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Preface

This volume highlights the mathematical research presented at the 2017 Association
for Women in Mathematics (AWM) Research Symposium. This event, fourth in the
biennial series of AWM Research Symposia, was held at the University of California
Los Angeles (UCLA) on April 8–9, 2017. The objective of the AWM Research
Symposia Series is to increase awareness of the mathematical achievements of
women in academia, industry, and government, as well as to provide a supportive
environment for female mathematicians, at all stages of their careers, to share
their research. Additionally, these symposia promote research collaboration, as
they facilitate the creation of new networks of women researchers and support the
research collaboration networks already existing in several areas of mathematics.
The symposia also include social events to enable networking among women in
different career paths, or at different career stages, while promoting the discussion
of prospects, visibility, and recognition.

About the 2017 AWM Research Symposium

The 2017 AWM Research Symposium was organized by Raegan Higgins, Kristin
Lauter, Magnhild Lien, Ami Radunskaya, Tatiana Toro, Luminita Vese, and Carol
Woodward. The Department of Mathematics at UCLA and the Institute for Pure
and Applied Mathematics (IPAM) hosted the event that featured 4 plenary talks
by distinguished women mathematicians (Table 1), 19 special sessions on a broad
range of areas in mathematics (Table 2), a poster sessions for graduate students and
recent Ph.D.s, a job panel, a reception, a banquet, and a student chapter event.

Eight of the 19 special sessions were organized by research networks supported
by the AWM ADVANCE grant: Women in Numbers (WIN), Women in Math
Biology (WIMB), Women in Noncommutative Algebra and Representation Theory
(WINART), Women in Numerical Analysis and Scientific Computing (WINASC),
Women in Computational Topology (WinCompTop), Women in Topology (WIT),

vii
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Table 1 2017 AWM Research Symposium: plenary talks

Speaker Title

Ruth Charney Searching for hyperbolicity

Svitlana Marboroda The hidden landscape of localization of eigenfunctions

Linda Petzold Inference of the functional network controlling circadian rhythm

Mariel Vazquez Understanding DNA topology

Women in Shape (WiSh), and Algebraic Combinatorixx (ACxx). For more details
about these and other Research Collaboration Networks for Women visit: https://
awmadvance.org/research-networks/.

The keynote speaker at the banquet was Maria Helena Noronha, who in a very
inspirational address described her journey from Brazil to Southern California, as
a researcher and as a mentor. During the banquet, the second AWM Presidential
Award was presented to Deanna Haunsperger, in recognition of her contribution to
advance the goals of AWM through her work in the Summer Math Program (SMP)
at Carleton College.

The symposium also included a full-day session titled Wikipedia edit-a-thon,
during which participants at the 2017 AWM Research Symposium took turns
writing Wikipedia entries to enhance the visibility of women in mathematics and
their contributions.

About This Volume

The first chapter in this volume corresponds to the opening plenary talk at the
symposium, Searching for Hyperbolicity by Ruth Charney. Her chapter is an
excellent introduction to geometric group theory, by a renowned expert in the field,
whose research contributed to the consolidation of geometric group theory as a
mathematical area.

The following three chapters comprise mathematical results presented at the
WINART Special Session: Representations of Algebras. Mee Seong Im and Angela
Wu present their work on representation theory of the generalized iterated wreath
product of cyclic groups (chapter “Generalized Iterated Wreath Products of Cyclic
Groups and Rooted Trees Correspondence”) and symmetric groups (chapter “Gen-
eralized Iterated Wreath Products of Symmetric Groups and Generalized Rooted
Trees Correspondence”). Chapter “Conway–Coxeter Friezes and Mutation: A Sur-
vey” consists of a survey on Conway-Coxeter friezes and mutation, in which Karin
Baur, Eleonore Faber, Sira Gratz, Khrystyna Serhiyenko, and Gordana Todorov
connect Conway-Coxeter friezes, introduced in combinatorics in the 1970s, and
cluster combinatorics, arising from the introduction of cluster algebras in the early
2000s.

https://awmadvance.org/research-networks/
https://awmadvance.org/research-networks/
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Table 2 2017 AWM Research Symposium: special sessions

Title Organizers

WIN—Work from Women in Numbers Beth Malmskog, Katherine Stange

WinCompTop: Applications of Topology
and Geometry

Emilie Purvine, Radmila, Sazdanovic,
Shirley Yap

WIMB—From Cells to Landscapes:
Modeling Health and Disease

Erica Graham, Carrie Manore

ACxx: Algebraic Combinatorics Hélène Barcelo, Gizem Karaali

WINASC: Recent Research Development
on Numerical Partial Differential Equations
and Scientific Computing

Chiu-Yen Kao, Yekaterina Epshteyn

WINART: Representations of Algebras Susan Montgomery, Maria Vega

WiSh: Shape Modeling and Applications Asli Genctav, Kathryn Leonard

WIT—Topics in Homotopy Theory Julie Bergner, Angelica Osorno

Women in Sage Math Alyson Deines, Anna Haensch

Women in Government Labs Cindy Phillips, Carol Woodward

EDGE-y Mathematics: A Tribute to Dr.
Sylvia Bozeman and Dr. Rhonda Hughes

Alejandra Alvarado, Candice Price

SMPosium: A Celebration of the Summer
Mathematics Program for Women

Alissa S. Crans, Pamela A. Richardson

The Many Facets of Statistics Applied, Pure
and BIG

Monica Jackson, Jo Hardin

History of Mathematics Janet Beery

Commutative Algebra Alexandra Seceleanu, Emily Witt

Biological Oscillations Across Time Scales Tanya Leise, Stephanie Taylor

Geometric Group Theory Pallavi Dani, Tullia Dymarz, Talia Fernos

Recent Progress in Several Complex
Variables

Purvi Gupta, Loredana Lanzani

Research in Collegiate Mathematics
Education

Shandy Hauk, Pao-sheng Hsu

Chapter “Orbit Decompositions of Unipotent Elements in the Generalized
Symmetric Spaces of SL2(Fq)” features the work of Catherine Buell, Vicky
Klima, Jennifer Schaefer, Carmen Wright, and Ellen Ziliak, who jointly studied
the orbit decompositions of unipotent elements in the generalized symmetric
spaces of SL2(Fq). Their results were presented in the special session EDGE-y
Mathematics: A Tribute to Dr. Sylvia Bozeman and Dr. Rhonda Hughes. Chapter “A
Characterization of the U(�,m) Sets of a Hyperelliptic Curve as � and m Vary” is
a paper on computational algebraic geometry by Christelle Vincent, and it was part
of the special session Women in Sage. In “A First Step Toward Higher Order Chain
Rules in Abelian Functor Calculus”, Christine Osborne and Amelia Tebbe take a
first step toward higher-order chain rules in abelian functor calculus, by proving
the second-order directional derivative chain rule using concrete computational
techniques. Their work was presented in the WIT-Topics in Homotopy Theory.
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In “DNA Topology Review” the volume transitions to mathematical biology,
as Garrett Jones and Candice Price survey how topology can be applied to
model biological processes, such as actions of proteins on DNA. Their work
introduces essential concepts together with a description of fundamental literature,
offering an excellent guide for undergraduate or graduate students, as well as for
scholars, interested in learning the basics of DNA topology. Chapter “Structural
Identifiability Analysis of a Labeled Oral Minimal Model for Quantifying Hepatic
Insulin Resistance” features a paper presented at the special session From Cells
to Landscapes: Modeling Health and Disease. Jacqueline Simens, Melanie Cree-
Green, Bryan Bergman, Kristen Nadeau, and Cecilia Diniz Behn present a structural
identifiability analysis of a labeled oral minimal model for quantifying hepatic
insulin resistance. Their research contributes to the understanding of aging, trauma,
and many diseases, such as obesity and type 2 diabetes.

The following two chapters correspond to the special session Biological Oscilla-
tions Across Time Scales. Chapter “Spike-Field Coherence and Firing Rate Profiles
of CA1 Interneurons During an Associative Memory Task” features a study of
the spike-field coherence and firing rate profiles of CA1 interneurons during an
associative memory task, by Pamela Riviere and Lara Rangel. Their work analyzes
whether inhibitory interneurons from the CA1 region of the hippocampus contain
information about task dimensions in their firing rates. Following this work is a
computational study of learning-induced sequence reactivation during sharp-wave
ripple activity, as observed during sleep states, by Paola Malerba, Katya Tsimring,
and Maxim Bazhenov. The authors use a model of spiking neuron networks of
excitatory and inhibitory neurons in the CA3 and CA1 regions of the hippocampus
to study the firing behavior of neurons during sharp-wave-ripple activity.

Chapter “Learning-Induced Sequence Reactivation During Sharp-Wave Ripples:
A Computational Study” corresponds to a presentation in the special session
WINASC: Recent Research Development on Numerical Partial Differential Equa-
tions and Scientific Computing. It consists of the work by Beatrice Riviere and Xin
Yang using a DG method for the simulation of CO2 storage in a saline aquifer.
Their work has important practical applications, since porous media, such as saline
aquifers or oil and gas reservoirs, are a major cause of the excessive amount of
carbon dioxide in the atmosphere.

In “A DG Method for the Simulation of CO2 Storage in Saline Aquifer”, Beth M.
Campbell Hetrick presents a study of regularization for an ill-posed inhomogeneous
Cauchy problem, extending previous results for the homogeneous problem to the
inhomogeneous case. While results and numerical experiments in Hilbert space are
plentiful, this chapter contains regularization results for inhomogenous ill-posed
problems for true Banach space, where little is known and many exciting problems
await solutions.

The 2017 AWM Research Symposium included a special session on mathematics
education comprising six presentations on various theoretical perspectives on the
nature of human cognition and knowledge structures. Research methods ranged
from individual interview and classroom observation to national survey and in-depth
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study of a particular instance or case. The span of topics covered calculus,
combinatorics, linear algebra, foundations of proof, application of mathematics to
teaching, and development of future teachers. This volume concludes with a chapter
in which Shandy Hauk, Chris Rasmussen, Nicole Engelke Infante, Elise Lockwood,
Michelle Zandieh, Stacy Brown, Yvonne Lai, and Pao-sheng Hsu offer highlights
of the six presentations in this session.
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Searching for Hyperbolicity

Ruth Charney

Abstract This paper is an expanded version of a talk given at the AWM Research
Symposium 2017. It is intended as a gentle introduction to geometric group theory
with a focus on the notion of hyperbolicity, a theme that has inspired the field from
its inception to current-day research. The last section includes a discussion of some
current approaches to extending techniques from hyperbolic groups to more general
classes of groups.

1 Introduction

This paper is an expanded version of a talk given at the AWM Research Symposium
2017. It is intended as a gentle introduction to geometric group theory for the non-
expert, with a focus on the notion of hyperbolicity. Geometric group theory came
into its own in the 1990s, in large part due to a seminal paper of Mikhail Gromov
[14]. While the field has grown considerably since that time, hyperbolicity remains
a central theme and continues to drive much current research in the field.

As the name suggests, geometric group theory provides a bridge between groups
viewed as algebraic objects and geometry. Groups arise in all areas of mathematics
and can be described in many different ways. Some arise purely algebraically (such
as certain matrix groups), others have combinatorial descriptions (via presentations),
and still others are defined topologically (such as fundamental groups of topological
spaces). Geometric group theory is based on the principle that if a group acts
as symmetries of some geometric object, then one can use geometry to better
understand the group.

For many groups, it is easy to find such an action. The symmetric group on n-
letters acts by symmetries on an n-simplex and the dihedral group of order 2n is the
symmetry group of a regular n-gon. This is also the case for some infinite groups.

R. Charney (�)
Brandeis University, Waltham, MA, USA
e-mail: charney@brandeis.edu

© The Author(s) and the Association for Women in Mathematics 2018
A. Deines et al. (eds.), Advances in the Mathematical Sciences, Association for
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2 R. Charney

The free abelian group Z
n acts by translation on R

n (preserving the Euclidean
metric), and the free group on n-generators acts by translation on a regular tree
of valence 2n with edges of length one.

So the first question one might ask is, when can one find such an action?
Given an abstract group G, can we always realize G as a group of symmetries of
some geometric object? As we will see below, the answer is yes. However, some
geometric objects are more useful than others for this purpose. In the early 1900s,
Max Dehn was interested in groups arising as fundamental groups of hyperbolic
surfaces. These groups act by isometries on the hyperbolic plane H

2. Dehn used
the geometry of the hyperbolic plane to prove some amazing properties of these
groups. We will discuss one of these results in Sect. 3 below. Decades later, these
ideas motivated Gromov, who introduced the notion of a hyperbolic metric space.
He showed that the properties that Dehn deduced held more generally for any group
acting nicely on such a space.

Gromov’s notion of hyperbolic spaces and hyperbolic groups have been much
studied since that time. Many well-known groups, such as mapping class groups
and fundamental groups of surfaces with cusps, do not meet Gromov’s criteria, but
nonetheless display some hyperbolic behavior. In recent years, there has been much
interest in capturing and using this hyperbolic behavior wherever and however it
occurs.

In this paper, I will review some basic notions in geometric group theory, discuss
Dehn’s work and Gromov’s notion of hyperbolicity, then introduce the reader
to some recent developments in the search for hyperbolicity. My goal is to be
comprehensible, not comprehensive. For those interested in learning more about
the subject, I recommend [1] and [6] for a general introduction to geometric group
theory and [7] and [13] for more detail about hyperbolic groups.

2 Geodesic Metric Spaces, Isometries and Quasi-Isometries

We begin with some basic definitions. Let X be a metric space with distance function
d : X × X → R. A geodesic in X is a distance preserving map from an interval
I ⊂ R into X, that is, a map α : I → X such that for all t1, t2 ∈ I ,

d(α(t1), α(t2)) = |t1 − t2|.

The interval I may be finite or infinite. This definition is analogous to the notion of
a geodesic in a Riemannian manifold. In particular, a geodesic between two points
in X is a length-minimizing path.

A geodesic metric space is a metric space X in which any two points are
connected by a geodesic. For such metric spaces, the distance is intrinsic to the
space; the distance between any two points is equal to the minimal length of a path
connecting them. Often, we also require that our metric space be proper, that is,
closed balls in X are compact.
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Example 1 Consider the unit circle S1 in the plane. There are two natural metrics
we could put on S1. The first is the induced Euclidean metric: the distance between
two points is the length of the straight line in R

2 between them. The other is the arc
length metric: the distance between two points is the length of the (shortest) circular
arc between them. The first of these is not a geodesic metric (since, for example,
there is no path in S1 of length 2 connecting a pair of antipodal points) whereas the
second one is geodesic.

Example 2 Suppose Γ is a connected graph. There is a natural geodesic metric
on Γ obtained by identifying each edge with a copy of the unit interval [0, 1] and
defining the distance between any two points in Γ to be the length of the shortest
path between them. This metric is proper if and only if each vertex has finite valence.

Example 3 Let M be a complete Riemannian manifold. Then the usual distance
function given by minimizing path lengths is a proper, geodesic metric on M .

A map between two metric spaces f : X→ Y is an isometry if it is bijective and
preserves distances. In lay terms, an isometry of X to itself is a “symmetry” of X.
These symmetries form a group under composition.

Now suppose we are given a group G. Our first goal is to find a nice metric
space on which G acts as a group of symmetries. Sometimes, such an action
arises naturally. For example, suppose G is the fundamental group of a Riemannian
manifold M. Then passing to the universal cover ˜M , we get an action of G by deck
transformations on ˜M . This action is distance preserving since it takes geodesic
paths to geodesic paths.

More generally, the same works for the fundamental group of any geodesic
metric space X that admits a universal cover. The universal cover ˜X inherits a
geodesic metric such that the projection to X is a local isometry, and the deck
transformations act isometrically on ˜X.

Example 4 Consider the free group on two generators F2. This group is the
fundamental group of a wedge of two circles, S1 ∨ S1, so it acts by isometries
on the universal cover, namely the regular 4-valent tree.

In general, a group G can act by isometries on a variety of different geodesic
metric spaces. Some of these actions, however, are not helpful in studying the group.
For example, any group acts on a single point! To have any hope that the geometry
of the space will produce information about the group, we will need some extra
conditions on the action.

Definition 1 A group G is said to act geometrically on a metric space X if the
action satisfies the following three properties.

• isometric: Each g ∈ G acts as an isometry on X.
• proper: For all x ∈ X, there exits r > 0 such that {g ∈ G | B(x, r)∩gB(x, r) �=
∅} is finite, where B(x, r) denotes the ball of radius r centered at x.

• cocompact: There exists a compact set K ⊂ X whose translates by G cover X

(or equivalently, X/G is compact).
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In particular, the fundamental group of a compact metric space X acts geo-
metrically on the universal covering space ˜X. But now suppose that our group G

arises purely algebraically. How can we find a metric space X on which G acts
geometrically? The following is a construction that works for any finitely generated
group.

Choose a finite generating set S for G. Define the Cayley graph for G with
respect to S to be the graph ΓS(G) whose vertices are in one-to-one correspondence
with the elements of G and for each s ∈ S, g ∈ G, there is an edge (labelled by s)
connecting the vertex g to the vertex gs.

G acts on ΓS(G) by left multiplication on the vertices. That is, h ∈ G maps the
vertex labelled g to the vertex labelled hg. Note that h takes edges to edges, the
edge connecting g to gs maps to the edge connecting hg to hgs. Thus, if we put
the path-length metric on ΓS(G) as described above, then this action preserves the
metric and is easily seen to be geometric.

Example 5 Consider the free abelian group Z
2 with generating set S =

{(1, 0), (0, 1)}. Viewing Z
2 as the set of integer points in the plane R

2, we can
identify the Cayley graph of Z

2 with the square grid connecting these points.
Distances are measured by path lengths in this grid, so the distance from (0, 0) to
(n,m) is |n| + |m|. Note that there are, in general, many geodesic paths between
any two points. See Fig. 1.

Example 6 Let F2 be the free group with generating set S = {a, b}. View F2 as the
fundamental group of the wedge of two circles labelled a and b. Lifting these labels
to the universal covering space, we get a 4-valent tree, as in Fig. 2, with every red
edge labelled a and every blue edge labelled b (Metrically, you should picture every
edge as having the same length.) This tree is precisely the Cayley graph ΓS(F2). To

Fig. 1 Geodesics from x to y

in the Cayley graph of Z2

Fig. 2 Cayley graph of F2
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see this, choose a base vertex v and identify each vertex with the element of F2 that
translates v to that vertex.

Clearly, the Cayley graph depends on the choice of generating set. For example,
were we to add a third generator (1, 1) to our generating set for Z2, the Cayley graph
would get additional edges which cross the grid diagonally and would hence change
the distance between vertices.

This could be a cause for concern; we seek geometric properties of the Cayley
graph that are intrinsic to the group, so they should not be dependent on a choice
of generating set. Luckily, in the case of a finitely generated group, replacing one
finite generating set by another does not distort distances too badly. This leads to a
fundamental concept in geometric group theory.

Definition 2 A map f : X → Y between two metric spaces is a quasi-isometric
embedding if there exists constants K,C such that for all x, z ∈ X

1

K
dX(x, z)− C ≤ dY (f (x), f (z)) ≤ K dX(x, z)+ C.

If in addition, every point in Y lies within C of some point in f (X), then f is a
quasi-isometry. In this case we write X ∼QI Y .

It can be shown that any quasi-isometry has a “quasi-inverse,” so the relation
X ∼QI Y is an equivalence relation. We remark that quasi-isometries need not be
continuous maps.

Example 7 Consider the inclusion of the integer grid into the plane R
2. This is a

quasi-isometry. The quasi-inverse is a discontinuous map sending the interior of
each square to its boundary.

Example 8 Consider the graph in Fig. 3. Collapsing each of the triangles to a point
gives a quasi-isometry of this graph onto the 3-valent tree. We call such a graph a
quasi-tree.

It is an easy exercise to show that if G is a finitely generated group, then the
Cayley graphs with respect to different finite generating sets are all quasi-isometric.
(In fact, they are bi-Lipschitz, i.e., we can take the maps to be continuous and the
constant C to be zero.) Thus, identifying G with the vertex set in its Cayley graph,
we can view G itself as a metric space and this metric is well-defined up to quasi-
isometry. In fact, we have the following more general statement.

Fig. 3 A graph quasi-isometric to a tree
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Proposition 1 (Milnor-Švarc Lemma) Suppose G acts geometrically on a
geodesic metric space X. Then G is finitely generated and for any choice of
basepoint x0 ∈ X, the map G→ X taking g �→ gx0 is a quasi-isometry.

As a result, the notion of quasi-isometry is a fundamental concept in geometric
group theory. The properties of a group that one can hope to glean from its action
on a metric space are generally properties preserved by quasi-isometries. Moreover,
since any finite index subgroup H < G is quasi-isometric to G, often the strongest
statement we can make regarding a property (P ) is that our group G is virtually (P),
meaning that some finite index subgroup of G satisfies property (P ).

The classification of finitely generated groups up to quasi-isometry is a meta-
problem in the field. It is easy to see that any two groups that are commensurable
(i.e., they contain subgroups of finite index that are isomorphic) are quasi-isometric.
So a related problem is the question of rigidity: for a given group G, is every group
quasi-isometric to G also commensurable to G?

3 Hyperbolic Groups

Once we have our group acting geometrically on a metric space, we can ask
how geometric properties of the space are reflected in algebraic or combinatorial
properties of the group. The classical example of this comes from the work of
Max Dehn [12]. Dehn was interested in fundamental groups of surfaces. A closed
orientable surface of genus g ≥ 2 (i.e. a torus with g holes) can be given a
Riemannian metric of constant curvature −1 and its universal covering space can
be identified with the hyperbolic plane H

2. This gives a geometric action of the
fundamental group on H

2. Using geometric properties of the hyperbolic plane, Dehn
proved some very strong combinatorial properties for these groups. I will describe
two of his results here.

One way to describe a group is by means of a presentation. Given a set of
generators S for a group G, there is a natural surjection from the free group F(S)

onto G. The kernel K of this map is a normal subgroup of F(S). Formally, a
presentation of G consists of a generating set S, together with a set R ⊂ F(S)

such that R generates K as a normal subgroup, or in other words, G is the quotient
of F(S) by the normal closure of R. The elements of R are called relators. We
denote such a presentation for G by writing

G = 〈S | R〉.

In practice, we usually indicate R by a set of equations that hold in G. Viewing
elements of F(S) as “words” in the alphabet S ∪ S−1, the elements in R are words
that are equal to the identity in G. However, many other words, such as products
and conjugates of those in R, are also equal to the identity in G. The idea is that all
relations among the generators that hold in G should be consequences of the ones
listed in the presentation.
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Here are some examples. The cyclic group of order n has presentation

Z/nZ = 〈s | sn = 1〉

while the free abelian group on two generators has presentation

Z
2 = 〈a, b | ab = ba〉.

Can you recognize the following group?

G = 〈u, v | u4 = 1, u2 = v3〉.

It turns out that this group is isomorphic to the special linear group SL(2,Z). The
isomorphism is given by identifying

u =
[

0 −1
1 0

]

v =
[

0 −1
1 1

]

Every group can be described by a presentation, though in general S and R need
not be finite. Presentations can be extremely useful, and are the starting point for
combinatorial group theory. On the other hand, presentations can sometimes be
very mysterious and frustratingly difficult to decipher. For example, consider the
following questions.

1. The Word Problem: Given a finite presentation 〈S | R〉 and a word w in F(S), is
there an algorithm to decide whether w represents the identity element in G?

2. The Isomorphism Problem: Given two finite presentations 〈S | R〉 and 〈S′ | R′〉,
is there an algorithm to decide whether the groups they represent are isomorphic?

It turns out that there are groups for which no such algorithms exist. In this case
we say the Word Problem (or the Isomorphism Problem) is unsolvable. What Dehn
showed, using the geometry of hyperbolic space, was that for fundamental groups
of hyperbolic surfaces, both of these problems are solvable. Moreover, he showed
that for an appropriate choice of presentation, the word problem has a particularly
nice solution. Namely, any word w ∈ F(S) that represents the identity element in G

must contain more than half of a relator r , and hence can be shortened by applying
the equation r = 1. It follows that the word problem is solvable in linear time, that
is, the time it takes to decide whether w ∈ F(S) represents the identity element in
G, is linear in the length of w. An algorithm of this type is now known as a Dehn’s
algorithm.

Some 75 years later, Mikhail Gromov made a startling observation: the only
property of the hyperbolic plane that Dehn really needed to derive his results was the
fact that triangles in H

2, no matter how far apart their vertices may be, are always
“thin.” And from this observation, the modern field of hyperbolic geometry (and
more generally geometric group theory) was born.
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What do we mean by “thin”? Let X be any geodesic metric space. A triangle
T (a, b, c) in X consists of three vertices a, b, c ∈ X together with a choice of
geodesics connecting them.

Definition 3 Let X be a geodesic metric space and let δ ≥ 0. We say a triangle
T (a, b, c) in X is δ-thin if each side of T lies in the union of the δ-neighborhoods
of the other two sides. (See Fig. 4.)

One can show that in H
2, every triangle, even those with vertices at infinity (ideal

triangles) are δ-thin for δ = ln(1+√2). This fact was crucial to Dehn’s work.
This brings us finally to Gromov’s notion of hyperbolicity.

Definition 4 A geodesic metric space X is δ-hyperbolic if every triangle in X is
δ-thin. We say X is hyperbolic if it is δ-hyperbolic for some δ. A finitely generated
group G is hyperbolic if it acts geometrically on a hyperbolic metric space.

One can show that if two spaces are quasi-isometric and one of them is
hyperbolic, then so is the other (though the constant δ may change). In particular,
a finitely generated group G is hyperbolic if and only if some (hence any) Cayley
graph of G is hyperbolic.

Example 9 We begin with a trivial example. Any bounded metric space X is δ-
hyperbolic where δ is the diameter of X, and hence any finite group is hyperbolic.

Example 10 Let X be an infinite tree. Then for any three points a, b, c in X, the
triangle connecting them degenerates into a tripod and is hence 0-hyperbolic! (See
Fig. 5.) Since the Cayley graph of a free group is a tree, it follows that finitely
generated free groups are hyperbolic.

Fig. 4 A δ-thin triangle

Fig. 5 A triangle in a tree is
0-thin



Searching for Hyperbolicity 9

Example 11 Recall the presentation of SL(2,Z) given above. The center of
SL(2,Z) is the order two subgroup generated by u2 = v3. Modding out by this
subgroup gives the group PSL(2,Z) with presentation

PSL(2,Z) = 〈u, v | u2 = v3 = 1〉.

The Cayley graph of PSL(2,Z) with respect to this generating set is the quasi-tree
drawn in Fig. 3 (continued out to infinity), with the edges of triangles labelled v and
the remaining edges labeled u. SL(2,Z) also acts geometrically on this quasi-tree
(with the center acting trivially), so SL(2,Z) and PSL(2,Z) are both hyperbolic
groups.

Example 12 Here is a non-example. Let R
2 be the plane with the standard

Euclidean metric. Taking larger and larger isosceles right triangles, we can see that
there is no bound on “thinness.” Since the Cayley graph of Z2 is quasi-isometric
to R

2, Z2 is not hyperbolic. Indeed, it is a theorem that a hyperbolic group cannot
contain a copy of Z2.

Now suppose that we are given a hyperbolic group G. What does the geometry
tell us about the group? Here is a list of some consequences of hyperbolicity. We
refer the reader to [3] and [7] for proofs and additional references.

1. G has a finite presentation.
2. G has a Dehn’s algorithm, hence a linear time solution to the Word Problem.
3. The Isomorphism Problem is solvable for the class of hyperbolic groups.
4. The centralizer of every element of G is virtually cyclic.
5. G has at most finitely many conjugacy classes of torsion elements.
6. For any finite set of elements g1, . . . gk in G, there exists n > 0 such that the set
{gn

1 . . . gn
k } generates a free subgroup of rank at most k.

7. For n sufficiently large, Hn(G;Q) = 0.
8. If G is torsion-free, it has a finite K(G, 1)-space (i.e., a finite CW-complex with

fundamental group G and contractible universal covering space).

The proofs of these properties are beyond the scope of this paper, but the
conclusion should be clear: geometry can have strong implications for algebraic
and combinatorial properties of a group.

4 Beyond Hyperbolicity

Classical hyperbolic geometry and Gromov’s generalization to δ-hyperbolic spaces
have provided powerful tools for studying hyperbolic groups. But this class of
groups is very special. For example, any group containing a subgroup isomorphic
to Z

2 cannot be hyperbolic (see property (4) above). In recent years, there has been
much interest in generalizing some of these techniques to broader classes of groups.
Gromov himself introduced a notion of “non-positive curvature” for geodesic metric
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spaces, called CAT(0) spaces, and groups acting on these spaces have also been
extensively studied. CAT(0) geometry, for example, played a major role in the recent
work of Agol, Wise, and others leading to a proof of the Virtual Haken Conjecture,
the last remaining piece in Thurston’s program to classify three-manifolds. But this
is a topic for another day.

Other approaches to generalizing the theory of hyperbolic groups involve looking
at groups that act on hyperbolic spaces, but where the actions are not geometric;
instead, they satisfy some weaker conditions. This includes, for example, “relatively
hyperbolic groups,” “acylindrically hyperbolic groups,” and “hierarchically hyper-
bolic groups.” The first of these is modeled on fundamental groups of hyperbolic
manifolds with cusps; the others are inspired by mapping class groups and their
actions on curve complexes. Some very nice introductions to these topics can be
found in [2, 16, 17].

My own work in this area has focused on a somewhat different approach to
capturing hyperbolic behavior in more general spaces and groups. Let’s begin with
an example.

Example 13 Let Z be the space obtained by gluing a circle and a torus together at
a single point,

Z = S1 ∨ T 2.

Let ˜Z be its universal cover. In ˜Z, the inverse image of the torus consists of infinitely
many copies of the Euclidean plane (which we refer to as “flats”) and emanating
from each lattice point in each of these planes is a line segment which projects to
the circle. The result is a tree-like configuration of planes and lines (see Fig. 6),
which we will refer to as the “tree of flats.” Triangles lying in a single flat can

Fig. 6 Tree of flats
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be arbitrarily “fat” whereas triangles whose sides lie mostly along the vertical
lines are “thin.” Thus, in ˜Z, we have hyperbolic-like directions, and non-hyperbolic
directions. Intuitively, the more we travel vertically, the more hyperbolic it feels.

We are interested in identifying geodesics in a metric space X that behave like
geodesics in a hyperbolic space. A good way to encode such geodesics is by means
of a boundary. In general, unbounded metric spaces do not come equipped with a
boundary. For example, in the hyperbolic plane (or the Euclidean plane) one can
travel forever in any direction. To create a boundary for such a space, we need to
add a point for each “direction to infinity.” In the case of the hyperbolic or Euclidean
plane, this space of directions forms a circle. Adding this circle to the plane “at
infinity” compactifies the space.

It turns out that this idea generalizes nicely to any hyperbolic metric space. For a
δ-hyperbolic space X, we define the boundary as follows. A ray in X is an isometric
embedding α : [0,∞)→ X. As a set, the boundary of X is defined to be

∂X = {α | α : [0,∞)→ X isaray}/ ∼

where α ∼ β if α and β remain bounded distance from each other. In the Euclidean
plane, for example, two rays are equivalent if and only if they are parallel.

To topologize ∂X, think of two rays as representing nearby points in the boundary
if they remain close to each other for a long time. More precisely, define a
neighborhood N(α,R) of a ray α to be the set of rays β such that β(t) lies within 2δ
of α(t) for 0 ≤ t ≤ R. As R increases, these neighborhood get smaller and smaller,
and together, they form a neighborhood basis for a topology on ∂X.

For example, the boundary of the hyperbolic plane H
2 is a circle while the

boundary of an infinite tree is a Cantor set.
From the geometric group theory viewpoint, a key property of the boundary of a

hyperbolic space is quasi-isometry invariance.

Theorem 1 Let f : X → Y be a quasi-isometry between two hyperbolic metric
spaces. Then f induces a homeomorphism ∂f : ∂X ∼= ∂Y . In particular, a
hyperbolic group G has a well-defined boundary, namely the boundary of a Cayley
graph of G.

These boundaries have many nice properties and applications. The boundary
gives rise to a compactification of X, X = X ∪ ∂X, and it provides a powerful
tool for studying the dynamics of groups actions, rigidity theorems, geodesic flows,
etc.

In the quest to extend the techniques of hyperbolic geometry to more general
spaces and groups, it is natural to ask whether analogous boundaries can be defined
in more general contexts. Certainly we can consider equivalence classes of geodesic
rays in any geodesic metric space X. However, if X is not hyperbolic, many things
can go wrong. In some cases, it is not even clear how to define a topology on this
set as the neighborhoods described above need not satisfy the requirements for a
neighborhood basis.
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Moreover, even when there is a nice topology on ∂X, other fundamental
properties of hyperbolic boundaries can fail to hold. Consider, for example, the
boundary of the Euclidean plane. This boundary is a circle and each point on the
boundary can be represented by a unique ray based at the origin. As observed above,
it provides a compactification of the plane. That’s the good news. Here is some bad
news.

• Many isometries (in particular all translations) act trivially on the boundary.
• The only pairs of points on the boundary that can be joined by a bi-infinite

geodesic are pairs of antipodal points.
• A quasi-isometry of the plane to itself need not extend to a map on the boundary.

For example, the map f : R2 → R
2 taking reiθ �→ rei(θ+ln(r)) is a quasi-

isometry which twists each ray emanating from the origin into a spiral.

In short, many of the properties of hyperbolic boundaries that permit applications to
dynamics, rigidity, etc. fail to hold for this boundary.

Most significantly from the point of view of geometric group theory, quasi-
isometry invariance fails miserably for non-hyperbolic boundaries. There are
examples of groups that act geometrically on two CAT(0) spaces (spaces of non-
positive curvature) whose boundaries are not homeomorphic [11]. Thus, we don’t
have a well-defined notion of a boundary for these groups.

What goes wrong is the failure of the Morse property. A quasi-isometry f : X→
Y of hyperbolic spaces takes a geodesic ray in X to a quasi-geodesic ray in Y , that
is, a quasi-isometric embedding of the half-line R

+ = [0,∞) into Y . The Morse
property guarantees that this quasi-geodesic ray lies close to some geodesic ray and
hence determines a well-defined point at infinity.

Definition 5 A ray (or bi-infinite geodesic) α in X is Morse if there exists a function
N : R+ × R

+ → R
+ such that for any (K,C)-quasi-geodesic β with endpoints on

α, β lies in the N(K,C)-neighborhood of α. The function N is called a Morse
gauge for α and we say that α is N -Morse.

If X is hyperbolic, then there exists a Morse gauge N such that every ray in
X is N -Morse. This property is the key to proving quasi-isometry invariance for
boundaries of hyperbolic spaces, and it plays a key role in the proofs of many
other properties of hyperbolic spaces as well. If X is not hyperbolic, the Morse
property may fail for some (or perhaps all) rays in X. On the other hand, many non-
hyperbolic spaces contain a large number of Morse rays. Consider, for example, our
“tree of flats” described above. It can be shown that a ray that spends a uniformly
bounded amount of time in any flat is Morse. We view Morse rays as “hyperbolic-
like” directions in X. Indeed, it can be shown that these rays share many other
nice properties with rays in hyperbolic space [4, 10]. For example, if two sides of a
triangle are N -Morse, then the triangle is δ-thin where δ depends only on the Morse
gauge N .
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This brings us to the Morse boundary. The Morse boundary, ∂MX can be defined
for any proper geodesic metric space X. As a set, it consists of equivalence classes
of Morse rays,

∂MX = {α | α : [0,∞)→ X isaMorseray}/ ∼

where the equivalence ∼ is defined as before. The topology is more subtle. For a
sequence of rays {αi} to converge to α in this topology, they must not only converge
pointwise, they must also be uniformly Morse, that is, there exists a Morse gauge N

such that all of the αi are N -Morse.
This boundary was first introduced for CAT(0) spaces by myself and Harold

Sultan in [4] and shown to be quasi-isometry invariant. This was then generalized
to arbitrary proper geodesic metric spaces by Matt Cordes in [8].

Theorem 2 Let f : X → Y be a quasi-isometry between two proper geodesic
metric spaces. Then f induces a homeomorphism ∂f : ∂MX→ ∂MY . In particular,
∂MG is well-defined for any finitely generated group.

Example 14

(1) If X is hyperbolic, then all rays are N -Morse for some fixed N . So in this case,
∂MX = ∂X, the usual hyperbolic boundary. For example, ∂MH

2 is a circle.
(2) For X = R

2 the Euclidean plane, there are no Morse rays at all, so ∂MX = ∅.
(3) Let ˜Z be the “tree of flats” from Example 13. Then the Morse geodesics in ˜Z

are those that spend a uniformly bounded amount of time in any flat and the
maximum time spent in a flat is determined by the Morse gauge. Thus, for a
given Morse gauge N , the N -Morse rays emanating from a fixed basepoint z0
lie in a subspace quasi-isometric to a tree. It follows that these rays determine
a Cantor set in the boundary and the Morse boundary of ˜Z is the direct limit
of these Cantor sets. Note that since ˜Z is the universal cover of S1 ∨ T 2, the
fundamental group Z ∗ Z2 = π1(S

1 ∨ T 2) acts geometrically on ˜Z. Hence by
the theorem above, the Morse boundary of the group Z ∗ Z2 is homeomorphic
to the Morse boundary of ˜Z.

The Morse boundary was designed to capture hyperbolic-like behavior in non-
hyperbolic metric spaces and to give a well-defined notion of a boundary for a
finitely generated group G. When the Morse boundary is non-trivial, it provides
a new tool for studying these spaces and groups. It can be used, for example, to
study the dynamics of isometries [15] and to determine when two groups are quasi-
isometric [5]. It can also be used to study geometric properties of subgroups H < G

[10]. For a survey of recent results on Morse boundaries, see [9].
Geometric group theory is a broad and growing area of mathematics. This article

is intended only as a snapshot of some themes that run through the field. I invite you
to investigate further!

Acknowledgements R. Charney was partially supported by NSF grant DMS-1607616.
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Generalized Iterated Wreath Products
of Cyclic Groups and Rooted Trees
Correspondence

Mee Seong Im and Angela Wu

Abstract Consider the generalized iterated wreath product Zr1 �Zr2 � . . . �Zrk where
ri ∈ N. We prove that the irreducible representations for this class of groups are
indexed by a certain type of rooted trees. This provides a Bratteli diagram for the
generalized iterated wreath product, a simple recursion formula for the number
of irreducible representations, and a strategy to calculate the dimension of each
irreducible representation. We calculate explicitly fast Fourier transforms (FFT) for
this class of groups, giving the literature’s fastest FFT upper bound estimate.

Keywords Iterated wreath products · Cyclic groups · Rooted trees · Irreducible
representations · Fast Fourier transform · Bratteli diagrams
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1 Introduction

Representations of groups appear naturally in nature, more often than groups
themselves. They appear in the form of a linear representation, a permutation
representation, and automorphisms of an algebra, a group, a variety or scheme, or
a manifold. For example, one can study functions on the circle S1, which could
be thought of as a group under addition, which form representations of S1. Such
functions could also be thought of as periodic functions on the set R of real numbers,
and the decomposition of the space of functions on S1 is known as the theory of
Fourier series. One can also study the additive group R of real numbers acting on
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itself under addition. Then, one may ask how the function space of R decompose
under the action of the group of real numbers; this is the study of Fourier transform.

A cyclic group may be thought of as the set of rotational symmetries of a regular
polygon and of a generalized wreath product Zr1 �Zr2 �. . .�Zrk as the automorphisms
of a corresponding complete rooted tree generated by cyclic shifts of the children
of each node. With applications to functions on rooted trees, pixel blurring (cf.
[1, 6, 11–13, 19]), nonrigid molecules in molecular spectroscopy (cf. [2, 3, 18, 24]),
and visual information processing (cf. [4, 16]), we generalize Orellana–Orrison–
Rockmore’s manuscript [20]. Denoting the iterated wreath product as W(r|k) :=
Zr1 � . . . � Zrk (see Sect. 2.1), we show that the equivalence classes of irreducible
representations of the iterated wreath products W(r|k) are indexed by classes of
labels on the vertices of the complete r|k-ary trees (see Sect. 2.3) of height k

(Proposition 1).
Let G be a finite group and let V be a vector space over the set C of complex

numbers. Let GL(V ) be the general linear group on V , and let ρ : G→ GL(V ) be
a representation of G, i.e., ρ is a group homomorphism. We say two representations
ρ : G → GL(V ) and η : G → GL(W) are equivalent, and write ρ ∼ η, if there
exists a vector space isomorphism f : V → W such that f ◦ ρ(g) = η(g) ◦ f
for all g ∈ G. We denote by ̂G the set of equivalence classes of irreducible
representations of G. We say that R is a traversal for G if R := RG ⊂ ̂G

contains one irreducible representation for each isomorphism class in ̂G. As a basic
consequence of representation theory, the equality

∑

ρ∈R dim(ρ)2 = |G| holds,
where the sum is over all irreducible representations in R.

We denote by [n] := {1, 2, . . . , n} the set of integers from 1 to n, and we denote
the set of length � words with letters in [n] by:

[n]� := {x1x2 · · · x� : xi ∈ [n]} .

Now given a subgroup H ≤ G, we write IndG
H : Rep(H) → Rep(G) to be

the induction functor from the category of representations of H to the category of
representations of G. That is, given a representation η ∈ ̂H , η : H → GL(V ),
we write IndG

H η = C[G] ⊗C[H ] V , the induced representation of G from η with
dimension [G : H ] · dim η. We also have the dual construction to induction, which
is called restriction. Given a subgroup H of G, ResGH : Rep(G) → Rep(H) is
the restriction functor from the category of representations of G to the category of
representations of H , i.e., given a representation ρ of G, we obtain the restricted
representation ResGH ρ of H by restricting ρ to H . The induction and restriction
functors are related by Frobenius reciprocity. We refer the reader to [7] for an
explicit and elegant discussion on the duality of induction and restriction.

For x = x1 · · · xrk ∈ [h]rk , define

dx := min{i ∈ N : xi = x}, where xi = (x1 · · · xrk )i := xi+1 · · · xrkx1 · · · xi. (1)



Iterated Wreath Products of Cyclic Groups and Rooted Trees 17

Note that dx |rk for any x ∈ [h]rk . We write xG = {xg : g ∈ G}, the orbit of x under
G. In the case G = Zr , then i ∈ Zr acts on x by i · x = xi , cyclically rotating the
letters in the word x.

We now state our first theorem, which generalizes Theorem 2.1 in [20]:

Theorem 1 Suppose that R = {ρ1, . . . , ρh} is a traversal for the iterated wreath
product W(r|k−1). Let J ⊆ [h]rk denote a set of Zrk -orbit representatives of [h]rk
such that [h]rk =

⊔

x∈J
xZrk . Then, a traversal for W(r|k) is given by:

RW(r|k) =
{

IndW(r|k)
W(r|k−1)�Zdx

(ρx1 ⊗ · · · ⊗ ρxrk
⊗ τ) : x ∈ J, τ ∈̂Zdx

}

. (2)

Now, an efficient algorithm for applying a discrete Fourier transform is called a
fast Fourier transform (FFT). For a finite group G, we denote by T (G) the maximum
number of computations required to compute {̂f (ρ) : ρ ∈ RG} over all complex-
valued functions f : G→ C on G, where ̂f is the Fourier transform of f at ρ, i.e.,
it is the matrix

̂f (ρ) =
∑

g∈G
f (g)ρ(g).

For the class of finite abelian groups G, the Cooley–Tukey algorithm given in
[8] and [10], combined with techniques provided in [22] and [21], give an order of
O(|G| log |G|) operation bound on the FFT computation time, where the O-notation
is some universal constant. Rockmore in [23] provides the fastest algorithm to date
in the literature for abelian group extensions:

Theorem 2 (Lemma 5 and Theorem 4, [23]) Let K � G be a normal subgroup
of G and assume that G/K is abelian. Let ρ ∈ ̂G. Then, there exists a subgroup H

with K ≤ H ≤ G and η̃ ∈ ̂H such that

• η = η̃|K is irreducible,
• IndG

H η̃ = ρ,
• H := {g ∈ G : ρ(g) ∼ ρ}, the inertia group of ρ in G, where ρ(g)(h) =

ρ(g−1hg) for all h ∈ G, and
• if G = ⊔

i∈[G:H ]
siH , then ρ = η̃(1) ⊗ η̃(s2) ⊗ · · · ⊗ η̃(s[G:H ]), where η̃(s)(h) =

η̃(s−1hs).

The representation ρ(g) is called a conjugate representation of ρ. By Theorem 2,
we see that it suffices to take a traversal RK of K in order to find a complete
traversal of G. Then, we need to construct the set of extensions of η to its inertia
group Hη for each representation η ∈ RK . Finally, we need to build up the induced
representation of G from each extension. Applying [23] to give an upper bound on
the number of operations needed to compute a fast Fourier transform of an iterated
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wreath product, we present an explicit running time of fast Fourier transforms for
W(r|k), thus proving a tighter upper bound estimate than Theorem 1 in [23]:

Theorem 3 For f : K � Zr → C, we have

T (K � Zr ) = r · T (Kr)+
∑

η∈E
m
(

r dim(η)α + dim(η)2O
(

r log
r

m

))

+r m · dim(η)α. (3)

Using Bratteli diagrams (see Sect. 2.4), we calculate the irreducible representa-
tions iteratively (see Sect. 5), thus proving Theorem 3.

1.1 Summary of the Sections

In Sect. 2, we provide some background and notation. We begin by defining wreath
products of cyclic groups in Sect. 2.1, give an introduction to Clifford theory in
Sect. 2.2, give a construction of r-trees in Sect. 2.3, and then define Bratteli diagrams
in Sect. 2.4.

In Sect. 3, we prove Theorem 1 and then give the number of irreducible
representations for the iterated wreath product Zr1 � . . . �Zrk in Theorem 5. In Sect. 4,
we prove the one-to-one correspondence between equivalence classes of irreducible
representations of the generalized wreath product and orbits of compatible r|k-labels
(Proposition 1), give the number of r|k-trees of height k in Corollary 2, and write
the dimension of an irreducible representation of an iterated wreath product of cyclic
groups in terms of companion trees in Proposition 2. In Sect. 5, we prove Theorem 3,
generalizing Theorem 1 in [23] by giving an explicit computation, and finally, in
Sect. 6, we conclude by providing an open problem.

2 Background

2.1 Wreath Products

We refer to Section 1.1 in [20] for a beautiful exposition with illustrative examples
about the construction of the wreath product G � H of a finite group G with a
subgroup H of Sn, which is summarized as follows. We define an action of H

on Gn = G × · · · × G by if π ∈ H and a = (a1, a2, . . . , an) ∈ Gn, then
π · a := aπ = (aπ−1(1), aπ−1(2), . . . , aπ−1(n)). The wreath product G �H is defined
to be Gn ×H as a set, with multiplication given by:

(a;π)(b; σ) = (abπ ;πσ). (4)
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Throughout this chapter, we will fix r = (r1, r2, r3, . . .) ∈ N
ω, a positive

integral vector. We denote by r|k := (r1, r2, . . . , rk) the k-length vector found by
truncating r.

Definition 1 We define the (generalized) k-th r-cyclic wreath product W(r|k)
recursively by:

W(r|0) = {0}andW(r|k) = W(r|k−1) � Zrk .

Note that multiplication for the wreath product W(r|k) is defined recursively
using (4).

Example 1 We have W(r|1) = Zr1 , W(r|2) = Zr1 �Zr2 , and W(r|k) = Zr1 � . . . �Zrk .

Throughout this chapter, we will be considering the chain of groups given in
Definition 1.

2.2 Clifford Theory

The following [9, 15], and [5] contain an extensive background on Clifford theory,
which allows one to recursively construct the irreducible representations of a group.
In this chapter, we will give a brief overview of the main results of Clifford theory.

Let G be a finite group and let K be a normal subgroup of G. Then, G acts
on the set of inequivalent irreducible representations of K . For any irreducible
representation σ of K , let �(σ) denote its orbit under this action, i.e., inequivalent
conjugates of σ . Let StabG(σ) be the isotropy subgroup of σ under the G-action.

Theorem 4 (Clifford Theory) Let K be a normal subgroup of G.

1. ([7], Theorem 10) If σ be a representation of K , then

ResGK IndG
K σ = [Stab(σ ) : K] ·�(σ).

2. ([7], Theorem 14) If ρ : G→ GL(V ) is an irreducible representation of G, then

ResGK ρ = dρ

[G : Stab(σ )]dσ ·�(σ),

where σ is any irreducible representation of K which appears in ResGK ρ, and dρ
is the dimension of the vector space V .

We also call dρ the degree of ρ.
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2.3 Rooted Trees of a Fixed Height

We define r-trees, a generalization of the r-trees in Section 3 of [20]. A rooted tree
is a connected simple graph with no cycles and with a distinguished vertex called
the root. We say a node v is in the j -th layer of a rooted tree if it is at distance j

from the root.

Definition 2 We define the complete r-tree, denoted by T (r|k), of height k, or r|k-
tree, recursively as follows: let T (r1) be the 1-layer tree consisting of a root node
only. Let T (r|2) consist of a root with r2 children. Let T (r|k) consist of a root node
with rk children, with each the root of a copy of the (k − 1)-layer tree T (r|k−1),
which yields a tree with k levels of nodes.

Example 2 The tree T (r1) is given by • and T (r1, r2) with r2 leaves is given by:

•

1• 2• . . .
r2−1• r2.•

Example 3 Writing r|3 = (r1, r2, r3), the following is the complete tree T (r|3) of
height 3 with 3 levels of nodes:

•

1• 2• · · ·
r3•

1• 2• · · ·
r2• 1• 2• · · ·

r2• 1• 2• · · ·
r2.•

Example 4 The complete tree T (r|4) of height 4 with 4 levels of nodes is

•
1• · · ·

r4•
1• . . .

r3• 1• . . .
r3•

1• 2• . . .
r2• 1• 2• . . .

r2• 1• 2• . . .
r2• 1• 2• . . .

r2.•
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Notice that T (r|k) has
k
∏

i=2

ri leaves, with
k
∏

i=k−j+1

ri nodes in the j -th layer. The

subtree Tv of T = T (r|k) is the tree rooted at v consisting of all the children and
descendants of v. We call Tv a maximal subtree of T if v is a child of the root, or
equivalently if v is in the second layer.

Example 5 In Example 4, the subtree indicated by dotted edges in magenta is a
maximal subtree of T (r|4).
Definition 3 Let VT (r|k) be the set of vertices of the tree T (r|k). An r|k-label is a
function φ : VT (r|k) → N on the vertices of the tree T (r|k) that assigns a natural
number to each vertex. A r|k-label is compatible if it satisfies the following:

1. for k = 1: φ(rootnode) ∈ [r1], and
2. for k > 1:

a. given any child of the root v, φv := φ|Tv is a compatible r|k−1-label, and
b. φ(rootnode) ∈ [d], where Zd is the stabilizer of the action of Zrk on

equivalence classes of {(φv) : v is a child of the root},
where φv denotes the restriction of φ to the maximal subtree Tv .

We say that two compatible labels φ and ψ of T (r|k) are equivalent, and write
φ ∼ ψ , if they are in the same orbit under the action of W(r|k) or, equivalently, if
ψW(r|k) = φW(r|k), where ψg(v) := ψ(vg).

2.4 Bratteli Diagrams

We refer to Section 4.1 in [20] or to [17] for a detailed discussion on Bratteli
diagrams.

A Bratteli diagram B is a weighted graph, which can be described by a set of
vertices from a disjoint collection of sets Bm, m ≥ 0, and edges that connect vertices
in Bm to vertices in Bm+1. Assuming that the set B0 contains a unique vertex, the
edges are labeled by positive integer weights. The set Bm is the set of vertices at
level m. If a vertex T1 ∈ Bm is connected to a vertex T2 ∈ Bm+1, then we write
T1 ≤ T2.

Given a tower of subgroups 〈1〉 = G0 ≤ G1 ≤ . . . ≤ Gn, the corresponding
Bratteli diagram has vertices of set Bi labeling the irreducible representations of
Gi . If ρ and η are irreducible representations of Gi and Gi−1, respectively, then the
corresponding vertices are connected by an edge weighted by the multiplicity of η
in ρ when restricted to Gi−1.

Example 6 The Hasse diagram of the partially ordered set with a labeling of the
edges is the Bratteli diagram of the iterated wreath product of cyclic groups (see
Section 4.1 in [20] for an illustrated example for the n-fold iterated wreath product
of Zr ).



22 M. S. Im and A. Wu

3 Irreducible Representations of Iterated Wreath Products

We will now prove Theorem 1.

Proof First, we note that Rrk := {ρx1 ⊗ ρx2 ⊗ · · · ⊗ ρxrk
: x ∈ [h]rk } is a traversal

for W(r|k−1)
rk . Consider the action of Zrk on Rrk by its action on the indices,

indexed by [h]rk . This is isomorphic to the action of W(r|k) = W(r|k−1)
rk �Zrk on

̂W(r|k−1)
rk by conjugation.

Fix some σx := ρx1 ⊗ · · · ⊗ ρxrk
∈ Rrk (which corresponds to the word x =

x1 · · · xrk ∈ [h]rk ). The stabilizer of x under the cyclic action of Zrk is a subgroup
corresponding to:

Zdx
∼=
(

rk

dx
Z

)/

(rkZ)

for some dx |rk . Notice that W(r|k−1)
rk � W(r|k). In the language of Clifford

theory, the inertia group for σx is given by:

I = Iσx = W(r|k−1)
rk � Zdx . (5)

Also, notice the inclusion W(r|k−1)
rk ≤ I ≤ W(r|k) of a chain of subgroups. For

H ≤ G and τ ∈ ̂H , denote

̂G(τ) =
{

θ ∈ ̂G : τ ≤ ResGH θ
}

. (6)

In applying Clifford theory, we find that̂I (σ ) = {σ⊗τ : τ ∈̂Zd}. More importantly,

̂W(r|k)(σ ) =
{

IndW(r|k)
W(r|k−1)

rk�Zdσ
σ ⊗ τ : τ ∈̂Zd

}

(7)

In addition, ̂W(r|k) =
⋃

σ∈̂W(r|k−1)
rk

̂W(r|k)(σ ). Also, if θ ∈ ̂W(r|k)(σ ) and θ ∈

̂W(r|k)(σ ′) and IGσ = IG
σ ′ , then there exists g ∈ W(r|k) such that σ = σ ′g . The

result follows.

Corollary 1 For a particular σ = ρx1 ⊗ · · · ⊗ ρxrk
∈ ̂W(r|k−1)

rk and τ ∈̂Zdx , let
I be the inertia group of σ . Then, we have

ResW(r|k)
W(r|k−1)

rk

(

IndW(r|k)
W(r|k−1)

rk�Zdx
σ ⊗ τ

)

= σ ⊕ σ 1 ⊕ . . .⊕ σ r/dx . (8)

Proof This follows from Theorem 1 and an application of Clifford theory.

3.1 Number of Irreducible Representations

Following the exact same argument for Theorem 2.2 in [20], we have the following
recursion for the number of irreducible representations for W(r|k).
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Theorem 5 The number M(r|k) of irreducible representations of W(r|k) satisfies
the recursion:

M(r|k) = 1

rk

∑

d|rk
f (d)d2 = 1

rk

∑

d|c|rk
μ(c/d)M (r|k−1)

rk/c d2, (9)

where M(r|1) = r1 and μ(n) is the Euler number for a natural number n ∈ N.

4 Bijection Between the Branching Diagram for Generalized
Iterated Wreath Products and Rooted Trees

In this section, we will give a combinatorial structure describing the branching
diagrams for the iterated wreath products of cyclic groups. In a similar spirit to
Proposition 4.6 in [20], we have the following:

Proposition 1 There exists a one-to-one correspondence between equivalence
classes of irreducible representations of the wreath product W(r|k) of cyclic groups
and orbits of compatible r|k-labels.

Proof We inductively define a map F : ̂W(r|k) → {r|k−labels} that gives a
bijection between equivalence classes of irreducible representations of W(r|k) and
orbits of labels. Denote by z1 a fixed generator of Zr1 and w1 a fixed r1-th root of

unity. For i = 1, . . . , r1, let τ (1)
i denote the irreducible representation of Zr1 such

that τ(z1) = (w1)
j .

Recall that T (r|1) consists of only a root node, and all r|1-labels φ : VT (r|1) →
[r1] are determined exactly by their value on the root node. Thus, ̂W(r|1) = {τ (1)

j :
j ∈ [r1]} is clearly in bijection with r|1-labels. To be precise, F : ̂W(r|1) = ̂Zr1 →
{r|1−labels} is defined by F(τ

(1)
j )(root) = j for all j ∈ [r1].

Suppose for induction that F : ̂W(r|k−1) → r|k−1−labels gives a bijection of
the form desired. We define F : ̂W(r|k)→ {r|k−labels} as follows.

Let {ρ1, . . . , ρh} be an enumeration for a traversal RW(r|k−1) for W(r|k−1). It
suffices to define F on a traversal for ̂W(r|k), such as RW(r|k) defined above. Then,
let ρx1 ⊗ · · · ⊗ ρxrk

⊗ τ be an arbitrary element of RW(r|k). Let

φ := F
(

IndW(r|k)
W(r|k−1)�Zdx

ρx1 ⊗ · · · ⊗ ρxrk
⊗ τ
)

: VT (r|k)→ N

be defined as follows: let U = {u1, . . . , urk } be the set of rk children of the root
node. For any u ∈ U , let φu denote the vector r|k−1 found by restricting φ to the
maximal subtree Tu. Let d = dx be as defined in (1). Let ζ be a fixed generator of
Zd and ω a fixed d-th root of unity. For i = 1, . . . , d, let πi denote the irreducible
representation of Zd such that π(ζ ) = ωi .
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• For any non-root node of T (r|k), we let the value of φ be defined to satisfy
φui := F(ρxi ).

• For the root node, notice that τ ∈̂Zdx by definition of RW(r|k). But, dx is exactly
the integer such that Zdx is the stabilizer of Zrk on the equivalence classes of
{φu : u ∈ U}, so τ ∈̂Zd . Thus, τ = πj for some j ∈ [dx]. Let φ(root) := j .

It follows from induction that F is a bijection from the equivalence classes of
̂W(r|k) to the orbits of r|k labels.

Corollary 2 The number hk(r|k) of r|k-trees of height k is given by the recursion:

hk(r|k) = 1

rk

∑

d|c|rk
μ(c/d)hk−1(r|k−1)

rk/cd2,

where μ(n) is the Euler number of n ∈ N.

4.1 Degrees of Irreducible Representations

Following the discussion in Section 4.1.1 in [20], we define for any r|k-label φ the
companion tree Cφ .

Definition 4 Fix an r|k-label φ. Define the companion label Cφ to be the r|k-label
C : VT (r|k) → N as follows: an arbitrary vertex v on the �-th layer of the complete
r-tree T (r|k) is

C(v) =
∣

∣

∣

{

φ
W(r|k−�−1)
u : u is a child of v

}∣

∣

∣ .

Recall that xG = {xg : g ∈ G}, the orbit of x under the action of G. So, C(v) is
the number of orbits occupied by the r|k−�−1-labels of the rk−�−1 maximal r|k−�−1-
subtrees of Tv , or the number of inequivalent sublabels on maximal subtrees of Tv
given by φ.

Example 7 The companion tree Cφ to Example 3 is

r3•

2• 1• · · ·
r3•

1• 1• · · ·
1• 1• 1• · · ·

1• 1• 1• · · ·
1.•
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Similar to Proposition 4.3 in [20], we obtain:

Proposition 2 Let ρ be an irreducible representation of W(r|k) associated to r|k-
tree T with companion tree CT . Then, the dimension dρ of ρ is given by:

dρ =
∏

v

C(v), (10)

the product of the value of the companion label C on all vertices.

