
A Pattern Logic for Automata
with Outputs

Emmanuel Filiot, Nicolas Mazzocchi(B), and Jean-François Raskin

Université libre de Bruxelles, Brussels, Belgium
nicolas.mazzocchi@ulb.ac.be

Abstract. We introduce a logic to express structural properties of
automata with string inputs and, possibly, outputs in some monoid.
In this logic, the set of predicates talking about the output values is
parametric, and we provide sufficient conditions on the predicates under
which the model-checking problem is decidable. We then consider three
particular automata models (finite automata, transducers and automata
weighted by integers – sum-automata –) and instantiate the generic logic
for each of them. We give tight complexity results for the three logics and
the model-checking problem, depending on whether the formula is fixed
or not. We study the expressiveness of our logics by expressing classical
structural patterns characterising for instance finite ambiguity and poly-
nomial ambiguity in the case of finite automata, determinisability and
finite-valuedness in the case of transducers and sum-automata. Conse-
quently to our complexity results, we directly obtain that these classical
properties can be decided in PTime.

1 Introduction

Motivations. An important aspect of automata theory is the definition of
automata subclasses with particular properties, of algorithmic interest for
instance. As an example, the inclusion problem for non-deterministic finite
automata is PSpace-c but becomes PTime if the automata are k-ambiguous
for a fixed k [21].

By automata theory, we mean automata in the general sense of finite state
machines processing finite words. This includes what we call automata with out-
puts, which may also produce output values in a fixed monoid M = (D,⊕,0). In

We warmly thank the anonymous reviewers for their helpful comments, and Ismaël
Jecker for spotting a bug in a preliminary version of the paper. E. Filiot is a
research associate of F.R.S.-FNRS. He is supported by the ARC Project Transform
Fédération Wallonie-Bruxelles and the FNRS CDR project J013116F. N. Mazzocchi
is a PhD student funded by a FRIA fellowship from the F.R.S.-FNRS. J.-F. Raskin
is supported by an ERC Starting Grant (279499: inVEST), by the ARC project
− Non-Zero Sum Game Graphs: Applications to Reactive Synthesis and Beyond
− funded by the Fédération Wallonie-Bruxelles, and by a Professeur Francqui de
Recherche grant awarded by the Francqui Fondation.

c© Springer Nature Switzerland AG 2018
M. Hoshi and S. Seki (Eds.): DLT 2018, LNCS 11088, pp. 304–317, 2018.
https://doi.org/10.1007/978-3-319-98654-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98654-8_25&domain=pdf

A Pattern Logic for Automata with Outputs 305

such an automaton, the transitions are extended with an (output) value in D,
and the value of an accepting path is the sum (for ⊕) of all the values occurring
along its transitions. Automata over finite words in Λ∗ and with outputs in M
define subsets of Λ∗ × D as follows: to any input word w ∈ Λ∗, we associate
the set of values of all the accepting paths on w. For example, transducers are
automata with outputs in a free monoid: they process input words and produce
output words and therefore define binary relations of finite words [15].

The many decidability properties of finite automata do not carry over to
transducers, and many restrictions have been defined in the literature to recover
decidability, or just to define subclasses relevant to particular applications. The
inclusion problem for transducer is undecidable [13], but decidable for finite-
valued transducers [23]. Another well-known subclass is that of the determin-
isable transducers [5], defining sequential functions of words. Finite-valuedness
and determinisability are two properties decidable in PTime, i.e., it is decidable
in PTime, given a transducer, whether it is finite-valued (resp. determinisable).
As a second example of automata with outputs, we also consider sum-automata,
i.e. automata with outputs in (Z,+, 0), which defines relations from words to Z.
Properties such as functionality, determinisability, and k-valuedness (for a fixed
k) are decidable in PTime for sum-automata [10,11].

In our experience, it is quite often the case that deciding a subclass goes
in two steps: (1) define a characterisation of the subclass through a “simple”
pattern, (2) show how to decide the existence of a such a pattern. For instance,
the determinisable transducers have been characterised via the so called twinning
property [4,6,24], which, said briefly, asks that the output words produced by any
two different paths on input words of the form uvn cannot differ unboundedly
when n grows, with a suitable definition of “differ”. Quite often, the most difficult
part is step (1) and step (2) is technical but less difficult to achieve, as long as
we do not seek for optimal complexity bounds (by this we mean that PTime
is good enough, and obtaining the best polynomial degree is not the objective).
We even noticed that in transducer theory, even though step (2) share common
techniques (reduction to emptiness of reversal-bounded counter machines for
instance), the algorithms are often ad-hoc to the particular subclass considered.
Here is a non-exhaustive list of subclasses of transducers which are decidable
in PTime: determinisable transducers [1,4–7,24], functional transducers [4,5],
k-sequential transducers (for a fixed k) [8], multi-sequential transducers [7,16],
k-valued transducers (for a fixed k) [14], finite-valued transducers [18,23]. Our
goal in this paper is to define a common tool for step (2), i.e., define a generic
way of deciding a subclass characterised through a structural pattern. More
precisely, we want to define logics, tailored to particular monoids M, able to
express properties of automata with outputs in M, such that model-checking
these properties on given automata can be done in PTime.

