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Chapter 2
From Intuitive Spatial Measurement 
to Understanding of Units

Eliza L. Congdon, Marina Vasilyeva, Kelly S. Mix, and Susan C. Levine

Abstract  The current chapter outlines children’s transition from an intuitive under-
standing of spatial extent in infancy and toddlerhood to a more formal understand-
ing of measurement units in school settings. In doing so, the chapter reveals that 
children’s early competence in intuitive spatial thinking does not translate directly 
into success with standardized measurement units without appropriate scaffolding 
and support. Findings from cognitive science and education research are integrated 
to identify (a) the nature of children’s difficulties with measurement units, (b) some 
effective instructional techniques involving spatial visualization, and (c) sugges-
tions for how instruction could be further modified to address children’s specific 
conceptual difficulties with standardized measurement units. The chapter ends by 
suggesting that the most effective instruction may be that which directly harnesses 
the power of children’s early intuitive reasoning as those children navigate the tran-
sition into a deeper conceptual understanding of standardized units of measure.
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The current chapter focuses on children’s ability to understand and visualize spatial 
units of measurement, a foundational concept in mathematics. As stated by 
Gal’perin and Georgiev (1969), “Mastery of the initial concept of the unit is the 
most important step in the formation of elementary arithmetic concepts (they are all 
built on the unit or presuppose it).” In reviewing existing findings, we consider 
evidence of early measurement competence and evidence of later measurement 
struggles, and work to integrate and reconcile these seemingly disparate findings. 
We also outline some successful instructional techniques that have come out of 
basic cognitive science research. In doing so, we suggest that units of measure, an 
inherently spatial concept, are a fitting case study for understanding how children’s 
learning outcomes are improved when spatial visualization techniques are employed 
during instruction.

Units are powerful because they allow us to meaningfully discretize continuous 
quantities, thereby allowing for extremely accurate comparisons across space and 
time. But the concept of “units” has important implications beyond this—it is also 
foundational to humans’ understanding of quantity and numeracy more generally 
(e.g., Davydov, 1975; Gal’perin & Georgiev, 1969; Sophian, 2007). For example, 
when counting a set of shoes, one could count each shoe, or one could count each 
pair of shoes as one unit. Just as when measuring length, the numerosity obtained 
depends on the unit one adopts. Children under the age of 4 struggle with this idea. 
They tend to count any discrete physical object as a unit, even if the object is actu-
ally part of a larger unit (Brooks, Pogue, & Barner, 2011; Shipley & Shepperson, 
1990). For example, when asked, “How many forks?”, they might count one whole 
fork and one fork broken into two pieces as two forks, and respond that there are 
three forks altogether. At around age four, they instead respond that there are two 
forks, which is consistent with the way adults tend to answer this question. This 
suggests that with age, learners become increasingly sensitive to the unit-based 
information represented by nouns. In fact, when parts of objects have readily acces-
sible names (e.g., wheels), children are able to focus on these part-of-object units at 
an earlier age than if the parts do not have labels (Shipley & Shepperson, 1990). 
These biases to attend to and count discrete physical entities that are readily labeled 
ultimately help children count different kinds of units (Shipley & Shepperson, 
1990). This is critical since later in development, having an understanding that units 
are flexible and depend on the question one is addressing, becomes the backbone of 
children’s understanding of topics such as place value, measurement, geometry, 
part-whole relations, and fractions (Piaget, Inhelder, & Szeminska, 1960).

Despite the importance of units in the ontogenetic development of mathematical 
thinking, there are well-documented challenges children face in understanding units 
of measure and how they are applied in problem-solving scenarios. Jean Piaget, a 
master observer of children’s behavior, claimed that children were not capable of 
reasoning accurately about distance, length, or angle measure until middle child-
hood (Piaget et al., 1960). For example, children up until about 7 years of age were 
likely to fail a conservation of length test, stating that if one of two equal sticks was 
shifted with respect to the other, it had become “longer.” In another classic experi-
ment, Piaget showed children ages 3–7 years a tower of blocks and then asked them 
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to construct a tower of equal height with smaller blocks on the other side of the 
room. Children did not create a metric of conversion (e.g., “two large blocks are 
equal to 4 smaller blocks”) nor did they spontaneously use available resources to aid 
in transitive inference (wooden sticks and strips of paper) until at least 7 years of 
age. Similarly, children who were asked to replicate a drawing of an angle figure 
tended to approximate the drawing and did not spontaneously measure with avail-
able paper, string, or compasses until mid-to-late elementary school. These findings 
suggest that children may have a fundamental misunderstanding of the form and 
function of formal systems of measurement.

Even when children do receive instruction about the proper usage of measure-
ment tools, they continue to demonstrate conceptual difficulties. Recent interna-
tional assessments of children’s mathematics performance indicate that children 
perform particularly poorly on measurement test items as compared to other math-
ematics assessment items at least through fourth grade (TIMSS, 2011), echoing 
similar patterns of findings reported decades ago (Carpenter et al., 1988; Lindquist 
& Kouba, 1989). Children also struggle with test items about angle measures 
through elementary school and even middle school (e.g., Clements & Battista, 1992; 
Mitchelmore & White, 2000).

