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Chapter 14
Visualization Abilities and Complexity 
of Reasoning in Mathematically Gifted 
Students’ Collaborative Solutions 
to a Visualization Task: A Networked Analysis

A. Gutiérrez, R. Ramírez, C. Benedicto, M. J. Beltrán-Meneu, and A. Jaime

Abstract  We analyze the solutions given by secondary school mathematically 
gifted students to a collaborative task designed to promote the development of stu-
dents’ competence of visualization. Each student was provided with two different 
orthogonal projections of a set of buildings made of cubes and other verbal data, and 
they were asked to place the buildings on a squared grid. We analyze students’ use 
of visualization abilities and the complexity of their reasoning. Results show that 
there is a relation between the objective of students’ actions and the kind of visual-
ization abilities used, and, also, between students’ strategies of solution and the 
cognitive demand necessary to fulfill them. Finally, we network both analyses to 
gain insight and look for global conclusions.
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�Introduction

Teaching mathematics is more effective when it includes diagrams, pictures, draw-
ings, etc. visually representing concepts and relationships. To take advantage of this 
teaching methodology, students should develop visualization abilities and know 
effective ways of using visualization as part of their mathematical reasoning. The 
use of visualization in mathematics classrooms is considered an important object of 
research in mathematics education (Battista, 2007; Presmeg, 2006; Rivera, 2011). A 
significant open research question on visualization is the need to identify aspects of 
classroom cultures which promote the use of visualization in mathematics (Presmeg, 
2006). To answer this question, we investigated the promotion of visualization in 
cultures of collaboration between mathematically gifted students (m-gifted students 
hereafter). Collaborative learning has proved to be beneficial (Davis, Rimm, & 
Siegle, 2014) for such students, but research on ways to deepen its effects is needed.

Solving mathematical tasks dealing with visualization requires the use of two kinds 
of elements (Gutiérrez, 1996): external data, mainly objects (e.g., pictures or real mod-
els of geometrical figures) and verbal information (e.g., written statements or oral 
information), and internal elements, mainly visual elements (e.g., mental images; 
Presmeg, 1986), visual thinking (to manage visual information) and mathematical rea-
soning. Two visualization processes—interpretation of figural information (IFI) and 
visual processing (VP) (Bishop, 1983)—and several visualization abilities (Del 
Grande, 1990) control the intrapersonal communication between external and internal 
data and the interpersonal communication between different subjects. We designed a 
workshop aimed at promoting the development of m-gifted students’ use of visualiza-
tion abilities and collaborative learning. To capitalize on the benefits of collaborative 
learning for m-gifted students, the workshop encouraged the interpersonal communi-
cation to increase the use of visualization abilities by providing each student with only 
a part of the data for the tasks (Fig. 14.1), so they needed to share information, and they 
had to verbally communicate visual information efficiently to solve the problem.

In this chapter, we present a networked analysis (Bikner-Ahsbahs & Prediger, 
2010) of three pairs of m-gifted students’ use of visualization abilities and the com-
plexity of their reasoning while solving the problems. This introduction presents an 
overview of recent research on the constructs that conform the theoretical 
background of our research, describes the problems posed in the workshop, and 
states the research objectives.

�Visualization in Mathematics Education

Researchers in psychology, mathematics, and mathematics education possess 
diverse interpretations of terms such as visualization, visual reasoning, spatial abil-
ity, and so on. Gutiérrez (1996) presented a model integrating partial results from 
diverse areas, which characterize the different visualization components and that is 
relevant for mathematics education research (Presmeg, 2006).
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Among the different definitions of visualization pertinent to mathematics educa-
tion found in the literature, we highlight those comprising the types of images, pro-
cesses, and abilities necessary to produce, analyze, transform, and communicate 
visual information related to objects, models, and geometric concepts (Arcavi, 2003; 
Gutiérrez, 1996). Visualization consists of four main elements (Gutiérrez, 1996, 
p. 10): Mental images are “any kind of cognitive representation of a mathematical 
concept or property by means of visual or spatial elements.” External representations 
are “any kind of verbal or graphical representation of concepts or properties including 
pictures, drawings, diagrams, etc. that helps to create or transform mental images and 
to do visual reasoning.” A process of visualization is “a mental or physical action 
where mental images are involved.” Visualization abilities are stable capacities of the 
subject which are necessary for effective learning of geometry (Bishop, 1980). In 
general, different visualization abilities have to be mastered “to perform the necessary 
processes with specific mental images for a given problem” when solving mathemati-
cal tasks (Gutiérrez, 1996, p. 10). Del Grande (1990) compiled several visualization 
abilities with great relevance for the development of mathematics students.

Several authors have emphasized the importance of visualization in mathemati-
zation (Arcavi, 2003; Clements & Battista, 1992) and problem solving (Ozdemir, 
Ayvaz-Reis, & Karadag, 2012), but results of research do not show a unified posi-
tion on the relation between visualization and mathematical giftedness (Lean & 
Clements, 1981; Ryu, Chong, & Song, 2007; Van Garderen, 2006), although other 
recent research has shown significant evidence of the relation between visual per-
ception and mathematical ability (Ramírez, 2012; Rivera, 2011).

�The Complexity of Mathematical Reasoning

The tasks that teachers pose to their pupils are an important element to promote 
m-gifted students’ learning of mathematics. There are different criteria to assess 
their suitability for students. A relevant criterion is the cognitive complexity of their 
solutions. Felmer, Pehkonen, and Kilpatrick (2016) argued that it is necessary to 
pose cognitively demanding tasks to make students engage in higher order thinking 
and improve the quality of their learning of mathematics. We agree with this crite-
rion, since the problem solving experiment we present here was aimed to make 
students struggle to solve an unusual challenging task.

Student A Student B

Data for

student A

Data for

student B

Mental

elements
Mental

elements

Task (external data)

Communication

Fig. 14.1  Components of 
the virtual workshop
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The cognitive demand of a task is “the kind and level of thinking required of 
students in order to successfully engage with and solve the task” (Stein, Smith, 
Henningsen, & Silver, 2009, p. 1). Smith and Stein (1998) elaborated the Levels of 
Cognitive Demand, which organize mathematical tasks in four levels (memoriza-
tion, procedures without connections, procedures with connections, and doing 
mathematics) depending on the cognitive effort necessary for students to solve 
them. This model has been acknowledged as a useful tool for teachers to promote 
students’ higher order thinking (NCTM, 2014; Schoenfeld, 2014). We present this 
model in detail in Section “Theoretical Background”.