Contributions. We define a general logic, denoted PL[O] for “pattern logic”, to
express properties of automata with outputs in a fixed monoid M = (D,⊕,0).
This logic is parameterised by a set of predicates O interpreted on D. We
first give sufficient conditions under which the problem of model-checking an

306 E. Filiot et al.

automaton with outputs in M against a formula in this logic is decidable. Briefly,
these conditions require the existence of a machine model accepting tuples of
runs which satisfy the atomic predicates of the logic, is closed under union and
intersection, and has decidable emptiness problem.

Then, we study three particular classes of automata with outputs: finite
automata (which can be seen as automata with outputs in a trivial monoid
with a single element), transducers (automata with outputs in a free monoid),
and sum-automata (automata with outputs in (Z,+, 0)). For each of them, we
define particular logics, called PLNFA, PLTrans and PLSum to express properties
of automata with outputs in these particular monoids. Formulas in these logics
have the following form:

∃π1 : p1
u1|v1−−−→ q1, . . . ,∃πn : pn

un|vn−−−−→ qn, C
where the πi are path variables, the pi, qi are state variables, the ui are (input)
word variables and the vi are output value variables (interpreted in D). The
subformula C is a quantifier free Boolean combinations of constraints talking
about states, paths, input words and output values. Such a formula expresses
the fact that there exists a path π1 from some state p1 to some state q1, over some
input word u1, producing some value v1, some path π2 etc. such that they all
satisfy the constraints in C. In the three logics, paths can be tested for equality.
Input words can be compared with the prefix relation, w.r.t. their length, and
their membership to a regular language be tested. States can be compared for
equality, and it can be expressed whether they are initial or final.

The predicates we take for the output values depends on the monoids. For
transducers, output words can be compared with the non-prefix relation (and by
derivation �=), a predicate which cannot be negated (otherwise model-checking
becomes undecidable), and can also be compared with respect to their length,
and membership to a regular language can be tested. For sum-automata, the
output values can be compared with < (and by derivation =, �=,≤). As an exam-
ple, a transducer (resp. sum-automaton) is not (n − 1)-valued iff it satisfies the
following PLTrans-formula (resp. PLSum-formula):

∃π1 : p1
u|v1−−−→ q1, . . . ,∃πn : pn

u|vn−−−→ qn,

n∧

i=1

init(pi) ∧ final(qi) ∧
∧

1≤i<j≤n

vi �= vj .

For the three logics, we show that deciding whether a given automaton satis-
fies a given formula is PSPace-c. When the formula is fixed, the model-checking
problem becomes NLogSpace-c for PLNFA and PLTrans, and NP-c for PLSum. If
output values can only be compared via disequality �= (which cannot be negated),
then PLSum admits PTime model-checking. We show that many of the proper-
ties from the literature, including all the properties mentioned before, can be
expressed in these logics. As a consequence, we show that most of the PTime
upper-bounds obtained for deciding subclasses of finite automata in [2,25], of
transducers in [5–8,14,16,18,22,24] and sum-automata in [3,8,10,11], can be
directly obtained by expressing in our logics the structural patterns given in
these papers, which characterise these subclasses.

A Pattern Logic for Automata with Outputs 307

Related works. In addition to the results already mentioned, we point out that
the syntax of our logic is close to a logic, defined in [9] by Figueira and Libkin,
to express path queries in graph databases (finite graphs with edges labelled by
a symbol). In this work, there is no disjunction nor negation, and no distinction
between input and output values. By making such a distinction, and by adding
negation and disjunction, we were able to tailor our logics to particular automata
models and add enough power to be able to directly express classical structural
automata properties.

2 Finite Automata with Outputs

In this section, we define a general model of finite automata defining functions
from the free monoid Λ∗ (where Λ is a finite input alphabet) to any monoids
M = (D,⊕,0). More precisely, they are parametrised by a monoid of output
values, read input words over some alphabet and output elements of the output
monoid, obtained by summing the output values met along accepting paths.

Formally, a monoid M is a tuple (D,⊕M,0M) where D is a set of elements
which we call here values or sometimes outputs, ⊕M is an associative binary
operation on D, for which 0M ∈ D is neutral. Monoids of interest in this paper
are the free monoid (Λ∗, ·, ε) for some finite alphabet of symbols Λ (where ·
denotes the concatenation), and the monoid (Z,+, 0). We also let Λε = Λ ∪ {ε}.
For w ∈ Λ∗, |w| denotes its length, in particular |ε| = 0. The set of positions of
w is {1, . . . , |w|} (and empty if w = ε). We let w[i] be the ith symbol of w. Given
w1, w2, we write w1
 w2 whenever w1 is a prefix of w2. All over this paper, the
input alphabet is denoted by the letter Λ.

Definition 1 (Automata with outputs). An automaton A with outputs over
an (output) monoid M = (D,⊕M,0M) is a tuple 〈Q, I, F,Δ, γ〉 where Q is a non-
empty finite set of states, I ⊆ Q the set of initial states, F ⊆ Q the set of final
states, Δ ⊆ Q × Λε × Q the set of transitions labelled with some element of
Λε, and γ : Δ → D a mapping from transitions to output values1. The set of
automata over M is written Aout(M).