5 Fast Fourier Transforms, Adapted Bases, and Upper
Bound Estimates

We will now prove Theorem 3.

Proof Enumerate RK = {η1, . . . , ηL} so that K has L inequivalent irreducible
representations. Notice that

RKr = {η�1 ⊗ · · · ⊗ η�r : �1, . . . , �r ∈ [L]} = {η� : � ∈ [L]r}.

Notice that {(1, i) : i ∈ [r]} is a complete set of coset representatives of Kr in
K � Zr = Kr

� Zr . Let fi : Kr → C be defined by fi(k) = f (k, i). Calculating
{̂fi(η�) : i ∈ [r], � ∈ [L]r} requires r · T (Kr) computations. We will use the ̂fi’s to
compute the Fourier transform ̂f .

It suffices to compute ̂f for every induced irreducible representation of maximal
extensions for all irreducible representations of Kr . So, fix some η = η� ∈ RKr

corresponding to some fixed � ∈ [L]r . Let m = m� := min{i �= 0 : �i = �}, where
(�1�2 · · · �r)i := �i+1 · · · �r�1 · · · �i . Identify K�Z/rZ with K�(Z/mZ×mZ/rZ)

to relabel the element (k, i) by (k, i1, i2) = (k, i mod m, �i/m�).
The inertia group of η is given by H = Kr

� Zr/m = Kr
� (1 × mZ/rZ). Fix

some (r/m)-th root of unity ζ . Denote the irreducible representations of H/Kr ∼=
Zr/m by χj for j ∈ [r/m], where χj (i) = ζ ij . Let χ̃ : H → C be given by
χ̃ (k, i2) = χ(i2). If η̃ is one extension of η to H , then the set {χ̃j ⊗ η̃ : j ∈ [r/m]}
gives the complete set of inequivalent extensions of η to H . All these extensions are
irreducible.

Similarly, we relabel {fi : Kr → C : i ∈ [r]} by {fi1,i2 : Kr → C : i1 ∈
[m], i2 ∈ [r/m]} where fi1,i2(k) = f (k, i1, i2). For all i1 ∈ [m], let fi1 : H → C

be given by fi1(k, i2) = f (k, i1, i2). For all i1, we have

̂fi1(χ̃ ⊗ η̃) =
∑

k∈Kr,i2∈[r/m]
χ̃(i2) · η̃(k, i2) · fi1(k, i2)

=
∑

k∈Kr,i2∈[r/m]
χ̃(i2) · η̃ ((1, i2)(k, 1)) fi1,i2(k)
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=
∑

i2∈[r/m]
χ̃(i2)̃η(1, i2)

∑

k∈Kr

η(k)fi1,i2(k)

=
∑

i2∈[r/m]
χ̃(i2)̃η(1, i2)̂fi1,i2(η).

Notice that since η̃ is an extension of η, η̃(k, 1) = η(k) for any k ∈ Kr . Let
αi1(i2) = η̃(1, i2)̂fi1,i2(η). Since ̂fi1,i2(η) and η̃ are dim(η) × dim(η) matrices,
finding αi1(i2) for all i1, i2 requires m · r/m · dim(η)α computations, where α is
the constant of matrix multiplication. Further, the (j, k)-th entry of the resulting
matrix of the summation is the Fourier transform of αjk at the irreducible χ . As the
associated group is Zr/m, Fourier transforms require time O( r

m
log r

m
). There are

dim(η)2 of these functions, so computation of the final matrix for all i1 requires

m · dim(η)2 ·O
( r

m
log

r

m

)

= dim(η)2 ·O
(

r log
r

m

)

computations.
Now, we are interested in computing the matrix value of the transform on the

induced representation ρ := IndG
H χ̃ ⊗ η̃ for a specific χ̃ ⊗ η̃. However, ρ(k, i1, 1)

is a block diagonal matrix with entries (χ̃ ⊗ η̃)(j) in the j -th place, where the j

represents the irreducible found by conjugating by (1, 1, j). Using this, we obtain:

̂f (ρ) =
∑

k,i1,i2

ρ(k, i1, i2) · fi1,i2(k)

=
∑

i2

ρ(1, 1, i2)
∑

k,i1

⎛

⎜

⎝

(χ̃ ⊗ η̃)(1)(k, i1) · · · 0
...

. . .
...

0 · · · (χ̃ ⊗ η̃)(m)(k, i1)

⎞

⎟

⎠
fi1,i2(k)

=
∑

i2

ρ(1, 1, i2)

⎛

⎜

⎝

̂fi2(χ̃ ⊗ η̃(1)) · · · 0
...

. . .
...

0 · · · ̂fi2(χ̃ ⊗ η̃(m))

⎞

⎟

⎠
.

With dim(η)α · m2 computations for each induced representation and a total of
r
m

induced representations, we have r · m dim(η)α computations for each orbit of
irreducible representations of Kr under conjugation by G.

In total, we need

r · T (Kr)+
∑

η∈E
m
(

r dim(η)α + dim(η)2O
(

r log
r

m

))

+ r m · dim(η)α (11)

computations, where E is a set of representatives for each G-orbit of irreducible
representations of Kr . The size of E is given simply by the number of orbits of [L]r
under action by Zr .
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6 Conclusion and Future Direction

We have given an explicit description of a traversal for the iterated wreath product
W(r|k) of cyclic groups in Theorem 1, and we have determined a tighter upper
bound of the FFT computation time for the iterated wreath product in Theorem 3.

In our sequel chapter [14], we examine the representation theory of generalized
iterated wreath products of symmetric groups, where we give a complete description
of the traversal for these families of generalized iterated wreath products, and
show the existence of a bijection between equivalence classes of irreducible
representations of the generalized iterated wreath product and orbits of labels on
certain rooted trees.

We conclude with an open problem, which is to find adapted bases and fast
Fourier transform operation bounds for chains of subgroups of iterated wreath
products of more general classes of groups.
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Generalized Iterated Wreath Products
of Symmetric Groups and Generalized
Rooted Trees Correspondence

Mee Seong Im and Angela Wu

Abstract Consider the generalized iterated wreath product Sr1 � . . . � Srk of sym-
metric groups. We give a complete description of the traversal for the generalized
iterated wreath product. We also prove an existence of a bijection between the equiv-
alence classes of ordinary irreducible representations of the generalized iterated
wreath product and orbits of labels on certain rooted trees. We find a recursion
for the number of these labels and the degrees of irreducible representations of the
generalized iterated wreath product. Finally, we give rough upper bound estimates
for fast Fourier transforms.
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1 Introduction

The representation theory of the symmetric group is remarkably prevalent in
combinatorics; one can explicitly parametrize the irreducible representations of the
symmetric group using Young diagrams, leading us to the study of the interaction of
these diagrams, an examination of the decomposition of tensor products of Young
diagrams, and an investigation of the dimension of the irreducible representation
associated to a Young diagram. Wreath products of symmetric groups arise as the
automorphism group of regular rooted trees (see Theorem 2.1.6 or Theorem 2.1.15

M. S. Im (�)
Department of Mathematical Sciences, United States Military Academy, West Point, NY, USA

A. Wu
Department of Mathematics, University of Chicago, Chicago, IL, USA
e-mail: wu@math.uchicago.edu

© The Author(s) and the Association for Women in Mathematics 2018
A. Deines et al. (eds.), Advances in the Mathematical Sciences, Association for
Women in Mathematics Series 15, https://doi.org/10.1007/978-3-319-98684-5_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98684-5_3&domain=pdf
mailto:wu@math.uchicago.edu
https://doi.org/10.1007/978-3-319-98684-5_3


30 M. S. Im and A. Wu

in [7]), with applications ranging from functions on rooted trees (see Sect. 2.5), pixel
blurring (cf. [1, 8, 15, 18, 19, 31]), symmetries of nonrigid molecules in molecular
spectroscopy (cf. [2, 3, 30, 34]), and visual information processing (cf. [4, 27]) to
choosing subcommittees from sets of committees and voting (cf. [12, 14, 26]). With
motivation from [20] and [32], we consider generalized iterated wreath product
W(r|k) := Sr1 � . . . � Srk of symmetric groups, where Sri is the symmetric group
on ri letters, and study its representation theory.

Throughout this chapter, let G be a finite group, and let V be a vector space
over the complex numbers C. Let GL(V ) be the general linear group on V , and let
ρ : G → GL(V ) be a representation of G, i.e., ρ is a group homomorphism. We
say two representations ρ : G → GL(V ) and η : G → GL(W) are equivalent,
and write ρ ∼ η, if there exists a vector space isomorphism f : V → W such
that f ◦ ρ(g) = η(g) ◦ f for all g ∈ G. We denote by ̂G the set of irreducible
representations of G. We say that R is a traversal for G if R := RG ⊂ ̂G

contains exactly one irreducible representation for each isomorphism class in ̂G.
Thus, a traversal consists of a complete list of pairwise inequivalent irreducible
representations of G. As a basic consequence of representation theory, the equality
∑

ρ∈R dim(ρ)2 = |G| holds, where the sum is over all irreducible representations
in R.

Let [n] := {1, 2, . . . , n}, the set of integers from 1 to n, and let

[n]� := {x1x2 · · · x� : xi ∈ [n]},

the set of length � words with letters in [n].
Now given a subgroup H ≤ G, we write IndG

H : Rep(H) → Rep(G) to be
the induction functor from the category of representations of H to the category of
representations of G. That is, given a representation η ∈ ̂H of subgroup H ⊆
G, where η : H → GL(V ), we write IndG

H η = C[G] ⊗C[H ] V , the induced
representation of G from η with dimension [G : H ] · dim η. There also exists the
dual construction to induction called restriction. Given a subgroup H of G, ResGH :
Rep(G) → Rep(H) is the restriction functor from the category of representations
of G to the category of representations of H , i.e., given a representation ρ of G,
we obtain the restricted representation ResGH ρ of H by restricting ρ to H . The
induction and restriction functors are related by Frobenius reciprocity. We refer the
reader to [10] for a detailed and elegant discussion on the duality of the induction
and restriction functors.

We say that α = (α1, . . . , αh) is a partition of a natural number n > 0, and write
α � n, if every αi satisfies the following:

1. for each i, αi ∈ N = {1, 2, 3, . . .},
2. α1 ≥ α2 ≥ . . . ≥ αh, and
3.
∑h

i=1 αi = n.
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If α � n, then we will denote the length of α by |α| = h. We will write α |=h n

to denote that α = (α1, . . . , αh) ∈
(

Z≥0
)h is a weak composition of the natural

number n with h parts so that each αi ≥ 0 is an integer and
∑h

i=1 αi = n.
For α |=h n, we define

Sα := Sα1 × Sα2 × · · · × Sαh
≤ Sn,

the permutation subgroup acting on the set [n] by the full action on h disjoint orbits
of size αj . We also define S0 = {1}.

For a group G, we will now discuss inner and outer tensor products associated to
describing the irreducible representations of G � Sn. If ρ and η are representations
of G, then their inner tensor product ρ⊗ η is again a representation of G defined by
(ρ ⊗ η)(g) = ρ(g) ⊗ η(g), where g ∈ G. If ρ is a representation of G and η is a
representation of a group H , then their outer tensor product ρ�η is a representation
of G×H defined by (ρ � η)(g, h) = ρ(g)⊗ η(h), where g ∈ G and h ∈ H .

The irreducible representations of the base group Gn = G× · · · ×G are n-fold
outer tensor products of irreducible representations of G. If R = {ρ1, . . . , ρh} is a
traversal for G and α |=h n, then ρ

�α1
1 � · · ·�ρ

�αh

h is an irreducible representation

of Gn, which can be extended to an irreducible representation (ρ
�α1
1 � · · ·�ρ

�αh

h )′
of the inertia group G�Sα . On the other hand, if σ ∈ RSα , then composing σ with the
projection of G�Sα onto Sα gives an irreducible representation σ ′ of G�Sα . Now, the
inner tensor product of (ρ�α1

1 � · · ·�ρ
�αh

h )′ and σ ′ is an irreducible representation

of G � Sα , and the induced representation IndG�Sn
G�Sα ((ρ

�α1
1 � · · · � ρ

�αh

h )′ ⊗ σ ′) is
an irreducible representation of G � Sn. With these remarks, we give an explicit
description of the traversal of W(r|k):
Theorem 1 For N > 0, let RG = {ρ1, . . . , ρh} be a traversal for a group G ≤ SN .
Let α |=h n. Then, the irreducible representations given by:

{

IndG�Sn
G�Sα ((ρ

�α1
1 � · · ·� ρ

�αh

h )′ ⊗ σ ′) : α |=h n, σ ∈ RSα

}

(1)

form a traversal for G � Sn. In particular, if RW(r|k−1) = {ρ1, . . . , ρh} is a traversal
for the wreath product W(r|k−1), then a traversal for W(r|k) is

RW(r|k) =
{

IndW(r|k)
W(r|k−1)�Sα ((ρ

�α1
1 � · · ·� ρ

�αh

h )′ ⊗ σ ′) : α |=h rk, σ ∈ RSα

}

,

(2)

where Sα is a subgroup of Srk .

Note that we write ρα := ρ
�α1
1 � · · ·� ρ

�αh

h , where ρ1, . . . , ρh are traversals of
a group G, and we define ρ0 := 1.
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We also find a recursion for the number of equivalence classes of ordinary irre-
ducible representations of the generalized iterated wreath products in Corollary 2,
and their dimensions are given in Proposition 1.

A rooted tree is a connected simple graph with no cycles, and with a distinguished
vertex, which is called the root. We refer to Sect. 2.4 for a further discussion on
rooted trees. We recall the following theorem:

Theorem 2 (Theorem 2.1.15, [7]) Let T (r|k) be a complete r-tree of height k. We
have

Aut(T (r|k)) ∼= W(r|k).

We find a bijection between equivalence classes of ordinary irreducible represen-
tations of the generalized iterated wreath product W(r|k) and the orbits of families
of labels on certain complete trees, thus connecting to the geometric construction in
Theorem 2:

Theorem 3 There is a bijection between equivalence classes ̂W(r|k) of ordinary
irreducible representations of the iterated wreath product of symmetric groups and
W(r|k)-orbits of rooted trees T (r|k).

1.1 Summary of the Sections

We begin Sect. 2 with some background. We give a summary of the representation
theory of symmetric groups in Sect. 2.1, give the construction of iterated wreath
products in Sect. 2.2, and discuss Clifford theory in Sect. 2.3. We give the construc-
tion of rooted trees in Sect. 2.4, and Bratteli diagrams in Sect. 2.5. We conclude
the background section by reviewing adapted bases and fast Fourier transforms
in Sect. 2.6. We prove Theorem 1 in Sect. 3, and we prove Theorem 3 in Sect. 4.
We also give the dimension of an irreducible representation of the iterated wreath
product in Proposition 1. In Sect. 5, we give coarse upper bound estimates for fast
Fourier transforms for G � Sn (and thus for the generalized iterated wreath product
W(r|k) in Corollary 3), and in Sect. 6, we discuss some open problems.

2 Background

We will begin by giving some necessary background.
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2.1 Representations of the Symmetric Group

We refer to [6, 16, 21, 24, 25] for an extensive background on representations of
symmetric groups. In this section, we will give a brief summary of the representation
theory of symmetric groups.

The symmetric group Sn has order n! whose conjugacy classes are labeled by
partitions of n. Thus, the number of inequivalent irreducible representations over
C is equal to the number of partitions of n. One may also parametrize irreducible
representations by the same set that parametrizes conjugacy classes for Sn, which is
by partitions of n, or, equivalently, the more commonly used of the so-called Young
diagrams of size n (see Example 6).

2.2 Wreath Products

We refer to Chapter 2 in [7] for a beautiful exposition on the construction of the
wreath product G � H of a finite group G with a subgroup H ≤ Sn, which is
summarized as follows. Define an action of H on Gn = G× · · · ×G by if π ∈ H

and a = (a1, a2, . . . , an) ∈ Gn, then π · a := aπ = (aπ−1(1), aπ−1(2), . . . , aπ−1(n)).
The wreath product G � H is defined to be Gn × H as a set, with multiplication
given by:

(a;π)(b; σ) = (abπ ;πσ). (3)

Throughout this paper, we will fix r = (r1, r2, r3, . . .) ∈ N
ω, a positive

integral vector. We denote by r|k := (r1, r2, . . . , rk), the length k vector found by
truncating r.

Let H be a finite group. Let HX := {f : X → H }, a set of all maps from X to
H , which is a group under pointwise multiplication: (f ◦ f ′)(x) = f (x)f ′(x) for
all x ∈ X. Now for H acting on a set X and G acting on a set Y ,

(g, h)−1(x, y) = (h−1g−1, h−1)(x, y) = (h−1x, g(x)−1y)

for all (g, h) ∈ G �H and x ∈ X and y ∈ Y .

Definition 1 Let Sri be a symmetric group acting on a finite set of order ri for
every 1 ≤ i ≤ k. Assume that Sri acts on a finite set Xi , where 1 ≤ i ≤ k − 1. Set
Vk+1 = {∅} and, for i = 1, 2, . . . , k, let

Vi = Xi ×Xi+1 × · · · ×Xk−1 ×Xk.
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The generalized iterated wreath product W(r|k) := Sr1 � . . . � Srk of symmetric
groups consists of all k-tuples (g1, . . . , gk), where gk ∈ Srk , and gi : Vi+1 → Sri ,
1 ≤ i < k, with the multiplication law and action on V1 recursively defined in the
following way:

(gi, . . . , gk)(g
′
i , . . . , g

′
k) =

(

gi · (gi+1, . . . , gk−1,gk)g
′
i , (gi+1, . . . , gk−1, gk)(g

′
i+1, . . . , g

′
k−1, g

′
k)

)

,

where
(

(gi+1, gi+2, . . . , gk−1,gk)g
′
i

)

(xi+1, . . . , xk−1, xk) =

g′i
(

(gi+1, . . . , gk−1, gk)
−1(xi+1, . . . , xk−1, xk)

)

,

and by:

(gi+1, gi+2, . . . ,gk−1, gk)(xi+1, . . . , xk−1, xk) =
(

(gi+2, . . . , gk−1, gk)(xi+2, . . . , xk−1, xk),

gi+1(gi+2, . . . , gk−1, gk)(xi+2, . . . , xk−1, xk)xi+1

)

(4)

for all xj ∈ Xj , gj ∈ S
Vj+1
rj , i ≤ j ≤ k, and i = 1, 2, . . . , k.

Remark 1 The generalized k-th r-symmetric wreath product W(r|k) could also be
defined recursively by:

W(r|0) = {1}andW(r|k) = W(r|k−1) � Srk ,

where the multiplication for the wreath product W(r|k) is defined recursively
using (3).

Example 1 Note that W(r|1) = Sr1 , W(r|2) = Sr1 � Sr2 , and W(r|k) = Sr1 � Sr2 �
. . . � Srk .

Throughout this paper, we will be considering the chain of groups given in
Remark 1.
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2.3 Clifford Theory

The following references [5, 13, 22], and [7] contain an extensive background
on Clifford theory, which allow one to use recursion to construct the irreducible
representations of a group. In this chapter, we will give a brief overview of the main
results of Clifford theory and the little-group method.

Let G be a finite group and let N � G be a normal subgroup of G. For two
representations σ, ρ, we write σ ≺ ρ if σ is a subrepresentation of ρ. We say that
σ̃ ∈ ̂G is an extension of σ ∈ ̂N if ResGN σ̃ = σ .

Definition 2 Fix θ ∈ ̂N and g ∈ G.

1. We define

̂G(θ) :=
{

ρ ∈ ̂G : θ ≺ ResGN ρ
}

. (5)

2. The g-conjugate σg ∈ ̂N of σ is defined as σg(h) := σ(ghg−1) for any h ∈ N .
3. The inertia group of σ in G is given by IG(σ ) := {g ∈ G : σg ∼ σ }.

Now, the finite group G also acts on the set of inequivalent irreducible represen-
tations of N . For any irreducible representation σ of N , let �(σ) denote its orbit
under this action, i.e., inequivalent conjugates of σ . Let StabG(σ) be the isotropy
subgroup of σ under the G-action.

Theorem 4 (Clifford Theory) Let N be a normal subgroup of G.

1. ([10], Theorem 10) If σ be a representation of N , then

ResGN IndG
N σ = [Stab(σ ) : N ] ·Δ(σ).

2. ([10], Theorem 14) If ρ : G → GL(V ) is an irreducible representation of G,
then

ResGN ρ = dρ

[G : Stab(σ )]dσ ·Δ(σ),

where σ is any irreducible representation of N appearing in ResGN ρ, and dρ is
the dimension of the vector space V .

We also call dρ the degree of the representation ρ. Next, the little-group method
provided below is motivated by Chapter 5 Section 1 in [35].

Theorem 5 (Little-Group Method) Suppose that any σ ∈ ̂N has an extension σ̃

to its inertia group IG(σ ). Let Σ be a set of orbit representatives of the irreducible
representations of N under action of G, where g ∈ G acts on σ ∈ ̂N by σg . Then,
a traversal of G is given by:
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{

IndG
IG(σ)(̃σ ⊗ ψ̄) : σ ∈ Σ,ψ ∈ RIG(σ)/N

}

,

where ψ̄ is the representation on IG(σ ) given by ψ̄(g) = ψ(proj(g)), where proj :
IG(σ )→ IG(σ )/N is a canonical projection map.

Lemma 1 Suppose that {ρ1, . . . , ρh} is a traversal for G. Then, {ρ(η) : η ∈ [h]n}
is a traversal for Gn, where ρ(η) := ρη1 � · · ·� ρηn and [h] = {1, 2, . . . , h}.
Definition 3 The permutation action of Sn on Gn by permuting the factors of Gn

induces an action of Sn on ̂Gn by:

(ρ(η))σ (g1, . . . , gn) = ρ(η)(gσ−1(1), . . . , gσ−1(n)).

It follows from Definition 3 that ρ(ησ ) ∼ ρ(η).

Lemma 2 For any η,μ ∈ [h]n, ρ(η) ∼ ρ(μ) if and only if

∣

∣{j ∈ [n] : ηj = �}∣∣ = ∣∣{j ∈ [n] : μj = �}∣∣

for any � ∈ [h]. Thus, the set {ρα : α |=h n} forms a complete set of representatives
for the orbits of ̂Gn under action by Sn.

2.4 Rooted Trees of a Fixed Height

Let r = (r1, r2, r3, . . .) ∈ Z
N≥0. In this section, we will give the construction of

r-rooted trees, generalizing the r-trees discussed in Section 3 of [32]. A rooted tree
is a connected simple graph with no cycles and with a distinguished vertex, which
we call a root. We say a node v, i.e., a vertex, is in the j -th layer of a rooted tree if
it is at distance j from the root. The branching factor of a vertex is its number of
children, and a leaf is a vertex with branching factor zero.

Definition 4 We define the complete r-tree T (r|k) of height k, or r|k-tree, recur-
sively as follows. Let T (r1) be the tree consisting of a root node only. Let T (r|k)
consist of a root node with rk children, with each the vertex in the first layer a copy
of the k − 1-level tree T (r|k−1), which yields a tree with k levels of nodes.

We will also denote the complete r-tree by r|k-tree.

Example 2 The tree T (r1) is given by • and T (r1, r2) with r2 leaves is given by:

•

1• 2• . . .
r2−1• r2.•
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Example 3 Writing r|3 = (r1, r2, r3), r|3-tree of height 3 with 3 levels of nodes is
given by:

•

1• 2• · · ·
r3•

1• 2• · · ·
r2• 1• 2• · · ·

r2• 1• 2• · · ·
r2.•

Example 4 The complete tree T (r|4) of height 4 with 4 levels of nodes is given by:

•
1• · · ·

r4•
1• . . .

r3• 1• . . .
r3•

1• 2• . . .
r2• 1• 2• . . .

r2• 1• 2• . . .
r2• 1• 2• . . .

r2.•

Notice that T (r|k) has
k
∏

i=2

ri leaves, with
k
∏

i=k−j+1

ri nodes in the j -th layer. The

subtree Tv of T = T (r|k) is the tree rooted at v consisting of all the children and
descendants of v. We call Tv a maximal subtree of T if v is a child of the root, or
equivalently if v is in the first layer. Let deg(v) denote the number of leaves of the
subtree Tv .

Example 5 In Example 4, the subtree indicated by dotted edges in magenta is a
maximal subtree of T (r|4).

We define

̂S∗ :=
⊔

n∈N

⊔

α�n
̂Sα. (6)

Definition 5 An r|k-label is a function φ : VT (r|k) → ̂S∗ on the vertices VT (r|k) of
the tree T (r|k) satisfying

φ(v) ∈
⊔

α�deg(v)

̂Sα.
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We say that two labels φ and ψ on T (r|k) are equivalent, and write φ ∼ ψ , if
there exists σ ∈ Aut(T (r|k)) such that φσ = ψ , where φσ (v) := φ(vσ ), which is
defined as the right action of σ ∈ W(r|k) on v.

In other words, two compatible labels φ and ψ of T (r|k) are equivalent if they
are in the same orbit under the W(r|k)-action, or equivalently, if φW(r|k) = ψW(r|k).

Definition 6 An r|k-label φ : VT (r|k)→ ̂S∗ is valid if it satisfies all of the following
recursive conditions. We denote by:

T (r|k) := {φ : φisavalidr|k−label} and T =
⊔

k

T (r|k).

1. Given an r|1-label φ : VT (r|1) = {rootnode} → ̂S∗, where we require φ ∈ ̂Sr1 .
2. If k > 1, given an r|k-label φ : VT (r|k)→ ̂S∗, we require

a. for any child v of the root, the r|k−1-label φ|Tv
is in T (rk−1), and

b. φ(rootnode) ∈ ̂Sα , where Sα gives the stabilizer of the action by Srk on r|k−1-
sublabels of φ, so that α � rk is the partition of [rk] given by the number of
r|k−1-sublabels of φ in each nonempty equivalence class,

where φ|Tv
denotes the restriction of φ to the subtree Tv .

2.5 Bratteli Diagrams

We refer to Section 4.1 in [32] or to [29] for a detailed discussion on Bratteli
diagrams.

A Bratteli diagram B is a weighted graph, which may be described by a set of
vertices from a disjoint collection of sets Bk , k ≥ 0, and edges that connect vertices
in Bk to vertices in Bk+1. Assume that the set B0 contains a unique vertex, and that
the edges are labeled by positive integer weights. In the case the multiplicity is 1,
we omit the labels. The set Bk is the set of vertices at level k. If a vertex vk ∈ Bk is
connected to a vertex vk+1 ∈ Bk+1, then we write vk ≤ vk+1.

Given a tower of subgroups 〈1〉 = G0 ≤ G1 ≤ . . . ≤ Gn, the corresponding
Bratteli diagram has vertices of set Bi labeling the irreducible representations of
Gi . If ρ and η are irreducible representations of Gi and Gi−1, respectively, then the
corresponding vertices are connected by an edge weighted by the multiplicity of η
in ρ when restricted to the group Gi−1.

Example 6 The Young lattice is an example of a Bratteli diagram, where the vertices
represent Young diagrams, or partitions, and the edge joining a partition of k to
a partition of k + 1 has weight 1. For the symmetric group S4 for the sequence
S1 < S2 < S3 < S4 of subgroups, where Si permutes only the symbols 1, . . . , i, the
Bratteli diagram has the form:
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S1 S2 S3 S4.

The distinct edges in the Bratteli diagram viewed as directed from level i−1 to level
i may be viewed as mutually orthogonal Si−1-equivariant morphisms C[Si−1] →
C[Si]; the paths from the root to a leaf give a natural indexing of Gelfand–Tsetlin
bases for the towers of subgroups (cf. [17, 36]). These bases correspond to those
matrix representations which are block diagonal with irreducible blocks at each
step (with equivalent irreducibles being equal) when restricted through the tower
of subgroups.

2.6 Adapted Bases and Fast Fourier Transforms

Classical discrete Fourier transform (DFT) and fast Fourier transform (FFT)-based
approaches come from the use of commutative groups. We expand the original work



40 M. S. Im and A. Wu

by Holmes (cf. [19]) and Karpovsky–Trachtenberg (cf. [23]) who merged DFT and
FFT for signal processing to noncommutative groups.

Let R be a set of traversals of ̂G. We recall some foundational background from
[33].

Definition 7 Let G be a finite group, and let L(G) be the |G|-dimensional complex
vector space of functions defined on G. If ρ is a matrix representation of G, then
the Fourier transform ̂f (ρ) of f at ρ is the matrix sum:

̂f (ρ) =
∑

g∈G
f (g)ρ(g).

Definition 8 The discrete Fourier transform DFTR(f ) with respect to a traversal
R ⊆ ̂G is the collection of individual Fourier transforms:

DFTR(f ) = {̂f (ρ) : ρ ∈ R
}

.

The following notion of adapted bases is fundamental in the FFT algorithm.

Definition 9 Let H be a subgroup of a group G and let S = {η1, . . . , ηl} and
R = {ρ1, . . . , ρh} be sets of matrix representations for H and G, respectively. Then,
the pair (G,R) is (H,S)-adapted if for all 1 ≤ i ≤ h and y ∈ H ,

ρi(y) = ηi1(y)⊕ . . .⊕ ηim(y)

for some ηij ∈ S .

Let T (G,R) be the computational time to compute discrete Fourier transform
for an arbitrary function f with respect to a traversal R. Let T (G) be the minimum
of T (G,R) over all R. We now cite a theorem:

Theorem 6 (Theorem 3.1, [9]) The Fourier transform for the symmetric group Sn

may be evaluated in no more than

(

5

12
n3 + 1

2
n2 − 11

12
n

)

n! arithmetic operations.

3 Irreducible Representations of Iterated Wreath Products

In this section, we will prove Theorem 1.

Proof Let {ρ1, . . . , ρh} be a traversal for G. For i ∈ [h]n, denote

ρ(i) := ρi1 � ρi2 � · · ·� ρin .

Let ρ(i) ∈ RGn be fixed. Let σ ∈ Sn. The action of σ on ρ(i) is given by:

(ρ(i))σ (g1, . . . , gn) = (ρi1 � · · ·� ρin)(gσ−1(1), . . . , gσ−1(n))
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by Definition 3. Since (ρ(i))σ ∼ ρ(i) if and only if i� = iσ (�) for every � ∈ [n] by
Lemma 2, the inertia group of ρ(i) is

SA1(i) × · · · × SAh(i)
∼= Sα,

where

A�(i) = {j ∈ [n] : ij = �} ⊆ [n]

and α� = |A�|.
So for ρα ∈ RGn and I = IG�Sn(ρα), the irreducible representation ρα has an

extension to I by the little-group method (an application of Clifford theory) to the
structure of irreducible representations of G � Sn = Gn

� Sn. We thus find that a
traversal for G � Sn is precisely

{

IndG�Sn
G�Sα ((ρ

�α1
1 � · · ·� ρ

�αh

h )′ ⊗ σ ′) : α |=h n, σ ∈ RSα

}

.

The second statement of the theorem follows as a special case of the main statement.

Let N(G) be the number of non-isomorphic irreducible representations of a finite
group G. If we denote by P(n) the number of partitions of the integer n (so that
P(n) = |{α : α � n}|), where P(0) := 1, then N(Sn) = P(n).

Corollary 1 (Lemma 4.2.9, [21]) Suppose that N(G) = h. Then, the number of
non-isomorphic irreducible representations of G � Sn is given by:

N(G � Sn) =
∑

α|=hn

∏

i∈[h]
P(αi). (7)

Proof This follows from Theorem 1 and an application of Clifford theory.

Let N(r|k) denote the number of equivalence classes of ordinary irreducible
representations for the wreath product W(r|k) = W(r|k−1) � Srk . Define P(n, h) :=
∑

α|=hn

∏h
i=1 P(αi).

Corollary 2 It follows that for α � n,

N(G � Sα) =
|α|
∏

j=1

∑

β|=hαj

∏

i∈[h]
P(βi). (8)

For h := N(r|k−1), we find that h satisfies the following recursion:

N(r|k) = P (rk,N(r|k−1)) =
∑

α|=hrk

∏

i∈[h]
P(αi). (9)

Proof This follows from Corollary 1.
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4 Branching Diagram and r-Label Correspondence

We find a combinatorial structure describing the branching diagrams for iterated
wreath products of symmetric groups by proving Theorem 3.

Proof It suffices to define a map on a traversal of ̂W(r|k), which is given in (2). We
will define a map F : RW(r|k) → T (r|k) recursively, and it suffices to prove that
each orbit of T (r|k) under action by W(r|k) has exactly one pre-image under F .

Let k = 1. For any ρ ∈ ̂W(r|k) = ̂Sr1 , we define the r|1-label as

F(ρ) : VT (r|1) = {root} → ̂Sr1 , where F(ρ)(root) := ρ.

This is clearly a bijection as desired.
Now, let k > 1. By the inductive hypothesis, F : RW(r|k−1) → T (r|k−1) has

exactly one pre-image per orbit of T (r|k). Suppose that a traversal for W(r|k−1) is
given by the set {ρ1, . . . , ρh}. We need to define F on RW(r|k), and show that orbits
have exactly one pre-image as desired.

Pick an arbitrary element of ρα1
1 ⊗ · · · ⊗ ρ

αh

h ⊗ σ of RW(r|k). Denote its image
under F by:

φ := F(ρ
α1
1 ⊗ · · · ⊗ ρ

αh

h ⊗ σ) : VT (r|k)→ Srk .

Let U ⊂ VT (r|k) be the rk children of the root. Assign an ordering to U =
{u1, . . . , urk }. Then, partition the set U as:

U = U1 � . . . � Uh,

where each Ui satisfies |Ui | = αi while preserving the ordering. For each ui ∈ U ,
define the value of φ on all nodes in subtree Tui to satisfy φ|Tui

:= F(ρji ), where

j i satisfies Uji � ui and where φ|Tui
denotes the restriction of φ to the subtree

Tui ⊆ T . It remains to define the value of φ on the root node. We let φ(root) = σ .
Notice that φ|Tui

∈ T (r|k−1) by definition and induction. Since σ is in the
stabilizer of the Srk -action on ρα , which is exactly Sα , we see that φ is a compatible
label for T (r|k). Thus, F is well-defined, and each orbit of T (r|k) has exactly one
pre-image.

4.1 Degrees of Irreducible Representations

Following the discussion in Section 4.1.1 in [32], we define for any r|k-tree T the
companion tree CT .
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Definition 10 Fix T (r|k) and r|k-label φ. Let the companion label Cφ : VT (r|k)→
N be defined by:

Cφ(v) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dim(φ(v)) if v is a leaf of the tree T (r|k),
|Sri /Sα| =

(

ri
α

)

otherwise, where|v is in the (k − i) -th layer of

T and φ(v) ∈ Sα.

Similar to Proposition 4.3 in [32], we obtain the following:

Proposition 1 If ρ is an irreducible representation of W(r|k) associated to r|k-
label φ, then the dimension dρ of ρ is given by:

dρ =
∏

v

Cφ(v), (10)

the product of the value of the companion label Cφ on all vertices.

5 Fast Fourier Transforms, Adapted Bases, and Upper
Bound Estimates

We use the FFT estimates derived in [9] and [33] to state a coarse, overall upper
bound on the running time of FFT for the wreath product W(r|k).
Theorem 7 (Theorem 3, [33]) We have

T (G � Sn) ≤ nT (G) · |G � Sn−1| + nT (G � Sn−1) · |G| + n32|RG||G � Sn|. (11)

The separation of variables approach has been one of the primarily components
that is responsible for the fastest known algorithms for almost all classes of finite
groups, including symmetric groups [28] and their wreath products [11].

Corollary 3 Let T (r|k) be the computation time for the wreath product W(r|k).
Then,

T (r|k) ≤ rk

k−1
∏

i=1

(ri !)
(

(rk−1!)
(

T (r|k−1)+ r3
k 2|RW(r|k−1)|

)

+ T (W(r|k−1) � Srk−1)

)

.

(12)

Proof This result is a consequence of Theorem 7.
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6 Conclusion and Open Problems

As a sequel to [20], we have given an explicit description of a traversal for the
iterated wreath product W(r|k) and we have shown the existence of a bijection
between equivalence classes of ordinary irreducible representations of the gener-
alized iterated wreath products and W(r|k)-orbits of complete rooted trees. We have
also stated a recursion for the number of equivalence classes of ordinary irreducible
representations of the iterated wreath product and have given the dimension of an
irreducible representation of W(r|k).

We conclude by giving several open problems. One problem is to find a tighter
fast Fourier transform (FFT) bound for chains of subgroups of W(r|k) than the upper
bound stated in Theorem 7. Another problem is to study the representation theory
of, and find adapted bases and FFT operation bounds for chains of subgroups for,
iterated wreath products of more general class of groups.
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Abstract In this survey chapter, we explain the intricate links between Conway–
Coxeter friezes and cluster combinatorics. More precisely, we provide a formula,
relying solely on the shape of the frieze, describing how each individual entry in
the frieze changes under cluster mutation. Moreover, we provide a combinatorial
formula for the number of submodules of a string module, and with that a simple
way to compute the frieze associated to a fixed cluster-tilting object in a cluster
category of Dynkin type A in the sense of Caldero and Chapoton.
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1 Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in [13]. A key motivation
was to provide an algebraic framework for phenomena observed in the study of
dual canonical bases for quantized enveloping algebras and in total positivity for
reductive groups.

Cluster categories were introduced in 2005 [4, 7], to give a categorical inter-
pretation of cluster algebras. The following table shows the beautiful interplay and
correspondences between cluster algebras and cluster categories in type A. Note
that the correspondences between the first and second column hold more generally,
not only in type A: Caldero and Chapoton [6] have provided a formal link between
cluster categories and cluster algebras by introducing what is now most commonly
known as the Caldero Chapoton map (short: CC-map) or cluster character. Fixing
a cluster-tilting object (which takes on the role of the initial cluster), it associates
to each indecomposable in the cluster category a unique cluster variable in the
associated cluster algebra, sending the indecomposable summands of the cluster-
tilting object to the initial cluster.

Cluster algebra ← Cluster category Polygon

cluster variables CC-map indecomposable objects diagonals

clusters cluster-tilting objects triangulations

mutations mutations flip

In the 1970s, Coxeter and Conway first studied frieze patterns of numbers ([9]
and [8]). When these numbers are positive integers, they showed that the frieze
patterns arise from triangulations of polygons. Thus, we can extend this table by a
further column:

. . . Polygon Frieze

diagonals integers

triangulations sequences of 1’s

flip ??

Here, the last entry is missing: the meaning of mutation or flip on the level of
frieze patterns is not known until now. The purpose of this survey chapter is to show
how to complete the picture of cluster combinatorics in the context of friezes. It is
based on the paper [3] where more background on cluster categories can be found
and where the proofs are included. More precisely, we determine how mutation
of a cluster affects the associated frieze, thus effectively introducing the notion of a
mutation of friezes that is compatible with mutation in the associated cluster algebra.
This provides a useful new tool to study cluster combinatorics of Dynkin type A.
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In order to deal with the mutations for friezes, we will use cluster categories
and generalized cluster categories as introduced by Buan et al. [4] for hereditary
algebras and by Amiot [1] more generally. In both cases, cluster categories are
triangulated categories in which the combinatorics of cluster algebras receives
a categorical interpretation: cluster variables correspond to rigid indecomposable
objects and clusters correspond to cluster-tilting objects. One of the essential
features in the definition of cluster algebras is the process of mutation, which
replaces one element of the cluster by another unique element such that a new cluster
is created. The corresponding categorical mutation replaces an indecomposable
summand of a cluster-tilting object by another unique indecomposable object using
approximations in the triangulated categories; this process creates another cluster-
tilting object which corresponds to the mutated cluster.

We now explain the different players appearing in the table above.

1.1 Frieze Patterns

The notion of friezes was introduced by Coxeter [10]; it was Gauss’s pentagramma
mirificum which was the original inspiration. We recall that a frieze is a grid of
positive integers consisting of a finite number of infinite rows: the top and bottom
rows are infinite rows of 0s and the second to top and second to bottom are infinite
rows of 1s as one can see in the following diagram:

. . . 0 0 0 0 . . .

1 1 1 1 1

. . . m−1,−1 m00 m11 m22 . . .

m−2,−1 m−1,0 m01 m12 m23

. . . . . . . . . . . . . . . . . .

1 1 1 1 1

. . . 0 0 0 0 . . .

The entries of the frieze satisfy the frieze rule: for every set of adjacent numbers
arranged in a diamond

b

a d

c
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we have

ad − bc = 1.

The sequence of integers in the first nontrivial row, (mii)i∈Z, is called a quiddity
sequence. This sequence completely determines the frieze. Each frieze is also
periodic, since it is invariant under glide reflection. The order of the frieze is defined
to be the number of rows minus one. It follows that each frieze of order n is n-
periodic.

Among the famous results about friezes is the bijection between the friezes
of order n and triangulations of a convex n-gon, which was proved by Conway
and Coxeter in [9] and [8]. This was used to set the first link with cluster
combinatorics using [7] and [6] by Caldero and Chapoton. Recently, frieze patterns
have been generalized in several directions and found applications in various areas
of mathematics; for an overview, see [17].

1.2 Cluster Algebras

Fomin and Zelevinsky introduced the notion of cluster algebras in [13]. Cluster
algebras are commutative algebras generated by cluster variables; cluster variables
are obtained from an initial cluster (of variables) by replacing one element at a time
according to a prescribed rule, where the rule is given either by a skew-symmetric
(or more generally skew-symmetrizable) matrix or, equivalently, by a quiver with
no loops nor 2-cycles. The process of replacing one element of a cluster by another
unique element in order to obtain another cluster, together with the prescribed
change of the quiver, is called mutation. Finite sequences of iterated mutations
create new clusters and new cluster variables; all cluster variables are obtained in
such a way.

The process of such mutations may never stop; however, if the quiver is of
Dynkin type, then by a theorem of Fomin and Zelevinsky, this process stops and
one obtains a finite number of cluster variables [14]. Among those cluster algebras,
the best behaved and understood are the cluster algebras of type A. The clusters of
the cluster algebra of type An−3 are in bijection with the triangulations of a convex
n-gon, for n ≥ 3. This is exactly what is employed in this work in order to relate
and use cluster categories, via triangulations of an n-gon, so that we can describe the
mutations of friezes of order n. Since we will also be dealing with quivers Q′ which
are mutation equivalent to the quivers of type An and may have nontrivial potential,
we need to consider generalized cluster categories C(Q′,W), which are shown to be
triangle equivalent to CQ [1].
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1.3 Cluster Categories

Let Q be an acyclic quiver with n vertices, over an algebraically closed field.
We consider the category mod kQ of (finitely generated) modules over kQ, or,
equivalently, the category repQ of representations of the quiver Q. The bounded
derived category Db(kQ) can be viewed as ∪i∈Z mod(kQ)[i], with connecting
morphisms.

As an example, consider the quiver

The module category of the path algebra kQ has six indecomposable objects up to
isomorphisms, with irreducible maps between them as follows:

P3

P2 I2

P1 S2 I3

The modules Pi are indecomposable projective, the Ii are indecomposable injectives
and the Si are the simple modules, with I1 = P3, S1 = P1 and S3 = I3. The
bounded derived category then looks as follows (the arrows indicate the connecting
morphisms):

Let Q be a Dynkin quiver of type A. Let C be the associate cluster category,
which by definition is C = CQ = Db(kQ)/τ−1[1] where Db(kQ) is the bounded
derived category of the path algebra kQ with the suspension functor [1] and the
Auslander–Reiten functor τ . In this case, the specialized CC map gives a direct
connection between the Auslander–Reiten quiver of the cluster category C with
a fixed cluster-tilting object T , and the associated frieze F(T ) in the following
way: recall that each vertex of the Auslander–Reiten quiver corresponds to an
isomorphism class of an indecomposable object in the cluster category. When the
specialized CC map is applied to a representative of each isomorphism class and the
vertex is labeled by that value, one only needs to complete those rows by the rows
of 1s and 0s at the top and bottom in order to obtain a frieze, cf. [6, Proposition 5.2].
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2 From Cluster Categories to Frieze Patterns

Let C be a cluster category, let T be a cluster-tilting object and let BT = EndC (T )

be the endomorphism algebra, which is also called a cluster-tilted algebra. The
module category mod(BT ) is shown to be equivalent to the quotient category
C
/

add(T [1]) of the cluster category. This result by Buan, Marsh and Reiten is
used in a very essential way: each indecomposable object in C , which is not
isomorphic to a summand of T [1], corresponds to an indecomposable BT -module,
preserving the structure of the corresponding Auslander–Reiten quivers; at the same
time, the indecomposable summands of T [1] correspond to the suspensions of the
indecomposable projective BT -modules in the generalized cluster category of the
algebra BT .

When C is the cluster category associated to a Dynkin quiver of type A,
for each cluster-tilting object T , the associated specialized CC-map sends each
indecomposable summand of T [1] to 1 and each indecomposable BT -module M

to the number of its submodules, as we explain now. In the actual Caldero–
Chapoton formula for cluster variable xM in terms of the initial cluster variables, the
coefficients are given as the Euler–Poincaré characteristics of the Grassmannians
of submodules of the module M . In this expression, the sum is being taken over
the dimension vectors of the submodules of M . However in this setup, since all
indecomposable BT -modules are string modules that have dimension at most one
at every vertex, all the Grassmannians are just points. The specialized Caldero–
Chapoton map is the map we get from postcomposing the CC-map associated to T

with the specialization of the initial cluster variables to one. It will be denoted by
ρT throughout the paper. It is given by the following formula:

ρT (M) =
{

1 if M = Ti[1] ,
∑

e χ(Gre(M)) if M is a BT -module.

Here, Gre(M) is the Grassmannian of submodules of M with dimension vector
e. Hence, the sum is equal to the number of submodules and the values of the
specialized CC-map are positive integers. The values of the specialized CC-map
are now entered in the AR quiver of the cluster category C at the places of the
corresponding indecomposable objects. The image of this generalized CC-map only
needs to be completed with the rows of 1s and 0s above and below in order to obtain
the frieze associated to the cluster-tilting object T , denoted by F(T ).

Since the generalized CC-map for cluster categories of Dynkin type A is given in
terms of the number of submodules of BT -modules, the first goal of the paper is to
give a formula for the number of submodules. This is determined by the following
result, hence providing a combinatorial formula for the number of submodules of
any given indecomposable BT -module. Its proof can be found in [3, Section 4].
We recall that each BT -module is a string module and hence has a description in
terms of the lengths of the individual legs. Let (k1, . . . , km) denote these lengths, cf.
Fig. 1. We further denote by s(M) the number of submodules of a BT -module M .
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Fig. 1 A string module M of shape (k1, . . . , km) with legs Nl

In order to state the formula for the number of submodules, we say that a subset I of
{1, . . . , m} is admissible if, assuming that I = {i1, . . . , il} is ordered by i1 < . . . <

il , any two consecutive numbers ij , ij+1 are either of parity even–odd or odd–even.

Theorem 2.1 Let M be an indecomposable BT -module, of shape (k1, . . . , km).
Then, the number of submodules of M is given as:

s(M) = 1+
m
∑

j=0

∑

|I |=m−j

∏

i∈I
ki ,

where the second sum runs over all admissible subsets I of {1, . . . , m}.
Using the position of the module in the AR quiver and the information about the

positions of the indecomposable projective BT -modules, the procedure for finding
the numerical invariants (k1, . . . , km) of the module is given in [3, Section 2]. This
purely combinatorial way of computing the numbers of submodules is the basis for
computing the associated friezes and, eventually, mutations of friezes.

Remark 2.2 Let C be the cluster category associated to a Dynkin quiver of type A

and let T be a cluster-tilting object in C . Then for each indecomposable BT -module
M , we have ρT (M) = s(M). Theorem 2.1 thus gives us a combinatorial way to
compute the specialized Caldero–Chapoton map.

We end this section by giving an example illustrating the frieze pattern obtained
through the specialized CC-map.

Example 2.3 We now illustrate several notions on the example of the cluster
category CA11 : the Auslander–Reiten quiver of CA11 , a cluster-tilting object T , the
cluster-tilted algebra BT and the Auslander–Reiten quiver of the generalized cluster
category of BT where the modules are given by their composition factors. The
Auslander–Reiten quiver of CA11 is the quotient of the Auslander–Reiten quiver
of Db(kA11) by the action of τ−1[1], a fundamental domain which is depicted in
black below. We pick the cluster-tilting object T =⊕11

i=1 Ti whose indecomposable
summands are marked with circles:
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• • • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • • •

Consider the cluster-tilted algebra BT = EndCA11
(T ). Then, BT = kQ

/

I , where Q

is the quiver

and I is the ideal generated by the directed paths of length 2 which are part of the
same 3-cycle. We refer the reader to [5] for a detailed description of cluster-tilted
algebras of Dynkin type A.

We can view mod(BT ) as a subcategory of CA11 and label the indecomposable
objects in CA11 by modules and shifts of projective modules, respectively:
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In this picture, the direct summands of T correspond to the indecomposable
projective modules Pi of BT (which lie on the right of the Pi[1] in the picture).
The specialized CC-map replaces each vertex labeled by a module, by the number
of its submodules and the shifts of projectives by 1s. Adding in the first two and last
two rows of 0s and 1s gives rise to the associated frieze F(T ):

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

6 1 2 3 1 5 1 4 1 2 5 1

5 1 5 2 4 4 3 3 1 9 4 2

4 4 2 3 7 3 11 2 2 4 7 7

3 7 1 10 5 8 7 1 7 3 12 3

5 5 3 3 7 13 5 3 3 5 5 5

8 2 8 2 18 8 2 8 2 8 2 18

3 3 5 5 5 11 3 5 5 3 3 7

1 7 3 12 3 4 7 3 7 1 10 5

2 2 4 7 7 1 9 4 4 2 3 7

3 1 9 4 2 2 5 5 1 5 2 4

4 1 2 5 1 3 1 6 1 2 3 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

3 Description of the Regions in the Frieze

The Quiver of a Triangulation
Let T be a triangulation of an (n + 3)-gon, and let the diagonals be labeled

by 1, 2, . . . , n. We recall that the quiver QT of the triangulation T is defined as
follows: the vertices of QT are the labels {1, 2, . . . , n}. There is an arrow i → j

in case the diagonals share an endpoint and the diagonal i can be rotated clockwise
to diagonal j (without passing through another diagonal incident with the common
vertex). This is illustrated in Example 3.2 and Fig. 5 below.

Let B = BT be the path algebra of QT modulo the relations arising from
triangles in QT : whenever α, β are two successive arrows in an oriented triangle
in QT , their composition is 0. Let Px be the indecomposable projective B-module
associated to the vertex x and Sx its simple top. Let

T = ⊕x∈T Px.
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We considered T as an object of the generalized cluster category C = CB . Then,
T is a cluster-tilting object in C and B ∼= EndC (T ). Hence, B is a cluster-tilted
algebra, called the cluster-tilted algebra associated to the triangulation T . We can
extend this to an object in the Frobenius category Cf by adding the n+3 projective-
injective summands associated to the boundary segments [12], [23] , . . . , [n +
3, 1] of the polygon, with irreducible maps between the objects corresponding to
diagonals/edges as follows: [i − 1, i + 1] → [i, i + 1], [i, i + 1] → [i, i + 2]
[2, 11, 16]. We denote the projective-injective associated to [i, i + 1] by Qxi . Let

Tf = (⊕x∈T Px)⊕
(

Qx1 ⊕ · · · ⊕Qxn+3

)

This is a cluster-tilting object of Cf in the sense of [15, Section 3]. Given a B-
module M , by abuse of notation, we denote the corresponding objects in C and Cf

by M , that is HomC (T ,M) = M . In other words, an indecomposable object of Cf

is either an indecomposable B-module or Qxi for some i ∈ {1, . . . , n+ 3} or of the
form Px[1] for some x ∈ T .

The frieze F(T ) of the triangulation T is the frieze pattern F(T ) for T the
cluster-tilting object associated to T .

3.1 Diagonal Defines a Quadrilateral

Let a be a diagonal in the triangulation, a ∈ {1, 2, . . . , n}. This diagonal uniquely
defines a quadrilateral formed by diagonals or boundary segments. Label them
b, c, d, e as in Fig. 2.

3.2 Diagonal Defines Two Rays

Consider the entry 1 of the frieze corresponding to a. There are two rays passing
through it. We go along these rays forwards and backwards until we reach the first
entry 1. As the frieze has two rows of ones bounding it, we will always reach an entry

Fig. 2 Triangulation
around a
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1 in each of these four directions. Going forwards and upwards: the first occurrence
of 1 corresponds to the diagonal b. Down and forwards: diagonal d. Backwards
down from the entry corresponding to 1: diagonal c and backwards up: diagonal
e. If we compare with the coordinate system for friezes of Sect. 1.1, the two rays
through the object corresponding to the diagonal a = [kl] are the entries mi,l (with
i varying) and mk,j (with j varying).

In the frieze or in the AR quiver, we give the four segments between the entry
1 corresponding to a and the entries corresponding to b, c, d and e names (see
Fig. 4 for a larger example containing these paths). Whereas a is always a diagonal,
b, c, d, e may be boundary segments. If b is a diagonal, the ray through Pa[1] goes
through Pb[1], and if b is a boundary segment, say b = [i, i + 1] (with a = [ij ])
this ray goes through Qxi . By abuse of notation, it will be more convenient to write
this projective-injective as Pb[1] or as Pxi [1] (if we want to emphasize that it is an
object of the Frobenius category Cf that does not live in C ).

Let e and c denote the unique sectional paths in Cf starting at Pa[1] and ending
at Pb[1] and Pd [1], respectively, but not containing Pb[1] or Pd [1]. Similarly, let b
and d denote the sectional paths in Cf starting at Pe[1] and Pc[1], respectively, and
ending at Pa[1], not containing Pe[1], Pc[1], see Fig. 4.

Note that b and d are opposite sides of the quadrilateral determined by a. In
particular, the corresponding diagonals do not share endpoints. In other words, Pb[1]
and Pd [1] do not lie on a common ray in the AR quiver. So by the combinatorics of
Cf , there exist two distinct sectional paths starting at Pb[1], Pd [1]. These sectional
paths both go through Sa . Let ca, ea denote these paths starting at Pb[1] and at
Pd [1], up to Sa , but not including Pb[1], Pd [1], respectively. Observe that the
composition of e with ca and the composition of c with ea are not sectional, see
Fig. 4. Similarly, let da, ba denote the two distinct sectional paths starting at Sa and
ending at Pe[1], Pc[1], respectively, but not including Pe[1], Pc[1]. Note that the
composition of ca with ba and the composition of ea with da are not sectional.

3.3 Diagonal Defines Subsets of Indecomposables

For x a diagonal in the triangulation T and Px the corresponding projective
indecomposable, we write X for the set of indecomposable B-modules having a
non-zero homomorphism from Px into them, X = {M ∈ indB | Hom(Px,M) �=
0}. Given a B-module M , its support is the full subquiver supp(M) of QT generated
by all vertices x of QT such that M ∈ X . It is well known that the support of an
indecomposable module is connected.

If x is a boundary segment, we set X to be the empty set (there is no projective
indecomposable associated to x, so there are no indecomposables reached).

We use the notation above to describe the regions in the frieze. Thus, if x, y are
diagonals or boundary segments, we write X ∩ Y for the indecomposable objects
in C that have x and y in their support.
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Remark 3.1 Let M be an indecomposable B-module in X ∩ Y such that there
exists a (unique) arrow α : x → y in the quiver. It follows that the right action of
the element α ∈ B on M is non-zero, that is Mα �= 0.

By the remark above, we have the following equalities. Note that none of the
modules below are supported at a, because the same remark would imply that such
modules are supported on the entire 3-cycle in QT containing a. However, this is
impossible as the composition of any two arrows in a 3-cycle is zero in B. We have

B ∩ E = {M ∈ indB | M is supported on e→ b}
C ∩D = {M ∈ indB | M is supported on c→ d}

Moreover, since the support of an indecomposable B-module forms a connected
subquiver of Q, we also have the following equalities:

B ∩ C = {M ∈ indB | M is supported on b→ a→ c}
D ∩ E = {M ∈ indB | M is supported on d → a→ e}
B ∩D = {M ∈ indB | M is supported on b→ a← d}
C ∩ E = {M ∈ indB | M is supported on c← a→ e}

Finally, using similar reasoning it is easy to see that the sets described above are
disjoint. Next, we describe modules lying on sectional paths defined in Sect. 3.2.
First, consider sectional paths starting or ending in Pa[1], then we claim that

i = {M ∈ indB | i ∈ supp(M) ⊂ Qi} ∪ {Pa[1]}

for all i ∈ {b, c, d, e}, for Qi the subquiver of Q containing i, as in Fig. 3. We
show that the claim holds for i = b, but similar arguments can be used to justify the
remaining cases. Note that it suffices to show that a module M ∈ b is supported on b

but it is not supported on e or a. By construction, the sectional path b starts at Pe[1],
so 0 = Hom(τ−1Pe[1],M) = Hom(Pe,M). On the other hand, b ends at Pa[1],
so 0 = Hom(M, τPa[1]) = Hom(M, Ia), where Ia is the injective B-module at a.
This shows that M is not supported at e or a. Finally, we can see from Fig. 4 that

Fig. 3 Regions in quiver
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Fig. 4 Regions in the AR quiver determined by Pa[1]

M has a non-zero morphism into τPb[1] = Ib, provided that b is not a boundary
segment. However, if b is a boundary segment, then b ∩ Ob(modB) = ∅ and we
have b = {Pa[1]}. Conversely, it also follows from Fig. 4 that every module M

supported on b and some other vertices of Qb lies on b. This shows the claim.
Now, consider sectional paths starting or ending in Sa . Using similar arguments

as above, we see that

ia = {M ∈ indB | a ∈ supp(M) ⊂ Qa
i }

for i ∈ {c, e} and

ia = {M ∈ indB | a ∈ supp(M) ⊂ Qa
i }

for i ∈ {b, d}, where Qa
i is the full subquiver of Q on vertices of Qi and the vertex a.

Finally, we define F to be the set of indecomposable objects of Cf that do not
belong to

A ∪B ∪ C ∪D ∪ E ∪ {Pa[1]}.

The region F is a succession of wings in the AR quiver of Cf , with peaks at
the Px[1] for x ∈ {b, c, d, e}. That is, in the AR quiver of Cf consider two
neighboured copies of Pa[1] with the four vertices Pb[1], Pc[1], Pd [1], Pe[1]. Then,
the indecomposables of F are the vertices in the triangular regions below these four
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Fig. 5 Triangulations T and T ′ = μ1(T )

vertices, including them (as their peaks). By the glide symmetry, we also have these
regions at the top of the frieze. In Fig. 4, the wings are the shaded unlabeled regions
at the boundary. It corresponds to the diagonals inside and bounding the shaded
regions in Fig. 5. We will see in the next section that objects in F do not change
under mutation of Tf at Pa[1].
Example 3.2 We consider the triangulation T of a 14-gon, see the left hand of
Fig. 5 and the triangulation T ′ = μ1(T ) obtained by flipping diagonal 1.

The quivers of T and of T ′ are given below. Note that the quiver Q is the same
as in Example 2.3.

Figure 6 shows the Auslander–Reiten quiver of the cluster category Cf for Q.
In Fig. 7 (Sect. 4.2), the frieze patterns of T and of T ′ are given.

4 Mutating Friezes

Assume now that our cluster-tilting object T in C is of the form T = ⊕n
i=1 Ti ,

where the Ti are mutually non-isomorphic indecomposable objects. Mutating T at
Ti for some 1 ≤ i ≤ n yields a new cluster-tilting object T ′ = T/Ti ⊕ T ′i , to which
we can associate a new frieze F(T ′). In terms of the frieze, we can think of this
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Fig. 6 AR quiver of the category Cf arising from Q

Fig. 7 Frieze pattern of Example 3.2. Red entries: after flip of diagonal 1
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mutation as a mutation at an entry of value 1, namely the one sitting in the position
of the indecomposable object Ti[1].

