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Chapter 16
Part II Commentary 2: Disparities 
and Opportunities: Plotting a New Course 
for Research on Spatial Visualization 
and Mathematics

Kelly S. Mix and Susan C. Levine

Although the chapters contained in this volume focus on the singular topic of spatial 
visualization as it relates to mathematics, they span two distinct fields of study with 
different literatures and different scholarly approaches. In many ways, despite their 
common goals, the two sets of chapters seem worlds apart. We are reminded of Susan 
Carey’s classic developmental psychology book, Conceptual Change in Childhood 
(1985), that discussed incommensurate ideas in science and the ways children recon-
cile structurally disparate conceptual systems as they grow and learn. The gist was 
that when one conceptual structure lacks isomorphism with another conceptual 
structure, it is a significant challenge. We believe the fields represented in this vol-
ume face a similar challenge. Yet, these disciplinary asymmetries can also define and 
stimulate fruitful new research questions, as the advances made in one discipline 
raise new questions for the other. In this commentary, we aim to identify such asym-
metries and consider what new research directions they suggest. We organize our 
comments around three major questions that cut across research from both fields:

 1. What is spatial visualization?
 2. How does spatial visualization relate to mathematics?
 3. How are these relations reflected in development and learning?

K. S. Mix (*) 
Department of Human Development and Quantitative Methodology,  
University of Maryland, College Park, MD, USA
e-mail: kmix@umd.edu 

S. C. Levine 
Departments of Psychology, and Comparative Human Development and Committee on 
Education, University of Chicago, Chicago, IL, USA

The original version of this chapter was revised. The correction to this chapter is available at  
https://doi.org/10.1007/978-3-319-98767-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98767-5_16&domain=pdf
https://doi.org/10.1007/978-3-319-98767-5_16
mailto:kmix@umd.edu
https://doi.org/10.1007/978-3-319-98767-5_19


348

 What Is Spatial Visualization?

All of the chapters grappled with the nature of spatial visualization, but the two 
fields approached this issue somewhat differently. Some of the education chapters 
seemed willing to commit to a specific underlying process model as a starting 
assumption. For example, Battista invoked the construct of mental models (i.e., 
Johnson Laird, 1980), which are schematic representations arranged in space but 
without necessarily having a visual component. Gutiérrez et al. adopted Gutiérrez’s 
(1996) mental imagery framework, which rests on the assumption that spatial pro-
cessing uses visual images. In both cases, the definition of spatial visualization was 
presented early in the chapter as a way of contextualizing the research to follow.

In contrast, the psychology chapters tended to see the nature of spatial visualiza-
tion as an open question. Although spatial visualization has certainly been defined 
in the psychology literature, the definitions are based on observable behaviors that 
seem to require similar processing, rather than a commitment to any particular rep-
resentational format. For example, a common definition of spatial skill is the ability 
to mentally manipulate objects. Such manipulation may involve mental models or 
visual imagery, but need not. Indeed, pinning down the underlying structure of spa-
tial skill has been a preoccupation of psychologists for decades (see Mix & Cheng, 
2012, for a review) and this focus is clearly reflected in the psychology chapters 
included here. For example, Young, Levine, and Mix (this volume) focus on ways to 
model the underlying structure of spatial thought and how to interpret the results of 
different modeling approaches.

Because psychologists continue to work toward a generally accepted process 
model for spatial thought, it may be premature for related literatures to make strong 
claims regarding the underlying representational format of spatial visualization. For 
example, it may seem uncontroversial to claim that spatial representations are visual 
images (particularly because we call it “spatial visualization”), but there have been 
challenges to this view in the psychology literature. Research has shown that 
although spatial development is delayed and more error-prone in blind versus 
sighted children, blind children can perform tasks that require spatial visualization 
(Bigelow, 1996; Landau, Spelke, & Gleitman, 1984). A long debate in the psycho-
logical literature also centered on whether ordered syllogisms are solved via mental 
imagery or linguistic information, admitting the possibility that even tasks that seem 
likely to require spatial visualization may not (e.g., Clark, 1973; Huttenlocher & 
Higgins, 1971; Trabasso & Riley, 1975; Sternberg, 1980). Finally, there has been 
discussion about the level of visual detail needed for mental models to be useful. 
Research suggests that sparse, schematic spatial representations are better for math-
ematics problem solving than detailed, pictorial images (e.g., Hegarty & 
Koszhenikov, 1999). As Huttenlocher, Jordan and Levine (1994) pointed out, men-
tal models may resemble physical models in some ways, but these representations 
need only preserve relevant critical features for problem solving situations when 
used for mathematics. When solving a mathematics problem involving number of 
pieces of fruit, for example, it is not necessary to accurately represent the color of 
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the fruit, but only the number of pieces of fruit. If critical features are not preserved, 
and irrelevant features are, an erroneous answer may be obtained.

