spatial skills and word problem solving was explained through 
the indirect effects of strategies involving visual-schematic representations. Thus, 
spatial skills can be translated into useful spatially based mathematics strategies to 
solve word problems through the use of visual representations.

Jitendra and colleagues (Jitendra, Nelson, Pulles, Kiss, & Houseworth, 2016) 
conducted a review of studies examining the benefits of using visual representation 
models for teaching mathematics problems with at-risk mathematics students and 
found a substantial benefit of using this approach. In their review of the literature, 
Kingsdorf and Krawec (2016) also concluded that instructional methods involving 
representing word problems visually in third graders have been proven effective by 
organizing the problem information. However, they suggest further that effectively 
using graphic representations requires visually representing connections between 
the problem parts in order to effectively link various phases of the problem-solving 
process.

Examples for translating verbal descriptions into visual representations with 
early geometry learners.  As indicated earlier, the National Council of Teachers of 
Mathematics (NCTM, 2000) conceives of geometry problem solving as involving 
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the ability to: spatially visualize and represent geometrical relations, hold images in 
spatial working memory, and mentally transform geometric shapes. This aspect of 
the geometry curriculum has been extensively developed within the mathematics 
curriculum series, Investigations in Data, Number, and Space (TERC, 2008). For 
example, throughout their curriculum, they make use of Quick Images where children 
are briefly shown images of quantities and shapes and asked to recognize them or 
reconstruct them in order to practice building and retaining such mental images. In 
Taking Shape, Joan Moss and co-authors (Moss et al., 2016) present a K-2 geometry 
curriculum that draws heavily on developing spatial visualization skills as a major 
component of mathematics education in early elementary school.

One element of these visualization skills is the ability to translate verbal into 
visual representations. If translating verbal information into visual representations 
is beneficial to later mathematics problem solving, how can educators start to 
develop this translation skill in young children at the outset of learning geometry? 
In this section, we provide examples of geometry activities and games that may be 
helpful in developing young students’ ability to translate verbal descriptions into 
visual images that represent those descriptions. This proposed emphasis on transla-
tions of verbal representations into visual representations in early geometry activi-
ties may be useful later on when the spatial strategy instructional focus may be on 
translation of word problems into spatial representations through diagrams for older 
mathematics learners (e.g., Boonen et al., 2013; Jitendra et al., 2016; Kingsdorf & 
Krawec, 2016).

Geometry games for turning verbal or written descriptions into visual rep-
resentations.  Below, we present some two-person games that involve one partner 
giving verbal instructions to the other partner on how to draw or construct a particu-
lar representation. The objective is for the partner hearing the description to create 
a 2-d or 3-d representation from that description. Another set of examples uses writ-
ten descriptions that have to be followed on a grid or map. These lead into learning 
coordinate geometry.

The Barrier Game. In the Taking Shape geometry curriculum, Joan Moss and 
co-authors (Moss et al., 2016) describe a series of “barrier games” for early elemen-
tary school that fit into this category, going from a verbal description to a spatial 
layout. In each game, there is a designer and a builder. There is a barrier between the 
two so they cannot see each other’s creations as they describe and build (see 
Fig. 3.6). In these barrier games, children are encouraged to “Visualize” (create a 
visual image of what the partner is describing), “Verbalize” (ask your partner ques-
tions about where to place the tiles), and “Verify” (compare the two designs to see 
where they are similar and different). This visualize/verbalize/verify strategy can be 
useful for many types of geometry activities.

•	 In the simplest game, each child is given identical 7 square tiles.
•	 The designer creates a design with the 7 tiles.
•	 The designer then gives instructions to the builder so he or she can recreate the 

design on the other side of the barrier.
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•	 When the builder has finished, the children compare their designs.
•	 The children then swap roles and play again.
•	 The designer will have to use words and phrases like: besides, above, touching, 

rotate, turn, slide, left, right, etc.
•	 The game can be easily made more difficult by increasing the number of tiles or 

adding tiles with different shapes and colors.
•	 It could be turned into a 3-dimensional exercise by using Lego blocks.

