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Chapter 5
Integrative Multi-Omics Through 
Bioinformatics

Hoe-Han Goh

Abstract  This chapter introduces different aspects of bioinformatics with a brief 
discussion in the systems biology context. Example applications in network phar-
macology of traditional Chinese medicine, systems metabolic engineering, and 
plant genome-scale modelling are described. Lastly, this chapter concludes on how 
bioinformatics helps to integrate omics data derived from various studies described 
in previous chapters for a holistic understanding of secondary metabolite produc-
tion in P. minus.
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5.1  �Introduction

The overwhelming trend in omics studies relies heavily on bioinformatics to store, 
mine, process, analyse, interpret, and curate biological big data. Bioinformatics 
includes computer science, statistics, and mathematical methods, with computer 
programming for the analysis of various sequence data in molecular biology. The 
term bioinformatics was introduced in 1970 for the study of biosystems information 
processes, which has evolved into an interdisciplinary field largely dealing with 
computational methods for comparative genomic data analysis since the late 1980s 
[1]. In general, bioinformatics refers to biological studies aided by computer pro-
gramming apart from data analysis pipelines, especially in the field of genomics 
such as that of illustrated in previous chapters.
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5.2  �Different Aspects of Bioinformatics

Bioinformatics covers many aspects of fundamental and applied research, from 
hypothesis-driven to data-driven (Fig.  5.1). The hypothesis-driven bottom-up 
approach is largely knowledge based and depends strongly on modelling and com-
putational simulation for understanding of biological processes. For example, math-
ematical modelling of enzyme kinetics in a reaction pathway or simulation of flux 
distribution in a genome-scale model can help identify rate-limiting enzyme/metab-
olite [2, 3].

On the other hand, data-driven bioinformatics evolved in the mid-1990s as 
demanded by the Human Genome Project, which led to the explosion of high-
throughput omics data. The advancement in sequencing technology dominates the 
development of bioinformatics, for the acquisition, analysis, and management of 
tremendous volume of biological data. This is paralleled by the advancement of 
information technologies, algorithms, and computational and statistical methods. 
Computationally intensive techniques, such as data mining [4], machine learning, 
visualisation [5], and pattern recognition, are indispensable with continuous 
improvement of bioinformatics software and tools for efficient access, analysis, and 
curation of heterogeneous datasets. Bioinformatics even encompasses solving prob-
lems arising from database management. Common sequence analyses include 
sequence alignment, genome assembly, gene prediction, and functional annotation, 
as compared to gene and protein expression studies which are based on abundance 
analysis, in which the latter relies on mass spectrometry for protein fragment iden-
tification. Image analysis involves important automated techniques for the micro-
scopic tracing of subcellular molecular movement, as well as phenotypic tracking of 

Fig. 5.1  An overview of different aspects of bioinformatics, from knowledge-based hypothesis-
driven bottom-up approach to top-down statistics and data-driven

H.-H. Goh



71

organ growth in real time. Protein structure prediction is a field of structural bioin-
formatics important for the inference of structure-function relationship to under-
stand the molecular mechanism or protein-protein/metabolite interactions, which 
can be applied for drug design.

Nowadays, the field of bioinformatics is largely data-driven. Computational 
modelling and simulation in network analysis have become increasingly important 
for the integration of multi-omics in the context of systems biology. Table 5.1 sum-
marises the different aspects of bioinformatics.

Table 5.1  Different aspects of bioinformatics with examples

Aspect Example

Sequence analysis DNA/RNA sequencing
Sequence assembly
Genome annotation
Genetics of disease
Cancer genomics (oncogenomics)
Comparative genomics
Genetics and population analysis
Computational evolutionary biology

Expression analysis Gene expression
Protein expression
Metabolite profiling
Analysis of expression regulation

Structural bioinformatics Genome modelling (3D chromatin)
RNA secondary structure prediction
Protein structure prediction
Homology modelling
Structure-based drug/chemical design
Molecular docking

Image analysis Microscopy image analysis
Automated cell tracking
Pattern recognition
Bioimage annotation
Visualisation

Data management Database development
Web services
Curation
Meta-analysis
Workflow management system

Network and systems biology Biological network analysis
Gene co-expression analysis
Genome-scale modelling
Molecular interaction networks

