
A Brief Excursion to Parity Games

Bakhadyr Khoussainov(B)

Department of Computer Science, University of Auckland, Auckland, New Zealand
bmk@cs.auckland.ac.nz

Abstract. The author in collaboration with Calude, Jain, Li and
Stephan provided an algorithm that solves the parity games problem
in quasi-polynomial time. In terms of running time, this is currently the
most efficient algorithm that solves the parity games problem. The goal
of this lecture is to give a brief background to the problem and present
the algorithm in a somewhat informal way with a bit more emphasis on
ideas rather than formal details.

1 Introduction

The emergence of parity games has been a complex and fascinating process. The
roots of parity games go back to the works of Buchi [6,7], Rabin [26], Gurevich
and Harrington [15] and McNaughton [23]. Numerous number of papers have
been written on the subject, many results have been presented in conferences,
and research networks and workshops have been organised. The general inter-
est in parity games comes due to the following reasons. All these reasons are
intimately inter-connected:

1. Complexity-theoretic status: Parity games problem is known to be in
complexity classes NP and coNP . The problem is among a few algorithmic
problems that belong to NP and coNP but not known to be in P .

2. Connections to modal μ-calculus: Kozen invented modal μ-calculus [20].
This is an extension of propositional modal logic. The model checking prob-
lem consists of designing an algorithm that, given a formula φ and a tran-
sition labeled graph G, decides if G satisfies φ. It turns out that the model
checking problem is polynomial time equivalent to solving the parity games
problem [12].

3. Connections to computer-aided verification: The modal μ-calculus can
be used as a formal specification language for expressing properties of reactive
programs. Hence, many model checking problems in computer aided verifica-
tion can be effectively reduced to parity games problem [4,5,12].

4. Connections to automata and logic: There are deep historical and
mathematical connections between automata, two player games, modal
μ-calculus, and parity games [28–30]. A recent example is in [9] that imple-
ments Kupferman-Vardi algorithm from [21]. The algorithm solves the parity
games problem via a reduction to the emptiness problem of alternating parity
automata.
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To define parity games we need a finite directed bipartite graph G = (V ;E)
which is given by its bipartite partition V = V1 ∪ V1 and the set of edges E ⊆
V0 × V1 ∪ V1 × V0. We postulate one condition on the set E of edges that each
v from V has at least one outgoing edge from v. Elements v ∈ V are called
positions of the game.

Definition 1. An arena is given by the pair (G, p), where G is a bipartite graph
as above and p : V → ω \{0} is a function called the priority function. For each
v ∈ V , the value p(v) is called the priority of v.

Given an arena (G, p), there are two players: Player 0 and Player 1. Positions
in V0 are called Player 0 positions, and positions in V1 are called Player 1 posi-
tions. We are also given the starting position s ∈ V , say s ∈ V0. Player 0 and
Player 1 play the parity game as follows. Imagine a token is placed on s. Player
0 moves the token along an edge outgoing from v0 = s and moves to position
v1. Player 1 now moves the token along an edge outgoing from v1 and moves to
position v2. Player 0 moves the token along an edge outgoing from v2 and moves
to position v3. This continues on. If the start position s is in V1 then Player 1
makes the first move. Thus, the players produce an infinite path in G called a
play:

ρ = v1, v2, v3, v4, . . . , vi, vi+1, . . .

Definition 2. Player 0 wins the play ρ if the maximal priority of positions that
appear infinitely often in ρ is even. Otherwise, Player 1 wins the play.

Clearly, every play ρ of the parity game played on (G, p) is won by either
Player 0 or Player 1. An important fact, however, is this. One of the players has
always a winning strategy. In other words, one of the players has a strategy fs

(the index indicates the starting position) such that all plays consistent with fs

are won by the player. This fact is known as a determinacy of parity games.
Determinacy of parity games is not surprising. For instance, Martin’s deter-

minacy theorem states that all games with Borel winning conditions are deter-
mined [22]. The winning condition for parity games is a Borel condition. There-
fore, we can partition that set V of positions of the arena (G, p) into sets W0

and W1:

W0 = {v ∈ V | Player 0 wins the game starting at v},
W1 = {v ∈ V | Player 1 wins the game starting at v}.

Importantly, parity games are effectively determined. There exists an algo-
rithm that given a parity game (G, p) and starting position s, tells us which of
the players is the winner of the game. Thus, we have the following parity games
problem. The statement of the problem is due to effective determinacy of parity
games.

