

Development of ADDA (Additional Data) Algorithm for IoT Security and Privacy

Oliver M. Junio^(⊠) and Jasmin De Castro-Niguidula

Technological Institute of the Philippines, Manila, Philippines oliverjunio@uphsl.edu.ph, jasniguidula@yahoo.com

Abstract. Internet becomes one of the basic necessity of a person. From simple sharing of data and information, internet nowadays offers millions of things such as free storage, free communication. Privacy and Security Issues are being compromise with the so many things that Internet provided. Billions of IoT devices will be released in the market by 2020 [1]. To secure connection between devices, the researcher added additional security using ADDA Algorithm. This algorithm will add additional blocks to the traditional encryption for additional security to the gateway of a particular IoT device. There are three (3) parameters to be used in this study to provide security and privacy for the IoT sites and devices. These are the accuracy, encryption speed and decryption speed of data. In this study, the researcher explains the step-by-step details how the ADDA algorithm works and make IoT devices secured for day to day use by making a new algorithm. With the results generated, ADDA algorithm gives additional protection to already encrypted data by adding characters based on the algorithm created. The result of encrypting data using ADDA algorithm was exceptional due to high percentage rate of the test conducted.

Keywords: Internet of Things · IoT · Privacy · Security

1 Introduction

Internet offers one thousand and one data and information, publish anywhere and can be access everywhere. The rise of the internet increases cybercrime this include security and privacy issues. There are three (3) identified main factor that arises the growth of internet this includes First, the development of small scale technology, Second, the inexpensiveness of the technology, and third the presence of online storage [1].

In 2020, 24 Billion of IoT Devices will be released in the market. Along with the development of the technology, is also the growth of security issues such as (1) Public Perception, (2) Vulnerability to Hacking, (3) Readiness of Company to handle security issues and (4) which of the security provider really provides security. Another concern is the privacy issues accompanied to IoT such as (1) uncontrollable volume of data, (2) Unwanted Public Profile, (3) arise of eavesdropping and (4) consumer confidence of finding everything via Internet [2].

IoT revolutionizes how individuals and corporations interact with one another. Security and privacy issues can be resolved by means of competitive advantages network technologies has been developed over the years. Direct connections to a server can be limited or track down by means of embedded electronics, a good software engineer and administrator plus a good connectivity [3].

Based on the survey done by the internet world stats usage and population statistics, Philippines ranked 15 out of 20 to the top 20 countries with the highest number of internet users having 102,624,209 population and 54,000,000 registered internet users. This means that Internet is part of Philippine community daily living. The inexpensiveness of the technology cost i.e. the production of mobile or smart phone that offers internet connections and the low cost of communication provider are some of the factors that causes the growth of internet usage [4].

With the growing number of Internet users and providers together with the information published via world wide web this paper aims to determine IoT security and privacy issues in the Philippines.

This paper is organized as follows: Sect. 1 defines the state of the internet and IoT security and privacy. Section 2 introduces related work. Issues on privacy and security is discussed in Sect. 3, Sect. 4 shows the different mechanism on how issues on privacy and security can be prevented and Sect. 5 provides conclusions. There are three (3) parameters to be used in this study to provide security and privacy for the IoT sites and device. These are the accuracy, encryption speed and decryption speed of data.

2 Related Works

The modernization of communications that offers automatic connection to internet whenever there is an access made it possible for every person. IoT offers (1) SNS (Social Networking Sites), the connection it offers from one point to another point, made a convenience way of sharing files, (2) Cloud storage, where users can access files as long as there are internet connections, (3) Search engine that can dig every simple and complex data needed by the subscribers [5].

Different means of sharing files and how IoT can be a good help to a daily endeavor a person has. Security and privacy of IoT varies from (1) how people use IoT, (2) where it is connected, (3) policy it handles, (4) security algorithms it have and (5) requirements needed to be verified before connection took place. IoT was used as a Librarian main communication with the aid of mobile technology. A sustainable connection to the internet gives the company a minimal expenses of sharing files [6].