The Monster Game. In a more open-ended activity that only requires pencil and 
paper, this is another two-person game to promote translation of verbal descriptions 
into visual representations. It even provides entertainment on long car trips. As with 
the barrier games, there is a designer and a builder and the children should not see 
each other’s work until the game is finished (see Fig. 3.7).

•	 Each child has paper and a pencil with an eraser. Colored pencils or crayons can 
be used too.

•	 The designer draws a monster. A monster might be humanoid but they usually 
end up with strange sizes and numbers of arms and eyes. They can have claws in 
place of some hands or feet. There really are no constraints.

Fig. 3.7  Pictures from the Monster Game

Fig. 3.6  A sample shape 
with 7 tiles
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•	 The designer then gives instructions to the builder so he or she can recreate the 
monster on their own paper.

•	 When the builder has finished, the children compare their monsters.
•	 The children then swap roles and play again.

This is clearly very much like the barrier games, and children can also use the 
verbal description/drawing game to design buildings or parks or clothing as an 
alternative.

A mapping game based on verbal instructions. In the mathematics curriculum 
series, Think Mathematics (Educational Development Center, Inc., 2008) in grade 1, 
students are asked to explore direction on a map as part of their geometry section on 
maps, grids, and geometric figures. In one component they are asked to draw maps 
from verbal instructions. The example used here is from Harriet Fell’s son’s French 
Kindergarten class. The students were given a simple map of their village and then 
asked to draw routes, creatures, and other features according to the teacher’s descrip-
tion. For example, after identifying their school and the village swimming pool on 
their maps, they drew a curve marked with arrows from school to pool. They put a 
duck in the pond, a goat on the farm, and waves in the pool (see Fig. 3.8). The pur-
pose of this activity is to learn to generate visual images of maps in terms of spatial 
location, direction, and features on the map based on verbal directions from others. 
This should enable them to be more likely to use spatial strategies to solve these 
types of problems, such as generating mental images of maps rather than using 
landmarks and words.

Orienteering, drawing, and mapping routes on a grid based on verbal instruc-
tions. As part of the same unit, the Think Mathematics curriculum also focused on 
finding and following paths on a grid. By placing maps on a grid, the concept of 
graphing is also introduced as well as concepts involving spatial location and direc-
tion. This type of geometry activity is similar to orienteering in some ways. 
Orienteering is an outdoor sport where players use maps and a compass to find their 
way. Players may see on the map that the next goal is ¼ mile to the northeast of their 
current position and then use their compass to get there. In Orienteering Drawing, 
the player(s) is given a set of drawing directions to follow that are similar, e.g., head 
3″ north. For young children, the step-by-step instructions can be given verbally and 
for older children it can be presented in writing (see Fig. 3.9).

Or the teacher could give a list of 2-d coordinates to make a picture. Here, the 
lower left-hand corner is the origin (0, 0). The child is instructed to go from coordi-
nate to coordinate as in follow-the-dots.

	
4 2 4 4 5 4 5 5 4 5 4 6 5 6 5 7 3 7 3 2 4 2, , , , , , , , , , ,( )( )( )( )( )( )( )( )( )( )( ) 	

For each of these methods of description, a teacher could provide the description 
or a child could create the description from the image.
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�Translating 2-d Representations into 3-d Mental Images 
and Vice Versa

In the sciences, engineering, and in medicine, in particular, a critical skill involves 
being able generating mental images by moving back and forth between 2-d and 3-d 
representations. As reported in a literature review by Harris, Hirsh-Pasek, and 

1)Color the river (Yvette) blue. 
2)Put a green “X” on 

the L-shaped building.  That’s our 
school. 