One new direction suggested by this contrast may be to use the paradigms offered 
by the mathematics education studies to more precisely determine the nature of the 
underlying representations. For example, the diagrams and visual supports used by 
Gutiérrez et al. or Herbst et al. could be manipulated to be more or less schematic. 
It might also be possible to see whether students’ self-generated physical supports 
change over time, perhaps becoming less detailed and visual as they master a par-
ticular task. Another new direction would be to reframe some of the mathematics 
education work using current psychological theory. The mental models literature of 
the 1980s and 1990s provided part of the foundation for what has become the litera-
ture related to embodied cognition, or the idea that abstract thought is grounded in 
bodily movement, perception, and action (Barsalou, 2008; Clark, 1998, 2008; 
Glenberg, 2008, 2010; Lakoff & Nunez, 2000; Novack, Congdon, Hemani-Lopez, 
& Goldin-Meadow, 2014; Schöner & Spencer, 2015; Thelen & Smith, 1996). This 
literature may offer a stronger mechanistic explanation for phenomena such as those 
identified by Battista, and it would be interesting to see what new questions arise 
from a thorough meshing of the two. Sinclair et al.’s chapter provides a nice exam-
ple of this (i.e., integrating mathematics education with theories of embodied cogni-
tion). Lowrie and Logan also provided a detailed and rich integration of current 
psychological theory regarding the nature of spatial thought and children’s under-
standing of geometry. Perhaps extending this approach to other areas of mathemat-
ics content would be fruitful.

 How Does Spatial Visualization Relate to Mathematics?

The central thesis of this book is that spatial visualization relates to mathematics, so 
all the chapters work from this premise. However, there are many potential charac-
terizations of this relation and the chapters differed along several lines.

One salient distinction has to do with how inherent spatial processing is to math-
ematical thought. At one extreme, space can be seen as the representational medium 
for abstract thought and is thus inherently engaged whenever people perform math-
ematical tasks. This perspective is exemplified, to some extent, in all of the psychol-
ogy chapters. For example, Jirout and Newcombe point to evidence that the 
meanings of numbers are represented as relative quantities using spatial scaling. 
Congdon et al. emphasize the role of measurement units in conceptualizing quantity 
across a range of tasks from counting whole objects to ordering fractions. On this 
view, individual differences in mathematics performance could be construed as 
individual differences in spatial processing. This strong view was not as evident in 
the mathematics education chapters. This is particularly surprising given that all 
focused on geometry—a mathematics topic for which, if any, spatial reasoning is 
arguably most inherent. Yet, only Battista’s chapter made a strong argument along 
these lines. It was also interesting that none of the mathematics education chapters 

16 Part II Commentary 2: Disparities and Opportunities: Plotting a New Course…



350

focused on the inherent nature of spatial processing in numerical thinking more 
broadly, though this was mentioned by Lowrie and Logan.

An alternative to this strong view is one in which spatial skill is not inherent to 
mathematical thought, but rather is an optional aid that may be recruited to ground 
concepts or support reasoning. This seems to be the view of Herbst et al. in that their 
spatial visualization activity is constructed to ground geometric problem solving in 
a real world context. Similarly, the explicit aim of Gutiérrez et al. is to develop spa-
tial skills that may be recruited when children are reading diagrams used in mathe-
matics, and Sinclair et al. demonstrate the benefit of figure drawing in children’s 
understanding of geometry. In these studies, the idea seems to be that practice in a 
spatial skill will transfer back to the more spatial aspects of mathematics in a sup-
portive way.

An interesting question following from this perspective is whether children 
spontaneously recognize how spatial reasoning can help them in mathematics and 
the extent to which teacher direction is needed to utilize spatial reasoning. The edu-
cation chapters allude to the mapping between mental representations, real world, 
and symbols (including vocabulary) without taking advantage of the recent devel-
opments in structure mapping theory, relational learning, or perception-action/
embodied cognition. These literatures may help in the design of instructional 
approaches that avoid the problems of lack of transfer or encapsulated learning. 
Indeed, by bringing the education and psychological literatures into closer align-
ment, it is likely that real advances in understanding the relation of spatial and 
mathematical learning could be made, with beneficial consequences for instruc-
tional approaches and children’s learning outcomes.