We write #(A) to refer to the number of states of A. A path in A is a sequence
π = q0a1d1q1 . . . andnqn ∈ Q(ΛεDQ)∗, for n ≥ 0, such that for all 1 ≤ i ≤ n
we have (qi−1, ai, qi) ∈ Δ and γ(qi−1, ai, qi) = di. The input of π is defined as
the word in(π) = a1 . . . an (and ε if π ∈ Q), the output of π as the element
out(π) = d1 ⊕M · · · ⊕M dn (and 0M if π ∈ Q), and the size of π as |π| = n. We

may write π : q0
in(π)|out(π)−−−−−−−−→ qn to denote that π is a path from q0 to qn on input

in(π) and output out(π). For convenience we write π�, π� to denote respectively
the starting state q0 and the ending state qn of the path π. The set of all paths

1 Often in the literature, output values are directly given in the transitions, i.e. the
transition relation is a (finite) subset of Q×Λε×D×Q. Our definition is then equiv-
alent modulo PTime transformation, and allows for a clearer distinction between
input and output mechanisms.

308 E. Filiot et al.

of A is written Paths(A). A path π : q0
u|v−−→ qn is initial if q0 ∈ I, final if qn ∈ F

and accepting if it is both initial and final. The set of accepting paths of A is
denoted by Pathsacc(A). The input/output relation (or just relation) defined by
A is the set of pairs R(A) ⊆ Λ∗ × D defined by

R(A) = {(u, v) | ∃π ∈ Pathsacc(A) · in(π) = u ∧ out(π) = v}

Finite automata, transducers and sum-automata. In this paper, we consider three
instances of automata with outputs. First, finite automata (over Λ), are seen as
automata with outputs in a trivial monoid (and which is therefore ignored).
Transducers are automata with outputs in the free monoid Γ ∗. They define
relations from Λ∗ to Γ ∗. Finally, sum-automata are automata with outputs in
the monoid (Z,+, 0).

3 A Pattern Logic for Automata with Outputs

In this section, we introduce a generic pattern logic. It is built over four kind of
variables, namely path, state, input and output variables. More precisely, we let
XP = {π, π1, . . . }, XQ = {q, q1, p . . . , }, XI = {u, u1, . . . } and XO = {v, v1, . . . }
be disjoint and countable sets of resp. path, state, input and output variables. We
define Terms(XO,⊕,0) as the set of terms built over variables of XO, a binary
function symbol ⊕ (representing the monoid operation) and constant symbol 0
(neutral element).

The logic syntax is parametrised by a set of output predicates O. Output
predicates of arity 0 are called constant symbols, and we denote by O|n the
predicates of arity n. Predicates talking about states, paths and input words are
however fixed in the logic.

Definition 2. A pattern formula ϕ over a set of output predicates O is of the
form

ϕ = ∃π1 : p1
u1|v1−−−→ q1, . . . ,∃πn : pn

un|vn−−−−→ qn, C
where for all 1 ≤ i ≤ n, πi ∈ XP and they are all pairwise different, pi, qi ∈ XQ,
ui ∈ XI , vi ∈ XO, and C is a Boolean combination of atoms amongst

Input constraints : u
 u′ | u ∈ L | |u| ≤ |u′| u, u′ ∈ XI

Output constraints : p(t1, . . . , tn) p ∈ O|n, ti ∈ Terms(XO,⊕,0)
State constraints : init(q) | final(q) | q = q′ q, q′ ∈ XQ

Path constraints : π = π′ π, π′ ∈ XP

where L is a regular language of words over Λ (assumed to be represented as an
NFA). The sequence of existential quantifiers before C in ϕ is called the prefix
of ϕ. We denote by PL(O) the set of pattern formulas over O, and by PL+(O)
the fragment where output predicates does not occur under an odd number of
negations.

A Pattern Logic for Automata with Outputs 309

The size of a formula is the number of its symbols plus the number of states
of all NFA representing the membership constraints. We denote by Var(ϕ) the
variables occurring in any pattern formula ϕ, and by VarP (ϕ) (resp. VarQ(ϕ),
VarI(ϕ), VarO(ϕ)) its restriction to path (resp. state, input, output) variables.
We finally let (u = u′) def

= u
 u′ ∧ u′
 u, (|u| = |u′|) def
= (|u| ≤ |u′|) ∧ (|u′| ≤ |u|),

(|u| < |u′|) def
= ¬(|u′| ≤ |u|).

Semantics. To define the semantics of a pattern formula ϕ, we first fix some
monoid M = (D,⊕M,0M) together with an interpretation pM of each output
predicates p ∈ O of arity α(p), such that pM ∈ D if p is a constant and pM ⊆
Dα(p) otherwise. Given a valuation ν : XO → D, the interpretation .M can be
inductively extended to terms t by letting 0ν,M = 0M, (t1 ⊕ t2)ν,M = tν,M

1 ⊕M tν,M
2

and xν,M = ν(x).
Then, a formula ϕ ∈ PL(O) is interpreted in an automaton with outputs

A ∈ Aout(M) as a set of valuations [[ϕ]]A of Var(ϕ) which we now define. Each
valuation ν ∈ [[ϕ]]A maps state variables to states of A, path variables to paths
of A, etc. Such a valuation ν satisfies an atom u
 u′ if ν(u) is a prefix of
ν(u′), u ∈ L if ν(u) ∈ L, |u| ≤ |u′| if |ν(u)| ≤ |ν(u′)|. Given a predicate p ∈ O
of arity α(p), an atom p(t1, . . . , tα(p)) is satisfied by ν if (tν,M

1 , . . . , tν,M
α(p)) ∈ pM.