The levels of cognitive demand have been used mainly to train teachers in iden-
tifying the levels of the tasks they select for their classes and maintaining their 
intended level during the classes (Smith & Stein, 1998). All studies we have read 
assigned levels of cognitive demand to tasks by analyzing their statement and the 
solution considered as correct by teachers. This procedure does not acknowledge 
that most mathematics tasks may be solved correctly in several ways, requiring 
from students different degrees of cognitive effort. Furthermore, there are not stud-
ies about classification of tasks that attend to the needs of m-gifted students. To 
overcome these issues, we have adapted the levels of cognitive demand in an inno-
vative way to the characteristics of the visualization tasks, to analyze students’ out-
comes during the solution of problems (Benedicto, Gutiérrez, & Jaime, 2017). On 
the other hand, the characteristics of the levels, as presented in Smith and Stein 
(1998), are generic and a bit ambiguous, not sufficiently precise to be applied to the 
visualization tasks nor to the m-gifted students’ answers we have analyzed, so we 
have also particularized the definitions of the levels of cognitive demand to the spe-
cific context of spatial visualization and the type of tasks we deal with in this chap-
ter. This way of using the levels has proved to be a reliable framework to identify 
tasks adequate to students with diverse mathematical capabilities, in particular to 
m-gifted students (Benedicto, Acosta, Gutiérrez, Hoyos, & Jaime, 2015).

�Networking Theories in Mathematics Education

In mathematics education research, several theories live together to contribute, from 
different approaches, to provide complementary analysis or solutions to a specific 
mathematics education issue. Researchers usually adopt one theoretical framework to 
carry out their research, but there is a growing interest in establishing links between 
different theories, to take advantage of the most useful components of each one by mak-
ing interwoven analyses of data. Bikner-Ahsbahs and Prediger (2010) considered that:

… networking strategies are those connecting strategies that respect on the one hand the 
pluralism and/or modularity of autonomous theoretical approaches but are on the other 
hand concerned with reducing the unconnected multiplicity of theories and theoretical 
approaches in the scientific discipline. (p. 492, italics added)

There are different ways of networking theoretical approaches depending on the 
objectives aimed and the strategies used for finding connections (Bikner-Ahsbahs & 
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Prediger, 2014). We are interested in the networking strategy of combining, since 
we have combined the theories of visualization abilities and the levels of cognitive 
demand to analyze the outcomes of m-gifted students solving some visualization 
tasks. We do not intend to merge both theories, but to use them as complementary 
analytical tools to gain insight into the data of the experiment.

�A Collaborative Visualization Task

The experiment that we present was based on a set of collaborative visualization 
tasks that were designed to be solved by a pair of students linked by videoconfer-
ence. The objective of the tasks is to place a set of colored buildings on a squared 
grid. Buildings are made of equal interlocking cubes, with all buildings in the same/
different color having the same/different height. The data are the four side orthogo-
nal projections (north, south, east, and west views hereafter) and other data like the 
number of buildings of each color and some restrictions in the positions of the build-
ings. Each student is provided with only part of the data, which is not sufficient to 
solve the task. Therefore, students have to gather together their data to succeed in 
solving the task, with the restriction that they cannot share graphical information 
(pictures, drawings, etc.), although they can describe it verbally.

The buildings tasks consist of two parts. The first part is an introduction for stu-
dents who do not know orthogonal projections; it presents a perspective representa-
tion of a city built on a squared grid (Fig. 14.2) and students are asked to make the 
buildings with cubes and place them on a paper grid. Then, students are guided by 
the teacher to compare their view of the buildings with the orthogonal projections 
provided (Fig. 14.2).

For the second part, each student is provided with a set of interlocking colored cubes, 
a 2  cm. squared grid oriented with the cardinal points and a coordinate system 
(Fig. 14.3), two views of another set of buildings, information about the number of 
buildings and their colors, and some restrictions to the position of the buildings (see an 
example in Table 14.5). Students are asked to write the coordinate numbers in the marks 
near the axes based on the information provided in the views. Finally, they are asked to 
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Fig. 14.2  An example of the information provided in the first part of the buildings tasks
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place the buildings (made with the cubes) on the grid (Fig. 14.3 shows a solution). 
Several variables may modify the difficulty of the tasks, such as the number of buildings 
in each line of the grid, buildings hidden in some views, or the number of solutions.

�Research Objectives

To solve this kind of task successfully, students have to make extensive use of visu-
alization. Furthermore, as the communication between the students is only verbal, 
they have to use their visualization competence to convert visual information into a 
meaningful verbal explanation, and vice versa. In the tasks we present, we will con-
centrate on looking at the visualization abilities. Our research objective is to analyze 
the use of visualization made by pairs of students during their interactions. Such 
objective is made operative by the following specific objectives:

	1.	� Analyze the use of visualization abilities by pairs of students while solving the 
buildings task, looking for trends and relationships between abilities used and 
students’ aims at that moment.

	2.	� Analyze the variations in the cognitive effort made by pairs of students while 
solving the task, looking for relationships between levels of cognitive demand 
and kinds of actions made.

	3.	� Relate the results from objectives 1 and 2 into a networked analysis of students’ 
behavior, looking for relationships between use of visualization abilities and lev-
els of cognitive demand.

�Theoretical Background

We devote this section to present in detail the three theoretical components ground-
ing the analysis of data. First, we characterize the visualization abilities as used in 
the context of the buildings tasks. Then, we characterize the levels of cognitive 

Fig. 14.3  The grid provided in the second part of the buildings tasks and a solution to the task
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demand particularized to the specificities of the tasks. Finally, we discuss the net-
working of both theoretical models.

�Visualization in Mathematics Education

We consider visualization as “the set of types of images, processes, and skills neces-
sary for students of geometry to produce, analyze, transform, and communicate 
visual information related to objects, models, and geometric concepts” (Gutiérrez, 
1996, p. 9). We analyze the presence of visualization in students’ outcomes by iden-
tifying their use of visualization abilities, which constitute one of the four main 
elements of visualization described in the Introduction section. We do not analyze 
the processes of visualization because they are ever present throughout the solution 
of the tasks, so they do not provide relevant information on students’ behavior, and 
students’ mental images because we did not have a reliable tool to identify them.

