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1 Introduction

Recent advancements in technology have given scope for more threats to personal
data and national security due to large amount of stored data. The information
transmitted through online can be easily hacked and override the authorized user
by the hackers. There are many traditional methods such as password-,
watermarking-, and cryptography-based systems to protect the data from the
hackers. But these methods are not sufficient to handle new generation applications
[1–4].

The biometric based authentication was introduced to avoid the brute force attack.
Here, the authentication process is performed by the unique physical features of
humans like fingerprint [5], iris, retina, hand geometry, etc. They provide high-
secured systems than the traditional methods. Initially, the mono-biometric [6]
authentication systems were used to authenticate users and secure systems. Finger-
print verification system is the one of the biometric authentication systems that is
highly reliable and is being extensively used by forensic experts. Fingerprint appli-
cations include entrance control, door-lock applications, fingerprint identification
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mouse, and fingerprint mobile phones, among others. The biometric fingerprint
means allow authorized users access to multiple clinical, financial, and other sys-
tems. It also avoids forgery of certificates, conveying of false information, threats,
and crimes.

There are three stages in the fingerprint verification system. These are the
enhancement, feature extraction, and comparison. Image enhancement is the
preprocessing stage where the quality of the edges is improved and contrast level
is increased. The poor-quality images will have low-contrast edges and also the
boundaries are not well defined which reduce the ratio of FAR and FRR to about
10% [7].

In case of biometrics, the huge number of images needs to be maintained
irrespective of the features, as the population is typically high. Hence, an effective
compression technique is required in order to utilize the storage space efficiently.
But the disadvantage of using the compression technique is loss of data, which leads
to inaccurate matching. In this chapter, the Morlet wavelet algorithm is discussed for
fingerprint enhancement and compression during the preprocessing stage of finger-
print verification system [8].

Minutiae-based methods [9, 10] and image-based methods [11–13] are the two
variations in fingerprint verification systems. Minutiae is defined as the points of
interest in the fingerprint. Minutiae are used as features in minutiae-based methods,
and the position of the minutiae, their orientation, and type are stored as sets. The
disadvantage is that they may not utilize rich discriminatory information and may
have high computation complexity, whereas the image-based methods utilize ridge
pattern as feature. Tico et al. [14] proposed transform-based method using digital
wavelet transform (DWT) features, while Amornraksa et al. [15] proposed using
digital cosine transform (DCT) features. These transform methods show a high
matching accuracy for inputs which are identical to the one in its own database.
However, these methods have not considered the invariance to an affine transform to
deal with different input conditions.

To satisfy the variability condition, integrated wavelet and Fourier-Mellin trans-
form (WFMT) [16] using multiple WFMT features is used. However, this scheme is
not suitable for all types of fingerprint images since it chooses core point as a
reference point.

To overcome these methods, the simple binaries method is introduced to extract
the core reference point. The Zernike and invariant moments are calculated from the
reference point invariant to translate, rotate, and scale. The feature is evaluated by
the range of correlation between the moments, which reduces the number of features
required for comparison during authentication. In this, the authentication is
performed by single biometric system [11], which results in high error rates when
many similar features exist in the database.

In order to overcome the high error rates, the multimodal biometric system has
been developed. It means that more than one biometric [17] is used simultaneously
in order to authenticate and validate the user as well as to maintain more information
for security purpose. The multimodal biometric system leads to having more infor-
mation for authentication so it takes more time for authentication and consumes
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more storage. It results in high complexity, storage, and execution time. The new
fused biometric systems have been introduced to solve the above constraints where
the features of the multiple biometrics are combined into a single feature and the
authentication is performed using predefined threshold value.

The multimodal biometric fusion system leads in an increase in the error rate for
authentication due to the more similar features. There are many fusion methods
based on decision, score, and feature level that are used in biometric authentication
system. These techniques differ upon what biometric information is going to be
fused and how the fusing is done. In decision-level fusion techniques [18], the
biometric image was divided into equal small squares from which the local binary
patterns are fused to single global features pattern. The performance of these
techniques leads to 95% of accuracy. The score level fusion technique [19] is fusing
the PCA analysis of the face and fingerprint into single identification system, and in
this case the error rate reaches more than 11%. The feature level fusion techniques
[20] fuse the feature points of the fingerprint and the face and provide 97%
efficiency, but none of the previous fusion techniques provide zero error rates.