Finally, ν satisfies init(q) (resp. final(q)) if ν(q) is initial (resp. ν(q) is final). The
satisfiability relation is naturally extended to Boolean combinations of atoms.

Finally, assume that ϕ is of the form ∃π1 : p1
u1|v1−−−→ q1, . . . ,∃πn : pn

un|vn−−−−→ qn, C,
we say that A satisfies ϕ, denoted by A |= ϕ, if there exists a valuation ν

of Var(ϕ) such that for all i ∈ {1, . . . , n}, ν(πi) : ν(pi)
ν(ui)|ν(vi)−−−−−−−→ ν(qi) and ν

satisfies C (ν |= C). Given a pattern formula ϕ and an automaton with outputs
A, the model-checking problem consists in deciding whether A satisfies ϕ, i.e.
A |= ϕ.

Example 1. Given k ∈ N, the k-valuedness property has been already

expressed in Introduction (assuming = ∈ O). The formula ∃π0 : p0
u|v0−−−→

q0, . . . ,∃πk : pk
u|vk−−−→ qk, C0 where C0 =

∧
0≤i<j≤k πi �= πj∧

∧k
i=0 init(pi)∧final(qi)

expresses the fact that an automaton is not (k − 1)-ambiguous (has at least k
accepting paths for some input).

4 Model-Checking Problem

In this section, we give sufficient conditions on the output monoid M and the set
of output predicates O by which the model-checking of automata with outputs
in M against pattern formulas over the output predicates O is decidable. In the
next sections, we study the precise complexity of the model-checking problem
for particular monoids M.

Tuple acceptors. Since automata with outputs can get their output values in
arbitrary monoids, to get an effective model-checking algorithm, we will assume
the existence of machines, called tuple acceptors, that can recognise sets of word

310 E. Filiot et al.

tuples. These machines will be required to satisfy some key properties, forming
the notion of good class of tuple acceptors. First, what we call a tuple acceptor is
a machine M whose semantics is a set of tuples of words [[M]] ⊆ (Σ∗)n, for some
alphabet Σ and some arity n ≥ 1. The notion of good class, formally defined
later, require (i) that any regular set of tuples is recognised by some machine,
for a regularity notion that we will make clear (roughly, by seeing tuples of
words as words resulting from the overlapping of all components), (ii) all output
predicates (and their negation) are recognised by some machine, (iii) the class
is closed under union and intersection.

Regular sets of word tuples. Let Σ be some alphabet containing some symbol
⊥, π ∈ Σ∗ and m ≥ |π|. The padding of π with respect to m is the word
π′ = π⊥m−|π|. Let π1, π2 ∈ Σ∗ and let m = max(|π1|, |π2|). For j = 1, 2,
let π′

j the padding of πj with respect to m. Note that |π′
1| = |π′

2| = m. The
convolution π1 ⊗ π2 is the word of length m defined for all 1 ≤ i ≤ n by
(π1⊗π2)[i] = (π′

1[i], π
′
2[i]). E.g. q1λ1d1q2⊗p1 = (q1, p1)(λ1,⊥)(d1,⊥)(q2,⊥). The

convolution can be naturally extended to multiple words as follows:
⊗n

i=1 πi =
π1 ⊗ (π2 ⊗ . . . ⊗ πn).

Definition 3. A set of n-ary word tuples P ⊆ (Σ∗)n is regular if L =
{⊗n

i=1 πi | (π1, . . . , πn) ∈ P} is a regular language over Σn. We often iden-
tify L and P .

Good class of tuple acceptors. First, any valuation ν of a set of path variables
X into paths of some automaton with values in some monoid M gives a way
to interpret terms t ∈ Terms(X,⊕,0) as follows: for π ∈ X, πν,M = out(ν(π)),
0ν,M = 0M and (t1 ⊕ t2)ν,M = tν,M

1 ⊕M tν,M
2 . Then, for a class C (i.e. a set) of tuple

acceptors, we denote by C|n its restriction to acceptors of arity n.

Definition 4 (Good class). A class of tuple acceptors C is said to be good
for an output monoid M = (D,⊕M,0M), a set of output predicates O and an
interpretation pM ⊆ Dα(p) for all p ∈ O of arity α(p), if the following conditions
are satisfied:

1. for all automata with outputs A ∈ Aout(M) with a set of states Q we have:
(a) ∀n ≥ 1,∀R ⊆ Paths(A)n regular, R = [[M]] for some M ∈ C|n.
(b) all p ∈ O of arity α(p), all X = {π1, . . . , πn} finite sets of path variables

and all t1, . . . , tα(p) ∈ Terms(X,⊕,0), there exist M,M ′ ∈ C|n such that
i. [[M]] = {(ν(π1), . . . , ν(πn)) |ν : X → Paths(A)∧ (tν,M

1 , . . . , tν,M
α(p)) ∈ pM}

ii. [[M ′]] = Paths(A)n \ [[M]].
2. ∀n ≥ 1, ∀M1,M2 ∈ C|n, there exist M,M ′ ∈ C|n such that [[M]] = [[M1]]∩[[M2]]

and [[M ′]] = [[M1]] ∪ [[M2]].