We describe how, using graphic calculus, we can obtain each entry of the frieze
F(T ′) independently and directly from the frieze F(T ), thus effectively introducing
the concept of mutations of friezes at entries of value 1 that do not lie in one of the
two constant rows of 1s bounding the frieze pattern.

We are able to give an explicit formula of how each entry in the frieze F(T )

changes under mutation at the entry corresponding to Ti , see Theorem 4.7 below.
We observe that each frieze can be divided into four separate regions, relative to the
entry of value 1 at which we want to mutate. Each of these regions gets affected
differently by mutation. The formula of the theorem relies solely on the shape of the
frieze and the entry at which we mutate. It determines how each entry of the frieze
individually changes under mutation.

In Sect. 4.2, we will describe the four separate regions and introduce the
necessary notation before stating the theorem.

4.1 Frieze Category

We extend indC by adding an indecomposable for each boundary segment of
the polygon and denote the resulting category by Cf . Then, Cf is the Frobenius
category of maximal CM-modules categorifying the cluster algebra structure of the
coordinate ring of the (affine cone of the) Grassmannian Gr(2,n) as studied in [11]
and for general Grassmannians in [2, 16]. The stable category of Cf is equivalent to
C . We then extend the definition of ρT to Cf by setting

ρT (M) = 1 if M corresponds to a boundary segment.

This agrees with the extension of the cluster character to Frobenius category given
by Fu and Keller, cf. Theorem [15, Theorem 3.3].

4.2 The Effect of Flips on Friezes

The goal of this section is to describe the effect of the flip of a diagonal or
equivalently the mutation at an indecomposable projective on the associated frieze.
We give a formula for computing the effect of the mutation using the specialized
Caldero Chapoton map. Let T be a triangulation of a polygon with associated
quiver Q (see Sect. 3). The quiver Q looks as in Fig. 3, where the subquivers Qb,
Qc, Qd and Qe may be empty. Let T = ⊕x∈T Px and B = EndC T be the associated
cluster-tilted algebra.

Take a ∈ T and let T ′ = μa(T ) be the triangulation obtained from flipping a,
with quiver Q′ = μa(Q) (Fig. 8).
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Fig. 8 Quiver after flipping
diagonal a

Let B ′ be the algebra obtained through this, it is the cluster-tilted algebra for
T ′ = ⊕x∈T ′Px . If M is an indecomposable B-module, we write M ′ for μa(M) in
the sense of [12]. If M is an indecomposable B-module, the entry of M in the frieze
F(T ) is the entry at the position of M in the frieze.

Definition 4.1 Let T be a triangulation of a polygon, a ∈ T and M an
indecomposable object of Cf . Then, we define the frieze difference (w.r.t. mutation
at a) δa : indCf → Z by:

δa(M) = ρT (M)− ρT ′(M
′) ∈ Z

In Sect. 4.3, we first describe the effect mutation has on the regions in the frieze.
This gives us all the necessary tools to compute the frieze difference δa (Sect. 4.4).

4.3 Mutation of Regions

Here, we describe how mutation affects the regions (Sect. 3.3) of the frieze F(T ).
Let T , a, B and T ′, B ′ be as above. When mutating at a, the change in support of
the indecomposable modules can be described explicitly in terms of the local quiver
around a. This is what we will do here. We first describe the regions in the AR
quiver of Cf for B ′.

If x is a diagonal or a boundary segment, we write

X ′ = {M ∈ indB ′ | Hom(Px,M) �= 0}

for the indecomposable modules supported on x.
After mutating a, the regions in the AR quiver are still determined by the

projective indecomposables corresponding to the framing diagonals (or edges)
b, c, d, e. The relative positions of a, b, c, d and e have changed; however, it follows
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from [12] that except for vertex a the support of an indecomposable module at
all other vertices remains the same. Therefore, the regions are now described as
follows:

B′ ∩ E ′ = {M ∈ indB ′ | M is supported on e→ a→ b}
C ′ ∩D ′ = {M ∈ indB ′ | M is supported on c→ a→ d}

B′ ∩ C ′ = {M ∈ indB ′ | M is supported on b→ c}
D ′ ∩ E ′ = {M ∈ indB ′ | M is supported on d → e}

B′ ∩D ′ = {M ∈ indB ′ | M is supported on b← a→ d}
C ′ ∩ E ′ = {M ∈ indB ′ | M is supported on c→ a← e}

Under the mutation at a, if a module M lies on one of the rays ba , da ca and ea ,
then M ′ is obtained from M by removing support at vertex a. The modules lying on
the remaining four rays gain support at vertex a after the mutation.

4.4 Mutation of Frieze

We next present the main result of this section, the effect of flip on the generalized
Caldero Chapoton map, i.e. the description of the frieze difference δa . We begin by
introducing the necessary notation.

Depending on the position of an indecomposable object M , we define several
projection maps sending M to objects on the eight rays from Sect. 3.2.

Let M ∈ indB, and let i be one of the sectional paths defined in Sect. 3.2.
Suppose M �∈ i, then we denote by Mi a module on i if there exists a sectional path
Mi → · · · → M or M → · · · → Mi in Cf ; otherwise, we let Mi = 0. If M ∈ i,
then we let Mi = M . In the case when it is well defined, we call Mi the projection
of M onto the path i.

It will be convenient to write these projections in a uniform way.

Definition 4.2 (Projections) If (x, y) is one of the pairs {(b, c), (d, e), (b, e), (c, d)},
the region X ∩Y has two paths along its boundary and two paths further backwards
or forwards met along the two sectional paths through any vertex M of X ∩ Y .
We call the backwards projection onto the first path π−1 (M) and the projection onto
the second path π−2 (M). The forwards projection onto the first path is denoted by
π+1 (M) and the one onto the second path π+2 (M).

Figure 9 illustrates these projections in the case (x, y) ∈ {(b, c), (d, e)}.
The remaining two regions will be treated together with the surrounding paths.

Definition 4.3 The closure of C ∩ E is the Hom-hammock

C ∩ E = ind(HomCf
(Pa[1],−) ∩ HomCf

(−, Sa))
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Fig. 9 Projections for
B ∩ C , D ∩ E

Fig. 10 Projections for
B ∩ D , C ∩ E

in Cf starting at Pa[1] and ending at Sa . Similarly, the closure of B ∩ D is the
Hom-hammock

B ∩D = ind(HomCf
(Sa,−) ∩ HomCf

(−, Pa[1]))
in Cf starting at Sa and ending at Pa[1]. For (x, y) ∈ {(c, e), (b, d)}, the boundary
of X ∩ Y (or of X ∩ Y ) is X ∩ Y \ (X ∩ Y ).

Note that C ∩ E is the union of C ∩ E with the surrounding rays and the shifted
projectives {Pb[1], Pd [1]}. Analogously, B ∩D contains {Pc[1], Pe[1]}.
Definition 4.4 (Projections, Continued) If M is a vertex of one of the two
closures, we define four projections for M onto the four different “edges” of the
boundary of its region: We denote the projections onto the paths starting or ending
next to Pa[1] by π

↑
p , π↓p and the projections onto the paths starting or ending next

to Sa by π
↑
s and π

↓
s , respectively. We choose the upwards arrow to refer to the

paths ending/starting near Pb[1] or Pc[1] and the downwards arrow to refer to paths
ending/starting near Pd [1] or Pe[1]. See Fig. 10.
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Remark 4.5 The statement of Theorem 4.7 is independent of the choice of ↑ (paths
near Pb[1] or Pc[1]) and ↓ in Definition 4.4 as the formula is symmetric in these
expressions.

Example 4.6 If M ∈ e, we have π
↑
p (M) = M , π↑s (M) = Pb[1], π↓p (M) = Pa[1]

and π
↓
s (M) = Mea .

For Sa , we have π
↑
s (Sa) = π

↓
s (Sa) = Sa whereas the two modules π

↑
p (Sa) and

π
↓
p (Sa) are {Pb[1], Pd [1]} or {Pc[1], Pe[1]} depending on whether Sa is viewed as

an element of C ∩ E or of B ∩D .
For Pa[1], we have π

↑
p (Pa[1]) = π

↓
p (Pa[1]) = Pa[1] whereas the two modules

π
↑
s (Pa[1]) and π

↓
s (Pa[1]) are {Pb[1], Pd [1]} or {Pc[1], Pe[1]}. These four shifted

projectives evaluate to 1 under s, and so in Theorem 4.7, this ambiguity does not
play a role.

With this notation, we are ready to state the theorem, proved in [3, Section 6].
Recall that s(M) denotes the number of submodules of a module M , cf. also
Theorem 2.1.

Theorem 4.7 Consider a frieze associated to a triangulation of a polygon. Let a be
a diagonal in the triangulation. Consider the mutation of the frieze at a. Then, the
frieze difference δa(M) at the point corresponding to the indecomposable object M
in the associated Frobenius category Cf is given by:

If M ∈ (B ∩ C ) ∪ (D ∩ E ), then

δa(M) = (s(π+1 (M))− s(π+2 (M))) (s(π−1 (M))− s(π−2 (M));

If M ∈ (B ∩ E ) ∪ (C ∩D), then

δa(M) = −(s(π+2 (M))− 2s(π+1 (M))) (s(π−2 (M))− 2s(π−1 (M));

If M ∈ C ∩ E ∪B ∩D , then

δa(M) = s(π↓s (M))s(π↓p (M))+ s(π↑s (M))s(π↑p (M))− 3 s(π↓p (M))s(π↑p (M));

If M ∈ F , then

δa(M) = 0.

Note that given a frieze and an indecomposable M in one of the six regions
X ∩ Y , it is easy to locate the entries required to compute the frieze difference
δa(M). We simply need to find projections onto the appropriate rays in the frieze.
In this way, we do not need to know the precise shape of the modules appearing in
the formulas of Theorem 4.7.
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Example 4.8 Let Cf be the category given in Example 3.2. We consider three
possibilities for M below.

If M = 4
10 1

11 2
, then we know by Fig. 7 that s(M) = 11 and s(M ′) = 8. On the

other hand, we see from Fig. 6 that M ∈ B ∩ C . Theorem 4.7 implies that

δa(M) = s(M)− s(M ′) = (s(Mba )− s(Mb))(s(Mca )− s(Mc))

= (s( 4
1 )− s( 4 ))(s( 10 1

11 2 )− s( 10
11 2 ))

= (3− 2)(8− 5) = 3.

Similarly, if M = 8 2
3 , then M ∈ C ∩ D with s(M) = 5 and s(M ′) = 7. The

same theorem implies that

δa(M) = s(M)− s(M ′) = −(s(Mca )− 2s(Mc)) (s(Mda )− 2s(Md))

= −(s( 1
2 )− 2s( 2 ))(s(

8
3
1
)− 2s( 8

3 ))

= −(3− 4)(4− 6) = −2.

Finally, if M = 10 1
2 5

6
, then M ∈ C ∩E . We also know that s(M) = s(M ′) = 11.

By the third formula in Theorem 4.7, we have

δa(M) = s(M)− s(M ′) = s(Mea )s(Mc)+ s(Mca )s(Me)− 3s(Me)s(Mc)

= s(
1
5
6
)s( 10

2 )+ s( 10 1
2 )s( 5

6 )− 3s( 5
6 )s(

10
2 )

= 4 · 3+ 5 · 3− 3 · 3 · 3 = 0.
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Orbit Decompositions of Unipotent
Elements in the Generalized Symmetric
Spaces of SL2(Fq)

Catherine Buell, Vicky Klima, Jennifer Schaefer, Carmen Wright,
and Ellen Ziliak

Abstract In this chapter, we determine the orbits of the fixed-point group on
the unipotent elements in the generalized symmetric space for each involution
of SL2(Fq) with char

(

Fq

) �= 2. We discuss how the generalized symmetric
spaces can be decomposed into semisimple elements and unipotent elements, and
why this decomposition allows the orbits of the fixed-point group on the entire
generalized symmetric space to be more easily classified. We conclude by providing
a description of and a count for the orbits of the fixed-point group on the unipotent
elements in the generalized symmetric space for each involution of SL2(Fq).

1 Introduction

Élie Cartan [6] first introduced symmetric spaces as a special class of homogeneous
Riemannian manifolds. Symmetric k-varieties [9] are defined as the space Gk/Hk ,
where Gk (resp., Hk) are the k-rational points of an algebraic group G (resp., fixed-
point group). These k-varieties generalize both real reductive symmetric spaces
and symmetric varieties to homogeneous spaces defined over general fields of
characteristic not 2. Real reductive symmetric spaces are homogeneous spaces
QR
∼= GR/HR with GR a reductive Lie group and HR the fixed-point group
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associated with an involution of GR. Recently, the study of non-Riemannian
symmetric spaces and generalizations of these real reductive spaces to other base
fields has led to exciting applications in many areas including representation theory,
geometry, and singularity theory [1, 7, 8, 13, 14, 18, 19].

Understanding the orbits of the fixed-point group H acting on the generalized
symmetric space Q is essential to the study of symmetric k-varieties and their
representations. For reductive algebraic groups defined over algebraically closed
fields and the real numbers, these orbits of various subgroups of Gk over Gk/Hk

have been well studied. For k algebraically closed, the orbits of the Borel subgroup
were characterized by Springer [17] and the orbits of a general parabolic group were
characterized by Brion and Helminck [3, 10]. For k = R, the orbits of a minimal
parabolic k-subgroup were characterized by Matsuki [15] and Rossmann [16]. For
general fields, the orbits of a minimal parabolic k-subgroup on the symmetric variety
Gk/Hk were characterized by Helminck and Wang [11].

In this chapter, we extend previous work by characterizing the orbits of the fixed-
point group on the unipotent elements in the generalized symmetric space for each
involution of SL2(k) where k is a finite field of order q with char(k) �= 2. In Sect. 2,
we provide the fixed-point group corresponding to each involution, the generalized
symmetric space corresponding to each involution, and a few basic results regarding
their structure. In Sect. 3, we discuss how the generalized symmetric space Q can
be decomposed into semisimple elements and unipotent elements and why this
decomposition allows us to more easily classify the orbits of H on Q. Finally in
Sect. 4, we provide a description and a count for the orbits of H on the unipotent
elements in Q.

2 Preliminaries

We begin with a few definitions. Generalized symmetric spaces are defined as
the homogeneous spaces G/H with G an arbitrary group and H = Gθ =
{g ∈ G|θ(g) = g} the fixed-point group of an order n-automorphism θ . Of
special interest are automorphisms of order 2, also called involutions. The following
theorem classifies the involutions for SL2(k) for k a finite field with char(k) �= 2.

Theorem 1 (Helminck and Wu [12, Theorem 1]) Let G = SL2(k) where k is a
finite field with char(k) �= 2 and let θ ∈ Aut (G) be an involution. Then, θ acts as

conjugation by Xm =
(

0 1
m 0

)

where m ∈ k∗. Furthermore, if m, n ∈ k∗ are in the

same square class, then conjugation by Xm is isomorphic to conjugation by Xn.

Using this theorem and the definition of the fixed-point group determined by
(SL2(k), θ), one can explicitly state the elements in H as follows:
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H =
{(

α β

mβ α

) ∣

∣

∣

∣

α2 −mβ2 = 1, α, β ∈ k

}

.

As we plan to characterize the H -orbits on a subset of Q, it will be important to
know the size of H .

Lemma 2 (Beun [2, Lemma 4.2.2]) Let k be a finite field with char(k) �= 2 and θm
be the involution of SL2(k) that acts as conjugation by Xm. Then:

|H | =
{

q − 1 if m is square

q + 1 if m is not square .

For involutions, there is a natural embedding of the homogeneous spaces G/H

in the group G as follows. Let τ : G → G be a morphism of G given by τ(g) =
gθ(g)−1 for g ∈ G where θ is an involution of G. The image is τ(G) = Q =
{gθ(g)−1 | g ∈ G}. The map τ induces an isomorphism of the coset space G/H

onto τ(G) = Q. Thus, G/H ∼= Q. If G is an algebraic group defined over an
algebraically closed field, then Q is a closed subvariety of G. We take Q as our
definition of the generalized symmetric space determined by (G, θ).

Definition 3 The generalized symmetric space determined by (G, θ) is G/H ∼=
Q = {gθ(g)−1 | g ∈ G}.

Note, if one considers H acting on G from the left, we define τ(g) = g−1θ(g).
We can also define the extended symmetric space determined by (G, θ).

Definition 4 The extended symmetric space determined by (G, θ) is R = {g ∈
G | θ(g) = g−1}.

The group G acts on its extended symmetric space R via θ -twisted conjugation,
defined as g.r = grθ(g)−1 for g ∈ G and r ∈ R. Let G.x represent the orbit of
G containing x and observe that under this action G.eG =

{

gθ(g)−1|g ∈ G
} = Q

where eG is the identity in G. Typically, the action of θ -twisted conjugation on R

is not transitive and thus Q ⊆ R but Q �= R. For example, the involution θ :
SL2(R)→ SL2(R) defined by θ(g) = (g−1

)T
finds Q as the set of matrices of the

form {ggT | g ∈ SL2(R)} and R = {g ∈ SL2(R) | g = gT }. Here, R is the familiar
set of symmetric matrices in SL2(R), but Q is the set of symmetric positive definite
matrices in SL2(R). Clearly, Q ⊆ R but Q �= R. However, we have shown in [4]
that equality of these spaces can be obtained for SL2(k) when k is a finite field of
characteristic not equal to two.

Theorem 5 (Theorem 2.2 [4]) Let k be a finite field with char(k) �= 2. Then, R =
Q for any involution of SL2(k).



72 C. Buell et al.

By this result and the definition of the extended symmetric space, every element
in Q can be represented as follows:

Q = R =
{

g ∈ SL2 (k)| θ(g) = g−1
}

=
{

(

a b

c d

)

∈ SL2 (k)

∣

∣

∣

∣

(

0 1
m 0

)(

a b

c d

)(

0 1
m 0

)−1

=
(

a b

c d

)−1
}

=
{(

a b

−mb d

) ∣

∣

∣

∣

ad +mb2 = 1

}

.

As it will be useful when determining the decomposition of Q in Sect. 3, we also
provide the size of Q.

Theorem 6 For G = SL2 (k) with k a finite field with char(k) �= 2 and θm the
involution that acts as conjugation by Xm,

|Q| = |R| =
{

q2 + q if mis square

q2 − q if m is not square .

Proof Using the structure of Q from Theorem 5, we split the counting argument
into two cases.

Case 1: Suppose ad = 0. This implies mb2 = 1 and, for only the case when m is
a square, b = ±√m−1. When a = 0, we have q choices for d. When a �= 0 and
d = 0, we have q − 1 additional choices for a. Therefore, when m is a square,
there are 2(q + (q − 1)) elements of this form.

Case 2: Suppose ad �= 0. Consider a, d �= 0 and b = 0. Then, ad = 1 mod q

gives q − 1 choices for a, each of which fixes d. Suppose b �= 0. When m is
a square, b �= ±√m−1. Thus, we have q − 3 choices for b. For each b, there
are q − 1 choices for a which determine d. Hence, there are (q − 1)(q − 3)
elements when m is a square. When m is not a square, we know mb2 �= 1 for
any b, so there are q − 1 choices for b. For each b, we have q − 1 choices for a,
each of which fix d. Hence, there are (q − 1)(q − 1) elements when m is not a
square.

Therefore,

|Q| =
{

2(q + (q−1))+ (q−1)+ (q−1)(q−3) = q2 + q if m is a square

(q−1)+ (q−1)(q−1) = q2−q if m is not a square
.

$�
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3 Decomposition of Q

In this section, we prove that every element of Q can be factored into a product
of a semisimple element and a unipotent element. Let Qss represent the set of
semisimple elements in Q and Qu represent the set of unipotent elements in Q.
Consider H.x for x ∈ Q. Then, assuming x = xssxu for some xss ∈ Qss and
xu ∈ Qu and h ∈ H , h.x = hxh−1 = hxssxuh

−1 = hxssh
−1hxuh

−1. Thus, if the
representatives of the H -orbits are known in both Qss and Qu, then the resulting
orbit for any elements of Q can be characterized.

We begin with a classification and count for Qss . Let x ∈ SL2(k). In our
discussion, cx(λ) represents the characteristic polynomial of x, mx(λ) represents the
minimal polynomial of x, Discr(p(λ)) represents the discriminant of the quadratic
polynomial p(λ), and tr(x) represents the trace of the matrix x.

We know x ∈ Qss if and only if x ∈ Q and mx(λ) splits into distinct linear
factors over k. For x �= ±I where I is the identity element in SL2(k), mx(λ) =
cx(λ) is quadratic and splits into distinct linear factors if and only if Discr(cx(λ)) =
tr(x)2 − 4 �= 0. Thus, Qss = {±I } ∪ {x ∈ Q| tr(x) �= ±2}.

With a clear description of Qss , we can now investigate the cardinality of this
set. In lieu of considering the set directly, we look at its complement in Q, namely,

Q−Qss = {x ∈ Q| tr(x) = 2, x �= I } ∪ {x ∈ Q| tr(x) = −2, x �= −I } .

Let x ∈ Q−Qss . Since x ∈ Q = R, there exist a, b, d ∈ k such that

x =
(

a b

−mb d

)

with ad +mb2 = 1. (1)

Recall that m in this expression is determined by our involution and that we have
two isomorphism classes of involutions—one when m is a square and one when m

is not a square.
When tr(x) = 2, d = 2− a and thus mb2 = (a − 1)2. Similarly, if tr(x) = −2,

then d = −2 − a and mb2 = (a + 1)2. Thus, mb2 is square for every element of
Q−Qss . Hence, Q−Qss is empty when m is not square.

Suppose m is a square. Combining our expressions for d with the description of
x ∈ Q given in Eq. (1), we have

{x ∈ Q| tr(x) = 2} =
{(

a a−1
±√m

∓√m(a − 1) 2− a

)∣

∣

∣

∣

∣

a ∈ k

}

and

{x ∈ Q| tr(x) = −2} =
{(

a a+1
±√m

∓√m(a + 1) −2− a

)∣

∣

∣

∣

∣

a ∈ k

}

.
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Both sets have cardinality 2q − 1 and thus |Q −Qss | = 2(2q − 1) − 2 = 4q − 4
when m is a square. Theorem 7 summarizes our findings regarding Qss .

Theorem 7 Let k be a finite field with char(k) �= 2 and let Qss be the set of all
elements in the generalized symmetric space determined by (SL2(k), θm) that are
semisimple. Then:

Qss =
{

Q if m is not a square

{x ∈ Q | tr(x) �= ±2} ∪ {±I } if m is a square

and

|Qss | =
{

q2 − q if m is not a square

q2 − 3q + 4 if m is a square.

Proof This theorem follows directly from the cardinality of Q given in Theorem 6
and our previous discussion. $�

Now that we understand the semisimple elements of Q, we turn our attention
to the unipotent elements in Q, denoted Qu. We have seen that Q = Qss when
m is not square. Only the identity matrix is both unipotent and semisimple and
thus Qu = {I } for m a non-square. Suppose m is a square and let x ∈ Qu. Since
det(x) = 1, we know cx(λ) = λ2 − tr(x)λ + 1. However, x is also unipotent and
so cx(λ) = (λ − 1)2 = λ2 − 2λ + 1. Thus, Qu = {x ∈ Q | tr(x) = 2}, the set of
cardinality 2q − 1 described above. We summarize our results in Theorem 8.

Theorem 8 Let k be a finite field with char(k) �= 2 and let Qu be the set of all
elements in the generalized symmetric space determined by (SL2(k), θm) that are
unipotent. Then:

Qu =
{

{I } if m is not a square

{x ∈ Q | tr(x) = 2} if m is square

and

|Qu| =
{

1 if m is not a square

2q − 1 if m is square
.

Our descriptions of Qss and Qu easily lead to the desired factorization of Q.

Theorem 9 Let k be a finite field with char(k) �= 2 and let Q be the generalized
symmetric space determined by (SL2(k), θm). Then, Q ⊆ QssQu where Qss

represents the semisimple elements of Q and Qu represents the unipotent elements
of Q.
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Proof We need only focus on elements of Q with nontrivial factorizations, that is
elements of Q that lie outside of Qss ∪ Qu. When m is not a square, Q = Qss

by Theorem 7 and no such elements exist. Suppose m is square. Combining our
description of Qss from Theorem 7 with our description of Qu given in Theorem 8,
we see that Q − (Qss ∪Qu) = {x ∈ Q | tr(x) = −2, x �= −I } . Let x ∈ Q −
(Qss ∪Qu). Then, tr(−x) = 2 and thus −x ∈ Qu. Certainly, −I ∈ Qss and
x = (−I )(−x). Therefore, we have found our factorization. $�

4 H -orbits of Qu

Given that each x ∈ Q appears as an element of either Qss , Qu, or −Qu,
understanding the H -orbits on Qu and Qss independently will allow us to classify
the H -orbits of Q. In [5], we consider the orbits of H on Qss . Combining these
results with the work of this chapter will give the classification of the H -orbits
of Q.

As noted in Sect. 3, Qu = {I } when m is a non-square. Thus, we will focus on
the case when m is a square, since the H -orbits of Qu will be nontrivial. Recall that
the elements of Qu can be described as follows:

Qu =
{(

a a−1
±√m

∓√m(a − 1) 2− a

)∣

∣

∣

∣

∣

a ∈ k

}

.

Observe that this expression contains a ± sign. It will be useful for our analysis to
decompose Qu a bit further by considering these terms separately. Consider the two

elements

(

a a−1
±√m

∓√m(a − 1) 2− a

)

in Qu. We define a+ as:

a+ =
(

a a−1√
m

−√m(a − 1) 2− a

)

, (2)

choosing the (1,2) entry to be positive and the (2,1) entry to be negative and define
a− as:

a− =
(

a a−1
−√m√

m(a − 1) 2− a

)

. (3)

Let Qu+ be the set of all such elements a+ and Qu− be the set of all such elements
a−. One can readily observe from these definitions that Qu = Qu+ ∪ Qu− and
Qu+ ∩Qu− = {I }. Lemma 10 then shows that the orbits of Qu appear as subsets of
Qu+ and Qu−.
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Lemma 10 Let Q be the generalized symmetric space for the involution θm, Qu+

be the set of all elements a+ as defined in Eq. (2), and Qu− be the set of all elements
a− as defined in Eq. (3). Then, H.a+ ⊆ Qu+ and H.a− ⊆ Qu− for all a+ ∈ Qu+

and a− ∈ Qu− .

Proof Consider an element a+ ∈ Qu+ and an element h ∈ H with h =
(

α β

mβ α

)

and α2 −mβ2 = 1. Then:

ha+h−1 =
(

a(α − β
√
m)2 + 2β

√
m(α − β

√
m)

√
m−1(a − 1)(α − β

√
m)2

−√m(a − 1)(α − β
√
m)2 −a(α − β

√
m)2 + 2α(α − β

√
m)

)

=
(

v v−1√
m

−√m(v − 1) 2− v

)

∈ Qu+ for v = a(α − β
√
m)2 + 2β

√
m(α − β

√
m).

Similarly, ha−h−1 ∈ Qu− for all a− ∈ Qu− and h ∈ H . In this case,

ha−h−1 =
(

a(α + β
√
m)2 − 2β

√
m(α + β

√
m) −√m−1(a − 1)(α + β

√
m)2

√
m(a − 1)(α + β

√
m)2 −a(α + β

√
m)2 + 2α(α + β

√
m)

)

=
(

w −w−1√
m√

m(w − 1) 2− w

)

for w = a(α + β
√
m)2 − 2β

√
m(α + β

√
m).

$�
To characterize the orbits of H on Qu, we will use the descriptions of Qu+ , Qu− ,

and H to find representatives of the orbits.

Theorem 11 Let Q be the generalized symmetric space for the involution θm. When
m is not a square, H acts trivially on Qu. When m is a square, there are 4 nontrivial
orbits of H on Qu of size q−1

2 .

Proof By Theorem 8, the case when m is not a square is clear. Suppose m is a
square. Then, Qu is nontrivial with Qu = Qu+ ∪ Qu− and Qu+ ∩ Qu− = {I }.
By Lemma 10, it follows that H.a+ ⊆ Qu+ for a+ ∈ Qu+ and H.a− ⊆ Qu− for
a− ∈ Qu+ . Thus, we will consider the H -orbits of the nonidentity elements in Qu+

and Qu− , separately.
First, we consider the orbits of H on Qu+ . Let a+ ∈ Qu+ − {I }. Then, H.a+ =

{ha+h−1 |h ∈ H }. Based on our proof of Lemma 10, the off-diagonal entries of
ha+h−1 differ from the off-diagonal entries of a+ by a factor of (α − β

√
m)2 and

so these entries remain in the same square class under conjugation.
Because m is a square, we know that |H | = q − 1 by Lemma 2. In addition,

it can be verified that ha+h−1 = (−h)a+(−h)−1 and ha+h−1 �= ka+k−1 for all
k �= ±h. Thus, |H.a+| = (q − 1)/2. Therefore by |Qu+ − {I }| = q − 1, we have 2
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orbits in Qu+ −{I }: one which contains all of the nonidentity elements of Qu+ with
a square in the (1,2) entry and one which contains all of the nonidentity elements of
Qu+ with a non-square in the (1,2) entry.

Given that the off-diagonal entries of ha−h−1 differ from the off-diagonal entries
of a− by a factor of (α+β

√
m)2 for all a− ∈ Qu− −{I }, a similar argument follows

for the orbits of H on Qu− .
$�
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A Characterization of the U(�, m) Sets
of a Hyperelliptic Curve as � and m Vary

Christelle Vincent

Abstract In this chapter, we consider a certain distinguished set U(�,m) ⊆
{1, 2, . . . , 2g + 1,∞} that can be attached to a marked hyperelliptic curve of genus
g equipped with a small period matrix � for its polarized Jacobian. We show that
as � and the marking m vary, this set ranges over all possibilities prescribed by an
argument of Poor.

1 Introduction and Statement of Results

Let X be a hyperelliptic curve of genus g defined over C, and let J (X) be its
polarized Jacobian. In Definition 2.2, we associate to J (X) a small period matrix �,
which is an element of the Siegel upper half-space Hg with the property that there
is an isomorphism

J (X)(C) ∼= C
g/L�, (1.1)

where L� is the rank 2g lattice generated by the columns of � and the standard
basis {ei} of Cg .

After this choice, we may define an analytic theta function:

ϑ(z,�) : Cg → C, (1.2)

whose exact definition is given in Definition 2.13. While this function is not well
defined on J (X)(C), it is quasiperiodic with respect to the lattice L�, and so its
zero set on the Jacobian is well defined. In this chapter, we study how a certain
combinatorial characterization of this zero set depends on the choice of small period
matrix (since the theta function itself depends on the small period matrix) and on a
further choice we now make.
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Since X is hyperelliptic, there is a morphism π : X → P
1 of degree two,

branched at 2g + 2 points. Suppose further that X is given a marking of its branch
points, denoted m, by which we mean that the branch points of π are numbered
1, 2, . . . , 2g + 1,∞. As we explain in Proposition 2.8, this choice gives a bijection
between sets

S ⊆ {1, 2, . . . , 2g + 1,∞}, #S ≡ 0 (mod 2), (1.3)

up to the equivalence S ∼ Sc, where c denotes taking the complement within
{1, 2, . . . , 2g + 1,∞}, and the two-torsion in J (X)(C).

Then, we have the following theorem, which we will repeat and make more
precise in Theorem 2.14:

Theorem 1.1 (Riemann Vanishing Theorem) Let X be a hyperelliptic curve, m
be a marking of its branch points, and let � be a small period matrix associated
to its polarized Jacobian. Then, there is a distinguished set � on J (X)(C) (defined
in Definition 2.12) and the zero set of the theta function ϑ(z,�), considered as a
subset of J (X)(C), is exactly the set � translated by an element of the two-torsion
of J (X).

Under the correspondence given above, this two-torsion point corresponds to a
set which we denote T (�,m). Note that the set T (�,m) is only well defined up to
the equivalence S ∼ Sc, where as before c denotes the complement.

This theorem gives rise to the following distinguished set:

Definition 1.2 Let X be a hyperelliptic curve of genus g, � a choice of small period
matrix associated to its Jacobian via the process described in Definition 2.2, and m a
marking of the branch points of X. Let U(�,m) ⊂ {1, 2, . . . , 2g+1,∞} be defined
up to the equivalence S ∼ Sc by the following formula:

U(�,m) =
{

T (�,m) if g is odd, and

T (�,m) ◦ {∞} if g is even,
(1.4)

where ◦ here denotes the symmetric difference of sets (see Definition 2.6). To fix
one set in this equivalence class, we take U(�,m) to be the set containing∞.

Remark We note that Mumford [6] adopts the opposite convention and chooses
U(�,m) to be the member of the equivalence class that does not contain∞. In this
respect, we follow the convention adopted by Poor [7].

The significance of this set U(�,m) is especially salient in computational
applications; we invite the reader to consult Sect. 2.3 for a further account of its role.
This set first appeared in work of Mumford [6], where given a marked hyperelliptic
curve X, the author constructs a certain small period matrix � and computes the set
U(�,m) explicitly. In this example, it is the case that

#U(�,m) = g + 1, (1.5)
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where as before g is the genus of the curve. In the theorems following this
computation (in particular Mumford’s version of Theorem 2.15, Theorem 9.1 of
[6], which is the most important of those from our point of view), the set U(�,m)

is always assumed to have this cardinality.
However, in later work of Poor [7], the same set U(�,m) is shown to have the

property that

#U(�,m) ≡ g + 1 (mod 4) (1.6)

(see [7, Proposition 1.4.9]). This raises the following interesting question: Does the
set U(�,m) always have cardinality g + 1, or do other cardinalities occur? We
answer this question completely:

Theorem 1.3 Let g ≥ 1 and X be a hyperelliptic curve of genus g defined over C.
Then, for any set U ⊆ {1, 2, . . . , 2g + 1,∞} containing∞ such that

#U ≡ g + 1 (mod 4), (1.7)

there exists a small period matrix � associated to the Jacobian of X via the process
described in Definition 2.2, and a marking m of the branch points of X such that

U = U(�,m). (1.8)

In other words, every possible set U occurs as the set U(�,m) for a given
hyperelliptic curve X, and Poor’s characterization of U(�,m) is sharp.

2 Preliminaries

Let X be a hyperelliptic curve, by which we mean a smooth complete curve of genus
g defined over C admitting a map π : X→ P

1 of degree 2. Throughout, we denote
its Jacobian variety by J (X).

2.1 The Small Period Matrix of the Jacobian of a Curve

We give here standard facts about abelian varieties and Jacobians. We refer the
reader to [2] for further background and proofs.

We begin by giving an analytic space associated to polarized abelian varieties of
dimension g:

Definition 2.1 Let g ≥ 1. The Siegel upper half-space Hg is the set of symmetric
g × g complex matrices M such that the imaginary part of M (obtained by taking
the imaginary part of each entry in M) is positive definite.



82 C. Vincent

Although much of the discussion below would apply to general polarized abelian
varieties, in this chapter we focus our attention to Jacobians of curves equipped with
their principal polarization. To simplify matters, at this time we restrict our attention
to these objects. In this setting, the connection between this space and Jacobians is
through the following object:

Definition 2.2 Let X be a curve of genus g defined over C, and let J (X) be its
principally polarized Jacobian. To J (X), we can associate matrices � ∈ Hg in the
following manner: Let Ai , Bi , i = 1, . . . , g, be a basis for the homology group
H1(J (X),Z) ∼= H1(X,Z), which is a 2g-dimensional vector space over C. Assume
further that this basis is symplectic with respect to the cup product. There exists
a unique basis ω1, ω2, . . . , ωg of �1(J (X)) ∼= �1(X), the space of holomorphic
1-forms on J (X) or X, such that

∫

Bi

ωj = δij , (2.1)

where δij is the Kronecker delta function. Then, the matrix given by
∫

Ai
ωj belongs

to Hg and is called a small period matrix for J (X).

Let Sp2g(Z) be the group of 2g × 2g matrices with coefficients in Z and
symplectic with respect to the bilinear form given by the matrix:

(

0 1g

−1g 0

)

, (2.2)

where 1g is the g × g identity matrix. We note that two elements of Hg can be
associated to isomorphic polarized abelian varieties if and only if they differ by a
matrix in Sp2g(Z), where the action of Sp2g(Z) on Hg is given in the following
manner: Let

γ =
(

A B

C D

)

∈ Sp2g(Z), (2.3)

where A, B, C, and D are four g × g matrices. Then,

γ ·� = (A�+ B)(C�+D)−1, (2.4)

where on the right multiplication and addition are the usual operations on g × g

matrices.
We can further define an Abel–Jacobi map for a principally polarized Jacobian

variety J (X):

Definition 2.3 Let X be a curve of genus g defined over C, let J (X) be its
principally polarized Jacobian, and fix Ai , Bi , i = 1, . . . , g, a symplectic basis for
the homology group H1(X,Z). Let ω1, ω2, . . . , ωg be the basis of �1(X) described
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in Definition 2.2, � be the small period matrix attached to J (X) via this choice
of symplectic basis for homology, and let L� be the rank 2g lattice generated by
the columns of � and the standard basis {ei} of Cg . Then, there is an isomorphism
called the Abel–Jacobi map:

AJ : J (X)→ C
g/L�, (2.5)

given by the map:

D =
s
∑

k=1

Pk −
s
∑

k=1

Qk �→
(

s
∑

k=1

∫ Pk

Qk

ωi

)

i

, (2.6)

where the Pks and Qks are points on X. This map is well defined since the value of
each integral on X is well defined up to the value of integrating the differentials ωi

along the basis elements Ai , Bi , and thus up to elements of L�.

We will in fact need a slightly modified version of this Abel–Jacobi map for our
purposes:

Definition 2.4 Let X be a curve of genus g defined over C, let J (X) be its
principally polarized Jacobian, and fix Ai , Bi , i = 1, . . . , g, a symplectic basis
for the homology group H1(X,Z). Let � be the small period matrix attached to
J (X) via this choice of symplectic basis for homology and let L� be the rank 2g
lattice generated by the columns of � and the standard basis {ei} of Cg . This gives
rise to an isomorphism:

C
g/L�→ R

2g/Z2g, (2.7)

given by writing an element of Cg/L� as a linear combination of the columns of �
and the standard basis {ei} of Cg and sending the element to the coefficients of the
linear combination. Composing this isomorphism with the Abel–Jacobi map defined
in Definition 2.3, we obtain the modified Abel–Jacobi map:

AJc : J (X)→ R
2g/Z2g, (2.8)

which gives the coordinates of a point of J (X) under the Abel–Jacobi map.

In this paper, we will need to know how a change of symplectic basis for
H1(X,Z) affects the image of the Abel–Jacobi map and the coordinates of a point
of J (X) under the Abel–Jacobi map. We have

Proposition 2.5 (Adapted from Section 1.4 of [7]) Let X be a curve of genus g

defined over C, let J (X) be its principally polarized Jacobian, and let Ai , Bi be
a symplectic basis for H1(X,Z) from which arises the small period matrix �, the
Abel–Jacobi map AJ , and the modified Abel–Jacobi map AJc. Let γ ∈ Sp2g(Z) act

on the elements Ai , Bi . Since Sp2g(Z) preserves the cup pairing, the images Ãi , B̃i
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give rise to a second Abel–Jacobi map ˜AJ . If

γ =
(

A B

C D

)

, (2.9)

where A, B, C, and D are g × g matrices, then

˜AJ = (C�+D)−T AJ, (2.10)

where M−T is the inverse of the transpose of the matrix M . Furthermore, we have

˜AJc = γ−T AJc. (2.11)

2.2 The Two-Torsion on the Jacobian of a Hyperelliptic Curve

We now turn our attention to the two-torsion of the Jacobian of a hyperelliptic curve
of genus g defined over C. As a group, it is isomorphic to C

2g
2 , where C2 is the

cyclic group with two elements.
Throughout, let B = {1, 2, . . . , 2g + 1,∞}. When S ⊆ B, we let Sc be the

complement of S in B.

Definition 2.6 Let S1 and S2 be any two subsets of B. We define

S1 ◦ S2 = (S1 ∪ S2)− (S1 ∩ S2), (2.12)

the symmetric difference of S1 and S2.

This binary operation on subsets in turn gives rise to the following group:

Proposition 2.7 The set

{S ⊆ B : #S ≡ 0 (mod 2)}/{S ∼ Sc} (2.13)

is a commutative group under the operation ◦, of order 22g , with identity ∅ ∼ B.
Since S ◦ S = ∅ for all S ⊆ B, this is a group of exponent 2. Therefore, this group,
which we denote GB , is isomorphic to C

2g
2 .

If the hyperelliptic curve X is equipped with a marking of its branch points (recall
that this means that we label the 2g+2 branch points of the degree two map π : X→
P

1, P1, P2, . . . , P2g+1, P∞), there is in fact an explicit isomorphism between GB

and J (X)[2], the two-torsion on the Jacobian of X:

Proposition 2.8 (Corollary 2.11 of [6]) To each set S ⊆ B such that #S ≡ 0
(mod 2), associate the divisor class of the divisor
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eS =
∑

i∈S
Pi − (#S)P∞. (2.14)

This association is a group isomorphism between J (X)[2] and GB .

We may now compose the isomorphism of Proposition 2.8 with the modified
Abel–Jacobi map given in Definition 2.4.

Definition 2.9 We denote by η�,m the isomorphism:

η�,m : {S ⊆ B : #S ≡ 0 (mod 2)}/{S ∼ Sc} → (
1

2
Z)2g/Z2g (2.15)

given by composing the isomorphism GB → J (X)[2] given in Proposition 2.8 and
the map AJc given in Definition 2.4.

Remark We note that in Poor’s work [7], this is the class of the map η, which is an
equivalence class of maps to ( 1

2Z)
2g . In this work, we will not need the distinction

between the “true” η-map and its class, and therefore by a slight abuse of notation
we consider the map above to be the η-map.

This map η�,m will allow us to give a more concrete definition of the set
U(�,m), which we will use in our proof in Sect. 3. We first need one more notion.

Definition 2.10 If x ∈ C
2g , let x = (x1, x2), with xi ∈ C

g; in other words, let x1
denote the vector of the first g entries of x, and x2 denote the vector of the last g
entries of x. Furthermore, for xi ∈ C

g , let xT
i denote the transpose of xi . Then for

ξ ∈ ( 1
2Z)

2g , we define

e∗(ξ) = exp(4πiξT1 ξ2) (2.16)

to be the parity of ξ . Note that e∗ is also well defined on ( 1
2Z)

2g/Z2g .

Proposition 2.11 (Lemma 1.4.13 of [7]) Let X be a hyperelliptic curve of genus g
equipped with a marking m of its branch points, and let J (X) be equipped with a
choice of small period matrix � via the process described in Definition 2.2. Then,
the set U(�,m) of Definition 1.2 is given by:

{i ∈ {1, 2, . . . , 2g + 1} : e∗(η�,m({i,∞})) = −1} ∪ {∞}. (2.17)

In other words, if we consider the distinguished elements Di = Pi − P∞ ∈
J (X)[2] for i = 1, 2, . . . , 2g + 1,∞, the set U(�,m) can be made to contain∞
as well as i such that the coordinates of Di under the Abel–Jacobi map are odd, for
i = 1, 2, . . . , 2g + 1.
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2.3 Mumford and Poor’s Vanishing Theorem

We now turn our attention to explaining the significance of the set U(�,m). As
we explained briefly in the introduction, the set connects the vanishing set of an
analytic theta function to a distinguished divisor � on the Jacobian J (X) of a
marked hyperelliptic curve X.

We begin by defining this divisor:

Definition 2.12 Let X be a curve of genus g defined over C and P∞ be a basepoint
on X. Then, we define the theta divisor � on J (X) to be the subset of divisor classes
of the form:

g−1
∑

i=1

Qi − (g − 1)P∞. (2.18)

Note that if X is a marked hyperelliptic curve and we choose P∞ to be the branch
point of X labeled ∞, this gives a unique choice of theta divisor on J (X). We
therefore call it “the” theta divisor on the marked curve X.

We now define the theta function whose zeroes we will study:

Definition 2.13 For z ∈ C
g and � ∈ Hg , we define the theta function

ϑ(z,�) =
∑

n∈Zg

exp(πinT �n+ 2πinT z). (2.19)

Remark As noted in the introduction, this function is quasiperiodic for the lattice
L� in the coordinate z. Indeed, if k ∈ Z

g , by Mumford [5, p. 120], we have

ϑ(z+ k,�) = ϑ(z,�) (2.20)

and

ϑ(z+�k,�) = exp(−iπkT �k − 2πikT z)ϑ(z,�). (2.21)

However, since the automorphy factor is nonzero, the zero set of ϑ is well defined
as a subset of Cg/L�.

For the convenience of the reader, we repeat the Riemann Vanishing Theorem
now that all terms have been defined:

Theorem 2.14 (Riemann Vanishing Theorem, or Theorem 5.3 of [6]) Let X be
a hyperelliptic curve, m be a marking of its branch points, and let � be a small
period matrix associated to its Jacobian via the process described in Definition 2.2.
If � ∈ J (X) is as in Definition 2.12, then the zero set of the theta function ϑ(z,�),
considered as a subset of J (X)(C) is a translate of � by a two-torsion point of
J (X).
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From the introduction, we recall that this gives rise to the set U(�,m) in the
following manner: Given a marking m and a small period matrix �, the Riemann
Vanishing Theorem singles out a divisor on the Jacobian of X (the zero locus of
the function ϑ). As this is a translate of � by a two-torsion point, this gives in
turn a distinguished two-torsion point on J (X). Recall that Proposition 2.8 gives an
isomorphism between the group GB defined in Proposition 2.7 and the two-torsion
of J (X). Therefore, via this isomorphism, we obtain an element of the group GB .
Finally, since the elements of GB are equivalence classes of certain subsets of B

(where the equivalence consists in taking the complement in B = {1, 2, . . . , 2g +
1,∞}), we obtain a certain (equivalence class of) subset of B, which we denote by
T (�,m) here.

We then define the set U(�,m) to be the element of the equivalence class of

{

T (�,m) if g is odd, and

T (�,m) ◦ {∞} if g is even
(2.22)

that contains∞, as noted in Definition 1.2.
This definition is motivated by the proof of Proposition 6.2 of [6]: Under the

correspondence given in part a) of this Proposition, the set T (�,m) when g is odd,
or T (�,m) ◦ {∞} when g is even, corresponds to the translate � + eT (�,m) and
to the characteristic δ+ ηT (�,m) (in our notation ηT (�,m) is η�,m(T (�,m))). Since
ηT (�,m) = δ and δ ∈ 1

2L�, T (�,m) when g is odd, or T (�,m) ◦ {∞} when g is
even, corresponds to 0 and is therefore the set U(�,m) defined here.

We end by giving part of the Vanishing Criterion for hyperelliptic small period
matrices, which highlights how truly central the set U(�,m) is to the computational
theory of hyperelliptic curves.

Theorem 2.15 (Main Theorem 2.6.1 of [7]) Let X be a hyperelliptic curve of
genus g, with a marking of its branch points m and let � be a small period matrix
associated to its Jacobian J (X) via the process described in Definition 2.2. Then
for S ⊆ B with #S ≡ 0 (mod 2), we have

ϑ(AJ(eS),�) = 0 (2.23)

if and only if

#(S ◦ U(�,m)) �= g + 1. (2.24)

We stress that here we have only stated part of the Vanishing Criterion for
hyperelliptic matrices, and that the important part of this Vanishing Criterion for
computational purposes is a strengthening of the statement which allows one to
give a converse for general curves. This converse then allows the detection of
hyperelliptic small period matrices among all small period matrices. We refer the
reader to Poor’s work [7], notably Definition 1.4.11 for a complete account of this
converse with proofs, or to [1] for a shorter exposition.
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3 The Proof

The proof of Theorem 1.3 has two main parts. In the first part, for a fixed g ≥ 1
we count the number of different sets U satisfying U ⊆ {1, 2, . . . , 2g + 1,∞},
∞ ∈ U and #U ≡ g + 1 (mod 4) (this is Proposition 3.4). In the second part, we
count how many different sets U(�,m) arise as we vary among all possible small
period matrices � that can be associated to the Jacobian of a hyperelliptic curve X

via the process described in Definition 2.2 and all possible markings m of its branch
points (this is Proposition 3.11). Since these two numbers are equal, we conclude
that every allowable set U must arise U(�,m) for some choice of � and m.

3.1 Counting the Allowable Sets U

Counting the sets such that U ⊆ {1, 2, . . . , 2g + 1,∞}, #U ≡ g + 1 (mod 4), and
∞ ∈ U is equivalent to counting the sets satisfying the following two conditions:

• Ũ ⊆ {1, 2, . . . , 2g + 1}, and
• #Ũ ≡ g (mod 4).

We turn to this task.

Definition 3.1 Let n ≥ 1, d ≥ 0 and m ≥ 2 be integers. We define the sum:

S(n, d,m) =
∑

0≤k≤n
k≡d (mod m)

(

n

k

)

. (3.1)

This is the number of subsets of {1, . . . , n} of any cardinality k ≡ d (mod m).

We are interested in computing the quantity S(2g + 1, g, 4). We first note the
following well-known result:

Proposition 3.2 Let n be any positive integer, then

S(n, 0, 2) = S(n, 1, 2) = 2n−1. (3.2)

In other words, for any n, of the 2n subsets of {1, . . . , n}, half of them have even
cardinality, and half have odd cardinality.

Lemma 3.3 We have

S(n, d, 4) = S(n− 1, d, 4)+ S(n− 1, d − 1, 4). (3.3)

Proof This follows from Pascal’s identity, which says that for n ≥ 1 and k ≥ 0, we
have
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(

n

k

)

=
(

n− 1

k

)

+
(

n− 1

k − 1

)

. (3.4)

Here, we use the usual convention that
(

n
k

) = 0 if k < 0.
$�

This is enough to show

Proposition 3.4 Let g ≥ 1, then

S(2g + 1, g, 4) = 2g−1(2g + 1). (3.5)

Proof The proof is done by induction on g. The case of g = 1 is the claim that
S(3, 1, 4) = 3. Indeed, of the subsets of {1, 2, 3}, three of them have cardinality
congruent to 1 modulo 4 (and therefore actually equal to 1, since there are no subsets
of {1, 2, 3} of cardinality greater than or equal to 5).

We now assume that S(2g − 1, g − 1, 4) = 2g−2(2g−1 + 1) and g ≥ 2. We have

S(2g + 1, g, 4) = S(2g, g, 4)+ S(2g, g − 1, 4) (3.6)

= (S(2g − 1, g, 4)+ S(2g − 1, g − 1, 4)) (3.7)

+ (S(2g − 1, g − 1, 4)+ S(2g − 1, g − 2, 4))

= S(2g − 1, g, 4)+ S(2g − 1, g − 2, 4) (3.8)

+ 2S(2g − 1, g − 1, 4).

We now note that if g is even, then

S(2g − 1, g, 4)+ S(2g − 1, g − 2, 4) = S(2g − 1, 0, 2), (3.9)

and if g is odd, then

S(2g − 1, g, 4)+ S(2g − 1, g − 2, 4) = S(2g − 1, 1, 2). (3.10)

In either case, by Proposition 3.2,

S(2g − 1, g, 4)+ S(2g − 1, g − 2, 4) = 22g−2. (3.11)

Furthermore, by induction S(2g − 1, g − 1, 4) = 2g−2(2g−1 + 1).
Therefore, we have

S(2g + 1, g, 4) = 22g−2 + 2 · 2g−2(2g−1 + 1) (3.12)

= 2g−1(2g−1 + 2g−1 + 1) (3.13)

= 2g−1(2g + 1). (3.14)

This completes the proof. $�
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3.2 Counting the Different Sets U(�,m)

for a Hyperelliptic Curve

Here, we show that in fact, given a hyperelliptic curve X with a marking m of its
branch points, every allowable U -set is realized as U(�,m) as we vary the small
period matrix � associated to its Jacobian J (X) by Definition 2.2. This certainly
implies our main theorem. Thus, we begin by fixing a marking m on the branch
points of X.

The proof is carried out by considering the action of Sp2g(Z) on � and
considering which matrices fix the set U(�,m). We will see in Proposition 3.9
that they are exactly a subgroup of Sp2g(Z) denoted �1,2:

Definition 3.5 Let �1,2 be the subgroup of Sp2g(Z) containing the matrices that fix

the parity of every element of ( 1
2Z)

2g . In other words, γ ∈ �1,2 if and only if

e∗(γ ξ) = e∗(ξ) (3.15)

for all ξ ∈ ( 1
2Z)

2g , where e∗ is as in Definition 2.10 and γ ξ is the usual matrix-
vector multiplication.

We will need two further characterizations of these matrices below. First, we
have:

Proposition 3.6 Let γ ∈ Sp2g(Z) with

γ =
(

A B

C D

)

(3.16)

where A, B, C, and D are four g × g matrices. Then, γ ∈ �1,2 if and only if the
diagonals of the matrices AT C and BTD have all even entries.

Proof This can be verified directly, or found in [5, page 189]. $�
The second characterization of these matrices relies on an important property of

the vectors η�,m({i,∞}) for i = 1, 2, . . . , 2g + 1:

Proposition 3.7 Let X be a marked hyperelliptic curve, J (X) its Jacobian, and �

a small period matrix associated to J (X) via the process outlined in Definition 2.2.
Furthermore, given this data, let η�,m be the map given in Definition 2.9. Then, the
set

{η�,m({i,∞}) : i = 1, . . . , 2g + 1} (3.17)

contains a basis of the F2-vector space ( 1
2Z)

2g/Z2g .
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Proof By the proof Lemma 1.4.13 of [7], the set

{η�,m({i,∞}) : i = 1, . . . , 2g + 1} (3.18)

is an azygetic basis of ( 1
2Z)

2g/Z2g , and by Definition 1.4.12 of ibid, therefore spans
the vector space ( 1

2Z)
2g/Z2g . Therefore, it contains a basis of the space. $�

We can now prove the following:

Lemma 3.8 A matrix γ ∈ Sp2g(Z) belongs to �1,2 if and only if it fixes the parity
of η�,m({i,∞}) for i = 1, 2, . . . , 2g + 1.

Proof It is clear that if γ ∈ �1,2, then it will fix the parity of η�,m({i,∞}) for
i = 1, 2, . . . , 2g + 1. Therefore, we assume that γ ∈ Sp2g(Z) fixes the parity of
η�,m({i,∞}) for i = 1, 2, . . . , 2g + 1 and show that γ ∈ �1,2.

We first establish some notation: For ξ ∈ ( 1
2Z)

2g , let

q(ξ) = ξT1 ξ2 (3.19)

be the quadratic form associated to the parity function e∗ defined in Definition 2.10.
We note that

q(ξ) ≡ q(ζ ) (mod (
1

2
Z)2g), (3.20)

if and only if

e∗(ξ) = e∗(ζ ). (3.21)

Let also

b(ξ, ζ ) = ξT J ζ, (3.22)

be the bilinear form associated to the matrix J , where as before

J =
(

0 1g

−1g 0

)

, (3.23)

and 1g is the g × g identity matrix.
A quick computation shows that for any ξ, ζ ∈ ( 1

2Z)
2g

q(ξ + ζ ) ≡ q(ξ)+ q(ζ )+ b(ξ, ζ ) (mod (
1

2
Z)2g). (3.24)

Now, let γ ∈ Sp2g(Z). We have then that

b(γ ξ, γ ζ ) = b(ξ, ζ ), (3.25)
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by definition of b and Sp2g(Z). Therefore, for any ξ, ζ ∈ ( 1
2Z)

2g

q(γ (ξ + ζ )) = q(γ ξ + γ ζ ) ≡ q(γ ξ)+ q(γ ζ )+ b(γ ξ, γ ζ ) (mod (
1

2
Z)2g)

(3.26)

≡ q(γ ξ)+ q(γ ζ )+ b(ξ, ζ ) (mod (
1

2
Z)2g). (3.27)

As a result, if

q(γ ξ) ≡ q(ξ) (mod (
1

2
Z)2g) (3.28)

and

q(γ ζ ) ≡ q(ζ ) (mod (
1

2
Z)2g), (3.29)

then

q(γ (ξ + ζ )) ≡ q(ξ + ζ ) (mod (
1

2
Z)2g). (3.30)

From this discussion, we conclude that if e∗(γ ξ) = e∗(ξ) and e∗(γ ζ ) = e∗(ζ ),
it follows that

e∗(γ (ξ + ζ )) = e∗(ξ + ζ ). (3.31)

The result now follows from the fact that the set

{η�,m({i,∞}) : i = 1, . . . , 2g + 1} (3.32)

contains a basis of the F2-vector space ( 1
2Z)

2g/Z2g by Proposition 3.7. Therefore,
if a matrix γ fixes the parity of each element of this basis, it must fix the parity of
each element of the vector space. $�

We are now in a position to show:

Proposition 3.9 Let X be a marked hyperelliptic curve, J (X) its Jacobian, and �

a small period matrix associated to J (X) via the process outlined in Definition 2.2.
Furthermore, given this data, let η�,m be the map given in Definition 2.9 and
U(�,m) be the set defined in Definition 1.2.

Let γ ∈ Sp2g(Z). Then, the matrix γ ·� is another small period matrix for J (X),
to which we may similarly attach a map ηγ ·�,m and a set U(γ ·�,m).

In that case, we have

U(γ ·�,m) = U(�,m) (3.33)
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if and only if

γ ∈ �1,2. (3.34)

Proof Recall from Proposition 2.11 that U(�,m) can be described as the set

{i ∈ {1, 2, . . . , 2g + 1} : e∗(η�,m({i,∞})) = −1} ∪ {∞}. (3.35)

Since η�,m({i,∞}) ∈ ( 1
2Z)

2g/Z2g is none other than AJc(e{i,∞}), by Proposi-
tion 2.5, we have

ηγ ·�,m({i,∞}) = γ−T η�,m({i,∞}), (3.36)

Therefore, we have that

U(γ ·�,m) = U(�,m) (3.37)

if and only if multiplication by γ−T does not change the parity of any η�,m({i,∞})
for i = 1, 2, . . . , 2g + 1. By Lemma 3.8, this is the case if and only if γ−T ∈ �1,2.

To finish the proof, we must show that γ−T ∈ �1,2 if and only if γ ∈ �1,2. Note
that since γ ∈ Sp2g(Z), we have

γ−T =
(

D −C
−B A

)

. (3.38)

By Proposition 3.6, it suffices thus to show that the diagonals of the matrices

DT (−B) = (−BTD)T (3.39)

and

(−C)T A = (−AT C)T (3.40)

have all even entries if and only if the diagonals of the matrices AT C and BTD have
all even entries, which is true. $�

As a direct consequence, we now have:

Theorem 3.10 The number of different sets U(�,m) that arise, as � varies over
all small period matrices that can be attached to the polarized Jacobian of a marked
hyperelliptic curve X with the process outlined in Definition 2.2, is equal to the
cardinality of the quotient group

Sp2g(Z)/�1,2. (3.41)
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Proof As described in Sect. 2, the group Sp2g(Z) acts transitively on the set of
small period matrices that can be associated to J (X) via the process described
in Definition 2.2. This action changes U(�,m) if and only if γ ∈ �1,2 by
Proposition 3.9, which completes the proof. $�

We now compute the cardinality of this quotient group, which will give us the
number of different sets U(�,m) attached to a fixed hyperelliptic curve X with a
marking of its branch points m as � is allowed to vary over all possible small period
matrices that can be associated to its Jacobian J (X) via the process described in
Definition 2.2.