In this chapter, a new simple and robust fusion technique called the multimodal
biometric invariant moment fusion authentication system has been introduced, and it
provides better adaptation of genuine and imposter among various test data sets. The
fused algorithm gives a single identification decision (data sets) using coefficients
which solve the problem of timely constraints and storage space [21]. This approach
provides better results than score, feature, and decision-level fusion technique.

2 Multimodal Biometric Invariant Moment Fusion
Authentication System

In multimodal biometric system, more than single biometric is used for authentica-
tion purpose. Usually, both mono- and multimodal systems perform the two major
operations, namely, enrolment and authentication. During enrolment, the distinct
information of the biometric is stored in the database which is used for verification.
After enrolment, the authentication is performed by comparing the information with
the stored information. Depending upon the ratio of similar or non-similar data, the
genuine or imposter must be identified.

2.1 Invariant Moment Fusion System

The binaries method extracts the core reference point in which the Zernike and
invariant moments are calculated. Translation, rotation, and scaling are performed on
invariants. The final features for authentication are evaluated by the range of
correlation between the moments to reduce the amount of storage.
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2.2 Fingerprint

2.2.1 Morlet Enhancement and Compression

The Morlet fingerprint image enhancement and compression [8] consists of
two-stages in processing. They are wavelet analysis and smoothening. In wavelet
analysis, the Fourier transforms are applied on the 2D Morlet wavelet and the
original image separately. The transformed images are then obtained from these
transformed functions. The corrected two-dimensional continuous wavelet trans-
form (2D CWT) is obtained by applying the inverse Fourier transform in the
transformed image. During the smoothing process, the orientation and the frequency
image [22] of the 2D CWT image are estimated and applied in the Gabor filter in
order to remove noise.

The steps involved in the algorithm are as follows:

1. The image is decomposed using Morlet wavelet.
2. Ridge segmentation is done to identify the broken ridges.
3. The ridge orientation is estimated.
4. The frequency is estimated using orientation image.
5. The final image is reconstructed based on adjoining chosen filtered blocks.

2.2.2 Morlet Wavelet

2.2.2.1 2D Continuous Wavelet Transforms

2D CWT is performed by convolving a wavelet function and image. For f(x, y) 2 L2R,
2D CWT in time domain is given as:

cwt s; a; bð Þ ¼ 1ffiffi
s

p
ð ð

f x; yð Þψ x� a

s
;
y� b

s

� �
dxdy ð12:1Þ

where s is the “dilation” parameter used to change the scale and a, b are the
translation parameters used to slide in time. The factor of s1/2 is a normalization
factor to keep the total energy of the scaled wavelet constant.

The 2D CWT in frequency domain is given as:

cwt s;w1;w2ð Þ ¼ ffiffi
s

p
F w1;w2ð ÞΦ sw1; sw2ð Þ ð12:2Þ

where w1 and w2 refer to the frequency of the image, F(w1,w2) is the low-frequency
spectrum, and ϕ(w1,w2) is the phase modulation, which defines the spectrum of
deformed image. The Fourier transform in Morlet wavelet is applied to the image,
which calculates the discrete points depending on the scale and displays the real part
of the inverse Fourier transform.
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ψ kx; kyð Þ ¼
ffiffiffiffiffi
2π

p
e�

1
2 2πkx�kð Þþ 2πkyð Þ2 � e�

1
2k

2ψ
� �

e�
1
2 2πkx2þ2πky2ð Þ ð12:3Þ

The decomposition of the fingerprint image by 2D Morlet wavelet is shown in
Fig. 12.1a. The resultant transformed image has good contrast and enhanced ridges
with compression.

2.2.3 Ridge Orientation

The orientation image represents an intrinsic property of the fingerprint image and
defines invariant coordinates for ridges and furrows in a local neighborhood as
shown in Fig. 12.1b. A ridge center maps itself as a peak in the projection. The
projection waveform facilitates the detection of ridge pixels. The ridges in the
fingerprint image are identified with the help of eight different masks. The ridges
are separated from the fingerprint image by the following equations:

I x; yð Þ ¼ I x; yð Þ �mean ð12:4Þ
S x; yð Þ ¼ I x; yð Þ=σ ð12:5Þ

where σ is the standard deviation and I(x, y) is an integrated image.