In stark contrast to these dire assessments of children’s understanding of formal 
spatial units, there is ample evidence that young children and infants are able to 
reason intuitively about continuous extent, length, and angle (e.g., Baillargeon, 
1987; Lourenco & Huttenlocher, 2008; Slater, Mattock, Brown, & Bremner, 1991; 
Spelke, Lee, & Izard, 2010). For example, 2- to 4-month-old infants who are 
habituated to an angle figure will dishabituate to a change in angle measure (Cohen 
& Younger, 1984), and 5- to 7-month-old infants can encode an object’s height and 
make subsequent predictions about its behavior even when the object is not visible 
(Baillargeon & Graber, 1987). What, then, can explain how children’s intuitive 
understanding of spatial extent gets “lost in translation” when encountering simi-
lar concepts in formal schooling contexts? In the current chapter, we propose that 
a formal understanding of units requires children to overcome two challenges. 
First, they must integrate their intuitive understanding of continuous spatial extent 
with discrete, countable entities. In other words, one challenge of mastering units 
of measure is that they lie squarely at the intersection of intuitive spatial under-
standing and learned numerical representations. Secondly, children must connect 
intuitive, non-verbal understandings with the corresponding formal concepts that 
are referenced by newly acquired spatial language terms (e.g., units, angle, length, 
area, volume).

The present chapter reviews the literature related to these developmental achieve-
ments. In Part I, we review evidence that young infants have the perceptual capabili-
ties to process and compare various dimensions of continuous extent. In Part II, we 
discuss how these perceptual abilities of infancy fail to directly translate to success 
with formal units of measure in school settings. In Part III, we end with some opti-
mistic evidence from successful training interventions that help school-aged chil-
dren to bridge the gap between intuitive understanding of extent and formal units of 
measure.

2  From Intuitive Spatial Measurement to Understanding of Units
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�Part I: Intuitive Understanding of Extent

Before they are introduced to formal measurement and numerical systems, there is 
evidence to suggest that even infants can make judgments that reflect their sensitiv-
ity to continuous spatial extent, a developmental precursor of measurement skills. In 
a series of violation of expectation paradigms investigating infants’ ability to reason 
about an occluded object, 5- to 7-month-old infants can encode an object’s height 
and make subsequent predictions about its behavior when the object is not visible 
(Baillargeon, 1987; Baillargeon & Graber, 1987). For example, 7-month olds 
expected a rotating screen to stop sooner when a taller object was placed behind the 
screen than when a shorter object was placed behind the screen. In a separate study, 
5-month olds were surprised when a taller rabbit’s path of movement behind a bar-
rier did not show the rabbit’s head poking above the barrier (Baillargeon & Graber, 
1987). Extensions of these findings show that infants as young as 5.5 months can 
simultaneously track the width of one object—in this case, a cylinder—and the 
displacement distance of a second object, a small bug toy, to reason appropriately 
about collision events (Kotovsky & Baillargeon, 1998). Further, 6.5-month-old 
infants can use proportional information about objects that are partially resting on a 
surface to predict when the object has sufficient support and when it will fall 
(Baillargeon, Needham, & DeVos, 1992).

In addition to this research evidencing infants’ qualitative judgments about 
height, width, and distance, there has been research suggesting that young children 
can reason quantitatively about extent. That is, some researchers have proposed that 
infants may be able to encode and reason about the absolute size of objects. In one 
study, 6-month olds were habituated to a glass cylinder with a certain amount of red 
liquid (Gao, Levine, & Huttenlocher, 2000). At test, infants dishabituated to the 
same size cylinder with a novel amount of liquid, but not to the same size cylinder 
with the same amount of liquid. In an experiment where objects were hidden in a 
long, narrow rectangular sandbox, children as young as 5-months old were sur-
prised when the object was revealed in a location 6 in. from where it was initially 
hidden (Newcombe, Huttenlocher, & Leamonth, 2000; Newcombe, Sluzenski, & 
Huttenlocher, 2005). These findings could indicate that infants are capable of encod-
ing approximate absolute extent without the explicit presence of a measurement 
standard or comparison object.

However, subsequent evidence has called this conclusion into question and has 
shown that this early reasoning about height and length may be based on intuitive 
proportional reasoning rather than a true understanding of absolute extent. In all of 
the work described above, target stimuli were presented within some sort of con-
tainer (e.g., sandbox, glass cylinder), next to another comparison object, or in rela-
tion to the salient frame of a computer screen. Because of this, the absolute height 
of stimuli (e.g., more liquid in a cylinder) was conflated with the relative proportion 
the stimulus occupied within a container or relative to a frame (e.g., the liquid fills 
a larger proportion of the cylinder).
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Evidence for encoding of relative extent.  To disentangle the question of 
whether infants encode absolute or relative spatial extent, several experiments were 
conducted. In one study, infants were habituated to a wooden dowel in one of three 
conditions: alone, within a glass cylinder, or next to a wooden stick (Huttenlocher, 
Duffy, & Levine, 2002). Infants only dishabituated to a novel dowel when the dow-
els during habituation and test were presented either inside the glass container or 
next to the wooden stick. The most parsimonious explanation of these data is that 
infants were using the container or the stick to encode relative height. Yet it remained 
a possibility that the mere presence of a second object or container heightened 
infants’ awareness of absolute extent of the original object. To directly address this 
possibility, a second study directly compared infants’ sensitivity to absolute versus 
relative extent in the presence of a container (Duffy, Huttenlocher, Levine, & Duffy, 
2005). In this work, 6.5-month-old infants were habituated to a wooden dowel that 
was a specific height, say three inches, and filled a certain proportion, say three-
fourths, of the clear cylinder in which it was placed. In the key test conditions, 
infants were shown a larger cylinder with a wooden dowel that either filled the same 
proportion (e.g., three-fourths), or was the exact same absolute height as the original 
dowel (e.g., three inches). Infants dishabituated to the latter display—the same size 
object as in the original display with a different proportional relation to the con-
tainer. These findings indicate that infants were encoding the height of the dowel 
relative to its container, and not its absolute height.