Proposition 3.11 We have that

# Sp2g(Z)/�1,2 = 2g−1(2g + 1). (3.42)

Proof To compute the cardinality of this quotient group, we use the following facts:
First, by the Third Group Isomorphism Theorem,

Sp2g(Z)/�1,2 ∼=
Sp2g(Z)/�(2)

�1,2/�(2)
, (3.43)

where

�(2) = {γ ∈ Sp2g(Z) : γ ≡ 12g (mod 2)
}

. (3.44)

Furthermore, we have

Sp2g(Z)/�(2) ∼= Sp2g(F2), (3.45)

where Sp2g(F2) is the group of matrices with coefficients in F2 and symplectic with
respect to the bilinear form given by the matrix:

(

0 1g

1g 0

)

, (3.46)

and

�1,2/�(2) ∼= SO2g(F2,+1), (3.47)

where SO2g(F2,+1) is the special orthogonal group of matrices with entries in F2
and preserving the quadratic form:

Q(x1, x2, . . . , x2g−1, x2g) =
g
∑

i=1

xixg+i . (3.48)

(These last two facts are implicit in the discussion in [5], Appendix to Chapter 5.)
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There are therefore

# Sp2g(F2)

# SO2g(F2,+1)
(3.49)

different sets U(�,m) as � varies over all small period matrices that can be
associated to J (X) via the process described in Definition 2.2.

We have

# Sp2g(F2) = 2g2
g
∏

i=1

(22i − 1), (3.50)

(see, for example, [3, Theorem 3.12]) and

# SO2g(F2,+1) = 2 · 2g(g−1)(2g − 1)
g−1
∏

i=1

(22i − 1), (3.51)

(see, for example, [4, Table 2.1C]). Computing the quotient gives the result we
sought. $�
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A First Step Toward Higher Order Chain
Rules in Abelian Functor Calculus

Christina Osborne and Amelia Tebbe

Abstract One of the fundamental tools of undergraduate calculus is the chain
rule. The notion of higher order directional derivatives was developed by Huang,
Marcantognini, Young in Huang et al. (Math. Intell. 28(2):61–69, 2006), along with
a corresponding higher order chain rule. When Johnson and McCarthy established
abelian functor calculus, they proved a chain rule for functors that is analogous to
the directional derivative chain rule when n = 1. In joint work with Bauer, Johnson,
and Riehl, we defined an analogue of the iterated directional derivative and provided
an inductive proof of the analogue to the chain rule of Huang et al.

This paper consists of the initial investigation of the chain rule found in Bauer
et al., which involves a concrete computation of the case when n = 2. We describe
how to obtain the second higher order directional derivative chain rule for functors
of abelian categories. This proof is fundamentally different in spirit from the
proof given in Bauer et al. as it relies only on properties of cross effects and the
linearization of functors.

1 Introduction

In this paper, we consider abelian functor calculus, the calculus of functors of
abelian categories established by Brenda Johnson and Randy McCarthy (see [4]).
Functor calculus enjoys certain properties that are analogous to the results in
undergraduate calculus. This paper is a companion to [1], in which many of these
analogies are made explicit. In [1], one of the main results [1, Theorem 8.1] provides
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a chain rule for the nth higher order directional derivative, denoted as �n [1,
Definition 7.3], associated to a functor between abelian categories. A summary of
previously developed chain rules for general functor calculus is given in [1].

In order to arrive at this chain rule, we started with an explicit calculation in
the case when n = 2. It became clear that this method of calculation would not
lend itself well to an inductive proof for a general n, which is why the proof of [1,
Theorem 8.1] is different in spirit from the approach in this paper. Because this result
is quite technical and lengthy, it warranted independent documentation. However,
the groundwork—including the definitions and properties of most of the functors
we will use—is already documented in [1]. For this reason, we will heavily cite [1]
throughout this paper.

The goal of this paper is a chain rule for the second-order directional derivative
of a functor F , which is stated in the following theorem.

Theorem 2.11 Given two composable functors of abelian categories G : A →
ChB and F : B → ChC with objects x, v, and w in A, there is a chain homotopy
equivalence

Δ2(F ◦G)(w, v; x) ( Δ2F(Δ2G(w, v; x),Δ1G(v; x);G(x)).

The directional derivatives are defined in Sect. 2.3. The left and right sides
of this equivalence are written in terms of the smallest component parts of the
functors in Sects. 3 and 4, respectively. These smallest components are the cross
effects of F and G; cross effects of functors are defined in Sect. 2.2. The proof
of Theorem 2.11 is concluded in Sect. 5 by matching terms (2) through (32) from
Sect. 3 with homotopy equivalent terms (35) through (66) from Sect. 4. Note that a
single term from Sect. 3 will be matched to two of the terms from Sect. 4 via a further
decomposition, while the rest of the terms have a one-to-one correspondence.

2 Categorical Context, Cross Effects, Linearization,
and Directional Derivatives

In this section, we provide the foundational tools and motivation for the main result,
which is the second higher order directional derivative chain rule (Theorem 2.11).
The construction of higher directional derivatives is possible once cross effects and
linearizations of functors and some of their key properties are obtained. We begin
by defining the categorical setting in which our results take place.
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2.1 Categorical Context

In studying abelian functor calculus, we frequently consider functors that are valued
in chain complexes of an abelian category. In particular, the linearization functor we
will construct is traditionally defined as sending a functor F : A→ B to a functor
D1F : A → ChB. If we iterate such a construction, we would arrive at functors
valued in multicomplexes of increasing dimension. Additionally, we run into issues
of composability. Intuitively, we would expect a relationship between D1(F ◦G) and
D1F ◦D1G (this will be made explicit in Lemmas 5.1 and 5.2). However, a priori,
if G : A→ B and F : B→ C, then D1F : B→ ChC and D1G : A→ ChB are
not composable.

To resolve these issues, we work in the following Kleisli category. A more
detailed development can be found in [1, Section 3].

Definition 2.1 ([1, Definition 3.2]) There is a large category AbCatCh whose:

• objects are abelian categories;
• morphisms A � B are natural isomorphism classes of functors A→ ChB;
• identity morphisms A � A are the functors deg0 : A→ ChA; and in which
• composition of morphisms B � C and A � B, corresponding to the pair of

functors F : B→ ChC and G : A→ ChB, is defined by:

F ◦G : A G−→ ChB
ChF−→ ChChC

Tot−→ ChC,

where ChF is defined by:

with K and N denoting the inverse functors of the Dold–Kan equivalence, and
T ot the totalization functor.

It is necessary to use this procedure to define composition, rather than simply
applying F degreewise, to ensure that chain homotopy equivalences are preserved.
In particular, as shown in [1, Lemma 3.4], natural chain homotopy equivalences are
preserved by this definition of composition.

In effect, working in the Kleisli category AbCatCh allows us to treat all functors
of abelian categories as landing in chain complexes. In the case where the functor
of interest, F : A→ B, does not land in chain complexes, the outputs are treated as
chain complexes concentrated in degree zero. We will continue to use the notation
F : A � B for what is really a functor F : A→ ChB. Given this setting, when we
define the linearization functor we will incorporate the totalization functor so that
we again land in chain complexes rather than bicomplexes.
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2.2 Cross Effects and Linearization

The following definition appears as [1, Definition 2.1].

Definition 2.2 ([2]) The nth cross effect of a functor F : A → B between two
abelian categories, where the zero object of A is denoted by 0, is the n variable
functor

crnF : An→ B

defined recursively by:

F(x) ∼= F(0)⊕ cr1F(x)

cr1F(x1 ⊕ x2) ∼= cr1F(x1)⊕ cr1F(x2)⊕ cr2F(x1, x2)

and in general,

crn−1F(x1 ⊕ x2, x3, . . . , xn) ∼=crn−1F(x1, x3, . . . , xn)⊕ crn−1F(x2, x3, . . . , xn)

⊕ crnF (x1, x2, . . . , xn),

where ⊕ denotes the biproduct in both categories A and B (a common abuse of
notation).

Definition 2.2 is functorial in the sense that a natural transformation F → G

induces a naturally defined map crnF → crnG.
The cross effect functor is strictly multi-reduced in the following sense.

Proposition 2.3 ([4, Proposition 1.2]) For a functor of abelian categories F :
A→ B and objects x1, . . . , xn in A, if any xi = 0, then

crnF (x1, . . . , xn) ∼= 0.

Let CnF denote the nth cross effect of F , crn, composed with the diagonal
functor. That is, CnF(x) := crnF (x, . . . , x). Corollary 2.7 of [1] shows that crn is
right adjoint to pre-composition with the diagonal functor, so that Cn is a comonad.
Let ε denote the counit of this comonad.

Functor calculus studies approximations of functors that behave like degree n

polynomials, up to chain homotopy equivalence. Let ( denote chain homotopy
equivalence. The following definition makes the idea of polynomial degree n

functors precise.

Definition 2.4 A functor of abelian categories F : A � B is degree n if

crn+1F ( 0.

In particular, F is degree 1 if cr2F ( 0. If F is also reduced, meaning that F(0) ( 0,
then we say that F is linear. We call F strictly reduced if F(0) ∼= 0.
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(D1F)k�

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C×k2 F k ≥ 1

cr1F k = 0

0 otherwise

and C×k2 is the functor C2 = cr2 ◦ diag composed with itself k times.
The chain differential ∂1 : (D1F)1 → (D1F)0 is given by the map ε of [1,

Remark 2.8], and the chain differential ∂k : (D1F)k → (D1F)k−1 is given by
∑k

i=1(−1)iC×i2 ε when k ≥ 1, where ε is the counit of the adjunction of [1,
Corollary 2.7].

The linearization functor satisfies the following properties:

Lemma 2.6 ([1, Lemma 5.6])

i For any functor of abelian categories F : A � B, the functor D1F : A � B is
strictly reduced, and for any x, y ∈ A, the natural map

D1F(x)⊕D1F(y)→ D1F(x ⊕ y)

is a chain homotopy equivalence. In particular, D1F is linear.
ii In AbCatCh, pointwise chain homotopy equivalence classes in Fun(A,B) are

denoted by [A,B]. The functor D1 : [A,B] → [A,B] is linear in the sense that
D10 ∼= 0 and for any pair of functors F,G ∈ [A,B],

D1F ⊕D1G ∼= D1(F ⊕G).

We will follow Convention 5.11 in [1]. In particular, given F : An � B, consider
Fi : A � B defined by:

Fi(y) := F(x1, . . . , xi−1, y, xi+1, . . . , xn),

where x1, . . . , xi−1, xi+1, . . . , xn are fixed objects of A. We will write
Di

1F(x1, . . . , xn) for D1Fi(xi). In cases where a single variable xi occurs in
multiple inputs of a multivariable functor F , and we wish to indicate simultaneous
multi-linearization of all occurrences of xi , we will use the notation D

xi
1 F . Let us

look at a specific example to see how D
xi
1 F works.

Example 2.7 Let F : A4 → B and consider Dx
1F(x, y, x, z). Define G : A →

B as:

G(x) := F(x, y, x, z)

= F(−, y,−, z) ◦ diag(x)
where diag is the diagonal functor. Then, Dx

1F(x, y, x, z) := D1G(x).

Definition 2.5 [1, Definition 5.1] The linearization of a functor of abelian cate-
gories F : A � B is the functor of abelian categories D1F : A � B given as
totalization of the explicit chain complex of chain complexes (D1F∗, ∂∗), where:
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We will frequently use these two notations when dealing with cross effects. For
example, in the proof of Lemma 2.13 we consider the sequential linearizations
D1

1D
2
1cr2F(a, b) of the two-variable functor cr2F . In this case, we linearize this

functor in each variable separately. On the other hand, in Lemma 3.3, we consider
functors such as Dx

1 cr2F(x, x), which is the linearization of the functor cr2F in
its two variables simultaneously. These two linearization processes produce quite
different results.

2.3 Higher Order Directional Derivatives

Recall that the directional derivative of a differentiable function f : Rn → R
m at

the point x ∈ R
n in the direction v ∈ R

n measures how the value of f at x changes
while translating along the infinitesimal vector from x in the direction v. One way
to make this idea precise is to define ∇f (v; x) to be the derivative of the composite
function, substituting the affine linear function t �→ x + tv into the argument of f ,
evaluated at t = 0:

�1f (v; x) := ∇f (v; x) = ∂

∂t
f (x + tv)

∣

∣

∣

∣

t=0
.

In [3], it was shown that the first directional derivative has a chain rule:

�1(f ◦ g)(v; x) = �1f (�1g(v; x); g(x)).

Using the first directional derivative, we can define the second directional derivative:

�2f (w, v; x) := ∂

∂t
�1f (v + tw; x + tv)

∣

∣

∣

∣

t=0
,

which also has a chain rule [3]:

�2(f ◦ g)(w, v; x) = �2f (�2g(w, v; x),�1g(v; x); g(x)).

Generally speaking, for any n there is a higher order directional derivative along
with a corresponding chain rule (see [3, Theorem 3]).

When Johnson and McCarthy established abelian functor calculus, they con-
structed an analog to the first directional derivative along with a chain rule [4,
Proposition 5.6]. The formula for this chain rule from [4] mirrors the case when
n = 1 in the directional derivative chain rule for functions found in [3]. These
similarities provide the motivation to pursue higher order directional derivatives of
functors of abelian categories in the hopes of acquiring an analogous higher order
chain rule.
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When defining higher order directional derivatives for functors in [1], the goal
was to imitate the iterative process used to define the higher directional derivatives
of functions in [3]. This iterative process can be seen in the case of the second
directional derivative as:

�2f (w, v; x) = ∂

∂t
�1f (v + tw; x + tv)

∣

∣

∣

∣

t=0

= �1(�1f )((w; v); (v; x)),
which motivates the following definition for functors of abelian categories.

Definition 2.8 ([1, Definition 7.3]) Consider a functor of abelian categories F :
A � B and objects x, v, and w in A. The higher order directional derivatives of F
are defined recursively by:

�0F(x) := F(x),

�1F(v; x) := D1F(x ⊕−)(v),
�2F(w, v; x) := �1(�1F) ((w; v); (v; x)) .

We say that �1F(v; x) is the first directional derivative of F at x in the direction
v. Similarly, we say that �2F(w, v; x) is the second higher order directional
derivative of F at x in the directions v and w.

The notation ∇ could be used in place of �1 in order to further highlight the
analogy with the directional derivative of undergraduate calculus. We have elected
to use �1 here for simplicity.

Remark 2.9 As in [3], we can continue and define the nth directional derivative,
but in this paper we will stop at n = 2. The full definition can be found in [1,
Definition 7.3].

It was shown in [4, Proposition 5.6] that the first directional derivative has a
chain rule up to quasi-isomorphism. The chain rule is now strengthened to a chain
homotopy equivalence.

Theorem 2.10 ([1, Theorem 6.5(v)]) Given two composable functors of abelian
categories G : A � B and F : B � C, there is a chain homotopy equivalence

Δ1(F ◦G)(v; x) ( Δ1F(Δ1G(v; x);G(x)).

This brings us to the formulation of our main theorem.

Theorem 2.11 Given two composable functors of abelian categories G : A � B
and F : B � C with objects x, v, and w in A, there is a chain homotopy equivalence

Δ2(F ◦G)(w, v; x) ( Δ2F(Δ2G(w, v; x),Δ1G(v; x);G(x)).
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We prove Theorem 2.11 by expanding both sides and showing that they are
equivalent. The idea of the proof is to break each side down into direct sums of
the smallest component parts. These smallest component parts are linearizations of
compositions of cross effects for F and G. The left-hand side is expanded in Sect. 3,
the right-hand side is expanded in Sect. 4, and the terms from both sides are aligned
to finish the proof in Sect. 5.

Before moving on to the expansions of each side, equivalent formulations of the
first and second directional derivatives are stated.

We will use the following chain homotopy equivalent formulation of �1.

Lemma 2.12 ([1, Lemma 6.3]) For a functor F : A � B between abelian
categories and any pair of objects x, v ∈ A, there is a chain homotopy equivalence

Δ1F(w; x) ( D1F(w)⊕D1
1cr2F(w, x).

Lemma 2.12 is proved using the chain rule for D1, namely that D1(G ◦ H) (
D1G ◦ D1H ⊕ D1cr2G(H(0), cr1H), for functors F and w ⊕ − : A → A and
simplifying the resulting cross effects.

Similarly, there is an equivalent formulation for �2.

Lemma 2.13 For a functor F : A � B between abelian categories, there is a chain
homotopy equivalence,

Δ2F(w, v; x) ( D1F(w)⊕D1
1cr2F(w, x)⊕D1

1D
2
1cr2F(v, v)⊕D1

1D
2
1cr3F(v, v, x).

Proof By [1, Lemma 6.9], which is proved using the definition of cross effect, the
linearity of D1 and the fact that cross effects are multi-reduced, for objects a, b, c,
and d in A, we have

�1(�1F)((d; c); (b; a))
( D1F(d)⊕D1

1cr2F(d, a)⊕D1
1D

2
1cr2F(b, c)⊕D1

1D
2
1cr3F(b, c, a).

Letting a := x, b := v, c := v, and d := w, we get our desired result:

�2(F ◦G)(w, v; x) = �1(�1F)((w, v); (v; x))
( D1F(w)⊕D1

1cr2F(w, x)⊕D1
1D

2
1cr2F(v, v)

⊕D1
1D

2
1cr3F(v, v, x),

where, for example, D1
1cr2F(w, x) := D1(cr2F(−, x))(w).
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3 The Second-Order Directional Derivative of a Composition

In this section, we expand the left-hand side of Theorem 2.11. We begin by applying
Lemma 2.13. We then use Lemma 3.1 to rewrite the cross effects of the composition
of functors in terms that are more manageable. Finally, we use Lemma 3.3, which
shows that a majority of the terms are contractible.

Before explicitly computing �2(F ◦G) in terms of cross effects, it will be useful
to understand how we can rewrite terms such as D

x2
1 cr2(F ◦G)(x1, x2). Recall that

[4] provides a formula for the pth cross effects of a composition of functors.

Lemma 3.1 ([4, Proof of Proposition 1.6]) Let G : A → B and F : B → C
be functors between abelian categories. Let x1, . . . , xp be objects in A and 〈p〉 =
{1, 2, . . . , p}. For U = {s1, . . . , st } ⊆ 〈p〉, let crUG denote crtG(xs1 , . . . , xst ) and
for U = ∅, let crUG = G(0). Then,

crp(F ◦G)(x1, . . . , xp) ∼=
⊕

{U1,...,Uk |Ui �=Uj }⊆P(〈p〉),∪ki=1Ui=〈p〉
crkF (crU1G, . . . , crUk

G).

The isomorphism of Lemma 3.1 comes from applying the natural isomorphism
in [4, Proposition 1.2],

H(X1 ⊕ · · · ⊕Xn) ∼= H(0)⊕
⎛

⎝

n
⊕

p=1

⎛

⎝

⊕

j1<···<jp

crpH(Xj1 , . . . Xjp

⎞

⎠

⎞

⎠

and applying the definition of cross effect.
Let us see explicitly what this formula gives in a simple case.

Example 3.2 Consider the case when p = 2. Note that we can cover the set 〈p〉
with up to four distinct subsets, since the cardinality of P(〈p〉) is 4. To cover the
set 〈p〉 with one set, it must be itself. To cover 〈p〉 with two subsets, there are four
possibilities: {{1, 2} ∅}, {{1}, {2}}, {{1}, {1, 2}}, and {{2}, {1, 2}}. Similarly, there are
four different ways to cover 〈p〉 with three subsets, and one way to cover 〈p〉 with
four subsets. Applying the formula from Lemma 3.1 gives

cr2(F ◦G)(x1, x2)

∼= cr1F(cr2G(x1, x2))⊕ cr2F(cr2G(x1, x2),G(0))

⊕ cr2F(cr1G(x1), cr1G(x2))

⊕ cr2F(cr1G(x1), cr2G(x1, x2))

⊕ cr2F(cr1G(x2), cr2G(x1, x2))

⊕ cr3F(cr1G(x1), cr1G(x2),G(0))

⊕ cr3F(cr1G(x1), cr2G(x1, x2),G(0))
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⊕ cr3F(cr1G(x2), cr2G(x1, x2),G(0))

⊕ cr3F(cr1G(x1), cr1G(x2), cr2G(x1, x2))

⊕ cr4F(cr1G(x1), cr1G(x2), cr2G(x1, x2),G(0)).

In order to simplify the expansion, we will use Lemma 3.3 to conclude that some
of the summands are in fact contractible.

Lemma 3.3 ([1, Corollary 5.13]) Suppose the functor of abelian categories F :
A � B factors as

n

F

diag H

where diag : A → An is the diagonal functor (with n ≥ 2) and H is strictly
multi-reduced. Then, D1F is contractible.

Recall that cross effects are strictly multi-reduced functors. Note that the
composition of strictly multi-reduced functors is still strictly multi-reduced.

Example 3.4 Using the expansion from Example 3.2, let us compute D
x2
1 cr2(F ◦

G)(x1, x2). As noted previously, we can distribute D
x2
1 to each summand. Since we

are linearizing with respect to x2 and since the functor cr2F(cr1G(−), cr2G(x1,−))
is strictly multi-reduced, Lemma 3.3 tells us that, for example,

D
x2
1 cr2F(cr1G(x2), cr2G(x1, x2)) = D

x2
1 cr2F(cr1G(−), cr2G(x1,−)) ◦ diag(x2)

( 0,

where diag : A→ A× A is the diagonal functor x2 �→ (x2, x2). Hence,

D
x2
1 cr2(F ◦G)(x1, x2)

( D
x2
1 cr1F(cr2G(x1, x2))

⊕D
x2
1 cr2F(cr2G(x1, x2),G(0))

⊕D
x2
1 cr2F(cr1G(x1), cr1G(x2))

⊕D
x2
1 cr2F(cr1G(x1), cr2G(x1, x2))

⊕D
x2
1 cr3F(cr1G(x1), cr1G(x2),G(0))

⊕D
x2
1 cr3F(cr1G(x1), cr2G(x1, x2),G(0)).

We proceed with the expansion of the left-hand side of 2.11. To start, applying
Lemma 2.13 gives
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�2(F ◦G)(w, v; x) (D1(F ◦G)(w)⊕D2
1cr2(F ◦G)(x,w) (1)

⊕D1
1D

2
1cr2(F ◦G)(v, v̄)⊕D2

1D
3
1cr3(F ◦G)(x, v, v̄),

where the new variable v̄ := v is introduced to better illustrate the computations.
This expression provides the foundation for expanding the left-hand side. We
expand the second, third, and fourth terms of (1) using the methods illustrated in
Examples 3.2 and 3.4. Specifically, Lemma 3.1 is used to rewrite the cross effect,
then Lemma 2.6 is used to distribute the linearization functor(s) to each summand,
and finally Lemma 3.3 is applied to find the terms that are contractible. The first
term of (1) will be addressed later in Sect. 5.

For the second summand of (1):

D2
1cr2(F ◦G)(w, x)

=Dw
1 cr2(F ◦G)(w, x)

(Dw
1 cr1F(cr2G(w, x))

⊕Dw
1 cr2F(cr2G(w, x),G(0))

⊕Dw
1 cr2F(cr1G(w), cr1G(x))

⊕Dw
1 cr2F(cr2G(w, x), cr1G(x))

⊕Dw
1 cr3F(cr1G(w), cr1G(x),G(0))

⊕Dw
1 cr3F(cr2G(w, x), cr1G(x),G(0)).

For the third summand of (1):

D1
1D

2
1cr2(F ◦G)(v, v̄)

=Dv
1D

v̄
1cr2(F ◦G)(v, v̄)

(Dv
1D

v̄
1cr1F(cr2G(v, v̄))

⊕Dv
1D

v̄
1 cr2F(cr2G(v, v̄),G(0))

⊕Dv
1D

v̄
1 cr2F(cr1G(v), cr1G(v̄))

⊕Dv
1D

v̄
1 cr3F(cr1G(v), cr1G(v̄),G(0)).

For the fourth summand of (1):

D2
1D

3
1cr3(F ◦G)(v, v̄, x)

=Dv
1D

v̄
1cr3(F ◦G)(v, v̄, x)

(Dv
1D

v̄
1cr1F(cr3G(v, v̄, x))
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⊕Dv
1D

v̄
1 cr2F(cr3G(v, v̄, x),G(0))⊕Dv

1D
v̄
1 cr2F(cr2G(v, v̄), cr1G(x))

⊕Dv
1D

v̄
1 cr2F(cr3G(v, v̄, x), cr1G(x))⊕Dv

1D
v̄
1cr2F(cr1G(v), cr2G(v̄, x))

⊕Dv
1D

v̄
1 cr2F(cr1G(v̄), cr2G(v, x))

⊕Dv
1D

v̄
1 cr2F(cr2G(v, x), cr2G(v̄, x))

⊕Dv
1D

v̄
1 cr3F(cr2G(v, v̄), cr1G(x),G(0))

⊕Dv
1D

v̄
1 cr3F(cr3G(v, v̄, x), cr1G(x),G(0))

⊕Dv
1D

v̄
1 cr3F(cr1G(v), cr2G(v̄, x),G(0))

⊕Dv
1D

v̄
1 cr3F(cr1G(v̄), cr2G(v, x),G(0))

⊕Dv
1D

v̄
1 cr3F(cr2G(v, x), cr2G(v̄, x),G(0))

⊕Dv
1D

v̄
1 cr3F(cr1G(v), cr1G(v̄), cr1G(x))

⊕Dv
1D

v̄
1 cr3F(cr1G(v), cr2G(v̄, x), cr1G(x))

⊕Dv
1D

v̄
1 cr3F(cr1G(v̄), cr2G(v, x), cr1G(x))

⊕Dv
1D

v̄
1 cr3F(cr2G(v, x), cr2G(v̄, x), cr1G(x))

⊕Dv
1D

v̄
1 cr4F(cr1G(v), cr1G(v̄), cr1G(x),G(0))

⊕Dv
1D

v̄
1 cr4F(cr1G(v), cr2G(v̄, x), cr1G(x),G(0))

⊕Dv
1D

v̄
1 cr4F(cr1G(v̄), cr2G(v, x), cr1G(x),G(0))

⊕Dv
1D

v̄
1 cr4F(cr2G(v, x), cr2G(v̄, x), cr1G(x),G(0)).

All together, the expansion of the left-hand side of Theorem 2.11 is

�2(F ◦G)(w, v; x) (
D1(F ◦G)(w) (2)

⊕Dw
1 cr1F(cr2G(w, x)) (3)

⊕Dw
1 cr2F(cr2G(w, x),G(0)) (4)

⊕Dw
1 cr2F(cr1G(w), cr1G(x)) (5)

⊕Dw
1 cr2F(cr2G(w, x), cr1G(x)) (6)

⊕Dw
1 cr3F(cr1G(w), cr1G(x),G(0)) (7)

⊕Dw
1 cr3F(cr2G(w, x), cr1G(x),G(0)) (8)

⊕Dv
1D

v̄
1 cr1F(cr2G(v, v̄)) (9)
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⊕Dv
1D

v̄
1 cr2F(cr2G(v, v̄),G(0)) (10)

⊕Dv
1D

v̄
1 cr2F(cr1G(v), cr1G(v̄)) (11)

⊕Dv
1D

v̄
1 cr3F(cr1G(v), cr1G(v̄),G(0)) (12)

⊕Dv
1D

v̄
1 cr1F(cr3G(v, v̄, x)) (13)

⊕Dv
1D

v̄
1 cr2F(cr3G(v, v̄, x),G(0)) (14)

⊕Dv
1D

v̄
1 cr2F(cr2G(v, v̄), cr1G(x)) (15)

⊕Dv
1D

v̄
1 cr2F(cr3G(v, v̄, x), cr1G(x)) (16)

⊕Dv
1D

v̄
1 cr2F(cr1G(v), cr2G(v̄, x)) (17)

⊕Dv
1D

v̄
1 cr2F(cr1G(v̄), cr2G(v, x)) (18)

⊕Dv
1D

v̄
1 cr2F(cr2G(v, x), cr2G(v̄, x)) (19)

⊕Dv
1D

v̄
1 cr3F(cr2G(v, v̄), cr1G(x),G(0)) (20)

⊕Dv
1D

v̄
1 cr3F(cr3G(v, v̄, x), cr1G(x),G(0)) (21)

⊕Dv
1D

v̄
1 cr3F(cr1G(v), cr2G(v̄, x),G(0)) (22)

⊕Dv
1D

v̄
1 cr3F(cr1G(v̄), cr2G(v, x),G(0)) (23)

⊕Dv
1D

v̄
1 cr3F(cr2G(v, x), cr2G(v̄, x),G(0)) (24)

⊕Dv
1D

v̄
1 cr3F(cr1G(v), cr1G(v̄), cr1G(x)) (25)

⊕Dv
1D

v̄
1 cr3F(cr1G(v), cr2G(v̄, x), cr1G(x)) (26)

⊕Dv
1D

v̄
1 cr3F(cr1G(v̄), cr2G(v, x), cr1G(x)) (27)

⊕Dv
1D

v̄
1 cr3F(cr2G(v, x), cr2G(v̄, x), cr1G(x)) (28)

⊕Dv
1D

v̄
1 cr4F(cr1G(v), cr1G(v̄), cr1G(x),G(0)) (29)

⊕Dv
1D

v̄
1 cr4F(cr1G(v), cr2G(v̄, x), cr1G(x),G(0)) (30)

⊕Dv
1D

v̄
1 cr4F(cr1G(v̄), cr2G(v, x), cr1G(x),G(0)) (31)

⊕Dv
1D

v̄
1 cr4F(cr2G(v, x), cr2G(v̄, x), cr1G(x),G(0)). (32)

Notice that each term is labeled individually. In Sect. 5, these terms will be
aligned with terms (35) through (66), which come from the right-hand side
of Theorem 2.11. Note that (2) will be matched to (35) ⊕ (55) via a further
decomposition, while the rest of the terms have a one-to-one correspondence. We
turn our attention to the expansion of the right-hand side in the next section.
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4 A Composition of Directional Derivatives

The right-hand side of Theorem 2.11, which is a composition of directional
derivatives, can also be expanded. Most of the results needed for this expansion were
discussed previously in Sect. 2.3. Specifically, Lemmas 2.12 and 2.13 reformulate
the expression as a direct sum of linearizations of cross effects, rather than
directional derivatives. In addition, Lemma 4.1 is necessary to expand the right-hand
side into its smallest component parts in order to align the terms with the left-hand
side expansion.

The first step in expanding the right-hand side of Theorem 2.11,

�2F(�2G(w, v; x),�1G(v; x);G(x)),

is to rewrite the second directional derivative of F , �2F , in terms of linearizations
of F using Lemma 2.13:

�2F(�2G(w, v; x),�1G(v; x);G(x))

( D1
1F(�2G(w, v; x))⊕D1

1D
2
1cr2F(�1G(v; x),�1G(v; x)) (33)

⊕D1
1D

2
1cr3F(�1G(v; x),�1G(v; x),G(x))⊕D1

1cr2F(�2G(w, v; x),G(x))

Notice that G(x) appears as a variable in this expansion. But, in the complete
expansion of the left-hand side at the end of Sect. 3, the term G(x) never appears as a
variable of one of the cross effects of F . Instead, it is observed that cr1G(x) appears.
In order to get a clear correspondence between the expansions of the two sides, a
description of the relationship between the occurrence of G(x) versus cr1G(x) as a
variable of crkF is required.

Lemma 4.1 Let G : A → B and F : B → C be two composable functors of
abelian categories. For k > 0,

crkF (x1, . . . , xk−1,G(x)) ∼= crkF (x1, . . . , xk−1,G(0))⊕ crkF (x1, . . . , xk−1, cr1G(x))

⊕ crk+1F(x1, . . . , xk−1,G(0), cr1G(x))

Proof Using the definition of the first cross effect,

G(x) ∼= cr1G(x)⊕G(0)

and the definition of the (k + 1)st cross effect,

crkF (x1, . . . , xk−1, xk ⊕ xk+1) ∼= crkF (x1, . . . , xk−1, xk)⊕ crkF (x1, . . . , xk−1, xk+1)

⊕ crk+1F(x1, . . . , xk−1, xk, xk+1),
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it follows that

crkF (x1, . . . , xk−1,G(x)) ∼= crkF (x1, . . . , xk−1, cr1G(x)⊕G(0))

∼= crkF (x1, . . . , xk−1, cr1G(x))

⊕ crkF (x1, . . . , xk−1,G(0))

⊕ crk+1F(x1, . . . , xk−1, cr1G(x),G(0)).

Applying Lemma 4.1 to the third and fourth summands of (33), we obtain

�2F(�2G(w, v; x),�1G(v; x);G(x))

( D1
1F(�2G(w, v; x))⊕D1

1D
2
1cr2F(�1G(v; x),�1G(v; x)) (34)

⊕D1
1D

2
1cr3F(�1G(v; x),�1G(v; x),G(0))

⊕D1
1D

2
1cr3F(�1G(v; x),�1G(v; x), cr1G(x))

⊕D1
1D

2
1cr4F(�1G(v; x),�1G(v; x), cr1G(x),G(0))⊕D1

1cr2F(�2G(w, v; x),G(0))

⊕D1
1cr2F(�2G(w, v; x), cr1G(x))⊕D1

1cr3F(�2G(w, v; x), cr1G(x),G(0)).

We will further expand the right-hand side by working with each of the eight
summands of (34) individually. Note that by using Lemmas 2.12 and 2.13, we can
rewrite �1G(v; x) and �2G(w, v; x), respectively, as:

�1G(v; x) ( D1G(v)⊕D1
1cr2G(v, x),

and

�2G(w, v; x) ( D1G(w)⊕D1
1D

2
1cr2G(v, v)⊕D1

1D
2
1cr3G(v, v, x)⊕D1

1cr2G(w, x).

Applying these reformulations of �1G(v; x) and �2G(w, v; x) as well as
Lemma 2.6, the first summand of (34) is

D1
1F(�2G(w, v; x))
( D1

1F
(

D1G(w)⊕D1
1D

2
1cr2G(v, v)⊕D1

1D
2
1cr3G(v, v, x)⊕D1

1cr2G(w, x)
)

( D1
1F (D1G(w))⊕D1

1F
(

D1
1D

2
1cr2G(v, v)

)

⊕D1
1F
(

D1
1D

2
1cr3G(v, v, x)

)

⊕D1
1F
(

D1
1cr2G(w, x)

)

,
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the second summand of (34) is

D1
1D

2
1cr2F(�1G(v; x),�1G(v; x))
( D1

1D
2
1cr2F

(

D1G(v)⊕D1
1cr2G(v, x),D1G(v)⊕D1

1cr2G(v, x)
)

( D1
1D

2
1cr2F

(

D1G(v),D1G(v)⊕D1
1cr2G(v, x)

)

⊕D1
1D

2
1cr2F

(

D1
1cr2G(v, x),D1G(v)⊕D1

1cr2G(v, x)
)

( D1
1D

2
1cr2F (D1G(v),D1G(v))

⊕D1
1D

2
1cr2F

(

D1G(v),D1
1cr2G(v, x)

)

⊕D1
1D

2
1cr2F

(

D1
1cr2G(v, x),D1G(v)

)

⊕D1
1D

2
1cr2F

(

D1
1cr2G(v, x),D1

1cr2G(v, x)
)

,

the third summand of (34) is

D1
1D

2
1cr3F (�1G(v; x),�1G(v; x),G(0))

( D1
1D

2
1cr3F

(

D1G(v)⊕D1
1cr2G(v, x),D1G(v)⊕D1

1cr2G(v, x),G(0)
)

( D1
1D

2
1cr3F

(

D1G(v),D1G(v)⊕D1
1cr2G(v, x),G(0)

)

⊕D1
1D

2
1cr3F

(

D1
1cr2G(v, x),D1G(v)⊕D1

1cr2G(v, x),G(0)
)

( D1
1D

2
1cr3F

(

D1G(v),D1G(v),G(0)
)

⊕D1
1D

2
1cr3F

(

D1G(v),D1
1cr2G(v, x),G(0)

)

⊕D1
1D

2
1cr3F

(

D1
1cr2G(v, x),D1G(v),G(0)

)

⊕D1
1D

2
1cr3F

(

D1
1cr2G(v, x),D1

1cr2G(v, x),G(0)
)

,

the fourth summand of (34) is

D1
1D

2
1cr3F (�1G(v; x),�1G(v; x), cr1G(x))

( D1
1D

2
1cr3F

(

D1G(v)⊕D1
1cr2G(v, x),D1G(v)⊕D1

1cr2G(v, x), cr1G(x)
)

( D1
1D

2
1cr3F

(

D1G(v),D1G(v)⊕D1
1cr2G(v, x), cr1G(x)

)
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⊕D1
1D

2
1cr3F

(

D1
1cr2G(v, x),D1G(v)⊕D1

1cr2G(v, x), cr1G(x)
)

( D1
1D

2
1cr3F(D1G(v),D1G(v), cr1G(x))

⊕D1
1D

2
1cr3F(D1G(v),D1

1cr2G(v, x), cr1G(x))

⊕D1
1D

2
1cr3F(D1

1cr2G(v, x),D1G(v), cr1G(x))

⊕D1
1D

2
1cr3F(D1

1cr2G(v, x),D1
1cr2G(v, x), cr1G(x)),

the fifth summand of (34) is

D1
1D

2
1cr4F(�1G(v; x),�1G(v; x), cr1G(x),G(0))

( D1
1D

2
1cr4F

(

D1G(v)⊕D1
1cr2G(v, x),D1G(v)⊕D1

1cr2G(v, x), cr1G(x),G(0)
)

( D1
1D

2
1cr4F

(

D1G(v),D1G(v)⊕D1
1cr2G(v, x), cr1G(x),G(0)

)

⊕D1
1D

2
1cr4F

(

D1
1cr2G(v, x),D1G(v)⊕D1

1cr2G(v, x), cr1G(x),G(0)
)

( D1
1D

2
1cr4F(D1G(v),D1G(v), cr1G(x),G(0))

⊕D1
1D

2
1cr4F(D1G(v),D1

1cr2G(v, x), cr1G(x),G(0))

⊕D1
1D

2
1cr4F(D1

1cr2G(v, x),D1G(v), cr1G(x),G(0))

⊕D1
1D

2
1cr4F(D1

1cr2G(v, x),D1
1cr2G(v, x), cr1G(x),G(0)),

the sixth summand of (34) is

D1
1cr2F(�2G(w, v; x),G(0))

(D1
1cr2F(D1G(w)⊕D1

1cr2G(w, x)⊕D1
1D

2
1cr2G(v, v)⊕D1

1D
2
1cr3G(v, v, x),G(0))

(D1
1cr2F(D1G(w),G(0))⊕D1

1cr2F(D1
1cr2G(w, x),G(0))

⊕D1
1cr2F(D1

1D
2
1cr2G(v, v),G(0))⊕D1

1cr2F(D1
1D

2
1cr3G(v, v, x),G(0)),

the seventh summand of (34) is

D1
1cr2F(�2G(w, v; x), cr1G(x))

( D1
1cr2F(D1G(w)⊕D1

1cr2G(w, x)⊕D1
1D

2
1cr2G(v, v)⊕D1

1D
2
1cr3G(v, v, x), cr1G(x))

( D1
1cr2F(D1G(w), cr1G(x))⊕D1

1cr2F(D1
1cr2G(w, x), cr1G(x))

⊕D1
1cr2F(D1

1D
2
1cr2G(v, v), cr1G(x))⊕D1

1cr2F(D1
1D

2
1cr3G(v, v, x), cr1G(x)),
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and the eighth summand of (34) is

D1
1cr3F(�2G(w, v; x), cr1G(x),G(0))

( D1
1cr3F(D1G(w)⊕D1

1cr2G(w, x)⊕D1
1D

2
1cr2G(v, v)

⊕D1
1D

2
1cr3G(v, v, x), cr1G(x),G(0))

( D1
1cr3F(D1G(w), cr1G(x),G(0))⊕D1

1cr3F(D1
1cr2G(w, x), cr1G(x),G(0))

⊕D1
1cr3F(D1

1D
2
1cr2G(v, v), cr1G(x),G(0))

⊕D1
1cr3F(D1

1D
2
1cr3G(v, v, x), cr1G(x),G(0)).

Putting all of these expansions together, the expansion for the right-hand side is

�2F(�2G(w, v; x),�1G(v; x);G(x)) (
D1F(D1G(w)) (35)

⊕D1F(D1
1D

2
1cr2G(v, v)) (36)

⊕D1F(D1
1D

2
1cr3G(v, v, x)) (37)

⊕D1F(D1
1cr2G(w, x)) (38)

⊕D1
1D

2
1cr2F (D1G(v),D1G(v)) (39)

⊕D1
1D

2
1cr2F

(

D1G(v),D1
1cr2G(v, x)

)

(40)

⊕D1
1D

2
1cr2F

(

D1
1cr2G(v, x),D1G(v)

)

(41)

⊕D1
1D

2
1cr2F

(

D1
1cr2G(v, x),D1

1cr2G(v, x)
)

(42)

⊕D1
1D

2
1cr3F(D1G(v),D1G(v),G(0)) (43)

⊕D1
1D

2
1cr3F(D1G(v),D1

1cr2G(v, x),G(0)) (44)

⊕D1
1D

2
1cr3F(D1

1cr2G(v, x),D1G(v),G(0)) (45)

⊕D1
1D

2
1cr3F(D1

1cr2G(v, x),D1
1cr2G(v, x),G(0)) (46)

⊕D1
1D

2
1cr3F(D1G(v),D1G(v), cr1G(x)) (47)

⊕D1
1D

2
1cr3F(D1G(v),D1

1cr2G(v, x), cr1G(x)) (48)

⊕D1
1D

2
1cr3F(D1

1cr2G(v, x),D1G(v), cr1G(x)) (49)

⊕D1
1D

2
1cr3F(D1

1cr2G(v, x),D1
1cr2G(v, x), cr1G(x)) (50)

⊕D1
1D

2
1cr4F(D1G(v),D1G(v), cr1G(x),G(0)) (51)



A First Step Toward Higher Order Chain Rules in Abelian Functor Calculus 115

⊕D1
1D

2
1cr4F(D1G(v),D1

1cr2G(v, x), cr1G(x),G(0)) (52)

⊕D1
1D

2
1cr4F(D1

1cr2G(v, x),D1G(v), cr1G(x),G(0)) (53)

⊕D1
1D

2
1cr4F(D1

1cr2G(v, x),D1
1cr2G(v, x), cr1G(x),G(0)) (54)

⊕D1
1cr2F(D1G(w),G(0)) (55)

⊕D1
1cr2F(D1

1cr2G(w, x),G(0)) (56)

⊕D1
1cr2F(D1

1D
2
1cr2G(v, v),G(0)) (57)

⊕D1
1cr2F(D1

1D
2
1cr3G(v, v, x),G(0)) (58)

⊕D1
1cr2F(D1G(w), cr1G(x)) (59)

⊕D1
1cr2F(D1

1cr2G(w, x), cr1G(x)) (60)

⊕D1
1cr2F(D1

1D
2
1cr2G(v, v), cr1G(x)) (61)

⊕D1
1cr2F(D1

1D
2
1cr3G(v, v, x), cr1G(x)) (62)

⊕D1
1cr3F(D1G(w), cr1G(x),G(0)) (63)

⊕D1
1cr3F(D1

1cr2G(w, x), cr1G(x),G(0)) (64)

⊕D1
1cr3F(D1

1D
2
1cr2G(v, v), cr1G(x),G(0)) (65)

⊕D1
1cr3F(D1

1D
2
1cr3G(v, v, x), cr1G(x),G(0)). (66)

5 Proof of the Chain Rule for the Second Directional
Derivative

All of the key pieces to prove Theorem 2.11 are built. Specifically, we have
expanded the left-hand side of Theorem 2.11 in Sect. 3, and we have expanded the
right-hand side in Sect. 4.

In the proof, we will use two cases of the chain rule for abelian functors. First,
there is a chain rule for D1 if the interior functor is reduced.

Lemma 5.1 [1, Proposition 5.7] If G : A � B and F : B � C are composable
functors of abelian categories and G is a reduced functor, then there is a chain
homotopy equivalence

D1(F ◦G)(x) ( D1F ◦D1G(x).

There is also a chain rule for D1 if the interior functor is not reduced, but an
additional correction term is required.
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Lemma 5.2 [1, Proposition 5.10] If G : A � B and F : B � C are composable
functors of abelian categories, then there is a chain homotopy equivalence

D1(F ◦G)(x) ( D1F ◦D1G(x)⊕Dx
1 cr2F(cr1G(x),G(0)).

We make a few observations concerning D1.

Observation 5.3 Let F be a functor of abelian categories. The linearization of
cr1F is chain homotopic to the linearization of F . In other words,

D1cr1F(x) ( D1F(x).

Proof Recall that cr1F(0) ∼= 0 because cross effects are strictly multi-reduced. In
order to compute cr1(cr1F(−))(x), we consider the definition of the first cross effect
of the functor cr1F :

cr1(cr1F)(x)⊕ cr1F(0) ∼= cr1F(x),

and thus cr1cr1F(x) ∼= cr1F(x). This further implies that

cr2(cr1F(−))(x, y) ∼= cr2F(x, y).

Recall from the definition of the linearization of F ,

(D1F)k�

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C×k2 F k ≥ 1

cr1F k = 0

0 otherwise

Since C×k2 F ∼= C×k2 cr1F and cr1cr1F(x) ∼= cr1F(x), when we linearize F(x) and
cr1F(x), we construct equivalent complexes.

Observation 5.4 Let F be a functor between abelian categories. The linearization
of D1F is chain homotopy equivalent to the linearization of F . In other words,

D1D1F(x) ( D1F(x).

Proof Recall that D1F is reduced and degree 1. It follows that cr1D1F(x) (
D1F(x) and cr2D1F(x, y) ( 0. If we linearize D1F , then we have

(D1D1F)k�

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 k ≥ 1

D1F k = 0

0 otherwise,

which is equivalent to D1F .

Now, we proceed with the proof of the main theorem.
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Theorem 2.11 Given two composable functors of abelian categories G : A � B
and F : B � C with object x, v, and w in A, there is a chain homotopy equivalence

Δ2(F ◦G)(w, v; x) ( Δ2F(Δ2G(w, v; x),Δ1G(v; x);G(x)).

Proof We will show homotopy equivalence by matching the summands on the left-
hand side (terms (2) through (32)) with their homotopy equivalents on the right-
hand side (terms (35) through (66)). The justifications for equivalence between these
terms are very similar. With this in mind, we will prove just one case of each type
and list the remainder of the pairs of terms.

Type 1: (4) ( (56). Only Lemma 5.1 is needed.

(4) = Dw
1 cr2F(cr2G(w, x),G(0))

= D1(cr2F(−,G(0)) ◦ cr2G(−, x))(w)

( D1
1cr2F(D1

1cr2G(w, x),G(0))

= (56).

The proofs of (6) ( (60) and (8) ( (64) are similar.
Type 2: (3) ( (38). Lemma 5.1 is used, followed by Observation 5.3.

(3) = Dw
1 cr1F(cr2G(w, x))

= D1(cr1F(−) ◦ cr2G(−, x))(w)

( D1cr1F(−) ◦D1cr2G(−, x)(w)

= D1cr1F(D1
1cr2G(w, x))

( D1F(D1
1cr2G(w, x))

= (38).

The proofs of (5) ( (59) and (7) ( (63) are similar.
Type 3: (2) ( (35) ⊕ (55). Lemma 5.2 is applied, followed by Lemma 5.1 and

Observation 5.3.

(2) = D1(F ◦G)(w)

( D1 ◦D1G(w)⊕Dw
1 cr2F(cr1G(w),G(0))

= D1F(D1G(w))⊕D1(cr2F(−,G(0)) ◦ cr1G(−))(w)

( D1F(D1G(w))⊕D1
1cr2F(D1cr1G(w),G(0))

( D1F(D1G(w))⊕D2
1cr2F(D1G(w),G(0))

= (35)⊕ (55).
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Type 4: (10) ( (57). Lemma 5.2 is applied twice, as well as Observation 5.4:

(10) = Dv
1D

v̄
1cr2F(cr2G(v, v̄),G(0))

= Dv
1 [D1(cr2F(−,G(0)) ◦ cr2G(v,−))(v̄)]

( Dv
1 [D1

1cr2F(D2
1cr2G(v, v̄),G(0))]

= D1[D1
1cr2F(−,G(0)) ◦D2

1cr2G(−, v̄)](v)
( D1

1D
1
1cr2F(D1

1D
2
1cr2G(v, v̄),G(0))

( D1
1cr2F(D1

1D
2
1cr2G(v, v̄),G(0))

= (57).

The proofs of (14) ( (58), (15) ( (61), (16) ( (62), (19) ( (42), (20) ( (65),
(21) ( (66), (24) ( (46), (28) ( (50), and (32) ( (54) are similar.

Type 5: (9) ( (36). Lemma 5.2 is applied twice, as well as Observations 5.4
and 5.3:

(9) = Dv
1D

v̄
1cr1F(cr2G(v, v̄)

= Dv
1 [D1(cr1F ◦ cr2G(v,−))(v̄)]

( Dv
1 [D1cr1F(D2

1cr2G(v, v̄))]
= D1[D1cr1F ◦D2

1cr2G(−, v̄)](v)
( D1D1cr1F(D1

1D
2
1cr2G(v, v̄))

( D1cr1F(D1
1D

2
1cr2G(v, v̄))

( D1F(D1
1D

2
1cr2G(v, v̄))

= (36).

The proofs of (11) ( (39), (12) ( (43), (13) ( (37), (17) ( (40), (18) ( (41),
(22) ( (44), (23) ( (45), (25) ( (47), (26) ( (48), (27) ( (49), (29) ( (51),
(30) ( (52), and (31) ( (53) are similar.

6 Conclusion

We proved the chain rule formula for the second higher order directional derivative
using primarily properties of linearization and cross effects. This result gave the
authors of [1] hope that their definition of higher order directional derivatives of
functors would produce a higher order directional derivative chain rule,

�n(F ◦G) (vn, . . . , v1; x0) ( �nF
(

�nG (vn, . . . , v1; x0) , . . . ,

�1G(v1; x0) ;G(x0)
)

,
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which mirrors the analogous result for functions (see [3, Theorem 3]). The proof
strategy used in this paper does not provide a clear inductive procedure that could
lead to the more general result.

Thus, more sophisticated machinery was developed to prove the higher order
directional derivative chain rule for functors of abelian categories [1, Theorem 8.1].
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DNA Topology Review

Garrett Jones and Candice Reneé Price

Abstract DNA holds the instructions for an organism’s development, reproduction,
and, ultimately, death. It encodes much of the information a cell needs to survive and
reproduce. It is important for inheritance and coding for proteins, and contains the
genetic instruction guide for life and its processes. But also, DNA of an organism has
a complex and interesting topology. For information retrieval and cell viability, some
geometric and topological features of DNA must be introduced, and others quickly
removed. Proteins perform these amazing feats of topology at the molecular level;
thus, the description and quantization of these protein actions require the language
and computational machinery of topology. The use of tangle algebra to model the
biological processes that give rise to knotting in DNA provides an excellent example
of the application of topological algebra to biology. The tangle algebra approach
to knotting in DNA began with the study of the site-specific recombinase T n3
resolvase. This chapter is a summary of some basic knot theory and biology. We
then describe the tangle model developed by Ernst and Sumners using the T n3
resolvase as an example. We conclude with applications of the tangle model to other
biological problems.

Subject Classification 2010 57M25

1 Introduction

The DNA of any organism has a complex and interesting topology. One can take
the view of it as two very long strands; as closed curves that are intertwined
millions of times, perhaps linked to other closed curves or tied into knots; and,
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subjected to supercoiling in order to convert it into a compact form for information
storage. For information retrieval and cell viability, some geometric and topological
features must be introduced, and others quickly removed. Some proteins preserve
the topology by passing one strand of DNA through another via a protein-
bridged transient break in the DNA. This protein action plays a crucial role in
cell metabolism, transcription, and replication. Other proteins break the DNA and
recombine the ends by exchanging them to help regulate the expression of specific
genes, mediate viral insertion into and deletion from the host genome, mediate
transposition and repair of DNA, and generate antibody and genetic diversity. These
proteins are performing important and incredible feats of topology at the molecular
level; thus, the description and quantization of these protein actions requires the
language and computational machinery of topology.

The topological approach to enzymology is an indirect method in which the
descriptive and analytical powers of topology are employed in an effort to infer the
structure of active protein–DNA complexes in vitro and in vivo. In the topological
approach to enzymology experimental protocol, molecular biologists react circular
DNA substrate with protein and capture protein signature in the form of changes
in the geometry (supercoiling) and topology (knotting and linking) of the circular
substrate. The mathematical problem is then to deduce protein mechanism and
synaptic complex structure from these observations. The mathematics of topological
objects, such as knots and tangles, are then used to solve these problems.

This chapter will discuss the background information of DNA topology by
providing the definitions needed from knots and tangles. It will describe the
tangle model: a developed sets of experimentally observable topological parameters
with which to describe and compute protein mechanism and the structure of the
active protein–DNA complex. Because, one of the important unsolved problems in
biology is the three-dimensional structure of proteins, DNA, and active protein–
DNA complexes in solution (in the cell), and the relationship between structure and
function, this model utilizes the mathematics of knots and tangle to provide some
solutions. It is the 3-dimensional shape in solution which is biologically important,
but difficult to determine. The chapter will conclude with a brief discussion of some
of the results utilizing the tangle model.

2 Knots and Links

Although knots have been used since the dawn of humanity, the mathematical study
of knots is just under 300 years old. Not only has knot theory grown theoretically
in that time, the fields of physics, chemistry, and molecular biology have provided
many applications of mathematical knots.

A knot is defined as a closed, nonintersecting curve in R
3. Formally, it is the

embedding of a circle in three dimensions (Fig. 1). Intuitively, a knot can be simply
thought of as a loop of rope with no end and no beginning.

A link (defined as a catenane by biologists) is a finite union of knots properly
embedded in three-dimensional space. Each of these knots, which may be trivial,
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Fig. 1 Examples of simple alternating knots

Fig. 2 Examples of simple 2 component links

Fig. 3 Ambiguous and
problematic intersections not
allowed in knot diagrams

Fig. 4 A polygonal projection and a smooth projection of the knot with 3 crossings has eight
possible knot diagrams, two are shown here

is known as a component of the link. We can view a knot as a 1-component link.
From here, when discussing a property of the class of links of 1 or more component,
we will use the terminology “link.” When discussing a 1-component link property
only, we will refer to the object as a “knot” (Fig. 2).

A link projection is the two-dimensional image of the three-dimensional link
projected onto a plane. At each double point in the projection (a crossing involving
only two line segments), it is not clear which portion of the link crosses over and
which crosses under. To show this, gaps are left in the projection. At a crossing, the
strand of the knot at the top of the crossing, represented by a solid line segment, is
called the overcrossing. The strand that is at the bottom of the crossing is called
the undercrossing, represented by a broken line segment.

It is known that problematic intersections (see Fig. 3) can be avoided so that all
intersections correspond to double points. A link projection drawn with these criteria
is called a link diagram. Knots and links are studied through their diagrams. Links
that have diagrams that can be drawn using a finite number of polygonal circuits
(i.e., closed paths) in three-dimensional space are called tame (Fig. 4). All other
links are known as wild (Fig. 5). Most applications of knot theory concern only
tame links, so we will only focus on this class of links.
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Fig. 5 Diagrams of wild
knot. Courtesy of [35]

We say two links, K1 and K2, are equivalent if there is an ambient isotopy
between them. An ambient isotopy can be described as a continuous deformation
from one link diagram (K1) to the other (K2). It allows us to stretch, bend, and
twist the link however we would like; we just cannot cut it. Mathematically, two
links, K1 and K2, are ambient isotopic if there is an isotopy h : R3 × [0, 1] → R

3

such that h(s, i) = hi(s) is a homeomorphism for all i where h0(K1) = K1 and
h1(K1) = K2 [12]. If two knots are equivalent, we refer to these knots as knots
of the same knot type, K , where K is the equivalence class under this equivalence
relation.

In 1926, Kurt Reidemeister proved that if we have two distinct diagrams of K ,
we can go from one diagram to the other using Reidemeister moves, as described
in Theorem 2.1.

Theorem 2.1 (Reidemeister [33]) Two link diagrams K1 and K2 are equivalent if
and only if they can be obtained from one another by a finite sequence of planar
isotopies and the three moves: twist, poke, and slide (Fig. 6).

Given two knots, K1 and K2, a knot K3 = K1#K2 can be constructed as seen in
Fig. 7. This knot is known as the connected sum of K1 and K2. A knot that cannot
be constructed in this manner using nontrivial knots is called prime. All prime knots
will be referred to as they are given in Rolfsen’s table of prime knots [34].

Links can be split into two groups: alternating and nonalternating. A link is called
alternating if it has a diagram in which, when traveling around each component of
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Fig. 6 Reidemeister moves:
(I) twist, (II) poke, and (III)
slide

I

II

III

Fig. 7 The connected sum of knots 52 and 31

the link, one alternates between overcrossing and undercrossings. A nonalternating
link is one that is not alternating (i.e., every diagram has at least two overcrossings
or two undercrossing in a row when traveling around the link).

An oriented link is a link for which each component has been given an
orientation. An oriented link is invertible if it can be deformed to be the same link
diagram with the opposite orientation [1]. The mirror image of a link, L, is obtained
by changing every overcrossing in the link to an undercrossing and vice versa. If L
is equivalent to its mirror image, then we call L amphicheiral (or achiral). If L is
not equivalent to L̄, then it is chiral. Although not all links are achiral, most tables
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Fig. 8 41 knot and its mirror
image

Fig. 9 Examples of minimum regular diagrams of the first five knots

Fig. 10 Example of a
topological change: crossing
change. This example shows
the unknotting number of the
knot 31

do not distinguish between a link and its mirror image. One example of a knot that
is amphicheiral is the 41 knot (Fig. 8).

While Reidemeister moves are helpful to see if two links are equivalent, they
are not as useful when showing that two links are not equivalent. Link invariants
are utilized to show in-equivalence between two link diagrams. A link invariant
is a specific quality of a knot or link type that does not change its value under
ambient isotopy. Thus, if two links are equivalent, then their invariants are equal.
Unfortunately, for a majority of invariants, the other direction is not usually true:
equal invariant values for two link diagrams do not imply equivalent links.

One example of a link invariant is the minimum crossing number. The minimum
crossing number is the minimum number of crossings over all knot diagrams of
the knot type (Fig. 9).

Some invariants keep count of the number of topological changes made to
a link diagram. Looking at a knot diagram, exchange locally overcrossings and
undercrossings. This type of alteration may change the knot type. The unknotting
number is the least number of crossing changes in a diagram of a knot to get to the
trivial knot, minimized over all diagrams (Fig. 10).

The linking number is a link invariant for links of two or more components.
It is calculated using the crossing sign convention (Fig. 11). The linking number
is calculated by taking the sum of the crossing signs of each crossing between the
different components of the link and dividing by two.

While the previous invariants give numerical quantities, other invariants can
associate a polynomial to a knot type: the Alexander polynomial, the Jones
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Fig. 11 Given an orientation,
we can assign negative and
positive crossings -1

Left-handed

+1

Right-handed

Fig. 12 Equivalent tangles

polynomial, and the HOMFLY-PT polynomial [3, 19, 25] or associate to a knot
diagram even more complicated algebraic structures like chain complexes of abelian
groups: Khovanov Homology and Knot Floer Homology [26, 30].

3 Tangles

An n-string tangle is defined as a pair (B, t) of a 3-dimensional ball B and a
collection of disjoint, simple, properly embedded arcs, denoted t . An n-string tangle
is formed by placing 2n points on the boundary of B and attaching n nonintersecting
curves inside B such that ∂B ∩ t = ∂t . We consider tangles T1 = (B, t1) and T2 =
(B, t2) to be equivalent if there is an ambient isotopy of one tangle to the other
keeping the boundary of the ball fixed (Fig. 12).

This work will focus on 2-string tangles. As part of the definition, we consider
a 2-string tangle to be a pair (B, t) and a homeomorphism sending (B, t) to the unit
ball in R

3. We send the four endpoints of the arcs to the four equatorial points NW,
NE, SE, and SW in the yz-plane described in R

3 as the points:

NE :
(

0,
1√
2
,

1√
2

)

NW :
(

0,− 1√
2
,

1√
2

)

SE :
(

0,
1√
2
,− 1√

2

)

SW :
(

0,− 1√
2
,− 1√

2

)

.