Fig. 12.1 The resultant
phases of the enhancement:
(a) Morlet image, (b)
orientation image, (c)
frequency image, and (d)
enhanced image
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By viewing ridges as an oriented texture, a number of methods have been
proposed to estimate the orientation field of fingerprint images [22]. Given a
transformed image, N, the main steps for calculating dominant directions are as
follows:

1. Divide N into blocks of size w � w.
2. Compute the gradients and apply Gaussian filter Gxy. The gradient operators are

simple Sobel operators and Gaussian filter is applied as follows:

Gxy ¼ 1
2πσ2

e�
x2þy2

2σ2 ð12:6Þ

3. Estimate the local orientation of each block centered at pixel (i, j)

O x; yð Þ ¼ π

2
� tan

Gxy � Gyy

Gxy

� �
=2

� �
ð12:7Þ

where the degree of smoothening is governed by the variance σ2.

2.2.4 Frequency Image

The frequency of the fingerprint image is estimated using the orientation imageO(x, y)
by Eq. 12.7, and it is shown in Fig. 12.1c. The block is rotated and cropped based on
the orientation. The median filtering is then applied for smoothening.

F x; yð Þ ¼ F u; vð ÞW u; vð ÞI u; vð Þ
W u; vð ÞI u; vð Þ ð12:8Þ

where W u; vð Þ ¼ uffiffi
2

p ,
v� uffiffi

2
p

2

F(u, v) is the wavelet transformed image and I(u, v) ensures that the valid ridge
frequency is non-zero. The ridge of 3–25 pixels is the valid range.

2.2.5 Enhanced Image

The Gabor filter optimally captures both local orientation and frequency information
to smoothen the fingerprint image. By tuning a Gabor filter to specific frequency and
direction, the local frequency and orientation information can be obtained, which
will be used for extracting texture information from images, which gives smoothing
as a part of enhancement by removing the noise shown in Fig. 12.1d.
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E x; yð Þ ¼ 1
2πσxσy

e
�1

2
x2þy2

σ2x,y

� �
=2

� �
cos 2πfx

h i
ð12:9Þ

where σx and σy determine the shape of the filter envelop and f represents the
frequency of the image.

2.2.6 Determination of Reference Point and Regions of Interest (ROI)

The reference point is determined in order to evaluate the ROI of the fingerprint
image, which are used to extract the Zϕmoments. This process simplifies the process
of the extraction by reducing its complexity.

The Otsu method is used to define the threshold to the binaries of the image. Intra-
class variance is defined as a weighted sum of variances of the two classes:

σ2ω tð Þ ¼ ω1 tð Þσ21 tð Þ þ ω2 tð Þσ22 tð Þ ð12:10Þ

Weights ω1 and ω2 are the probabilities of the two classes separated by the
threshold of variance and σ1

2and σ2
2 variances of these classes, respectively.

Minimizing the intra-class variance is the same as maximizing interclass variance:

σ2b tð Þ ¼ σ2 � σ2ω tð Þ ¼ ω1 tð Þω2 tð Þ μ1 tð Þ � μ2 tð Þ½ �2 ð12:11Þ

which is expressed in terms of class probabilities ωI and class means μi. The class
probability ωi(t) is computed from the histogram t:

ωi tð Þ ¼
Xt

i¼0

p ið Þ ð12:12Þ

while the class mean μi(t) is:

μi tð Þ ¼
Xt

i¼0

p ið Þx ið Þ
" #

=ωi ð12:13Þ

where x(i) is the value at the center of the ith histogram. Similarly, we can compute
ω2(t) and μ2(t) on the right-hand side of the histogram.

The algorithm to binaries detects and crops the ROI of fingerprint:

1. Compute histogram(t) and probabilities of each intensity level
2. Set up initialωi(0) and μi(0).
3. For t ¼ 1 to maximum intensity, do:
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3.1 Update ωi and μi
3.2 Compute σb

2(t) using Eq. 12.11
3.3 Thresholds σb1

2(t) greater and σb2
2(t) equal or minimum is defined

Threshold T ¼ σ2b1 tð Þ þ σ2b2 tð Þ
2

ð12:14Þ

Binaries image Eb x; yð Þ ¼1 if E x;yð Þ>T
0 if E x;yð Þ>T ð12:15Þ

4. The region labeled with four connected components is chosen which determines
the high curvature region used to determine ROI.