Using a different experimental technique where 2- to 4-year-old children were 
asked to remember the height of a target object and then select the matching object 
in a two-option test trial, these investigators found that it was not until 4 years of 
age that children were able to accurately encode the height of the target objects. 
Even then, they were only able to make the correct selection at test in the presence 
of a salient comparison standard and a distractor that was substantially different in 
size from the target (Huttenlocher et al., 2002). By 8 years of age, the ability to 
focus on absolute extent was more refined and children could differentiate lengths 
that were closer in size, perhaps by imposing a mental unit, such as a mental inch 
(Vasilyeva, Duffy, & Huttenlocher, 2007).

Continued development of proportional reasoning.  If young children are 
indeed encoding relative and not absolute extent as a kind of proportional reasoning, 
to do so still requires an impressive set of reasoning skills and an emerging ability 
to unitize, with resulting improvements in precision. In the sandbox search para-
digm mentioned above, work with toddlers has shown that by the age of 24 months, 
most children can remember the location of a hidden object long enough to go 
retrieve it from the sandbox (Huttenlocher, Newcombe, & Sandberg, 1994). The 
patterns of children’s errors were biased toward the center of the sandbox, suggest-
ing a rudimentary unitizing of the continuous space into two equal parts (Huttenlocher 
et al., 1994). With increasing age, children’s errors cluster around smaller division 
points (e.g., by dividing the space into quarters). This intuitive unitization of con-
tinuous extent sharpens over developmental time and has been hypothesized to rep-
resent a Bayesian combination of categorical and continuous information, and may 
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be a necessary precursor to children’s understanding of later unit-based concepts 
(Mix, Levine, & Newcombe, 2016; Newcombe, Levine, & Mix, 2015). Similar pat-
terns have been identified in number line estimation tasks, where children’s improve-
ment over developmental time can be explained by improvements in proportional 
reasoning, rather than the previously proposed qualitative shift from logarithmic to 
linear representations of the number line (e.g., Barth & Paladino, 2011).

As children get older, their increasing ability to represent and reason about pro-
portional relations of continuous quantities predicts success on more demanding 
spatial reasoning tasks, such as map reading (Huttenlocher, Newcombe, & Vasilyeva, 
1999) and symbolic fraction tasks (Möhring, Frick, Newcombe, & Levine, 2015). 
Though toddlers struggle with map reading tasks and tend to rely on matching of 
object features, by the age of 4, they are able to read a simple map that indicates the 
location of a hidden object. Researchers have argued that success on this task relies, 
in part, on the same skills young infants use when coding relative extent on simpler 
object comparison tasks (Duffy, Huttenlocher, & Levine, 2005; Huttenlocher et al., 
2002; Vasilyeva & Lourenco, 2012). In this case, the scaling of distance from the 
map to the object search space is akin to encoding the relative extent between, say, 
a dowel and its container, and being able to identify this same proportional relation 
in a test trial. This emerging map reading ability in children, while impressive, 
remains quite fragile through many more years of developmental change. Children 
struggle with reading maps when the referent space is misaligned or shifted in ori-
entation (Liben & Downs, 1993), when the scale of the referent space becomes too 
large (Davis & Uttal, 2007), or when the space becomes too complex or includes 
distracting but salient landmark features (Liben & Yekel, 1996).

Understanding of angles.  Just as with judgments of length, young infants show 
an intuitive understanding of angle well before they learn about angles in formal 
school settings. For example, 2- to 4-month-old infants who are habituated to an 
angle figure composed of two line segments will dishabituate to a change in angle, 
or a change in the relative position of the lines composing the angle figure, but do 
not dishabituate to a change in orientation of the entire figure (Cohen & Younger, 
1984). In addition, infants differentiate between acute and obtuse angles (Cohen & 
Younger, 1984; Lourenco & Huttenlocher, 2008), and even newborn infants are 
capable of tracking the relation between two components or features of an angle 
figure (Slater, Mattock, Brown, Burnham, & Young, 1991). This work suggests that 
the perceptual skills needed to encode angles are present very early in development, 
and indeed, may be innate (Izard, O’Donnell, & Spelke, 2014).

Children approaching kindergarten age begin to make explicit decisions and judg-
ments based on these early percepts of angle. For example, 4-year-old children can 
accurately identify which of six figures drawn on a card looks different from the oth-
ers when the key dimension of difference is angular measure (Izard & Spelke, 2009). 
And though performance is more variable, some 4-year-olds can match fragments of 
geometric figures from two-dimensional to three-dimensional space when the only 
informative dimension available in the fragments is angle measure (Izard et al., 2014).
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Navigation tasks, which require children to use angle on a 3-D scale, follow a 
more protracted developmental trajectory than 2-D tasks. For example, 4-year-old 
children are much more likely to spontaneously use distance cues to succeed on a 
map task than they are to use angle or orientation (Shusterman, Ah Lee, & Spelke, 
2008). However, by the age of 5 or 6, children can successfully use angular relations 
in map reading and navigation tasks (Spelke, Gilmore, & McCarthy, 2001).

Similar to what has been found for other forms of measurement, the early sensi-
tivity to angle does not confer immediate success in understanding more formal 
systems of angular measure, which children struggle with until much later in devel-
opment. Indeed, as we will discuss, they are often confused by irrelevant informa-
tion—such as the absolute the lengths of the lines composing the angle figure—in 
making judgments about which of two angles is larger.

Interim conclusions.  These and other findings show that before children are 
exposed to any explicit training in formal systems for linear measurement or angle 
measure, they are sensitive to continuous spatial extent. This sensitivity is largely 
confined to reasoning about relative or proportional rather than absolute quantities, 
but there is some indication that successive divisions of continuous space—which 
can be regarded as nascent measurement units—might help young children gain 
greater precision through the first 5 years of development. Taken together, this work 
suggests that the foundations for reasoning about spatial units emerge quite early.