The simplest tangles are the zero tangle, denoted (0); the (∞)-tangle, denoted (0, 0);
the positive one tangle, denoted (1); and, the negative one tangle, denoted (−1)
(Fig. 13).
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Fig. 13 Simplest 2-string
tangles: the (∞)-tangle,
(0, 0), is a 90◦ rotation of the
zero tangle, (0). The positive
one tangle, (1) is shown here
as a positive horizontal half
twist added to (0). The
negative one tangle, (−1) is
shown as a negative vertical
half twist added to (0, 0)

(0,0)

90˚ Rotation
(0)

(0) (1)
+ Hortizontal Half Twist

(0,0) (-1)
- Vertical Half Twist

We can take the sum of two tangles, T1 and T2, creating a new tangle, T1 +
T2 (Fig. 14). Another tangle operation is the numerator closure, which connects
the northern endpoints with the shortest arc on the exterior of B and similarly the
southern endpoints, resulting in a knot or link denoted N(T ). We can also perform
this operation on a sum of tangles (Fig. 15).

This work will focus on 2-string tangle rational tangles. A 2-string tangle is
rational if it is ambient isotopic to the zero tangle, allowing the boundary of the
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     A + B

=

A + B

Fig. 14 Sum of two tangles

Fig. 15 Numerator closure
of a tangle T and the
numerator closure of the sum
of two tangles T1 and T2
giving links
N(T ) and N(T1 + T2),
respectively

Fig. 16 Creating a rational tangle with Conway vector (1, 2,−1)

3-ball to move. A rational tangle diagram is created by starting with the zero tangle
and interchanging the NE and SE boundary points a finite number of times creating
horizontal half twists. Then, continue construction by interchanging the SW and
SE boundary points a finite number of times creating vertical half twists. Continue
in this manner, alternating between adding vertical and horizontal twists (Fig. 16).

John Conway associated to each rational 2-string tangle an extended rational
number, m

n
∈ Q ∪ {∞}, stating that there exists a 1–1 correspondence [11]. This

number can be calculated using the Conway vector, denoted (a1, a2, . . . , ai) where
we choose i to be odd. This finite sequence of integers represents the sequence of
moves performed on the zero tangle to produce a rational tangle. (Note: One can
start with the (∞) tangle by rotating the zero tangle by 90◦.) Each integer represents
the number of half twists given to the tangle, alternating between horizontal and
vertical, ending with horizontal twists. The sign of the crossing follows that of
Fig. 13.
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If a tangle T is denoted T (a1, a2, . . . , ai), then its extended rational number is
calculated as:

m

n
= ai + 1

ai−1 + 1

ai−2 + 1

ai−3 + · · · + 1

a1

The numerator closure of a rational tangle, m
n

, is referred to as a 2-bridge
knot/link denoted N

(

m
n

)

or < a1, a2, . . . ai >. These links are also referred to
as 4-plats and rational knots/links.

4 Biology Background

A crucial advancement in molecular biology was made when the structure of DNA
was determined by James Watson and Francis Crick in 1953. Its structure revealed
how DNA can be replicated and provided clues about how a molecule of DNA might
encode directions for producing proteins [2].

Nucleic acids consist of a chain of linked units called nucleotides. Each
nucleotide contains a deoxyribose, a sugar ring made of five carbon atoms which are
numbered as seen in Fig. 17. This sugar ring then forms bonds to a single phosphate
group between the third and fifth carbon atoms of adjacent sugar rings (Fig. 18). The
backbone of a DNA strand is made from alternating phosphate groups and sugar
rings. The four bases found in DNA are Adenine (A), Thymine (T), Cytosine (C),
and Guanine (G). The shapes and chemical structure of these bases allow hydrogen
bonds to form efficiently between A and T and between G and C. These bonds,
along with base stacking interactions, hold the DNA strands together [2]. Each base
is attached to the first carbon atom in the sugar ring to complete the nucleotide
(Fig. 18).

The bonds between the sugars and the phosphate group give a direction to DNA
strands. The asymmetric ends of the strands are called the 5′ (five prime) and 3′

Fig. 17 Sugar ring made of
five carbon atoms. Courtesy
of [45]
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Fig. 18 Deoxyribonucleic acid. Using the direction convention given to DNA strands, we read
this sequence as ACTG, or equivalently CAGT . Courtesy of [46]

(three prime) ends, with the 5′ end having a phosphate group attached to the fifth
carbon atom of the sugar ring and the 3′ end with a terminal hydroxyl group attached
to the third carbon atom of the sugar ring (Fig. 18). The direction of the DNA strands
is read from 5′ to 3′. In a double helix, the direction of one strand is opposite to the
direction of the other strand: the strands are antiparallel [2].

Besides the standard linear form, a molecule of DNA can take the form of a
ring known as circular DNA. One way to model circular DNA mathematically
is as an annulus, R, an object that is topologically equivalent to S1 × [−1, 1].
The axis of R is S1 × {0}. With this model, we can choose an orientation for
the axis of R and use the same orientation on ∂R; thus, the axis and boundary
curves of R have a parallel orientation. Note that this is a different convention than
the biology/chemistry orientation. We use geometric invariants twist and writhe,
denoted Tw and Wr, to describe the structure of the circular DNA molecule. Writhe
can be determined by viewing the axis of R as a spatial curve and is measured as
the average value of the sum of the positive and negative crossings of the axis of R
with itself, averaged over all projections [28]. The sign convention for a crossing is
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Fig. 19 Cartoon of negative, relaxed, and positive supercoiled DNA. Reproduced with permission
from [22]

given in (Fig. 11). Twist is defined as the amount that one of the boundary curves of
R twists around the axis of R [4].

One relationship between Tw and Wr is expressed in the following law:

LAW 4.1 (CONSERVATION LAW [20])

Lk(R) = Tw(R)+Wr(R)

where Lk(R) is the linking number of the oriented link formed by the two boundary
curves of R with a parallel orientation.

We say that a DNA molecule is supercoiled when Wr�= 0 (Fig. 19). Native
circular DNA appears negatively supercoiled under an electron microscope, i.e.,
Wr < 0 (Fig. 20) [4].

Recall that the structure of DNA is a double-stranded helix, where the four bases
are paired and stored in the center of this helix. While this structure provides stability
for storing the genetic code, Watson and Crick noted that the two strands of DNA
would need to be untwisted in order to access the information stored for transcription
and replication [2]. They foresaw that there should be some mechanism to overcome
this problem.

4.1 Transcription and Replication

DNA can be viewed as two very long strands; as closed curves that are intertwined
and perhaps linked to other closed curves or tied into knots, and supercoiled. Thus,
the main topologically interesting forms that circular DNA can take: supercoiled,
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Fig. 20 Two examples of supercoiled DNA seen through an electron microscope. Reproduced
with permission from [22]

knotted, linked, or a combination of these. DNA is kept as compact as possible
when in the nucleus, and these three states help or hinder this cause. However, when
transcription or replication occur, DNA must be accessible [41]. Ribonucleic acid
(RNA) is a nucleic acid made up of a chain of nucleotides (Fig. 21). There are
three main differences between RNA and DNA: (a) RNA contains the sugar ribose,
while DNA contains a different sugar, deoxyribose; (b) RNA contains the base
uracil (U) in place of the base thymine (T), which is present in DNA; and, (c) RNA
molecules are single stranded, but have interesting tertiary structure. Transcription
is the process of creating a complementary RNA copy of a sequence of DNA.
Transcription begins with the unwinding of a small portion of the DNA double
helix to expose the bases of each DNA strand. The two strands are then pulled
apart creating an opening known as the transcription bubble. During this process,
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Fig. 21 Like DNA, ribonucleic acid (RNA) is a nucleic acid made up of a long chain of
nucleotides. Courtesy of [47]

DNA ahead of the transcription bubble becomes positively supercoiled, while DNA
behind the transcription bubble becomes negatively supercoiled (Fig. 22).

DNA replication is the process that starts with one DNA molecule and produces
two identical copies of that molecule. During replication, the DNA molecule begins
to unwind at a specific location and starts the synthesis of the new strands at
this location, forming replication forks (Fig. 23, left). The DNA ahead of the
replication fork becomes positively supercoiled, while DNA behind the replication
fork becomes entangled, creating pre-catenanes, a state where the DNA molecules
are beginning to form linked DNA molecules (Fig. 23, center). A topological
problem occurs at the end of replication, when daughter chromosomes must be
fully disentangled before mitosis occurs (Fig. 23, right) [41]. Topoisomerases play
an essential role in resolving this problem.
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Fig. 22 Transcription-driven supercoils

Fig. 23 Topological changes to DNA during replication of circular DNA. The process of
replication begins with negatively supercoiled DNA. The replication forks are shown in purple
and gold. Partially replicated DNA molecule: the replicated portions of the DNA are interwound
with positive (right-handed) crossings, creating a pre-catenane, while the remaining unreplicated
DNA is still negatively (left-handed) supercoiled. Completely replicated DNA shown as a DNA
catenane with positive (right-handed) crossings. Used with permission from [48]

4.2 Topoisomerase

Topoisomerases are proteins that are involved in the packing of DNA in the nucleus
and in the unknotting and unlinking of DNA links that can result from replication
and other biological processes. These proteins bind to either single- or double-
stranded DNA and cut the phosphate backbone of the DNA. A type I topoisomerase
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Fig. 24 Schematic of topoisomerase I action. Used with permission from [10]

cuts one strand of a DNA double helix allowing for the reduction or the introduction
of stress (Fig. 24). Such stress is introduced or needed when the DNA strand is
supercoiled or uncoiled during replication or transcription. Type II topoisomerase
cuts both phosphate backbones of one DNA double helix, passes another DNA
double helix through it, and then reseals the cut strands (Fig. 25). This action does
not change the chemical composition and connectivity of DNA, but potentially
changes its topology.

4.3 Recombinase

In various biological processes, there often is a need to integrate, excise, or invert
portions of a DNA molecule. For example, gene expression is often regulated by
the absence or presence of repressor or promoter sites. Inserting a promoter or
repressor site can result in the expression, or lack of expression, respectively, of
a particular gene. Another example is the insertion of viral DNA into its host cell.
Insertion of the viral DNA into the host genome allows it to replicate and continue
its life cycle. Recombination is a process involving the genetic exchange of DNA
where DNA sequences are rearranged by proteins known as recombinases [2]. Site-
specific recombination is an operation on DNA molecules where recombination
proteins, site-specific recombinases, recognize short specific DNA sequences on
the recombining DNA molecules. First, two sequences from the same or different
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Fig. 25 Schematic of topoisomerase II action. Used with permission from [5]

DNA molecule are drawn together. The recombinase then introduces a break near
a specific site, known as a recombination site, on the double-stranded DNA
molecule. The protein then recombines the ends in some manner and seals the
break (Fig. 26). We call this DNA-protein complex a synaptic complex. We will
call the part of the synaptic complex that consists of only the protein together with
the part of the substrate DNA bound to the protein, the local synaptic complex. After
synapsis occurs, the recombinase then cleaves the DNA at the recombination sites
and rejoins the ends by exchanging them. The specific way in which the exchange
occurs is determined by the particular protein [21, 39, 43].

The DNA sequence of a recombination site can be used to give an orientation
to this site. When two sites are oriented in the same direction, the sites are called
direct repeats (Fig. 27). Recombinase action on direct repeats normally results in
a change in the number of components, taking knots to links and links to knots or
a link with a higher number of components (Fig. 27). If the two sites are oriented
in opposite directions, the sites are called inverted repeats (Fig. 28). The action of
a recombinase on inverted repeats normally results in no change in the number of
components (Fig. 28).

There are two families of site-specific recombinases: tyrosine recombinases and
serine recombinases. Tyrosine recombinases break and rejoin one pair of DNA



138 G. Jones and C. R. Price

Fig. 26 An example of a site-specific recombinase mechanism where the protein makes breaks
one strand of the double helix, recombines it, and then does the same with the other strand

Fig. 27 Recombinase action
on direct repeats

Fig. 28 Recombinase action
on inverted repeats

strands at a time (Figs. 26, 29). Serine recombinases introduce double-stranded
breaks in DNA and then recombines them in some manner (Fig. 30) [36].

5 Tangle Model

DNA encodes much of the information a cell needs to survive and reproduce. If
we were to unwind the chromosomes from one human cell and place the DNA
strands end to end, it would span approximately 2 m [9]. All of this DNA is packed
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Fig. 29 Schematic of tyrosine recombinase action: single-stranded breaks. We model the tyrosine
protein as a black ball, while the double-stranded DNA is modeled by red and blue rectangles

Fig. 30 Schematic of serine
recombinase action:
double-stranded breaks. We
model the serine protein as a
black ball, while the
double-stranded DNA is
modeled by red and blue
rectangles

inside the nucleus of a cell whose diameter is measured on the scale of micrometers,
that is one thousandth of a millimeter, 0.001 mm. The DNA must not only be
arranged to sit inside such a small space, but it must also be organized so that
the information it contains is accessible. Inside this complex environment, vital
functions like transcription and replication must take place. It is no surprise, then,
that various mechanisms have evolved over time to change the structure of the DNA.
One mechanism is the action of proteins.

Understanding how a particular protein acts on DNA can be a difficult task.
Proteins and their actions cannot be directly observed with the naked eye. Even
with electron microscopy, there is not enough detail to see exactly how a particular
protein binds to and acts on its substrate. We must rely on well-designed experiments
to gain this knowledge. Additional use of mathematical models can help to further
clarify the results obtained by experiments and this is exactly what was done to
determine the action of a particular tyrosine recombinase called Tn3 resolvase.

In the 1990s, C. Ernst and D. Sumners developed the tangle calculus which
was then successfully used to model the action of recombinases on circular DNA
substrate [18]. In this model, the synaptic complex was represented by the numerator
closure of a sum of 2-string tangles. A pair of 2-string tangle, Ob and P , represented
the local synaptic complex, that is the protein and bound DNA. The parental
tangle, P , contains the site where strand breakage and reunion takes place. The
outside bound tangle, Ob, was the rest of the DNA in the local synaptic complex
outside of the tangle P . Finally, another 2-string tangle, the outside free tangle, Of ,
represented the DNA in the synaptic complex which is free and not bound to the
protein. The action of the protein was then modeled as a tangle surgery, where the
tangle, P , is replaced by a new tangle R. The knotted products which were observed
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Of Ob P Of Ob R

Fig. 31 A schematic of the tangle model. This particular example shows the first round of
recombination for T n3 resolvase

in experiments would allow for a system of tangle equations to be set up (see Fig. 31
for a visual):

N
(

Of +Ob + P
) = substrate, (5.1)

N
(

Of +Ob + R
) = product. (5.2)

Several assumptions had to be made for this model to work [18, 37]. One
assumption was that the local synaptic complex could be modeled with a 2-
string tangle that subdivided into the sum of two tangles. It was assumed that
the recombination takes place entirely inside the protein ball, while the substrate
configuration outside the protein ball remains fixed. The protein mechanism in a
single recombination event is assumed constant, and independent of the geometry
and topology of the substrate. Also, it was assumed that processive recombination,
consecutive reactions without releasing its substrate, could be modeled with tangle
addition by adding the tangle R for each additional round of recombination:

N
(

Of +Ob + P
) = substrate, (5.3)

N
(

Of +Ob + R
) = 1st round product, (5.4)

N
(

Of +Ob + R + R
) = 2nd round product, (5.5)

...

N

⎛

⎝Of +Ob + R + R + . . .+ R
︸ ︷︷ ︸

n

⎞

⎠ = nth round product. (5.6)

Experiments with T n3 resolvase acting on circular DNA substrate, which carried
two copies of the recombination site, were carried out and the products of this
reaction were observed. Resolvase typically mediates a single recombination event
and releases the substrate. The principle product of the experiments were the Hopf
link, 〈2〉, which was believed to be the result of this single recombination event.
In about one in 20 encounters though, resolvase acts processively. Other products
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observed were the Fig. 8 knot, 〈2, 1, 1〉, the result of two rounds of recombination,
the Whitehead link, 〈1, 1, 1, 1, 1〉, the result of three rounds of recombination, and
the 62 knot, 〈1, 2, 1, 1, 1〉, the result of four rounds of recombination [42, 44].
Using observations from electron micrographs of the synaptic complex, it was also
assumed that Of was the (0) tangle, thus we can reduce the tangle Of + Ob to
one single tangle O. Using the information above, the following system of tangle
equations could be set up:

N (O + P) = 〈1〉 (the unknot), (5.7)

N (O + R) = 〈2〉 (the Hopf link), (5.8)

N (O + R + R) = 〈2, 1, 1〉 (the Fig. 8 knot), (5.9)

N (O + R + R + R) = 〈1, 1, 1, 1, 1〉 (the (+) Whitehead link). (5.10)

Due to the amount of unknowns, it is not possible to explicitly solve for the tangle
P ; there are the infinite possibilities of a solution for any given O. However, there
are biological and mathematical arguments to support the idea that P = (0) [38].
Thus, with this assumption and using only the first three rounds of recombination
and the tangle calculus, Ernst and Sumners were able to prove the following theorem
about this system of equations:

Theorem 5.1 ([18]) Suppose that tangles O, P , and R satisfy the following:

N (O + P) = 〈1〉 (the unknot), (5.11)

N (O + R) = 〈2〉 (the Hopf link), (5.12)

N (O + R + R) = 〈2, 1, 1〉 (the Fig. 8 knot), (5.13)

N (O + R + R + R) = 〈1, 1, 1, 1, 1〉 (the (+) Whitehead link). (5.14)

Then, {O;R} = {(−3, 0) , (1)}, and N (O + R + R + R + R) = 〈1, 2, 1, 1, 1〉.
Not only did this theorem show that the tangles O and R must equal (−3, 0) and

(1), respectively, but it also predicted that a fourth round of recombination would
result in 〈1, 2, 1, 1, 1〉. This is exactly the product that was observed experimentally.
This theorem can then be viewed as a mathematical proof that the synaptic complex
structure as proposed by Wasserman et al. in [44] is the only possibility.

6 Further Applications of the Tangle Model

The use of tangle algebra to model the biological processes that give rise to knotting
in DNA provides an excellent example of the application of topological algebra to
biology. The tangle algebra approach to knotting in DNA began with the study of
the site-specific recombinase T n3 resolvase. It is assumed that this protein acts on
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unknotted DNA processively, producing a series of products, thus providing ample
information for systematic mathematical analysis [16]. The model arising from this
assumption produced testable, and verified, predictions of knot products [44] and
the tangle algebra approach made it possible to write down tangle equations that
reflected the progressive repeat action of the protein [18].

A similar approach was taken to study the effect of many site-specific recom-
binase [6, 7, 13, 14, 29, 40]. Tangles continue to be used to describe the synaptic
structure during recombination. One example is extending the tangle model to
include 3-string tangles [15, 17, 23], and has also been used in [6, 8] to make
predictions of the possible knots that may arise under different hypotheses about
the substrate arrangement. Tangle algebras are also being used to study proteins that
do not change the topological structure of DNA, but bind to it in interesting ways.
This experimental technique has been the focus of many papers, yielding interesting
results [24, 27, 31, 32].
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Abstract Insulin resistance (IR) is associated with aging, trauma, and many
diseases including obesity, type 2 diabetes, polycystic ovarian syndrome, and sepsis.
Determining tissue-specificity of IR in a given individual or disease state may
have important implications for clinical care and requires detailed assessment
of glucose–insulin dynamics. Previous work introduced a differential-equations-
based model to interpret data collected under a stable isotope-based oral glucose
tolerance test designed to differentiate the dynamics of exogenous and endogenous
glucose. We investigated the structural identifiability of this model using the Taylor
expansion method. We found that the model is structurally unidentifiable due to
parameters involving the rate of appearance of exogenous glucose and the volume
of distribution of the compartment that cannot be separately identified. Our analysis
informs a two-step approach to model implementation that overcomes limitations in
identifiability and provides a reliable methodology to estimate parameters used to
quantify tissue-specific IR. This work contributes to an improved understanding of
methods designed to investigate tissue-specific IR.

J. L. Simens
Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA

M. Cree-Green · K. J. Nadeau
Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical
Campus, Aurora, CO, USA

B. C. Bergman
Division of Endocrinology and Metabolism, University of Colorado Anschutz Medical Campus,
Aurora, CO, USA

C. Diniz Behn (�)
Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA

Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical
Campus, Aurora, CO, USA
e-mail: cdinizbe@mines.edu

© The Author(s) and the Association for Women in Mathematics 2018
A. Deines et al. (eds.), Advances in the Mathematical Sciences, Association for
Women in Mathematics Series 15, https://doi.org/10.1007/978-3-319-98684-5_9

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98684-5_9&domain=pdf
mailto:cdinizbe@mines.edu
https://doi.org/10.1007/978-3-319-98684-5_9


146 J. L. Simens et al.

1 Introduction

A primary metabolic goal of the body is to provide a constant energy source
of glucose for the brain [24]. Maintaining glucose homeostasis requires different
mechanisms depending on the availability of exogenous glucose. In the fasted
state when exogenous glucose is absent, glucose is produced from endogenous
sources including glycogen degradation and gluconeogenesis with the breakdown
of liver glycogen stores representing the primary endogenous source of glucose.
Following a meal, exogenous glucose is readily available, so endogenous glucose
sources are suppressed and excess glucose is stored for later use. Thus, metabolic
systems switch between states of glucose utilization and production depending on
the availability of glucose from exogenous sources. These transitions are primarily
governed by insulin, a hormone that is released from the pancreas in response to a
meal.

Insulin promotes the clearance of excess exogenous glucose from blood by
stimulating muscle and adipose tissue. Insulin also suppresses hepatic tissue to
stop glucose production and switch to storing glucose through glycogen synthesis,
primarily through suppression of the hormone glucagon. Beyond these glucose
effects, insulin also plays a role in several other metabolic functions such as
stimulating amino acid uptake, protein synthesis, and switching overall metabolism
from deriving energy from fat to utilizing glucose to supply energy.

Insulin resistance (IR) occurs when insulin does not induce expected signaling
changes, and compensatory, higher than normal, concentrations of insulin are
required to maintain normal glucose concentrations. When these conditions
are prolonged, pancreatic insufficiency may develop, thereby compromising the
regulation of the system and resulting in hyperglycemia. IR is associated with
aging, trauma, and a range of diseases including obesity, type 2 diabetes (T2D),
polycystic ovarian syndrome, and sepsis [4, 12, 13]. Since insulin plays several roles
in glucose regulation, IR may vary in different tissues in the same person. Improved
understanding of the tissue-specificity of IR in a given patient or disease condition
may facilitate targeted therapeutic treatment.

Stable isotope tracers provide a methodology for probing tissue-specific IR
[18, 20, 22]. Here, we focus on quantifying the effect of insulin on glucose disposal,
a factor involved in the assessment of hepatic IR, a condition in which higher
than normal insulin concentrations are needed to suppress glucose release from
the liver. Most protocols designed to quantify hepatic IR have focused on the
fasted state or the steady-state conditions of a hyperinsulinemic euglycemic clamp
[24]. However, these methods cannot account for the influence of postprandial
hormone and nutrient absorption dynamics, and thus answer very limited questions.
Including a stable isotope tracer in a more physiologic protocol involving an oral
glucose challenge allows separate assessment of the dynamics of endogenous and
exogenous glucose [17]. However, since an oral glucose tolerance test (OGTT)
involves time-dependent changes in concentrations of endogenous and exogenous
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glucose, dynamic mathematical modeling is required to optimally mine these data
and to interpret the resulting implications for tissue-specific IR.

To quantify the effect of insulin on glucose disposal, Dalla Man and colleagues
developed the differential-equations-based oral minimal model (OMM) and labeled
oral minimal model (OMM*) to describe glucose–insulin dynamics following an
oral challenge involving a stable isotope tracer [15]. Parameter values from OMM
and OMM* were proposed as measures of overall insulin sensitivity, SI , and insulin
sensitivity of glucose disposal, S∗I .

The reliable use of estimated parameters from these models as measures of an
individual’s insulin sensitivity requires structural and numerical identifiability of
the models. Previous work has established that OMM is structurally unidentifiable
[14], so this work focuses on investigating the structural identifiability of OMM*.
The paper is organized as follows: in Sect. 2, we recall the derivations of OMM and
OMM*; in Sect. 3, we apply a Taylor series approach to perform a formal structural
identifiability analysis on OMM*; and in Sect. 4, we provide a brief summary of our
results and discuss the implications of this work for future applications of OMM*.

2 Model Derivations

OMM is a differential-equations-based model that extends the original Minimal
Model [7] to describe an oral challenge [8, 14]. OMM exploits known metabolic
physiology to describe glucose and insulin dynamics using biologically relevant
parameters. In order to further describe subject-specific glucose and insulin dynam-
ics following an oral glucose challenge that includes a glucose tracer, Dalla Man and
colleagues developed OMM* [15]. The differential equations involved in OMM*
track the dynamics of the labeled glucose and allow differentiation of the labeled
glucose introduced by the drink from the total glucose described by OMM. Here,
we recall the derivations of OMM and OMM* in order to provide context for
the models and the interpretation of parameter values in the models. In addition,
this derivation highlights the interactions between OMM and OMM* that allow a
robust determination of the differentiated dynamics of glucose from exogenous and
endogenous sources in this OGTT protocol.

As discussed in the introduction, dynamic interactions between glucose and
insulin work to maintain normal glucose homeostasis, since the availability of
exogenous glucose varies widely during fasting and postprandial states. In both
OMM and OMM*, glucose and insulin interactions are assumed to take place in
a single compartment representing plasma (Fig. 1). Glucose concentrations G(t)

increase in response to glucose ingested in the meal (Rameal) and glucose released
by the liver (RaL). Glucose concentrations decrease in response to uptake by the
liver (RdL) and utilization of glucose by the periphery (RdP ). The variable Î (t)

describes the action of insulin on glucose uptake, and we will use a convenient
scaling of this variable, X(t) = cÎ (t) where the constant c will be specified in the
derivation. These models do not account for renal excretion of glucose as may occur
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Glucose G

Remote
Insulin

Î(t) = cX(t)Plasma Insulin
above basal k2 k3

Liver RaL

RdL, kL1

Periphery
RdP , kP1

kP1

kL4 kP4

Rameal

Fig. 1 Schematic summarizing the sources of production and clearance of glucose, G(t), and
insulin mediation of glucose uptake, Î (t). X(t) represents a convenient scaling of Î (t) by parameter
c and will be used in the final form of OMM and OMM*. RaL and RdL describe the rate
of appearance and disappearance, respectively, of glucose from the liver; Rameal is the rate of
appearance of exogenous glucose; ki for i = 1, . . . , 4 are rate constants, and superscripts L and P

denote liver and periphery, respectively. The constants k1 and k4 describe insulin-independent and
insulin-dependent rates of glucose uptake, respectively. The constants k2 and k3 describe the rates
of insulin release and clearance, respectively

in hyperglycemia, so they may be most appropriate for describing glucose–insulin
dynamics in people without severe hyperglycemia [19, 24].

2.1 Derivation of Oral Minimal Model (OMM)

OMM is a parametric model in which the rate of appearance into plasma of oral
glucose is coupled to the classical minimal model for glucose kinetics [14]. The
dynamics of insulin action on glucose are described by:

dÎ (t)

dt
= k2[I (t)− Ib] − k3Î (t), Î (0) = 0 (1)

where Î is the remote insulin acting on glucose (μU/ml); I (t) is a linear inter-
polation of measured plasma insulin concentration (μU/ml); Ib is the basal value
(μU/ml); and k2, k3 are constant nonnegative parameters (min−1).

To derive the equation for total glucose, we start with the mass balance principle:

dG(t)

dt
= Ra(t)− Rd(t)

V
, G(0) = Gb (2)

where G is the total plasma glucose concentration (mg/dl), Gb is the basal plasma
glucose concentration (mg/dl), V is the distribution volume (dl/kg), Ra is the rate of
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appearance of glucose (mg/kg/min), and Rd is the rate of disappearance of glucose
(mg/kg/min). Since Ra represents the rate of appearance of glucose coming from
both exogenous and endogenous sources, total Ra = Rameal + RaL where Rameal
describes exogenous glucose coming from the meal and RaL describes endogenous
glucose coming from the liver. Similarly, Rd = RdL + RdP represents the rate of
disappearance of glucose due to uptake by the liver (RdL) and the periphery (RdP ).

The cycle of glucose release (RaL) and uptake (RdL) by the liver is called
net hepatic glucose production (NHGP). Following previous work by Cobelli and
colleagues [11], we have described NHGP and RdP as follows:

NHGP(t) = RaL − RdL = B0 − kL1 G(t)− kL4 Î (t)G(t)

and

RdP (t) = kP1 G(t)+ kP4 Î (t)G(t)

where B0 is extrapolated NHGP at zero glucose (mg/kg/min), and kL1 , kP1 , kL4 , kP4
are constant nonnegative parameters. Substituting these equations for NHGP and
RdP into Eq. (2), and combining this with Eq. (1) gives the original form of OMM:

dG(t)

dt
= Rameal(t)+ B0−(kL1 + kP1 )G(t)−(kL4 + kP4 )Î (t)G(t)

V
, G(0) = Gb

dÎ (t)

dt
= k2[I (t)−Ib]−k3Î (t), Î (0) = 0.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(3)

Several assumptions and simplifications are needed to obtain the final form of
OMM. First, following [14, 15], we define the following parameter combinations:

p1 = kL1 + kP1 ; p2 = k3; p3 = k2(k
L
4 + kP4 )

V
; and p4 = B0.

The additional parameter combination SG = p1/V is the fractional glucose
effectiveness, a measure of the ability of glucose to promote glucose disposal
and inhibit NHGP [15]. Next, we introduce a rescaling of Î (t) with X(t) =
(kL4 + kP4 )

V
Î (t) = cÎ (t) for c = (kL4 + kP4 )

V
. X(t) represents the insulin action on

glucose disposal and production. Finally, we assume that, in the basal steady state,
glucose is at a basal level and there is no action of insulin on excess glucose. This
provides the additional constraint that p4 = p1Gb [11] and leads to the final form
of OMM:

dG(t)

dt
= −[SG +X(t)]G(t)+ SGGb + Rameal(t)

V
, G(0) = Gb

dX(t)

dt
= p3[I (t)− Ib] − p2X(t), X(0) = 0.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(4)
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where Gb and Ib are known parameters; I (t) is measured insulin concentration;
and SG, V, p3, p2, and the parameters associated with Rameal are the parameters to
be estimated. The parameters for the final form of OMM and their relationship to
the initial parameters are summarized in Table 1. The parameters in Rameal depend
on the functional form chosen for Rameal and are not included in this table. These
parameters will be discussed further in Sect. 3.

2.2 Derivation of Labeled Oral Minimal Model (OMM*)

In order to isolate the action of insulin on glucose disposal from its action on
glucose production, we will consider the dynamics of glucose labeled with the
[1−13C]glucose oral tracer. This tracer represents the exogenous glucose introduced
into the system from the drink, denoted Gmeal. OMM* will be used to track this
labeled glucose and its interaction with insulin. We use asterisks to denote variables
and parameters of OMM*. As in the derivation of OMM, we begin with the mass
balance principle:

dGmeal(t)

dt
= Rameal(t)− Rdmeal(t)

V ∗
, Gmeal(0) = 0,

where Rameal and Rdmeal are the rates of appearance and disappearance, respec-
tively, of oral glucose and V ∗ is the distribution volume for labeled glucose.
Although the volume of distribution of labeled and unlabeled glucose are the same
at steady state, the rapidly mixing pool for ingested glucose varies in the time period
immediately following consumption of the drink. Therefore, V and V ∗ are taken to
be distinct parameters. Note that by contrast with the unlabeled glucose described
by OMM, the liver does not contribute to the rate of appearance of labeled glucose
described by OMM*. Since the rate of disappearance is the same for labeled and
unlabeled glucose, Rdmeal(t) = (kL1 + kP1 )Gmeal(t)+ (kL4 + kP4 )Î (t)Gmeal(t).

Using the analogous parameter combinations previously described for OMM, we
obtain the standard form for OMM*:

dGmeal(t)

dt
= −[S∗G +X∗(t)]Gmeal(t)+ Rameal(t)

V ∗
, Gmeal(0) = 0

dX∗(t)
dt

= p∗3[I (t)− Ib] − p∗2X∗(t), X∗(0) = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(5)

where X∗ is insulin action on glucose disposal; Ib is basal insulin; I (t) represents
measured insulin; and the parameters to be estimated are S∗G, V ∗, p∗3 , p∗2 , and the
parameters present in Rameal [15]. Combining the systems of Eqs. (4) and (5) yields
the complete labeled oral minimal model for glucose–insulin dynamics following
an oral challenge that includes a glucose tracer. The parameters for the final form of
OMM* are summarized in Table 1.
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Table 1 Summary of parameter values for OMM and OMM*

Model Parameter Meaning Parameter combinations

OMM SG Fractional glucose effectiveness SG = p1/V

Gb Basal glucose concentration

V Volume of distribution (total glucose)

p1 Insulin-independent rate of glucose uptake p1 = kL1 + kP1
p2 Rate of decay of insulin action X(t) p2 = k3

p3 Rate of growth for X(t) p3 = k2(k
L
4 + kP4 )

V
p4 Extrapolated NHGP at zero glucose p4 = B0

OMM* S∗G Fractional glucose effectiveness S∗G = p∗1/V ∗

V ∗ Volume of distribution (labeled glucose)

p∗1 Insulin-independent rate of glucose uptake p∗1 = kL1 + kP1
p∗2 Rate of decay of insulin action X∗(t) p∗2 = k∗3
p∗3 Rate of growth for X∗(t) p∗3 =

k∗2 (kL4 + kP4 )

V ∗
Both Ib Basal insulin concentration

2.3 Model-Dependent Measures of Insulin Sensitivity

Parameters from OMM and OMM* are used to define the measures of insulin
sensitivity SI and S∗I , respectively. Both SI and S∗I are defined to be a ratio of growth
and decay rates of the variables representing the effect of insulin on glucose, X(t)

and X∗(t): SI = p3

p2
V and S∗I =

p∗3
p∗2

V . X(t) describes the effect of insulin on total

glucose, so SI quantifies the sensitivity to insulin of both glucose suppression and
disposal; S∗I quantifies the sensitivity to insulin of glucose disposal only, since it is
based on the dynamics of the glucose coming from the meal, X∗(t).

The parameters p3 and p∗3 are the proportionality constants relating the growth of
the variables X(t) and X∗(t) to the difference between insulin concentration at time
t and basal insulin concentration, I (t) − Ib. The parameters p2 and p∗2 represent
the rate of decay of X(t). Therefore, SI and S∗I provide measures of how quickly
the effect of insulin changes as a function of raw insulin concentration; dividing
by p2 and p∗2 normalizes this effect by the individual’s intrinsic insulin dynamics.
Therefore, lower values of SI and S∗I represent reduced insulin sensitivity.

3 Structural Identifiability Analysis of OMM*

In order to use SI and S∗I as metrics for quantifying different aspects of insulin
sensitivity, it is necessary to be confident that the estimated parameters represent
a unique best fit to the measured data. This requires establishing the structural
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identifiability of the model. Structural identifiability, also known as a priori
global identifiability or system identifiability, refers to the theoretical possibility
of uniquely identifying model parameters from measured data. For establishing
structural identifiability, data is assumed to be known without error. The ability
to uniquely identify model parameters in practice using noisy data is known as
numerical or practical identifiability. Thus, structural identifiability is a necessary
but not sufficient condition for uniquely estimating model parameters.

Dalla Man and colleagues previously established that OMM is structurally
unidentifiable [14]. They asserted that OMM* is also structurally unidentifiable,
but they did not provide a formal analysis [15]. To address this gap, we applied the
Taylor expansion method (also called the power series expansion method) [21] to
analyze the structural identifiability of OMM*.

3.1 Taylor Expansion Method

The Taylor expansion method for determining structural identifiability analyzes
the power series expansion of the measurement function y(t) as a function of the
unknown parameters [21]. The measurement function y(t) = h(x(t),p) where x(t)

is the state vector, p is the parameter vector, and h(x(·),p) has infinitely many
derivatives with respect to the state vector components and with respect to time.
We let the superscript k denote the kth derivative. Since y is a unique function of
time, the condition that the set of equations

y(k)(0) = h(k)(x(0),p), k = 0, . . . ,∞ (6)

have a unique solution for p is sufficient to define a unique Taylor expansion for
y(t) and, thus, to establish the structural identifiability of the system [21]. For
a given parameter pi , the set of equations (6) may be used to determine if the
parameter is uniquely identifiable, identifiable (finite number of solutions for pi),
or unidentifiable (infinitely many solutions for pi) [10].

3.2 Determining Structural Identifiability of OMM*

To apply the Taylor expansion method to investigate the structural identifiability of
the final form of OMM*, we take the measurement function y(t) = h(x(t),p) =
Gmeal(t) where x(t) = [Gmeal(t), X

∗(t)] is the state vector, p is the parameter
vector, and h(x(·),p) has infinitely many derivatives with respect to the state vector
components. By restricting to the appropriate time interval (as discussed more
below), this system satisfies the assumptions on the existence of infinitely many
derivatives that are necessary to apply this method.
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Recall the final form of OMM*:

dGmeal(t)

dt
= −[S∗G +X∗(t)]Gmeal(t)+ Rameal(t;α)

V ∗
, Gmeal(0) = 0

dX∗(t)
dt

= p∗3[I (t)− Ib] − p∗2X∗(t), X∗(0) = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(7)

where I (t) is a measured input function; Ib is a fixed parameter; and S∗G, V ∗, p∗3 ,
and p∗2 and the parameters present in Rameal are the parameters to be estimated.

The functional form assumed for Rameal specifies the number and type of param-
eters to be estimated for Rameal . Previous work has compared piecewise linear,
spline, and dynamic models of Rameal to explore the effect of the functional form
for Rameal on estimated insulin sensitivity [14]. For all functional forms considered,
they found that estimates of SI were strongly correlated with independent estimates
of insulin sensitivity [14]. Therefore, we have adopted the piecewise linear form for
Rameal(t) to simplify the application of the Taylor expansion method as discussed
in more detail below.

The piecewise linear form for Rameal(t;α) takes the following form:

Rameal(t;α) =
{

αi−1 + αi−αi−1
ti−ti−1

(t − ti−1), ti−1 ≤ t ≤ ti , i = 1, . . . , n

0, otherwise
. (8)

Clearly, Rameal(t;α) depends on the parameters α, but we will suppress this
notation for clarity. When restricted to the interval [ti−1, ti], Rameal(t) reduces
to a linear function defined by αi and αi−1. Thus, the choice of a piecewise
form for Rameal guarantees that higher order derivatives will vanish on individual
intervals [ti−1, ti]. In order to ensure differentiability of Rameal, we will restrict
to individual intervals [ti−1, ti] for i = 1, . . . , n when taking derivatives. By
sequentially considering identifiability of the relevant subset of model parameters
on each interval [ti−1, ti] for i = 1, . . . , n, we will be able to evaluate identifiability
for all parameters p = [S∗G, p∗2, p∗3, V ∗, αi]T for i = 1, . . . , n.

For y(t) = Gmeal(t), we compute derivatives as follows:

y(t) =Gmeal(t)

y′(t) =− [S∗G +X∗(t)]Gmeal(t)+ Rameal(t)

V ∗

y′′(t) =− S∗G
dGmeal(t)

dt
− dX∗(t)

dt
Gmeal(t)−X∗(t)dGmeal(t)

dt
+

+ 1

V ∗
d

dt
Rameal(t)

...
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y(n)(t) =− S∗G
d(n−1)Gmeal(t)

dt(n−1)
+ 1

V ∗
d(n−1)

dt(n−1)
Rameal(t)−

−
n−1
∑

k=0

(

n− 1

k

)

d(n−1−k)X∗(t)
dt(n−1−k)

d(k)Gmeal(t)

dt(k)
.

We begin by considering the system on the interval t0 = 0 ≤ t ≤ t1 as
t → t+0 . In order to evaluate y(t) and its derivatives as t → t0, we first evaluate
Rameal(t), X∗(t), and their derivatives as t → t0. We have that Rameal(t

+
0 ) = α0,

and Rameal(0) = 0 which implies that α0 = 0. Therefore,
d

dt
Rameal(t

+
0 ) =

lim
t→t+0

[

α1 − α0

t1 − t0

]

= α1

t1
, and all higher derivatives of Rameal(t) are 0. Evaluating

X∗(t) and its derivatives as t → t+0 and letting z(t) = I (t) gives the following:

X∗(t+0 ) = lim
t→t+0

X∗(t) = 0

dX∗(t+0 )

dt
= lim

t→t+0

[

p∗3[I (t)− Ib] − p∗2X∗(t)
] = 0 since I (0) = Ib

d2X∗(t+0 )

dt2 = lim
t→t+0

[

p∗3
dI (t)

dt
− p∗2

dX∗(t)
dt

]

= p∗3z′(0)

...

d(i)X∗(t+0 )

dt(i)
= p∗3

i−1
∑

j=1

(−1)j−1(p∗2)j−1z(i−j)(0), ∀i ∈ N.

Finally, evaluating the measurement function y(t) and its first six derivatives at t+0 ,
we have

y(t+0 ) =0

y′(t+0 ) =0

y′′(t+0 ) = 1

V ∗
α1

t1

y′′′(t+0 ) =− S∗Gy′′(t+0 )

y(4)(t+0 ) =− S∗Gy′′′(t+0 );
y(5)(t+0 ) =S∗Gy(4)(t+0 )− 6

[

p∗3z′(0)
]

y′′(t+0 );

y(6)(t+0 ) =−S∗Gy(5)(t+0 )−10
[

p∗3z′′(0)− p∗2p∗3z′(0)
]

y′′(t+0 )−10
[

p∗3z′(0)
]

y′′′(t+0 ).
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Recall that the unknown parameters for this model on this time interval are
p = [S∗G, p∗2, p∗3, V ∗, α1]T . Summarizing the equations above, we represent these
unknown parameters in terms of the following derivatives of y(t) and z(t) which are
assumed to be known:

y′′(t+0 ) = 1

V ∗
α1

t1
(9)

y′′′(t+0 ) = −S∗Gy′′(t+0 ) (10)

y(5)(t+0 ) = S∗Gy(4)(t+0 )− 6
[

p∗3z′(0)
]

y′′(t+0 ) (11)

y(6)(t+0 ) = −S∗Gy(5)(t+0 )− 10
[

p∗3z′′(0)− p∗2p∗3z′(0)
]

y′′(t+0 )− (12)

− 10
[

p∗3z′(0)
]

y′′′(t+0 ). (13)

Solving (10) for S∗G, we establish that

S∗G = −
y′′′(t+0 )

y′′(t+0 )
(14)

is uniquely identifiable. Next, solving Eq. (11) for p∗3 establishes that

p∗3 =
S∗Gy(4)(t+0 )− y(5)(t+0 )

6z′(0)y′′(t+0 )
(15)

is uniquely identifiable. Similarly, solving (13) for p∗2 establishes that

p∗2 =
y(6)(t+0 )+ S∗Gy(5)(t+0 )+ 10p∗3z′′(0)y′′(t

+
0 )+ 10p∗3z′(0)y′′′(t

+
0 )

10p∗3z′(0)y′′(t
+
0 )

(16)

is also uniquely identifiable. It remains to consider the identifiability of V ∗ and α1.
Separating (9) into knowns (right-hand side) and unknowns (left-hand side), we

obtain
α1

V ∗
= t1y

′′(0). Thus, the parameter combination
α1

V ∗
is uniquely identifiable,

but the individual parameters α1 and V ∗ are not. Since both α1 and V ∗ drop out
of the y-derivatives after the second derivative, we cannot obtain any additional
information about these parameters from higher derivatives. Therefore, we have
established that OMM* is structurally unidentifiable on [t0, t1].

To investigate the identifiability of the αi parameters for i > 1, we consider
OMM* over different time intervals. We present an approach using t+1 to determine
α2; this approach may be generalized to use t+i to determine αi+1 for all i > 1.
From y(t) and its first derivative, we have y(t+1 ) = Gmeal(t1) and y′(t+1 ) =
−[S∗G + X∗(t+1 )]y(t+1 ) + α1

V ∗
. Since X∗(t+i ) is unknown for i �= 0, we cannot
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proceed directly as in the t = t+0 case. To solve for X∗(t+1 ) in terms of known
quantities, we take the first, second, and third derivatives of the entire system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dGmeal(t
+
1 )

dt
= −[S∗G +X∗(t+1 )]Gmeal(t

+
1 )+ α1

V ∗

dX∗(t+1 )

dt
= p∗3[I (t+1 )− Ib] − p∗2X∗(t

+
1 )

(17)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d2Gmeal(t
+
1 )

dt2 =− [S∗G +X∗(t+1 )]dGmeal(t
+
1 )

dt
− dX∗(t+1 )

dt
Gmeal(t

+
1 )+

+ 1

V ∗
α2 − α1

t2 − t1

d2X∗(t+1 )

dt2 =p∗3
dI (t+1 )

dt
− p∗2

dX∗(t+1 )

dt

(18)

and
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d3Gmeal(t
+
1 )

dt3
=− [S∗G +X∗(t+1 )]d

2Gmeal(t
+
1 )

dt2
−

− d2X∗(t+1 )

dt2 Gmeal(t
+
1 )− 2

dX∗(t+1 )

dt

dGmeal(t
+
1 )

dt

d3X∗(t+1 )

dt3 =p∗3
d2I (t+1 )

dt2 − p∗2
d2X∗(t+1 )

dt2 .

(19)

Substituting information from the second equations in (17) and (18) into the Gmeal

derivative in (19), we obtain an expression for
d3Gmeal(t

+
1 )

dt3 = y′′′(t+1 ) in terms of

y(t+1 ), its derivatives evaluated at t+1 , I (t+1 ) = z(t+1 ), its derivatives evaluated at t+1 ,
X∗(t+1 ), S∗G, p∗2 , and p∗3 that reduces to the following:

y′′′(t+1 ) = [2p∗2y′(t+1 )− (p∗2)2y(t+1 )− y′′(t+1 )]X∗(t+1 )−
− S∗Gy′′(t+1 )− p∗3z′(t

+
1 )y(t+1 )+ p∗2p∗3y(t

+
1 )[z(t+1 )− Ib]−

− 2p∗3y′(t
+
1 )[z(t+1 )− Ib].

(20)

In (20), all quantities are known except X∗(t+1 ), so we solve for X∗(t+1 ) to obtain
an expression in terms of known quantities:

X∗(t+1 ) =
(

1

2p∗2y′(t
+
1 )− (p∗2)2y(t+1 )− y′′(t+1 )

)

(

y′′′(t+1 )+ S∗Gy′′(t+1 )+

+ p∗3z′(t
+
1 )y(t+1 )− p∗2p∗3y(t

+
1 )[z(t+1 )− Ib] + 2p∗3y′(t

+
1 )[z(t+1 )− Ib]

)

.

(21)
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Substituting this expression for X∗(t+1 ) into the equation in (17) to obtain
dX∗(t+1 )

dt

in terms of known quantities, and substituting the resulting expression for
dX∗(t+1 )

dt
into the first equation in (18) gives the following:

d2Gmeal(t
+
1 )

dt2 =− S∗G
dGmeal(t

+
1 )

dt
− dX∗(t+1 )

dt
Gmeal(t

+
1 )−X∗(t+1 )

dGmeal(t
+
1 )

dt
+

+ 1

V ∗
d

dt
Rameal(t

+
1 )

=− S∗Gy′(t+1 )− dX∗(t+1 )

dt
y(t+1 )−X∗(t+1 )y′(t+1 )+ 1

V ∗
α2 − α1

t2 − t1
.

(22)

Recall that S∗G, p∗2, p∗3 and the parameter combination α1/V
∗ are uniquely identifi-

able from the analysis at t+0 . The functions y(t+1 ), y′(t+1 ), . . . , y(n)(t+1 ), and z(t+1 ),
z′(t+1 ), . . . , z(n)(t+1 ) are assumed to be known by definition, and we have established

that X∗(t+1 ) and
dX∗(t+1 )

dt
are known. Thus, separating the expression in (22) into

knowns (right-hand side) and unknowns (left-hand side) we obtain the following
expression for α2/V

∗:

α2

V ∗
= (t2− t1)

(

y′′(t+1 )+ S∗Gy′(t+1 )+dX∗(t+1 )

dt
y(t+1 )+X∗(t+1 )y′(t+1 )

)

+ t1y
′′(t+0 ).

(23)

As in the analysis at t+0 , both α2 and V ∗ drop out of higher derivatives, so higher
derivatives cannot provide additional information about these parameters. Thus, the

parameter combination
α2

V ∗
is uniquely identifiable, but the individual parameters

α2 and V ∗ are not uniquely identifiable. A similar result is obtained for αi for
i = 3, . . . , n using an analogous approach. Thus, the parameters αi and V ∗ are not
uniquely identifiable on any time interval, so OMM* is structurally unidentifiable.

4 Discussion

In order to use estimated model parameters to quantify metabolic features of an
individual patient, careful consideration of the modeling approach, its applicability
to a given experimental protocol, and its identifiability are necessary. In this work,
we applied the Taylor expansion method to examine the structural identifiability of
the labeled oral minimal model, OMM*. We established that OMM* is structurally
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unidentifiable due to inseparable parameter combinations involving the rate of
appearance of glucose from the drink (parameters αi, i = 0, . . . , n) and the volume
of distribution of labeled glucose, V ∗. To our knowledge, this work represents
the first detailed, formal analysis of structural identifiability for OMM*, and it
contributes to the existing literature examining the identifiability of other models
of glucose–insulin dynamics [9, 11, 14]. Future work considering the numerical
identifiability of OMM and OMM* will determine the precision of estimated
parameters given typical measurement error for these data and facilitate comparison
between distinct groups of participants.

Although our analysis established that OMM* is not structurally identifiable,
it also provided insights into relationships among parameters that may guide
appropriate numerical implementations of the model. Specifically, because V ∗ and
αi, i = 0, . . . , n appear as identifiable parameter combinations, these parameters
may be reliably estimated in submodels in which either V ∗ or αi, i = 0, . . . , n,
are fixed. Dalla Man and colleagues proposed a two-step implementation of OMM*
exploiting such structurally identifiable submodels [15]. In step one, they defined
a reference-labeled model, RM*, in which additional tracers were used to obtain a
model-independent representation of Rameal [5, 15]. Fixing this representation of
Rameal , they estimated the model parameters {S∗G, V ∗, p∗2, and p∗3}. In step two,
they defined a final model, FM*, in which V ∗ and S∗G are fixed to the values
estimated using RM*: V ∗ = V ∗ref and S∗G = S∗ref

G where V ∗ref and S∗ref
G are the

parameter values obtained for RM*. Then, they estimated the parameters p∗2, p∗3 ,
and αi for i = 1, . . . , n, and they used these parameters to compute S∗I .

Based on our analysis, both submodels of OMM*, RM* and FM*, are struc-
turally identifiable. In each submodel, certain subsets of the parameters of OMM*
are fixed, thereby enabling identification of the remaining parameters. Note that
fixing V ∗ is sufficient to establish identifiability of FM*; it is not necessary to
additionally fix S∗G, but this likely improves the numerical identifiability of FM*.
Although the submodels fail to represent the full physiology of the system in which
the rate of appearance of labeled glucose from the drink may interact with a possibly
dynamic volume of distribution, the two-step approach resulted in meaningful
estimates of insulin sensitivity. The estimates of S∗I from FM* were validated
against estimates of S∗I computed using the model-independent estimate of Rameal

as well as against estimates of insulin sensitivity measured in the same individuals
during a labeled intravenous glucose tolerance test [15]. The high correlation in
these measures suggests that the parameters estimated using the two-step approach
reliably quantify insulin sensitivity.

OGTT protocols are necessary for evaluating glucose–insulin dynamics in a
physiologic context, and the inclusion of stable isotopes in these protocols repre-
sents a powerful methodology for differentially tracking the dynamics of exogenous
and endogenous glucose in plasma following ingestion of the drink. Mathematical
modeling of these data allows quantification of exogenous and endogenous glucose
dynamics and their interactions with insulin, thereby providing meaningful metrics
for tissue-specific IR. However, models represent limited physiology, they must be
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tailored to the protocol employed, and the choice of a particular model introduces
model dependence into the analysis. Several models to describe OGTT data have
been proposed [1, 2, 16, 23], and some of these models include more detailed
physiology such as gut absorption dynamics or the role of glucagon in glucose–
insulin interactions compared to OMM and OMM* [14, 15]. Here, we focused on
OMM and OMM*, because these models have been successfully used to describe
the dynamics of labeled and unlabeled glucose during an OGTT. However, most
models for OGTT data, including OMM and OMM*, were developed using data
from healthy adult participants or adult participants with T2D. Additional work
is needed to determine the utility of these models for representing physiology in
populations with other demographics or disease conditions.

Finally, in this work, the Taylor expansion method was sufficient for establishing
structural unidentifiability of OMM*. This occurred, in part, due to the choice to
represent Rameal as a piecewise linear function; since higher order derivatives of
Rameal vanished, we could identify a general form for higher order derivatives of
y(t) and conclude that these derivatives would not yield additional information
about identifiability of model parameters. However, future work involving other
approaches to investigating structural identifiability, such as the differential algebra
approach, may be useful for gaining additional insights into OMM* and other
metabolic models [3, 6].
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Spike-Field Coherence and Firing Rate
Profiles of CA1 Interneurons During an
Associative Memory Task

Pamela D. Rivière and Lara M. Rangel

Abstract Flexible, dynamic activity in the brain is essential to information pro-
cessing. Neurons in the hippocampus are capable of conveying information about
the continually evolving world through changes in their spiking activity. This
information can be expressed through changes in firing rate and through the
reorganization of spike timing in unique rhythmic profiles. Locally projecting
interneurons of the hippocampus are in an ideal position to coordinate task-relevant
changes in the spiking activity of the network, as their inhibitory influence allows
them to constrain communication between neurons to rhythmic, optimal windows
and facilitates selective responses to afferent input. During a context-guided odor–
reward association task, interneurons and principal cells in the CA1 subregion of
the rat hippocampus demonstrate distinct oscillatory profiles that correspond to
correct and incorrect performance, despite similar firing rates during correct and
incorrect trials (Rangel et al., eLife 5:e09849, 2016). Principal cells additionally
contained information in their firing rates about task dimensions, reflective of highly
selective responses to features such as single positions and odors. It remains to be
determined whether interneurons also contain information about task dimensions in
their firing rates. To address this question, we evaluated the information content for
task dimensions in the firing rates of inhibitory neurons. Interneurons contained
low, but significant information for task dimensions in their firing rates, with
increases in information over the course of a trial that reflected the evolving
availability of task dimensions. These results suggest that interneurons are capable
of manifesting distinct rhythmic profiles and changes in firing rate that reflect task-
relevant processing.
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1 Introduction

Successful information processing in the brain is characterized by dynamic patterns
of neuronal activity that reflect information about the changing world. In the
hippocampus, a brain region important for learning and memory, these changes
often manifest as selective responses to features of the environment [1]. During
associative memory processing, neurons in the CA1 region of the rat hippocampus
have been shown to exhibit highly selective and reliable changes in firing rate
in response to specific spatial locations within an environment, stimuli such as
odors that are relevant for performance [2], and the conjunction of specific odors
in particular spatial locations [3–5]. Metrics that exploit these selective increases
in firing rate have been devised to quantify neuronal information content for
particular task features [3, 6–8]. These analyses have revealed subsets of neurons
in the hippocampus whose transient changes in firing rate reflect the availability of
behaviorally relevant features in the environment, leading to the hypothesis that the
hippocampus dynamically recruits appropriate neuronal ensembles in the service of
memory [9–13].

Associative memory processing is additionally accompanied by dynamic shifts
in the oscillatory profile of the local field potential (LFP) in the CA1 region of
the rat hippocampus [3]. In a context-guided odor–reward association task, rats
must learn that odors are differentially rewarded depending upon the context in
which they are encountered. During intervals in which rats correctly associated
odors with the contexts in which they were rewarded, we observed large amplitude
changes in the theta (4–12 Hz), beta (15–35 Hz), low gamma (35–55 Hz), and high
gamma (65–90 Hz) frequency ranges. A surprising indicator of performance was
the reorganization of spike timing with respect to the ongoing oscillations, such that
both interneurons and principal cells exhibited distinct profiles of engagement in
each of the four rhythms depending upon the trial outcome (correct or incorrect).
For example, while the largest proportion of interneurons exhibited consistent spike
timing relationships to each of the four frequency ranges during correct perfor-
mance, many exhibited spike timing relationships to only theta during incorrect
performance despite similar overall firing rates between correct and incorrect trials.
This finding revealed a previously underexplored task-relevant selectivity in the
rhythmic domain, and highlighted the dynamic patterns of activity in the interneuron
population as a hallmark of successful processing.

Having established that the selective reorganization of interneuron spike timing
is related to successful performance, we wished to additionally evaluate the extent
to which interneurons manifest selectivity for task dimensions in a manner similar
to principal cells of the hippocampus. Specifically, we tested whether interneurons
modulate their firing rates for different task dimensions. We have previously
reported that principal cells in the CA1 region of the hippocampus with distinct
profiles of engagement in theta, beta, low gamma, and high gamma differentially
represent task dimensions in their firing rates [3]. As the largest proportion of
interneurons exhibited engagement in all four rhythms during correct performance,
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we examined the information content in the firing rates of this subpopulation
for three key task dimensions: odors, positions, and odor–position combinations.
Our preliminary results suggest that this interneuron population exhibited low,
but significant information content for task dimensions in their firing rates, with
increases in information for odors and odor–position conjunctions that reflected
the availability of odor stimuli. This suggests that in addition to providing a task-
relevant oscillatory framework for the hippocampal network, interneurons may
convey information about task dimensions.

2 Materials and Methods

All experimental procedures were carried out as previously described in Rangel,
Rueckemann, Rivière et al. 2016 [3]. They are briefly described here.

2.1 Behavioral Paradigm

Rats performed a context-guided odor–reward association task in which odors
were differentially rewarded depending on the spatial context in which they were
encountered. In this task, rats were placed in a behavioral apparatus consisting of
two arms, or contexts, oriented at 180◦ with respect to each other and separated by a
central chamber (Fig. 1). Each context contained two odor ports. On each trial, rats
were given access to one of the contexts, which were distinct from each other on the
basis of their spatial location within the recording room. To further distinguish each
context, vinyl or plastic contextual wraps of different colors and textures were used
to cover each arm and face plate containing the odor ports. Rats learned to sample
odors presented in each port by poking their snouts in an odor port. LED sensors
within each odor port registered nose pokes (poke onset). Odors were delivered into
the odor port 250 ms after the initiation of a nose poke (odor onset). Odors were
presented in pairs that were consistent throughout the experiment. One odor of a pair
was assigned as correct in the first context, with the opposite odor assigned as correct
in the second context. Odor positions were pseudorandomized and counterbalanced
such that the rat had no prior knowledge of which odor port would contain the
correct odor of a pair. Correct trial: In order to receive a water reward, rats were
required to maintain a nose poke for 1500 ms in the odor port containing the correct
odor of a pair. If an odor port contained the incorrect odor, the rat needed to remove
his nose from the port before 1500 ms had elapsed from poke onset. Following an
exit from the incorrect odor port, the rat was allowed to move to the adjacent port
containing the correct odor, where he had to maintain a nose poke for 1500 ms to
receive his reward. Upon completion of a nose poke in the correct odor port, a water
reward was immediately delivered to an indentation in a tray positioned directly
under the odor port. Incorrect trial: Holding a nose poke for 1500 ms in the odor
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port containing the unrewarded odor resulted in a white-noise buzz and no water
reward on that trial. Rats encountered pairs of odors in blocks, with two blocks
of odor pairs per half-session (four odors in a half-session, eight odors in a full
session, 96 trials total). Contextual wraps with unique colors and textures covering
each arm were switched between half-sessions. Data was analyzed during 1500-
ms sampling intervals in correct odor ports (correct trials). Each half-session was
analyzed separately.