5. The median of the region is taken as reference point, and image is cropped into
size of 120 � 120. It is shown in Fig. 12.2.

2.2.7 Invariant and Zernike Moment Analysis

The algebraic invariants and Zernike moment are calculated from the reference point
of the fingerprint and are invariant to scale, position, and rotation. Algebraic
invariants are applied to the moment generating function under a rotation transfor-
mation. Nonlinear centralized moment and absolute orthogonal moment invariants
are calculated with reference. Fingerprint ZΦ invariants [18] are shown in
Table 12.1.

Fig. 12.2 The resultant
phases of the fingerprint
enhancement with singular
point detection

Table 12.1 Fingerprint Zϕ invariants

Data sets Train image database

Fing1 6.6739 24.1707 30.6781 30.3368 66.175 42.5687 60.8585

Fing2 6.6439 21.8419 26.9747 30.2023 60.5443 41.5152 58.8209

Fing3 6.6444 14.9212 28.2185 28.0322 57.1951 35.5803 58.8439

Fing4 6.5548 14.7008 29.5278 28.9722 59.2708 37.7285 58.6214

Fing5 6.6496 23.3503 30.7699 31.9627 64.0907 48.2492 63.8234

Fing6 6.6524 23.6642 30.9556 30.0366 62.4862 43.1547 60.855
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Invariant Moments
Central moments of order 3 or less are for translational invariance. For a 2D
continuous function f (x, y), the moment of order ( p + q) is defined as:

m0,0 ¼
Xn
i, j¼1

f �x ¼ m1,0

m0,0
�y ¼ m0,1

m0,0
m1,0 ¼

Xn
i¼1

x � f

m0,1 ¼
Xn
j¼1

y � f m1,1 ¼
Xn
i, j¼1

x � y � f

m2,0 ¼
Xn
i¼1

x2 � f m0,2 ¼
Xn
j¼1

y2 � f m1,2 ¼
Xn
i, j¼1

x � y2 � f m3,0 ¼
Xn
i¼1

x3 � f m0,3

¼
Xn
j¼1

y3 � f m2,1 ¼
Xn
i, j¼1

x2 � y � f

Second-order central moment for image orientation for scaling invariant:

ξ1,1 ¼
�
m1,1 � �y � m1,0

�
m2

0,0
ξ2,0 ¼

�
m2,0 � �x � m1,0

�
m2

0,0
ξ0,2 ¼

�
m0,2 � �y � m0,1

�
m2

0,0

ξ3,0 ¼
�
m3,0 � 3�x � m2,0 þ 2 � �x2 � m1,0

�
m2:5

0,0
ξ0,3 ¼

�
m3,0 � 3�y � m0,2 þ 2 � �y2 � m0,1

�
m2:5

0,0

ξ2,1 ¼
�
m2,1 � 2�x � m1,1 þ �y � m2,0 þ 2�x2 � m0,1

�
m2:5

0,0

ξ2,1 ¼
�
m1,2 � 2�y � m1,1 � �x � m0,2 þ 2�y2 � m1,0

�
m2:5

0,0

A set of seven invariant moments derived from the second and third moments is a
set of absolute orthogonal moment invariants proposed by Hu [23].

Rotational invariant moments: φ(1) ¼ ξ2, 0 + ξ0, 2.
Moment of inertia (pixel intensity to physical density for rotation invariant).

φ 2ð Þ ¼ ξ2,0 þ ξ0,2
� �2 þ 4ξ21,1

� �
φ 3ð Þ ¼ ξ3,0 � 3ξ1,2

� �2 þ 3ξ2,1 � ξ0,3
� �2

φ 4ð Þ
¼ ξ3,0 � ξ1,2

� �2 þ ξ2,1 þ ξ0,3
� �2
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φ 5ð Þ ¼ ξ3,0 � 3ξ1,2
� �

