
Towards Exact State Complexity Bounds
for Input-Driven Pushdown Automata

Galina Jirásková1(B) and Alexander Okhotin2

1 Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia

jiraskov@saske.sk
2 St. Petersburg State University,

7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
alexander.okhotin@spbu.ru

Abstract. The paper improves several state complexity bounds for
input-driven pushdown automata (IDPDA), also known as visibly push-
down automata. For deterministic IDPDA it is proved that the number
of states sufficient and in the worst case necessary to represent the rever-
sal of an n-state automaton is exactly nn if all inputs are assumed to
be well-nested, and between nn and n(nn − (n − 1)n) + 1 without this
restriction, cf. 2Θ(n log n) in the literature. For the concatenation of an
m-state and an n-state IDPDA, the new lower bound is mnn, which
is asymptotically tight for well-nested inputs. Without this restriction,
the state complexity is between mnn and m(n + 1)nn2n. Finally, it is
proved that transforming an n-state nondeterministic IDPDA to a deter-

ministic one requires exactly 2n2
states, cf. 2Θ(n2) in the literature; the

known lower bounds on complementing nondeterministic IDPDA and on
transforming them to unambiguous are also improved.

1 Introduction

Input-driven pushdown automata (IDPDA), first studied by Mehlhorn [5] and
by von Braunmühl and Verbeek [2], are a special case of deterministic pushdown
automata, in which the input alphabet is split into three disjoint classes, so that
the type of a symbol determines the action on the stack that the automaton must
perform: on left brackets it may only push one symbol onto the stack; on right
brackets it may only pop one stack symbol; on neutral symbols the stack may
not be accessed. The model was later reintroduced by Alur and Madhusudan
[1] under the name of “visibly pushdown automata”, which caused a revival of
research on this model.

Input-driven automata can be defined in both deterministic (DIDPDA) and
nondeterministic (NIDPDA) variants, which were proved to be equivalent by
von Braunmühl and Verbeek [2]: an n-state NIDPDA can be transformed to a

G. Jirásková—Research supported by VEGA grant 2/0084/15 and grant APVV-15-
0091.

c© Springer Nature Switzerland AG 2018
M. Hoshi and S. Seki (Eds.): DLT 2018, LNCS 11088, pp. 441–452, 2018.
https://doi.org/10.1007/978-3-319-98654-8_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98654-8_36&domain=pdf

442 G. Jirásková and A. Okhotin

Table 1. Known lower and upper bounds on the state complexity of basic operations
for deterministic input-driven automata.

Well-nested inputs Arbitrary inputs

Lower bound Upper bound Lower bound Upper bound

∪ Θ(mn) [12] mn [1] Θ(mn) [12] mn [1]

∩ Θ(mn) [12] mn [1] Θ(mn) [12] mn [1]

∼ n n n n

· m2Θ(n log n) [8] m(nn + 2n) [8] m2Θ(n log n) [8] m · nn · 4n [8]
2 2Θ(n log n) [8] n(nn + 2n) [8] 2Θ(n log n) [8] n · nn · 4n [8]
∗ 2Θ(n log n) [13] nn + 2n + 1 [8] 2Θ(n log n) [13] nn · 4n [8]
R 2Ω(n log n) [12] nn [8] 2Ω(n log n) [12] nn · 2n [8]

2n2
-state DIDPDA by an elaborated form of the subset construction; later, Alur

and Madhusudan [1] established a lower bound of 2Ω(n2) states. An interme-
diate model with unambiguous nondeterminism (UIDPDA) was introduced by
Okhotin and Salomaa [7], who showed that transforming UIDPDA to DIDPDA,
as well as NIDPDA to UIDPDA, requires 2Ω(n2) states. A few generalizations of
input-driven automata with strictly greater expressive power have been studied,
such as the transducer-driven automata [3].

The family of languages recognized by input-driven automata is notable for
being closed under most of the standard operations on formal languages. The
closure results were first systematically studied by Alur and Madhusudan [1],
whose work inspired the state complexity studies for this model. Piao and Salo-
maa [12] and Salomaa [13] proved the first lower bounds on the state complexity
of basic operations on DIDPDA. Later Okhotin and Salomaa [8] presented the
first efficient constructions for concatenation, Kleene star and reversal, with the
number of states close to the known lower bounds. Notably, the constructions
produce fewer states if the automata are assumed to operate only on well-nested
strings. The currently known bounds are optimal up to a constant factor in
the exponent, and are presented in Table 1, where the cases of automata oper-
ating only on well-nested inputs, and of unrestricted automata, are presented
separately.