Del Grande (1990) characterized a set of abilities necessary for a fruitful use of 
visualization in mathematics. For an accurate identification of the abilities used by 
students in this experiment, it is necessary to make a particular characterization of 
each ability narrowly related to the tasks being solved. Table 14.1 presents those Del 
Grande’s (1990) visualization abilities used by our students characterized in the 
specific context of the buildings tasks. Section “Visualization Abilities in Students’ 
Answers” includes examples of students’ answers showing the different abilities.

�The Model of Cognitive Demand in Visualization Tasks

The model of Cognitive Demand consists of four levels which allow classify tasks 
and solutions according to the cognitive effort necessary for students to solve them, 
and allow teachers and researchers understand the complexity of the mathematical 
knowledge and reasoning used by students in their solutions. Smith and Stein (1998) 
defined each level by a set of characteristics to be used to assign levels to tasks. We 
offer below a detailed characterization of the levels of cognitive demand specific for 
the solutions to the buildings tasks (Tables 14.2, 14.3, and 14.4). This analytical 
framework, focused on students’ use of visualization abilities, is an original contri-
bution because, as far as we know, the model of cognitive demand has never been 
used to analyze visualization tasks or their answers.

We focus on the levels pertinent to our research, so we omit the level of memoriza-
tion. The characteristics stated in the tables are organized in several categories which 
refer to different components of the solution to a mathematical task: the process of 
solution, the learning objective, the cognitive effort necessary to solve the task, the 
mathematical content implicit in the statement, the kind of explanations asked of 
students, and the systems of representation of information used by students.

14  Visualization Abilities and Complexity of Reasoning in Mathematically Gifted…
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Table 14.1  Characterization of the visualization abilities used to solve the buildings tasks

Abilities Characterization of the abilities for the tasks

Figure-ground 
perception (FG)

–  Recognize that isolated squares in the views are part of a particular 
building
–  Discriminate one or several buildings in a view
–  Recognize that different colors correspond to different buildings

Perceptual 
constancy (PC)

–  Recognize that the position of a building on the grid is invariant even 
when it is not seen in a view
–  Recognize that the coordinates of a building are invariant no matter the 
observer’s position
–  Recognize that buildings that are apart on the grid continue being apart 
although they are seen together in a view

Positions in space 
(PS)

–  Identify the positions of buildings by using coordinates and/or cardinal 
points
–  Imagine a view corresponding to another student’s position
–  Relate two views to determine the position of a building
–  Relate several buildings on the grid by using terms like “in the same 
street,” behind, hidden, diagonally, etc.

Spatial 
relationships (SR)

–  Identify a relation between the positions of two or more buildings on the 
grid, without depending on the observer’s point of view or their coordinates, 
by using terms like “they touch/do not touch each other,” “they are apart,” 
etc.
–  Mention the heights of two buildings, e.g., to justify that one hides the 
other in a view

Visual 
discrimination 
(VD)

–  Compare an orthogonal projection of the buildings on the grid with the 
corresponding view given in the data or with another student’s projection
–  Compare the locations of buildings on the two students’ grids
–  Compare the buildings placed on a grid with verbal data

Table 14.2  Characteristics of the level of procedures without connections

Categories Characteristics of solutions

Process of 
solution

Are based only on the observation and interpretation of simple explicit 
relationships between data available in student’s part of the statement (e.g., a 
student places a building just by coordinating her two views of the building)

Objective Place buildings correctly without needing to coordinate the four views or 
logical-deductive reasoning to understand the relationships between 
buildings (e.g., it is not necessary to relate the views of both students)

Cognitive effort A successful solution requires limited cognitive effort. Little ambiguity 
exists about what needs to be done and how to do it, since the views 
available to a student clearly show how to place the building

Implicit content Students do not need to be aware of the implicit connections between the 
four views and other data and the buildings to be placed. They can be placed 
by using only the data of a student

Explanations Are focused only on describing the procedure used. It is not necessary to 
identify relationships between the other student’s views and the building

Representation of 
solution

Students use the manipulative representation to show the solution, but they 
might also use a graphical representation (e.g., by making some marks on 
the grid to indicate cells that can or cannot be locations of one or more 
buildings)

A. Gutiérrez et al.
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Table 14.3  Characteristics of the level of procedures with connections

Categories Characteristics of solutions

Process of 
solution

Consist of following a sequence of steps based on implicit complex 
relationships. Students should consider different possibilities and make 
logical-deductive decisions about which data to combine and how to combine 
them (e.g., coordination of the four views to decide where to place a 
building)

Objective Understand the underlying relationships between the different data, and make 
logical-deductive reasoning to select or reject cells in the grid for a building 
based on the information available (e.g., after having identified the buildings 
which are on a street, students analyze the data to reject or select cells to 
place the buildings)

Cognitive effort Requires some degree of cognitive effort, to logically connect different 
elements of the task and deduce which procedure of solution should be 
followed

Implicit content To solve the tasks, students need to consider explicitly the relationships 
underlying their different elements, like the four views, buildings already 
placed, verbal data, etc.

Explanations Requires explanations that include deductive justifications for the decisions 
made (e.g., about choosing or rejecting cells to place a building), based on 
combination of information from the views, buildings already placed and still 
not placed, etc.

Representation 
of solution

Students use the manipulative representation of the solution, but they might 
also use a graphical representation (e.g., by marking in different colors cells 
where building can or cannot be placed)

Table 14.4  Characteristics of the level of doing mathematics

Categories Characteristics of solutions

Process of 
solution

Students analyze the data in detail and coordinate the information. They 
identify buildings having more than one possible location, and get all 
possible solutions to the task (e.g., two buildings can be placed in different 
cells fitting the four views)

Objective Explore and combine the information provided by the task and use 
logical-deductive reasoning to realize the existence of several feasible 
locations for some buildings, and get all possible solutions

Cognitive effort Solutions require a considerable cognitive effort, since there may be several 
solutions, so students have to be aware of this fact and take decisions, based 
on the data, about the possible locations of each building

Implicit content Students identify that there is more than one possible solution. They solve 
the tasks by relating the four views and other data, analyzing the different 
possibilities, and getting logical deductions

Explanations Justify the existence of several solutions, as well as rejected cells and chosen 
locations, based on the available information

Representation of 
solution

As there are several solutions, students combine manipulative and graphical 
representation to mark cells that can or cannot be locations of buildings 
(e.g., students mark the cells around a placed building as not available for 
other buildings)

14  Visualization Abilities and Complexity of Reasoning in Mathematically Gifted…
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�The Level of Procedures Without Connections

Students’ solutions in the level of procedures without connections consist of per-
forming in a routine manner an algorithmic process already known, without the 
need of being aware of connections to mathematical contents underlying the tasks. 
These tasks are focused on getting correct answers but not on producing mathemati-
cal understanding of the underlying contents. The characteristics of this level are 
particularized for solutions to buildings tasks in Table 14.2.