ξ3,0 þ ξ1,2
� �

ξ3,0 þ ξ1,2
� �2 � 3 ξ2,1 þ ξ0,3

� �2 þ 3ξ2,1 � ξ0,3
� ��

ξ2,1 þ ξ0,3
� �

3 ξ3,0 þ ξ1,2
� �2 � ξ2,1 þ ξ0,3

� �2� ��
φ 6ð Þ ¼ ξ2,0 � ξ0,2

� �
ξ3,0 þ ξ1,2
� �2 � ξ2,1 þ ξ0,3

� �2�
þ4ξ1,1 ξ3,0 þ ξ1,2

� �
ξ2,1 þ ξ0,3
� ��

φ 7ð Þ ¼ 3ξ2,1 � 3ξ0,3
� �

ξ3,0 þ ξ1,2
� �� ξ3,0 þ ξ1,2

� �2 � 3 ξ2,1 þ ξ0,3
� �2� �

þ 3ξ1,2 � ξ3,0
� �

ξ2,1 þ ξ0,3
� �

3 ξ3,0 þ ξ1,2
� �2 � ξ2,1 þ ξ0,3

� �2� ��

Skew invariants distinguish between mirror and identical images.

Zernike Moments
The Zernike moment is a set of complex polynomials {Vnm(x,y)}, which form a
complete orthogonal set over the unit disk of x2 + y2�1 from the polynomial in polar
coordinates, where n is the +ve integer or 0, n-|m| is even, |m| �n and θ ¼ tan y=xð Þ.

The radial polynomial:

Rnm rð Þ ¼
Xn�jmjð Þ=2

s¼0

�1ð Þs n� sð Þ!
s! nþjmj

2 � s
h i

! n�jmj
2 � s

h i
!
rn�2s ð12:16Þ

The Zernike moment is:

Znm x; yð Þ ¼ nþ 1
π

XN
x¼0

XM
y¼0

f x; yð ÞVn,�m x; yð Þ ð12:17Þ

2.3 Face Fusion System

The architecture of the face fusion system is shown in Fig. 12.3. The eigen faces are
extracted from the face and used for authentication [17]. Initially, the mean and
difference of each image in the training set is computed by using Eqs. 12.18 and
12.19. Then the entire centralized image T is merged using mean to obtain the result
A. The merged value is used for computing the surrogate covariance matrix L using

Fig. 12.3 Block diagram of face fusion
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Eq. 12.20. The diagonal elements of covariance matrix are taken as eigen faces using
Eq. 12.21. Eigen elements are sorted and are eliminated if their values are greater
than 1. Finally, the six invariant features are extracted from the faces using
Eq. 12.22.

The high dimensionality makes a good face recognition algorithm. The sample
tested face features fusion is shown in Table 12.2.

mean ¼ 1
n

Xn
i¼1

Xi ð12:18Þ

Ai ¼ Ti �mean ð12:19Þ
L ¼ A0 � A Xi �meanð Þ ð12:20Þ

V � D½ � ¼ Eig Lð Þ ð12:21Þ
Variant ¼ L� A ð12:22Þ

2.3.1 Fusion

The data sets are independently computed by the described variants of face and
fingerprint [18]. The variation distance of the moments is calculated using
Eqs. 12.23 and 12.24. It is used for enrolment and comparison during authentication.

d1 ¼ μ φið Þ, μ σ φið Þð Þ, μ σ2 φið Þ� �
,

μ φið Þ
μ σ φið Þð Þ ð12:23Þ

d2 ¼ μ Ziφið Þ, μ σ Ziφið Þð Þ, μ σ2 Ziφið Þ� �
,

μ Ziφið Þ
μ σ Ziφið Þð Þ ð12:24Þ

Table 12.2 Face Zϕ invariants

Data sets Train image database

Face 1 �0.0861 0.0292 0.2199 0.0595 �0.1391 �0.0263

Face 2 0.1025 �0.0871 0.0046 0.0363 �0.1580 0.0161

Face 3 �0.0021 �0.2707 0.0512 �0.0392 0.0847 0.2199

Face 4 0.3195 �0.0552 0.1880 �0.3034 �0.1184 �0.1025

Face 5 �0.3618 �0.0130 0.3020 �0.2350 0.4339 �0.2700

Face 6 �0.4902 0.8825 �0.2266 �1.0756 �0.1895 1.0297
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2.3.2 Authentication

The multimodal biometric authentication is one of the new breeds of authentica-
tion system performed by means of more than one biometric in order to validate/
authenticate the user. The overall architecture of our authentication system is
shown in Fig. 12.4. The trained set of inputs in which invariant moment is
extracted is fused and enrolled in the database. Now during authentication, the
test data input image of fingerprint and face scanned by the user is fused and
compared with the fused value in the database. Then matching is performed by
calculating the correlation r between the distance di of enrolled moments α and
verification moments β by Eq. 12.25. The correlation between the fused values
computed using Eq. 12.25 and variation using Eq. 12.26 determine whether the
user is legitimate or not.