Besides these basic operations on languages, the state complexity of some
further operations on DIDPDA has been studied. There are recent results on
the number of states in DIDPDA for the quotient [10], the edit distance neigh-
borhood [9], insertion, deletion, square root and proportional removals [11].

The purpose of this paper is to improve both lower and upper bounds on
the state complexity of basic operations on DIDPDA, as well as on the trans-
formations between input-driven models. The paper begins with the results
on the reversal operation, presented in Sect. 3. First, an upper bound of
n(nn−(n−1)n)+1 states is established by a new construction of an input-driven
automaton recognizing the reversal. At the same time, an asymptotically tight

Towards Exact State Complexity Bounds 443

lower bound of nn states is presented, which uses only well-nested strings. This
matches the upper bound of nn states in the well-nested case by Okhotin and
Salomaa [8].

In Sect. 4, new bounds are established for concatenation. First, there is a new
lower bound of mnn states in the well-nested case, which is asymptotically tight
to the known upper bound of m(nn + 2n) states [8]. Second, an upper bound of
m(n+1)nn2n states is sketched for the general case, improving the construction
by Okhotin and Salomaa [8]. For the Kleene star and for the square, there is a
new lower bounds of nn states in each case, which is asymptotically tight.

The last contribution, presented in Sect. 5, is several improved lower bounds
on nondeterministic input-driven automata (NIDPDA). For the transformation
of an n-state nondeterministic IDPDA to a deterministic one, it is shown that 2n2

states are needed in the worst case, matching the upper bound [2] and improving
over a known lower bound of 2Θ(n2) states [1]. The same construction is used
to improve the known bounds on transforming NIDPDA to UIDPDA and on
complementing NIDPDA [7].

2 Deterministic Input-Driven Automata

In an input-driven pushdown automaton (IDPDA), the input alphabet is split
into three disjoint classes, Σ+1, Σ−1 and Σ0, and the type of a symbol determines
the action on the stack that the automaton must perform upon reading that
symbol. The symbols in Σ+1 are known as the left brackets (notation: <, �): on
these symbols, the automaton must push one symbol onto the stack and cannot
examine the stack. The symbols in Σ−1 are right brackets (notation: >, �), on
which the automaton pops one symbol from the stack. Finally, on any neutral
symbols in Σ0, the automaton cannot access the stack at all, and behaves like a
finite automaton.

By the original definition of input-driven automata used by Mehlhorn [5]
and by von Braunmühl and Verbeek [2], IDPDA are assumed to operate on
well-nested strings. The definition by Alur and Madhusudan [1] further allows
ill-nested strings: on unmatched left brackets, an automaton pushes symbols that
shall never be popped; on unmatched right brackets, it uses special transitions by
an empty stack, in which the automaton detects the stack emptiness and leaves
the stack empty.

Definition 1 (Mehlhorn [5], Alur and Madhusudan [1]). A (determinis-
tic) input-driven pushdown automaton (IDPDA) consists of the following com-
ponents.

– The input alphabet Σ is a finite set split into three disjoint classes: Σ =
Σ+1 ∪ Σ−1 ∪ Σ0.

– The set of (internal) states Q is a finite set, with an initial state q0 ∈ Q and
with a subset of accepting states F ⊆ Q.

– The stack alphabet Γ is a finite set, and a special symbol ⊥ /∈ Γ is used to
denote an empty stack.

444 G. Jirásková and A. Okhotin

– For each neutral symbol c ∈ Σ0, the transitions by this symbol are described
by a function δc : Q → Q.

– For each left bracket symbol < ∈ Σ+1, the behaviour of the automaton is
described by functions δ< : Q → Q and γ< : Q → Γ , which, for a given cur-
rent state, provide the next state and the symbol to be pushed onto the stack,
respectively.

– For every right bracket symbol > ∈ Σ−1, there is a function δ> : Q × (Γ ∪
{⊥}) → Q specifying the next state, assuming that the given stack symbol is
popped from the stack (or that the stack is empty).

A triple (q, w, x), in which q ∈ Q is the current state, w ∈ Σ∗ is the remaining
input and x ∈ Γ ∗ is the stack contents, is called a configuration. For each
configuration, the next configuration is defined as follows.