We say that C is effective if all properties are effective and moreover it is decid-
able whether [[M]] �= ∅ for any (effectively represented) M ∈ C. We say that C is
weakly good if all properties hold except 1(b)ii.

Effectiveness of a good class gives effective model-checking, as announced.

A Pattern Logic for Automata with Outputs 311

Theorem 1. Let M be a monoid and O be a set of output predicates, interpreted
over M. If there exists an effective good class C (resp. effective weakly good class)
of tuple acceptors for M and O, then the model-checking problem of automata
with outputs in M against pattern formulas ψ ∈ PL[O] (resp. ψ ∈ PL+[O]) is
decidable.

Proof (sketch). First, the formula is put in negation normal form: negation is
pushed down to the atoms. Then, given an automaton with outputs in M, we show
that any tuple of paths which satisfy state, input and path predicates and their
negations is a regular set of path tuples (this is doable even for input equality
as well as input length comparison thanks to the way paths are overlapped by
the definition of convolution). By condition 1a, these sets of tuples are accepted
by acceptors of C. By conditions 1(b)i and ii, tuples of paths satisfying output
predicates and their negations are also accepted by acceptors of C. Then, the
closure properties (condition 2) allows us to construct an acceptor for the tuples
of paths satisfying the whole formula inductively. �

5 A Pattern Logic for Finite Automata

Finite automata can be seen as automata with outputs in a trivial monoid (with
a single element). As the monoid is trivial, there is no need for predicates over
it and so we specialize our pattern logic into PLNFA = PL[∅].

Definition 5 (Pattern logic for NFA). The logic PLNFA is the set of
formulas

ϕ := ∃π1 : p1
u1−→ q1, . . . ,∃πn : pn

un−−→ qn, C
C := ¬C | C ∨ C | u
 u′ | u ∈ L | |u| ≤ |u′| | init(q) | final(q) | q = q′ | π = π′

where for all i �= j, πi �= πj, L is a regular language over Λ (assumed to be
represented as an NFA), u, u′ ∈ {u1, . . . , un}, q, q′ ∈ {q1, . . . , qn} and π, π′ ∈
{π1, . . . , πn}.

As a yardstick to measure the expressiveness of PLNFA, we have considered
the structural properties of NFA studied in two classical papers: [25] by Weber
and Seidl and in [2] by Allauzen et al. The authors of these two papers give
PTime membership algorithms for k-ambiguity, finite ambiguity, polynomial
ambiguity and exponential ambiguity (with as applications the approximation
of the entropy of probabilistic automata for example). We refer the interested
readers to these papers for the formal definitions of those classes. The solutions
to these membership problems follow a recurrent schema: one defines (1) a pat-
tern that identifies the members of the class and (2) an algorithm to decide if
an automaton satisfies the pattern. The next theorem states that all these mem-
bership problems can be reduced to the model-checking problem of PLNFA using
a constant space reduction. The proof of this theorem is obtained by showing
how the patterns identified in [25], can be succinctly and naturally encoded into

312 E. Filiot et al.

(fixed) PLNFA formulas. As a corollary, we get that all the class membership
problems are in NLogSpace, using a model-checking algorithm that we defined
below for PLNFA.

Theorem 2. The membership problem to the subclasses of k-ambiguous, finitely
ambiguous, polynomially ambiguous and exponentially ambiguous NFA can be
reduced to the model-checking problem of PLNFA with constant space reduction.
The obtained formulas are constant (for fixed k).

Proof. For each membership problem, our reduction copies (in constant space)
the NFA and considers the model-checking for this NFA against a fixed PLNFA

(one for each class). As illustration, k-ambiguity has already been expressed in
Example 1. As a second example, an automaton is not polynomially ambiguous
iff there exists a state p which is reachable from an initial state, and the source
of two different cycles labelled identically by a word v. With PLNFA this gives:
∃π0 : q0

u1−→ p,∃π1 : p
u2−→ p,∃π2 : p

u2−→ p,∃π3 : p
u3−→ q, init(q0)∧π1 �= π2∧final(q)

�

The model-checking problem asks if a given NFA A satisfies a given PLNFA-
formula ϕ.

Theorem 3. The model-checking problem of NFA against formulas in PLNFA

is PSpace-C. It is in NLogSpace-C if the formula is fixed.

Proof (sketch). We use NFA as acceptors for tuples of paths. The algorithm
presented in the proof of Theorem 1 yields an exponentially large NFA (and
polynomial if the formula is fixed). We show that it does not need to be con-
structed explicitly and that a short non-emptiness witness can be searched
non-deterministically on-the-fly. For PSpace-hardness, we notice that the non-
emptiness of the intersection of n DFA can be easily expressed in PLNFA, by
seeing the n DFA as a disjoint union, and by asking for the existence of n dif-
ferent accepting paths over the same input in this union. �

Corollary 1 (of Theorems 2 and 3). The membership problem to the classes
of k-ambiguous, finitely ambiguous, polynomially ambiguous and exponentially
ambiguous NFA is in NLogSpace.