Others Ontology and data integration
Literature/text mining
Software/tool development
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5.3  �Bioinformatics for Systems Biology

Essentially, systems biology constitutes a crossover between knowledge-based 
modelling and omics data-driven approaches. Bioinformatics is a broad multidisci-
plinary field which is indispensable for systems biology that deals with omics data, 
mathematical modelling, and network analysis. This is because the dynamic behav-
iours of biological systems are beyond human intuitive grasp due to the sheer num-
ber of components (biomolecules, cells, drugs, and each other) which interact. 
System-level understanding is only possible through computational models and 
simulations. Metabolic, gene regulatory, and protein-protein interaction networks 
are the core of common systems studies, with many examples in E. coli [6, 7] 
and yeast [8–10]. Detailed descriptions and discussion are beyond the scope of this 
chapter. Readers can refer to recent literature [11–13] to understand further the 
bioinformatics tools available for systems biology.

5.4  �Applications of Bioinformatics

In this section, examples of bioinformatics applications on integrative omics are 
described for molecular medicine, systems metabolic engineering, and plant 
genome-scale modelling.

5.4.1  �Integrative Omics in Network Pharmacology

Network pharmacology is a new paradigm in postgenomic era of molecular medi-
cine for drug design or discovery [14]. This is based on the realm that one drug often 
targets many proteins and one protein can be targeted by many drugs. Hence, a 
combination of different drugs could be beneficial synergistically in treating com-
plex diseases. This also led to the current trend of drug repositioning/repurposing, 
whereby known drugs/compounds are applied for treatment of new diseases.

Network pharmacology relies on a multi-omics systems biology approach, which 
analyses various omics data together using bioinformatics tools [5, 15] to develop 
disease networks, drug-target networks, or drug-disease networks [16, 17]. One 
good example is the use of this approach to discover multicomponent drugs from 
traditional Chinese medicine (TCM) for multi-target therapy [18–20]. To achieve 
this, TCM pattern in a disease can be identified using molecular network biomarkers 
and integrate with pharmacological network of herbal formulas (Fig. 5.2).

The construction of disease-TCM pattern molecular network depends on multi-
omics data analysis of categorised patients, according to TCM pattern based on 
expert consensus or literature analysis. Text mining of SinoMed database helps 
identify TCM herbal combinations for the treatment of disease with specific TCM 
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patterns. Targeted proteins by the active compounds in the TCM herbal formula 
obtained from PubChem are used to construct drug-target networks. Potential 
multiple-compound drug candidates can then be shortlisted from well-matched 
compound combinations between disease-TCM pattern molecular network and 
pharmacological network of herbal formulas. This is not possible through reduc-
tionist approach in the past without systems approach of network analysis which 
requires computing resources. A good example of TCM drug repositioning is 
reported recently on the use of systems pharmacology approach in the discovery of 
Liuweiwuling therapeutic use for liver failure [21].

5.4.2  �Integrative Omics for Systems Metabolic Engineering

The emergence of ethnomedicine as alternatives of disease treatment has increase
the demands for natural products and bioactive compounds as drugs [22], For example, 
an antimalarial drug artemisinin from a TCM Artemisia annua has driven engi-
neered production of its precursor artemisinic acid in yeast [23].

There is a growing trend of employing synthetic biology approach for geneti-
cally engineering metabolic pathways in microbial system to produce natural and 
synthetic compounds. For this purpose, bioinformatics plays a key role in the selec-
tion, synthesis, assembly, and optimisation of the parts (enzymes and regulatory 
elements), devices (pathways), and systems [24]. Furthermore, systems metabolic 
engineering often employs genome-scale models for flux analysis of the meta-
bolic reconstruction [25]. Hence, fluxomics play important role for optimising 
flux distribution towards target compound production. Genome-scale metabolic 
reconstructions allow the modelling on the effects of gene knockouts. However, 

Fig. 5.2  A conceptual 
framework of network 
pharmacology for multiple 
compound drug discovery 
from TCM
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this is largely dominated by microbes such as E. coli and S. cerevisiae. Much of 
the curated/predicted metabolic reconstructions can be found at MetaCyc and 
BioCyc databases [26]; see http://systemsbiology.ucsd.edu/InSilicoOrganisms/
OtherOrganisms for an updated list. This systems approach has accelerated the 
development of metabolic engineering, such as that of the use of E. coli for the 
production of terpenoids [27] and bioethanol [28].