Design an efficient algorithm that, given a parity game played on (G, p),
outputs the sets W0 and W1 of winning positions for Player 0 and Player 1.
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There are numerous algorithms that solve parity games. Emerson and Jutla
[12] showed that the problem is in NP ∩ co -NP, and Jurdzinski [17] improved
this bound to UP ∩ co -UP. Jurdzinski also provided small progress measure
algorithm for solving parity games. Petersson and Vorobyov [25] devised a subex-
ponential randomised algorithm. Later, Jurdzinski, Paterson and Zwick [19]
also designed a deterministic algorithm of similar complexity. McNaughton [23]
showed that the winner of a parity game can be determined in time nc+O(1),
where c is the maximal priority of the positions. There is also Zielonka’s recursive
algorithm [31] which is considered to be useful in practice. Another interesting
algorithm is by Schewe [27]. There are also various subclasses of parity games or
their relatives which can be solved in polynomial time [2,3,14,16,24]. The author
in collaboration with Calude, Jain, Li and Stephan provided an algorithm that
runs in time O(nlog(c)+3). In terms of running time, this is currently the most
efficient algorithm that solves the parity games problem. The goal is to present
the algorithm in somewhat informal way with an emphasis on ideas rather than
formal details.

2 Memoryless Winning Strategies

A crucial property of parity games is that the winner has a memoryless winning
strategy. This is known as memoryless determinacy of parity games. A memory-
less strategy is defined by the current position of the play, and does not depend
on the history of the play at all. Formally, a memoryless strategy for Player ε is
given by a function f : Vε → Vε+1 such that (v, f(v)) ∈ E for all v ∈ Vε. There
are many proofs of memoryless determinacy, see for instance [1,12,23,31]. Below
we provide a simple proof of this result, the simplest possible proof known to
the author. The proof is non-constructive but implies memoryless determinacy.

Theorem 3 (Memoryless Determinacy). The winner in any parity game
(G, p) has a memoryless winning strategy.

Proof. Let s ∈ V1 be a starting position such that the set X = {u | (s, u) ∈ E}
is not a singleton. Let X1, X2 be a non-trivial partition of X. We split (G, p)
into two parity games (G1, p) and (G2, p), where G1 is the same as G but Player
1 at s can only move to X1, and G2 is the same as G but Player 1 at position s
can only move to X2.

We claim that Player 0 wins G starting at s iff Player 0 wins both G1 and
G2 starting at s. Indeed, if Player 0 wins G, then clearly Player 0 wins both G1

and G2. For the other direction, assume that Player 0 wins both G1 and G2 with
winning strategies f1 and f2, respectively. Below we describe a winning strategy
f for Player 0 in (G, p).

Let γ = v0, v1, . . . , vi be a finite play in G, and vi, vi+1, . . . , vj be a segment
of the play such that i < j, vi = s and no position among vi+1, . . . , vj equals s.
Call such segments proper segments. If vi+1 ∈ X1, then say that the segment is
in G1; otherwise we say that the segment is in G2. Consider α obtained from γ
by removing all proper segments that occur in G2. Likewise, let β be obtained
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from γ by removing all proper segments that occur in G1. The strategy f is
now defined as follows. The strategy f follows f1 by setting f(γ) = f1(α) if
the last proper segment occurs in G1, and the strategy f follows f2 by setting
f(γ) = f2(β) if the last proper segment occurs in G2. It is clear that f is a
winning strategy for Player 0 in game (G, p).

Apply now the splitting process above to the arenas (G1, p) and (G2, p) until
we reach games (G′, p) such that the set of positions of G′ coincide with the set
of positions of G, and the set E′ of edges is such that E′ ⊆ E and Player 1
has exactly one outgoing edge from any position v in V1. Let us call such games
solitary games for Player 1.

We conclude that Player 1 wins the parity game starting at s iff Player 1
wins a solitary game starting at s. Each solitary game for Player 1 induces a
memoryless strategy.

One applies the arguments above, including the notion of splitting, for Player
0. That implies that Player 0 wins the parity game from the start position s if
and only if Player 0 wins one of Player 0’s solitary games starting at position s.

��
There is a polynomial time algorithm that, given a memoryless strategy for

Player ε and position s, detects if the strategy is a winning strategy from s.
Hence, we have:

Corollary 4. Parity games problem is in NP and coNP . ��

3 Reachability Games

Reachability games are well-studied. We mention these games since we reduce
the parity games problem to the reachability games problem.