Another contrast was in the level of multidimensionality acknowledged for either 
spatial skill, mathematics, or both. Nuances in spatial representation are very salient 
to psychologists, whose research centers more squarely on underlying cognitive 
processes. Attention to the multidimensionality of spatial thought permeated these 
chapters. There was also attention paid to the multidimensionality of mathematical 
thought but this was relatively impoverished and rough compared to what could be 
said about the multidimensionality of spatial thinking.

In contrast, the mathematics education chapters were striking in their fidelity to 
the mathematics underlying their phenomena of study, as well as the use of concep-
tual distinctions that arise purely from consideration of mathematics itself. Through 
careful analysis of the eventual learning outcomes and potential conceptual pitfalls 
along the way, these authors identified specific mathematical constructs or miscon-
ceptions that might benefit from spatial supports. This orientation is beautifully 
illustrated in Battista’s chapter, in which he examined children’s error patterns dur-
ing geometry proofs. Interestingly, although Battista acknowledged the potential 
multidimensionality of spatial concepts as well (particularly in reference to 
Newcombe & Shipley’s 2015 framework), this multidimensionality did not play a 
major role in the mechanism of change. The role of spatial grounding was clearly 
acknowledged, but the specific nature of that grounding seemed less important.

In terms of next steps, there seems to be great potential in a synthesis of these 
two approaches—that is, a rich, detailed account of underlying cognition married 

K. S. Mix and S. C. Levine



351

with a rich, detailed account of underlying mathematics. Moves in that direction are 
likely to reveal an entire host of new research questions and insights that emerge 
from drilling down to a deeper, more specific level of shared processing and bidirec-
tional influence. Each of the mathematics education chapters offers a slice of math-
ematical development that is already fleshed out at this level. One approach may be 
to revisit these accounts with an eye toward achieving equally nuanced explanations 
of the same specific phenomena based on cognitive processing, and testing these 
explanations empirically.

 How Are These Relations Reflected in Development 
and Learning?

A final question all of the chapters addressed was how relations between spatial 
skill and mathematics play out as children learn and change over developmental 
time. The chapters presented an interesting contrast between those describing the 
stages of development and those identifying the mechanisms that propel children 
through these stages. Historically, psychologists such as Jerome Bruner and Jean 
Piaget attempted to achieve both aims—to describe developmental stages and iden-
tify broad mechanisms of change. In the present volume, the two aims seemed to 
separate along the disciplinary lines.

The mathematics education chapters tended to offer detailed, carefully articu-
lated stage theories. For example, though less rigid than a classical stage theory, 
Battista’s learning trajectories seem very much like a Piagetian description of devel-
opment, with movement from holistic to decomposed concepts, and from concrete 
to logic-based reasoning. In terms of learning mechanisms, the education chapters 
were more focused on the potential benefits of various spatial activities. For exam-
ple, Gutiérrez et al. described the impact of training on a perspective-taking task. 
Herbst et al. sought to improve geometric reasoning via practice modeling three- 
dimensional space. Sinclair et al. discussed the role of drawing in understanding 
geometry. These are creative instructional approaches that show promise; however, 
they beg a host of questions related to the underlying processes. What process model 
can explain why they work? What is the active ingredient in these approaches that 
propels change?

For the psychologists’ part, there was a strong emphasis on the mechanisms of 
change and less attention paid to typical developmental or learning trajectories. For 
example, Cipora et al. point to the correlations between spatial skill and mathemat-
ics performance, and raise the question of whether variation in spatial skill is driv-
ing the correlation, or perhaps the reverse (i.e., variation is arithmetic understanding 
leads to more sophisticated and accurate spatial representations). Increasing under-
standing of the mechanisms that drive the strong relation between spatial and math-
ematical thinking is an important goal for successfully incorporating spatially rich 
instructional strategies into the mathematics curriculum.
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This is another dimension for which circling back and integrating the two 
literatures may be beneficial. For example, future research might focus on questions 
such as whether the mechanisms of change identified by psychologists can be manip-
ulated experimentally so as to yield the various stages identified by the mathematics 
education researchers. Alternatively, a review of the detailed shifts identified by the 
mathematics education chapters may suggest new or revised mechanisms of change 
that have not been recognized previously. A bidirectional analysis and program of 
research such as this has the potential to yield exceptionally strong instructional 
approaches that may be missed by taking only one approach or the other.

In summary, the chapters in this volume make exciting strides toward understand-
ing the relations between spatial skill and mathematics, but often do so in very differ-
ent ways or from perspectives that are not easily aligned. By integrating these 
differing orientations, there is potential to increase our understanding and design 
more effective instructional interventions.
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