When it comes to IoT security, The Internet of Things, an emerging global Internetbased technical architecture facilitating the exchange of goods and services in global supply chain networks has an impact on the security and privacy of the involved stakeholders. Measures ensuring the architecture's resilience to attacks, data authentication, access control and client privacy need to be established. An adequate legal framework must take the underlying technology into account and would best be established by an international legislator, which is supplemented by the private sector according to specific needs and thereby becomes easily adjustable. The contents of the respective legislation must encompass the right to information, provisions prohibiting or restricting the use of mechanisms of the Internet of Things, rules on IT-securitylegislation, provisions supporting the use of mechanisms of the Internet of Things and the establishment of a task force doing research on the legal challenges of the IoT [11]. Another research study about privacy challenges from the Internet of Things, these services can be provisioned using centralized architectures, where central entities acquire, process, and provide information. Alternatively, distributed architectures, where entities at the edge of the network exchange information and collaborate with each other in a dynamic way, can also be used. In order to understand the applicability and viability of this distributed approach, it is necessary to know its advantages and disadvantages – not only in terms of features but also in terms of security and privacy challenges. The purpose of this paper is to show that the distributed approach has various challenges that need to be solved, but also various interesting properties and strengths [12].

While the general definition of the Internet of Things (IoT) is almost mature, roughly defining it as an information network connecting virtual and physical objects, there is a consistent lack of consensus around technical and regulatory solutions. There is no doubt, though, that the new paradigm will bring forward a completely new host of issues because of its deep impact on all aspects of human life. In this work, the authors outline the current technological and technical trends and their impacts on the security, privacy, and governance. The work is split into short- and long-term analysis where the former is focused on already or soon available technology, while the latter is based on vision concepts. Also, an overview of the vision of the European Commission on this topic will be provided [13].

Describe developments towards the Internet of Things (IoT) and discuss architecture visions for the IoT. Our emphasis is to analyze the known and new threats for the security, privacy and trust (SPT) at different levels of architecture. Our strong view is that the IoT will be an important part of the global huge ICT infrastructure ("future Internet") humanity will be strongly relying on in the future with relatively few data centers connected to trillions of sensors and other "things" over gateways, various access networks and a global network connecting them. While the infrastructure is globally connected, it is divided into millions of management domains, such as homes, smart cities, power grids, access points and networks, data centers, etc. It will evolve both bottom-up and top-down. An important question is what consequences a bottomup and top-down construction of the IoT infrastructure has for the security, privacy and trust and what kind of regulation is appropriate [14].

Embedded, mobile, and cyberphysical systems are ubiquitous and used in many applications, from industrial control systems, modern vehicles, to critical infrastructure. Current trends and initiatives, such as "Industrie 4.0" and Internet of Things (IoT), promise innovative business models and novel user experiences through strong connectivity and effective use of next generation of embedded devices. These systems generate, process, and exchange vast amounts of security-critical and privacy-sensitive data, which makes them attractive targets of attacks. Cyberattacks on IoT systems are very critical since they may cause physical damage and even threaten human lives. The complexity of these systems and the potential impact of cyberattacks bring upon new threats [15].

The Internet of Things consists of various platforms and devices with different capabilities, and each system will need security solutions depending on its characteristics. There is a demand for security solutions that are able to support multi-profile platforms and provide equivalent security levels for various device interactions. In addition, user privacy will become more important in the IoT environment because a lot of personal information will be delivered and shared among connected things. Therefore, we need mechanisms to protect personal data and monitor their flow from things to the cloud. In this talk, we describe threats and concerns for security and privacy arising from IoT services, and introduce approaches to solve these security and privacy issues in the industrial field [16].

IoT introduces the usage of technology to both businesses and consumers. The adaptation of technology as part of people daily lives becomes part of the commodity needed by the society. The solutions it offers and the security mechanism injected on it are sometimes neglected by the consumers, for them as long as technology made their lives easier is more than enough [8]

To ensure IoT Security, Fuzzy logic is best to determine the protocols and algorithms included in the selected research sites with respect to its reliability and efficiency in providing security and privacy [9].