�The Level of Procedures With Connections

Students’ solutions in the level of procedures with connections consist of solving 
the task by following a solution process that is procedural but not routine, since it 
presents some ambiguity on how to carry it out, and students need to be aware of 
certain connections to mathematical contents underlying the tasks to decide on their 
way to the answer. These tasks are focused on discovering the underlying contents 
and gaining mathematical understanding of them. Table 14.3 shows the characteris-
tics of solutions to buildings tasks in this level of cognitive demand.

�The Level of Doing Mathematics

Students’ solutions in the level of doing mathematics require complex and non-
algorithmic thinking, because there is not a predictable approach to solve them. 
Students have to understand the underlying mathematical contents and their rela-
tionships to make appropriate use of them while working through the tasks. 
Table 14.4 presents the characteristics of solutions to buildings tasks in the level of 
doing mathematics.

�Networking Theories of Visualization and Cognitive Demand

As mentioned in section “Networking Theories in Mathematics Education,” we 
consider the networking strategy of combining as the most interesting for our pur-
poses in this chapter, because it is useful to make a networked analysis of empirical 
experiments like ours, by looking at the same data produced by the experiment from 
two theoretical perspectives.

Based on this analytical tool, we will analyze the pairs of students’ solutions by 
looking at the use of visualization abilities and at their levels of cognitive demand, 
by means of the theoretical constructs presented in the two last subsections. Then, 
we will complete the networking by comparing and contrasting the results of both 
analyses to get global conclusions. Previous examples of this kind of networking 
may be found in the ZDM special issue in volume 40(2), 2008.

A. Gutiérrez et al.
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�Methodology

In this section, we describe the specific task posed to students, the characteristics of 
the m-gifted students whose solutions will be analyzed, and the two research meth-
odologies applied to analyze the presence of visualization abilities in students’ out-
comes and the cognitive effort required from students to solve the task.

�Description of the Experiment

The experiment consisted of posing a buildings task to several pairs of m-gifted 
students, the same task to all them. One student in each pair was living in Valencia 
(Spain) and the other one in Granada (Spain). They were linked by a group video-
conference with each other and with the researchers. The researchers only inter-
vened in students’ dialog when it was evident that students had misunderstood some 
instruction or to answer their questions. We describe the solutions to the same task 
produced by three pairs of m-gifted students (we name them A1-B1, A2-B2, and 
A3-B3). They were aged 14–16 and studied grades 9 or 10 (lower secondary school), 
and were recruited from an out-of-school workshop for mathematical enrichment of 
m-gifted students. The pairs of students were provided with the materials mentioned 
in the Introduction and the information shown in Table 14.5.

This task has several elements of complexity: It has two solutions (Fig. 14.4). 
There are two red buildings in street 5, which cannot be discriminated from north 
and south views, so it is necessary to consider other buildings and the verbal condi-
tions (Table 14.5) to get a solution. Every view shows two blue buildings in streets 
1 and 2 or I and II, which might induce students to believe that they are the same 
buildings. Placing the red and blue buildings is only possible by coordinating infor-
mation from both students.

The task may be solved by using several strategies. One is based on determining 
the cells in the grid where the buildings of each color may be placed by observing 
the views and analyzing the feasibility of the different combinations of cells. 
Another strategy is based on careful recursive trial and error, placing buildings on 
the grid and checking whether they fit or not the four views and the other data, and 
then making adjustments.

�Analysis of Students’ Solutions to the Buildings Task

The main sources of information were the video recordings of computer screens and 
students’ dialogs, which were transcribed. To analyze a pair of students’ solution, 
we first divided the protocol into fragments corresponding to the different actions. 
Then, each students’ outcome was analyzed twice, to identify the visualization abil-
ities exhibited during their actions and reasoning and to characterize the levels of 
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cognitive demand associated with their reasoning. Our objective in the networked 
analysis is to identify trends in and relationships between the use of abilities and 
levels of cognitive demand.

A global observation of students’ solutions to the buildings task evidenced sev-
eral phases in the solutions, devoted to different types of actions performed by the 
students characterized by their operational aims:

•	 �Placement (of buildings): Students try to place buildings on the grid. These were 
the most frequent and time-consuming actions.

•	 �Checking: Students compare the buildings placed on the grid with the views and 
verbal data to check whether the buildings’ positions and colors are correct or 
not.

•	 �Correction (of errors): Students realize that some buildings are misplaced on the 
grid, and they try to identify their correct positions.

Fig. 14.4  The two solutions to the buildings task analyzed

Table 14.5  Information provided to the pairs of students for the second part of the buildings task

Student A Student B

�• � North-south direction: Streets are numbered 
with Arabic numbers 1–9, from west to east

�• � There are buildings of four colors. One is 
yellow, two are green and three are red

�• � The buildings with the same height have 
the same color

�• � The buildings are placed on the squares of 
the grid. The buildings cannot touch each 
other

�•  South and west orthogonal projections are:

�• � West-east direction: Streets are numbered 
with Roman numbers I to VII, from south to 
north

�•  There are nine buildings
�•  Blue buildings are three floors high
�•  North and east orthogonal projections are:

_ _ _ _ _ _ _

WEST VIEW
1 2 3 4 5 6 7 8 9

SOUTH VIEW

I II III IV V VI VII

EAST VIEW

_ _ _ _ _ _ _ _ _

NORTH VIEW
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•	 �Request of information: A student asks the other student to provide him with data 
from his views, positions of buildings, verbal data in the statement, etc. in a quite 
systematic way.

•	 �Recapitulation: A pair of students share the positions of the buildings placed on 
their grids to verify whether both grids match or not.