Recently, multi-omics has become a common approach for comprehensive 
understanding of different microbial strains by compensating each omics’ limita-
tions as illustrated in Fig. 5.3. The ultimate aim is to improve titre, yield, and pro-
ductivity of engineered microbial cell factories. For that purpose, multi-omics 
systems biology contributes in the understanding of cellular metabolic status, 
genome-wide identification of knockout or overexpression targets, pathway predic-
tion, and even enzyme design through computational structural prediction. Further 
descriptions and discussion on systems metabolic engineering with the integration 
of systems and synthetic biology with evolutionary engineering can refer to the next 
chapter and a recent review [29] with references therein. Fondi and Liò (2015) pro-
vide a good review for tools used in integrating multi-omics for metabolic model-
ling pipelines [30].

5.4.3  �Integrative Omics for Genome-Scale Modelling in Plants

As mentioned above, genome-scale metabolic model (GEM) is an in silico meta-
bolic flux model constructed from genome annotation-derived metabolic networks 
with stoichiometry of all known metabolic reactions. GEM is often built by algo-
rithms with constraint-based flux (reaction rate) analysis within defined system 
boundaries to bridge between modelled metabolic network structure and observed 
metabolic processes. Constraints are important to limit possible flux values (solu-
tion space) in the studied system, which include mass balancing, physico-thermo-
chemical, and actual flux measurements [31]. Flux balance analysis (FBA) is the 
most popular mathematical method for the phenotypic solution space exploration 
through linear programming.

GEM allows the assessment of the essentiality of metabolic steps. This enables 
the prediction of gene targets for knockout or overexpression and is useful for flux 
optimisation and designing rational metabolic engineering strategies, especially for 
microbial systems. It is more challenging to construct GEM for higher organisms, 
especially plants due to complexity of plant cells with photosynthesis/photorespira-
tion, compartmentation, tissue differentiation, diverse metabolic processes, and 
responses to endogenous (phytohormones) and environmental stimuli [31]. The first 
ever plant GEM was reported in 2009 for Arabidopsis thaliana cell suspension cul-
tures [32]. Other selected examples and their significance are provided in Table 5.2. 
Previously neglected secondary metabolism is also gaining momentum with the 
latest advancement of omics approaches in filling in the gaps of metabolomics and 
proteomics data, especially in medicinal plants producing important bioactive com-
pounds [33].
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Despite that GEM is now possible in plants, challenges remain on filling in miss-
ing metabolic information with the integration of regulatory and signalling 
components in dynamic simulation. In this respect, multi-condition, single-platform 
omics studies such as transcriptomics will be useful for mapping gene expression 

Fig. 5.3  Overall framework of a metabolic modelling/reconstruction pipeline with multi-omics 
integration, computational simulation, biological validation, and iterative model refinement. Pre-
existing genome annotation in public repositories provides information on the presence/absence of 
metabolic pathways and overall metabolic capabilities of a microbe. For a novel microbe, a meta-
bolic model can be generated from the closest related species with publicly available data based on 
taxonomic information or from de novo genome sequencing and assembly. Next, different layers 
of datasets resulting from the application of different omics technologies can be integrated for 
computational simulation of phenotype prediction. Multi-omics integration provides a more com-
prehensive perspective on the microbe under study, statistically grounded inferences, novel ques-
tions to be addressed, or new target genes to be manipulated, possibly through reiterating the 
pipeline based on experimental data for further refinement of model.

