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Abstract. A pattern is a string with terminals and variables (which
can be uniformly replaced by terminal words). Given a class C of pat-
terns (with variables), we say a pattern α is a C-(pseudo-)repetition if its
skeleton – the result of removing all terminal symbols to leave only the
variables – is a (pseudo-)repetition of a pattern from C. We introduce a
large class of patterns which generalises several known classes such as the
k-local and bounded scope coincidence degree patterns, and show that
for this class, C-(pseudo-)repetitions can be matched in polynomial time.
We also show that for most classes C, the class of C-(pseudo-)repetitions
does not have bounded treewidth. Finally, we show that if the notion
of repetition is relaxed, so that in each occurrence the variables may
occur in a different order, the matching problem is NP-complete, even
in severely restricted cases.
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1 Introduction

A pattern is a word α consisting of symbols from a terminal alphabet Σ =
{a, b, . . .}, and a set of variables X = {x1, x2, . . .}. A word w ∈ Σ∗ matches
the pattern α if there exists a coherent substitution of the variables (i.e., each
occurrence of a variable is replaced by the same string) under which α becomes
equal to w. For example, the word w = ababacbabaacac matches the pattern
α1 = x1bx2bx1x2ac, as witnessed by the substitution x1 → aba, x2 → ac. On
the other hand, as can be easily verified, w does not match α2 = ax1cx1. Thus,
a word matches a pattern if it adheres to the underlying structure described by
the pattern. The problem of deciding whether a given word matches a pattern
is called the matching problem.1

Patterns with variables and the matching problem appear in various areas
of theoretical computer science, such as combinatorics on words (word equa-
tions [15,20], unavoidable patterns [17]), pattern matching (generalized func-
tion matching [1,22]), language theory (pattern languages [2]), learning theory
1 The matching problem is the same as the membership problem for pattern languages.
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(inductive inference [2,6,21,23], PAC-learning [16]), database theory (extended
conjunctive regular path queries [3]), as well as in practical applications, e.g.,
extended regular expressions with backreferences [4,11,12], used in programming
languages like Perl, Java, Python, etc.

One important feature of patterns is that they can model very naturally
repetitive structures, which appear in a wide range of applications from, e.g.,
music to biology. For instance, structures appearing in genetic data, such as
tandem or inverted repeats, or hairpin structures, can be modelled by gener-
alised patterns with variables and their reversals. As such, pseudo-repetitions
(generalised repetitions of a word w and its reversal wR) were studied from both
combinatorial and algorithmic points of view, in the framework of matching
patterns with variables (see, e. g., [13,14,18] and the references therein).

Unfortunately, this expressive power comes at a price: the matching problem
is NP-complete in the general case [2]. This has lead to a thorough analysis
of the classical and parameterised complexity of the matching problem (see [7,
9,10]), which has shown that, in terms of simple numerical parameters, many
severely restricted variants remain computationally hard. On the other hand,
more complex structural parameters, e. g., the scope-coincidence degree [24] and
k-locality [5], have been introduced, which yield classes of patterns which can
be matched in polynomial time. For some stronger restrictions, like regular and
non-cross patterns, there are also quite efficient matching algorithms (see [7]). All
known efficiently matchable classes have a unifying theory: they can all be shown
to have bounded treewidth (which is defined via a natural graph representation of
patterns). Due to a meta-theorem of [24], if a class of patterns has this property,
then the matching problem can be solved in polynomial time for this class.

It is interesting to note that the general treewidth-based framework of poly-
nomial time matching of patterns does not seem to cover a very simple and
natural aspect: repetitions of the same pattern. More precisely, if C is one of the
known efficiently matchable classes of patterns, then a repetition αk for some
α ∈ C is usually not in C anymore. In fact, we show here that even for patterns
α with bounded and very low treewidth, the treewidth of repetitions αk can be
unbounded (see Theorem2). Nevertheless, it is a very simple observation that if
we can match patterns from a class C in polynomial time, then we can also match
repetitions of these patterns in polynomial time: if we wish to check whether αk

matches a word w, then we can firstly check whether w = vk for some word v,
and then check whether α matches v.