To identify the visualization abilities put to work by students, we looked care-
fully into each student’s outcome, since most of them showed one or more abilities. 
To complete this analysis, we counted the number of appearances of each ability in 
every phase of the solution.

To identify the levels of cognitive demand exhibited in students’ reasoning while 
solving the buildings task, we looked globally at each phase of solution, since the 
cognitive effort made by students cannot be reliably identified in a single outcome, 
but instead it is necessary to consider the whole students’ dialogue along each 
phase. To complete this analysis, we put together the levels of cognitive demand of 
the consecutive phases of the solution.

As an example, we analyze below a short fragment of the dialog between A1 and 
B1. They had already placed the yellow building in (7,VII) and a green building in 
(9,VII) (refer to Fig. 14.4 and Table 14.5). Now they began trying to place the red 
buildings:

B1: (12:41) But the red [building] is not hidden by the yellow one. The red, in fact, 
is in street VI in my east view.
A1: In street VI?
B1: In the north-south street, street 6 [B1 really meant east-west street VI].
A1: Ok. I don’t see the red in street VI, I have a blue building.
B1: You don’t see the red! Ah!
A1: I don’t see the red.
B1: Of course, I only see a blue square [in street VI from east view], which should 
be… the one behind it. Therefore, it should be in street 7 and street VI.

We identify occurrences of the ability of positions in space when the students 
used coordinates to talk about possible positions of the red building (e.g., The red, 
in fact, is in street VI in my east view). We also identify the ability of figure-ground 
perception when students identified the blue building behind the red one (I only see 
a blue square, which should be… the one behind it).

Students showed reasoning in the level of procedures without connections, since 
B1 worked in identifying the position of a red building by using only his own data, 
taking and applying simple explicit relationships found in his two views. Even 
though B1 got information about A1’s data and views, he did not use it to place a red 
building in (7,VI). B1’s objective was not to gain a global understanding of the set 
of red buildings, but only to place one of them. B1’s explanations were only descrip-
tions of what he observed in his views.
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�Analysis of Students’ Use of Visualization Abilities

We present the analysis of students’ use of visualization abilities during the solution 
of the buildings task. We first present examples of use of the different visualization 
abilities. To complete this section, we provide an overview of the three pairs of stu-
dents by comparing their ways of solution.

�Visualization Abilities in Students’ Answers

We present examples of students’ use of different Del Grande’s (1990) visualization 
abilities. Refer to Table 14.5 for the orthogonal views and other data provided to 
each student, and to Fig. 14.4 for the solutions to the task.

Ability of figure-ground perception: Students put to work this ability to isolate 
buildings or parts of buildings from their context with different aims:

•	 �To recognize that isolated squares in the views are part of buildings partially 
hidden:

B2: (16:55) I believe that there is a three-floor building… I see it in the east view, in 
[street] VI there is a three-floor blue building.

•	 �To recognize that squares in different colors represent buildings of different 
heights:

B1: (20:28) I have green, red, and yellow squares. I believe that a building cannot 
have a part in a color and the other part in another color.

Ability of perceptual constancy: It is necessary when students have to recognize 
that:

•	 �The position of a building on the grid does not change when it is hidden behind 
another building:

B1: (11:30) In the south view, then, in street 7 north-south, there is some blue build-
ing that I cannot see [from the north view].
A1: Ok. Do you see the yellow building complete [from north view], or is there 
another building that I cannot see [from the south view]?

•	 �Two buildings may be apart on the grid even when they are seen together in a 
view:

A3: (40:18) [referring to the blue buildings in streets I and II] One in (II,7), for 
instance, and another one, for instance, in (3,I), and they would look like an entire 
building. Do you understand me?
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Ability of positions in space: This is the ability most frequently used by students, 
because the context of the problem is a grid with coordinate axes. This ability is 
present when:

•	 �Students identify positions of buildings by mentioning the coordinates and/or 
cardinal points of cells in the grid:

A1: (37:22) Wait. The blues [blue buildings] in (1,II) and (2,VI) can be placed in 
(1,VI) and (2,II).

•	 �A student imagines buildings in a view from the other student’s data. B1 described 
what he thought should be seen in street II from A1’s west view:

B1: (27:31) … Furthermore, [in my east view,] the one [blue building] in street II is 
hidden by the red [building] in [street] II, which you see, in your west view, hidden 
by the blue one. In your west view, you only see one blue building in the [street] II, 
right?

•	 �Students coordinate two views to determine the position of a building on the grid. 
The two views may be from the same student or one view from each student:

B1: (30:05) In my north view, I see two blue buildings in [streets] 2 and 1, so this 
street, the north-south, must have a blue [building]. And, if you tell me that in your 
west view it hides the red [building] in VI, … Do you see the red building in your 
west view?

•	 �Students relate one building to others by using terms like “in the same street,” 
behind, etc.:

A3: (33:10) [A red building] Could be behind the tall building in (7,VII) [the yellow 
building].

Ability of spatial relationships: This ability is used by students when they have to 
relate several buildings:

•	 �To identify an internal relation between buildings. A characteristic of this use of 
the ability is to verbalize terms like touch, diagonally, they are apart, etc.:

A3: (29:17) [A3 and B3 had placed the buildings shown in Fig. 14.5] Then, the 
[blue] one in… (7,VI) cannot be there, because it touches the yellow one. It should 
be in another place.

•	 To compare or relate their heights:

B1: (39:00) … I see that the red building hides the green one [from the east view, in 
street IV] but it does not hide the blue [buildings] because they are taller…

Ability of visual discrimination: This ability is necessary to compare visual pieces 
of information, like buildings on the grid and in some view(s), looking for similari-
ties or differences:
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•	 �To compare a view of the buildings already placed on the grid to the same view 
in the data:

B2: (16:26) [B2 is inclined comparing his views with the buildings already placed 
on the grid] The building in (V,3) does not fit [the east view].

•	 �To compare the positions of buildings on both students’ grids, to check whether 
they match:

B1: (33:27) I tell you, from right and top. Yellow (7,VII), green (9,VII) and (3,IV), 
red (5,II), …

A1: Yes. It’s ok. Everything fits my views.

•	 To check the positions of buildings and verbal data:

A1: (20:50) Look, my clue says that there is one yellow, two greens and three reds. 
Three reds!?

B1: Yes, three reds. Because, in my east view, there are three reds in [streets] VI, IV, 
and II…

A1’s surprise was because his views showed one and two red buildings (Table 14.5).