(q, cw, x) 	 (δc(q), w, x) (c ∈ Σ0, q ∈ Q)
(q,<w, x) 	 (δ<(q), w, γ<(q)x), (< ∈ Σ+1, q ∈ Q)

(q,>w, sx) 	 (δ>(q, s), w, x) (> ∈ Σ−1, q ∈ Q, s ∈ Γ)
(q,>w, ε) 	 (δ>(q,⊥), w, ε) (> ∈ Σ−1)

In all cases, w ∈ Σ∗ is the remaining input and x ∈ Γ ∗ is a string of symbols in
the stack.

The language recognized by A is the set of all strings w ∈ Σ∗, on which the
automaton, having begun its computation in the configuration (q0, w, ε), eventu-
ally reaches a configuration of the form (q, ε, x), with q ∈ F and with any stack
contents x ∈ Γ ∗.

When an input-driven automaton reads a left bracket < ∈ Σ+1, it pushes a
symbol onto the stack. This symbol is popped at the exact moment when the
automaton encounters the matching right bracket > ∈ Σ−1. Thus, a computation
of an input-driven automaton on any well-nested substring leaves the original
stack contents untouched and unexamined. Accordingly, the behaviour of an
IDPDA with a set of states Q on a well-nested substring w is characterized by
a function f : Q → Q, where f(q) is the state in the end of the computation on
w that began in the state q. One of the basic constructions of IDPDA, which
is crucial for recognizing concatenation, Kleene star and reversal, is an IDPDA
that computes the behaviour function of a given IDPDA. Denote QQ = {f |
f : Q → Q}.

Lemma A (Okhotin and Salomaa [8]). For every IDPDA A with the set
of states Q and the stack alphabet Γ , there exists an IDPDA C with the set of
states QQ and the stack alphabet QQ × Σ+1, that calculates the behaviour of A
on the longest well-nested suffix of the read portion of the input.

3 Reversal

The reversal of a string w = a1 . . . an, with ai ∈ Σ, is the same string written
backwards: wR = an . . . a1; the reversal of a language is defined element-wise:

Towards Exact State Complexity Bounds 445

LR = {wR | w ∈ L}. In the case of input-driven automata, the reversal of a
language also implies that left and right brackets exchange their roles, so that
the reversal of a string over an alphabet (Σ+1, Σ−1, Σ0) becomes a string over
the alphabet (Σ−1, Σ+1, Σ0). The reversal of a well-nested string is well-nested.

Under this assumption, the family of input-driven languages is closed under
the reversal [1], and the reversal of an n-state IDPDA is representable by
an IDPDA with nn · 2n states [8]. This result is achieved by the following
construction.

Lemma B (Okhotin and Salomaa [8], Lemma 11). For every IDPDA A
over an alphabet (Σ+1, Σ−1, Σ0) with a set of states Q and a stack alphabet Γ ,
there exists an IDPDA C over the inverted alphabet (Σ−1, Σ+1, Σ0) with the set
of states QQ × 2Q and the stack alphabet QQ × 2Q × Σ−1 that recognizes the
language L(A)R.

Let uv be a string, where u is its longest well-nested prefix. Then, the state of
C entered upon reading (uv)R is a pair (f, S), where f : Q → Q is the behaviour
of A on u, and S ⊆ Q is the set of all states of A, from which it would accept
uv beginning with the empty stack.

Proof (sketch of the construction). The initial state is (id, F), where F is the set
of accepting states of A. Upon reading a neutral symbol c ∈ Σ0, the automaton
C composes the behaviour function with the behaviour on c and replaces S with
its pre-images under transitions on c.

δ′
c

(
(f, S)

)
=

(
f ◦ δc, δ−1

c (S)
)
.

Upon reading a right bracket (> ∈ Σ−1), which it treats as a left bracket, C
pushes the bracket and the current values of f and S onto the stack, and begins
computing a new behaviour function inside the brackets.

δ′
>

(
(f, S)

)
= (id, {q | δ>(q,⊥) ∈ S})

γ′
>

(
(f, S)

)
= (f, S,>)

Upon reading a left bracket (< ∈ Σ−1), which is a right bracket for C, it recon-
structs the behaviour on the well-nested substring ending at this bracket, com-
poses it with the behaviour function popped from the stack and continues the
simulation on the current level of brackets.