Taking a closer look at this phenomenon, it can be observed that most param-
eters that lead to efficiently matchable classes, e. g., the scope coincidence degree,
are defined independently from the terminal symbols, i.e., via the word obtained
after removing all terminals, which shall be called skeleton in the following (e. g.,
the skeleton of α1 from above is x1x2x1x2). As a result, it is possible that a pat-
tern, that is not a repetition of any α ∈ C, has nevertheless a skeleton that is
a repetition of a skeleton from C. For example, ax1(x2)3x3bx3x1(x2)2bx2ax2

3 is
not a repetition of a non-cross pattern, but its skeleton (x1(x2)3(x3)2)2 is. We
are able to show that, for some important classes C of patterns, the polynomial
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time solvability of the matching problem does not only extend from C to exact
repetitions, but also to such skeleton-repetitions, called C-repetitions here.

More precisely, motivated both by the previous work on finding large classes
of patterns that can be matched in polynomial time and by the interest in repet-
itive patterns and their variations, we consider the following natural question:
for which classes C of patterns, that can be matched in polynomial time, does
the class of C-repetitions have a polynomial-time matching problem? For our
first main result, we define the parameterised class, Mem(k, p), where k, p ∈ N0,
which extends both the classes of k-local patterns and patterns with scope coin-
cidence degree at most p, and therefore also contains most of the other known
efficiently matchable classes. Intuitively speaking, the k-local patterns can be
matched by assigning the variables in a specific order such that at any point, no
more than k separate factors of the pattern must be stored, while in the case
of scope coincidence degree, the pattern is matched left-to-right, with only the
values of at most p already-matched variables stored in case they appear later in
the pattern. In the case of matching Mem(k, p) patterns, we can combine these
strategies and store both at most k previously-matched factors, as well as the
values of up to p variables which may be encountered again later in the process.
Using the resulting algorithm as a starting point, we show that also Mem(k, p)-
repetitions can be matched in polynomial time. Moreover, the same result holds
in the case of Mem(k, p)-pseudo-repetitions, where Mem(k, p)-repetitions are
extended to allow also reversals (so x1x2 · x2x1 · x2x1 is a pesudo-repetition of
x1x2). We also expect that our approach can be adapted to “plug-in” other
dynamic programming based matching algorithms for other classes.

As already briefly mentioned above, we also point out the following fact:
for the class REG of regular patterns – for which each variable may occur only
once – the class of REG-repetitions does not have bounded treewidth and is
thus not covered by the meta-theorem of [24]. Since the regular patterns are
arguably the simplest class allowing an unbounded number of variables (note
that patterns with a constant number of variables can trivially be matched in
polynomial-time), this also holds for all the other classes mentioned previously,
and in particular for Mem(k, p). To the knowledge of the authors, this is the
first example of an efficiently matchable class of patterns, that does not have
bounded treewidth, which is of theoretical interest with respect to the results
from [24]. We are also able to show that for REG-repetitions, there is a more
direct and efficient algorithm that solves the matching problem in time O(m|w|),
where w is the word to be matched and m is the number of variables.

Finally, we show that if the notion of a repetition is relaxed further than just
allowing, e.g., reversals, by considering a setting where the order in which the
variables appear is no longer constrained at all (such repetitions are often called
abelian repetitions in the literature), then the matching problem is again NP-
complete. Furthermore, this holds even in the minimal case that the number of
repetitions is restricted to two, and that the pattern which is repeated is regular.