3)With your green marker, let’s
make a route to the
swimming pool.   

a. Go along the path from the 
school.   

b. Turn left when you get to the 
road.   

c. Turn right at the stop light.
d. Follow the road around 

until you can turn right. 
e. Turn right as soon as you can. 
f. Head to the left.  That’s 

 the swimming pool.  
4)Put waves in the swimming pool. 
5)…

Fig. 3.8  Following directions to annotate a map

(0,0)

Assume the boxes are 1” on a side.
1. Start at the blue dot.
2. Head 2” North.
3. Head 1” East.
4. Head 1” North.
5. Head 1” West.
6. Head 1” North.
7. Head 1” East.
8. Head 1” North.
9. Head 2” West.
10. Head 5” South.
11. Head 1” East

Fig. 3.9  Orienteering Drawing
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Newcombe (2013), students with high dynamic spatial transformation abilities 
(such as paper folding and mental rotation) were found to have greater ability to 
read graphs (Kozhevnikov, Motes, & Hegarty, 2007; Kozhevnikov & Thorton, 
2006) and interpret diagrams (Höffler, 2010). Spatial research has been done on 
dynamic spatial transformations, such as mental rotation, in which the images have 
to be transformed and manipulated as well as generated (Mix & Cheng, 2012). A 
number of mathematics curricula for young children, such as Investigations in Data, 
Number, and Space (TERC, 2008) and Taking Shape (Moss et al., 2016) have incor-
porated 2-d to 3-d transformations that also require mental folding, such as identify-
ing which 2-dimensional nets make cubes and rectangular prisms. This type of 
transformation is also used in origami. Boys, in particular, receive many hours of 
informal instruction doing these types of activities with Legos and model kits. These 
types of construction activities often require the ability to examine complex 2-d 
drawings, translate them into 3-d mental images, and ultimately produce 3-d 
structures.

Examples of instructional activities to develop translations of 2-d represen-
tations into 3-d images and vice versa.  In the next section, we provide examples 
of geometry activities involving the simple translation of 2-d representations into 
3-d structures and vice versa—without any dynamic transformations. Again, these 
activities are designed to develop spatial visualization skills and visuospatial mem-
ory, and are part of the NCTM (2000) and Common Core State Standards for 
Mathematics (National Governors Association Center for Best Practices, Council of 
Chief State School Officers State Standards for Mathematics, 2011) relating to ana-
lyzing, comparing, creating, and composing 2-d and 3-d shapes in relation to mod-
eling shapes in the world. In order to apply dynamic transformations strategies to 
solve many types of geometry problems, an important first step is to be able to 
visualize the relation between 2-d and 3-d representations of the same figures within 
static images.

However, when visualizing complex shapes, simple 2-d to 3-d transformations 
can be quite difficult for children with poorer spatial skills, even before adding on 
the requirement of manipulating the stimuli dynamically. For example, it can be 
argued that one of the initial difficulties in solving 3-d mental rotation tasks, such as 
the Vandenberg task (Vandenberg & Kuse, 1978), is that the stimuli consist of com-
plex, unfamiliar, abstract shapes that project 2-d representations of 3-d stimuli. Just 
transforming that 2-d picture and projecting it as a 3-d image is difficult enough, in 
addition to the increased cognitive processing load required by holding it working 
memory, and then manipulating the image in order to mentally rotate it. In an analy-
sis of the Vandenberg items, it was found that the most difficult items on the 
Vandenberg were ones in which the drawings of the 3-d figures had occluded parts 
(Voyer & Hou, 2006).

Thus, the simple translation of 2-d representations into 3-d mental images can be 
quite difficult to visualize, especially when stimuli are complex. Students need 
practice using their visualization skills to complete this simple translation process, 
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as they are important components of many geometry tasks that also require mental 
manipulation and rotations and are an important prerequisite to the mental transfor-
mations and manipulations that are needed to apply spatial strategies when solving 
many geometry problems.

2-d representations of the swimming pool. The first example is for younger 
children, and involves exercises from an École Maternelle class in France for 5-year 
olds where Harriet Fell’s son went for kindergarten, the year the family lived in 
France. Since the village had a pool, swimming lessons were part of the public 
schools’ curriculum (see map of the village shown previously). Every week, the 
pool was divided into different sections for the three levels of classes and different 
types of floatation toys were placed in the pool in each section, e.g., foam barbells, 
kickboards, or doughnuts. The sections and the objects within the sections varied 
each week. When the children returned to the school after swim class, they were 
asked to draw how the pool looked that week from memory (see Fig. 3.10). When 
asked what he did that day, George would show a different drawing of the pool, and 
say, “It’s a drawing of the swimming pool.” What was being taught here? It involves 
not only the ability to translate a 3-d scene into a 2-d drawing, but accurately 
remembering the details of the different parts, as well as showing how the different 
parts relate to the whole as a gestalt. We have not found examples of similar activi-
ties in US kindergarten classrooms, and this approach may be idiosyncratic to 
France for this age group. However, the mathematics educators in the book may be 
able to provide other examples.