The resultant difference value is compared with the threshold value to validate the
user using Eq. 12.22. The threshold value is based upon the sensitivity of the system.
If the difference is low, then the similarity will be higher and it crosses the threshold
limit to authenticate the user. Otherwise, the user is not authenticated. This multi-
modal biometric authentication system performed well and provides more than 99%
accuracy.

r ¼ 2Crf

Cr þ C f
whereCr ¼

XN
i¼0

α ið Þ2

C f ¼
XN
i¼0

β ið Þ2 and Crf ¼
XN
i¼0

α ið Þ2β ið Þ2 ð12:25Þ

D ¼ Fusedscanned � FusedEnrolled ð12:26Þ

A ¼
100� D

100
� 100 < Th ¼ Notauthehticated

100� D

100
� 100 > Th ¼ Authenticated

8>><
>>: ð12:27Þ

Input Image for
Trained set

Fusion value of Face and
Fingerprint

Fusion value of Face and
Fingerprint

Matcher

Input Image for
Test set

Genuine

Imposter

D=0

Fig. 12.4 Block diagram of
the face and fingerprint
fusion authentication
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3 Experimental Results

The fingerprint image database used in this experiment is the FVC2002 database,
which contains four distinct data set DB1, DB2, DB3, and DB4.

The performance is evaluated in terms of false acceptance rate (FAR) and false
reject rate (FRR).

FAR ¼ Number of accepted imposter
Total number of imposter

� 100 ð12:28Þ

FRR ¼ Number of rejected genuine
Total number of genuine

� 100 ð12:29Þ

The FAR means imposter accepted as a genuine user, and FRR means the
genuine user is rejected as imposter. They are calculated using the Eqs. 12.28 and
12.29, respectively.

The equal error rate (EER) is used as a performance indicator, which indicates the
point where FRR and FAR are equal and for evaluating the performance in terms of
recognition rate.

The receiver operating characteristic is used as another performance indicator
(ROC). It plots the genuine acceptance rate (GAR ¼ 1-FRR) against FAR. The
missing probability and alarm probability are evaluated.

Finally, EER is evaluated and results are shown in Figs. 12.5, 12.6, and 12.7,
where it is shown that the performance of the proposed system works well in
comparison with other image-based approaches.

The DCT coefficient used by Amorniska in [15] and Jimin [16] used WFMT
features; Sha [13] with Gabor filter and Ju [24] with invariants using BPNN are
compared, and results shown in Table 12.3 with the proposed method provided more
accuracy.
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FAR vs FRR graph
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Table 12.3 The GAR%
against FAR% of the proposed
method compared with other
methods

Methods DB1 DB2 DB3 DB4

Amorniska [13] 91.4 85.7 82.1 92.6

Sha [15] 92.7 88.9 85.3 93.2

Jin [14] 94.3 92.4 90.6 94.9

Ju [25] 96.4 95.8 94.2 97.3

Multimodal fusion 98.7 97.2 95 98.2
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4 Conclusion

The combined Morlet enhancement with fusion of Zernike and invariant moment
features of fingerprint and face is fused by evaluating the distance, mean, and
correlation. The combined Morlet enhancement with fusion of Zernike and invariant
moment features reduces the storage of features and error rate. The binaries approach
using high curvature region accurately determines the reference point used to extract
the moments. It is invariant to affine transformations on various input condition. The
combined feature maintained for authentication into single identification data
reduces the amount of biometric features. The analysis on multimodal biometric
using Zφ moment’s invariant improves the verification accuracy up to 97% as
compared to other approaches. The maximum FAR and FRR were maintained at
less than 1%. This system demonstrates high reliability, robustness, and good
performance in personnel authentication systems.
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