Due to space constraints, most proofs are omitted.
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2 Basic Definitions

For detailed definitions regarding combinatorics on words we refer to [17]. For
n, i, j ∈ N0 with i ≤ j, let [n] = {1, . . . , n} and [i, j] = {i, i + 1, . . . , j − 1, j}.
In this paper, Σ = {a, b, . . .} denotes a finite alphabet of terminal symbols
and X = {x1, x2, . . .} a potentially infinite alphabet of variables. We assume
Σ ∩ X = ∅. Words in (X ∪ Σ)∗ are patterns, while words in Σ∗ are terminal
words (usually just words). The empty word is denoted by ε and the length of a
word w by |w|. Given a pattern α, let var(α) be the smallest set Y ⊆ X such that
α ∈ (Σ∪Y )∗. Given a word w = a1a2 . . . an, the reversal wR of w is anan−1 . . . a1.
For w ∈ Σ∗ and each i, j ∈ [|w|] with i ≤ j, let w[i..j] = w[i] · · · w[j], where w[k]
represents the kth letter of w for k ∈ [|w|]. Each word w[i..j] is a factor of w. If
0 < |w[i..j]| < |w| then w[i..j] is a proper factor of w.

A substitution (for α) is a mapping h : var(α) → Σ+. For every x ∈ var(α),
we say that x is substituted by h(x). The word obtained by substituting every
occurrence of a variable x in α by h(x) and leaving the terminals unchanged
is denoted by h(α). For instance, h(x1ax2bx2) = bacabca, where h(x1) = b,
h(x2) = ca. The set L(α) = {h(α) | h is a substitution} is the pattern language
of α. The matching problem is to decide for a given pattern α and word w,
whether there exists a substitution h with h(α) = w.2

A pattern α is regular if each variable x ∈ X occurs at most once. Given
a pattern α and y ∈ var(α), the scope of y in α is defined by scα(y) = [i, j],
where i is the leftmost and j the rightmost occurrence of y in α. The scopes
of some variables y1, y2, . . . , yk ∈ var(α) coincide in α if

⋂
1≤i≤k scα(yi) 	= ∅.

We denote the scope coincidence degree (scd for short) of α by scd(α), which
is the maximum number of variables in α such that their scopes coincide. For
example, scd(x1x2x1x2x3x1x2x3) = 3 and scd(x1x2x1x2x3x2x3x3) = 2. The
class of non-cross patterns (see [25]) coincides exactly with the patterns with
scope coincidence degree of 1.

The skeleton of β ∈ (X ∪ Σ)∗ is the (unique) pattern skel(β) = y1 . . . yn with
yi ∈ X for i ∈ [n], n ∈ N, such that there exist words a0, . . . , an ∈ Σ∗ with
β = a0y1a1 . . . an−1ynan. For example, skel(aaxxcybazayay) = xxyzyy. A class
C of patterns is called a skel-class of patterns if α ∈ C ⇔ skel(α) ∈ C.

Next, we recall the notion of a marking sequence. For each variable x ∈ X,
x is its marked version, marking x means to substitute every occurrence of x
with ist marked version. Let X = {x | x ∈ X} be the set of marked variables
(with X ∩ X = ∅). For the skeleton α of a pattern β ∈ (X ∪ Σ)∗, a marking
sequence of the variables occurring in β, is an ordering xσ(1), xσ(2), . . . , xσ(m) of
var(β) = {x1, x2, . . . , xm}, where σ is a permutation of [m]. A variable x is called
marked at point k ∈ N (both in β and α) if x = xσ(i) for some i ≤ k. Similarly, a
position of α is marked at point k if it corresponds to a variable that is marked

2 The difference of whether variables can be substituted by ε may seem negligible but
is crucial for some aspects of pattern languages (erasing versus non-erasing pattern
languages). Since here we are concerned with the matching problem, we only point
out whether results also apply to the erasing case, or how they can be extended.
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at point k. A factor of a string α containing marked positions is a marked block
if it consists of one or more marked positions and is maximal in the sense that
it is not contained within another such factor. According to [5], for a pattern β
with var(β) = {x1, . . . , xm} and α = skel(β), we say that β is k-local, if there
exists a marking sequence xσ(1), . . . , xσ(m), such that, for 1 ≤ i ≤ m, the string
obtained from α in i marking steps contains at most k marked blocks.