Since the lower bound in Theorem 4 applies, the state complexity of reversal
for IDPDA on arbitrary inputs is at least nn and at most nn ·2n, and the question
is, what is its exact state complexity? Can the construction in Lemma B be
improved to produce fewer states?

The first, easy observation on this construction is that not all states of the
form (f, S) are reachable. Indeed, if f(i) = f(j) for any distinct states i and j,
this means that the computations beginning in i and in j with the empty stack
coincide, and therefore either both are accepting or both are rejecting, that is,
S contains both or neither. If this condition does not hold, then the pair (f, S)
can be excluded from the set of states.

446 G. Jirásková and A. Okhotin

A more substantial improvement to this construction is based on the follow-
ing two observations. First, as the simulation progresses on the same level of
brackets, for the consecutive pairs (f0, S0), (f1, S1), (f2, S2), etc. encountered on
this level, the sets fi(Si) form a chain of containment, and the sets fi(Si) form
another chain of containment.

f0(S0) ⊇ f1(S1) ⊇ f2(S2) ⊇ . . .

f0(S0) ⊇ f1(S1) ⊇ f2(S2) ⊇ . . .

Suppose that the first pair (f0, S0) on some level of brackets satisfies the con-
dition that all states in f0(S0) are less than all states in f0(S0), under some
fixed linear order on Q. Then, this property becomes an invariant, satisfied by
all pairs on this level of brackets. The construction in Lemma B, of course, does
not guarantee that this condition would ever hold, and the question is, can the
construction be modified to make it hold?

The second observation is that, while the behaviour function on some level
of brackets is being constructed, its value is not yet used: the automaton only
composes it with the behaviour functions on the neutral symbols and well-nested
substrings it encounters. For that reason, it is not imperative that the correct
value of the behaviour function is remembered in the course of this computation.
At the moment when the automaton enters a new level of brackets, it need not
necessarily enter the state (id, S), but may actually enter a state of the form
(π, S), where π is any permutation, as long as the same permutation will be
available to the automaton when it eventually exits this level of brackets. Then,
if the actual behaviour function on the string u, as in Lemma B, is ϕ, and the
set is S, the automaton shall actually remember a pair (π ◦ϕ, S). When it reads
the matching bracket, it composes the inverse π−1 of this permutation with the
computed function π ◦ ϕ, and obtains the behaviour function π.

The purpose of doing this is in choosing the function π in order to satisfy
the condition that all states in π(S) are less than all states in π(S). Then the
set of states can be limited to the states satisfying this condition.

Lemma 2. For every IDPDA A over an alphabet (Σ+1, Σ−1, Σ0) with a set of
states Q and a stack alphabet Γ , there exists an IDPDA C over the inverted
alphabet (Σ−1, Σ+1, Σ0) with the following set of states Q′ and stack alphabet
Γ ′, that recognizes the language L(A)R.

Q′ = {(f, S) | f : Q → Q, S ⊆ Q, S �= ∅, max f(S) < min f(S)} ∪ {qdead}
Γ ′ = {(f, S,>) | f : Q → Q, S ⊆ Q, S �= ∅, max f(S) < min f(S), > ∈ Σ−1}

Let uv be a string, where u is its longest well-nested prefix, and let π be a
permutation that functionally depends on the set of states, from which A would
accept v beginning with the empty stack. Then, the state of C entered upon
reading (uv)R is a pair (π ◦ ϕ, S), where ϕ : Q → Q is the behaviour of A on u,
and S ⊆ Q is the set of all states of A, from which it would accept uv beginning
with the empty stack.

Towards Exact State Complexity Bounds 447

Proof (sketch of the construction). Let Q = {0, . . . , n − 1}. The initial state is
(πF , F), where πF is chosen to have πF (F) = {0, . . . , |F | − 1}.

The transitions by neutral symbols are the same as in Lemma B,
When C reads a right bracket (> ∈ Σ−1) in a state (f, S), it acts as follows.

Let Ŝ be the set of all states q with δ>(q,⊥) ∈ S, and let π be a permutation
with π(Ŝ) = {0, . . . , |Ŝ| − 1}. Then the automaton pushes the context of the
current simulation onto the stack as in Lemma B, and uses π inside the brackets
instead of the identity behaviour function.