�Part II: Transition to Understanding of Conventional 
Measurement

Infants’ and young children’s intuitive reasoning and perceptual sensitivity to dif-
ferences in length, distance, and rotational measure are necessary but not sufficient 
for success on unit-based tasks in formal school settings. In this section, we begin 
by reiterating the key concepts children must learn to navigate the transition from 
intuitive reasoning about continuous extent to more formal reasoning that involves 
the application of discrete units to gain precision about these extents. We then 
briefly discuss how educators assist children in this transition by looking at common 
teaching techniques for unit-based measurement topics in mathematics. Finally, we 
identify some potential shortcomings in current instructional practices, and in doing 
so, strive to characterize some of the common misconceptions children develop 
regarding unit-based tasks.

Key concepts for children to master.  One reason that measurement may prove 
difficult for young children is that it requires them to integrate their preexisting 
imprecise intuitions about quantity and continuous extent with conventional, 
number-based measurement tools such as rulers. When using a simple tool like the 
ruler, children must understand a set of not-so-simple conventional rules such as 
what to count, where to start (and stop) counting, that the beginning of the ruler is 
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the zero-point, and the significance of the hatch marks and numbers on the ruler 
(Solomon, Vasilyeva, Huttenlocher, & Levine, 2015). Simultaneously, children 
must master several key ideas about spatial units more generally—they are consis-
tent in size within a given measurement instance; a single unit can be iterated to 
determine length; and units follow an inverse relation rule. That is, as the unit size 
increases, the number of units needed decreases.

Beyond learning the conventions of measurement tools and units, a true concep-
tual understanding of measurement requires that children can make transitive infer-
ences (e.g., if the length of A = B and B = C then A = C). More concretely, children 
must understand that to compare the length of two objects, one can measure the first 
object and then the second, providing a way to compare the sizes of two objects 
even when the measurements are separated by time, physical distance, or both 
(Sophian, 2007). This kind of transitive inference is not intuitive, and there is evi-
dence that children are not capable of this kind of thinking until at least 4 or 5 years 
of age (e.g., Bryant & Kopytynska, 1976; Miller, 1989; Piaget et al., 1960).

Cognitive biases can inhibit learning.  There are several cognitive biases that 
may inhibit children’s ability to master these important conventional rules about 
measurement. First, children have a tendency to attend to and count bounded objects 
(e.g., Sophian, 2007) or “countable entities” (Shipley & Shepperson, 1990). Yet the 
units on conventional measurement tools are spatial intervals, which are, in a sense, 
“non-objects.” The numbers and hatch-marks on rulers serve as countable distrac-
tors, obscuring the link between ruler markings and the spatial interval units they 
represent. Indeed, children who fail on unaligned ruler measurement problems (see 
Fig. 2.1a) succeed on measurement problems where the to-be-measured object is 
unaligned with respect to a set of discrete, adjacent circles, which are more readily 
countable objects than spatial interval units on a ruler (see Fig.  2.1b) (Solomon 
et al., 2015). On unaligned measurement problems with rulers, young children tend 
to make one of two kinds of errors (Lehrer, Jenkins, & Osana, 1998; Solomon et al., 
2015). They either read off the number on the ruler that aligns with the rightmost 
edge of the object (i.e., read-off error) irrespective of where the object begins, or 
count the hatch marks rather than the intervals of space that fall between an object’s 
left-most and right-most edges (i.e., hatch-mark counting error). This later strategy 
likely reflects an object counting bias because children are drawn to count the object 
(i.e., lines or nubers) rather than the spaces.

In addition to their documented bias to count objects, children also show a bias to 
estimate continuous quantities based on perceptual spatial cues alone even when a 
salient, helpful discrete cue is present. For example, in one experiment by Huntley-
Fenner (2001), preschool children were presented with two boxes. One box had 
three clear glasses full of sand, and one had two. When asked which box had more 
glasses, children could easily say that the box with three glasses full of sand had 
more glasses than one with two glasses. In this first case, participants were asked to 
make a judgment about discrete quantities using discrete units. But when asked 
which of the two boxes had more sand, children’s performance dropped significantly 
and was no better than when they were asked to compare piles of sand consisting of 
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these same amounts. In this second case, children were asked to make a judgment 
about a continuous dimension using a discrete unit—the glasses. Thus, although a 
discrete unit was readily available, children did not spontaneously use this option, 
and performance reflected the noisy guesses one would expect from a task asking 
children to compare continuous quantities based on approximate perceptual estima-
tion. Together, these cognitive biases likely interfere with children’s ability to grasp 
the function of spatial units, how they can be used, and how they are incorporated 
into conventional tools such as the ruler.

Traditional classroom instruction.  Children in American schools are typi-
cally given two different types of measurement instruction to help them understand 
and visualize spatial units. In the first, they are provided with unconventional units 
(e.g., paperclips, shoes, coins) and asked to measure an object or distance by lining 
up the units, end to end. While the goal of such an exercise is ostensibly to teach 
children about the importance of utilizing same-size spatial interval units—a key 
measurement concept—there is research suggesting that children do not spontane-
ously make the link between objects and spatial intervals. Children may see such an 
activity as a game in which the goal is to count objects, not to measure. Indeed, 
children often leave gaps between objects, overlap objects during an iterative pro-
cedure (Bragg & Outhred, 2004; Lehrer, 2003) or select units of differing, non-
standard sizes to line up along an object’s edge (Lehrer et al., 1998). Such errors 
indicate that children do not understand a fundamental aspect of measurement—
that it requires the use of adjacent equal-size units. Moreover, even if they execute 
the measurement correctly, they may not grasp that the objects used represent 
underlying spatial extents and may instead view the exercise as an object counting 
task (Solomon et al., 2015).