6 A Pattern Logic for Transducers

Transducers are automata with outputs in a free monoid MTrans = (Γ ∗, ·, ε)
and therefore define subsets of Λ∗ × Γ ∗. Since our general pattern logic can test
for output equalities (by repeating twice an output variable in the prefix), the
model-checking is easily shown to be undecidable by encoding PCP:

Theorem 4. The model-checking problem of transducers against formulas in
PL[∅] is undecidable.

A Pattern Logic for Automata with Outputs 313

To obtain a decidable logic for transducers, we need to exclude equality tests
on the output words in the logic. However, as we will see, we can instead have
inequality test �= as long as it is not under an odd number of negations in the
formula. We also allow to test (non) membership of output word concatenations
to a regular language, as well as comparison of output word concatenations wrt
their length. Formally:

Definition 6 (Pattern logic for transducers). The logic PLTrans is the set
of formulas of the form

ϕ := ∃π1 : p1
u1|v1−−−→ q1, . . . ,∃πn : pn

un|vn−−−−→ qn, C
C := ¬C | C ∨ C | u
 u′ | u ∈ L | |u| ≤ |u′| | init(q) | final(q) | q = q′ | π = π′|

t �
 t′ | t ∈ N | |t| ≤ |t′|
where for all 1 ≤ i < j ≤ n, πi �= πj and vi �= vj (no implicit output
equality tests), L (resp. N) is a regular language over Λ (resp. Γ), assumed
to be represented as an NFA, u, u′ ∈ {u1, . . . , un}, q, q′ ∈ {q1, . . . , qn}, t, t′ ∈
Terms({v1, . . . , vn}, ·, ε), π, π′ ∈ {π1, . . . , πn}, and t �
 t′ does not occur under
an odd number of negations.

We define the macros t �= t′ def
= t �
 t′ ∨ t′ �
 t, mismatch(t, t′) def

= t �
 t′ ∧ t′ �
 t
and

SDel�=(t1, t′1, t2, t
′
2) def

= (|t′1| �= |t′2|) ∨ [t′1t
′
2 �= ε ∧ mismatch(t1, t2)]

Let us explain the latter macro. Many properties of transducers are based
on the notion of output delays, by which to compare output words. For-
mally, for any two words v1, v2, delay(v1, v2) = (α1, α2) such that v1 = �α1

and v2 = �α2 where � is the longest common prefix of v1 and v2. It can
be seen that for any words v1, v

′
1, v2, v

′
2, if we have SDel�=(v1, v′

1, v2, v
′
2), then

delay(v1, v2) �= delay(v1v′
1, v2v

′
2), but the converse does not hold. But, if

delay(v1, v2) �= delay(v1v′
1, v2v

′
2), then SDel�=(v1(v′

1)
i, v′

1, v2(v
′
2)

i, v′
2) holds for

some i ≥ 0. These two facts allows us to express all the known transducer proper-
ties from the literature relying on the notion of delays. We leave however as open
whether our logic can express a constraint such as delay(v1, v2) �= delay(v3, v4).

We review here some of the main transducer subclasses studied in the litera-
ture. We refer the reader to the mentioned references for the formal definitions.
As for the NFA subclasses of the previous section, deciding them usually goes
in two steps: (1) identify a structural pattern characterising the property, (2)
decide whether such as pattern is satisfied by a given transducer. The class
of determinisable transducers are the transducers which define sequential func-
tions [5,6,24]. The k-sequential transducers are the transducers defining unions
of (graphs) of k sequential functions [8]. The multi-sequential ones are the union
of all k-sequential transducers for all k [7,16]. Finally, the k-valued transducers
are the transducers for which any input word has at most k output words [14,19],
and the finite-valued ones are all the k-valued transducers for all k [18,22,23].
All these classes, according to the given references, are decidable in PTime.

314 E. Filiot et al.

Theorem 5. The membership problem of transducers to the classes of deter-
minisable, functional, k-sequential, multi-sequential, k-valued, and finite-valued
transducers can be reduced to the model-checking problem of PLTrans with a con-
stant space reduction. The obtained formulas are constant (as long as k is fixed).

Proof. Without going through all the properties, let us remind the reader that
the formula for k-valuedness has been given in the introduction. We also give
the PLTrans formulas for the class of determinisable transducer. It is known that
a transducer is determinisable iff it satisfies the twinning property, which is
literally the negation of:

∃π1 : q1
u|v1−−−→ p1,∃π′

1 : p1
u′|v′

1−−−→ p1,∃π′′
1 : p1

u′′|v′′
1−−−−→ r1,

∃π2 : q2
u|v2−−−→ p2,∃π′

2 : p2
u′|v′

2−−−→ p2,∃π′′
2 : p2

u′′|v′′
2−−−−→ r2,

init(q1) ∧ init(q2) ∧ final(r1) ∧ final(r2) ∧ SDel�=(v1, v′
1, v2, v

′
2) �

Theorem 6. The model checking of transducers against formulas in PLTrans is
PSpace-C. It is in NLogSpace-C if the formula is fixed.