Just like parity games, a reachability game is given by Player 0 and Player
1, a bipartite directed graph G = (V,E), a starting position s ∈ V , and Player
0’s target set T ⊆ V of positions. Starting at s, the players move alternatively
and produce a path ρ = v0, v1, . . . , vi, . . ., where v0 = s. Note that if s ∈ V0 then
Player 0 starts the play, and otherwise Player 1 starts the play. We say that
Player 0 wins the play ρ if ρ meets the target set T , that is, there is a position
vi in the play such that vi ∈ T .

Theorem 5 (Folklore: Determinacy of Reachability Games). There is
a linear time algorithm that given a reachability game finds the winner of the
game.

Proof. Consider a reachability game as described above. The idea is to start
computing vertices, inductively, from which Player 0 can force plays into the
target set T . Clearly, no move is required for Player 0 to win the game if the
game starts at positions from T . So, we set T0 = T . Assume that we defined the
set Ti. Intuitively, Ti consists of all v such that starting at v Player 0 can force
plays into T in at most i moves. By induction, we also have T0 ⊂ T1 ⊂ . . . ⊂ Ti.
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To build Ti+1, put all v in Ti into Ti+1 and for each v 
∈ Ti proceed as
follows. If v ∈ V0 and there is an edge (v, u) ∈ E with u ∈ Ti then we put v
into Ti+1. Also, if v ∈ V1 and u ∈ Ti for all (v, u) ∈ E then we put v into Ti+1.
This defines Ti+1. Clearly Player 0 wins the reachability game starting at any
position v ∈ Ti+1.

Thus, we have the sequence T0 ⊂ T1 ⊂ T2 ⊂ . . .. Let X be the union of this
chain. Player 0 wins the game from s if and only if s ∈ X. One can implement
the algorithm above that runs in linear time. ��

4 A Quasipolynomial Time Algorithm for Parity Games

For this section, let us fix (G, p) the arena of a parity game with n positions. Let
c be the maximal priority, that is, the maximal value in the range of the priority
function p. Recall that p(v) > 0 for all v ∈ V . We can also always assume that
p(v) ≤ n for all v ∈ V . For this section we postulate that all positions in V0

have even priorities (that is, p(v) is even for all v ∈ V0), and all positions in V1

have odd priorities (that is, p(v) is odd for all v ∈ V1). This is an acceptable
postulate since every parity game can be reduced in linear time to parity games
where priorities of Player 0 positions are even, and priorities of Player 1 positions
are odd. The aim in this section is to reduce parity games problem to solving
reachability games.

4.1 A Naive Reduction

The winning condition in the parity game for a given play ρ is an infinitary
condition. Namely, one needs to consider all positions in the play ρ that appear
infinitely often and then consider the parity of the maximal priority among these
positions. If the parity is even, then Player 0 wins the play; otherwise Player 1
wins the play. This winning condition can be turned into a finitary definition of
winning in a finite game as follows. The players, Player 0 and Player 1, play just
like in the parity game on (G, p) and start producing a sequence v0, v1, . . . , vj

of moves. The players stop as soon as the last position vj in the play repeats
itself, that is, vj = vi for some i < j in the play. Then declare Player 0 to be
the winner if the maximal priority that appears in the cycle vi, vi+1, . . . , vj−1, vj

is even. It is easy to see that the game thus defined is a reachability game. A
bit more work is needed to prove that this reachability game is equivalent to
the original parity game in the arena (G, p). The number of positions in the
reachability game is bounded by n! from below. Hence, this naive reduction of
parity games to reachability games is clearly inefficient.

4.2 Unsuccessful Attempt: Good Positions

This subsection is somewhat intuitive and informal. All the notions here can be
made formal. The aim is to present some intuition needed for the concepts to be
defined in the next subsection.
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Let ρ = v0, v1, . . . be a play in parity game. Assume that Player 0 wins the
play. Then we can write the play ρ as αβ1β2β3 . . . such that in each segment βi

the maximal priority is even and it appears in the last position of βi. We now
attempt to formalise this simple observation. A finite play α = v1, . . . , vk, k > 1,
is good if the maximum priority position in this play is even and it is achieved
at vk. A position v is good if Player 0 can guarantee a good play starting at v.
It is not too hard to see that one computes in linear time all good positions for
Player 0. For instance, this can be done using ideas similar to the algorithm that
solves the reachability game problem.