During behavioral training, rats completed 80 trials each day until they could
perform at 75% accuracy. Recordings began after rats achieved this performance
criterion. Only those sessions in which the rat achieved at least 75% accuracy were
included in the data analysis. Data during 1500-ms sampling intervals in incorrect
odor ports (incorrect trials) were excluded from analysis due to an insufficient
number of trials for each task dimension.

2.2 Neural Recordings and Interneuron Identification

We performed high-density extracellular tetrode recordings from the CA1 region
of the awake-behaving rat in order to obtain single cell and local field potential
(LFP) activity. Signals were amplified 4000–8000× and digitized at 40 kHz by
an Omniplex Neural Acquisition system (Plexon). Local field potentials (LFPs)
were digitally isolated with a band-pass filter from 1 to 400 Hz and spikes were
isolated with a band-pass filter from 400 to 8000 Hz. Putative interneurons were
isolated according to firing rates and waveform characteristics. Waveform features,
such as peak and valley voltage amplitudes and total peak-to-valley distance, were
compared across tetrode wires in OfflineSorter (Plexon). Interneurons clustered
according to mean firing rate (≥5 Hz), mean width at half of the maximum
amplitude of the waveform (< 150 μs), and mean temporal offset from peak to
trough (<350 μs) [14–16].

2.3 Local Field Potential and Spike-Phase Coherence Analyses

A third-order Butterworth filter was used to band-pass filter the LFP in the theta
(4–12 Hz), beta (15–35 Hz), low gamma (35–55 Hz), and high gamma (65–90 Hz)
frequency ranges. The instantaneous phase was then calculated by taking the
arctangent of the complex Hilbert transform of the filtered signal. For interneurons
demonstrating spike-phase coherence to all four frequency ranges (theta4–12 Hz,
beta15–35 Hz, low gamma35–55 Hz, and high gamma65–90 Hz) during correct trials (32
out of 67 total interneurons recorded, 6 rats, 53 half-sessions), the phase of the
filtered LFP at the time of each spike was recorded for the 1.5 s odor sampling
intervals leading up to reward delivery. Spike-phase relationships were assessed
using a Rayleigh statistic, and interneurons were categorized as significantly phase
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coherent to a rhythm if exhibiting a p < 0.05. This criterion was previously used
to identify interneurons with significant spike-phase coherence that, upon further
characterization, also exhibited differences in the magnitude and phase of coherency
across correct and incorrect trials [3].

2.4 Quantifying Information

For interneurons demonstrating spike-phase coherence to all four frequency ranges
(theta4–12 Hz, beta15–35 Hz, low gamma35–55 Hz, and high gamma65–90 Hz) during
correct trials, the information contained in the firing rate of the interneuron for
a task dimension (odors, positions, or odor–position conjunctions) was calculated
according to the following equation:

I =
n
∑

i=1

Pi

(

Fi

F

)

log2

(

Fi

F

)

(1)

Where i designates a variant of the task dimension (one of four possible odor
port positions, four possible odors, or eight possible odor–position combinations as
each odor is rewarded in more than one position), n is the total number of variants,
Pi is the probability of the occurrence of variant i, Fi is the mean firing rate during
the occurrence of the variant i, and F is the overall mean firing rate of the cell. To
determine whether calculated scores could be acquired by chance from the spiking
behavior of a given interneuron, task conditions were randomly shuffled 1000 times
and the observed information was considered significant if greater than the 95%
confidence interval of the condition-shuffled scores.

For the interneurons with significant information for a given task dimension,
additional information scores were calculated for three non-overlapping 500 ms
intervals that directly preceded and spanned the 1.5-s nose poke interval. These
intervals included a 750–250-ms interval prior to nose poke onset (before), the
500 ms interval after odor onset (odor), and the last 500 ms of the nose poke (end).
Differences in the median information across the three time intervals were assessed
using a Friedman’s test, with post hoc pairwise comparisons performed using a
Tukey’s Honest Significant Difference test.

3 Results

All interneurons with significant spike-phase coherence to theta4–12 Hz, beta15–35 Hz,
low gamma35–55 Hz, and high gamma65–90 Hz during correct trials (32 out of 67 total
interneurons recorded, 6 rats, 53 half-sessions, see Sect. 2) also contained significant
information for one or more task dimensions (odor, position, and odor–position)
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Fig. 1 Spike-field coherence and firing profiles of a single interneuron in the CA1 region of the
rat hippocampus. (a) Upper: Gabor spectrogram during the odor sampling interval of a single trial.
Middle: Corresponding raw local field potential and the band-pass filtered local field potential
in the theta (4–12 Hz), beta (15–35 Hz), low gamma (35–55 Hz), and high gamma (65–90 Hz)
frequency ranges. Lower: Spike times of a single interneuron that demonstrated significant spike-
field coherence to each of the four frequency ranges. (b) Circular histograms indicating the phases
of theta4–12 Hz (orange), beta15–35 Hz (blue), low gamma35–55 Hz (yellow), and high gamma65–90 Hz
(purple) at the time of each spike, with the direction of the mean resultant length vector (R) shown
by the arrow in black. P-values were calculated using a Rayleigh statistic. (c) Spiking activity
of the interneuron during the sampling intervals of rewarded odors on correct trials. Each row of
tick marks represents spiking during a single trial. Bar graphs above tick marks indicate mean
firing rates every 250 ms. The overall mean firing rate of this interneuron was 24.563 Hz. Center:
Schematic of the context-guided odor–reward association task. Pairs of odors are differentially
rewarded depending upon the context in which they are presented. (d) The spiking activity of this
interneuron contains significant information (see Sect. 2) for odors, positions, and odor–position
combinations. Information scores are indicated above distributions of information scores from
shuffled data
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in their firing rates. An example of an interneuron with significant spike-phase
coherence to all four rhythms and significant information for all three task dimen-
sions is shown in Fig. 1. The median information for odors was 0.015 bits/spike
(N = 21, interquartile range = 0.0194), the median information for position was
0.038 bits/spike (N= 47, interquartile range= 0.0720), and the median information
for odor–position was 0.041 bits/spike (N = 51, interquartile range = 0.0609). The
median of the average firing rates exhibited by this group of interneurons during
correct trials was 24.57 Hz (interquartile range 12.45 Hz).

Although there were interneurons with significant spike-phase coherence to
combinations of the four rhythms examined (e.g., theta only, theta and high gamma,
etc.), few of these interneurons also exhibited significant information for task
dimensions. For example, the population of interneurons with significant spike-
phase coherence during correct trials to only theta4–12 Hz (14 interneurons, 6 rats,
18 half-sessions) produced just three instances of significant information for each
task dimension. Given these low numbers, analyses were restricted to the population
of interneurons coherent to all four of the rhythms examined during correct trials.

We then tested whether the information for a specific task dimension changed
over the course of a trial (Fig. 2). We compared the information content during
the before, odor, and end intervals. The interneurons coherent to all four rhythms
exhibited an increase in odor information across the three intervals examined
(Friedman’s test: d.f. = 2, χ2 = 12.67, p = 0.0018). Post hoc comparisons

Fig. 2 Left: Median information (bits/spike) for odors for interneurons exhibiting significant
spike-phase coherence relationships to all four rhythms examined (theta4–12 Hz, beta15–35 Hz, low
gamma35–55 Hz, and high gamma65–90 Hz) during a 500-ms interval prior to nose poke (before),
a 500-ms interval directly after odor delivery (odor), and 500 ms prior to the end of the nose
poke (end). Vertical gray bars indicate the interquartile range. The top vertical line indicates
q3 + 1.5 × (q3 − q1) and the bottom vertical line indicates q1 − 1.5 × (q3 − q1), where q1
and q3 are the 25th and 75th percentiles, respectively. Asterisks (*) indicate a significant pairwise
comparison using a Tukey’s Honest Significant Difference test, p < 0.05. Middle: Same as in A,
for position information. Right: Same as in B, for odor–position information
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revealed that this increase occurred at the end of the nose poke, but not during
the interval immediately after odor delivery (Tukey’s Honest Significant Difference
test, p < 0.05 for comparisons of the before interval to odor and end intervals).
These interneurons also exhibited a similar increase in odor–position information
across the three intervals examined (Friedman’s test: d.f. = 2, χ2 = 11.76,
p = 0.0028) that occurred only at the end of the nose poke (Tukey’s Honest
Significant Difference test, p < 0.05). This interneuron group did not exhibit
increases in position information across the three intervals examined (Friedman’s
test: d.f. = 2, χ2 = 3.87, p = 0.1443).

4 Discussion

Our preliminary results suggest that interneurons may convey information about
task dimensions in their firing rates. The low, but significant information for task
dimensions in the interneuron population indicates that they have potentially subtle,
but reliable changes in firing rate that account for changing task conditions. Notably,
the median information for each dimension is roughly an order of magnitude lower
than previously reported medians derived from the firing rates of the pyramidal cell
population [3]. To illustrate the types of firing rate changes that might occur to
produce information scores of this magnitude, we provide the following extreme
case: an interneuron with a change in firing rate at only one of four positions, a mean
firing rate of 24.5741 Hz (the median for this group of interneurons), and a position
information value of 0.038 bits/spike (the median for this group of interneurons),
would need to exhibit a firing rate increase of approximately 14 Hz. The extent to
which this degree of selectivity impacts the hippocampal network remains to be
determined. Although the interneurons generally have low information values, more
analyses must be applied to better characterize the range and reliability of the firing
rate changes driving the significant information scores in this study [8, 17].

Interneurons demonstrated an increase in firing rate selectivity over the course
of the nose poke interval that reflected the availability of information about task
dimensions. Specifically, the relatively stable degree of information for position
before and during the odor sampling interval is consistent with the early availability
of position information prior to the nose poke. In contrast, information about odors
became available 250 ms after the initiation of a nose poke, and the interneurons
demonstrate increases in information for these dimensions only at the end of the
odor sampling interval. These results suggest that the selectivity of interneurons’
firing rates for these dimensions is a product of task-relevant engagement.

A number of future analyses could enhance the interpretive power of these
preliminary results. For instance, future characterizations of this data could employ
information measures that are more sensitive to the direction of changes (increases
or decreases) in firing rate demonstrated by interneurons over the course of a
trial. In addition, it would be informative to quantify information during a number
of additional intervals during the task, including incorrect trials, correct rejection
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trials, and reward consumption intervals. Quantifying information during these
additional intervals would help assess the degree to which the observed increases
in information are related to a reward. Further exploration will facilitate the
development of more nuanced and comprehensive hypotheses as to the mechanisms
through which interneurons contribute to successful information processing in the
hippocampus.

Leading hypotheses in the field have proposed that interneuron activity crucially
shapes the oscillatory profile of the hippocampus, providing a temporal scaffolding
within which pyramidal neurons can receive [18, 19], process, and successfully
transmit behaviorally relevant information [20, 21]. Support for this view stems in
part from the organization of the hippocampal network, where the locally projecting
interneuron population densely innervates large numbers of principal cells [22, 23].
This widespread innervation, compounded with high firing rates [24], amplifies
the impact of interneurons’ inhibitory currents and places interneurons in a unique
position to coordinate the simultaneous activity of large ensembles of pyramidal
cells. In particular, periodically occurring inhibitory currents create alternating
windows of suppression and relative excitability in the principal cell population,
ensuring that only precisely timed inputs are able to elicit principal cell responses
[21]. In this way, interneuron activity has the ability to simultaneously sculpt the
oscillatory profile of the hippocampus while constraining the subset of inputs to
which principal cells can respond [25]. The observed interneuron selectivity for task
dimensions suggests that interneurons are capable of shaping the overall information
content of the network through both the temporal coordination of principal cell
excitability and reliable changes in firing rate.

The mechanisms whereby interneurons acquire the observed selectivity for
task dimensions remain obscure. Here, we briefly consider two hypotheses for
the emergence of this information content. On the one hand, interneurons might
inherit information directly from the afferents that simultaneously recruit subsets
of principal cells in a feedforward inhibitory manner. It is also possible that the
observed firing rate selectivity for task dimensions in the interneuron population
emerges directly from their interactions with various ensembles of pyramidal cells,
each containing highly selective information for distinct task dimensions. Our
finding contributes to a growing body of evidence that interneurons are active
facilitators of task-relevant processing through at least two forms of selective
engagement: reorganization of spike timing into multiple rhythms and the con-
veyance of information about task dimensions through changes in firing rates
[14, 17, 26, 27].
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Learning-Induced Sequence Reactivation
During Sharp-Wave Ripples:
A Computational Study

Paola Malerba, Katya Tsimring, and Maxim Bazhenov

Abstract During sleep, memories formed during the day are consolidated in a
dialogue between cortex and hippocampus. The reactivation of specific neural
activity patterns—replay—during sleep has been observed in both structures and is
hypothesized to represent a neuronal substrate of consolidation. In the hippocampus,
replay happens during sharp-wave ripple complexes (SWR), when short bouts of
excitatory activity in area CA3 induce high-frequency oscillations in area CA1. In
particular, recordings of hippocampal cells which spike at a specific location (“place
cells”) show that recently learned trajectories are reactivated during CA1 ripples in
the following sleep period. Despite the importance of sleep replay, its underlying
neural mechanisms are still poorly understood.

We used a previously developed model of sharp-wave ripples activity, to study the
effects of learning-induced synaptic changes on spontaneous sequence reactivation
during CA3 sharp waves. In this study, we implemented a paradigm including three
epochs: Pre-sleep, learning, and Post-sleep activity. We first tested the effects of
learning on the hippocampal network activity through changes in a minimal number
of synapses connecting selected pyramidal cells. We then introduced an explicit
trajectory-learning task to the learning portion of the paradigm, to obtain behavior-
induced synaptic changes. Our analysis revealed that recently learned trajectories
were reactivated during sleep more often than other trajectories in the training field.
This study predicts that the gain of reactivation rate during sleep following vs sleep
preceding learning for a trained sequence of pyramidal cells depends on Pre-sleep
activation of the same sequence, and on the amount of trajectory repetitions included
in the training phase.
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1 Introduction

Memories are composed of three stages: acquisition, consolidation, and retrieval.
The consolidation phase provides memory resilience to interference, and is influ-
enced by sleep. Indeed, memory performance benefits from sleep [1–5], and specific
sleep features have been linked to increased memory performance [4, 6–8]. Sleep
is a stage in which the brain can be described as self-organizing, because it is not
processing external inputs. During sleep, the local average activity of brain regions
can be measured to find characteristic oscillations which vary across frequency,
brain regions, and timescales. Furthermore, experimental results show that the
coordination of brain rhythms during sleep promotes (and possibly mediates)
memory consolidation both in humans and animals [9, 10]. In particular, sharp-
wave ripples (SWR) are rhythms present in wake and sleep in the hippocampus, a
brain region which is crucial in encoding and retrieving recently formed memories
[11–13]. An SWR complex is formed by the combination of two events, both
occurring simultaneously in different layers of the local field potential (LFP) of
hippocampal area CA1. (1) In stratum radiatum, a large deflection (the sharp wave)
lasting 100–200 ms is caused by a barrage of excitatory inputs coming from area
CA3, where a large spiking event among the highly interconnected pyramidal cells
generates intense drive for area CA1 cells (both pyramidal and interneurons). (2) In
stratum pyramidale, high-frequency (>150 Hz) short-lived (50–80 ms) oscillations
(the ripple) are seen as a result of the CA3 input. In fact, the local fast-spiking
interneurons of CA1 are known to fire at high frequency for the duration of a ripple,
so their spikes are hypothesized to pace the oscillation [12, 14–17]. During a ripple,
CA1 pyramidal cells are receiving excitation from CA3 and inhibition at ripple
frequency from CA1 interneurons; as a result, most of them are suppressed, and
the few (about 10% [14, 15]) that spike do so within windows of opportunity left by
the local interneurons. In the following, we will refer to CA3 activity during SWR
complexes as “CA3 sharp waves” and the CA1 activity during SWR complexes as
“CA1 ripples.”

During learning, some hippocampal pyramidal cells (mostly located in CA1, but
also in CA3) that fire in a specific location as the animal explores an environment
have been labeled “place cells” [18–20]; and it has been shown that cells which
are active together during learning (e.g., place cells that code for nearby locations
explored during a recently learned task) also activate in the same SWR complexes
during sleep [21–23]. Furthermore, if the task involves learning a specific path and
the spikes of place cells along that path are recorded, the sequence of spikes among
those cells is reactivated in the correct order (in a time-compressed manner) during
CA1 ripples in the subsequent sleep epoch [24, 25]. A specific path learned during a
task can then be seen reactivated (in a time-compressed manner) during both awake
and sleep CA1 ripples [26]. Sequence reactivation during ripples in sleep directly
affects memory: both the spike sequences within ripples and the number of ripples
during sleep correlate with memory performance, and suppression of sleep ripples
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impairs memory consolidation [27, 28]. Hence, it is crucial to explain how spiking
activity related to learning enables the reactivation of the correct spike sequences in
ripples during sleep.

In general, the influence of learning over sleep reactivation content is performed
by comparing spiking in the nights before (Pre-sleep) and after (Post-sleep) a
learning paradigm. When place cells which code for locations that are relevant to
the learned task reactivate more strongly in Post-sleep compared to Pre-sleep, it
is hypothesized that learning the task has influenced the spiking content of SWR
complexes reactivation in both CA3 and CA1. The specific mechanisms mediating
such influences are yet to be determined. Common hypotheses involve synaptic
plasticity and neuromodulators, and the overall theory states that during learning
(and possibly during awake SWR complexes) synapses in the hippocampus are
changed, and those changes induce the enhanced representation of the learned
spiking sequences in SWR complexes during Post-sleep [13, 22, 25].

In vivo studies have shown that during sleep, pyramidal cells can be divided
into those involved in many CA1 ripples and those mostly not spiking in ripples,
and this separation seems to persist across days [11, 14–16]. Furthermore, in a
Pre-sleep/experience/Post-sleep paradigm, Grosmark et al. [29] have shown that
CA1 pyramidal cells can be separated into “rigid” and “plastic.” The rigid group
has a higher firing rate and low spatial specificity, and shows very little change
across the sleep/experience/sleep paradigm. The plastic group has a lower firing rate,
but shows increasing spatial specificity and increasing ripple reactivation during
the experience phase of the paradigm. The plastic cells are those which go on to
show increased bursting and co-activation during CA1 ripples in the Post-sleep
phase of the paradigm. In this work, we investigated how synaptic plasticity can
influence spontaneous reactivation of spike sequences during sleep in our previously
developed biophysical model of SWR activity, by focusing on CA3 activity in a Pre-
sleep/learning/Post-sleep paradigm. The effect of learning on cell reactivation was
first studied in a simplified representation, where we manually changed very few
synapses, and then in a learning paradigm that was explicitly modeled to represent
a “virtual rat” exploring an environment, within which a specific trajectory was
rewarded (and hence learned). The spike times obtained for the training phase
were used to induce offline spike-timing-dependent plasticity (STDP) [30–32] in
synapses among cells in the network, leading to different spiking profiles in Pre-
and Post-sleep simulations. We find that learning-dependent plasticity is able to
enhance the representation of cell sequences (and hence space trajectories) during
spontaneous CA3 sharp waves. Our model predicts that this enhancement depends
on the co-activation in the Pre-sleep epoch, the timing (within sharp waves) of the
first spike of the spike sequence, and the amount of training included in the learning
phase of the experiment.
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2 Results

2.1 Changes in the Minimal Number of Synapses can Promote
Reactivation of Cell Triplet in CA3

In this study, we started from our previously developed computational model of
stochastic, randomly emerging SWR complexes [33, 34]. This model includes two
hippocampal regions, CA3 and CA1 (Fig. 1a), each represented with pyramidal
cells (excitatory) and basket cells (inhibitory interneurons). Area CA3 has highly
recurrent excitatory connectivity [35] and sends excitatory projections to area CA1
(the Schaffer Collaterals), reaching both excitatory and inhibitory neurons [35].
Within CA1, the excitatory connections between pyramidal cells are very few and
sparse, as shown by experimental results [36]. Parameters for cells in our model
are chosen so that: (1) pyramidal cells have physiological firing rates and show
bursting [37], and (2) basket cells are fast-spiking neurons, with very low spike-
frequency adaptation, and are then capable of spiking at high frequencies in response
to sustained strong inputs [37]. While the rules shaping network connectivity stayed
the same, multiple instances of specific connectivity matrices were used, to represent
different “virtual rats” in our computational study.

Our CA3–CA1 model activity is carefully fitted to biophysical data derived
from in vivo sharp-wave ripple recordings. In agreement with data [11, 14–16,
38], our model shows: (a) the bursting input response of pyramidal cells and the
fast-spiking input response of interneurons [37], (b) the stochasticity of sharp-
wave ripple events in time, (c) the background activity being random and not
showing a specific frequency signature (called Large Irregular Activity in the
electrophysiology literature), (d) the low fraction of CA1 pyramidal cells spiking
during ripples and the large number of spikes from CA1 inhibitory cells during
ripples, (e) the ripple frequency and duration matching physiological data, (f) the
relative difference between pyramidal cell activity in CA3 sharp waves vs CA1
ripples (as shown in [11, 38, 39]) (see also [40]).

In our model, every cell was in a noise-driven spiking regime (as opposed to a
limit cycle periodic spiking regime), a feature which introduced random fluctuations
in the background network activity. Recurrence within excitatory neurons in CA3
was the gateway for occasional large excitatory spiking events (the sharp waves,
SPW) which were projected to CA1 interneurons and pyramidal cells (Fig. 1b).
Concurrently, the drive from CA3 sharp-wave spiking imposed high-frequency
firing on the basket cells of area CA1, which formed the structure for the ripple,
and determined the ripple frequency. All the while, CA1 pyramidal cells received
excitation from CA3 and inhibition from CA1 basket cells. Since CA1 pyramidal
cells lack recurrent excitatory synaptic connections to organize their firing, the
competition between these inhibitory and excitatory inputs only allowed a small
percentage of pyramidal cells in CA1 to spike during a ripple, with timing controlled
by windows of opportunity left by the ongoing inhibitory ripple oscillations (Fig.
1b). Note that in our model, sharp waves in CA3 did not invade the totality of
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Fig. 1 Changes in the minimal number of synapses can promote reactivation of cell triplet. (a)
Model schematic representation. The model includes 1200 pyramidal cells and 240 interneurons
in CA3, and 800 pyramidal cells and 160 interneurons in CA1. Connections within CA3 include
high recurrence among pyramidal cells, and a topological preference for neighbors within a radius
of about one third of the network. CA3 pyramidal cells project to CA1 cells (both pyramidal cells
and interneurons). Within CA1, the all-to-all connectivity is not effective between CA1 pyramidal
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the network, but were instead localized. This is consistent with in vivo recordings
showing that different simultaneous channels capture SWR complexes activity
differently [41]. Localized sharp-wave activity in CA3 drove localized ripple
activity in CA1, as can be seen in Fig. 1b. In this work, we took advantage of
the biophysical model of SWR spontaneous activity during sleep to analyze the
role of changing excitatory synapses in shaping the activation of cell sequences
across sharp waves in CA3. In previous studies of our model, we have shown how
reactivation in CA1 ripples crucially depends on reactivation in CA3 sharp waves
[33, 34]; hence, to understand how learning shapes reactivation in SWR complexes it
is necessary to start from reactivation within CA3 sharp waves. This study centered
on CA3 cells and their spiking activity during SWR complexes.

The main setup of this study (Fig. 1c) was to compare two model simulations,
one representing Pre-sleep (the sleep epoch preceding training) and one representing
Post-sleep (the sleep event following training). If the specific network connectivity,
parameters, and input-noise traces were kept the same in the Pre- and Post-
sleep simulations, the two sleep events would look identical. We imposed offline
synaptic modifications between Pre- and Post-sleep simulations to represent the
effects of a learning experience and then run a Post-sleep simulation where every
input and connections were copied from the Pre-sleep simulation, except for the
learning-modified synapses. To quantify how often any cell sequence reactivated
spontaneously across sharp waves in a simulation, we defined its “Ripple-activation
score” (R-activation score) as the percentage of SWRs during which all CA3 cells in
the sequence spiked in the correct order. For example, if during a given simulation
8 SWR complexes are found, and the triplet ABC spiked in this order in all 8 sharp
waves, it would have an R-activation score of 100%, but if triplet ABC was found in
order in only 4 sharp waves, it would have an R-activation score of 50%. Note that
even if we concentrated our analysis on CA3 spiking activity and synapses within

�
Fig. 1 (continued) cells, which are weakly and sparsely connected. (b) Example of model network
SWR activity. Noise-driven spiking in CA3 occasionally triggers an excitatory cascade of spikes
in pyramidal cells and interneurons (the sharp wave, SPW). Spiking of CA3 pyramidal cells drives
CA1 interneurons to spike in short-lived high-frequency ripples (RPL), while CA1 pyramidal
cells receive competing excitation from CA3 and later inhibition from CA1 interneurons. A few
CA1 pyramidal cells are driven to spike within windows of opportunity left by the rhythmic
local inhibition. (c) Representation of the main question addressed in this work: Comparing the
reactivation of cell sequences in two sleep epochs, and study the role of learning in shaping
the difference. In our model, we represent learning by altering synaptic connections as shown
in the middle plot: AMPA synapses promoting the spiking order “ABC” are increased, and the
AMPA synapses promoting the opposite spike order are removed. In addition, NMDA synapses in
the direction favoring “ABC” spiking are introduced. Data from one example simulation is used
to show how spiking changes in Post- vs Pre-sleep simulations. Matrices show an example of
spike-time differences between three selected pyramidal cells in the CA3 network in a Pre-sleep
simulation (c i) and a Post-sleep simulation (c ii). The bar plots (c iii–iv) show the R-activation
score (% of ripples in which a given triplet spiked) for the ordered triplet “ABC” and all its
permutations. Note that the “ABC” order R-activation is larger for Post-sleep than it is for Pre-
sleep
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CA3, we used the outcome of full CA3–CA1 network simulations to detect ripple
events in CA1, and only sharp waves in CA3 which induced ripples in CA1 were
used for the CA3 spiking analysis (in fact, we have shown that only CA3 sharp
waves which are large enough and synchronous enough will induce a ripple in CA1
[40]). This motivates the label of R-activation score in our analysis.

As for representing the effects of learning on synaptic changes, there are many
possible factors to consider (for example, inhibitory mechanisms [42]). However,
synaptic plasticity at AMPA synapses, mediated by changes in NMDA connections,
has been shown to occur between hippocampal excitatory cells in spike-dependent
synaptic plasticity paradigms [43, 44], where the relative timing of spikes of a
pre- and a postsynaptic cell regulates the resulting change in synaptic strength.
In particular, the mechanism of long-term potentiation (LTP), in which synapses
are strengthened and remain stronger for a long time after the spiking of pre-
and postsynaptic cells causes them to change, affecting AMPA synapses through
changes in NMDA receptors, is still considered the main mechanism through which
the hippocampus carries out learning of declarative memories [45]. In hippocampus,
LTP results in increased AMPA receptors, counterbalanced by decreased presence
of AMPA receptors at synapses where spike timing shows postsynaptic cells spiking
consistently before the presynaptic cells (known as Long-Term Synaptic Depression
[46], and possible increase of NMDA receptors (hence we introduced NMDA in
our connections). In the real brain, many of the detailed possible variants to this
mechanism are present, but the 3 steps we implemented in this test are (at least
in principle) known to happen together, which is why we included them all in the
picture.

In a first simplified setting, we chose three CA3 pyramidal cells (cells A, B,
and C) to form an ordered triplet (our most simple cell sequence) and found their
R-activation score during the Pre-sleep simulation (in Fig. 1c iii, one example
of ABC R-activation score is shown together with the R-activation scores of all
its permutations). We then altered the excitatory synaptic connections between
the ABC cells as follows (Fig. 1c, center panel): we found the strengths of
AMPA (short-lived) excitatory synapses which connect A to B and B to C, and
replaced their synaptic strengths with the maximum value across all the CA3–CA3
pyramidal cell synapses in the network. We also introduced NMDA (long-lasting)
excitatory synapses between A–B and B–C cells. Finally, we removed (if present)
the excitatory AMPA synapses from B to A and from C to B. It is to note that in Pre-
sleep there are no NMDA synapses in the network, so we did not need to remove any
of them. In the example of Fig. 1c, this artificial change in very few synapses in the
network led to a strong increase in the R-activation score of ABC in the Post-sleep
simulation (Fig. 1c iv). The ability of the new synapses to improve the reactivation
of the ABC spiking sequence was further supported by the comparison between the
average spike-time differences between cells of the triplet in Pre- (Fig. 1c i) and
Post-sleep (Fig. 1c ii).
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2.2 Pre-Sleep Activation Modulates Learning-Induced Gain
in Post-Sleep Reactivation

Using the setup we developed in the previous section, we could represent activity
in the Pre- and Post-sleep phases and quantify the change in sequence reactivation
between the two sleep stages due to synaptic changes introduced during learning.
Across multiple Pre-sleep simulations (n = 17), we found an inherent range of
R-activation scores for ordered cell triplets (Fig. 2a) which, surprisingly, was not
uniformly distributed among triplets. In fact, we could fit a log-normal curve to the
distribution, in agreement with numerous experimental observations [11, 12], which
also emphasizes that this type of variance in cells firing rates and R-activations
could optimize coding strategies for the hippocampal system. We chose to study
the effects of changing few synapses over a pool of ABC triplets spanning 0–25%
R-activation scores in the Pre-sleep simulation to cover most of the range of R-
activations found in the distribution (see Computational Methods for details on how
the cells composing each triplet were chosen). Each simulation/triplet pair (which
can be thought of as representing a subject/task pair in an experimental study)
then underwent the synaptic modifications introduced in Fig. 1c: maximized AMPA
synapses favoring the triplet order, removing AMPA synapses opposing the triplet
order and introducing NMDA synapses along the maximized AMPA ones. For each
simulation/triplet case, we then compared Pre- and Post-sleep R-activations of the
ABC triplet. We call the difference between the Post-sleep score and the Pre-sleep
score for a triplet its “Score Gain.” In Fig. 2b, we show that the Score Gain of
a triplet correlated with its Pre-sleep R-activation, and hence when this simplified
learning was applied to a triplet with too high R-activation during Pre-sleep it could
not increase its R-activation, or might even have decreased it. This is intuitively
coherent with some kind of “ceiling effect,” in which Post-sleep R-activation could
only reach a preset amount (possibly limited by the overall spontaneous network
activity, which is imposed by average network properties) and hence a Pre-sleep
R-activation too high limited the available range for Gain.

In this simplified representation of a learning effect on synapses, it is important
to note that the first cell in the triplet (cell “A”) does not receive any change in its
input in Post-sleep compared to Pre-sleep. In some sense, this procedure could be
overlooking the very beginning of the sequence to be reactivated, and that could
be the reason why there was such a hard ceiling effect on the R-activation Gain
for triplets in Fig. 2b. To address this limitation, we first “prolonged” our test set,
introducing a fourth cell to the sequence undergoing artificial synaptic manipulation.
The rules for changing synapses stayed the same: maximize AMPA connections
in the direction of the ordered sequence (A to B, B to C, and C to D), remove
AMPA connections opposing the ordered sequence (B to A, C to B, and D to C),
and introduce NMDA connections where AMPA connections were maximized. In
this case, we could compare the R-activation Score Gain of two triplets within each
test: ABC and BCD. The first triplet, just like in Fig. 2b, would not receive any
enhancement to its first cell, but for the second triplet (BCD), its first cell would be
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Fig. 2 Pre-sleep activation modulates learning-induced gain in Post-sleep reactivation. (a) Dis-
tribution of triplet reactivation scores across 17 simulations lasting 50 s. The red line shows
a log-normal distribution fit to the data (mean = 1.6921 with 95% CI 1.6621–1.722, standard
deviation = 0.6125 with 95% CI 0.5921–0.6345). (b) Gain in post-sleep reactivation is higher for
triplets with lower pre-sleep activation. Each dot is a separate simulation pair, in which a triplet
“ABC” R-activation is found in the Pre-sleep (x-axis value) and in the Post-sleep. The y-axis
shows the difference between Post- and Pre-sleep R-activation score (i.e., Score Gain). The line
shows a linear fit which emphasizes the statistically significant negative correlation (r = −0.476,
p = 0.0004). (c) Gain in Post-sleep R-activation increases if the first cell of the triplet receives
extra synaptic input. Comparing triplet “ABC” and “BCD” in simulations where the changes in
synapses were applied along the word “ABCD.” Hence, triplet “BCD” has all cells receiving
extra synaptic input, while in triplet “ABC” only the last two cells do. Plot shows the average
Post–Pre R-activation score gain across 15 simulation tests, lasting 50 s, and error bars mark
standard deviations. Having synaptic input on the first cell of the sequence gives an extra gain
to the R-activation in Post-sleep (paired student’s t-test p = 2.3545 × 10−8). (d) Gain on Post-
sleep reactivation can increase with increased intrinsic excitability of first cell in triplet. The bar
plot shows the gain in R-activation score (Post-sleep minus Pre-sleep) for triplet “ABC” when
only synapses are manipulated (left bar) compared with the case in which synapses and intrinsic
excitability of cell “A” are manipulated to represent learning. Error bars mark standard deviation.
Note that on average the gain is higher for triplets with enhanced intrinsic excitability in the first
cell (paired student’s t-test p= 0.003). In this case, we could only use triplets in which the first cell
did not have a high intrinsic excitability in Pre-sleep (artificially increasing intrinsic excitability
can lead to the cell spiking behavior changing from noise-driven to DC-current driven, and hence
the cell spikes continuously and decoupled from network activity) (10 simulations used). (e) If
the increase in intrinsic excitability is too large, no further gain is introduced. Bar plot shows
the difference introduced by additional intrinsic excitability to cell “A” compared to Post-sleep
with only synaptic manipulation. Error bars mark standard deviations. Each triplet received a fixed
(equal) amount of increased excitability and such amount could be doubled (2xInt.Exc) or tripled
(3xInt.Exc). Note that while the first bar shows that additional excitability to cell “A” can lead to
increased gain (as compared to a case where only synapses are manipulated) the range of efficacy
of such increase is small. In fact, additional increase in excitability does not reflect in additional
gain in Post-sleep R-activation. Statistically, the first bar is different from zero (p = 0.003), while
the other two are not (2xInt.Exc p = 0.0191, 3xInt.Exc p = 0.0129, student’s t-test)
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receiving enhanced excitatory synaptic input, both fast (AMPA) and slow (NMDA).
In Fig. 2c, we show that extra excitatory synaptic input to the first cell did provide an
advantage in Score Gain by comparing the Score Gains of the two different triplet
types across 15 simulations. It is to note that the two distributions were significantly
different (paired Student’s t-test p = 1.9 × 10−6), which implies that input to the
first cell in the triplet is capable of driving Post-sleep enhanced activation. In line
with this observation, we next tested whether enhancing the changes of R-activation
of the first cell in the triplet by means other than synaptic excitatory input could still
introduce a favoring bias in Score Gain for a triplet. In fact, it is known that cells
of the same type in the same region still show a range of firing rates (log-normally
distributed [47]), a property which is considered useful for network coding of past
and new information [29]. This heterogeneity in firing rates was introduced in our
model via a direct current parameter representing a cell’s “intrinsic excitability”
(IDC in the equation for membrane voltage, see Computational Methods), and has
been shown to arise from heterogeneity in synaptic strength distribution in other
models of CA3 sharp-wave activity [48]. It is known that different mechanisms can
possibly alter a cell baseline (i.e., in the absence of additional input) firing rate
and behavior, such as effects of the neuromodulators on conductances [49–51] or
the balance of ionic concentrations [52]. To test if a learning-induced change in
intrinsic excitability of the first cell in the triplet could compensate for the lack of
additional synaptic input, we compared 10 simulations in which the same triplet
underwent only synaptic changes (same paradigm as for Fig. 2b) or received a
small increase of the intrinsic excitability in addition to the synaptic changes. In
Fig. 2d, we show that a small increase in synaptic excitability of the first cell in
the sequence led to enhanced Score Gain from Pre- to Post-sleep R-activation of a
triplet. When we increased the intrinsic excitability amount added to cell “A,” we
found (Fig. 2e) that the effect was quickly saturated such as doubling or even tripling
the increase could not significantly increase the Score Gain from Pre- to Post-sleep.
This suggests that while increased excitability in the first cell could contribute to
enhancing Score Gain, the overall Post-sleep R-activation was not fully dominated
by any one given factor, such as synaptic excitatory inputs or intrinsic excitability,
but rather established by their interaction with the overall network activity (and
hence the Pre-sleep R-activation).

2.3 Simplified Learning Extends Word Length Reactivation

Within the same simplified approach of representing the effect of learning over
hippocampal network connectivity by manually changing a small set of hand-
selected synapses, we extended our analysis to sequences of spikes longer than
a triplet. We chose a length of seven cell spikes to build our sequence, as SWR
complexes are short-lived events and fitting longer sequences within a single event
would be hard. In fact, there is an ongoing hypothesis that memories of paths which
would require a long sequence of many place cells are reactivated across multiple



Learning-Induced Sequence Reactivation During Sharp-Wave Ripples. . . 183

SWR complexes which happen in a very quick sequence (SWR packets [11]). While
our computational model shows SWRs happening at times in groups interspersed
by long pauses (data not shown), in this work we focus on characterizing how
changes in synapses affect changes in R-activation within CA3 across many SWR
complexes, and longer sequences would introduce an ulterior complexity, possibly
masking relevant effects.

We represent a sequence of 7 cells with the 7-letter “word” ABCDEFG. In Fig.
3a, we show one example of the changes introduced in synaptic connectivity by our
artificial learning representation. In comparing the matrices of synaptic connection
weights between the cells representing ABCDEFG in the network, we maximized
the connections favoring the direction of ordered reactivation, which resulted in a
high synaptic strength in the upper diagonal of the Post-sleep synaptic connections
matrix in Fig. 3a, and removed the connections favoring the opposite reactivation
order, which resulted in all zeros in the lower diagonal of the Post-sleep synaptic
connections. Note that all other connections between cells in the sequence were
left unchanged. Furthermore, the middle schematic in Fig. 3a shows that NMDA
connections were also attributed to the synapses which had maximized AMPA
connection weights (further details on the composition of the sequence of 7 cells
are reported in Computational Methods).

To quantify the effect of these synaptic changes on the R-activation of cells
in the sequence, we considered progressively longer sub-words within the total
word length, always starting from cell “A.” Hence, we looked at the word “A”
(length 1), “AB” (length 2), “ABC” (length 3), “ABCD” (length 4), etc. all the
way to the full “ABCDEFG” word (length 7). For each word considered, across
the different lengths, we found the percentage of SWR events in which the whole
word was reactivated in the correct order, and called that the R-activation score of
each word. We could then compare the R-activation scores of words of length 1–7
in Pre- and Post-sleep. It is important to study words of different lengths, because
in principle the sequence could activate only in part, representing an incomplete
memory reactivation, and estimating how much of the memory (i.e., the sequence)
is reactivated in CA3 in the presence of spontaneous sharp-wave activity, and
how learning influences the completeness of reactivation, is the objective of this
study. In Fig. 3b, we show one example of the outcome of one simulation (Pre-
and Post-sleep): as it is intuitively necessary, the R-activation scores are lower for
longer words, as they include the shorter ones. In this case, our artificial synaptic
manipulation resulted in larger R-activation during Post-sleep of word of all lengths
but the full one, meaning the last cell never spiked at the end of the whole sequence.
It is to note that this measure is strict in the sense that it does not count the
reactivation of partial words in the sequence unless it represents a chunk from the
beginning (i.e., reactivation of BCDE in an SWR is not counted). One reason why
long sequences have very low probability to activate in our model is introduced by
the structure within the sequence of spikes imposed by learning (i.e., the synaptic
changes). In fact, while learning does enhance synapses to promote the “next spike”
in a sequence, no synaptic strength is raised so high that it would cause a spike
for sure, as this would be nonphysiological. Hence, the pattern completion with a
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Fig. 3 Learning extends word length reactivation. (a) Changes in synaptic connections
introduced in the paradigm. Drawing in the middle shows the manipulation we introduce to
synaptic connectivity. AMPA synapses favoring the correct reactivation order were strengthened,
while NMDA synapses favoring the word order were introduced. AMPA synapses promoting
spiking in order opposite to the word order were removed. Matrices show the spike-time
difference among cells which constitute the ABCDEFG word in one example simulation, both
in Pre-sleep and in Post-sleep. (b) Learning increases word R-activation at many lengths in one
example simulation. Plot shows the R-activation scores for words of increasing lengths (“A” = 1,
“AB” = 2, “ABC” = 3, etc.) both in Pre-sleep (blue bars) and Post-sleep (green bars). (c)
Across 14 simulations, the plot shows the differences between Post-sleep R-activation score and
Pre-sleep R-activation score of words of increasing lengths, averaged. Error bars show standard
error. (d) Length of word reactivation is related to the timing of word initiation during the sharp
wave. For each word activating during ripples, the time of spike of the first cell “A” (with respect to
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7-letter word would be very hard to implement for the network activity. Assuming
independence of events, we can estimate that if the probability of postsynaptic spike
occurring after presynaptic spike within a sequence is P < 1, then the probability
of having all 7 letters would be Pˆ7. Indeed, one can see in Fig. 3 that with each
additional letter length in our reactivating word sequence, the ability of the network
activity to pattern complete is reduced. Using this measure, we could subtract the
Pre-sleep R-activation from the Post-sleep R-activation scores to obtain a Score
Gain for the R-activation of words of increasing lengths. Across 14 simulations
(the ones where the ABCDEFG sequence had an activation score below 23%), we
found that artificially manipulating a small number of synapses promoted the R-
activation of the sequence at all word lengths during Post-sleep (Fig. 3c). When
studying the R-activation of triplets of cells (Fig. 2), we had found that inputs to
the first cell in the triplet could influence the synaptic-induced Score Gain. For a
longer sequence of spikes, the role of the first cell in the sequence was likely to
still be relevant. In particular, we reasoned that the timing of the first spike in the
sequence would affect the possible word length (within the sequence) which could
reactivate in a given SWR complex: if the first spike happened too late in the CA3
sharp wave, only a small portion of the sequence could reactivate within the event
duration. We found the time of the first spike (referenced to the time of the sharp-
wave peak) for all words reactivating in a simulation, and plot them grouped by
word length (Fig. 3d, n = 14 simulations, all Pre-sleep), and noticed that while
the times were spread in a range (from −100 ms to +400 ms) the average time
moment of the first spike was advanced for longer words compared to the shorter
ones. In fact, for words of length 1 (single spikes), the average time of the first
(and only spike) was after the sharp-wave peak, for words of length 2 (“AB”) it
was slightly before the peak, and length 3–5 showed an average first spike timing
preceding the peak progressively, up to about 100 ms earlier. This property (the
earliness of first spike in longer reactivations) was true for both Pre- and Post-
sleep simulations (Fig. 2d), and the plots of word length vs first spike time did
not look different in Pre- vs Post-sleep, meaning our plasticity manipulation did not

�
Fig. 3 (continued) the peak of the sharp wave) is found and plotted against the length of the word,
as a red dot. N = 14 simulations, all Pre-sleep (i.e., before learning changes were introduced). The
blue error bar identifies the mean and standard deviation of the all the dots corresponding to the
words of the same length. The dotted horizontal line marks the peak of a sharp wave. Note that
for longer activating words, the average timing of the first spike in a sharp wave is progressively
advancing. (e) Learning-induced gain of R-activation of long words depends on timing of first cell
in Pre-sleep. For each simulation, two values are computed: (1) the fraction of sharp waves in which
cell “A” spiked at least 12 ms before the sharp-wave peak and (2) the difference between Post-
and Pre-sleep R-activation scores (i.e., the score gain) for words of length 4 or above (summing
the values of panel C for lengths 4–7). These two values are plotted against each other in the
scattergram, where the fraction of sharp waves with early A spikes is the x-coordinate, and the
total score gain is the y-coordinate. The linear fit shows a positive correlation (linear correlation
r = 0.6327 with significance p = 0.0203). Note that in this figure we have discarded the data point
(0.9667, 30.81) deemed an outlier because of its extremely high Score Gain
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result in a generalized advancement in time of the first cell spike. Hence, whenever
our plasticity manipulation induced a large Score Gain for long sub-words, it had
to prolong the length of a reactivated short sub-word which started early enough
within a sharp wave. Based on this idea, we compared for each simulation the total
Score Gain for words of length 4 and above with the fraction of the total cell A
spikes during Pre-sleep which happened early in a sharp wave. Figure 3e shows
the scatterplot of such comparison, confirming a statistically significant positive
correlation.

2.4 Experience-Related Learning: From Rat Trajectory to New
Synaptic Connections

The next step in our modeling effort was to introduce an explicit relationship
between a spatial learning experience and changes in synaptic connections, so that
to create a virtual machinery in which a “rat” alternates spatial experiences (which
can trigger learning among the network synapses) and sleeping experiences (which
will show spontaneous reactivation during SWR activity). While modeling efforts
to relate trajectory exploration to specific spiking of cells in a biophysical model
have been developed [53–55], the specific mechanisms by which spatial perception
results in place cell activity are currently under investigation and are not the main
subject of our study. Hence, we chose to not design a network spiking model of
the awake state, but instead to introduce a phenomenological model of place cell
spiking activity as our awake/learning state.

To model the learning phaseof the “virtual rat,” we follow a paradigm used to
study episodic memory processing [56, 57]. We started by defining a 2-dimensional
virtual enclosure (20 × 20 cm in size) and distributing 81 identical “place fields”
along the surface: 2-D Gaussian bumps of integral 1 with peaks evenly spaced, as
shown in Fig. 4a. In this virtual exploration enclosure, we introduced 8 locations
of interest, marked with blue diamonds above the place fields in Fig. 4a. These
locations could be of interest to the virtual rat because there could be feeders or other
types of reward placed at any or all of these locations. In this virtual enclosure, we
represented a learning task consistent with the experiments which drove this model
[56, 57]: we assigned to 3 of the feeders a special relevance (circled in yellow in
Fig. 4a) and we made the virtual rat explore 3 of these feeders in a fixed order,
defining a learning trajectory (yellow arrows in Fig. 4a). A learning experience
was then constructed by a string of locations to be reached in time, where the 3
ordered learning targets were interspersed with 3 randomly chosen (varying each
time) locations among the remaining 5. This produced a space exploration path on
the virtual enclosure (xt,yt), where t represents time, and x and y are the spatial
coordinates on the 2-dimensional virtual enclosure. As the virtual animal traveled
along its path within the enclosure, it traversed a number of place fields, triggering
spikes with probabilities drawn from a Poisson process with rate given by the



Learning-Induced Sequence Reactivation During Sharp-Wave Ripples. . . 187

Fig. 4 Experience-related learning: from rat trajectory to new synaptic connections. (a) Represen-
tation of how a trajectory in space creates artificial spike times for selected CA3 cells. The available
space is tiled by regions over which place fields are defined. Each field is assigned to a specific
cell. The field defines the relationship between the rat coordinates in space and the probability of
a cell to spike. The diagram on the right shows the procedure connecting a trajectory experience
to a change in synaptic connections. (b) Example of spiking of cells during learning experience.
In the rastergram, each dot represents a spike time (x-axis) of a given cell (y-axis). In red are the
spikes of cells subsequently used to identify a spiking sequence ABCDEFG for replay analysis
(“trajectory cells”). In the shaded times, the “virtual rat” is exploring the sequence of locations to
be learned (“trajectory”). In between times, the animal is exploring randomly selected locations. (c)
Synapses between trajectory cells (red in b) before and after applying trajectory-driven plasticity
(matrices on either side). Middle plot: representation of the function mediating the STDP rule used
to connect spike times (as in b), after time compression, to synaptic changes
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place field spiking probability. This is consistent with the experimental measures
which have shown that place fields can be reconstructed from the locations of
spike times of place cells and can be fitted with 2-D exponentials [20]. Hence, for
each exploration path (xt,yt), we considered spikes from 81 virtual cells encoding
the place fields assigned to them. One example of such trajectory-induced spiking
activity is shown in Fig. 4b, where the spike times of a subset of all place cells are
shown and shaded in gray are the times in which the virtual animal was completing
the assigned relevant trajectory across the 3 rewarding feeders (in yellow in Fig. 4a).
In red, we marked the spikes of cells with place fields along the straight portion of
the path connecting the 3 relevant feeders, which can be seen spiking in order during
the shaded times.

In an actual experiment, place cell spiking during exploration would happen
within low-frequency (3–8 Hz) theta oscillations in the LFP [12] and would be
interspersed with awake CA3–CA1 SWR events, within which the recently learned
sequences are known to reactivate, in a time-compressed manner [11, 58]. It is
hypothesized that synaptic plasticity within cells spiking during the awake SWR
events is mediated by spike-time-dependent plasticity (STDP) mechanisms [30, 58,
59], which strengthen synapses according to the relative spike timing of the pre- and
postsynaptic cell. Specifically, if the presynaptic spike precedes the postsynaptic
spike of a short time the connection is maximally strengthened, while if the time
gap is wider the strengthening is a lot smaller. Vice versa, when a postsynaptic
spike precedes a presynaptic spike the connection is weakened. Hence, to model
the change in synaptic connection strengths induced by a given learning/exploration
experience we time-compressed the awake spike times by a factor of 10 and used a
classic STDP rule to quantify the synaptic changes occurring between cells due
to the spike times in the learning phase (see the middle panel in Fig. 4c, and
Computational Methods).

This portion of the setup completed the connection of an exploratory trajectory
to spike times of a group of cells, and then to the computation of the STDP-induced
rescaling of synaptic connections between those cells. This awake virtual structure
had to be connected with our biophysical model of sleep SWR activity for the three-
stage paradigm of Pre-sleep, learning, and Post-sleep to be completed. By assigning
each place field within the virtual enclosure to a given cell in the CA3 network,
we could bridge the gap between awake virtual model and biophysical model of
sleep. For each place cell in the enclosure, we selected one cell in our CA3 network,
which was randomly assigned within a range of cell indexes. The range of CA3
pyramidal cells was selected to have a high likelihood of co-activation during SWR;
since SWR are localized within the network topology, the 81 indexes were assigned
to a range of cells of 100 indexes (detailed in Computational Methods). Since the
cells belonged to the CA3 network, a specific synaptic strength value was already
known from the Pre-sleep SWR activity simulation (see in the left panel of Fig. 4c
one example). The effect of STDP on virtual synaptic connections which resulted
from the awake computation was then assigned offline to the synaptic connection
strengths between the corresponding CA3 cells, hence completing the flow diagram
shown in Fig. 4a. One example of the resulting difference in synaptic connections
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between Pre- and Post-sleep that was induced by this procedure is given in Fig. 4c.
Note that for each simulation we identified a subgroup of 7 cells among the 81 CA3
cells selected, to be the ones that host the spike sequence which is “recorded” during
our virtual experiment, and hence whose change in R-activation between Pre- and
Post-sleep was the subject of our analysis.

2.5 Experience Learning Increases Trajectory Reactivation
in Post-Sleep

Once we had this explicit model of the Pre-sleep, learning, and Post-sleep paradigm,
we could observe the different R-activation of cells with place fields along the target
trajectory in the two sleep epochs. In in vivo experiments, it is known that awake
learning promotes reactivation in the subsequent sleep [21, 23–25], so we first tested
if our model satisfied this requirement. Since once again it was a list of 7 cells, we
used the same measure of R-activation developed in the simplified learning case
(when we only manually changed some synapses, Fig. 3). Figure 5a shows one
example of the R-activation of the 7 “trajectory” cells in Pre- and Post-sleep, for
each word of increasing length, all starting from the first cell (“A,” “AB,” “ABC,”
etc.). For each word length, we computed its Score Gain as the difference between
Post- and Pre-sleep R-activation scores and Fig. 5b shows that across 14 simulations
we had an increase in R-activation at many lengths, although the longest sub-words
proved difficult to obtain.

In the virtual rat setup, we proceeded to study the role of different learning
experiences on the R-activation changes between Pre- and Post-sleep. For each
simulation in Fig. 5b, we had a spatial experience trajectory (performed during the
learning phase). We repeated each simulation experiment using only half of the
spatial experience trajectory. Since the exploration of the regions of interest leading
to sequence learning was uniformly distributed along the spatial experience, this
paradigm can be thought of as roughly halving the amount of training that the virtual
rat received on the relevant feeders. We labeled the two training conditions “long
learning experience” and “short learning experience.” Even with reduced learning,
we still expected the plasticity induced by the spatial exploration experience to
promote the R-activation of the cell sequence in Post-sleep. In Fig. 5c, we show one
example of Post- and Pre-sleep R-activation scores in the short learning experience,
confirming this expectation. However, reducing the learning time affected the Post-
sleep R-activation: across all our simulations, the Score Gain of the short learning
experience was smaller than the Gain for the long training (Fig. 5d).

In our learning experience, the virtual rat visited a sequence of 3 specific targets
followed by 3 random targets, and then again the 3 specific targets, followed by 3
new random ones, etc. Hence, the path covered by the spatial learning experience
involved in general spiking from any or all of the 81 CA3 cells with place fields
tiling the spatial enclosure. Thus, while the goal of the experiment was to learn
a specific selected sequence, in principle, many other trajectories could have also
been learned—at least partially. If the learning of selected sequence was effective,
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Fig. 5 Experience learning increases trajectory reactivation in Post-sleep. (a) Trajectory learning
increases sequence reactivation during sleep. The R-activation score of sequences of trajectory
cells of increasing lengths (e.g., 1 = “A,” 4 = “ABCD”) in one example of Pre- and Post-sleep
simulations. (b) Score Gain (Post-sleep score minus Pre-sleep score) for the cell sequences of
increasing lengths. Bar shows mean value across 14 simulations, error bars mark the standard
error. (c) Shorter learning experience results in reduced gain of sequence R-activation. Example
of R-activation score of sequences in a Pre- and Post-sleep simulation with trajectory-learning
time reduced to one half. (d) Score Gain across sequence length in the case of long vs short
learning experience. Note that at every length the increase in R-activation Post-sleep compared to
pre-sleep is higher for stronger learning. Error bars mark the standard error of the mean across
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not only that sequence would reactivate more in Post-sleep compared to Pre-sleep,
it would also reactivate more in comparison to other nonselected paths. To verify
if the learning experience was effective at separating the learned selected trajectory
from occasional random trajectories, we compared the R-activation of a number
of other possible trajectories, connecting any 3 feeders/targets in the enclosure, to
the R-activation of the learned selected trajectory. In Fig. 5e, we show a view of
the virtual enclosure from above, with circles representing the half-height of the
place fields of the 81 pyramidal cells assigned to a given simulation. In red, we
emphasize the path connecting the learned trajectory and the place fields of the
cells which compose the spiking sequence “ABCDEFG” used in all quantifiers
of R-activation scores above (Fig. 5a–d). In green, we mark one example of a
different trajectory which was not the learning trajectory and of place fields of cells
along its path (one Random Trajectory). We collected a 7-cell long sequence for
each possible 3-target trajectory given by the 8 target enclosure (a total of 336
samples), and for each sequence we found the Pre- and Post-sleep R-activation
for sub-words of increasing lengths. Since we wanted to compare learned and
non-learned trajectories, we introduced a single number Trajectory R-activation
Score as follows. For each length of a sub-word (from 1 to 7), we considered
representative of a reactivation of a sub-word of length n all the ordered strings
of letters of length n showing immediate neighbors within the main (7-letter) word.
For example, for a sub-word of length 4, the representatives would be “ABCD,”
“BCDE,” “CDEF,” and “DEFG” (but “ACEF” would not qualify). The percentage
of SWR in which any of the representatives of a sub-word of length 4 was spiking
gave the R-activation score for length 4. A Trajectory Score in a given simulation
(Pre- or Post-sleep) would then be defined as the sum of all R-activation scores
across all length (1–7). The difference between the Post-sleep Trajectory Score and
the Pre-sleep Trajectory Score then produced a Trajectory Gain. When the average
Trajectory Score across all Random trajectories within the enclosure was compared
with the Learned trajectory, the Learned trajectory scored above average in all but
one simulation (Fig. 5f). Hence, our behavior-driven synaptic plasticity paradigm
could enhance specific trajectory reactivation with high reliability. This type of test
would have been impossible in the simplified learning setup where we artificially
changed only very few synapses in the network but no cell spiking activity was
explicitly considered as coding for something specific in the awake epoch.

�
Fig. 5 (continued) 14 simulations. (e) Example of the circular enclosure and two possible spatial
trajectories: the trajectory which is learned in the task (in red) and one that is not learned in the task
(in green). To compare the efficacy of learning on Score Gain, we tested 336 possible trajectories
(green) for each simulation against the red trajectory. (f) For each simulation (n= 14), we compare
the Pre- and Post-sleep R-activation of different trajectories. The red dots show the Trajectory
Score Gain for the learned trajectory in each simulation, and the green dots show the Trajectory
Score Gain averaged among the other 336 trajectories tested (Random Trajectories), which were
not learned but were possibly visited in the task epoch. Lines connect dots belonging to the same
simulation
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3 Conclusion

In this work, we used computer models to study the impact of changing synaptic
connectivity within the hippocampal CA1–CA3 network on the cell reactivation
properties. We first introduced limited targeted synaptic changes between selected
CA3 pyramidal cells, representing the effects of a learning experience in between
two successive simulations of SWR activity, building a sequence of Pre-sleep, learn-
ing, and Post-sleep. We then expanded the learning epoch to represent explicitly a
spatial exploration and path learning task, and applied STDP to trajectory-driven
spiking to build a relationship between learning and connectivity, and hence study
how learning can affect reactivation during sleep. For the sleep epochs, we used our
previously developed model of SWR activity in CA3 and CA1 hippocampal regions.
In this new work, we studied reactivation in the CA3 network component.

Specifically, for a given triplet of cells (Figs. 1 and 2) representing part of
the experience that was learned, we manually strengthened excitatory (AMPA)
synapses favoring the triplet R-activation order, removed synapses opposing it,
and introduced some NMDA connections (again favoring the triplet order) (Fig.
1). Such manipulation in general resulted in a higher R-activation of the ABC
triplet in the Post-sleep compared to the Pre-sleep (Fig. 2). We found that the R-
activation gained in the Post-sleep compared to Pre-sleep depended on the Pre-sleep
score: triplets with lower Pre-sleep scores reached higher gains. Note that altering
only AMPA connections (through potentiation and depression) without introducing
any new NMDA connections would not result in significant difference between
Post- vs Pre-sleep activation (data not shown), which reinforced our idea that a
combination of AMPA–NMDA effects could represent the minimal set of learning
changes capable of inducing increased sleep reactivation. Furthermore, our study
highlighted a role for input (synaptic or increased intrinsic excitability) to the “first”
cell of the sequence in promoting Post-sleep sequence reactivation, and in particular
how timing of the first cell is crucial to the length of a sequence to be reactivated
during an SWR (Fig. 3).

In this work, we concentrate on the mechanisms that can influence pattern
completion in CA3 during sharp waves, as our previous analysis showed that
selective input to CA1 cells is effective at inducing CA1 replay during ripple [34],
and we shape the analysis of learning-induced changes in the context of sleep
reactivation changes. Cutsturidis and Hasselmo [60] have defined a model of activity
in CA1 and medial septum, showing awake learning and sleep reactivation. In this
model, which does not have CA3 spiking activity, the synaptic changes that mediate
sleep sequence replay are placed at the projections from entorhinal cortex and CA3
onto CA1 pyramidal cells. Consistently with their idea, it is likely that a study that
focuses on CA1 replay before and after learning would have to introduce synaptic
plasticity at CA3-to-CA1 excitatory connections, and possibly address a role of
input from entorhinal cortex to CA1 pyramidal cells.