For a pattern α, an α-structure is an undirected graph with two types of
edges, i.e., Gα = (V, P,E), where V = {1, 2, . . . , |α|} is the set of vertices,
P = {{i, i + 1} | i ∈ [|α| − 1]} connects all vertices into a path and E is an edge-
relation that only connects vertices that correspond to different occurrences of
the same variable, such that, for each variable, the set of its occurrences forms
a connected component of G with respect to edge-relation E. If a class C of
patterns has α-structures with bounded treewidth, then the matching problem
for C can be solved in polynomial-time (see [24] for details).

The computational model we use in this work is the standard unit-cost RAM
with logarithmic word size.

3 Mem(k, p)-Patterns

In a way similar to the definition of k-local patterns from the previous section, we
use the idea of a marking sequence to introduce the class of Mem(k, p)-patterns.

Essentially, the definition of Mem(k, p)-patterns is motivated by the following
idea. Generally, algorithms checking whether a pattern with variables matches
a word assign values to the variables in a certain order (e.g., from left to right,
by a specified marking sequence, etc.). However, we may follow two strategies.
On the one hand, we can store the factors that contain all the occurrences of the
variables for which we assigned values (and forget the individual assignment)
and their matching factors from the word. This strategy is used, for instance, to
match k-local patterns. On the other hand, we can store the individual images
of the assigned variables, and try to match, e.g., an increasingly large prefix of
the pattern to a prefix of the word, using these images. In this strategy, used,
e.g., to match patterns with bounded scope coincidence degree, we have to store
the image of a variable until we reach its latest occurrence. In both strategies,
if the amount of data we have to store is constant, we get a polynomial time
matching algorithm. In order to make this happen for certain classes, structural
restrictions on the patterns were used.

Here we combine these two competing ideas. We introduce a class of patterns
where, in order to match them to a word, we again assign values to the variables
of the pattern in an order given by a marking sequence. However, in this case, we
want to store, after each new assignment, a match between k′ ≤ k factors of the
pattern (like in the first approach mentioned above), but, we are more flexible,
and also store the assignment of at most p of the variables (like in the second
case described above) that are allowed to reoccur also outside the k′ factors we
matched. This new class (parametrised by the integers k and p) can, once more,
be defined by structural restrictions on the pattern.
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Definition 1. Let k ≥ 1 and p ≥ 0 be two integers. Let β be a pattern with
var(β) = {x1, . . . , xm} and α = skel(β). We say that β is a Mem(k, p)-pattern
(or, alternatively, that it belongs to the class of Mem(k, p) patterns) if there exists
a marking sequence xσ(1), . . . , xσ(m) of the variables from var(β) such that the
following holds. For 1 ≤ i ≤ m, after marking xσ(1), . . . , xσ(i) in α, we have that
the set of marked positions of α can be partitioned into:

1. ki ≤ k disjoint intervals (of marked positions) that define exactly ki marked
blocks of α:

α[ai,1..bi,1];α[ai,2..bi,2]; . . . ;α[ai,ki
..bi,ki

].

2. the remaining marked positions, which correspond to occurrences of at most
p variables from {xσ(1), . . . , xσ(i)}.

Moreover, for all i ≥ 2, and each j ≤ ki−1 we have that there exists � such that
ai,� ≤ ai−1,j ≤ bi−1,j ≤ bi,� (i.e., the ki−1 marked blocks from step i − 1 are
contained in the ki marked blocks at step i).