δ′
>

(
(f, S)

)
= (π, Ŝ) γ′

>

(
(f, S)

)
= (f, S,>)

Upon reading a left bracket (< ∈ Σ−1), the automaton reconstructs π from f , S
and the bracket (>), and uses it to reconstruct the behaviour on the well-nested
substring. If S ever becomes the empty set, the automaton enters the state qdead

and stay therein until the end of the computation.
�
It remains to estimate the number of states in the automaton constructed in

Lemma 2, which is done in the following theorem.

Theorem 3. The reversal of an n-state IDPDA over any stack alphabet can be
recognized by an IDPDA with n(nn − (n − 1)n) + 1 states, using n(nn − (n −
1)n) · |Σ−1| stack symbols.

Proof. In the automaton constructed in Lemma 2, states are pairs (f, S), with
f : Q → Q, S ⊆ Q and S �= ∅ satisfying max f(S) < min f(S) Every such pair
(f, S) characterized by a pair (f, i), where i = max(f(S)). Indeed, (f, i) encodes
the pair

(
f, f−1({0, . . . , i})

)
.

How many pairs (f, i) are there? There are n different choices of i, and
for each i, out of all nn functions f : Q → Q, there are (n − 1)n functions
with i /∈ Im(f), which cannot form a pair with i. Altogether, there are exactly
n(nn − (n − 1)n) admissible pairs.
�

This upper bound on the state complexity of the reversal is accompanied by
the following asymptotically tight lower bound, improving the previously known
lower bound 2Ω(n log n) [12, Theorem 5.1].

Theorem 4. For every n � 3, there exists an n-state IDPDA A over an alphabet
with one left bracket, one right bracket and three neutral symbols, which accepts
only well-nested strings, such that every IDPDA recognizing L(A)R requires at
least nn states.

Proof. The IDPDA is defined over the alphabet Σ+1 = {<}, Σ−1 = {>}, Σ0 =
{a, b, c}, with the set of states Q = {0, . . . , n − 1}, where 0 is the initial and the
only accepting state. The same stack alphabet is Γ = Q.

Transitions by a increment the state by one (δa(i) = (i + 1) mod n), transi-
tions by b exchange states 0 and 1 (δb(0) = 1, δb(1) = 0, and δb(i) = i for i � 2),
transitions by c map 0 and 1 to 0 (δc(0) = δc(1) = 0 and δc(i) = i for i � 2). On
a left bracket, the automaton pushes the current state and enters the state zero:

448 G. Jirásková and A. Okhotin

δ<(i) = 0, γ<(i) = i. On a right bracket, the automaton verifies whether the
state and the stack symbol are the same: δ>(i, i) = 0 for all i, and δ>(i, j) = 1
for i �= j. The symbols a, b, c perform three transformations on Q that generate
the semigroup of all transformations on Q. For each transformation f : Q → Q,
let the string wf ∈ {a, b, c}∗ encode its representation as a composition of these
three generators.

Let B be any IDPDA recognizing the language L(A)R, the goal is to prove
that it must have at least nn states. For each function f : Q → Q, let qf be the
state reached by B upon reading the string (wf>)R; the stack contents at this
point are always the same. It is claimed that these states are pairwise distinct.
For every two distinct functions f and g, let i ∈ Q be an argument, on which they
differ: f(i) �= g(i). Let h be the transposition of 0 and i, and let v = af(i)<wh.
Then A accepts the string vwf> and rejects the string vwg>, as follows.

(0,⊥) af(i)

−−−→ (f(i),⊥) <−→ (0, f(i)) wh−−→ (i, f(i))
wf−−→ (f(i), f(i)) >−→ (0,⊥),

(0,⊥) af(i)

−−−→ (f(i),⊥). <−→ (0, f(i)) wh−−→ (i, f(i))
wg−−→ (g(i), f(i)) >−→ (1,⊥).

Therefore, B must accept the string (vwf>)R and rejects the string (vwg>)R.
For this to happen, its configurations after reading (wf>)R and (wg>)R must
be distinct. This is only possible if qf �= qg.
�

For any n-state IDPDA operating only on well-nested inputs, there is a known
construction of an IDPDA for its reversal that has only nn states [8, Lemma 10].
Therefore, Theorem 4 gives a tight bound in this special case.

4 Concatenation and Star

For the concatenation of an m-state IDPDA with an n-state IDPDA, there is a
construction of an IDPDA with m(nn + 2n) states in the well-nested case, and
with m · nn · 4n in the general case [8]. The lower bound is m2O(n log n) [8]. The
following improved lower bound asymptotically matches the upper bound in the
well-nested case.