The design of a full “virtual rat learning experience” model was inspired by rat
behavioral paradigms used to study hippocampal ripple replay in an open enclosure
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(Fig. 4). We designed a trajectory in space with a high amount of repetitions for three
specific locations interspersed with varying groups of three random locations. We
selected a group of CA3 pyramidal cells (81) and assigned to each of them a place
field: a region in space where they were more likely to spike. Hence, for a given
trajectory we could use Poisson processes to assign to each of the 81 cells spike
times along the trajectory. We used these spike trains to calculate the effects of spike-
time-dependent plasticity (STDP) along the trajectory, and changed AMPA and
NMDA synaptic connections in the whole CA3 network according to the resulting
STDP (Fig. 4). This method was again used to represent a learning experience in
between two sleep simulations, and 7 cells with place fields along the trajectory were
selected to represent the memory of the trajectory. When comparing R-activation in
Pre- and Post-sleep (Fig. 5), we found that synaptic plasticity driven by the learning
experience increased the spontaneous R-activation of the memory in CA3 during
ripples, that such gain was dependent on the length of the learning experience and
that while all cells involved in the learning process received changes in their synaptic
connectivity the sequence representing the learned trajectory showed a larger gain
than an exhaustive sample of other possible trajectories in the same enclosure.

Combining what we learned from the simplified synaptic change conditions with
what we learned from our virtual rat learning experience, our study suggests the
following hypothesis: that within the hippocampal system the choice of pyramidal
cells that are recruited to encode for a specific task actively learned (a proxy for a
human declarative memory) cannot be completely randomized. Instead, the pool of
cells which are ready to be used for learning is tightly connected to the specifics of
their reactivation activity in the previous night of sleep. In other words, the learning
process operates in interaction with the network substrate, not independently of
it. Thus, the synaptic changes mediating the selection of specific pyramidal cells
for ordered co-reactivation during a Post-sleep event can be minimal, if the choice
of cells used to code for the learning process is efficient. Specifically, the model
predicts that a minimal number of synaptic adjustments can promote the largest
increase in R-activation during Post-sleep for cell assemblies with a relatively low
Pre-sleep R-activation score and with the first cell in the group showing early spiking
during SWR in the Pre-sleep epoch. This hypothesis is consistent with recent data
showing that across days and nights, some hippocampal cells can be classified as
rigid (with not changing firing rates and participation in ripples), while other cells
are able to learn and increase their involvement in SWR activity after being activated
during the day [29].

We consider the model we present here a prototype which can be expanded
to analyze and shape hypotheses related to a number of open questions, for
example: (1) the influence of hippocampal reactivation on cortical reactivation can
be studied in this model when connecting it to thalamocortical models of sleep
rhythmic activity [61, 62], together with the role of cortical input in hippocampal
SWR replay; (2) which synaptic changes are performed in the hippocampus when
learning competing (interfering) memories, and how they can affect sleep-dependent
consolidation of interfering memories [2, 63, 64]; and (3) the model can be expanded
to introduce plasticity to interneurons, and physiological awake spiking activity in
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the whole CA3–CA1 network (characterized by theta–gamma rhythmic interaction
during active exploration [65]) to study the relationship between the theta phase
spiking of a sequence and its reactivation during sleep SWR [29, 38].

This study suggests an explicit mechanism for STDP-mediated learning to
interact progressively with SWR across one sleep–learning–sleep cycle, and can be
interpreted within the broader problem of learning progressively new things across
multiple learning/consolidation (awake/sleep) cycles. One hypothesis is that sleep-
dependent memory consolidation happens when reactivation of cell sequences in
the hippocampus enables cortical reactivation, which in turn promotes plasticity
within cortex, ultimately transferring the encoding of the memory information from
the short-term storage of the hippocampus to the long-term distributed storage of
cortex. It is known that across many days retrieval of a specific memory becomes
progressively independent from hippocampal reactivation [4]. Our work suggests
that as hippocampal sequences become less necessary to the memory consolidation
process of a specific sleep cycle, they will reactivate less in SWR and therefore will
become better suited to be used for coding new experiences in the following day.
This evokes a scenario of cell assemblies “ranked” by their co-reactivation during
Pre-sleep, where some will be used for learning, and hence increase their SWR co-
activation in Post-sleep while the ones not used for learning will reactivate even
less in Post-sleep. This progressive “degradation” of a memory representation in the
hippocampus during sleep is generating a pool of readily available cell assemblies
to use for coding the next day.

4 Computational Methods

4.1 Sleep Epochs Network Model

Sleep Model Representation of Sleep Activity

The model we use in this study to represent sleep spiking activity was derived from
the CA3–CA1 network model introduced in [40, 66], which shows physiologically
realistic spiking activity as follows: in the intervals between different SPW-Rs, the
model shows [34, 40, 66, 67] Large Irregular Activity [11, 14, 15, 17, 38], the
occurrence of sharp-wave ripple events in CA3–CA1 network is not periodic, the
spiking activity of excitatory and inhibitory cells matches SWR activity in fraction
of cells spiking and spike count, and the high-frequency activity in CA1 local field
potential during ripples matches experimental data [11, 14, 15, 47]. Specifically,
both in data and in our model, the frequency of a ripple in CA1 is ∼160 Hz, the
length of time intervals between two sharp-wave ripples is distributed exponentially,
with fitted rate ∼1.7 Hz, and each ripple event lasts between 50 and 80 ms.

A crucial role in the fitting of model behavior to known stochastic hippocampal
activity was played by the choice of having cells in a noise-driven spiking regime,
rather than oscillatory state. This was done to achieve in vivo-like spiking by
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addition of a noise current, which would mimic the input applied in dynamic clamp
experiments when introducing in vivo-like conditions in hippocampal slice [68,
69]. The selection of parameters leading to cell-specific activity is motivated in the
Rationale section, and consistent with biological data.

Rationale

We started with our previously developed [34] network of CA1 pyramidal and
basket cells and constructed a network of pyramidal and basket cells to represent
CA3 activity, then built Schaffer Collaterals projections from CA3 pyramidal cells
to CA1 pyramidal cells and interneurons. We used equations of the adaptive
exponential integrate and fire formalism [70, 71], which can show bursting activity
(like CA3 and CA1 pyramidal cells [37]) or fast-spiking activity (like basket cells
[37]) depending on their parameters [70]. CA3 pyramidal cells are allowed a
stronger tendency to burst in response to a current step input by having a less
strong spike-frequency adaptation than CA1 neurons, consistently with data [37].
For simplicity, all cells belonging to the same population had the same parameters
(specified in the following section). To introduce heterogeneity, every cell receives a
different direct current term (selected from a normal distribution), together with an
independent Ornstein–Uhlenbeck process (OU process) [72], which can be thought
of as a single-pole filtered white noise, with cutoff at 100 Hz. This noisy input is
added to take into account the background activity of the cells which we did not
explicitly model in the network. The standard deviation of the OU process controls
the size of the standard deviation in subthreshold fluctuations of cell voltages,
and is a parameter kept fixed within any cell type. Once the parameter tuning
is in effect, the cells (even when disconnected from the network) show fast and
noisy subthreshold voltage activity, and their spikes are nonrhythmic, driven by
fluctuations in the noise input they received, which is called a noise-driven spiking
regime, rather than a deterministic spiking regime, and is representative of in vivo
conditions [68, 69, 73].

Cells are arranged within a one-dimensional network in CA3, and connectivity
within CA3 is characterized by each cell reaching other cells within a third of
the network around them, which is consistent with anatomical estimates [74].
For pyramidal to pyramidal cells connections, the probability of synaptic contact
within this radius of one third was higher for neurons closer to the presynaptic
cell and decayed for neurons further away. Details of all network connections are
introduced in the Connectivity section. Intuitively, the highly recurrent connections
between pyramidal cells in CA3 have a gradient in density that induces a conver-
gence/divergence connectivity fairly uniform across all CA3 pyramidal cells, which
represents the homogeneity of CA3 pyramidal cells arborization within the region.
This connectivity represents the highly recurrent pyramidal connections in CA3
without introducing special hubs of increased excitatory recurrence in any specific
location in the network.
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Our CA3–CA1 network is populated by one type of hippocampal inhibitory
cells: basket cells. Despite the large number of different interneuron types found
in the hippocampus, basket cells are the dominant subtype of interneuron in and
near the pyramidal cell layer of both CA3 and CA1. They are the most extensively
studied in the context of sharp-wave ripple activity, although other inhibitory cell
types have been shown to spike in relation to SWR (O-LM cells stop spiking right
before the SWR, so do axo-axonic cells). Basket cells are known to dominantly
spike during ripples in CA1, and no special role for different interneuron subtypes
has been identified in CA3 spiking activity during sleep. Different interneurons are
hypothesized to serve modulatory roles, perhaps contributing to gating the initiation
of ripples (those who stop spiking right before ripples) and a theoretical big picture
on this topic is proposed by Taxidis [75].

Equations and Parameters

We model SWR activity in the hippocampus using a network of 240 basket cells and
1200 pyramidal cells in CA3, and 160 basket cells and 800 pyramidal cells in CA1.
The ratio of excitatory to inhibitory neurons is known to be approximately 4 [37]
and since in our model we did not introduce any of the numerous hippocampal
interneuron types but for basket cells, we apply that ratio to the pyramidal to
basket cell network. This ratio also favored the ability of the network to support
a background disorganized spiking regime, where excitatory and inhibitory currents
were able to balance each other [76]. For each neuron, the equations are

C v̇ = −gL (v − EL)+ gL� exp

(

(v − Vt )

�

)

− w + I (t)

τwẇ = a (v − EL)− w

v(t) = Vthr ⇒ v (t + dt) = Vr,w (t + dt) = w(t)+ b

I (t) = IDC + βηt + Isyn(t)

τ dηt = −ηtdt + dWt

CA1 cells parameters are reported in [34], and CA3 cells parameters were as
follows. Pyramidal cells parameters: C (pF) = 200; gL (ns) = 10; EL (mV) = −58;
a = 2; b (pA) = 40; � (mV) = 2; τw (ms) = 120; Vt (mV) = −50; Vr
(mV)=−46; Vthr (mV)= 0. Interneurons parameters: C (pF)= 200; gL (ns)= 10;
EL (mV) = −70; a = 2; b (pA) = 10; � (mV) = 2; τw (ms) = 30; Vt (mV) = −50;
Vr (mV) = −58; Vthr (mV) = 0.



Learning-Induced Sequence Reactivation During Sharp-Wave Ripples. . . 197

The coefficients establishing noise size were β = 80 for pyramidal cells, β = 90
for interneurons. DC inputs were selected from Gaussian distributions with mean
24 (pA) and standard deviation 30% of the mean for pyramidal cells in CA3, mean
130 (pA) and standard deviation 30% of the mean for CA3 interneurons, mean 40
(pA) and standard deviation 10% of the mean for CA1 pyramidal cells, and mean
180 (pA) and standard deviation 10% of the mean for CA1 interneurons.

Synaptic currents were modeled with double exponential functions, for every cell
n we had Isyn (t)=∑160

j=1 g
j→n sj→n(t) (vn−Ei)+∑800

j=1 g
j→nsj→n(t) (vn−Ee),

where Ei = − 80 mV and Ee = 0 mV, and sj→n(t)=∑tk
F

(

e
H
(

t−tk
τD

)

−eH
(

t−tk
τR

))

,

where tk are all the spikes of presynaptic cell j.
In this equation, F is a normalization coefficient, set so that every spike in the

double exponential within parentheses peaks at one, and H(•) is the Heaviside
function, ensuring that the effect of each presynaptic spike affects the postsynaptic
current only after the spike has happened. The timescales of rise and decay (in ms)
used in the model were as follows [34, 75, 77, 78]. For AMPA connections from
pyramidal cells to pyramidal cells: τR = 0.5, τD = 3.5. For AMPA connections
from pyramidal cells to interneurons: τR = 0.5, τD = 3. For GABAA connections
from interneurons to interneurons: τR = 0.3, τD = 2. For GABAA connections from
interneurons to pyramidal cells: τR = 0.3, τD = 3.5. For NMDA synapses between
CA3 pyramidal cells, which we add in the learning paradigm and are hence present
in Post-sleep network activity simulations, τR = 9, τD = 250 [37].

Connectivity

The CA3 network was organized as a one-dimensional network. For connections
from a CA3 pyramidal cell to the other CA3 pyramidal cells, we first considered
a radius (of about one third of the network) around the presynaptic cell, and
the probability of connection from the presynaptic cell to any cell within such
radius was higher for cells with indexes nearby the presynaptic cell and reduced
progressively with cell index distance [74]. Specifically, we used a cosine function
to shape the probability within the radius, and parameterized how fast with index
distance the probability had to decay by using a monotonic scaling of the cosine
phase: if x was the index distance within the network, y = arctan(kx)/arctan(k)
imposed the decay probability p(y) = Pcos(4y), where P was the peak probability
and k = 2 was a parameter controlling the decay of connection probability with
distance within the radius. An analogous structure underlied the probability of
CA3 pyramidal cells to connect to inhibitory interneuron in CA3 and for Schaffer
Collaterals to connect a CA3 pyramidal cell to CA1 pyramidal cells [74]. To
balance the relationship between feed-forward excitation from pyramidal cells
to interneurons and feedback inhibition from interneurons to pyramidal cells,
probability of connection from a presynaptic basket cell to a cell within a radius
(about 1/3 of the network size) was constant at 0.7, for GABAA connections to
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both CA3 pyramidal cells and interneurons. Within CA1 connectivity was all-
to-all, with the caveat that synaptic weights which were sampled at or below
zero caused a removal of a given synapse. As a result, most synapses between
CA1 pyramidal cells were absent, consistently with experimental findings [36].
To introduce heterogeneity among synaptic connections, synaptic weights for all
synapse types were sampled from Gaussian distributions with variance (σ) given
by a percent of the mean (μ). Parameters used in the simulations were (we use the
notation Py3 and Py1 to denote pyramidal cells in CA3 and CA1, respectively, and
analogously Int3/Int1 for interneurons) as follows: Py3→ Py3: μ= 34, σ= 40%μ;
Int3→ Int3: μ = 54, σ = 40%μ; Py3→ Int3: μ = 77, σ = 40%μ; Int3→ Py3:
μ = 55, σ = 40%μ; Py3 → Py1: μ = 34, σ = 10%μ; Py3 → Int1: μ = 320,
σ = 10%μ; Int1→ Int1: μ = 3.75, σ = 1%μ; Py1→ Int1: μ = 6.7, σ = 1%μ;
Int1→ Py1: μ = 8.3, σ = 1%μ; Py1→ Py1: μ = 0.67, σ = 1%μ. It is to note
that the mean (μ) declared was normalized by the total number of cells before the
variance to the mean was introduced in the distribution. Since the CA3 and CA1
networks are of different sizes, a direct comparison of the parameter values or their
magnitude across regions would not account for the effective values used in the
simulations. Learning epochs models.

Introducing Targeted Synaptic Changes

“ABC” Triplets Analysis

In the CA3 network, we looked for pyramidal cells that had a chance to reactivate
in a large fraction of spontaneous SWR. In our model, the probability of SPW
participation among CA3 cells depends on network topology, and in particular
looks bimodal with peaks about cell index 350 and 750 (data not shown). Hence,
we started from an interval of accepted cell indexes between 700 and 800. Three
cells within this range were then chosen uniformly (using function randperm in
MATLAB, The MathWorks). For each Pre-sleep simulation (we had 15 samples,
each 50 s long), 20 sets of 3 cells were first randomly chosen and then cells within
the sets were permuted, generating a set of 120 ordered triplets. From this pool, three
triplets were chosen with the criteria that no two triplets could be a permutation of
each other and that their R-activation scores in Pre-sleep were spanning a range
of available scores (meaning one triplet was chosen with a low score, one with a
medium score, and one with a high score). Hence, we had a pool of 45 triplets with
Pre-sleep R-activation Scores roughly spanning the available range.

For each triplet of cells “ABC,” we manually modified some AMPA and NMDA
synapses between the cells composing the triplet. The synaptic weights of AMPA
synapses favoring the order of the triplet (A→ B and B→ C) were increased to the
maximum AMPA synaptic strength value within the specific Pre-sleep CA3 network
(remember for every simulation the synaptic connectivity matrices were generated
anew). Along the maximized AMPA synapses, we introduced NMDA synaptic
connections with a fixed value, identical for all simulations (1.25 ns, normalized
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by the total number of added NMDA synapses), which was found to be efficient
at promoting co-activation during SWRs without enhancing the spiking activity of
cells beyond physiological values. Finally, the weights of AMPA synapses which
were favoring the reverse order of the triplet (C→ B and B→ A) were replaced by
zeros. The new Post-sleep simulation was then run for 50 s.

The R-activation Score was found using the spike times of the cells in the triplet.
The spike times of the three cells were required to be between the start and end of
the SPW event in CA3. The first spike of each cell was used to identify the order in
which the cells spiked relative to each other. The R-activation Score of a triplet in
a simulation was the percent of the total SWR in which the ordered triplet spiked
(meaning each cell of the triplet spiked at least once and in the correct order). The
Score Gain was found by taking the difference between the R-activation Score in
Post- and Pre-sleep. To verify whether the cells were spiking in the correct order,
we also quantified the average spike-time difference (STD) across triplets.

We analyzed the input received by the triplet “ABC” by using synaptic and
intrinsic excitability modifications. For the synaptic modifications, an additional
cell “D” was randomly chosen from the cell index range 700–800. This cell was
added to the end of each of the ordered triplets from the 15 simulations. The same
synaptic modifications in the NMDA and AMPA synapses were performed between
the additional cell and the last cell of the triplet. The Score Gain between the triplet
“ABC” and “BCD” was then compared to analyze the effect of altering the synapses
between “A” and “B” on the replay of “BCD.” To confirm whether the input of the
first cell influences the replay of the triplet, the intrinsic excitability of the first cell in
the triplet was modified. The DC input of the first cell (IDC in the membrane voltage
equation) was increased by 2 pA (a small value, chosen to maintain the cells in a
noise-driven spiking regime without driving them to an oscillatory bursting spiking
regime). This intrinsic excitability was then doubled and tripled.

“ABCDEFG” Sequences

We tested the effects of targeted synaptic modifications for longer cell sequences
(7 cells, represented with the word “ABCDEFG”). To select 7 cells from our range
of cell indexes between 700 and 800 in CA3, we proceed starting from a triplet
and progressively adding one more cell at a time, as follows. The starting triplet
was randomly chosen, with two requirements: (1) in Pre-sleep synapses between
A→ B and B→ C were nonzero and (2) in Pre-sleep the R-activation Score of the
triplet was between 4 and 10%. The next cell (“D”) was randomly chosen among the
remaining cells in the 700–800 range with the same requirements as above applied
to the new sub-triplet “BCD” (i.e., a synapse C→ D was present in Pre-sleep and
the BCD R-activation score was in the 4–10% range). The procedure of adding cells
at the end of the list was iterated until a 7-letter list of cell indexes was populated.
For these tests, we used 14 simulations, 50 s long. Since we did not analyze the CA1
cells, we only ran simulations of the CA3 sub-network in this part of the study.
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To quantify the R-activation of sub-words in the sequence, the time of the first
spike of any cell within each SWR was used. It is important to note that we
effectively composed a list of 8 cells and then used the last seven of them as the
ABCDEFG of our sequence, to possibly take into account the role of input to the
first cell which we learned about in the triplet analysis. Furthermore, for cells which
were later in a sequence (from cell D onward), we included their first spike time
even if it happened up to 0.3 s after the end of a SPW, to let the possible “tales” of
a reactivating sequence be included in our analysis.

4.2 Modeling a Virtual Rat’s Spatial Learning Experience

The “learning experience” comprised of a rat running across an artificial enclosure,
which we tiled as a grid of place fields. The size of the enclosure was 16 cm by
16 cm and the grid was spaced with 0.1 cm gaps. Each place field was numbered
from 1 to 81. Each place field represented a Poisson distribution of the cell’s firing
rate as function of location, as a normal probability density function with center at
one of the grid’s 81 locations and radius (standard deviation) 3 cm. This radius was
chosen to establish a sufficient overlap between place fields for the spiking activity
to lead to significant STDP-mediated synaptic rescaling.

We chose a simple trajectory for the rat to learn. The rat had to move through
3 locations in the same order. These 3 locations, as well as the direction of the
trajectory, were the same for all simulations. The rat then moved to 3 random
locations that were not part of the learned trajectory. This counted as one repetition
for the learning task. The virtual rat moved between the locations in a straight line
that was completed in about 2 s. The peak instantaneous firing rate of place cells, that
were activated by the movement (because they had place fields along the trajectory),
was set to 100 Hz (actual spikes in time are shown in Fig. 4b).

When assigning a place field (1–81) to a CA3 cell within the sleep model
network, we started from 7 place fields along the learned trajectory, and assigned to
them the same 7 CA3 cells used for the simulations with targeted synaptic changes.
The remaining 74 cells were randomly assigned within the 700–800 index range
(excluding the cells which already received a field). Given a “learning experience”
trajectory, we had 81 spike trains generated by their respective Poisson processes
place fields, and used them to modify the synapses between the network cells which
were assigned those place fields. We used spike-time-dependent plasticity (STDP)
as the rule for strengthening or weakening AMPA and NMDA synapses. The
spike times were compressed by factor of 10, to represent their reactivation during
awake SWR leading to STDP-induced synaptic plasticity [32]. Every synaptic
connection strength g from cell A to cell B was then replaced by g + Δg with

�g = ∑ 2AGsign (tA − tB)
e|tA−tB |

20 . Where gmax = A ∗ G with A = 0.001 for
AMPA synapses and 0.01 for NMDA synapses a scaling factor, G the maximum
value of AMPA synapses in the given CA3 network, and G = 1.25 ns for NMDA
synapses. tA and tB are spike times for cells A and B, respectively.
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Within a given “learning experience,” the rat repeatedly visited the learning
trajectory, followed by 3 random locations, which were newly reselected with each
iteration. We established the length of a given learning experience path to represent
a long learning experience or a short one depending on the change induced in the
synapses by the path. In fact, since the STDP effect is cumulative and every iteration
results in incremental increase in the synapses favoring a target sequence-ordered
R-activation. The length of the experience path was determined by incrementally
increasing the repetitions until the average strength of AMPA synapses between
cells along the trajectory reached a threshold of 0.4 ns. This value is close to the
maximum synapse for all simulations used (the average maximum strength of the
AMPA synapses over all 14 simulations was 0.517 with a standard deviation of
0.023). We chose a threshold value below the maximum AMPA synapse for each
simulation, because some synapses could significantly surpass the threshold and
disrupt the spontaneous network activity.
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A DG Method for the Simulation of CO2
Storage in Saline Aquifer

Beatrice Riviere and Xin Yang

Abstract To simulate the process of CO2 injection into deep saline aquifers, we
use the isothermal two-phase two-component model, which takes mass transfer
into account. We develop a new discontinuous Galerkin method called the “partial
upwind” method for space discretization, incorporated with the backward Euler
scheme for time discretization and the Newton–Raphson method for linearization.
Numerical simulations show that the new method is a promising candidate for the
CO2 storage problem in both homogenous and heterogenous porous media and is
more robust to the standard discontinuous Galerkin method for some subsurface
fluid flow problems.

1 Introduction

CO2 sequestration in porous media, such as saline aquifers and oil and gas
reservoirs, is an important venue to reduce the excessive amount of carbon dioxide
in the atmosphere. Numerical simulations for CO2 sequestration process have been
studied using many simulators. The reader is referred to the work of Class et
al. [4] for a benchmark study of these simulations. The focus of this paper is to
develop a discontinuous Galerkin (DG) method to simulate CO2 storage, which is
a two-component two-phase type of flow. DG methods for two-phase flow without
inter-mass transfer have been heavily studied in the literature (see, e.g., [1, 2, 5,
9, 12]). Similarly, two-component single-phase flow (also referred to as miscible
displacement) has been numerically and successfully modeled by DG methods
[6, 10, 11, 13–17]. The most commonly used model for two-phase flow is the elliptic
pressure-hyperbolic saturation formulation, in that the pressure and saturation are
weakly coupled together, and the problem can be solved sequentially. Bastian
and Riviere [2] used nonsymmetric interior penalty DG formula for the pressure
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equation and for the diffusion term in the saturation equation, and used the upwind
scheme for the advection term. The nonlinear coefficients were linearized by time-
lagging. A variant of DG method using similar techniques along with adaptivity in
time and space was numerically investigated by Klieber and Riviere [12]. Eslinger
[9] numerically studied the compressible air–water two-phase problem using the
local DG method for saturation equation. The numerical DG solutions of two-
phase flow problem usually have spurious overshoot and undershoot phenomena
resulting from large advection, which can be controlled by slope limiting. However,
the slope limiters are difficult to construct for higher-dimensional problems, and
theoretical analysis is limited to one-dimensional problems. Fully implicit fully
coupled DG method proposed by Epshteyn and Riviere [5] can be used to stabilize
the oscillations without using slope limiters, but computational cost is increased. In
[1], Bastian showed the robustness and scalability of a DG method for a wetting-
phase pressure and capillary pressure formulation of the incompressible two-phase
flow.

Our paper solves a two-component two-phase problem, with the additional
difficulty that one component moves from one phase to the other. The novelty
of this work is the approach for handling transfer from one phase to the other.
Discontinuous finite element methods were first applied to the two-phase two-
component model with interphase mass transfer by Ern and Mozolevski [7]. Their
work took into account phase disappearance and showed the potential to handle
heterogeneous porous medium. In [7], Henry’s law is used to express the linear
correlation of density and pressure, which allows for the easy choice of liquid
pressure and dissolved gas density as the primal variables. The density changes in
CO2 sequestration problem vary greatly, and hence in our study, Henry’s law is not
used. Rather, we use a cubic spline interpolant for the relationship between mass
fraction and pressure. Other properties like CO2 viscosity and the mass fraction
of CO2 in water also depend on the gas pressure. Therefore, we need the gas
pressure to be one of the primal variables to reduce the complexity of simulation.
The difficulty to correctly simulate the accumulation of the non-wetting phase due
to the discontinuous capillary pressures in heterogeneous porous media was studied
by Ern et al. [8]. They enforced the nonlinear interface conditions weakly and used
the weighted average numerical flux and total velocity reconstruction for the DG
scheme.

An outline of the paper is the following: the mathematical models are given in
the next section. The numerical scheme is described in Sect. 3 and numerical results
are shown in Sect. 4. Some conclusions follow.

2 Mathematical Model

In this section, we first show the mathematical model and explain the terms used
in the model. Then, we transform the model to the equations that we use for
discretization.
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2.1 Mass Conservation Laws

We consider the isothermal two-phase two-component model for CO2 sequestration
problems. The two phases are CO2-rich phase and water-rich phase. The CO2-rich
phase is the non-wetting phase and is denoted by n. The water-rich phase is the
wetting phase and is denoted by w. The two components considered are carbon
dioxide (denoted by CO2) and water (denoted by H2O). We use the Reynold’s
transport theorem for the mass conservation of CO2 and H2O to obtain the following
equations:

φ ∂
∂t

⎛

⎝

∑

α∈{w,n}
ραX

CO2
α Sα

⎞

⎠− ∇ ·
⎛

⎝

∑

α∈{w,n}
ραX

CO2
α vα

⎞

⎠ = qCO2 , (1)

φ ∂
∂t

⎛

⎝

∑

α∈{w,n}
ραX

H2O
α Sα

⎞

⎠−∇ ·
⎛

⎝

∑

α∈{w,n}
ραX

H2O
α vα

⎞

⎠ = qH2O, (2)

where φ denotes the porosity, ρα the density of phase α, Xβ
α the mass fraction of

component β in phase α, Sα the saturation of phase α, vα the averaged velocity on
the macroscopic scale for phase α, and qβ the source term of component β.

The density of the CO2-rich phase ρn depends on the pressure. Figure 1 shows
the cubic spline interpolation for the function of ρn(pn), where pn denotes the

Fig. 1 Cubic spline interpolation for the correlation of the density of CO2 and the pressure at
T = 50 ◦C
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Fig. 2 Solubility of CO2 in water using cubic spline interpolation

pressure of the non-wetting phase. The density of brine, which depends on the
density of water, salinity, and the solubility of carbon dioxide, is simply assumed
to be constant. The mass fractions satisfy the following equation:

XCO2
α +XH2O

α = 1, α ∈ {w, n}. (3)

The solubility of CO2 in brine depends on the pressure, and the corresponding
function X

CO2
w (pn) is approximated using the cubic spline interpolation as shown

in Fig. 2. The solubility of H2O in the CO2-rich phase is approximately 100 times
smaller than the solubility of CO2 in brine, and thus we assume

XH2O
n = 0, XCO2

n = 1.

The averaged velocity vα is given by the generalized Darcy’s law for multiphase
flow. If we neglect the gravity term, we have

vα = −krα

μα

K∇pα, (4)

where krα denotes the relative permeability for phase α, μα the dynamic viscosity
of phase α, K the absolute permeability, and pα the pressure of phase α.

We use the Brooks and Corey [3] formula for the relative permeability:

krw = S
2+3λ
λ

e , (5)
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Fig. 3 Cubic spline interpolation for the correlation of CO2 viscosity and the pressure at 50 ◦C

krn = (1− Se)
2
(

1− S
2+λ
λ

e

)

, (6)

where λ is a scalar which takes small value (e.g., λ = 0.2) for the heterogeneous
material and larger value (e.g., λ = 2.0) for the homogeneous material. The notation
Se denotes the effective saturation for the wetting phase, and is defined to be

Se = Sw − Swr

1− Swr

, (7)

where Swr denotes the residual saturation for the wetting phase.
The dynamic viscosity of the CO2-rich phase μn is also a function of pressure.

Figure 3 shows the cubic spline interpolation of the function of μn(pn). The
dynamic viscosity of brine μw is mainly dependent on the salinity while the pressure
has little influence. Therefore, we assume that μw is constant. We now have two
equations, which are Eqs. (1) and (2), and four unknowns, which are Sw, Sn, pw,
and pn. By definition, the phase saturations sum up to one:

Sw + Sn = 1. (8)

The difference between the phase pressures is the capillary pressure, pc,

pn − pw = pc, (9)
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and it is a function of the effective wetting phase saturation, using the Brooks and
Corey formula:

pc(Se) = pdS
− 1

λ
e , (10)

where pd is the entry pressure, and λ is the same parameter in Eqs. (5) and (6).

2.2 The Isothermal Two-Phase Two-Component Model

Before numerical discretization, we manipulate the system (1)–(2) of conservation
laws. We first add the two equations and obtain an equation without mass fraction
terms. We choose for primary variables the wetting phase saturation, Sw, and the
non-wetting phase pressure, pn. The remaining variables, Sn and pw, are replaced
by Eqs. (8) and (9). In addition, we set

XH2O
n = 0, XCO2

n = 1, XH2O
w = 1−XCO2

w .

Finally, we expand the time derivative, and obtain, after manipulation, the following
equations:

φ (ρw − ρn)
∂Sw

∂t
+ φ(1− Sw)

dρn

dpn

∂pn

∂t

−∇ ·
(

krw

μw

ρwK(− dpc

dSw
)∇Sw

)

−∇ ·
(

krw
μw

ρwK∇pn

)

−∇ ·
(

krn

μn

ρnK∇pn

)

= qCO2 + qH2O, (11)

φρw

(

1−X
CO2
w

) ∂Sw

∂t
− φρwSw

dX
CO2
w

dpn

∂pn

∂t

−∇ ·
(

krw

μw

ρw

(

1−XCO2
w

)

K

(

− dpc

dSw

)

∇Sw
)

−∇ ·
(

krw
μw

ρw

(

1−X
CO2
w

)

K∇pn

)

= qH2O. (12)

We note that in the equations above, the functions ρn, XCO2
w , and μn depend on the

pressure pn and the functions krw and krn depend on the saturation Sw. Now, let us
state the initial and boundary conditions. The time interval is denoted by (0, T ). The
domain is denoted by � and its boundary by ∂�. We separate ∂� into two parts:
the outflow boundary �∂+ and the inflow boundary �∂−, satisfying

�∂+ ∪ �∂− = ∂�, �∂+ ∩ �∂− = ∅.
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The initial conditions are described below:

Sw(x, 0) = S0(x), pn(x, 0) = p0(x), ∀x ∈ �. (13)

We impose Dirichlet and Neumann-type boundary conditions on different parts of
the boundary:

Sw(x, t) = fs(x, t), ∀x ∈ �∂−, t ∈ (0, T ), (14)

∇Sw(x, t) · n = 0, ∀x ∈ �∂+, t ∈ (0, T ), (15)

pn(x, t) = fp(x, t), ∀x ∈ �∂+, t ∈ (0, T ), (16)

∇pn(x, t) · n = gp(x, t), ∀x ∈ �∂−, t ∈ (0, T ). (17)

3 Numerical Method

Equations (11) and (12) are strongly coupled, and thus we use the fully coupled
method to solve the problem. We also use the backward Euler method for the time
discretization to avoid CFL constraints. For the space discretization, we discuss
the existing discontinuous Galerkin methods and propose a new “partial upwind”
method in this section.

3.1 Standard DG Discretization

The interior penalty DG methods usually use the average numerical flux with
stabilization terms for the diffusion terms (elliptic operators) and use the upwind
numerical flux for the advection terms (hyperbolic operators).

Both the third terms in Eqs. (11) and (12) are independent or slightly dependent
on pn, and they can be treated as the nonlinear elliptic terms in Sw and are
discretized accordingly. The rest of the terms in Eqs. (11) and (12) come from
the Darcy’s law for phase velocities, and are elliptic terms in pn and hyperbolic
terms in Sw. They are the advection terms and are supposed to be discretized using
the upwind method. However, the resulting scheme is unstable, because the fact
that they are also the elliptic operator on pn cannot be ignored. Therefore, large
penalty terms for pn are needed for stabilization, which gives inaccurate solutions.
In fact, inaccuracies in ∇pn yield large oscillations in Sw. Therefore, previous DG
work for two-phase problems, such as the papers by Epshteyn and Riviere [5]
and by Ern and Mozolevski [7], treat similar terms as the elliptic operator and
use the usual DG discretization. This means that numerical diffusive fluxes are
averaged and stabilization terms are added. In this work, we show that for the CO2
storage problem, the average fluxes yield oscillations when advection dominates the
problem.
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3.2 The Partial Upwind Method

The idea behind the partial upwind method is that before applying the upwind
method to the advection term, we substract an elliptic part depending on pn

from the advection term and discretize it using the usual average numerical
flux with stabilization. Hence, the equation for pn is much better stabilized. We
expect the proposed method to perform well because upwinding stabilizes the
numerical oscillations. A theoretical justification of the convergence of the method
is challenging because the nonlinear coefficients degenerate in parts of the domain.
We show in the numerical examples that the solution is unstable if we do not use
partial upwinding.

We use the Brooks–Corey formula, and the fourth term in Eq. (11) becomes

−∇ ·
(

ρw

μw

S
3+ 2

λ
e K∇pn

)

= −∇ ·
(

ρw

μw

(

Sw − Swr

1− Swr

)3+ 2
λ

K∇pn

)

= −∇ ·
(

ρw

μw

C(pn, x)K∇pn

)

−∇ ·
(

ρw

μw

(

(

Sw − Swr

1− Swr

)3+ 2
λ − C(pn, x)

)

K∇pn

)

, (18)

where C(pn, x) is a positive function that does not depend on Sw. Then, the first
part

−∇ ·
(

ρw

μw

C(pn, x)K∇pn

)

,

is discretized as the elliptic term for pn and the second part

−∇ ·
(

ρw

μw

(

(

Sw − Swr

1− Swr

)3+ 2
λ − C(pn, x)

)

K∇pn

)

,

is discretized using the upwind scheme. The selection of C(pn, x) depends on the
value of λ. For example, when λ = 2, the best choice is

C(pn, x) =
(

Swr

1− Swr

)4

,

since then
(

Sw−Swr

1−Swr

)3+ 2
λ −C(pn, x) can be written as the product of Sw and a scalar

α(Sw), that is:

(

Sw − Swr

1− Swr

)4

−
(

Swr

1− Swr

)4

= Sw α(Sw).
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3.3 General PDE Model

The partial upwind method not only works for CO2 sequestration problem, but also
works for other two-phase flow problems. Now, let us consider a more general
PDE system with the CO2 sequestration problem being a particular case. The
general system of PDEs is presented in a way that the ambiguous terms are already
reasonably separated according to the partial upwind method.

τ1(x, p)
∂S

∂t
+ θ1(x, S, p)

∂p

∂t
−∇ · (a1(x, S)∇S)

−∇ · (b1(x, p)∇p)+∇ · β1(x, S, p,∇p) = q1(t, x), (19)

τ2(x, p)
∂S

∂t
+ θ2(x, S, p)

∂p

∂t
−∇ · (a2(x, S, p)∇S)

−∇ · (b2(x, p)∇p)+∇ · β2(x, S, p,∇p) = q2(t, x). (20)

Even though in these equations, the term βi (x, S, p,∇p) (i = 1, 2) has the form
of βi(x, S, p)∇p, where βi is a scalar function, we use for convenience the more
general notation βi (x, S, p,∇p). In this system, terms with ai and bi coefficients
are treated as elliptic terms and the ones with βi are treated as hyperbolic terms.
−∇ · (bi∇p) and ∇ · βi are the separated terms using the partial upwind method.

For our CO2 sequestration model, the coefficients are

τ1(x, p) = φ (ρw − ρn) , (21)

θ1(x, S, p) = φ(1− S)ρ′n(p), (22)

a1(x, S) = ρw
μw

pd

λ
1

1−Swr
S

2+ 1
λ

e K, (23)

b1(x, p) = ρw
μw

C1,1K + ρco2
μn

C1,2K, (24)

β1(x, S, p,∇p) = − ρw
μw

(

S
3+ 2

λ
e − C1,1

)

K∇p

− ρn
μn

(

(1− Se)
2(1− S

1+ 2
λ

e )− C1,2

)

K∇p, (25)

q1(t, x) = qCO2(t, x)+ qH2O(t, x), (26)

τ2(x, p) = φρw

(

1−X
CO2
w

)

, (27)

θ2(x, S, p) = −φρwSX
CO2
w

′
(p), (28)
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a2(x, S, p) =
(

1−X
CO2
w

)

ρw
μw

pd

λ
1

1−Swr
S

2+ 1
λ

e K, (29)

b2(x, p) =
(

1−X
CO2
w

)

ρw
μw

C2K, (30)

β2(x, S, p,∇p) = −
(

1−X
CO2
w

)

ρw
μw

(

S
3+ 2

λ
e − C2

)

K∇p, (31)

q2(t, x) = qH2O(t, x), (32)

where C1,1, C1,2, and C2 play the same role as the C in Eq. (18). The choice of C1,1,
C1,2, and C2 that we use are listed here:

C1,1 =
(

Swr

1−Swr

)4
,

C1,2 = (1−2Swr )

(1−Swr )
4 ,

C2 =
(

Swr

1−Swr

)4
.

3.4 Numerical Discretization

Suppose � is a polygonal domain. Let E h be the mesh on �, comprised of elements
denoted by E (intervals in 1D, triangles in 2D, and tetrahedra in 3D). Let γ denote
the edge of the element and nγ be a fixed normal direction for every γ . If γ is
on the boundary, then nγ is chosen to be the outward direction. Let �h denote the
collection of all the interior edges and �h,∂ the boundary edges. Let �h,∂+ denote
the set of the outflow boundary and �h,∂− the inflow boundary.

Define the finite element space as:

X
h = {v ∈ L2(�) : v ∈ P

r (E),∀E ∈ E h}, (33)

where r denotes the order of the polynomials and r is an integer bigger than or equal
to 1. All functions in X

h have two different values on edge γ . Let us define the jump
of a function on γ . Suppose γ is shared by two neighboring elements E1 and E2,
and nγ points from E1 to E2. For any function v ∈ X

h, the jump on γ is defined to
be

[v]|γ = v|E1 − v|E2 . (34)

If γ is on the boundary, then

[v]|γ = v|E. (35)
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The average is defined as:

{v}|γ = 1

2
(v|E1 + v|E2), (36)

and if γ is on the boundary

{v}|γ = v|E. (37)

We define the upwind as:

v↑|γ =
{

v|E1 , if {∇pn · nγ } > 0,

v|E2 , otherwise.
(38)

If γ ∈ �h,∂+, and γ ∈ E, then

v↑|γ = v|E. (39)

Let �t denote the time step and N denote the number of time steps such that
T = N�t . Let tn = n�t be successive discrete times. Define the variational forms
Ai(p

n
h, S

n
h, v) for i = 1, 2 and all v ∈ X

h:

Ai(p
n+1
h , Sn+1

h , v) = (40)

∑

E∈E h

∫

E

ai(x, S
n+1
h , pn+1

h )∇Sn+1
h · ∇v−

∑

γ∈�h∪�h,∂
1

∫

γ

{ai(x, Sn+1
h )∇Sn+1

h · nγ }[v]

+ε
∑

γ∈�h∪�h,∂
1

∫

γ

{ai(x, Sn+1
h )∇v · nγ }[Sn+1

h ] +
∑

E∈E h

∫

E

bi(x, p
n+1
h )∇pn+1

h · ∇v

−
∑

γ∈�h∪�h,∂
2

∫

γ

{bi(x, pn+1
h )∇pn+1

h · nγ }[v] + ε

∑

γ∈�h∪�h,∂
2

∫

γ

{bi(x, pn+1
h )∇v · nγ }[pn+1

h ]

−
∑

E∈E h

∫

E

β i (x, S
n+1
h , pn+1

h ,∇pn+1
h ) · ∇v

+
∑

γ∈�h

∫

γ

β
↑
i (x, S

n+1
h , pn+1

h ,∇pn+1
h ) · nγ .
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Define the linear forms Qn
i (v) for i = 1, 2:

Qn+1
i (v) =

∑

E∈E h

∫

E

qi(t
n+1, x)v, (41)

and the penalty forms for i = 1, 2:

Ji(p
n+1
h , Sn+1

h , v) =
∑

γ∈�h∪�h,∂
2

σ
p
γ

hγ

(

∫

γ

{ai(x, Sn
h)})
∫

γ

[pn+1
h ][v]

+
∑

γ∈�h∪�h,∂
1

σS
γ

hγ

(

∫

γ

{ai(x, Sn
h)})
∫

γ

[Sn+1
h ][v]. (42)

Notice that the penalty term depends on the value of the elliptic coefficients. The
boundary conditions are handled by the following forms, for i = 1, 2:

Bn+1
i (Sn+1

h , pn+1
h ,∇pn+1

h , v) =

ε
∑

γ∈�h,∂
1

∫

γ

ai(x, fS(x, tn+1))∇v · nγ fS(x, tn+1)

+
∑

γ∈�h,∂
1

σS

hγ

(∫

γ

ai(x, fS(x, tn))
)∫

γ

fS(x, tn+1)v

+ε
∑

γ∈�h,∂
2

∫

γ

bi(x, fp(x, tn+1))∇v · nγ fp(x, tn+1)

+
∑

γ∈�h,∂
2

σp

hγ

(∫

γ

bi(x, fp(x, tn))
)∫

γ

fp(x, tn+1)v

+
∑

γ∈�h,∂
1

∫

γ

bi(x, p
n+1
h )gp(x, tn+1)v

−
∑

γ∈�h,∂
2

∫

γ

βi (x, S
n+1
h , fp(x, tn+1),∇pn+1

h ) · nγ v

−
∑

γ∈�h,∂
1

∫

γ

βi(x, fS(x, tn+1), pn+1
h )gp(x, tn+1)v.
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We now defined the numerical scheme: find (Sn
h)0≤n≤N−1 ⊂ X

h and
(pn

h)0≤n≤N−1 ⊂ X
h, satisfying for all v ∈ Xh

∑

E∈E h

∫

E

τ1(x, p
n+1
h )

Sn+1
h − Sn

h

�t
v +

∑

E∈E h

∫

E

θ1(x, S
n+1
h , pn+1

h )
pn+1
h − pn

h

�t
v

+A1(p
n+1
h , Sn+1

h , v)+ J1(p
n+1
h , Sn+1

h , v)

= Q1(v)+ Bn+1
1 (Sn+1

h , pn+1
h ,∇pn+1

h , v), (43)

∑

E∈E h

∫

E

τ2(x, p
n+1
h )

Sn+1
h − Sn

h

�t
v +

∑

E∈E h

∫

E

θ2(x, S
n+1
h , pn+1

h )
pn+1
h − pn

h

�t
v

A2(p
n+1
h , Sn+1

h , v)+ J2(p
n+1
h , Sn+1

h , v)

= Q2(v)+ Bn+1
2 (Sn+1

h , pn+1
h ,∇pn+1

h , v), (44)

∑

E∈E h

∫

E

S0
hv =

∑

E∈E h

∫

E

S0v, (45)

∑

E∈E h

∫

E

p0
hv =

∑

E∈E h

∫

E

p0v. (46)

3.5 The Newton–Raphson Method for Linearization

We denote the basis of Xh by (φj )
J
j=1 and expand the numerical approximations of

saturation and pressure for n = 0, · · · , N

Sn
h =

J
∑

j=1

snj φj , pn
h =

J
∑

j=1

pn
j φj .

We denote the vectors of degrees of freedom by sn = (sn1 , · · · , snJ ) and pn =
(pn

1 , · · · , pn
J ). We can rewrite the discrete equations as a general nonlinear system

of the form:

F1(sn+1,pn+1) = 0,

F2(sn+1,pn+1) = 0.

We use the Newton–Raphson method to solve for sn+1 and pn+1:

(sk,pk)
T=(sk−1,pk−1)

T−
(

∂(F1, F2)

∂(sk−1,pk−1)

)−1

(F1(sk−1,pk−1), F2(sk−1,pk−1))
T ,

(47)
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where the subscript k denotes the kth iteration. The stopping criterion is

‖(sk,pk)− (sk−1,pk−1)‖2 ≤ tolerance‖(sk,pk)‖2.

This algorithm involves calculating the Jacobian ∂(F1,F2)
∂(sk−1,pk−1)

, which is done analyti-
cally.

4 Numerical Results

In all simulations, the temperature is fixed at 50 ◦C.

4.1 CO2 Injection Test on Smooth Solutions

We verify the scheme using the method of manufactured solutions. We obtain
numerical convergence rates of the partial upwind DG method for the CO2
sequestration model (Eqs. (11) and (12)) on smooth solutions. We describe below
the functions of all the parameters and the exact solutions. The density, viscosity,
and mass fraction are defined by:

ρn = 200+ 2 · 10−6p,

μn = 1.6 · 10−5 + 5 · 10−13p,

X
CO2
w = 10−15p2.

The domain � is the unit interval and the final time is T = 0.5. The values of all
other parameters are listed in Table 1. The exact smooth solutions are

pn(x, t) = 105(x − 1)2t + 8 · 106, Sw(x, t) = 0.75 sin(0.5πx)(1− t)+ 0.25.

The source terms are calculated accordingly. Notice that the solutions are linearly
dependent on time. Therefore, the backward Euler scheme for time discretization
gives no consistency error. Hence, we root out the possibility that a very small time
step is needed for the purpose of obtaining the expected convergence rate on space.
We use ε = 1 and set the penalties to be σp = 10, σS = 10. For the Newton’s
iteration, the tolerance is 10−10. The starting point of the Newton iteration for each
time step is the numerical solution from the previous time step. Tables 2 and 3 show
the numerical errors and convergence rates of pn and Sw for r = 1, 2, respectively.
“P L2-err” denotes the L2 error for pressure and is defined to be

Table 1 Table for the parameters for verification example

Parameter φ K pd λ Swr

Value 0.25 10−12 5000 2 0.2
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Table 2 Errors and convergence rates for smooth solutions for piecewise linears

Mesh size P L2-err CR P E-err CR S L2-err CR S E-err CR

0.125 9.60e−03 3.99e−01 3.82e−04 2.59e−02

0.0625 2.61e−03 1.88 1.97e−01 1.02 9.93e−05 1.94 1.29e−02 1

0.03125 1.01e−03 1.37 9.76e−02 1.01 3.27e−05 1.6 9.54e−03 0.437

0.01562 5.04e−04 1 4.86e−02 1.01 1.45e−05 1.17 9.49e−03 0.00781

0.007812 2.63e−04 0.94 2.43e−02 1 5.21e−06 1.48 6.64e−03 0.516

Table 3 Errors and convergence rates for smooth solutions for piecewise quadratics

Mesh size P L2-err CR P E-err CR S L2-err CR S E-err CR

0.125 1.48e−05 6.20e−05 6.32e−06 1.04e−03

0.0625 2.00e−06 2.88 8.13e−06 2.93 7.92e−07 3 2.59e−04 2

0.03125 2.39e−07 3.06 1.08e−06 2.92 1.01e−07 2.97 6.22e−05 2.06

0.01562 2.37e−08 3.34 2.06e−07 2.39 1.41e−08 2.84 1.40e−05 2.15

0.007812 2.74e−09 3.11 4.06e−08 2.34 2.05e−09 2.78 3.07e−06 2.19

⎛

⎝

∑

E∈E h

‖pn(·, 0.5)− pN
h (·)‖2

L2(E)

⎞

⎠

1
2

.

“P E-err” denotes the energy error for pressure and is defined to be

⎛

⎝

∑

E∈E h

‖pn(·, 0.5)− pN
h (0.5)‖2

H 1(E)
+
∑

γ∈�h

σp

hγ

‖[pn(·, 0.5)− pN
h (0.5)]‖2

L2(γ )

⎞

⎠

1
2

.

The errors “ S L2-err” and “S E-err” are defined similarly for the saturation Sw.
“CR” denotes the convergence rate. For all these numerical simulations, it takes 3
or 4 Newton iterations to reach the stopping criterion.

Table 2 shows that we obtain first-order convergence rate for pn in the energy
norm, but not for Sw, because the energy error for the pressure dominates the
total energy error. Since we solve pressure and saturation simultaneously, we are
supposed to obtain first-order convergence rate for the total energy error, even
though partial result (the saturation in this case) does not converge at the same rate.
Table 3 shows that when r = 2, both p and S have the second-order convergence
rates or more for the energy norm and third-order convergence rate for the L2 norm.
If we compare the results given by r = 2 with r = 1, we see that r = 2 gives much
smaller errors, and thus gives us more accurate solutions. Therefore, we prefer r = 2
when we do numerical simulations for multiphase fluid flow problems.

In summary, we have obtained the expected convergence rates for smooth
functions using the partial upwind method.



220 B. Riviere and X. Yang

4.2 Two-Phase Incompressible Fluid Flow Problem

In this numerical example, we assume that there is no mass transfer between the
two phases and the densities of the two phases are constant. Therefore, we obtain
an incompressible two-phase fluid flow problem, which is a simpler problem than
the CO2 storage problem. Since there are many studies for this problem, we can
compare the results obtained with the partial upwind method with other methods. In
this work, we consider the injection of the non-wetting phase into the porous media
filled with the wetting phase, because the purpose of this two-phase flow test is to
pave the way for CO2 sequestration simulation. We will also compare the partial
upwind method with the usual DG method that uses the average numerical flux
and show that the partial upwind method is superior for some cases. The two-phase
incompressible fluid flow model can be written as:

−φρn
∂
∂t
Sw −∇ ·

(

krn
μn

ρnK∇pn

)

= qn, (48)

φρw
∂
∂t
Sw − ∇ ·

(

krw
μw

ρwK∇(pn − pc)
)

= qw. (49)

Example of Homogeneous Medium

The domain � is the unit interval. The initial pressure and saturation are

pn(x, 0) = 2 · 106, x ∈ (0, 1),

Sw(x, 0) =
{

0.3+ 25 · x, x ∈ (0, 2−6),

0.8, x ∈ (2−6, 1).

The values of the parameters are listed in Table 4. Figure 4 shows that the non-
wetting phase front reaches almost 0.2 m at 30 s and almost 0.4 m at 60 s. Figure 5
shows the same numerical test using the average numerical flux. Comparing the two
figures, we can see that both methods can solve this problem well and their results
are almost identical. The Newton–Raphson method takes about 4 or 5 iterations
to converge for both methods. We also point out that the saturation front for this
problem is not very sharp. In the next example, we will change the parameters to
obtain a sharper front and we will compare both the partial upwind and averaged
flux methods.

We rerun the same example as before, except that the non-wetting phase viscosity
μn is chosen to be 10−2 Pa·s, which is ten times larger than in the previous example.
The resulting saturation front is sharper, thus more challenging to approximate
numerically. First, we use the partial upwind method to solve the problem. The
penalty values are chosen to be σp = 1000 and σS = 0. The numerical solutions
are shown in Fig. 6. The pressure is shown in the left figure and we notice that the
pressure gradient has an obvious change near 0.2 m, where also the saturation front
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Table 4 Parameter values
for incompressible two-phase
flow in homogeneous
medium

Parameter Value

φ 0.2

K 10−12 (m2)

pd 5000 (Pa)

λ 2

Swr 0.2

ρw 1000 (kg/m3)

ρn 1000 (kg/m3)

μw 10−3 (Pa · s)

μn 10−3 (Pa · s)

h 1/256

�t 1 (s)

σp 10

σS 0
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Fig. 4 Numerical results for Sn using partial upwind DG method. Left and right figures show the
solutions at time t = 30 s and t = 60 s, respectively
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Fig. 5 Numerical results for Sn using the average numerical flux. Left and right figures show the
solutions at time t = 30 s and t = 60 s, respectively
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Fig. 6 Numerical results given by the partial upwind method for p (left) and Sw (right) at t = 60 s.
σp = 1000 and σS = 0

Table 5 List of the parameters for the two-phase flow in homogeneous medium

Figures Method ε h �t σp σS Newton iter

Figure 6 Partial upwind 1 1/128 1 s 1000 0 Mostly 5–9

No solution Average 1 1/128 1 s 1000 0 Not converge

Figure 7 (L) Partial upwind 1 1/128 1 s 1000 1000 5–6

Figure 7 (R) Average 1 1/128 1 s 1000 1000 5–6
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Fig. 7 Numerical results for Sw at t = 60 s given by the partial upwind flux (left) and the average
flux (right). σp = 1000 and σS = 1000

is. The saturation front in the right figure is very sharp and it exhibits some local
overshoot and undershoot. When we switch to the averaged numerical flux method
using the same penalty values, the numerical solution blows up in the first time step.
Table 5 summarizes the numerical parameters used for both methods.

In order to have a case where both methods are stable, we add more diffusion
to the saturation by choosing a large value for σS . Figure 7 shows the saturation
solutions after 60 s from both methods, when σS = 1000. The left figure uses the



A DG Method for the Simulation of CO2 Storage in Saline Aquifer 223

partial upwind flux, and the right one uses the average flux. Both methods capture
the sharp front, but the right figure shows some wiggles on the interval (0, 0.2). If
we choose σS = 100, which means we add less diffusion, the average flux method
blows up during the first time iteration, while we know from Fig. 6 that the partial
upwind method works well even for σS = 0. From Table 5, we also see that both
numerical methods use the same number of iterations to converge, if they do not
blow up. Therefore, the partial upwind method is more robust than to the average
flux method for this case.

Example of Heterogenous Medium

The domain is a heterogeneous porous medium in the sense that properties are
different in the subdomain (0.1562, 0.3125) than in the rest of the domain. The
values of all the parameters are listed in Table 6. The pressure ranges from 8 · 106

to 8.05 · 106 Pa. The initial wetting phase saturation is 0.9. We run the test with
N = 256 intervals and with �t = 1 s. Figures 8 and 9 show the numerical results
for σS = 10 and σS = 0, respectively. We show the curves of pn and Sw at t = 15
and t = 45 s. At t = 15 s (figures in top row), the saturation front gradually passes
the discontinuous point of the porous medium. More wetting phase is left in the
high permeability region, resulting a saturation jump. At t = 45 s, we see that
there is another saturation jump, where the porous medium property changes. We
see from both figures that the one with σS = 0 seems to capture the saturation
discontinuity slightly better than σS = 10, because there are less oscillations close
to the discontinuities.

This numerical test shows the promising potential of the partial upwind DG
method to solve multiphase multicomponent flows in heterogeneous media.

Table 6 Parameter values
for incompressible two-phase
flow in heterogenous porous
medium

Parameter Interval Value
φ (0.1562, 0.3125) 0.39

(0, 1)/(0.1562, 0.3125) 0.4
K (0.1562, 0.3125) 5.26 · 10−11 (m2)

(0, 1)/(0.1562, 0.3125) 5.04 · 10−10 (m2)
pd (0.1562, 0.3125) 1324 (Pa)

(0, 1)/(0.1562, 0.3125) 370 (Pa)
λ (0.1562, 0.3125) 2.49

(0, 1)/(0.1562, 0.3125) 3.86
Swr (0.1562, 0.3125) 0.1

(0, 1)/(0.1562, 0.3125) 0.08

ρw (0, 1) 1000 (kg/m3)

ρn (0, 1) 1000 (kg/m3)

μw (0, 1) 10−3 (Pa · s)

μn (0, 1) 10−3 (Pa · s)
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Fig. 8 Partial upwind numerical results for two-phase flow in heterogenous media. Figures show
the numerical solutions pn (left) and Sw (right) at time t = 15 s (top) and t = 45 s (bottom).
Penalty values are σp = 1000 and σS = 10

4.3 Injection of CO2 into Homogeneous Porous Medium

We now simulate the CO2 sequestration problem on the domain � = (0, 1000). The
initial non-wetting phase pressure is 250 bar and the initial wetting phase saturation
is 0.95. Assume that CO2 is injected at the rate of ∂p

∂x
= −50 for 3 years, at the

endpoint x = 0. The parameters used in the simulations in this section are listed in
Table 7. We first study the effect of varying the polynomial degrees and second the
effect of varying the time steps.

CO2 Injection Simulation for Different Orders of Approximation

We use N = 256 intervals for the mesh and �t = 5 days for the time step. The
numerical solutions are shown in Figs. 10 and 11 for r = 1 and r = 2, separately.
We see that the CO2-rich phase reaches approximately 270, 540, and 810 m after 1,
2, and 3 years, respectively. We also observe that the saturation of CO2 gradually
grows with time for a given point in space. Taking the point of 200 m, for example,
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Fig. 9 Partial upwind numerical results for two-phase flow in heterogenous media. Figures show
the numerical solutions pn (left) and Sw (right) at time t = 15 s (top) and t = 45 s (bottom).
Penalty values are σp = 1000 and σS = 0

Table 7 Parameter values
for the simulation of CO2
sequestration problem in
homogeneous media

Parameter Value

φ 0.25

K 10−12 (m2)

pd 5000 (Pa)

λ 2

Swr 0.2

ρw 1000 (kg/m3)

μw 10−3 (Pa · s)

ρn Figure 1

μn Figure 3

X
CO2
w Figure 2

CO2 saturation is about 0.27 after the first year, 0.33 after the second year, and 0.36
after the third year. In addition, comparing Fig. 10 with Fig. 11, we observe that the
solution obtained with r = 2 has less overshoot and has a sharper front than the
solution obtained with r = 1. The effects of different values of σS are also studied.
The case σS = 10 is shown in Fig. 11 and the case σS = 0 is shown in Fig. 12. We
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Fig. 10 CO2 injection
simulation in 1, 2, and 3
years. CO2 pressure (top),
brine saturation (middle), and
CO2 saturation (bottom).
Parameters are: r = 1,
h = 1000/256 m, �t = 5
days, σp = 1000, σS = 10
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Fig. 11 CO2 injection
simulation in 1, 2, and 3
years. CO2 pressure (top),
brine saturation (middle), and
CO2 saturation (bottom).
Parameters are: r = 2,
h = 1000/256 m, �t = 5
days, σp = 1000, σS = 10
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Fig. 12 CO2 sequestration
simulation in 1, 2, and 3
years. CO2 pressure (top),
brine saturation (middle), and
CO2 saturation (bottom).
Parameters are: r = 2,
h = 1000/256 m, �t = 5
days, σp = 1000, σS = 0

0 200 400 600 800 1000
2.5

2.51

2.52

2.53

2.54

2.55

2.56

2.57
x 107

X (m)

C
O

2 
pr

es
su

re
 (

pa
)

1 year
2 years
3 years

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X (m)

B
rin

e 
sa

tu
ra

tio
n

1 year
2 years
3 years

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

X (m)

C
O

2 
sa

tu
ra

tio
n

1 year
2 years
3 years



A DG Method for the Simulation of CO2 Storage in Saline Aquifer 229

Fig. 13 Comparison of the
numerical solutions for CO2
saturation with different time
steps. Parameters are: r = 2,
h = 1000/128 m, σp = 1000,
σS = 0
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observe more oscillations near the saturation front in Fig. 12. It seems that the local
oscillations are better controlled with larger penalty values for the term penalizing
the saturation.