In other words, a pattern β (and its skeleton α) is in Mem(k, p) if there exists
a marking sequence of the variables occurring in α such that at each step of the
marking we can partition the marked positions into ki ≤ k marked blocks of
α and a set of other separate marked positions, which, however, correspond to
occurrences of at most p variables. Moreover, the ≤ k marked blocks from step i
should extend the respective blocks from step i − 1 (i.e., a marked position that
was in one of the ki−1 marked blocks identified at step i − 1 will still be in one
of the ki marked blocks from step i).

Example 1. Consider a pattern β with skeleton

α = (x1x2x1x3x1x4 . . . x1xn)2xnxn−1 . . . x2x1x2x3 . . . xn.

The variables of this pattern could be marked as follows. First mark x1 and treat
the rightmost occurrence of x1 as one of the marked blocks, while the other occur-
rences are not considered as marked blocks, but x1 is one of the marked variables
(with many occurrence) we store additionally. This already shows that our pat-
tern is at least Mem(1, 1). Then we mark x2, which extends the marked block
on the right side, but in the left part, we now consider the two marked factors
x1x2x1 as marked blocks, while the remaining isolated marked occurrences of
x1 are still considered as occurrences of marked variables stored additionally to
the marked blocks. This places the pattern in Mem(3, 1) (3 marked blocks and
1 additional variable). We repeat this and mark x3, x4, . . . , xn in this order, and
we always consider that the newly marked occurrences of variables on the left
part are joined to the existing blocks by some of the already marked occurrences
of x1 that were not previously in any marked block. In particular, the isolated
marked occurrences of x1 that were counted before as the single marked vari-
able we store additionally (thus, defining the second component of Mem(k, p))
change their role, and become part of the marked blocks (counted in the first
component of Mem(k, p)). In conclusion, α and the pattern β with α = skel(β)
are in Mem(3, 1).
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It is immediate that Mem(k, p) ⊆ Mem(k′, p′) if k ≤ k′ and p ≤ p′. Also,
Mem(k, p) contains the class of regular patterns for all k and p. The next example
shows that even Mem(1, 1) contains rather complex patterns.

Example 2. (x1x2)nx1x2 · · · xn−1xnxn−1 · · · x2x1 ∈ Mem(1, 1).

As already mentioned, Mem(k, p) patterns combine the definitions of k-local
patterns and patterns with scope coincidence degree bounded by p (and, in fact,
provide a unified view of the known classes of patterns that can be matched by
dynamic programming – hence, the name Mem from memoization). We explain
this in more details. Consider, in the following, that α is the skeleton of a pattern.
If α is k-local, then we have a marking sequence that defines at each step at most
k marked blocks of α. If α is a pattern with scope coincidence degree bounded
by p we can mark the variables of α from left to right, and, at each step, we
have a completely marked prefix and several other separate occurrences of at
most p distinct marked variables. In the case when α is an Mem(k, p) pattern,
we again have a marking sequence that defines at each step k marked blocks
of α; however, different from the case of k-local patterns, we might have, at
each marking step, some other marked occurrences of variables outside the k
marked blocks. But, as for patterns with bounded scope coincidence degree, the
number of distinct marked variables occurring outside the k blocks is at most
p (although, the number of marked positions outside of the marked blocks is
not necessarily bounded by p or k, since the additional marked variables can
occur arbitrarily many times outside of marked blocks). Example 2 shows that
Mem(1, 1) contains patterns of length 4n − 1 which are (n + 1)-local and have
scope coincidence degree n. Obviously, arbitrary patterns which are k-local but
not k − 1 local are in Mem(k, 0) but not in Mem(k − 1, 0), while the pattern
(x1x2 . . . xp)n is not in Mem(1, p − 2).

It is not hard to show that one can decide whether a pattern is in Mem(k, p)
in polynomial time (where the degree of the polynomial depends on k and p).