Theorem 5 (Concatenation: lower bound). For every m,n � 3, there
exist an m-state IDPDA A and an n-state IDPDA B, both defined over an
alphabet with one left bracket, two right brackets and four neutral symbols, and
both accepting only well-nested strings, such that every IDPDA for L(A) · L(B)
requires at least mnn states.

Proof. Let A be an m-state DFA that counts the number of d’s modulo m, and
B be an n-state IDPDA with the set of states {0, 1, . . . , n − 1}, with the same
stack alphabet, the initial state 0, the unique final state n − 1, and transitions

δa(j) = (j + 1) mod n;
δb(0) = 1, δb(1) = 0, and δb(j) = j if j � 2;
δc(0) = δc(1) = 0 and δc(j) = j if j � 2;

Towards Exact State Complexity Bounds 449

δd(j) = j;
δ<(j) = j and γ<(j) = j;
δ>(j, β) = β if j = 0 and δ>(j, β) = 0 otherwise;
δ�(j, β) = 1 if i = β = 0 and δ�(j, β) = n − 1 otherwise.

It can be shown that every IDPDA recognizing L(A)L(B) requires at least mnn

states.
�
Turning to the general case, without the well-nestedness requirement, the

construction by Okhotin and Salomaa [8] produces a set of states P × 2Q ×
2Q ×QQ, where P and Q are sets of states of the automata being concatenated.
In other words, the constructed IDPDA remembers a state of the first IDPDA,
and two subsets of states and a behaviour function of the second IDPDA. The
question is, can the idea of Lemma 2 be applied here to reduce the number of
states in a similar way?

It turns out that one of the two sets of states remembered in this construction
can indeed be “optimized” in the same way as in the case of reversal. Again,
a permutation is applied to the behaviour function at each level of brackets, so
that this set can be inferred from it. Unfortunately, the other set apparently
cannot be handled similarly, because, the way it is updated in the computation,
it may occasionally change independently of the behaviour function. Overall, the
construction uses states of the following form.

Q′ = {(p, f, S, S′) | p∈P, f : Q → Q, S, S′ ⊆ Q, ∃i : S′ = {f(0), . . . , f(i − 1)}}

Similarly to Lemma 2, instead of the set S′, it is then sufficient to store the
number i. An upper bound on the number of such states is stated in the fol-
lowing theorem, which somewhat improves on the construction by Okhotin and
Salomaa [8].

Theorem 6. Let A be an m-state and B an n-state IDPDA over the same
alphabet. Then, there exists an IDPDA with m · (n + 1) · nn · 2n states that
recognizes the concatenation L(A) · L(B).

Theorem 7 (Square: lower bound). For every n � 3, there is an n-state
IDPDA A defined over an alphabet with one left bracket, two right brackets
and four neutral symbols, and accepting only well-nested strings, such that every
IDPDA for L(A)2 requires at least nn states.

The proof of Theorem 7 works for the Kleene star as well, and the following
lower bound is established.

Theorem 8 (Star: lower bound). For every n � 3, there is an n-state IDPDA
A defined over an alphabet with one left bracket, two right brackets and four neutral
symbols, and accepting only well-nested strings, such that every IDPDA for L(A)∗

requires at least nn states.

450 G. Jirásková and A. Okhotin

5 Improved Bounds for Nondeterministic Automata

A nondeterministic input-driven pushdown automaton (NIDPDA) is a tuple A =
(Σ̃,Q, Γ,Q0,⊥, [δs]s∈Σ0 , F), where Σ̃ = (Σ−1, Σ+1, Σ0) is the input alphabet of
left brackets, right brackets, and neutral symbols, Q is a finite set of states,
Q0, F ⊆ Q are the sets of initial and final states, respectively, Γ is the finite
stack alphabet with ⊥/∈ Γ , δs maps Q to 2Q for each s ∈ Σ0, δ< maps Q
to 2Q×Γ for each < ∈ Σ+1, and δ> maps Q × Γ to 2Q. A configuration, a
single step computation relation, and its reflexive-transitive closure are defined
similarly to the case of DIDPDA; for details, the reader may refer to a recent
survey [6]. The language recognized by an NIDPDA is the set of strings that can
reach an accepting configuration (with any content of the stack) from the initial
configuration.

Every NIDPDA with n states has an equivalent (deterministic) IDPDA with
at most 2n2

states [2] and there is a 2Ω(n log n)-state lower bound [1]. The lower
bound can actually be improved to match the upper bound, as follows.