�Global Analysis of Students’ Answers

This section offers a synthesis of the visualization abilities shown by the students in 
their solutions. The charts in Figs. 14.6, 14.7, 14.8, 14.9, 14.10, and 14.11 show the 
relation between the phases of solution of the task and the abilities used. The ability 
most used by all pairs of students was positions in space, since it was necessary to 
share or transmit information about placement of buildings or to refer to cells in the 
grid, mainly by means of coordinates or cardinal points.

The pair A1-B1 used 144 times the visualization abilities along their solution of 
the buildings task. Figures 14.6 and 14.7 show that A1 and B1, apart from the ability 

Fig. 14.5  Buildings placed on the grid by A3 and B3 (29:17) (left) and a solution (right)
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Fig. 14.6  Distribution (%) of A1 and B1’s use of visualization abilities between the phases of 
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of positions in space (56.9% of all appearances of visualization abilities), also used 
quite frequently the abilities of figure-ground perception (18.8%) and visual dis-
crimination (15.3%). They used the other abilities too, but sporadically and without 
any apparent pattern of use.

The pair A2-B2 used 145 times the visualization abilities along their solution. A2 
and B2 took much more time than the other pairs to solve the buildings task, mainly 
because they used the abilities of recapitulation and checking many more times than 
the other pairs. According to Figs. 14.8 and 14.9, the most used ability was positions 
in space (51%), but its difference of use with respect to the other abilities was smaller 
than for the other pairs of students. The ability of visual discrimination (31%) was 
also used often by A2 and B2, mainly in the phases of recapitulation and checking.

The pair A3-B3 only used 79 times the visualization abilities along their solu-
tion. A3 and B3 made a very efficient solution, devoting most time to actions of 
placement of buildings, and they did not use the phases of correction and informa-
tion (Figs. 14.10 and 14.11). As a consequence, the ability most used by A3 and B3 
was positions in space (55.7%). They only used significantly figure-ground percep-
tion (19%) and spatial relationships (12.7%).

A global overview of the three pairs of students’ solutions shows some patterns of 
behavior in their use of visualization abilities. All of them made scarce use of the 
abilities of perceptual constancy and spatial relationships, mainly because the task 
required little use of them. The students in the sample were aware of the perceptual 
constancy of the buildings on the grid, so they usually did not make explicit use of 
this ability. The spatial relationships ability was necessary mainly to identify whether 
two buildings touch each other or to locate several buildings in the same street (build-
ings that, in some views, are seen superposed or are hidden by a taller building).

Other patterns of behavior are specific to different levels of efficiency in solving 
the buildings task. Students A1-B1 and A3-B3 were the most efficient solving it. 
Some characteristics of their behavior were:

–– The phase of placement of buildings occupied most time of solution (70–80% 
of the time).

–– The ability of figure-ground perception was mostly used in the placement 
phase (80% of the times A3-B3 used this ability, 59.3% for A1-B1, and only 
28.6% for A2-B2).

Students A2-B2 were the less efficient in solving the task. Some characteristics 
of these students that explain their difficulties, were:

–– They used much time in the phases of solution different from placement: 36% 
of the time devoted to placement of buildings, 20% to checking, 18% to reca-
pitulation, 16% to correction of errors, and 10% to requests of information.

–– The ability of visual discrimination was quite used by A2-B2, mainly in the 
phases of recapitulation (31.1% of the times they used this ability) and check-
ing (35.6%).
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�Analysis of the Cognitive Complexity of Students’  
Visual Reasoning

In this section, we analyze the cognitive effort required by the visual reasoning 
made by the m-gifted students when solving the buildings task. We have assigned 
levels of cognitive demand, as characterized in section “The Model of Cognitive 
Demand in Visualization Tasks”, to students’ outcomes. We first present a classifi-
cation of the strategies which may be used by students to solve this kind of task, 
analyzing their levels of cognitive demand and presenting examples taken from our 
experiments. Then, we analyze the trajectory of each pair of students’ levels of cog-
nitive demand while solving the buildings task.

�Classification of Strategies of Solutions According to Their 
Level of Cognitive Demand

The strategies used by m-gifted students to communicate information to each other 
and get the positions of buildings on the grid are the main source of information to 
understand why they expended more or less cognitive effort to solve the buildings 
tasks. We have identified six types of strategies that are present throughout their 
solutions of the buildings task and analyzed the cognitive demand required by each 
of these strategies.

�Strategies Requiring the Level of Procedures Without Connections

Students do not connect the contents underlying the tasks (views, verbal data, build-
ings already placed, and relationships between them), since each student can man-
age his own information but they are not able to combine the information shared. 
Sharing pieces of information without combining them, or providing directions to 
help the other student to place a building are strategies typical of this level of cogni-
tive demand. These strategies require only a limited cognitive effort, but they cannot 
be used to get the correct position of all buildings, since only the yellow and green 
ones can be placed by using just the data available to one student. We have identified 
two strategies in this level of cognitive demand:

Share and build: Students exchange pieces of information about a building, but 
they do not combine them operatively so, finally, a student gets a (maybe correct) 
location for the building by using only his own data. In the following excerpt, A3 
and B3 did not make sense of the data they shared, so they were not able to combine 
their views to find a correct cell for a blue building. Then, A3, considering only his 
own views, located a blue building in (7,VI), which is a wrong position.
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A3: (24:50) In the south view, in [street] 7, I have a three-floor blue [building] hid-
ing half yellow building. Do you see it?
…
B3: I see three blues in I, II and VI [east view].
A3: I have them in I, II and VI too [west view]. Do you have them together in I and 
II?
B3: Yes.
A3: Then, it has to be in VI, hasn’t it? Because it is detached. (VI,7), right?
B3: Yes, maybe.

Build and direct: A student places a building on the grid by using only his views 
and then he guides the other student to place the building in the same cell. We see 
below that B2, after having (wrongly) deduced from his views that there are two 
blue buildings in (1,I) and (2,II), gave directions to A2 to help him place two blue 
and a red buildings.

B2: (10:53) I’ve found the place of the blues [buildings]. It is in the south-west cor-
ner, the one with 3 floors, the first one. The second, diagonally… towards the north-
east corner. I better use coordinates… The south-west corner is (1,I). There is a 
three-floor blue in the corner (1,I). [A] Three [floor blue building] in (2,II) and [a] 
two [-floor red building] in (8,II).