One of the research studies shows how IoT Security was implemented in the network layers and how the algorithm was used to provide efficient security mechanism. Protocols such as RSA and EAS are the major protocols used within their selected sites along with the encryption and decryption algorithm fused together with the protocol [17].

With the aid of IoT, Burt (2016) contrast Hahn (2017) on his believes in IoT. In his report to the United States National Security, Burt pointed out that IoT is a big disguise that uses technology as front end and served as a spy back door. This manner of hiding the true identity of provider and subscribers to the public comprises the security and often result to identity theft and eavesdropping problem. Monteiro (2015) uses Fuzzy logic to provide results for reliability and efficiency in checking the security and privacy to IoT device data which is the same in this study with the help of ADDA algorithm.

3 Methodology

Rapid Application Development was used in creating ADDA algorithm using Visual Studio 6.0.

The researcher used experimental approach to obtain the result of accuracy, encryption speed and decryption speed of data inputted into the IoT device.

To secure connection between devices, the researcher added additional security using ADDA Algorithm. This algorithm will add additional blocks to the traditional encryption for additional security to the gateway of a particular IoT device.

Figure 1 shows how the proposed method constitutes of encrypted data. The ADDA Algorithm will get the encrypted data and will add additional block and pattern that will add confusion and diffusion to possible attack.

Encryption Algorithm

- Step 1: Get the encrypted data.
- Step 2: For every 4 bits of block add additional block.
- Step 3: Add New character to the additional block.

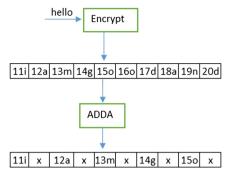


Fig. 1. ADDA algorithm

Step 4: Place each data to each equivalent container. Step 5. Save the new encrypted data.

Figure 2 shows the ADDA algorithm program. It composes of command buttons (open file, copy to source folder, 1st Encryption, 2nd encryption (ADDA), decryption and exit system.

Fig. 2. Adda algorithm main program

4 Results and Discussion

To visualized and see how ADDA algorithm works, following figures were presented.

Encrypting Text

Figure 3 shows original text file named source.txt which will be encrypted later.

Fig. 3. Source.txt file

Figure 4 shows the encrypted data (1st encryption command button). The 1st encryption will encrypt the source.txt file by converting characters including spaces into hexadecimal code and in between there is a special character inserted. The source. txt file will be replaced by source_adda_omj.txt.

Fig. 4. Encrypted text (1st encryption) source_adda_omj.txt file

Figure 5 shows the encrypted data (2nd encryption ADDA command button) 0 using ADDA algorithm which every character in Fig. 2 was converted to binary plus in every 4 blocks a randomized special character was being inserted.

destination, adds jury - Notepad	010 88
File Edit Format View Help	
011100110001101000011010011100110	
ö00110100001110011110011000110101	
¢001101001110011000110010001	
v11100110001101010011010011100110	
£00110100001110011110011000110101	
¥00110000111001100011001000110000	
¢11100110001101000100010011100110	
P00110110001100011110011000110110	
û0100010111100110001101100011001	
f11100110001101100100001111100110	
f001101100011000111100110	
1001101100011000111100110	
🚯 🖉 🧐 0 😼 🚱 🗐	No. 2 -4 (1) ADDING

Fig. 5. Destination_adda_omj.txt file

Figure 6 shows the decrypted data (decryption command button) which brings back the original text and filename (source.txt)

15

🛛 source - Notepad	
File Edit Format View Help	
DIT TIP Manila	

Fig. 6. The original text and file name source.txt

Figure 7 shows the encryption speed and decryption speed in milliseconds results of data that was encrypted and decrypted. Hardware specification where the program was run is intel core i7 with 8gb RAM running in windows 7 64 bit operating system. It also shows that the decryption speed in most tests conducted was doubled as compared to the encryption speed.