The concept of good position can now be iterated. For a given integer i > 0,
we say that a play α is i-good if α can be written as β1β2 . . . βi so that each
segement βi is a good play. A position v is i-good if Player 0 can guarantee
an i-good play starting at v. Note that any (i + 1)-good position is also i-good.
Now we can collect all positions that are i-good for all i. Further, a position is
ω-good if it is i-good for all i ≥ 1. Note that one can similarly define the notion
of i-good and ω-good positions for Player 1.

The following is not too hard to see. Player 0 wins the parity game from
starting at any of the ω-good positions. These ω-good positions can be computed
in polynomial time. Interestingly, we still have a mess. Namely, there are non-
empty parity games such that no player in the games possesses ω-good positions.

4.3 Ghost Sequences and Statistics

We want to code good plays in more sophisticated way. Let us fix a play

ρ = v0, v1, v2, . . .

in the parity game (G, p). Recall that c denotes the maximal value in the range of
p. Also, recall that p(v) > 0 for all v ∈ V . A segment of play ρ is any consecutive
sequence of moves in ρ. So, each segment is of the form v,vi+1, . . . , vj , where
i ≤ j.

Definition 6. A ghost i-sequence is a sub-sequence a1, a2, a3, . . . , as of the play
ρ such that that (1) s = 2i, and (2) in the play between ak and ak+1 the maximum
priority is even, where 1 ≤ k < s.

The subsequence a1, a2, a3, . . . , as in the definition does not have to be a
sequence of consecutive moves in the play ρ. Later we clarify why we name the
subsequences a1, a2, a3, . . . , as ghost subsequences. Note that the definition is
given for Player 0. Ghost sequences for Player 1 are defined similarly by simply
changing the parity.

The goal is to design a mechanism that detects ghost (log(n)+1)-sequences.
The reason is that any such sequence has repeated positions, and the maximal
priority in the play between these positions is even by the definition of the ghost
sequence. Detecting ghost (log(n) + 1)-sequences is done through the concept of
statistics:
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Definition 7 (Statistics). A statistics of a player is a sequence (b0, b1, . . . ,
blog(n)+1) such that 0 ≤ bi ≤ c for all i, and if bi, bj are both non-zero and i < j
then bi ≤ bj. A winning statistics is one with blog(n)+1 
= 0.

So, non-zero members of the statistics form an increasing, not necessarily
strictly increasing, sequence. Note that the space needed for each statistics is
O(log(n) log(c)).

What does the statistics (b0, . . . , bi, . . . , blog(n)+1) tell us?

The answer is that each statistics are designed to detect existence of
ghost sequences in a play. Below we describe the semantics of the statistics
(b0, . . . , bi, . . . , blog(n)+1) that we call invariants of the statistics:

1. The initial statistics is (0, 0, . . . , 0). The initial statistics is (0, 0, . . . , 0) is the
sate at which the players start to play.

2. Each bi is a priority of a position that occurred in the play or bi = 0.
3. Each bi is associated with at most one ghost i-sequence. We denote the ghost

i-sequence associated with bi by ghost(bi).
4. The priority bi is the only information about the ghost i-sequence ghost(bi).

When bi > 0, the priority bi tells us that a ghost sequence ghost(bi) appeared
in the play.

5. If bi > 0, then the value bi is the largest priority occurred at the end or after
the ghost i-sequence ghost(bi).

6. If bi = 0, then no ghost i-sequence is being associated with bi. In other words,
the sequence ghost(bi) is the nil sequence.

7. If bi, bj are both non-zero and i < j then bi ≤ bj .
8. If 0 < bi ≤ bj and i < j, then the ghost i-sequence associated with bi starts

after a position with priority bj was visited at or after the end of the ghost
j-sequence.

When players are playing, statistics are being updated. So, consider the play

α = v0, v1, . . . , vk

and let (b0, . . . , bi, . . . , blog(n)+1) be the current statistics of α. Each bi is asso-
ciated with the sequence ghost(bi) which is either the nil sequence or ghost
i-sequence. The ghost sequence ghost(bi) is a subsequence of a segment of the
play α. Denote the segment by segment(bi). When ghost(bi) is the nil-sequence,
so is segment(bi). In terms of notations and explanations above, the idea is that
the play α can be written as

β · segment(blog(n)+1)) · · . . . · segment(bi) · . . . · segment(b1) · segment(b0),

where β is a prefix of α. The next move by a player triggers an update of the
statistics so that the properties (1)–(8) stay true. The update is explained in the
next subsection.