Proposition 1. Given a pattern β, we can decide in O(|β|3k+p+4) time whether
β ∈ Mem(k, p). Moreover, if β is in Mem(k, p) then we can also produce a
marking sequence for it, as well as, for each step i of this marking sequence, the
ki ≤ k maximal factors marked obtained after performing the marking in step i
and the pi ≤ p marked variables that occur outside these k marked factors.

Basically, if β is in Mem(k, p), we can construct in O(|β|3k+p+4) time a
marking sequence xd1 , . . . , xdm

of the variables of α = skel(β) and a cor-
responding sequence of tuples as = (is1, j

s
1 , . . . , i

s
k, js

k, �s
1, . . . , �

s
p), encoding

the marked positions of α after xd1 , . . . , xds
were marked. The tuple as =

(is1, j
s
1 , . . . , i

s
k, js

k, �s
1, . . . , �

s
p) encodes the information that, after s marking steps,

the blocks α[ise..j
s
e ] are marked, and on all the other marked positions of α we

have only variables from x�s1
, . . . , x�sp . If we actually need to store only k′ < k

marked blocks after the first s marking steps, then ise = js
e = |α| + 1 for e > k′;

similarly, if we need to store only p′ < p additional marked variables, then
�s
h = m + 1 for s > p′.
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Once we can obtain the information described above for the skeleton of a
Mem(k, p)-pattern β, we are able to compute the tuples bs = (ls1, r

s
1, . . . , l

s
k, rs

k, �s
1,

. . . , �s
p), for s ∈ [m], encoding the marked symbols of β after s marking steps.

We just mark the variables corresponding to the marked blocks of α, and the
terminals occurring between the variables of such a block. Then, given a word
w, we can use dynamic programming to track all the possible ways the k marked
blocks obtained in the pattern after s marking steps may match factors of w and
the p additional marked variables can be coherently assigned factors of w, and,
ultimately, when s = m, check whether β matches w.

Proposition 2. Given a pattern β ∈ Mem(k, p) and a word w, of length n, we
can decide in O(n3k+2p+5) time whether β matches w.

4 Generalized Repetitions of Patterns

We first introduce the notion of C-repetition, where C is a skel-class of patterns,
like, for instance, the class of regular patterns, non-cross patterns, patterns with
bounded scope coincidence degree, k-local patterns, or Mem(k, p) patterns.

Definition 2. Let β ∈ (X ∪ Σ)∗ and C a class of patterns. We call β a C-
repetition if there exist a positive integer r ≥ 2, patterns β1, . . . , βr ∈ C, with
βi ∈ (X∪Σ)∗ for all i ∈ [r], and α ∈ X∗, such that β = β1 · · · βr and skel(βi) = α
for all i ∈ [r]. The pattern α is called a C-root-skeleton of β.

It is not hard to see that, in the definition above, we have that if C is a skel-
class of patterns, then α is in C as well. In general, this result might not hold
(e.g., when C is defined by a property regarding the terminals of the patterns).

It is well known (see, e.g., [17]) that if a word w fulfils w = uk and w = v�

for u, v words and k, � ≥ 2, then there exists a word t, called the root of w,
|t| ≤ min{|u|, |v|} such that u = tp and v = tr. This does not hold when we
talk about C-repetitions and their C-root-skeletons. Indeed, if C is the class of
patterns that do not contain single occurrences of a variable (i.e., patterns β with
|β|x ≥ 2 for all x ∈ var(β)), then we have two C-root-skeletons of (x1x2)6, namely
(x1x2)2 and (x1x2)3; however, x1x2, which is a root (as a word, in the classical
combinatorics on words sense) of each of the C-root-skeletons, is not a C-root-
skeleton of (x1x2)6. However, it is rather easy to show that all C-root-skeletons
are powers of a common root (when interpreted as words).

For simplicity, we call the shortest C-root-skeleton of a C-repetition β the C-
root-skeleton of a C-repetition β, and we denote it by rskelC(β). The C-exponent
of β is defined as expC(β) = | skel(β)|

| rskelC(β)| .
Definition 2 can be extended to C-pseudo-repetitions. For simplicity, we will

address directly the case when C is a skel-class of patterns.