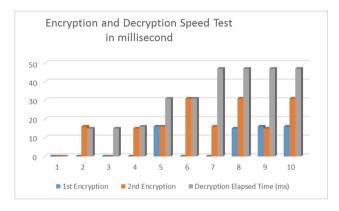


Fig. 7. Speed test report (text file)

Encrypting Image

Figure 8 is the original image that will be encrypted later using ADDA algorithm.

Fig. 8. Original image to be process

Figure 9 is the 1st encryption of the file source.jpg. it took 115752 ms to complete the encryption

Fig. 9. 1st encryption (source_adda_omj.jpg)

destination_add	da_omj - Notepad	There a	
File Edit Forma	st View Help		
255æP216æ2¥5	æ22Ü4æ0æ1P6æ74æ¥70æ73¢æ7	0æ0¥æ1æ2æf1æ2æ8£8æ2æ8	£8æ0æ0üæ255æù225æ0£æ11æ8 🔺
⊄æ209æf7æ19æú	50æ22P5æ241Uæ20æ3U5æ66æU	98æ820æ21æ501æ114ùæ37;	æ1030æ220æ36æ9¥9æ146yæ16
æ4û7æ167ÿæ234	æû187æ1Ü6æ202Öæ97æ6P8æ13	0ÿæ44æ8£æ175æ¢150æ1Ü9	9æ11£2æ123ûæ198æÖ49æ22¥2
L00æÿ96æ77ùæ1	35æf245æ2ö24æ15û6æ56æP17	3æ9ù6æ82æÖ13æ9æû252æ1	û11æ14¥9æ249¢æ192æû72æ55
	155æ1ö56æ9æf166æ4P7æ153P		
99Üæ252æ£76æ4	9¢æ39æ2P29æ20P1æ224jÿæ185	æ£1æ8æ1P18æ98£æ229æ⊄6	8æ16P9æ118ùæ92æ2Ü2æ45æP1
70æ2Ö38æ63ÿæ1	08æû207æ1Ü79æ11ÿ0æ219ûæ1	71æ¢122æ1¥09æ24Ü1æ31æ	Ü77æ18ù4æ62æf157æ1Ü48æ8€
ùæ84æ2Ü12æ23	9æ73æÜ152æ2û1æ217fæ95æ7f	2æ129fæ72æ9û2æ181¥æ17;	#4P8#16#f120#2ÿ6#123¥#66
e4¢æ70æ3¥2æ70)æ£120æ8f4æ0æ6fæ214æö107æ	1¥75æ16ÿæ138æû100æ8û4;	e12æÿ28æ13¢7æ200¥æ255æÿC
70æ1P13æ23£7a	e194Üæ38æ4P6æ198£æ65æ8Ü5æ	184¥æ181æf163æ3£6æ220	£æ91æ2ö02æ19û2æ240£æ99æ2
æ70æ9f9æ49æ0	62æ63Pæ207æÜ132æ2Ö06æ19Ö	4æ208öæ84æ2ü4æ4æ1ù0æ1	20ÿæ33æ1Ü89æ67¥æ23æ6ÿ4æ1
57 fæ21 8æù 20æ1	6û7æ65æÜ83æ24Ö4æ129Pæ30æ	1ù00æ70£æ115æÜ198æ9Üæ	149æ£40æ17f2æ174ÿæ16æ1£7
44æù96æ17û6a	e12æP163æ2ÿ30æ19ûæ242æP20	5æ1ù90æ1æ0108æ1f27æ80	fæ243æ¥195æ1ü30æ50fæ53æ2
2#86#0\var149#i	37æ46ùæ12æ1¥38æ46£æ6æ20£	9æ130fæ65æ2¥07æ25ú2æ2	27¢æ219æ¥132æ2û47æ49¢æ10
6ÿæ126æü197a	e1ÿ95æ51£æ66æ2¢50æ78ûæ203	#U82#16f3#65#¥182#2f1	5æ66 fæ1 64æÿ1 80æ1 ¢ 34æ64 Pa