A second common classroom activity is to ask children to measure objects with a 
ruler by aligning the object with the leftmost edge (zero-point) of the ruler and read-
ing off the number at the rightmost edge of the object (Smith, Males, Dietiker, Lee, 
& Mosier, 2013). Such a procedure is effective when children perform it properly. 
Yet there is evidence that this type of instruction leaves children with a relatively 
shallow, procedural understanding of measurement. The measurement performance 

5 7 34 5 7 34
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Fig. 2.1  Sample measurement items: (a) unaligned ruler with inch units and (b) circles represent-
ing units. Question: “How many units long is the crayon?” The correct answer is 3. Common 
answers for the ruler item are 4 and 5, for the circles item the most common answer is 3
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of children in early elementary school is particularly poor on test items where objects 
to be measured are not aligned with the “0” point on the ruler, such as the problem 
depicted in Fig. 2.1a above (Clements, 2003; Lehrer et al., 1998; Solomon et al., 
2015; Wilson & Rowland, 1993) or when they are a given a “broken” ruler that does 
not begin at 0, but rather at some other non-0 starting point (Nunes & Bryant, 1996). 
Importantly, both the read-off and hatch-mark counting strategies, described above, 
consistently result in correct answers when the object to-be-measured is properly 
aligned at the 0-point of the ruler. In other words, classroom instruction that does not 
challenge children with difficult, shifted-object problems may allow misconceptions 
to go unnoticed by educators.

Different instructional needs.  Performance on these difficult shifted ruler 
problems raises questions about whether children may require different types of 
instruction depending on their specific misconceptions. Children who use the read-
off strategy tend to be younger or from lower socio-economic status backgrounds 
(Kwon, Levine, Ratliff, & Snyder, 2011; Solomon et al., 2015) and therefore may 
have less experience with measurement problems. They also tend to have lower 
spatial working memory than their peers who make hatch-mark counting errors, 
despite equal scores on a verbal working memory task (Congdon & Levine, 2017). 
Irrespective of the specific cause of their misconception, children who use the read-
off strategy have no trouble perceiving that an object does not begin at the start of 
the ruler, but do not know how to adapt their strategy to account for this unusual 
arrangement when asked how long an object is. This suggests that there may be 
something about how these questions are typically asked (i.e., “How long is the 
X?”) that leads children to assume they are being asked to determine the end-point 
of an object no matter where that object begins. Children of this age, around 5 years 
old, are also likely to say that two walking paths, one straight and one with a large 
bend in it are the same length if they have the same starting and ending points 
(Clements, 1999).

By contrast, children who count hatch marks are aware that determining length 
involves counting something, but appear to be distracted by an object-counting bias 
that draws their attention to the lines rather than the spaces. These children may 
have a firmer understanding of the pragmatics of the problem, but have not yet mas-
tered the ways in which rulers represent discrete spatial units. In other words, these 
children do not understand the relation between a single unit and the whole object 
that is being measured, and how that relation is represented by the ruler (Lehrer, 
2003). Overall, neither the read-off nor the hatch-mark counting strategy indicates 
an understanding of the concept of a unit as a measure of that involves uniform 
spatial intervals (Kamii, 2006; Martin & Strutchens, 2000).

International performance.  Alarmingly, children in the United States score 
lower on test items assessing measurement skills than on items assessing most other 
mathematical topics (Carpenter et al., 1988; Clements & Bright, 2003; Lindquist & 
Kouba, 1989; Mullis, Martin, Gonzalez, & Chrostowski, 2004; National Center for 
Educational Statistics, 2009). Specifically, when given a multiple choice test item 
akin to the one shown in Fig. 2.2, only 20% of US fourth grade students answered 
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correctly, a rate that is lower than chance and that was significantly lower than the 
international average (TIMSS, 2011). These struggles could potentially be due to 
limitations in current classroom instructional practices in the United States. Though 
there is little published research comparing specific instructional methods in mea-
surement across countries, there is some work suggesting that in the countries 
where children are generally more successful on measurement test items, like Japan 
(where 52% of fourth grade children answered that same problem correctly), chil-
dren are given more opportunities to engage in creative problem-solving and criti-
cal thinking than they are in the US (Kawanaka, Stigler, & Hiebert, 1999). These 
children spend less time practicing memorized procedures, and more time discuss-
ing and exploring ideas with the teacher. Though a causal link cannot be drawn 
between general cultural differences in teaching practices and differences in under-
standing of units, the parallels are suggestive of the idea that children in the US 
would benefit from deeper engagement in exploring the conceptual underpinnings 
of measurement.

Higher order measurement skills.  Even if children master the basic proce-
dures of linear measurement, they continue to struggle with unit-related concepts 
later into childhood. For example, many children find it difficult to understand the 
inverse relation of units—that you will need more units to measure something if the 
units are smaller, and fewer units if they are larger (Hiebert, 1984). First grade chil-
dren overwhelmingly rely on the number of units in a task, and will attempt to keep 
that number constant when re-measuring an object, even if the experimenter has 
changed the unit size. Hiebert argued these inverse relations are difficult for young 
learners because understanding them requires both (1) an understanding of conser-
vation (i.e., the idea that an object does not change length even when moved in 
space or measured a second time), and (2) an understanding of transitivity (i.e., the 
idea that two objects can be compared with a standardized measurement tool). 

Fig. 2.2  A test item similar to one included in the 2011 version of the Trends in International 
Mathematics Fourth Grade Assessment. The correct answer is b
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Hiebert claimed that children who have not yet mastered these two ideas tend to fall 
back on counting strategies to compare object lengths, irrespective of changes in 
unit size. Some research suggests that when task complexity is decreased, children 
as young as 7  years can succeed with unit conversion (Sophian, Garyantes, & 
Chang, 1997), but other work suggests that children continue to struggle as late as 
fourth grade, or 9–10 years of age (Vasilyeva, Casey, Dearing, & Ganley, 2009). For 
example, when given the following scenario, “It took Marc 8 steps to cross the room 
and it took Peter 5 steps. Who has the longer step?,” Fourth grade students tended to 
respond incorrectly that Marc had larger steps.