Definition 3. Let β ∈ (X ∪ Σ)∗ and C a skel-class of patterns. We call β a
C-pseudo-repetition if there exist a positive integer r ≥ 2, patterns β1, . . . , βr,
with βi ∈ (X ∪ Σ)∗ for all i ∈ [r], and α ∈ X∗ a pattern of class C, such that
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β = β1 · · · βr and skel(βi) = α or skel(βi) = αR for all i ∈ [r]. The pattern α is
called a C-pseudo-root-skeleton of β, and the shortest C-pseudo-root-skeleton of
β is called the C-pseudo-root-skeleton of β, denoted prskelC(β). The C-exponent
of the β is defined as expC(β) = | skel(β)|

| prskelC(β)| .

In the following, we focus on a series of algorithmic results regarding the
notions introduced above. Recall that the membership problem for a class C of
patterns is the decision problem asking whether a given pattern α is in C or
not. The membership problem can be decided in polynomial time for each of the
class of regular patterns, the class of non-cross patterns, the class of patterns
with bounded scope coincidence degree, the class of k-local patterns, or the class
of Mem(k, p) patterns. Our first result is immediate.

Proposition 3. Let C be a skel-class of patterns for which the membership prob-
lem can be decided in O(f(n)) time, for a polynomial f . Given a pattern β we can
decide in O(|β|2f(|β|)) whether it is a C-repetition (or, alternatively, a C-pseudo-
repetition). We can compute, in the same time, rskelC(β) (resp., prskel(β)).

In the following we address the matching problem for repetitions. More pre-
cisely, we show that Mem(k, p)-repetitions can be matched in polynomial time,
if the parameters k and p are upper bounded by constants.

Theorem 1. Given β a Mem(k, p)-repetition and a word w, of length n, we can
decide whether β matches w in O(n3k+2p+5) time.

Firstly, we compute the root-skeleton α of β, the exponent r, and partition
β = β1 . . . βr, where, for i ∈ [r], α is βi’s skeleton. By choosing the factors βi

such that each ends as far to the right as possible, and because the total length of
the variables’ images should be the same in all the factors βi, we can compute by
length arguments the corresponding decomposition of w = w1 . . . wr such that
if w matches β, then, for each i, wi must match βi. By Proposition 1, we get a
marking sequence xd1 , . . . , xdm

for β1, and note that this is also a valid marking
sequence for each βh, with h ≥ 2. Then, we try to match wi and βi, for all i ∈ [r],
simultaneously and coherently. However, keeping track in a data structure how
each of the k marked blocks of βi match factors of the corresponding word wi,
for all i ∈ [r], would lead to an algorithm exponential in r. Instead, we notice
that if we know the marked block of β1 after s markings steps, we can construct
the k marked factors of each of βh after s marking steps, for h ≥ 2, as all these
patterns have the same skeletons. Moreover, if we discovered that one of the
blocks of β1 that are marked after s steps, say β1[l..r], should match w1[i..j], we
can compute, for all h ≥ 2, again by length arguments (as skel(βh) = skel(β1)
and their variables are assigned coherently), the factor wh[ih..jh] which should
match βh[lh..rh], the marked block of βh that corresponds to β1[l..r].