�Strategies Requiring the Level of Procedures with Connections

Students need to be aware of certain connections between contents underlying the 
task and be able to use them to decide on how to proceed to the answer, which 
requires some degree of cognitive effort. These strategies do not help students real-
ize that there may be several correct positions for some buildings. We have identi-
fied three different strategies:

Study positions: Students discard cells where a building cannot be located based on 
the observation and application of implicit relationships between views and build-
ings already placed on the grid. Students might not be able to get the position of a 
building but they identify the possible positions.

The dialog below shows an example of this strategy. A3 and B3 combined their 
views to get the correct conclusion that there is a red building in street 8. Then, A3 
identified as possible locations for the red building all non-empty streets in his west 
view, and B3 discarded the cells not having a red building in his east view.

A3: (21:59) [Fig. 14.12 shows the buildings already placed] Let’s see, in the [street] 
8, in both north view and south, we see the red building without hiding anything.
B3: Yes, it is the same.
…
A3: Then, I do not have it in the west view. It is in [street] I or II or IV, or VI or 
VII. Do you have something in…?
B3: I have that it may be in II, IV, or VI.
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Combine and build: Students exchange information and combine it operatively to 
correctly place a building. In the excerpt below, A1 and B1 looked for the position 
of a green building. Figure 14.13 shows the buildings already placed. They com-
bined operatively data from both students and succeeded in finding the correct posi-
tion of that green building.

Fig. 14.12  Buildings placed by A3 and B3 (21:59) (left) and a solution (right)

Fig. 14.13  Buildings placed by A1 and B1 (20:51) (left) and a solution (right)

Fig. 14.14  Buildings placed by B1 (30:10) (left) and a solution (right)
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B1: (20:51) Ok. Have you placed a green [building] in 3 north-south, IV 
east-west?
A1: Yes, I have a green there or in (IV,9). I have as [possible] greens (IV,9) and 
(IV,3).
B1: I believe that it is in (IV,3) because, in my east view, I see the second green 
building you say in street (9,VII). You do not see it from your west view…
A1: Because the yellow hides it. Ok. So there is a green there. Ok… So, as you said, 
the other green is in (3,IV).

Not all possible: Students do not note that two blue buildings may be placed cor-
rectly in another cell. In the following excerpt, B1 had already placed some build-
ings (Fig. 14.14). To try placing the blue buildings, the students shared information 
from all the views and decided to place a blue building in (2,VI) without realizing 
that the blue buildings in streets 1 and 2 could be correctly placed also in another 
position.

B1: (30:10) As, in my north view, I see two blue buildings in [streets] 2 and 1, [then] 
in street 2 north-south there must be a blue [building]. If you tell me that, in your 
west view, [the blue building] hides the red [building] in [street] VI,… Then, it [the 
blue one] would be in 2 north-south, VI west. Or in 1… In your west view, do you 
see the red building in [street] VI?
A1: No.
B1: Ok. I also have a red building in [street] VI in my west view and behind it [I see] 
a blue square. Then, there is a blue building hiding the red one [from the east view].
A1: But, in the north or south views, the [red building] which is in [street] VI east-
west is in [street] 1 or 2 north-south?
B1: It is in [street] 2, because in my north view I see two blue buildings in [streets] 
2 and 1. Then, it [the blue building] has to be in [street] 2, because in the 1 we had 
already placed one [blue building] which is the one hiding the red [building] in your 
west view.

�Strategies Requiring the Level of Doing Mathematics

These strategies require a complex non-algorithmic thinking, and considerable cog-
nitive effort, to explore the implicit relationships between the data available and 
make appropriate operational use of them, allowing students deduce that some build-
ings may be correctly placed in several cells and find all possible solutions (two blue 
buildings in the task we are analyzing). We have identified one strategy in this level:

All possible: Students A3 and B3 had already correctly placed all buildings except 
the blue ones in streets 1 and 2 (Fig. 14.15). They explored all the possible positions 
of those blue buildings to find out the two solutions (Fig. 14.4).

A3: (44:27) I don’t know whether it [a blue building] is in (VI,1) or (VI,2).
B3: I see.
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A3: If one is in (VI,2), then the other has to be in (II,1). And, if one is in (VI,1), then 
the other has to be in (II,2). It wouldn’t matter, I think. Because there are not more 
buildings, are they?
B3: No, the nine are there [placed in the grid].
A3: Then, they could be in both cells.

�Trajectories of Cognitive Demand of Students’ Solutions

In previous pages we have presented, exemplified, and analyzed the cognitive 
demand required by the different strategies used by the three pairs of students to 
solve the buildings task. To summarize our analysis of the complexity of those stu-
dents’ visualization reasoning, we present three graphs showing the trajectory of 
each pair of students’ cognitive demand during the solution of the task (Figs. 14.16, 
14.17, and 14.18); the horizontal axis represents the strategies used in the consecu-
tive phases of the solution and the color of the marks corresponds to the buildings 
students were dealing with. We have analyzed only the phases of placement and 
correction of errors, since these are the only phases where students’ actions might 
end up placing buildings on the grid.

A1 and B1 started (Fig. 14.16) placing the yellow building without needing to 
combine their information, so requiring a cognitive effort in the level of procedures 
without connections. Next, they tried independently (each student using only his 
views) to place the green buildings, in the same level of cognitive demand. They did 
not succeed, so they shifted to a combine-and-build strategy, requiring from them a 
higher level of cognitive effort to correctly place the green buildings. A1 and B1 
made several partially successful attempts to place the red buildings without com-
bining their pieces of information operatively, which required from them a reduced 
cognitive demand. When they used the strategy of combine-and-build, they were 
able to get the correct locations of all red buildings. Finally, A1 and B1 worked the 
same way to place the blue buildings, but they did not realize the existence of more 
than one possible solution (a not-all strategy).

Fig. 14.15  Buildings placed by A3 and B3 (44:27) (left) and a solution (right)
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The graph in Fig. 14.17 shows that A2 and B2 solved the task in 23 phases and 
only 13 of them included location of some building. During the first part of their 
solution, students’ level of cognitive demand was procedures without connections, 
which allowed them to correctly place the green buildings but not the red and blue 
ones. When A2 and B2 began doing real collaborative work, moving to the strategy 
combine-and-build, they were able to place correctly the red and blue buildings, 
although they did not realize the two possible solutions of blue buildings.