Another complex idea involved in a mature understanding of measurement is 
unit conversion. Even when given a short lesson to demonstrate that 5 centimeters 
is about the same as 2 in., children up through 8 years old make mistakes in judging 
the relative lengths of two objects that have been measured in different standard 
units (Nunes & Bryant, 1996). For example, they may state that a 3-cm stick is lon-
ger than a 2-in. stick, suggesting that they rely primarily on the number of units than 
on the number and size of units. Lastly, even after children understand the impor-
tance of standardized units, they continue to struggle with selecting the appropriate 
units for certain measuring tasks (Tipps, Johnson, & Kennedy, 2011). For example, 
first grade children might not know whether it is more appropriate to measure a 
computer screen with inches or feet. Currently, the Common Core State Standards 
do not explicitly suggest introducing these more advanced unit-related concepts 
until second or third grade, perhaps explaining why children show protracted under-
standing of these mathematical ideas (e.g., Clements, 1999; Tipps et al., 2011).

Area measurement.  While children’s understanding of linear measurement is 
important on its own terms, understanding units and how they represent equal parts of 
space also lays the groundwork for later understanding of mathematical concepts such 
as perimeter, area, and fractions. In linear measurement, there is only one dimension 
on which to compare two objects. In area measurement, there are two relevant dimen-
sions, making this a more difficult concept. Research shows that children consistently 
struggle on area measurement problems through at least fifth grade, frequently con-
fusing perimeter and area, for example (Lin & Tsai, 2003; Strutchens, Martin, & 
Kenney, 2003). Without a thorough understanding of units, children tend to fall back 
on visual comparison techniques that may have worked when comparing the linear 
extent of two objects, but are more difficult to apply successfully when comparing the 
area of two differently shaped objects (e.g., Yuzawa, Bart, & Yuzawa, 2000). 
Additionally, there is evidence that children rely heavily on memorized formulas to 
calculate the area of shapes without developing a conceptual understanding of why 
this procedure works (Barrantes & Blanco, 2006; Strutchens, Harris, & Martin, 2001).

Proportions and fractions.  Despite the fact that infants and young children 
have an intuitive understanding of proportion, understanding conventional fractions 
is notoriously difficult. Fractions, unlike whole numbers, require children to keep 
track of the relative magnitude of two different sets of units—the denominator rep-
resenting the number of partitions of a whole unit and the numerator, the number of 
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these units. It also requires that children understand the non-intuitive inverse rela-
tion between the size of the denominator and the magnitude of the fraction, a skill 
that is fundamentally linked to the idea of units of measure and is parallel to under-
standing the inverse relation between the size of the unit and the number of units in 
measurement (Sophian, 2007; Sophian et al., 1997).

Even with simple fractions, such as one-half, 4-to-7-year-old children who show 
an intuitive understanding of one half of a continuous quantity have extreme diffi-
culty when the quantity is discretized into units (Hunting & Sharpley, 1988). For 
example, they may be able to bisect a cookie roughly in half, but struggle to decide 
what constitutes half of a set of 12 blocks. Similarly, 6- to 10-year-olds succeed on 
proportional equivalence tasks when continuous quantities are used but not when 
these same quantities are divided into countable units. In this latter condition, 
instead of reasoning proportionally, children tend to rely on counting the number of 
“shaded” units, akin to attending only to the numerator of a fraction, or they count 
the total number of units (e.g., Boyer, Levine, & Huttenlocher, 2008).

These findings suggest that access to approximate proportional magnitudes is not suf-
ficient to learn how to map the number words of fractions to their proper unit referents. 
With more complex fractions, older children will commonly apply a label like “three-
fifths” to an image with, say, three shaded parts and five unshaded parts, rather than three 
shaded parts and two unshaded parts (e.g., Mix & Paik, 2008; Newcombe et al., 2015). 
Even middle school and high school students will try to add two fractions by simply add-
ing both numerators and both denominators (Kerslake, 1986). These errors indicate that 
children have a fundamental misunderstanding about how the denominator of a fraction 
delineates unit size while the numerator indicates the number of units.

Angular measurement.  Children’s difficulties with angle measurement share 
some parallels with their misconceptions about linear measurement (Clements & 
Battista, 1992; Mitchelmore & White, 2000). For example, children must master the 
ideas of equal partitioning of space, and must understand unit iteration (Clements & 
Stephan, 2004). There is also evidence that young learners have difficulty under-
standing the proper referent of the word angle (Gibson, Congdon, & Levine, 2015). 
Because of a quirk of the English language, the word angle can actually be used to 
refer to both the figure of an angle, composed of two rays extending from the same 
point, and to the measure of rotation between the rays (Clements & Stephan, 2004). 
This linguistic ambiguity likely contributes to longstanding misconceptions for 
children in elementary and even middle school who will focus on irrelevant proper-
ties such as the length of an angle’s sides in a figure, the area contained within the 
sides, or the absolute distance between the sides when making judgments about the 
size of angles (see Fig. 2.3; Clements & Battista, 1989; Lindquist & Kouba, 1989).

In school settings, angles are not typically introduced until second or third grade. 
Before that point, curricula tend to avoid proper spatial labels, instead calling angles 
“corners.” In addition, there is some evidence from case study observations that 
protractors (i.e., tools for measuring angular rotation), are challenging for children 
to understand and may be imbuing them with a sense of angle as a static measure 
rather than allowing them to imagine angles as a dynamic measure of rotation 
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(Clements & Burns, 2000). Given a paucity of research on the topic, it is currently 
unclear whether confusing use of the word “angle,” late exposure, conventional 
tools, or a combination of the three are to blame for children’s long-term miscon-
ceptions about angles. What is clear is that similar to other kinds of measurement, 
children struggle to make the transition from intuitive, perceptual reasoning about 
angles to a more formal understanding of angular rotation and angle size.