e1310æ217æÿ17	8æ1û40æ2306æ84æÿ214æ2û6æ	1æ2049æ30¢æ193æù239æ1	ù9æ72æf194æ2£06æ19ù6æ40æ
ap50æ1098æ330	a110a073a20f0a22aP13a21P	8æ207Pæ225æf23æ19f1æ1	97¥æ143æf182æ1ù11æ19f9æ1
320552252262552	e0Uæ113æP91æ23¥7æ188ùæ191	æf184æ2û37æ12f3æ46æP2	23æ2û05æ12ù2æ173üæ77æ2P6
82280522090221	66æû135æ705æ74æÿ131æ2û11	#4#0197#5¢8#180ù#144#	189æ1 P76æ88 fæ1æ63ùæ1 37a
0æ122æ0130æ90	0æ86æö193æ2f11æ19P8æ233P	#242#P63#21f8#23#f225	#2¥15#61P#85#1µ71#75f#10
002010620075201	100æ124Pæ173æ¥187æ8ù4æ3æ	7f5ap75ap0110ap2f30ap22¥1;	a1a609a20a030a16f3a26a06
	9æ8ù0æ113¢æ196æÜ221æ2ÿ21		
/12æ12¢3æ123	fæ76æ1¢43æ17ù5æ240ûæ160æû	183æ8û3æ87æû160æ1¥90æ	80 fæ3 5æ8û 4æ3 3æ0 1 90æ1 P1 5æ
	æ£253æ7û9æ124 fæ240æÖ208æ		
ap73fap96ap1f97	a1600a216¥a65a4£9a1470a0	2015f820221P2014420f159206	102e32e2vi402e22f12e14462e972e6
228421¥52225	æ42æ1¥78æ21Öæ10æ1ù54æ13ù	9æ114ùæ144æÿ196æ1f70æ	25û0æ171ÿæ24æ0¢æ100æû121
4¥m18m7f8m1	5Pæ238æÿ108æ9ùæ144æ¢65æ2	40207432017520779520775720	18320110726¥62215022172016
	3æ21¢2æ96æf229æ1P05æ18£5æ		
1 n 8 7 m 1 f 4 5 m 4 2 i	ae12æ1f73æ20¢8æ5æ1ù26æ50ù	m111m0221m002m226Pm62	a1067a2102a1060a222af227
af86a1807a18	31¥æ245æù139æ1û07æ23Ü3æ43	2P1 2 221 00 82 21 0 22 20 8201	60m1015m76fm16m1f97m950x
and 5 Page 3 ap 7 ¥ 3 9	a17¢0æ213Pæ52æ1£07æ39Üæ1	61 a)¥1 72 a) 7 f () a) 81 f a) 21 2 a	f165ap709ap95apù75ap80fap20ap6
6ap173¥ap54ap16	37æ15£0æ154ÿæ67æ2ù33æ43ù	æ21 3æù 53æ20ÿ3æ105 fæ94:	a 2 û 1 1 a 2 5 û a 8 a 21 û a 1 2 3 a û 6 5 a
87 f 2080 201 P64 20	20¥æ45æ8û2æ154ûæ6æ14Ü4æ20	4 Pap 201 april 20 april 1 3 april 1	30m1077m77f0m138fm718m07
00m1¥66m7mf20	2æ8ü9æ251Pæ204æ£71æ23ü3æ	100¥m170mf73m15f7m47m	f17ap420ap92ap2033ap10(6ap121
/042+0042/4220	2200522521 2204227 2225052	199441794979419274474	er, aveoastatassatovoartri -
< III			E la