Doing Mathematics

Proc. With Connect.

Proc. Without Conn.

Memorization

Fig. 14.16  Levels of cognitive demand of A1 and B1’s strategies over the phases of solution

Doing Mathematics

Proc. With Connect.

Proc. Without Conn.

Memorization

Fig. 14.17  Levels of cognitive demand of A2 and B2’s strategies over the phases of solution

Doing Mathematics

Proc. With Connect.

Proc. Without Conn.

Memorization

Fig. 14.18  Levels of cognitive demand of A3 and B3’s strategies over the phases of solution
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A3 and B3 were the most efficient students. Figure 14.18 shows that 12 out of the 
15 phases of their solution were devoted to place buildings. The students worked 
mostly collaboratively, except during the first two phases of the solution: A3 started 
placing green and red buildings based only on his views. Next, A3 and B3 combined 
information from their views, by using the strategy of combine-and-build, and they 
succeeded in placing the second green building and the red buildings. When they 
first tried to place the blue buildings, they had some difficulties because they could 
not combine their pieces of information operatively. When A3 and B3 succeeded in 
combining operatively their information, by means of strategies combine-and-build, 
they correctly placed all the buildings and even identified the two possible solutions, 
showing a cognitive effort in the level of doing mathematics.

�Networked Analysis of Students’ Visualization Behavior

We have presented in sections “Analysis of Students’ Use of Visualization Abilities” 
and “Analysis of the Cognitive Complexity of Students’ Visual Reasoning” two par-
allel analyses of three pairs of students’ solutions to a visualization task, taking into 
consideration the use of visualization abilities and the levels of cognitive demand 
posed to students by the task and their strategies of solution. Those analyses focus 
on different aspects of students’ solutions, so some relationships and concordance 
between them should be expected, although it has never been explored. In this sec-
tion, we make an interwoven analysis trying to relate both points of view. Our sam-
ple is only three pairs of students, so we do not pretend to get any generalizable 
conclusion, and we have found that students’ behaviors to be quite different. A3-B3 
were the most efficient and successful solvers of the buildings task, since they 
needed the least number of phases (12) to solve it and found the two solutions. 
A1-B1 were also very efficient solving the task, needing a few more phases (16) than 
A3-B3 but they only found one solution. In contrast, A2-B2 had more difficulties, 
needed almost twice as many phases (23) as A3-B3 and they required more help.

The aim of this networked analysis is to explore a possible relation between the 
use of the visualization abilities and students’ levels of higher cognitive demand 
(procedures with connections and doing mathematics). To do it, we have focused on 
the phases of placement of buildings and correction of errors, since these are the 
only phases in which the levels of cognitive demand can be evaluated. Table 14.6 
presents a synthesis of the quantitative data (absolute and percentage) describing the 
solutions. For instance, the pair A1-B1 used 55 times the ability of positions in 
space in the phases of placement, which represents 38.2% of the 144 times they 
used any visualization ability throughout their solution. And A1-B1 showed high 
levels of cognitive demand in 28 out of the 55 times they used the ability of posi-
tions in space in the phases of placement (50.9% of them).

The ability of positions in space is the only one that has been consistently and 
extensively used by students throughout all phases during their solutions; this result 
is reasonable given the characteristics of the buildings tasks. The ability of visual 
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discrimination is the other ability having a significant presence in students’ 
outcomes, but less consistently than the ability of positions in space. With respect to 
the use of the higher levels of cognitive demand, the data from our experiments do 
not show any clear trend or relation between the visualization abilities used by stu-
dents and the higher levels of cognitive demand required from them to solve the 
buildings task. We could only raise a relation between the use of higher levels of 
cognitive demand and the ability of positions in space.

�Conclusions

Mathematically gifted students need to be posed challenging problems and tasks 
that help them progress in the learning of mathematical content and the develop-
ment of their mathematical capabilities, in particular their competence with mathe-
matical visualization. In this chapter, we have presented a kind of challenging task, 
the buildings task, that is useful to improve students’ visualization abilities while 
demanding from them a high level of cognitive activity.

The objective of this research was to analyze students’ solutions to a buildings 
task (1) to identify their use of visualization abilities and (2) to evaluate the level of 
cognitive demand used by them to solve the task successfully. We have adopted a 
networking position to combine both analyses to gain a deeper knowledge of stu-
dents’ activity. Each pair of students solved the task in a different way, which 
allowed us to get some conclusions that, due to the small sample, we do not claim 
are generalizable.

A buildings task may be designed to have several solutions. To find all them, stu-
dents have to work collaboratively, communicate efficiently, use visualization abili-
ties, and reach the highest level of cognitive demand. When our students did not 

Table 14.6  Use of visualization abilities related to levels of cognitive demand

Abilities Students

Number of occurrences of each ability
Placement phases Correction phases

Totala

With high cognitive 
demandb Totala

With high cognitive 
demandb

Positions in space A1-B1 55 
(38.2%)

28 (50.9%) 7 (4.9%) 0 (0.0%)

A2-B2 37 
(25.5%)

21 (56.8%) 13 
(9.0%)

12 (92.3%)

A3-B3 41 
(51.9%)

29 (70.7%) 0 (0.0%) 0 (0.0%)

Visual 
discrimination

A1-B1 5 (3.5%) 2 (40.0%) 6 (4.2%) 6 (100%)
A2-B2 6 (4.1%) 4 (66.7%) 4 (2.8%) 2 (50.0%)
A3-B3 2 (2.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

aPercentages with respect to the total number of uses of visualization abilities along the solution
bPercentages with respect to the number of occurrences of the ability in the phases
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succeed in sharing and combining operatively information, they were unable to cor-
rectly place some buildings. The use of the visualization abilities was more necessary 
when the solution to the task required from students higher levels of cognitive demand.

All pairs of students progressed in learning to work collaboratively and using 
more demanding reasoning, to manage their visualization abilities, and to improve 
their communication with each other. Our analysis shows that m-gifted students can 
understand and learn quickly new, more efficient strategies of solution.

The research presented in this chapter is part of the R+D+I projects EDU2015-
69731-R (Spanish Government/MinEco and ERDF) and GVPROMETEO2016-143 
(Valencian Government).
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