Interim conclusions.  Taken together, this rich literature on children’s difficul-
ties with measurement reveals a few consistent patterns. First, the transition from 
reasoning non-verbally about continuous spatial extent to understanding and visual-
izing discrete units of spatial extent is challenging for children across many subdo-
mains of measurement including linear measurement, angle, and higher-level skills 
like area and fraction understanding. The specific challenges include learning the 
proper referents of newly acquired spatial language (e.g., “length/long” does not 
always mean end-point; “units” on a ruler are not hatch marks or numbers; and 
“angle size” refers to a measure of rotation rather than the length of the lines that 
comprise the angle). Second, children must learn to use conventional unit-based 
tools and understand how those tools allow for transitive inference. Third, children 
must understand units themselves, which are a way to integrate intuitive under-
standing of continuous properties with exact numerical representations. Lastly, 
some of this work suggests that current instructional practices may be overempha-
sizing rote procedures or improper or ambiguous use of spatial language that could 
be leaving learners with poor conceptual understanding and thus, a shaky founda-
tion for later mathematics success.

�Part III: Training Interventions

It is clear that children face many challenges when making the transition from an 
intuitive understanding of continuous extent to a formal understanding of unit mea-
sures. In the final section of the chapter, we review interventions designed by 
researchers to scaffold children’s learning in the domains of linear measurement, 
area measurement, and angle understanding. Our aim is to showcase proven instruc-
tional techniques, while further clarifying the nature of children’s difficulties.

A. B.
Fig. 2.3  These two angle 
measures are equivalent, 
but as late as middle 
school, children will 
assume B is a larger angle 
due to overall size, line 
length, or distance between 
the rays
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Improving spatial visualization of linear measurement units.  To date, the 
majority of research on linear measurement has documented the nature of children’s 
difficulties and misconceptions. Only a small number of studies have focused on 
correcting those misconceptions and helping children visualize how discrete units 
can comprise continuous lengths. One research group did an in-depth case study 
with eight students who were given a number of different measurement activities 
and who were continuously assessed across nearly a full year (Barrett et al., 2012). 
Based on their findings, the authors proposed several instructional tasks that could 
move children from one conceptual stage of measurement understanding to the 
next. For example, having children draw their own rulers, having an instructor over-
lap units to get children to think about why that is problematic, or having an instruc-
tor explicitly teach about how to deal with fractions of a unit. At the highest level, 
the authors argue that learning about intervals as countable units was not sufficient 
to promote a full conceptual understanding of measurement, so they proposed a les-
son to link the ruler, hatch marks, spaces, and numbers all at once. This work, while 
certainly valuable, used many instructional strategies at once, and did so over a long 
period of time, making it difficult to ascertain which specific features of the instruc-
tion might have driven children’s improvement.

In a more recent study, researchers tested whether exposure to and training on 
measurement test items with objects shifted away from the start of the ruler (unaligned 
problems) might be beneficial to learning (Kwon, Ping, Congdon, & Levine, under 
revision). The children completed a brief training lesson with either unaligned ruler 
problems or more traditional aligned ruler problems, with the object starting at the 
0-point on the ruler. The results showed that exposure to unaligned ruler problems 
during training was crucial for learning. The authors argued that the unaligned ruler 
problem training was powerful because it provided children with self-discovered 
evidence that disconfirmed their previous strategies, a technique that can lead to bet-
ter learning outcomes (e.g., Ramscar, Dye, Popick, & O’Donnell-McCarthy, 2011; 
Rescorla & Wagner, 1972). For example, if a child who used the hatch-mark count-
ing strategy initially believed an object to be five units long, they would generate a 
guess of 5, then count the spaces and quickly discover that they were only at the 
number 4 when reaching the end of the object (Kwon et al., under revision).

A second study used a similar procedure to test the relative efficacy of different 
ways of drawing attention to a spatial interval as a unit of measure. One group of 
children was given practice on shifted-object measurement problems with discrete 
plastic unit chips, and a second group was given the same instruction but was taught 
to use a thumb-and-forefinger “pinching” gesture instead of the unit chips (Congdon, 
Kwon, & Levine, 2018). Results showed that children who started the session by 
counting hatch-marks improved markedly after either type of instruction, whereas 
children who began the session with the read-off strategy improved much more after 
unit-chip instruction than gesture-based instruction. These findings suggest that 
even within a single age group and single domain, children at a lower level of con-
ceptual understanding may need more concrete scaffolding to promote learning. 
Notably, children who used the read-off strategy and received unit chip training 
occasionally switched their strategy to a hatch-mark counting strategy after training. 
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This strategy shift suggests that the training helps by causing children to reevaluate 
their understanding of the referent of “unit”—a process that occasionally goes awry 
due to an object counting bias.

Teaching area measurement.  A solid understanding of linear measurement 
can help children when they encounter more difficult problems, such as measuring 
the area of a two-dimensional figure. As discussed in Part II, a true understanding of 
area measurement requires children to coordinate multiple dimensions and to under-
stand, conceptually, how formulas for calculating area represent two-dimensional 
space. In one training study, researchers tested what type of instruction best pro-
moted this understanding (Huang & Witz, 2011). They taught three groups of fourth 
grade students. One group received practice with applying formulas (i.e., proce-
dural instruction). Another group focused on the properties and features of 2-D 
geometric shapes and how those features conceptually related to surface area (i.e., 
conceptual instruction). The third group received both types of instruction simulta-
neously in an integrated lesson. The results revealed that children who received both 
types of instruction made better decisions about and more accurately explained 
challenging area calculation problems than children who received either procedural 
and conceptual instruction in isolation. The findings echo those of linear measure-
ment training studies, and suggest that optimal interventions for unit-based tasks 
should target both procedural and conceptual understanding (e.g., Congdon, Kwon, 
& Levine, 2018; Kwon et al., under revision).