5  Integrative Multi-Omics Through Bioinformatics



76

data onto GEM to generate condition-specific models for more realistic depiction of 
actual metabolic states. Similarly, quantitative proteomics can also be applied for 
modelling system-level metabolic changes following experimental perturbations, 
assuming that gene expression or protein abundance correlates with metabolic 
fluxes. Incorporating multi-conditions transcriptomics and proteomics data will 
enable condition-based simulation with the elements of gene/protein regulation in 
switching a pathway on/off. Lastly, metabolomics profiling under different condi-
tions allows the comprehensive identification of metabolite compositional changes 

Table 5.2  Selected examples of plant GEMs

Species GEM Significance Reference

Arabidopsis 
thaliana

Suspension 
cell culture

The first GEM of a heterotrophic plant 
cell derived from AraCyc with 855 
mass-balanced reactions

Poolman et al. 
[32]

AraGEM 
(iRS1597)

Compartmented C3 mesophyll cell model 
of photosynthesis, photorespiration, and 
heterotrophic metabolism

Dal’Molin et al. 
[34]

Brassica napus Developing 
embryo

Compartmented FBA model to predict 
the regulation of oil biosynthesis

Pilalis et al. [35]

bna572 
(oilseed)

Flux balance and variability analyses 
based on highly comprehensive and 
compartmentalised oilseed model with 
in silico mutant analysis in relation to 
carbon use efficiency

Hay and 
Schwender [36, 
37]

Hordeum vulgare Seed 
endosperm

Tissue-specific compartmented FBA 
model with 65 transporters for study of 
hypoxia and aerobic conditions

Grafahrend-Belau 
et al. [38], 
Rolletschek et al. 
[39]

Zea mays, 
Saccharum 
officinarum, 
Sorghum bicolor

C4GEM Compartmented two-cell (mesophyll and 
bundle sheath cells) model representing 
C4 plants with 112 transporters

Dal’Molin et al. 
[40]

Zea mays iRS1563 Expanded C4GEM model with 
secondary metabolism validated using 
lignin biosynthetic mutants

Saha et al. [41]

Oryza sativa General First model in rice with 1736 reactions to 
study metabolism under varying light 
intensity

Poolman et al. 
[42]

iOS2164 A fully compartmentalised model with 
multi-omics analysis

Lakshmanan et al. 
[43]

Solanum 
lycopersicum

iHY3410 
leaf

Compartmentalised metabolic model of 
leaf with five organelles to describe 
metabolic response to drought, 
particularly photorespiratory metabolism

Yuan et al. [44]

Vitis vinifera Suspension 
cell culture

Established cell energy, redox status, and 
α-ketoglutarate availability as metabolic 
drivers for anthocyanin accumulation 
under nitrogen limitation

Soubeyrand et al. 
[45]
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to narrow down target pathways for further fluxomics analysis (13C-based) under 
different experimental conditions. With multi-omics, multi-conditions data, a more 
realistic dynamic GEM can be simulated to predict outcomes for various scenarios. 
In plants, GEMs of different tissues, such as root to shoot, can be integrated for 
whole-plant simulation [46]. With the integration of regulation into GEMs, we can 
gain important insights of plant metabolic plasticity for rational metabolic engineer-
ing to improve plant biomass production through higher tolerance and resistance to 
biotic and abiotic stresses.

5.5  �Case Study: Integrating Multi-Omics in Polygonum 
minus

Over the past 10  years, extensive studies using different omics approaches have 
been performed on aromatic herb Polygonum minus as described in previous chap-
ters. Much is learnt about P. minus on the transcriptomes [47–49] and metabolomes 
[50–52] from different tissues, as well as molecular responses towards elicitors 
[53–55]. The integration between transcriptomics and metabolomics studies [56] 
allows the reconstruction of secondary metabolite biosynthetic pathways. This also 
helps in the elucidation of global gene reprogramming which resulted in the compo-
sitional changes of volatile organic compounds (VOCs) in response to elicitation or 
other environmental factors. Furthermore, the established transcriptome sequences 
provide a reference for the identification of proteins in shotgun proteomics through 
proteomics informed by transcriptomics (PIT) approach [57].

General research framework of integrating multi-omics results in P. minus is 
shown in Fig. 5.4. This is applicable for other plants/organisms without a reference 
genome, particularly tropical medicinal plants, which have scarce sequence infor-
mation and limited knowledge on the production of bioactive compounds. By eluci-

Fig. 5.4  Research framework for the integration of multi-omics studies in P. minus
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dating the genes and enzymes involved in pathways of secondary metabolite 
biosynthesis, metabolic engineering in microbial system becomes possible through 
synthetic biology approach (described in the next chapter). Hence, integrative omics 
through systems biology approach provides a fundamental blueprint to enable 
applied large-scale production of targeted compounds through microbial 
bioengineering.
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