Using modeling clay to explore surface, solids and cross-sections.  Because 
one component of geometry, based on the NCTM Standards (2000), involves visu-
alizing relationships between 2-d drawings and 3-d objects, clay and plasticine are 
great materials for exploring surfaces and solids, and have been used frequently in 

Fig. 3.10  Drawings of the 
swimming pool
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geometry classrooms. Clay can be used to study ways of describing 3-dimensional 
objects in 2-dimensions. Though there is wonderful software available for visual-
izing three-dimensional objects, we think it is important for children to have the 
experience of visualizing and manipulating three-dimensional objects as in the 
examples that follow to fully understand the two-dimensional projections they see.

Build convex solids, given 2-d front, side, and top. Students were asked to build 
convex solids given the top, side, and front views (see Fig. 3.11).

Using plasticine to build objects and slicing through to see side views. Within 
the Common Core Standards for Mathematics at seventh grade (National Governors 
Association Center for Best Practices, Council of Chief State School Officers State 
Standards for Mathematics, 2011), students work with 3-d objects, relating them to 
2-d figures by examining cross-sections. Students are expected to identify the 
shapes of 2-d cross-sections of 3-d object and identify 3-d objects generated by rota-
tions of the 2-d figures. We think these types of cross-section activities can be done 
successfully with younger students. In the present example, given a contour map, 
the children are asked to draw the side views they would see if the scene were sliced 
along the lines, A, B, C, D, and E. They do this twice, first just from the contour 
map, e.g., by “walking” along the lines with their fingers, and then by using plasti-
cine to build a model and slicing the model along the lines to see the side view (see 
Fig. 3.12).

Summary for Part 2.  In this last half of the chapter, we provided examples of 
a variety of methods for teaching children to generate images as a critical compo-
nent of developing spatial sense within the content areas of fractions, word prob-
lems, and geometry. We considered the importance of developing “spatial sense” 
within these mathematics content areas as a prerequisite to applying spatially based 
strategies in these areas.

Fig. 3.11  Front, side, and top views of solids
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It is very clear from extensive research and reviews of the literature that strong 
spatial skills and visuospatial memory are predictive of mathematics achieve-
ment across a wide range of mathematics content areas and ages, and individuals 
with high spatial skills are likely to excel in mathematics (Li & Geary, 2017; Mix 
et al., 2016; Mix & Cheng, 2012; Wai et al., 2009). What we do not yet know is 
how malleable spatial skills are in terms of being able to teach students without 
initial high spatial ability how to: (1) acquire spatial sense, and (2) apply this 
knowledge by drawing on spatial strategies for mathematics problem solving. 
Future research on the spatial-mathematics association needs to focus on empiri-
cal research and spatial interventions to identify specific mechanisms for this 
association (Bailey, 2017).

Fig. 3.12  Contour map and grid for plotting the cross-sections of the model
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�Conclusion

In conclusion, we would like to propose that teaching generalized spatial skills dis-
connected from specific mathematics content areas may not be the best direction to 
go in future spatial intervention studies. Students who do not start out with strong 
spatial skills may need to learn to develop different types of spatial sense, specific 
to each type of content area, and to learn how to utilize spatial strategies based on 
developing spatial sense within these specific mathematics domains. Thus, the best 
strategy for future spatial-mathematics research may be: (1) understanding what 
types of spatial sense are required for different mathematics content areas, (2) con-
ducting focused interventions for developing each type of spatial sense, (3) along 
with encouraging use of spatial strategies that draw upon them. If started early and 
done extensively across a range of mathematics content areas, students without ini-
tial spatial reasoning skills may eventually be able develop a wider mathematics 
spatial sense in order to approach a diverse range of mathematics problems with the 
added benefit of being able to draw upon critical spatial strategies from within in 
their problem-solving tool kit.
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