Fig. 10. 2nd encryption (destination_adda_omj.jpg)

Figure 11 shows the decrypted image which is exactly the same of the original image.

Table 1 shows the accuracy of image resolution before and after encryption and decryption occurs. The accuracy of the system to bring back the original file in its original resolution is 100%.

Figure 10 shows the encrypted file using ADDA algorithm

Fig. 11. The original image after decryption

	Original	Original	File Size after	Resolution	Accuracy of
	File Size	resolution in	decryption	after	resolution after
		pixel		decryption	
1	84.4	512 × 384	475	512 × 384	100%
2	84.4	512 × 384	475	512 × 384	100%
3	84.4	512 × 384	475	512 × 384	100%
4	84.4	512 × 384	475	512 × 384	100%
5	84.4	512 × 384	475	512 × 384	100%
6	84.4	512 × 384	475	512 × 384	100%
7	84.4	512 × 384	475	512 × 384	100%
8	84.4	512 × 384	475	512 × 384	100%
9	84.4	512 × 384	475	512 × 384	100%
10	84.4	512 × 384	475	512 × 384	100%

Table 1. Accuracy test of image resolution

5 Conclusion

Security and privacy are one the major concern of IoT users, with the aid of ADDA algorithm additional security will be added to the traditional encryption. Privacy were protected using two procedures (1) by adding blocks to the original blocks and (2) by randomly inserting special characters. Based on the result, the encrypted data will be more secured and can be used privately since blocks of data are encrypted with the help of ADDA algorithm. The accuracy result of encrypting data using ADDA algorithm was exceptional due to high percentage rate of the test conducted.

References

- Smith, M.: Protecting privacy in an IOT connected world. Inf. Manag. 49, 36-39 (2015)
- Meola, A.: How the Internet of Things will affect security and privacy (2016). http://www. businessinsider.com/internet-of-things-security-privacy-2016-8
- Navetta et al.: The Security, Privacy, and Legal Implications of the Internet of Things (IoT) Part One – The Context and use of IoT (2015). http://www.dataprotectionreport.com/2015/05/thesecurity-privacy-legal-implications-of-the-internet-of-things-iot-part-one-the-context-anduse-of-iot/
- de Argaez, E.: Miniwatts Marketing Group, International Division of Miniwatts de Colombia Ltda, Carrera 7, Bogota, Colombia (2017)
- Bian, J., et al.: Mining Twitter to assess the public perception on the Internet of Things. PLoS ONE 11, 1–14 (2016)
- Hahn, J.: The Internet of Things: mobile technology and location services in the libraries. Libr. Technol. Rep. **53**(1), 1–28 (2017)
- Burt, J.: IoT Could be used by Spies, U.S. Intelligence Chief Says. eWeek, p. 1, 2 December 2016
- Patra et al.: Securing IoT devices and gateways (2016). http://www.ibm.com/developerworks/ library/iot-trs-secure-iot-solutions1/index.html
- Monteiro, E., et al.: Security for the Internet of Things: a survey of existing protocol and open research issues. IEEE Commun. Surv. Tutor. **17**(3), 1294–1312 (2015)
- Suo, H.: Security in the Internet of Things: A Review. Guangdong Jidian Polytechnic Guangzhou, China (2012). https://www.researchgate.net/publication/254029342_Security_in_the_Internet_of_Things_A_Review
- Weber, R.H.: Internet of Things-new security and privacy challenges. Comput. Law Secur. Rev. **26**(1), 23–30 (2010)
- Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and privacy in distributed Internet of Things. Comput. Netw. **57**(10), 2266–2279 (2013)
- Medaglia, C.M., Serbanati, A.: An overview of privacy and security issues in the Internet of Things. In: Giusto, D., Iera, A., Morabito, G., Atzori, L. (eds.) The Internet of Things, pp. 389–395. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-1674-7_38
- Kozlov, D., Veijalainen, J., Ali, Y.: Security and privacy threats in IoT architectures. In: Proceedings of the 7th International Conference on Body Area Networks, pp. 256–262. ICST (Institute for Computer Sciences, Social- Informatics and Telecommunications Engineering), February 2012
- Sadeghi, A.R., Wachsmann, C., Waidner, M.: Security and privacy challenges in industrial Internet of Things. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE, June 2015
- Hwang, Y.H.: IoT security & privacy: threats and challenges. In: Proceedings of the 1st ACM Workshop on IoT Privacy, Trust, and Security, p. 1. ACM, April 2015
- Liu, Y., Zhou, G.: Key technologies and applications of Internet of Things. In: 2012 Fifth International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 197–200. IEEE, January 2012