Spatial visualization of angular measurement.  Another unit-based concept 
that is not typically introduced until later in school is that of angle measurement 
comparison. In one recent study, researchers tested whether children’s word-learn-
ing biases might explain children’s well documented misconceptions about angles 
(Gibson et al., 2015). The study focused on preschool aged participants who had not 
yet been introduced to angles in formal school settings. All children were taught 
about angles, but half of the children were given a second nonsense word to repre-
sent the angle figures (i.e., “toma”), while the control group heard the word “angle” 
used as it is in traditional instruction, ambiguously referring to both the angle figure 
and the measure of the angle. Children in the experimental condition improved sig-
nificantly more than the control group after training. The finding was driven by 
improvement on trials in which the larger overall angle figure was not the figure 
with the larger angle measure (Fig. 2.4, panel c). These results suggested that chil-
dren’s early misconceptions about angle may stem, in part, from their propensity to 
apply novel labels to an entire object rather than a feature of that object (e.g., 
Hollich, Golinkoff, & Hirsh-Pasek, 2007; Landau, Smith, & Jones, 1988; Markman 
& Hutchinson, 1984). Only when given a label for the angle figure did children then 
search for another referent of their newly acquired spatial vocabulary. This study 
also offered some convincing evidence that children as young as 4 years old are 
capable of successfully learning about angles—a much younger age than is tradi-
tionally targeted for this type of lesson.

E. L. Congdon et al.



41

In the 1990s, there was some promising research with older children using a 
computer programming language, Logo, which was adapted to help children to 
learn simultaneously about angle and linear measurement. In this platform, learners 
could direct a small, computerized turtle to turn a certain number of degrees left or 
right and move certain distances forward to accomplish simple goals (e.g., “go 
around the pond to get to the house” or “draw a rectangle”). Researchers argued that 
such a game accomplished two goals. First, it required children to apply numerical 
values to their perceptual intuitions, and second, it revealed the dynamic nature of 
mathematics, by, for example, emphasizing that degrees of an angle are really about 
rotation and the length of a side is about the distance it transverses (Clements & 
McMillen, 1996). Indeed, after playing with a game like Logo, children in middle 
school and high school age had more accurate, precise ideas about mathematical 
concepts like shapes, length and angle than those who followed more traditional 
instructional methods (Clements & Battista, 1989; Clements & Battista, 1992).

�Conclusion

Despite young children’s initial successes perceiving and processing continuous 
spatial properties, understanding how units represent those properties is a difficult 
transition, rife with the misconceptions. In this chapter, we have argued that to suc-
cessfully make this leap, children must integrate continuous spatial properties with 
discrete representations of exact number, and they must identify the proper referents 
of newly acquired key spatial terms, including unit, angle, length, area, perimeter. 
Only in doing so can they begin to master higher-order unit-based concepts like 
transitivity, conservation of length/area/rotation, and the inverse relations between 
number of units and unit size. It may be helpful for researchers and educators inter-
ested in improving children’s learning outcomes to be aware of the potential pitfalls 
children face as a result of their cognitive biases.

Fig. 2.4  Sample test trials from Gibson et al. (2015). Panel c was the type of trial that was most 
difficult for all children at pre-test, with children incorrectly selecting the larger figure significantly 
more than chance. After training, the experimental group selected the correct answer (i.e., the 
larger angle) at rates significantly above chance
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Studies aimed at teaching children the role and function of units have revealed 
several effective techniques. First, by exposing children to difficult exemplars of 
unit-based problems, such as shifted-object or “broken ruler” linear measurement 
problems, we can help children avoid applying a memorized procedure, and chal-
lenge them instead to reevaluate their preexisting strategies through self-discovered 
disconfirming evidence about their intuitive strategies. Second, we can make the 
referents of ambiguous spatial language more transparent by becoming aware of 
children’s misconceptions and then explicitly pointing out through words and 
actions what spatial language does and does not mean. Third, hands-on, dynamic 
practice counting units, particularly in the presence of a conventional measuring 
tool, may help children use their intuitive reasoning about continuous properties to 
visualize and interpret discrete units in a structured way. Finally, a more radical sug-
gestion is to augment existing mathematics curricula in a way that helps children 
establish a stronger foundation in proportional reasoning and relative comparisons 
of magnitude well before transitioning to numerical unit-based instruction. Such a 
modification could take advantage of children’s natural propensity to reason about 
the intensive (e.g., proportional, comparative) properties of measurement problems 
before they are asked to master formal systems of extensive measurement (e.g., 
absolute extent, units). It is an open question as to whether this approach could ease 
the ultimate transition to formal systems of measurement. In the meantime, it seems 
that activities that link the intensive and extensive properties of measurement by 
using representations of units to help to concretize abstract labels and spatial prop-
erties of extent are maximally beneficial for improving student learning outcomes.

The lessons learned in this domain of mathematics, measurement, can likely be 
applied to many other areas. In this chapter we reiterate that the goal of a modern 
education is not for children to memorize tricks and procedures, but rather to 
develop a deep conceptual understanding of general principles, irrespective of the 
specific domain. We use units of measure as an example to outline some of the ways 
in which findings from cognitive science and psychology may assist in this goal by 
exploring the cognitive underpinnings of mathematical understanding in infants and 
young children, explaining the mechanisms that underlie some of the errors and 
misconceptions children face in formal schooling, and helping to promote crucial 
development beyond procedural knowledge to deeper conceptual understanding.
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