It is important to point out that given bi we cannot recover the sequence
ghost(bi) from bi. We only know that the ghost sequence ghost(bi) exists, and
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bi is the only information about the ghost i-sequence. Moreover, updates might
change the ghost sequence linked with bi. These are the main reasons for the
term ghost. Yet, we use the existence of ghost sequences in the arguments for
correctness of our algorithm.

4.4 Updating Statistics

Consider the play α = v0, v1, . . . , vk and let b̄ = (b0, . . . , bi, . . . , blog(n)+1) be the
current statistics of α. Let the next move, made by one of the players, be to
position vk+1. We describe two updates depending on the parity of the priority
p(vk+1) and present the reasoning for the updates.

Case 1. Assume that p(vk+1) is even (and hence vk+1 ∈ V0). Set b = p(vk+1).
Update the current statistics b̄ as follows:

– Select the largest j such that either
1. (bj = 0 ∨ bj is odd) and all bi, where i < j, are non-zero and even,
2. or 0 < bj < b

and then set bj = b and bi = 0 for all i < j.
– If this update produces a non-zero blog(n+1) then Player 0 is declared a winner.

Reasoning:
Suppose the first rule is applied for the update. We have ghost sequences

ghost(bj−1), ghost(bj−2), . . . , ghost(b0)

that are present in the respective segments of the play α:

segment(bj−1), segment(bj−2), . . . , segment(b0).

Note that the concatenation

ghost(bj−1) · ghost(bj−2), . . . , ·ghost(b0)vk+1

is a ghost j-sequence that now we denote by ghost(bj) and the segment
segment(bj) that corresponds to ghost(bj) becomes:

segment(bj−1) · segment(bj−2) · . . . · segment(b0)vk+1.

Now note that with these changes all the old ghost sequences ghost(bj),
ghost(bj−1), . . . , ghost(b0) and their corresponding segments become nil
sequences. It is not too hard to see that all the invariants (1)–(8) listed above
are preserved.

Now suppose that the second rule is applied for the update. In this case, let
us replace the last position of ghost(bj) with vk+1. The result is a new ghost
j-sequence ghost(bj) but the segment that corresponds to it is now

segment(bj−1) · segment(bj−2) · . . . · segment(b0)vk+1.
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With these changes all the old ghost sequences ghost(bj−1), . . . , ghost(b0) and
their corresponding segments become nil sequences. Again, it is not too hard to
see that all the invariants (1)–(8) listed above are preserved.

Case 2. Assume that p(vk+1) is odd (and hence vk+1 ∈ V1). Set b = p(vk+1).
Update the current statistics b̄ as follows. Select the largest j such that 0 <
bj < b, and then set bj = b and bi = 0 for all i < j.

Reasoning:
In this case the j-ghost sequence does not change but segment(bj) that corre-
sponds to ghost(bj) becomes

segment(bj−1) · segment(bj−2) · . . . · segment(b0)vk+1.

With these changes all the old ghost sequences ghost(bj−1), . . ., ghost(b0) and
their corresponding segments become nil sequences. Again, it is not too hard to
see that all the invariants (1)–(8) listed above are preserved.

4.5 Reduction to Reachability Games

The notion of statistics and their updates (that we defined for the parity game
on (G, p)) naturally lead to consider the reachability GR game based on (G, p)
with a starting position s. Here is a description of the reachability game GR:

1. The positions of GR are (a, b̃), where a ∈ G and b̃ is a statistics.
2. The starting position is (s, 0̃), where s is the starting position of the parity

game.
3. The target set T is the set of all pairs (a, b̃) such that b̃ indicates a win.
4. Player 0 can move from (a, b̃) to (a′, b̃′) if and only if a ∈ V0 and the move

from a to a′ in G causes the statistics b̃ to be updated to b̃′, and b̃ does not
indicate a win.

5. Player 1 can move from (a, b̃) to (a′, b̃′) if and only if a ∈ V1 and the move
from a to a′ in G causes the statistics b̃ to be updated to b̃′, and b̃ does not
indicate a win.

Note that the reachability game GR is defined with respect to Player 0. One
can defined the corresponding reachability game for Player 1.

Theorem 8 ([8]). Player 0 wins parity games played on (G, p) starting at s if
and only if Player 0 wins the reachability game GR.

Proof (Outline). The proof follows from the following sequence of claims. Our
claims here are for Player 0. Similar arguments can be done for Player 1.