Proof (sketch). We use Parikh automata as acceptors for tuples of paths. They
extend automata with counters that can only be incremented and never tested
for zero. The acceptance condition is given by a semi-linear set (represented
for instance by an existential Presburger formula). The formal definition can be
found e.g. in [9]. The counters allow us to compare the output length of paths,
or to identify some output position of two paths with different labels (to test
v �
 v′). The counters are needed because this position may not occur at the
same location in the convolution encoding of path tuples. �

Corollary 2 (of Theorems 5 and 6). The membership problem of transducers
to the classes of determinisable, functional, k-sequential, multi-sequential, k-
valued, and finite-valued transducers (for fixed k) is decidable in NLogSpace.

7 A Pattern Logic for Sum-Automata

We remind the reader that sum-automata are automata with outputs in the
monoid MSum = (Z,+, 0) (assumed to be encoded in binary) and therefore define
subsets of Λ∗ ×Z. We consider in this section two logics for expressing structural
properties of sum-automata: the logic PLSum which is obtained as PL[{≤}] where
the output predicate ≤ is interpreted by the natural total order over integers,
and a subset of this logic PL�=

Sum obtained as PL+[{�=}] where the predicate
�= never appears in the scope of an odd number of negations (to avoid the
expressibility of the equality predicate). We show that the fragment PL�=

Sum enjoys
better complexity results. Formally, those two logics are defined as follows:

A Pattern Logic for Automata with Outputs 315

Definition 7 (Two pattern logics for sum-automata). The logic PLSum is
the set of formulas of the form

ϕ := ∃π1 : p1
u1|v1−−−→ q1, . . . ,∃πn : pn

un|vn−−−−→ qn, C
C := ¬C | C ∨ C | u
 u′ | u ∈ L | |u| ≤ |u′| | init(q) | final(q) | q = q′ | π = π′|

t ≤ t′

where for all 1 ≤ i < j ≤ n, πi �= πj, L is a regular language over Λ assumed
to be represented as an NFA, u, u′ ∈ {u1, . . . , un}, q, q′ ∈ {q1, . . . , qn}, t, t′ ∈
Terms({v1, . . . , vn}, ·, ε) and π, π′ ∈ {π1, . . . , πn}.

The logic PL�=
Sum is defined as above but the constraint t ≤ t′ is replaced by

t �= t′ and this constraint does not occur under an odd number of negations, and
moreover vi �= vj for all 1 ≤ i < j ≤ n (no implicit output equality tests).

We review here some of the main sum-automata subclasses decidable in
PTime studied in the literature. We refer the reader to the mentioned refer-
ences for the formal definitions. The class of functional sum-automata [11] are
those such that all accepting paths associated with a given word return the same
value. The classes of k-valued [10] and k-sequential sum-automata [8] are defined
similarly as for transducers.

Theorem 7. The membership problem of sum-automata in the class of func-
tional, k-valued, and k-sequential automata can be reduced to the model-checking
problem of PL�=

Sum. Moreover, the obtained PL�=
Sum formulas are constant (as long

as k is fixed).

Proof. We have already shown in the introduction that functionality [11] and
more generally k-valuedness [10] are expressible in PL�=

Sum. The twinning prop-
erty [1,11] is as well expressible in PL�=

Sum, just by replacing in the formula
expressing it for transducers (proof of Theorem 5) the atom SDel�=(v1, v′

1, v2, v
′
2)

by v′
1 �= v′

2. In [8], a generalization of the twinning property is shown to be com-
plete for testing k-sequentiality. �

The proof of the results below for PLSum follows arguments that are simi-
lar to those developed for transducers in the proof of Theorem 6, and for the
PTime result for PL�=

Sum, we use a reduction to the k-valuedness problem of
sum-automata [10].

Theorem 8. The model checking of sum-automata against formulas in PLSum is
PSpace-C, NP-C when the formula is fixed, and NLogSpace-C if in addition
the values of the automaton are encoded in unary. The model checking of sum-
automata against formulas in PL�=

Sum is PSpace-C, and in PTime when the
formula is fixed (even if the values of the automaton are encoded in binary).

Corollary 3 (of Theorems 7 and 8). The membership problem of sum-
automata in the class of functional, k-valued, and k-sequential automata is decid-
able in PTime.

316 E. Filiot et al.

Note that we have shown that the k-valuedness property is expressible in
PL�=

Sum, and so the k-valuedness property is reducible to the model-checking
problem of PL�=

Sum. Nevertheless, this result does not provide a new algorithm
for k-valuedness as our model-checking algorithm is based on a reduction to
k-valuedness [10].