Definition 9. Let the alphabet be Σ+1 = {<}, Σ−1 = {>R | R ⊆ Q × Q}, Σ0 =
{P | P ⊆ Q × Q}. Define an NIDPDA with the set of states Q = {1, 2, . . . , n},
with all states initial and accepting, with Γ = Q as the stack alphabet, and with
the following transitions. By the left bracket, the automaton pushes the current
state and stays in the same state. By a right bracket marked with R, it enters the
state 1 if the pair (current state, stack symbol) is in R, and has no transitions
otherwise. By each P ∈ Σ0, the automaton may move from state i to any j with
(i, j) ∈ P .

Proposition 10. Let A be the NIDPDA from Definition 9 and P,R ⊆ Q × Q.
Then <P>R ∈ L(A) if and only if P ∩ R �= ∅.

Proof. Let P ∩ R �= ∅. Then there is a pair (i, j) such that (i, j) ∈ P ∩ R. The
NIDPDA A starting in the state i, remains in the state i and pushes i on <, then
on reading P it guesses j ∈ P , and after reading >R with (i, j) ∈ R it accepts
in the accepting state j.

Now let P ∩R = ∅. The NIDPDA A starting in an arbitrary state i, remains
in the state i and pushes i on <, then on reading P it guesses j ∈ P , and upon
reading >R with (i, j) /∈ T it rejects by an undefined transition.
�
Theorem 11 (Determinization). Let A be the NIDPDA from Definition 9.
Then every DIDPDA for L(A) requires at least 2n2

states.

Proof. Let w = < and S = {P | P ⊆ Q × Q}. It is enough to show that every
two distinct strings in S can be separated by some string. Let P �= R. Then,
without loss of generality, there is a pair (i, j) with (i, j) ∈ P ∩R. By Proposition
10, the string <P>R is in L(A), while the string <R>R is not in L(A). Then,
every DIDPDA recognizing L(A) requires at least 2n2

states.
�
The following two results are obtained using the same construction. They

improve the results of Okhotin and Salomaa [7], who established a lower bound
2Ω(n2) on the same product in each case.

Towards Exact State Complexity Bounds 451

Theorem 12 (Complement). Let A be the NIDPDA from Definition 9. Then
for every NIDPDA recognizing the complement of L(A), the product of the num-
ber of its states by the number of its stack symbols must be at least 2n2

.

Proof. Let F = {(<P,>P) | P ⊆ Q × Q} be a set of pairs of strings of depth
1. To prove the theorem it is enough to show that F is a fooling set for the
complement of L(A). Let P,R ⊆ Q × Q.

(1) By Proposition 10, the string <P>P is not in L(A).
(2) If P �= R, then without loss of generality, P ∩ R �= ∅, so by Proposition 10,

the string <P>P is in L(A).

Hence F is a fooling set for the complement of L(A), and the theorem follows
from a known result [7, Lemma 1].
�

An NIDPDA A is unambiguous, UIDPDA if it has exactly one accepting
computation on every string in L(A). Since every deterministic IDPDA is unam-
biguous, every NIDPDA with n states has an equivalent UIDPDA with at most
2n2

and |Σ+1| · 2n2
stack symbols [1]. A lower bound 2Ω(n log n) on the product

of the number of its states by the number of its stack symbols was given in [7,
Lemma 3]. To get this lower bound, a method based on the rank of some matri-
ces was used. To a set of pairs F = {(xi, yi) i = 1, . . . , n} of depth k, a matrix
M(F,L) is be assigned by settings M(F,L)i,j = 1 if xiyj ∈ L and M(F,L)i,j = 0
if xiyj /∈ L. Then, the rank of M(F,L) provides a lower bound on |Γ |k · |Q| [7,
Lemma 2]. In the next theorem, this bound is improved to 2n2

.

Theorem 13 (NIDPDA to UIDPDA). Let A be the NIDPDA from Defini-
tion 9. Then for every unambiguous IDPDA for L(A), the product of the number
of its states by the number of its stack symbols must be at least 2n2 − 1.