CO2 Injection Simulation for Different Time Steps

In this section, we investigate how large of a time step we can choose when we use
the backward Euler for the time discretization. We simulate the injection of CO2
with �t = 5, 10, 30 days, respectively, on 128 elements for a final time T = 300
days. Figure 13 shows the numerical solutions of the CO2 saturation. We see that
the solution with �t = 10 days is only slightly diffusive than with �t = 5 days.
Therefore, �t = 10 days gives an accurate enough solution. The solution with
�t = 30 days is more diffuse and fails to capture the sharp front. It is however
more efficient and may be used when high accuracy is not the first priority. We also
observe that the blue and the green curves have some small oscillations near the
front. We note that since the problem is nonlinear, the time step does depend on the
mesh size, but it is not clear how they are quantitatively related. We find that for
a fixed mesh size, there is a limit to the maximum of the time step for the scheme
to be stable. For instance, for this simulation, if we use 256 elements, the scheme
blows up immediately with �t = 30 days.

4.4 Injection of CO2 into Heterogeneous Porous Medium

We consider a heterogeneous porous medium where the properties are different in
the interval (0, 156.25) and the interval (156, 25, 1000). Table 8 lists the values for
the parameters of the problem. The initial saturation for the wetting phase is 0.95.
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Table 8 Parameter values
for the CO2 injection into the
heterogenous porous medium

Parameter Interval Value

φ (0, 1000) 0.25
K (0, 156.25) 10−12 (m2)

(156.25, 1000) 10−13 (m2)
pd (0, 156.25) 1000 (Pa)

(156.25, 1000) 5000 (Pa)

λ (0, 1000) 2
Swr (0, 156.25) 0.05

(156.25, 1000) 0.1

ρw (0, 1000) 1000 (kg/m3)

μw (0, 1000) 10−3 (Pa · s)
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Fig. 14 CO2 pressure and saturation after 10 years of injection into heterogenous porous media
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Fig. 15 CO2 pressure and saturation after 15 years of injection into heterogenous porous media

The partial upwind method is used on a mesh with 512 elements and the time step is
equal to 10 days. The penalties are chosen to be σp = 1000 and σS = 10. Figures 14
and 15 show the simulation for 10 years and 15 years, correspondingly. We can see
that there is a jump for the saturation when the non-wetting phase goes from a high
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permeability medium to a low permeability medium. The Newton–Raphson method
takes three steps to converge with a relative tolerance of 10−8.

This test shows that the partial upwind method is a good candidate for simulating
discontinuous solutions.

5 Conclusion

In this work, we propose the partial upwind method, which is a new version of the
discontinuous Galerkin method that employs a carefully chosen decomposition of
the elliptic and hyperbolic parts of the two-phase two-component model problem.
The method is shown to be convergent, stable, and robust for several simulation test
cases, including the case of incompressible two-phase flow and the case of injection
of CO2 in homogeneous and heterogeneous media in one dimension. Future work
will study injection in higher-dimensional domains.
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Regularization Results for
Inhomogeneous Ill-Posed Problems
in Banach Space

Beth M. Campbell Hetrick

Abstract We prove continuous dependence on modeling for the inhomogeneous
ill-posed Cauchy problem in Banach space X, then use these results to obtain
a regularization result. The particular problem we consider is given by du(t)

dt =
Au(t) + h(t), 0 ≤ t < T , u(0) = χ , where −A generates a uniformly bounded
holomorphic semigroup {e−zA|Re(z) ≥ 0} and h : [0, T )→ X. In the approximate
problem, the operator A is replaced by the operator fβ(A), β > 0, which
approximates A as β goes to 0. We use a logarithmic approximation introduced
by Boussetila and Rebbani. Our results extend earlier work of the author together
with Fury and Huddell on the homogeneous ill-posed problem.

1 Introduction

Ill-posed problems continue to be the focus of much research. As mathematical
models are developed and used to describe natural phenomena, often the models
exhibit instability: small changes in initial data may lead to large differences
in corresponding solutions. In this case, we say that these problems are not
continuously dependent on data and thus are ill-posed. We start with the ill-posed
abstract Cauchy problem

du(t)

dt
= Au(t), 0 ≤ t < T ,

u(0) = χ, (1)

where −A is the infinitesimal generator of a uniformly bounded holomorphic
semigroup {S(z) = e−zA|Re(z) ≥ 0} in a Banach space (X, ‖ · ‖), χ ∈ X, and
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u is a function u : [0, T ] → X. Generalizing this, we consider the inhomogeneous
ill-posed problem given by

du(t)

dt
= Au(t)+ h(t), 0 ≤ t < T

u(0) = χ, (2)

with h : [0, T ) → X. We assume that h is differentiable on (0, T ) and that h′ ∈
L1((0, T );X). We define an approximate well-posed problem

dv(t)

dt
= fβ(A)v(t)+ h(t), 0 ≤ t < T

v(0) = χ, (3)

where β > 0 and fβ(A) approximates A. We prove continuous dependence on
modeling; i.e., that if fβ(A) is a suitable approximation of A, then a solution of the
ill-posed problem (if it exists) is appropriately close to the solution of the well-posed
model problem.

Previous results have been obtained using several different approximations
fβ(A). For example, fβ(A) = A − βA2 is used in [1, 2, 4, 13, 15, 17, 20], and
fβ(A) = A(I + βA)−1 is used in [2, 4, 12, 19]. As explained in [10], both of these

approximations result in an error of order e
C
β , which leads to difficulty in extending

results to the nonlinear case. In this paper we use a logarithmic approximation
introduced by Boussetila and Rebbani [3],

fβ(A) = − 1

pT
ln(β + e−pTA) , β > 0 , p ≥ 1 , (4)

extending the results we obtained together with Fury and Huddell for the homoge-
nous case in [10]. Boussetila and Rebbani use this approximation in Hilbert space,
as do others who obtain more general results, including the nonlinear case [22]
and the nonautonomous problem [8], where the operator A is time-dependent.
Huang [11] extends the results to Banach space for the homogeneous case, and this
paper presents results in Banach space for the inhomogeneous case. As in [10], our
methodology differs from others in that we prove directly continuous dependence
on the model. We show

‖u(t)− vβ(t)‖ ≤ C(
√

β)1− t
T M

t
T , 0 ≤ t < T (5)

where u(t) is an assumed solution of (2), vβ(t) is the solution of (3) using the
logarithmic function fβ in (4), and C and M are constants independent of β.
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With observation error an inherent part of measurement and data collection,
we are interested further in the approximate problem (3) with initial data slightly
different than that in (2). Specifically, we consider the approximate problem (3)
with initial data χ replaced by χδ , δ > 0, where ‖χ − χδ‖ ≤ δ. Using our
above estimate (5), we obtain regularization results. Regularization results have
been proved previously by authors including Melnikova [14]; Melnikova et al. [16];
Trong and Tuan [20, 21]; Huang and Zheng [12]; and Fury [9].

In Sect. 2, we present necessary background information. Section 3 contains our
continuous dependence result, and in Sect. 4 we prove regularization. Throughout
the paper, B(X) denotes the space of bounded linear operators on X and �(A) the
resolvent set of A.

2 Background

We follow [11] and use a functional calculus by deLaubenfels [5] to define fβ(A).
Here we review the development of fβ(A) as outlined in [10]. Given that −A
generates {S(z) = e−zA|Re(z) ≥ 0}, define the function

G(s,A) = 1

π

∫ ∞

−∞
1− cos(sr)

r2 eirAdr , s ≥ 0 .

Then G(s,A) is a continuous function in s mapping into B(X) and ‖G(s,A)‖ ≤
s
(

supRe(z)≥0 ‖e−zA‖
)

. By switching within equivalent norms, we may assume
without loss of generality that ‖G(s,A)‖ ≤ s for all s ≥ 0 (cf. [11]). This leads
to the functional calculus given by deLaubenfels:

f (A) =
[

lim
t→∞ f (t)

]

I +
∫ ∞

0
f ′′(s)G(s,A)ds (6)

for f ∈ AC1
r [0,∞) := {h ◦ g : h ∈ AC1[0, 1]} where g(t) = (1 + t)−1 and

AC1[0, 1] := {f : f ′ exists and is absolutely continuous on [0, 1]}. For details on
applying this functional calculus to obtain a formula for fβ(A) as given by (4), see
[11]. Using f (s) = − 1

pT
ln(β + e−pT s) together with (6) yields

fβ(A) = − 1

pT
lnβ −

∫ ∞

0

βpT e−pT s

(β + e−pT s)2
G(s,A)ds .

Furthermore, Huang shows that fβ(A) is a bounded operator on X satisfying
‖fβ(A)‖ ≤ − 3

pT
lnβ for 0 < β < (

√
5− 1)/2.

With the functional calculus in place, we prove lemmas in [10] that are needed
again in the inhomogeneous case.
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Lemma 1 ([10, Lemma 1]) Let −A be the infinitesimal generator of a uniformly
bounded holomorphic semigroup {S(z) = e−zA : Re(z) ≥ 0} on X and let 0 < β <

(
√

5− 1)/2. Then

‖ − Ax + fβ(A)x‖ ≤ 8β

pT
‖S−1(2pT )x‖

for all x ∈ Dom(S−1(2pT )) = Ran(S(2pT )).

For x ∈ Dom(A), define the operator gβ(A) in X by

gβ(A)x = −Ax + fβ(A)x .

Then gβ(A) generates a C0 semigroup {etgβ (A)}t≥0 on X and we have the following
bound:

Lemma 2 ([10, Lemma 2]) For sufficiently small β > 0,

‖etgβ (A)‖ ≤ 2√
β

(√

t

pT
+ 1

)

f or 0 ≤ t ≤ T .

3 Continuous Dependence on Modeling

A classical solution u(t) of (2) is a function u : [0, T ] → X such that u(t) ∈
Dom(A) for 0 < t < T , u ∈ C[0, T ] ∩ C1(0, T ), and u satisfies (2) in X. A
strong solution of (2) is a function u(t) which is differentiable almost everywhere on
[0, T ] such that u′(t) ∈ L1((0, T );X), u(0) = χ , and u′(t) = Au(t)+ h(t) almost
everywhere on [0, T ] [18]. We assume throughout that u(t) is a strong solution
of (2). The following theorem states conditions under which such a solution exists:

Theorem 1 [18, Corollary 4.2.10] Let X be a Banach space and let A be the
infinitesimal generator of a C0 semigroup U(t) on X. If h : [0, T ) → X is
differentiable almost everywhere on [0, T ] and h′ ∈ L1((0, T );X), then for every
χ ∈ Dom(A) the initial value problem (2) has a unique strong solution u on [0, T ]
given by

u(t) = U(t)χ +
∫ t

0
U(t − s)h(s)ds. (7)

We assume that h is differentiable on (0, T ) and that h′ ∈ L1((0, T );X).
It is crucial to our work to know the circumstances under which the Cauchy

problem is well-posed, and we review some essential results here. Following
deLaubenfels, for ε > 0 define a family of bounded operators
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Cε = 1

2π i

∫

�φ

e−εw2
(w − A)−1dw

where �φ is a complex contour contained within ρ(A), running from ∞eiφ to
∞e−iφ with 0 < φ < π

2 . Then {Cε}ε>0 is a strongly continuous holomorphic
semigroup on X generated by −A2. In [7], deLaubenfels relates C-semigroups to
the abstract Cauchy problem. A key theorem follows:

Theorem 2 ([7, cf. Corollary 4.2]) Suppose A is the generator of a C-semigroup
{W(t)}t≥0. Then the abstract Cauchy problem (1) has a unique solution, for all
χ ∈ C(Dom(A)), given by u(t, χ) = W(t)C−1χ . Problem (1) is then well-posed,
in the following sense: when ‖C−1(χn − χ)‖ converges to 0, as n goes to infinity,
then u(t, χn) converges to u(t, χ), uniformly on compact sets.

Lemma 3 The differential equation given by

dw(t)

dt
= Aw(t)+ Cεh(t), 0 ≤ t < T

w(0) = Cεχ,

where −A is the infinitesimal generator of a uniformly bounded holomorphic
semigroup {S(z) = e−zA|Re(z) ≥ 0}, has a unique strong solution.

Proof Since −A is the infinitesimal generator of a uniformly bounded holomorphic
semigroup, we have from deLaubenfels [6, Thm. 3.5] that A generates an entire Cε

group {Wε(T )}t≥0 where Wε(t) = CεetA = CεS
−1(t). Then by Theorem 2 the

abstract Cauchy problem has a unique solution for all initial data in Cε(Dom(A)).
Note that for χ ∈ Dom(A), we have Cεχ ∈ Cε(Dom(A)). Furthermore, since h(t)

is differentiable on (0, T ) and h′(t) ∈ L1 ((0, T );X), Cεh(t) is differentiable on
(0, T ) and d

dt
(Cεh(t)) = Cεh

′(t) ∈ L1 ((0, T );X) since Cε is a bounded operator.
Thus following Pazy (cf. Theorem 1), the differential equation given above has a
unique strong solution. $�

Lemma 4

Cεu(t) = Wε(t)χ +
∫ t

0
Wε(t − s)h(s)ds.

Proof Consider the problem given by

dw

dt
= Aw(t)+ Cεh(t),

w(0) = Cεχ. (8)
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By Theorem 2 and Lemma 3 above, (8) has a unique strong solution of the form

w(t, Cεχ) = Wε(t)C
−1
ε (Cεχ)+

∫ t

0
Wε(t − s)C−1

ε (Cεh(s))ds

= Wε(t)χ +
∫ t

0
Wε(t − s)h(s)ds.

We can show that Cεu(t) is a solution of the differential equation given in (8).
Further, Cεu(0) = Cεχ . Thus Cεu(t) is a solution of (8). Since this solution is
unique, we have

Cεu(t) = w(t) = Wε(t)χ +
∫ t

0
Wε(t − s)h(s)ds.

$�
Lemma 5

Cεvβ(t) = Cεetfβ (A)χ +
∫ t

0
Cεe(t−s)fβ(A)h(s)ds.

Proof We have

Cεvβ(t) = Cε

[

etfβ (A)χ +
∫ t

0
e(t−s)fβ(A)h(s)ds

]

= Cεetfβ (A)χ +
∫ t

0
Cεe(t−s)fβ(A)h(s)ds.

$�
Note that Cε commutes with A and thus with S(t) and e(t−s)fβ(A).

In the proof of our main result, we use the following lemma:

Lemma 6 (cf. [2, Lemma 5]) For ε > 0,

etfβ (A)Cε = etgβ (A)Wε(t).

We now state our continuous dependence result.

Theorem 3 Let −A be the infinitesimal generator of a uniformly bounded holo-

morphic semigroup {S(z) = e−zA|Re(z) ≥ 0} on X and let 0 < β <
√

5−1
2 .

Let u(t) and vβ(t) be solutions of the ill-posed problem (2) and the approximate
problem (3), respectively. Assume that u(t) ∈ Dom(S−1(2pT )) = Ran(S(2pT ))

and ‖S−1(2pT )u(t)‖ ≤ M ′ for 0 ≤ t ≤ T . Assume that h is differentiable on (0, T )

and that h′ ∈ L1((0, T );X). Assume h(t) ∈ Dom(S−1(3pT )) = Ran(S(3pT )) and
‖S−1(3pT )h(t)‖ ≤ N for 0 ≤ t ≤ T .
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Then there exist constants C and M , each independent of β, such that

‖u(t)− vβ(t)‖ ≤ C(
√

β)1− t
T M

t
T f or 0 ≤ t < T .

Recall from the proof of Lemma 3 that we may write Wε(t) = CεS
−1(t).

It follows from our assumptions above that χ, h ∈ Dom(S−1(t)). Using this
information together with Lemma 4 we can write

Cεu(t) = CεS
−1(t)χ +

∫ t

0
CεS

−1(t − s)h(s)ds.

Proof Using Lemmas 4 and 5 and the above remark, we have

‖Cε(u(t)− vβ(t))‖ = ‖Cεu(t)− Cεvβ(t)‖

=
∥

∥

∥

∥

CεS
−1(t)χ +

∫ t

0
CεS

−1(t − s)h(s)ds

−Cεetfβ (A)χ −
∫ t

0
Cεe(t−s)fβ(A)h(s)ds

∥

∥

∥

∥

=
∥

∥

∥CεS
−1(t)χ − Cεetfβ (A)χ

∥

∥

∥ (9)

+
∥

∥

∥

∥

∫ t

0
CεS

−1(t − s)h(s)ds −
∫ t

0
Cεe(t−s)fβ(A)h(s)ds

∥

∥

∥

∥

.

(10)

The term in (9) corresponds to work done in the homogeneous case. In [10] we show
that

∥

∥

∥Cε

(

S−1(t)χ − etfβ (A)χ
)∥

∥

∥ ≤ C
(

√

β
)1− t

T
M

t
T

where C and M are both constants independent of β and ε. We now focus on the
term in (10). Using Lemma 6, we have

∥

∥

∥

∥

∫ t

0
CεS

−1(t − s)h(s)ds −
∫ t

0
Cεe(t−s)fβ(A)h(s)ds

∥

∥

∥

∥

≤
∫ t

0
‖CεS

−1(t − s)h(s)− e(t−s)fβ(A)Cεh(s)‖ds

≤
∫ t

0
‖CεS

−1(t − s)h(s)− e(t−s)gβ(A)Wε(t − s)h(s)‖ds

≤
∫ t

0

∥

∥

∥

(

I − e(t−s)gβ(A)
)

CεS
−1(t − s)h(s)

∥

∥

∥ ds.
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Applying Lemmas 1 and 2 to the integrand above yields

∥

∥

∥

(

I − e(t−s)gβ(A)
)

CεS
−1(t − s)h(s)

∥

∥

∥

=
∥

∥

∥

∥

∥

−
∫ (t−s)

0

d

dw
ewgβ(A)CεS

−1(t − s)h(s)dw

∥

∥

∥

∥

∥

=
∥

∥

∥

∥

∥

−
∫ (t−s)

0
ewgβ(A)gβ(A)CεS

−1(t − s)h(s)dw

∥

∥

∥

∥

∥

≤
∫ (t−s)

0

∥

∥

∥ewgβ(A)
∥

∥

∥

∥

∥

∥gβ(A)CεS
−1(t − s)h(s)

∥

∥

∥ dw

≤
∫ (t−s)

0

2√
β

(√

w

pT
+ 1

)

∥

∥

∥gβ(A)CεS
−1(t − s)h(s)

∥

∥

∥ dw

≤
∫ (t−s)

0

[

2√
β

(√

w

pT
+1

)]

8β

pT

∥

∥

∥S
−1(2pT )CεS

−1(t−s)h(s)
∥

∥

∥ dw

≤
∫ (t−s)

0

16
√
β

pT

(√

w

pT
+ 1

)

∥

∥

∥S
−1(3pT )Cεh(s)

∥

∥

∥ dw,

where CεS
−1(t − s)h(s) ∈ Dom(S−1(2pT )).

Let C = supε ‖Cε‖. Together with the assumption that ‖S−1(3pT )h(t)‖ ≤ N

for 0 ≤ t ≤ T , we have

∫ (t−s)

0

16
√
β

pT

(√

w

pT
+ 1

)

∥

∥

∥S
−1(3pT )Cεh(s)

∥

∥

∥ dw

≤
∫ (t−s)

0

16
√
β

pT

(√

w

pT
+ 1

)

C

∥

∥

∥S
−1(3pT )h(s)

∥

∥

∥ dw

≤
∫ (t−s)

0

16
√
β

pT

(√

w

pT
+ 1

)

CNdw

≤ √βC2

where C2 is a constant independent of β and ε. Using 0 < β < 1, we obtain

‖Cε(u(t)− vβ(t))‖ ≤ C
(

√

β
)1− t

T
M

t
T + T

√

βC2

≤ C
(

√

β
)1− t

T
M

t
T +
(

√

β
)1− t

T
(

√

β
) t

T
T C2

≤ C
(

√

β
)1− t

T
M

t
T
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for a possibly different constant C, where again C is a constant independent of β.
The bound on the right is independent of ε, so we let ε → 0 to get

‖u(t)− vβ(t)‖ ≤ C(
√

β)1− t
T M

t
T .

$�

4 Regularization

We now consider the approximate problem (3) with perturbed initial data χδ and
prove a regularization result. Following work on the homogeneous case (cf. [12]
and [10]) and the extension to the inhomogeneous case in [9], we use the following
definition:

Definition 1 ([9, Definition 4.1]) A family {Rβ(t)|β > 0, t ∈ [0, T ]} ⊆ B(X) is
called a family of regularizing operators for the inhomogeneous Cauchy problem (2)
if for every solution u(t) of (2) with initial data χ ∈ X and h differentiable on (0, T )

with h′ ∈ L1((0, T );X), and for any δ > 0, there exists β(δ) > 0 such that

(i) β(δ)→ 0 as δ→ 0,

(ii) ‖u(t) −
(

Rβ(t)χδ +
∫ t−s

0 Rβ(t − s)h(s)ds
)

‖ → 0 as δ → 0 for each t ∈
[0, T ] whenever ‖χ − χδ‖ ≤ δ.

Theorem 4 Let−A be the infinitesimal generator of a uniformly bounded holomor-
phic semigroup {S(z) = e−zA|Re(z) ≥ 0} on X and let fβ(A) be defined by (4).
Then {Rβ(t) := etfβ (A)|0 < β < (

√
5− 1)/2, t ∈ [0, T ]} is a family of regularizing

operators for problem (2).

Note that due to the form of the solution of the approximate problems, the proof
of this result for t ∈ [0, T ) follows immediately from the regularization result of
Theorem 2 in [10]. We use the same ideas to prove the result below.

Proof Let u(t) be a solution of (2) with ‖S−1(2pT )u(t)‖ ≤ M ′ for all t ∈ [0, T ].
Assume that h is differentiable on (0, T ) and that h′ ∈ L1((0, T );X). Assume
h(t) ∈ Dom(S−1(3pT )) = Ran(S(3pT )) and ‖S−1(3pT )h(t)‖ ≤ N for 0 ≤
t ≤ T . Let δ > 0 be given. Consider the approximate problem with perturbed data
given by

dvβ(t)

dt
= fβ(A)vβ(t)+ h(t), 0 ≤ t < T

vβ(0) = χδ,
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and assume ‖χ − χδ‖ ≤ δ. This problem has solution

vβ,δ(t) = etfβ (A)χδ +
∫ t−s

0
e(t−s)fβ(A)h(s)ds

= Rβ(t)χδ +
∫ t−s

0
Rβ(t − s)h(s)ds.

Since fβ(A) ∈ B(X), we have

‖etfβ (A)‖ ≤ et‖fβ(A)‖ ≤ e−
3t
pT

lnβ = β
− 3t

pT

for all t ∈ [0, T ] where 0 < β < (
√

5− 1)/2.
Let t ∈ [0, T ) and choose β = δ

p
6 . Then β → 0 as δ → 0 and together with

Theorem 3 we have
∥

∥

∥

∥

u(t)−
(

Rβ(t)χδ +
∫ t−s

0
Rβ(t − s)h(s)ds

)∥

∥

∥

∥

= ‖u(t)− vβ,δ(t)‖
≤ ‖u(t)− vβ(t)‖ + ‖vβ(t)− vβ,δ(t)‖
≤ C(

√

β)1− t
T M

t
T

+
∥

∥

∥

∥

(

etfβ (A)χ +
∫ t−s

0
e(t−s)fβ(A)h(s)

)

−
(

etfβ (A)χδ −
∫ t−s

0
e(t−s)fβ(A)h(s)

)∥

∥

∥

∥

≤ C(
√

β)1− t
T M

t
T + ‖etfβ (A)(χ − χδ)‖

≤ C(
√

β)1− t
T M

t
T + β

− 3t
pT δ

≤ C(δ
p
12 )1− t

T M
t
T + δ1− t

2T ,

which goes to 0 as δ→ 0.
Now consider the case when t = T . It can be shown through an argument similar

to that used in the proof of Theorem 1 in [10] that ‖u(T )− vβ(T )‖ ≤ K
√
β, where

K is a constant independent of β. Using β = δ
p
6 still, we have

∥

∥

∥

∥

u(T )−
(

Rβ(T )χδ +
∫ T−s

0
Rβ(T − s)h(s)ds

)∥

∥

∥

∥

≤ K
√

β + β
− 3

p δ

= Kδ
p
12 +√δ,

which goes to 0 as δ→ 0. $�
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1 Introduction

The work described in this chapter is research on the teaching and learning of
undergraduate mathematics, written to be accessible to someone with advanced
training in the mathematical sciences. The aim is to open and promote conversations
between two communities of researchers: those in mathematics and those in post-
secondary mathematics education. In this report, overviews of six different projects
offer a view into the variety in topics and methods of research in collegiate
mathematics education. The chapter arose from interactions among attendees at the
2017 AWM Symposium. For the first time, the symposium included a session on
research in collegiate mathematics education. The six presentations in the session
highlighted investigations into the teaching and learning of calculus, combinatorics,
linear algebra, foundations of proof, and the application of mathematics in the
college preparation of future school teachers. Research methods included individual
and group interviews, classroom observations, national survey, and in-depth study of
a particular instance or case. The research reported here relied on a variety of well-
established perspectives on the nature of human cognition and knowledge structures.

Though research on the relationships amongst humans and ideas in education is
far different from research rooted in relationships of ideas (e.g., in mathematics),
the investigative processes share some characteristics. First, one must start with
a few axioms and definitions. In education, the locally useful axioms form what
is called a theoretical framework—a foundational perspective on the nature of
thinking and human experience. In collegiate mathematics education research,
necessary definitions include those for the methods of conducting a particular
investigation (e.g., the ways that interview, observation, review of documents, and
survey are used). No proofs exist in mathematics education research. Instead, like
medical research where the participants are human, empirical evidence derived from
capturing the nature of human experience is the basis of a compelling argument. In
what follows, the authors touch on the theoretical and methodological foundations
of their work and offer summary results and discussion of the implications of
that work.

We start with two reports from the world of research on calculus. The first, by
Rasmussen, is from a national research project into the organizational configurations
and policies—institutional, departmental, and course-specific—that shape calculus
instruction and lead to student persistence (or not) in mathematical course-taking.
The second report about calculus, from Engelke Infante, is a deep dive into the
classrooms of five instructors, examining how they used gestures in communicating
about the second derivative test. Next, from the area of combinatorics, Lockwood
reports on fascinating studies of what counts in counting; in particular, what are the
ways we articulate the multiplication principle? It turns out the answer is nuanced
and that an appropriate set of counting tasks can elicit important subtleties when
students attempt to reinvent the statement of the principle. In a similar vein, the
report from Zandieh on research and development in inquiry-driven linear algebra
offers insight into the role of the instructor as a broker of mathematically rigorous
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meaning as students build their understanding of eigentheory and diagonalization.
In the realm of mathematical discourse practices around proof, Brown reports that
having students identify and explain the strengths and stumbles in a purported proof
by writing the story of a conversation about it, a proof script, can be a valuable tool
for instructors to identify potential expert blind spots about the nature of student
struggles with proofs and proving. In the domain of applied mathematics, in the final
section Lai gives a glimpse of what it might mean to apply mathematics to the work
of teaching (e.g., as distinct from the ways mathematics is applied in engineering,
or computer science, or physics) in teaching future teachers.

2 Calculus Program Structure

Calculus is typically the first mathematics course for science, technology, engi-
neering, and mathematics (STEM) majors in the United States. Indeed, each
fall approximately 300,000 college or university students, most of them in their
first post-secondary year, take a course in differential calculus [10]. However,
student retention in a STEM major and the role calculus plays in retention is a
major problem [20, 40, 47]. This report provides an overview of characteristics
of relatively more successful Calculus I programs across the country. Success was
defined by a combination of student persistence in the calculus sequence; affective
changes, including enjoyment of math, confidence in mathematical ability, interest
to continue studying math; and passing rates.

2.1 Methods

Data for this report come from a 5-year, large empirical study funded by the National
Science Foundation and run under the auspices of the Mathematical Association
of America [13]. The project was conducted in two phases. In Phase 1 surveys
were sent to a stratified random sample of students and their instructors at the
beginning and the end of Calculus I courses designed to prepare students for the
study of engineering or the mathematical or physical sciences. In Phase 2, the
project team conducted explanatory case studies at 18 different post-secondary
institutions, where the type of institution was determined by the highest degree
offered in mathematics. In this report, the focus is the five case studies at doctoral
degree granting institutions.
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2.2 Results

The survey results from Phase 1 provided information on which institutions were
more successful in terms of persistence, perceptions of math, and passing rates, as
compared to other institutions of the same type. Surveys are valuable because they
can gather information related to evidence of success. But, however well-crafted
and implemented, surveys are limited in their ability to shed light on why and how
institutions are producing students who are successful in calculus. The Phase 2 case
studies addressed this shortcoming by identifying and contextualizing the teaching
practices, training practices, and institutional support practices that contributed to
student success in Calculus I.

Cross case analysis of the five doctoral degree granting institutions led to the
identification of the following seven features that contribute to the success of a
calculus program.

Coordination. Calculus I has a permanent course Coordinator. The Coordinator
holds regular meetings where calculus instructors talk about course pacing
and coverage, develop midterm and final exams, discuss teaching and student
difficulties, etc. Exams and finals are common and in some cases the homework
assignments are uniform.

Attending to Local Data. There was someone in the department who routinely
collected and analyzed data in order to inform and assess program changes.
Departments did this work themselves and did not rely on the university to do so.
Data collected and analyzed included pass rates, grade distributions, persistence,
placement accuracy, and success in Calculus II.

Graduate Teaching Assistant (GTA) Training. The more successful calculus
programs had substantive and well-thought-out GTA training programs. These
ranged from a weeklong training prior to the semester together with follow up
work during the semester to a semester course taken prior to teaching. The course
included a significant amount of mentoring, practice teaching, and observing
classes. GTAs were mentored in how to use active learning strategies with
students.

Active Learning. Calculus instructors were encouraged to use and experiment
with active learning methods of teaching. In some cases, the department Chair
sent out regular emails with links to articles or other information about teaching.
One institution even had biweekly teaching seminars led by the math faculty or
invited experts. Particular instructional approaches, however, were not prescribed
or required for faculty at any of the institutions.

Rigorous Courses. The more successful calculus programs tended to challenge
students mathematically. They used textbooks and selected problems that
required students to delve into concepts, work on modeling-type problems,
or even proof-type problems. Techniques and skills were still highly valued.
In some cases, these were assessed separately and a satisfactory score on this
assessment was a requirement for passing the course.
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Learning Centers. Students were provided with out of class resources. Almost
every institution had a well-run and well-utilized tutoring center. In some
instances, this was a calculus only tutoring center and in others the tutoring center
served linear algebra and differential equations. Tutoring labs had a director and
tutors received training.

Placement. Programs tended to have more than one way to determine student
readiness for calculus. This included: placement exams (which were monitored to
see if they were doing the job intended), gateway tests 2 weeks into the semester
and different calculus format (e.g., more time) for students with lower algebra
skills.

2.3 Discussion

To interpret these findings, we have drawn on Tinto’s academic and social integra-
tion perspective, which highlights the relationship between persistence and social
and academic integration [31, 50]. From this perspective, student persistence is
viewed as a function of the dynamic relationship between the student and other
actors within the institutional environment, including the classroom environment.
For example, almost without exception the students we talked with noted that
they felt their calculus course was academically engaging and challenging (despite
the fact that the vast majority had taken calculus in high school) and that there
were a number of resources available to them to help them be successful. These
resources included well-developed math help centers and availability of instructor
and GTA office hours. Other factors that contributed to students’ academic and
social integration included student centered instruction, common space in the math
department where students could gather to work on homework, dorms that provided
them with opportunities to interact with like-minded students, and in some places
a cohort system or strong student culture that provided cohesion among students.
The fact that each of the more successful Calculus I programs regularly brought
faculty together to develop shared resources and perspectives on teaching is also
noteworthy.

In summary, the analysis of the five successful calculus programs at doctoral
institutions highlighted a number of structural and programmatic features that other
institutions would likely be interested in adapting. While there is no one size fits all,
these common features offer a starting point for departments to initiate their own
improvement efforts.

3 Gesture in Teaching Calculus

Every concept in mathematics can be represented in multiple ways. A function can
be a graph, a formula, a set of points. A critical aspect of learning and under-
standing mathematical concepts is the ability to use and move between different
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representations of a common idea. Connections among varied representations and
concepts form the foundations of advanced mathematics. Here, we explore how
to assist students in making these connections and deepen their understanding.
Understanding of concepts is shaped through bodily experiences, such as gesture.
The theoretical framing for examination of human experience of mathematics from
this perspective is called embodied cognition [32, 38]. Many researchers have
indicated that gesture is a potentially powerful, but underutilized, means for making
links during instruction [2, 8, 24, 45, 46].

Unfortunately, Calculus I has a high failure rate and is the reason many students
leave their chosen field [19, 47]. Something different is needed in the classroom to
help students succeed. Calculus is the study of motion, so the calculus classroom is a
natural place to study how gesture is used in communicating about it. The purposeful
use of gesture in calculus has great potential, especially as it is free to implement.

3.1 Methods

We took a careful and detailed look at how five instructors used gesture during
naturally arising classroom activities that involved the second derivative test [21].
The method was what is called a qualitative case study [14]. Each lesson in which
the second derivative test was introduced was transcribed and broken down into
linking episodes—segments of classroom lecture or interaction in which links
between key ideas are made [2]. These linking episodes were then analyzed to
determine how many and what types of gestures were used in conjunction with
the links being made.

The instructors used three primary forms of gesture: pointing, depictive, and
writing. Pointing gestures are those used to index objects, locations, and inscriptions
in the physical world. Depictive gestures are those made to represent the motion or
shape of an object, such as a graph. Writing gestures are those in which writing or
drawing is integrated with speech so that a writing instrument is used to indicate
content of the accompanying speech (such as drawing a circle around a term in
an equation while stating “this term”). Here, we summarize the results of three
typical, distinct gesture use patterns. In the transcriptions, square brackets around
an utterance indicates it was accompanied by the gesture described in the connected
bracket. For example, a person pointing to a peak on a graph while saying “a
maximum” in the sentence “We know we have a maximum” is transcribed as: “We
know we have [a maximum] [pointing to peak].”

3.2 Results

Each instructor introduced the second derivative test while solving an optimization
problem: either construct a fence that maximizes area for a given perimeter
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(Instructors A, B, and C) or construct a fence of minimum perimeter for a fixed
area (Instructors D and E). During this instruction, each instructor linked two key
ideas: (1) the sign of the second derivative and the concavity of the function, and (2)
the concavity of the function and the existence of a maximum or minimum.

Instructor A primarily used pointing gestures. At the beginning of her lesson, she
drew an unlabeled graph with a maximum and a minimum value. As she pointed
to the maximum value on her graph, she stated “we know we have [a maximum]
[pointing to peak],” and then she pointed to the minimum on her graph and stated
“we know we have [a minimum] [pointing to valley], but we don’t know this starting
out.” She continued and asked the students “what does the second derivative tell
us?” The students responded, “concavity.” She proceeded to point to the maximum
on the graph and asked “[what’s the concavity right here?] [circular motion with
her hand around the maximum on the graph].” This led to the conclusion that a
concave down graph would have a maximum, which was pointed to again. Through
a similar sequence of questions and points, the class arrived at the conclusion that a
concave up graph would have a minimum. Hence, we see that she uses a sequence
of points to draw attention to information on the graph and link that information to
the existence of maxima and minima.

In contrast, Instructor C made very few references to what he had written on
the board. Instead, he primarily used depictive gestures while facing the class.
After drawing a small, downward curve on the board and quickly pointing to the
maximum, he turned to face the students and moved to the center of the boards
at the front of the classroom and exclaimed, “Watch! Watch! Watch!” and made
sure that all eyes were on him before he proceeded (Fig. 1). He demonstrated that
a concave down graph would have a maximum value (blue arching motion above
the red line) while a concave up graph (blue arching motion below the red line)
must have a minimum value. He related each of these ideas back to the idea of a
horizontal tangent line (which he indicated with the horizontal red line motion).

Instructor B used a combination of the strategies used by Instructors A and C.
She drew a representative graph on the board and took time to deliberately point to it
(Fig. 2, left), and then she moved away from the board and reiterated the connection
between concavity and the existence of a maximum (Fig. 2, right).

Fig. 1 Instructor C highlighting aspects of the second derivative test using gesture
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Fig. 2 Above left: Instructor B pointing to the maximum on a concave down graph. Above right:
Instructor B making a large, two-handed gesture for a concave down graph

3.3 Discussion

While each of the instructors used a similar example problem to introduce the
second derivative test, there was significant variation in how they chose to link
the key ideas of the concept. Even though there is noteworthy variation among the
quantity and type of gestures used among instructors, more gesture is not necessarily
indicative of a better lesson. A single, appropriately timed gesture of a particular
type may be equally effective. For example, Instructor C made certain that his
students would be paying attention to at least one sequence of gestures he made.

There is mounting evidence that instructors’ use of gesture promotes student
learning and that instructors can intentionally alter their gesture production during
instruction to good effect [1, 3, 17, 27]. Gestures promote long-term memory
[15–17]. Hence, instructors are encouraged to spend a little time during lesson
preparation thinking about how to purposefully incorporate gesture to facilitate
students’ understanding.

4 Combinatorics

Combinatorics is a rich and accessible topic, but counting problems are difficult
for students to learn and for teachers to teach (e.g., see [5, 18]). One approach
for mitigating such difficulties is to study foundational concepts pertaining to
combinatorial enumeration. The Multiplication Principle (MP), which is sometimes
referred to as The Fundamental Principle of Counting (e.g., as in [43]), is a one such
foundational aspect of counting. This principle is fundamental to combinatorics,
underpinning many standard formulas and counting strategies. Generally, the MP
says that for independent stages in a counting process, the number of options at each
stage can be multiplied together to yield the total number of outcomes of the entire
process (specific statements are provided below). It is central to (and can justify)
many of the counting formulas to which students are introduced.
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4.1 Methods

Because it is such an important topic that is central to combinatorial enumeration,
my colleagues and I conducted two related studies about the MP. First, we
conducted a textbook analysis of statements of the MP, reported in [36] and second,
we conducted a reinvention study with a pair of undergraduate student novice
counters, reported further in [35]. Together, these studies contribute to our field’s
understanding of both the MP as a mathematical construct and how students reason
about the MP. I briefly highlight results from each of these studies and report some
potential implications of the work.

4.2 Results

In the textbook analysis, we examined 64 textbooks that were used at universities
across the country, and because some books had more than one statement, this
yielded 73 statements in total. This textbook analysis facilitated an in-depth
conceptual analysis of the MP, and it yielded two major results. First, we identified
and reported three different statement types, structural, operational, and bridge
statements. Structural statements characterize the MP as involving counting struc-
tural objects (such as lists or k-tuples). Operational statements characterize the
MP as determining the number of ways of completing a counting process. Bridge
statements simultaneously characterizes the MP as counting structural objects and
specifies a process by which those objects are counted. Statements by Bona [11]
in Figure 1, Rosen [44] in Figure 2, and Tucker [51] in Figure 3 offer examples of
these three respective statement types.

These statement types highlight three different ways of presenting the MP,
particularly in terms of how counting processes and sets of outcomes are framed
[34]. They also help to characterize a surprising amount of variation we observed
among the statement types—among the 73 statements, we identified 22 structural
statements, 33 operational statements, and 18 bridge statements (Figs. 3, 4, and 5).

Fig. 3 Bona’s [11] statement of the MP (Structural)

Fig. 4 One of Rosen’s [44] statements of the MP (Operational)
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Fig. 5 Tucker’s [51] statement of the MP (Bridge)

For the second major result of the textbook analysis, we identified three key
mathematical ideas that are central to the MP and, we conjectured, would be
important aspects of student reasoning about the MP. These key mathematical ideas
are that a statement of the MP should: (a) require independence of a number of
options for stages in a counting process, (b) allow for dependence of option sets,
and (c) require composite outcomes to be distinct. If a statement does not attend to
these issues, then it is possible to apply the MP in a way that could yield an incorrect
answer. We elaborate certain problems that demonstrate the importance of these key
mathematical ideas both in [36] and [35].

While the textbook analysis was theoretically interesting to us, we also wanted
to examine students’ reasoning about the MP, including the extent to which these
key mathematical ideas arose in their conceptions of the MP. Given our findings
from the textbook analysis, we followed up with another study in which we had two
undergraduate students reinvent a statement of the MP.

These students were undergraduates who were enrolled in a vector calculus class;
had not taken a discrete mathematics course in college. We interviewed them in
8 h-long sessions during which they collaboratively solved problems and iteratively
refined their statements. The students first engaged in counting activity that involved
multiplication, and then we asked them to articulate a statement of when they would
use multiplication to solve a counting problem.

For the sake of space, we juxtapose their first and last statements, providing a
brief description of their progression. Their first statement said:

Use multiplication in counting problems when there is a certain statement shown to exist
and what follows has to be true as well.

We interpret that the students were trying to account for multiple constraints,
and this yielded a reasonable but far from a rigorous initial statement of the MP.
Throughout the sessions we gave students certain problems that were designed to
target the key mathematical ideas mentioned above, and we used certain problems to
elicit conversations that led students to make small adjustments to their statements.

Ultimately, the students refined their statement of the MP and came up with the
final statement:

If for every selection towards a specific outcome, there is no difference in the number
outcome, regardless of the previous selections, then you multiply the number of all the
options in each selection together to get the total number of possible unique outcomes.

This final statement attends to each of the key mathematical ideas, and through this
process we gained insight into students’ reasoning about the MP.
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4.3 Discussion

The results from both the textbook analysis and the interviews with students
emphasize that the MP is a nuanced idea with subtle and important mathematical
features. One conclusion from these studies is that if students do not grapple these
subtleties, they may apply the MP without understanding potential issues that may
arise. For researchers and teachers, we would encourage them to take seriously the
MP, even if it appears to deal with a familiar and straightforward operation. For
students who are learning counting, we suggest that they should be thoughtful and
careful about how they apply the MP when solving counting problems.

5 Linear Algebra

Mounting evidence exists regarding the positive impacts of active learning on
student success and attitudes in undergraduate science, technology, engineering,
and mathematics (STEM) courses (e.g., [22, 29]). In addition, linear algebra is an
important content course because of its wide applicability in many STEM fields. Our
team has been conducting research and curriculum development in linear algebra
for over 10 years. The work has included creating the NSF-funded Inquiry-Oriented
Linear Algebra (IOLA) curriculum materials (http://iola.math.vt.edu/; [4, 53]).

Inquiry-oriented instruction is a form of active learning in which students
contribute to the reinvention of important mathematical ideas; this is in contrast
to forms of active learning in which students’ activity is marked by practicing or
applying principles that have been previously explained or demonstrated. We draw
on Rasmussen and Kwon’s [41] two-part definition of inquiry: (1) students inquire
into the mathematics and (2) instructors inquire into student thinking. In particular,
instructors engage students in problem solving tasks that elicit rich mathematical
discussions. Within those discussions, the instructor points out connections between
the mathematics that students are generating and the established mathematical
definitions and symbolisms that the instructor wants students to learn. In this way,
the instructor serves as a broker between the classroom community and the larger
mathematical community [42].

5.1 Methods: IOLA Materials

This task sequence, which we refer to as “The Blue to Black Unit,” supports
students’ reinvention of change of basis, eigentheory, and how they are related
through diagonalization. Task 1 builds from students’ experience with linear
transformations in IR2 to introduce them to the idea of stretch factors and stretch
directions and how these create a non-standard coordinate system for IR2. In Task 2,

http://iola.math.vt.edu/
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students create matrices that convert between standard and non-standard coordinate
systems and relate these to the stretching transformation of Task 1 to reinvent the
equation Ax = PDP−1x. In Task 3, students build from their experience with
stretch factors and directions to create for themselves ways to determine eigenvalues
and eigenvectors given various pieces of information about transformations. In Task
4, students work with examples in IR3 to develop the characteristic equation as a
solution technique, as well as connect ideas about eigentheory to their earlier work
with change of basis through the idea of diagonalization.

For this short report, we provide an overview of student activity in Task 1 and
then illustrate in more detail one example of student and teacher inquiry from Task
1. More detail regarding student work and instructor facilitation on this task, as well
as Task 2 of this unit, can be found in [55]. Task 3 is discussed in [39].

5.2 Results: Illustrative Example

Student inquiry in Task 1 (see Fig. 6) involves exploring a graphical situation, but
also finding ways to symbolize graphical activity using vectors and matrices. The
inquiry involves creating or choosing appropriate ways to symbolize mathematical
processes and relationships. One student who we will call Donald explained his
work to the class (see Fig. 7). He said that the points along y = x stay fixed so the
upper right and lower left corners of the box stay fixed. Note his circles around these
two points on the right graph in Fig. 7. To determine what happened to the upper left
corner point, (−2, 2), he noted that it is along a line parallel to y = −3x that starts at
the point (−1, 1). On the left graph in Fig. 7 we can see that he has drawn a number
of line segments parallel to y = −3x. One of these has dots marked by Donald at
(−1, 1), (−2, 2), and (−3, 5). Donald indicated that the point (−2, 2) would move
(be transformed) to the point (−3, 5) which he drew in on the right in Fig. 7 as the
new upper left corner of the stretched parallelogram.

Donald’s inquiry into the mathematics led him to note geometrical relationships
within the task setting. In response, the instructor talked the class through her board
work (Fig. 8, next page), which she connected to what Donald had explained. She
pointed out the vector (−2, 2) can be written as (−1,−1)+ (−1, 3), and that when
the linear transformation is applied to this equation, we know that (−1,−1) stays
fixed and (−1, 3) is doubled resulting in (−1,−1)+ (−1, 3) = (−3, 5).

The instructor’s explanation provided a bridge between Donald’s geometric
argument and an argument based on the ideas and notation of vector equations
and linear transformations. This is an example of the instructor serving as a broker
between the classroom community and the larger mathematical community.

Donald was not the only student or group of students who had drawn lines
on their paper parallel to y = −3x or parallel to y = x. Later in the class the
instructor recalled this student gridding activity and used it to introduce the graphic
in Fig. 9 (next page). The instructor’s discussion of the solution process using the
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Fig. 6 Task 1: The stretching task

Fig. 7 Donald’s work



258 S. Hauk et al.

Fig. 8 In recapping Donald’s
work, his instructor wrote out
the work shown

Fig. 9 A unifying graphic
that illustrates stretch
directions and foreshadows
A = PDP−1

blue gridding served as a unifying summary of student work on the problem, but
also a foreshadowing of the change of basis idea that the students would use in the
next task to develop the equation A = PDP−1.

5.3 Discussion

This brief vignette serves as an example of both student inquiry into mathematical
ideas and an instructor’s bridging from the students’ mathematics to additional
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mathematical ideas that she wanted the students to learn. For this kind of classroom
inquiry to occur, one needs both (1) tasks that allow for and (2) instructor
interactions that encourage these explorations and discussions.

6 Unearthing Problematics Through Student Proof Scripts

The aim of the reported study was to explore students’ ways of reasoning about
contradictions through the examination of students’ responses to the proof script
task shown in Fig. 10. The proof employed in this task was selected for two
reasons. First, the proof provided an avenue to examine students’ reasoning about
contradictions outside of the context of a proof by contradiction. Indeed, the reader
will notice the proof does not demonstrate that the negation of the theorem leads to
a contradiction but shows that the theorem’s hypotheses lead to its conclusion.

Second, while research has shown that proofs by contradiction present specific
difficulties for students [6, 26, 33], research has yet to identify those difficulties that
are salient to students. Moreover, little is known about students’ ways of reasoning
about those difficulties. For example, little is known about students’ reasoning about
logically degenerate cases (i.e., cases within a proof, whose hypotheses lead to a
contradiction either with other given hypotheses, their consequences, or statements
in the broader mathematical theory) even though proofs of this form are common in
introductory topology, number theory, and real analysis courses (e.g., consider how
one proves: For any real numbers x and y, if x ≤ y and y ≤ x, then x = y.).

6.1 Methods

To bridge this gap in the research literature and identify the difficulties that are
salient to students, the proof script methodology was employed. This method draws
on Commognitive Theory in which it is argued, “thinking is a form of communica-
tion and . . . learning mathematics is tantamount to modifying and extending one’s
discourse” [48, p. 567]. Furthermore, proof scripts were appropriate for the study
since proof scripts afford a window into students’ ways of reasoning that are salient
to students by unseen by experts; that is, they provide a means to avoid expert blind
spots [30, 37, 56, 57].

As part of a larger study, 20 students enrolled in Introduction to Proof courses
were randomly assigned the task shown in Fig. 10. Using a thematic analysis [12],
common student difficulties were identified. The following problematic aspects
were anticipated: (1) the variable m is used but not defined; (2) there are only two
cases, shouldn’t there be four? and (3) does the contradiction in Case 2 imply the
proof is flawed?
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Fig. 10 Proof script assignment

6.2 Results

Analyses indicated that all of the problematic aspects anticipated prior to data
collection were observed in the students’ scripts. Specifically, 6 out of 20 students
noted the statement “let m be an integer” should be included; 7 out of 20 posited
(incorrectly) that two additional cases (i.e., a total of four cases) were required; and
4 out of 20 argued the contradiction in Case 2 implied either the theorem was false
or the proof was flawed.

While it was anticipated students would find the contradiction in Case 2 problem-
atic, two ways of reasoning were observed which were common but unanticipated.
First, 4 out of 20 students addressed confusion over the role of the contradiction by
arguing an alternative “better” proof—a proof by contraposition—should be used
(see Examples 1 and 2).



Collegiate Mathematics Education 261

Example 1
Student 1: [. . .] As for case 2, the contradiction cannot prove the case, because

since you stated that 3 does not divide m + 1 then 3 divides m should
be true. Same as case 1.

Gamma: How will I be able to prove the theorem then?
Student 1: Approach the proof with a different direction. Negate the statement or

prove it by contraposition.
Gamma: Okay, thanks. [End-of-dialog.]

Example 2
Student 2: The theorem suggests that for every integer m, if 3 does not divide

m2 − 1, then 3 divides m.
Gamma: I proved this directly using the division algorithm
Student 2: But it would be less problematic to prove this theorem by the contra-

positive.

This finding is surprising since research indicates university students experience
difficulties accepting proofs by contraposition [7, 23]. Indeed, Goetting found
students were “wary of the validity of the ‘backwards’ arguments” [23, p. 124].

Second, 6 out of 20 students argued Case 2 as unnecessary since the Division
Algorithm produces a disjunctive result as in Example 3.

Example 3
Gamma: Case 2 has proven that 3|(m − 1) which is the contradiction of 3|m

then does that mean the theorem is false?
Student 3: From line 6, it is stated that the remainders are 1 or 2, that means only

one case is needed to be true for the 3|m to be true. Moreover, case 2 is
not quite necessarily needed when case 1 is already proven to be true
to make the theory true. [End-of-dialog.]

These remarks suggest the following reasoning:

(a) m+ 1 = 3k + 1 or m+ 1 = 3k + 2;
(b) m+ 1 = 3k + 1 implies 3|m;
(c) Hence, m+ 1 = 3k + 1 or m+ 1 = 3k + 2 implies 3|m.

In other words, given A ∨ B it is sufficient to prove (A ⇒ Q) to conclude
Q. The issue here is that such reasoning is flawed. (A ∨ B) ⇒ Q is logically
equivalent to (A⇒ Q)∧ (B ⇒ Q). Thus, (A⇒ Q) is necessary but not sufficient
to conclude (A∨B)⇒ Q. What can account for the commonality of this response?
Given that students argued, “if one of those are true . . . then the statement is true,” it
appears students held a disjunctive interpretation of the cases. In other words, they
(incorrectly) reasoned: [(A∨ B)⇒ Q] ≡ [(A⇒ Q)∧ (B ⇒ Q)]; hence, A⇒ Q

is sufficient and B ⇒∼ Q can be ignored. This finding is of interest, for it suggests
ways of reasoning about proof-by-cases that may not impact one’s interpretations
when each case produces the desired conclusion, but might impact one’s reasoning
about logical dilemmas (i.e., arguments of the form A∨B, A⇒ C, B ⇒ D, C∨D),
which are common to non-constructive existence proofs.
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6.3 Discussion

Many would argue a key characteristic of effective instruction is the inclusion of
curricular activities that address common student difficulties. Due to a large body
of research indicating experts may be blind to novices’ difficulties, educational
researchers have developed methods for identifying difficulties experienced by
students but unseen by experts. Findings from this study indicate that, even
though prior research has shown students experience difficulties with proof by
contraposition, there are contexts in which students may gravitate towards this
form of indirect proof. The findings also indicate further research is needed on
students’ ways of reasoning about proof-by-cases. Indeed, most Introduction to
Proof instructors have asked students to prove “For any integer n, (n2 − n) is even”
only to have students turn in:

Proof : Let n be an integer. By the division algorithm, n = 2k or n = 2k + 1 for some
integer k. If n = 2k then (n2 − n) = 4k2− 2k = 2(2k2− k). Since (22 − k) is an integer,
(n2 − n) is even. Q.E.D.

As instructors, we often respond, “You forgot the case n = 2k + 1” believing the
student was being absent-minded. However, the results of the scripting task provide
an alternative interpretation. Namely, some students are reasoning, “Case 2 is not
quite necessarily needed when Case 1 is already proven to be true.”

7 Mathematics Applied to Teaching

Consider the following two tasks. Each was designed to be a set of discussion
items in a mathematics class for high school mathematics teacher candidates, that
is, undergraduates or graduates who seek certification to teach high school.

Task 1

(a) Derive the identity x0 = 1, for all x, assuming that the additive law for
exponents must extend from positive integers to 0, and that a1 = a, for all a.

(b) (i) State the definitions of function, inverse of a function, and partial inverse
of a function.

(ii) Using the definition of function and inverse of a function, and function
and partial inverse of a function, explain how the following functions are
examples or not of these ideas:

sin(x), arcsin(x)

cos(x), arccos(x)

x2, ±√x

x3, 3
√
x.
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Task 2

(a) A student in your algebra class says, “Why is x0 = 1? It seems like it should be
0, because anything times 0 is 0.” How would you respond?

(b) (i) State the definitions of function, inverse of a function, and partial inverse of
a function. Then interpret these definitions using different representations
of functions, such as tables and graphs.

(ii) Construct as many partial inverses as you can, of:

f (x) = sin(x)

f (x) = cos(x)

f (x) = x2

f (x) = x3.

Although each pair of tasks draws on similar mathematics, there is a qualitative
difference between how Tasks 1 and 2 draw on that mathematics. Learning to
do mathematics for one’s own sake differs from learning to do mathematics so
as to help someone else learn it. Learning facts of how high school mathematics
fits into higher mathematics is different from constructing instances of higher
mathematics in the context of high school mathematical ideas. Below, I summarize
several investigations related to these ideas. After providing motivation for such
investigations, I offer a few details of methods and results for two research projects
on which I have worked related to the application of mathematics to teaching.

7.1 Methods: Motivation

As Wu [54] argued, the “Intellectual Trickle-Down Theory” does not work. This
is the approach that assumes prospective teachers will learn mathematical theory
and can be expected to then independently derive the underlying structures of high
school mathematics. Future and current high school teachers find the content and
experience of their undergraduate mathematics courses to be irrelevant to their
teaching, including the norms and skills for communication (see, e.g., [25, 49, 52]).
It seems unlikely that teachers would deliberately use knowledge that they perceive
to be irrelevant, even if that knowledge is in fact relevant.

One strategy that has been advocated for teacher education is to use tasks where
mathematics is “applied” to teaching [9], such as in Task 2. While this approach
is theoretically promising, it is an open question to what extent these tasks would
fulfill their anticipated function. Understanding the issue of how exactly these tasks
elicit knowledge and how experiences with these tasks may transfer are critical for
improving teacher education using the approach. I report on some observations to
date from ongoing projects focused on these issues. These investigations used task-
based interview as the primary method of data collection and several rounds of
qualitative categorization and coding of the interview data.



264 S. Hauk et al.

7.2 Results: Situating Teachers in Context

Heather Howell, Geoffrey Phelps, and I [28] analyzed a set of tasks where mathe-
matics is applied to teaching (e.g., as in Task 2). The study was based on the logic
that if knowledge for teaching includes mathematics but is more than mathematics,
then having incorrect mathematical knowledge should lead to an incorrect answer
on tasks, and that other factors related to teaching should also lead to incorrect
answers. We examined 23 high school teachers’ responses to 11 tasks (from a pool
of 55 tasks). We found that mathematical errors contributed to only half of the
incorrect responses. The other half arose, instead, from teaching factors such as
alternate expectations about student error, or not understanding students’ responses,
or not grasping a stated teaching objective. Moreover, some interviewees’ responses
to pure mathematics questions asked in the interview showed understanding of
mathematics yet those interviewees had applied the mathematics incorrectly to
teaching situations. We have used our analysis to argue that the way that these tasks
elicit mathematical knowledge differs from how a pure mathematical task would,
because the tasks situate the mathematics and the person using it in the large and
complex context of teaching.

In ongoing work, Erin Baldinger and I interviewed teachers on pairs of tasks
where the context switches between asking the interviewee to answer the question
as a teacher in high school and as a student in a university mathematics course. Our
data contain multiple instances of interviewees who assert the same mathematical
argument is valid when in the role of a teacher of a high school student who
produced that argument and invalid when asked to judge the proof as a student in
a university mathematics course—and vice versa. These data suggest that context
may impact the inferences drawn from mathematical analysis of a problem, even
when the task is otherwise exactly the same.

7.3 Discussion

It may be useful for mathematics departments to view mathematical knowledge
for teaching as mathematics applied to teaching. As with other forms of applied
mathematics, learning mathematics in isolation may be less useful than learning
in context. For instance, differential equations are not useful to a mathematical
biologist who cannot use differential equations to model natural phenomena.
Contextualizing mathematics in teaching has the potential to improve teacher
education.
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8 Conclusion

Though extensive detail was beyond the scope of this chapter, each of the projects
reported on here was grounded in the essentials of high quality educational research.
Before any data were collected, each effort had articulated a well-developed theo-
retical framework, a careful selection of methods for gathering data that included
informed consent from participating students and instructors, techniques for storage
and analysis of data, and plans for peer-reviewed dissemination of the results.
While each example discussed teaching, the work of the included projects went
beyond documentation of reflective instruction. Also, each did more than report on
the scholarship of teaching and learning (i.e., where the goal is to examine what
may be happening in a particular instructional situation, explain, and share it with
thoughtful peers). What the research projects reported on here have in common is:
rigorous, systematic investigation to accumulate a preponderance of evidence about
a result. The purpose of such educational research in its full reporting (e.g., in a peer-
reviewed journal) is to provide compelling warrant and sufficient detail to support
others in well-informed efforts to investigate the generalization and/or transfer of
ideas to other contexts.

As noted at the outset, the aim here was a sketch of the landscape in collegiate
mathematics education research. For a fuller picture, we encourage the interested
reader to browse the listed references. Also, there are accessible reports of research
in the materials available through the Mathematical Association of America’s
Special Interest Group on Research in Undergraduate Mathematics Education
website http://sigmaa.maa.org/rume (e.g., short research papers are available for free
in the group’s conference proceedings, click the Proceedings link).
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