Claim 1: If Player 0 wins the game GR then the player wins the parity game G.

To prove the claim, consider a play in the parity game G that is consistent
with the winning strategy for Player 0 in GR. The play ends in the target set.
So, the play is won by a ghost sequence b̃ being detected such that blog(n)+1 > 0.
Thus, for the play there is a ghost sequence a1, . . . , as of length 2log(n)+1 in which
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ak = a� for some k 
= 	. The maximum priority b of a position between ah and
a� in the play must be even by the definition of a ghost i-sequence. Thus a loop
has been observed for which the maximum priority of a position in the loop is
even.

Claim 2: Assume that Player 1 wins the parity game G. Then Player 0 can not
win the reachability game GR.

To prove the claim, suppose that Player 1 follows a memoryless winning strategy
in the parity game G. Let us assume that Player 0 wins the reachability game
GR. Then Player 0 goes into a loop in G such that the maximum priority position
in the loop is even. Since, Player 1 is using memoryless winning strategy in parity
game, Player 0 can force Player 1 to stay in the loop forever and win the play
in G. This is a contradiction since Player 1 used winning strategy.

Finally, we need to explain (but not prove) the next claim:

Claim 3: Assume Player 0 wins the parity game G. If the player follows a mem-
oryless winning strategy in the parity game then the player wins the reachability
game GR.

The proof is somewhat routine but not hard. One way to check the proof is
to imagine the following situation. Assume that Player 0 follows a memoryless
winning strategy in G. Any play consist with the strategy then arrives to a cycle
such that the maximal priority position in this cycle is even. Note that Player 1
does not have to stay in this cycle. But if Player 1 decides to stay in the cycle
forever then one needs to analyse the way statistics changes along the play (due
to the maximal priority position appearing in the play). So, one can show, in
this particular case, that eventually Player 0 reaches the target set in GR. ��

Now we would like to compute the size of the positions in the reachabil-
ity game GR. The size of the statistics (for Player 0) is given by log(n) + 2
numbers each of size log(c). Note that log(c) ≤ log(n). Therefore, overall size
of a representation of a position in the reachability game GR is bounded by
(log(n)+2)(log(c)+1). Hence, the number of positions in the reachability game
GR is in order O(nlog(c)+1). Since each position in the reachability game GR

has at most n outgoing edges, the number of edges in GR is O(nlog(c)+2). We
already explained that the reachability games can be solved in liner time on
the size of the of the games. Thus finding out if position s in the parity game
(G, p) is a winning position for Player 0 takes time proportional to O(nlog(c)+2).
Hence, we have the following theorem that tells us the running time bound for
the algorithm that outputs the winning sets W0 and W1 for the players:

Theorem 9 (Quasi-Polynomial Solution). There is an algorithm that, given
a parity game (G, p) with n positions, solves the game in time O(nlog(c)+3). ��

The reduction of parity games to reachability games also provides fixed
parameter tractability (FPT) result for solving parity games. For fixed param-
eter tractability see the textbook [10]. Here the parameter is c the maximal
number of priorities. To get the FPT result we count the number of positions in
GR in a bit different way.
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Consider the statistics b̃ = (b0, b1, . . . , bm), where m = log(n) + 1. We would
like to put a bound on the number of statistics so that the parameter n is
removed from the counting. Say, for simplicity that each bi 
= 0. Then by the
definition of statistics we have b0 ≤ b1 ≤ . . . ≤ bm. Call such statistics strict. We
can transform the strict statistics into the following sequence:

(b0, b1 + 1, b2 + 2, . . . , bi + i, . . . , bm + m).

The mapping (b0, b1, . . . , bm) → (b0, b1+1, b2+2, . . . , bi+i, . . . , bm+m) induces
an injection from the set of all strict statistics into the power set {0, . . . , 2c}.
Hence, there are at most 22c strict statistics. We removed the dependence on
n. One can code up all statistics in a similar way, and construct an injection
map from the set of all statistics into the power set {0, . . . , 3c}. Therefore one
can prove that the number of all statistics is bounded by 23c. This implies that
the number of all positions in the reachability game GR is bounded by n · 22c.
Since each position in the reachability game GR has at most n outgoing edges,
the number of edges in GR is bounded by 22c · n2. Thus, from determinacy of
reachability game, we have the following theorem:

Theorem 10 (FPT Theorem). There is an algorithm that, given a parity
game with n positions, solves the game in time proportional to g(c) · n3, where
g(c) = 22c. ��
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