Proof. Let F = {(<P,>R) | P,R ⊆ Q × Q} be a set of pairs of depth 1.
By Proposition 10, <P>R ∈ L if and only if P ∩ R �= ∅. Next, the matrix
M(F,L(A)) can be viewed as a matrix whose rows and columns are indexed
by non-empty subsets of Q × Q and MS,T = 1 if S ∩ T �= ∅ and MS,T = 0 if
S ∩T = ∅. The rank of M is 2n2 −1 [4, Lemma 3], and the theorem follows from
[7, Lemma 2].
�

Table 2. Updated lower and upper bounds.

Well-nested inputs Arbitrary inputs

Lower bound Upper bound Lower bound Upper bound

· mnn m(nn + 2n) [8] mnn m · (n + 1) · nn · 2n

2 nn n(nn + 2n) [8] nn n · (n + 1) · nn · 2n

∗ nn nn + 2n + 1 [8] nn nn · 4n [8]
R nn nn [8] nn n(nn − (n − 1)n) + 1

452 G. Jirásková and A. Okhotin

6 Conclusion

With the improvements made in this paper, the updated bounds on the state
complexity of concatenation, square, star and reversal are presented in Table 2.
Some of the bounds are still in want of refinement, and this is recommended as
a problem for future research.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: ACM Symposium on
Theory of Computing. STOC 2004, Chicago, USA, 13–16 June 2004, pp. 202–211
(2004). https://doi.org/10.1145/1007352.1007390

2. von Braunmühl, B., Verbeek, R.: Input driven languages are recognized in log
n space. Ann. Discrete Math. 24, 1–20 (1985). https://doi.org/10.1016/S0304-
0208(08)73072-X

3. Kutrib, M., Malcher, A., Wendlandt, M.: Tinput-driven pushdown automata. In:
Durand-Lose, J., Nagy, B. (eds.) MCU 2015. LNCS, vol. 9288, pp. 94–112. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23111-2 7

4. Leung, H.: Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)

5. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 89

6. Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata.
SIGACT News 45(2), 47–67 (2014). https://doi.org/10.1145/2636805.2636821

7. Okhotin, A., Salomaa, K.: Descriptional complexity of unambiguous input-driven
pushdown automata. Theoret. Comput. Sci. 566, 1–11 (2015). https://doi.org/10.
1016/j.tcs.2014.11.015

8. Okhotin, A., Salomaa, K.: State complexity of operations on input-driven push-
down automata. J. Comput. Syst. Sci. 86, 207–228 (2017). https://doi.org/10.
1016/j.jcss.2017.02.001

9. Okhotin, A., Salomaa, K.: Edit distance neighbourhoods of input-driven pushdown
automata. In: Weil, P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 260–272. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-58747-9 23

10. Okhotin, A., Salomaa, K.: The quotient operation on input-driven pushdown
automata. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316,
pp. 299–310. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-
3 24

11. Okhotin, A., Salomaa, K.: Further closure properties of input-driven pushdown
automata. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018, pp. 224–236.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94631-3 19. to appear

12. Piao, X., Salomaa, K.: Operational state complexity of nested word automata.
Theoret. Comput. Sci. 410, 3290–3302 (2009). https://doi.org/10.1016/j.tcs.2009.
05.002

13. Salomaa, K.: Limitations of lower bound methods for deterministic nested word
automata. Inf. Comput. 209, 580–589 (2011). https://doi.org/10.1016/j.ic.2010.
11.021

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1016/S0304-0208(08)73072-X
https://doi.org/10.1016/S0304-0208(08)73072-X
https://doi.org/10.1007/978-3-319-23111-2_7
https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1145/2636805.2636821
https://doi.org/10.1016/j.tcs.2014.11.015
https://doi.org/10.1016/j.tcs.2014.11.015
https://doi.org/10.1016/j.jcss.2017.02.001
https://doi.org/10.1016/j.jcss.2017.02.001
https://doi.org/10.1007/978-3-319-58747-9_23
https://doi.org/10.1007/978-3-319-60252-3_24
https://doi.org/10.1007/978-3-319-60252-3_24
https://doi.org/10.1007/978-3-319-94631-3_19
https://doi.org/10.1016/j.tcs.2009.05.002
https://doi.org/10.1016/j.tcs.2009.05.002
https://doi.org/10.1016/j.ic.2010.11.021
https://doi.org/10.1016/j.ic.2010.11.021

	Towards Exact State Complexity Bounds for Input-Driven Pushdown Automata
	1 Introduction
	2 Deterministic Input-Driven Automata
	3 Reversal
	4 Concatenation and Star
	5 Improved Bounds for Nondeterministic Automata
	6 Conclusion
	References