8 Extensions and Future Work

The logics we have presented can be extended in two ways by keeping the same
complexity results, no matter what the output monoid is. The first extension
allows to express properties of automata whose states can be coloured by an arbi-
trary (but fixed) set of colours. This is useful for instance to express properties
of disjoint unions of automata, the colours allowing to identify the subautomata.
The second extension is adding a bunch of universal state quantifiers before the
formula. This does not change the complexity, and allow for instance to express
properties such as whether an automaton is trim (all its states are accessible
and co-accessible). As future work, we would like to investigate other monoids
(discounted sum group for instance [11]), and other data structures for which
transducers and weighted automata have been defined: nested words, infinite
words and trees are the main structures we want to work on.

References

1. Allauzen, C., Mohri, M.: Efficient algorithms for testing the twins property. J.
Autom. Lang. Comb. 8(2), 117–144 (2003)

2. Allauzen, C., Mohri, M., Rastogi, A.: General algorithms for testing the ambiguity
of finite automata and the double-tape ambiguity of finite-state transducers. Int.
J. Found. Comput. Sci. 22(4), 883–904 (2011)

3. Bala, S., Koniński, A.: Unambiguous automata denoting finitely sequential func-
tions. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS,
vol. 7810, pp. 104–115. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37064-9 11

4. Béal, M.-P., Carton, O.: Determinization of transducers over finite and infinite
words. Theor. Comput. Sci. 289(1), 225–251 (2002)

5. Béal, M.-P., Carton, O., Prieur, C., Sakarovitch, J.: Squaring transducers: an effi-
cient procedure for deciding functionality and sequentiality. TCS 292(1), 45–63
(2003)

6. Choffrut, C.: Une caracterisation des fonctions sequentielles et des fonctions sous-
sequentielles en tant que relations rationnelles. Theor. Comput. Sci. 5(3), 325–337
(1977)

7. Choffrut, C., Schutzenberger, M.P.: Decomposition de fonctions rationnelles. In:
Monien, B., Vidal-Naquet, G. (eds.) STACS 1986. LNCS, vol. 210, pp. 213–226.
Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16078-7 78

8. Daviaud, L., Jecker, I., Reynier, P.-A., Villevalois, D.: Degree of sequentiality of
weighted automata. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS,
vol. 10203, pp. 215–230. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54458-7 13

https://doi.org/10.1007/978-3-642-37064-9_11
https://doi.org/10.1007/978-3-642-37064-9_11
https://doi.org/10.1007/3-540-16078-7_78
https://doi.org/10.1007/978-3-662-54458-7_13
https://doi.org/10.1007/978-3-662-54458-7_13

A Pattern Logic for Automata with Outputs 317

9. Figueira, D. Libkin, L.: Path logics for querying graphs: combining expressiveness
and efficiency. In: LICS, pp. 329–340 (2015)

10. Filiot, E., Gentilini, R., Raskin, J.-F.: Finite-valued weighted automata. In:
FSTTCS, pp. 133–145 (2014)

11. Filiot, E., Gentilini, R., Raskin, J.-F.: Quantitative languages defined by functional
automata. LMCS 11(3) (2015)

12. Galil, Z.: Hierarchies of complete problems. Acta Inform. 6(1), 77–88 (1976)
13. Griffiths, T.V.: The unsolvability of the equivalence problem for lambda-free non-

deterministic generalized machines. J. ACM 15(3), 409–413 (1968)
14. Gurari, E.M., Ibarra, O.H.: A note on finite-valued and finitely ambiguous trans-

ducers. Theor. Comput. Syst. 16(1), 61–66 (1983)
15. Berstel, J.: Transductions and Context-Free Languages. Teubner, Stuttgart (1979)
16. Jecker, I. Filiot, E.: Multi-sequential word relations. IJFCS 29(2), 271–295 (2018)
17. Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten,

J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS,
vol. 2719, pp. 681–696. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45061-0 54

18. Sakarovitch, J., de Souza, R.: On the decidability of bounded valuedness for trans-
ducers. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp.
588–600. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85238-
4 48

19. Sakarovitch, J., de Souza, R.: Lexicographic decomposition of k -valued transduc-
ers. Theor. Comput. Syst. 47(3) (2010)

20. Scarpellini, B.: Complexity of subcases of presburger arithmetic. Trans. Am. Math.
Soc. 284(1), 203–218 (1984)

21. Stearns, R.E., Hunt III, H.B.: On the equivalence and containment problems for
unambiguous regular expressions, regular grammars and finite automata. SIAM J.
Comput. 14(3), 598–611 (1985)

22. Weber, A.: On the valuedness of finite transducers. Acta Inform. 27(8), 749–780
(1990)

23. Weber, A.: Decomposing finite-valued transducers and deciding their equivalence.
SIAM J. Comput. 22(1), 175–202 (1993)

24. Weber, A., Klemm, R.: Economy of description for single-valued transducers. Inf.
Comput. 118(2), 327–340 (1995)

25. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Com-
put. Sci. 88(2), 325–349 (1991)

https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1007/978-3-540-85238-4_48
https://doi.org/10.1007/978-3-540-85238-4_48

	A Pattern Logic for Automata with Outputs
	1 Introduction
	2 Finite Automata with Outputs
	3 A Pattern Logic for Automata with Outputs
	4 Model-Checking Problem
	5 A Pattern Logic for Finite Automata
	6 A Pattern Logic for Transducers
	7 A Pattern Logic for Sum-Automata
	8 Extensions and Future Work
	References