Hence, if bs = (ls1, r
s
1, . . . , l

s
k, rs

k, �s
1, . . . , �

s
p) encodes the factors β1[lse..r

s
e] of

β1 that are marked after s marking steps, as well as the additional p marked
variables, we compute and store the tuples (s, i1, j1, . . . , ik+p, jk+p) such that
β1[lse..r

s
e] matches w1[ie..je], for e ∈ [k], and the x�f is assigned the value
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w1[ik+f ..jk+f ], for f ∈ [p]. Moreover, we only store from these tuples those
that induced a valid matching for the marked blocks of βh, for h ≥ 2, as
explained above. So, a matching between a tuple bs and a corresponding tuple
(s, i1, j1, . . . , ik+p, jk+p) encodes a matching between some factors of β1 and fac-
tors of w1 which can be extended coherently to a matching between the factors
of βh and factors of wh. If we have all these matching tuples for some s, we try
to extend them, using dynamic programming, to similar matchings for s+ 1. To
do this, when considering a tuple t = (s, i1, j1, . . . , ik+p, jk+p), we try to assign
values to xds+1 that allow for a matching of the marked blocks of β1 encoded by
bs+1 = (ls+1

1 , rs+1
1 , . . . , ls+1

k , rs+1
k , �s+1

1 , . . . , �s+1
p ) to factors of w1 which extend

the factors encoded in t, and also check whether similar matchings hold for all
h ≥ 2 (i.e., the implicit matching that follows from the matching of the factors
encoded by bs to those encoded by t are also extended in a valid and coherent
way). The algorithm ends after we found all the matchings after m marking
steps, and decides that β matches w if and only if we were able to find a valid
matching of β1 to w1, which induces a matching of βh to wh, for all h ≥ 2.

Our approach can be easily extended for pseudo-repetitions.

Corollary 1. Given β a Mem(k, p)-pseudo-repetition and a word w, of length
n, we can decide whether β matches w in O(n3k+2p+5) time.

Remark 1. In the algorithm of Theorem1, as well as in its variant from Corol-
lary 1, when we assigned a value to a variable we made no assumption on whether
it is the empty string or not. So, our algorithms work also for the erasing-case,
i.e., where variables can be substituted by the empty word as well.

We conclude this section by showing a structural result.

Theorem 2. Let C be a class of patterns that contains all REG-patterns. Then
the class of C-repetitions contains patterns with arbitrarily large treewidth.

The results in [24] show that patterns with bounded treewidth are matchable
in polynomial time. Theorems 1 and 2 lead to a series of simple and natural
examples of classes of patterns that can be matched in polynomial time, although
they do not have bounded treewidth.

5 REG-Repetitions

The results in Theorem 1 and Corollary 1 show that repetitions with the root-
or pseudo-root-skeleton from some efficiently matchable classes of patterns can
also be matched in polynomial time. However, it is to be expected that in the
case of some more restrictive classes of patterns more efficient algorithms can
be obtained, by exploiting their particularities. Indeed this holds for the class of
REG-repetitions and -pseudo-repetitons. It is worth noting that these algorithms
are based on an efficient implementation of the general dynamic programming
algorithm we used for matching Mem(k, p) patterns, which exploits the simpler
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structure of regular patterns and makes use of some string processing data-
structures. Note that, due to the fact that matching a REG-repetition means
matching several regular patterns simultaneously and coherently, we cannot rely
on the usual greedy strategy used to match a single regular pattern (see, e.g., [7]).

Theorem 3. Given a REG-(pseudo-)repetition β, with | var(β)| = m, and a
word w, with |w| = n, we can decide whether β matches w in O(mn) time.

The positive algorithmic results from the previous section show that pat-
terns of the form β1β2 . . . βr can be matched efficiently, provided that each βi

is efficiently matchable and all βi are “identical” (i.e., identical with respect to
their skeleton or reversed skeleton). In the following, we shall investigate whether
the second condition can be relaxed without losing these beneficial algorithmic
properties. A natural respective approach is to allow the βi to differ in a more
complicated way as that one is the reversal of the other, e.g., by only requiring
one to be a permutation of the other. We can show the rather strong negative
result that even for r = 2 and regular βi, this leads to NP-hardness.

Theorem 4. Deciding whether a pattern β1β2, with var(β1) = var(β2) and
β1, β2 ∈ REG, matches a word w is NP-hard.

To prove Theorem 4 the perfect code problem for 3-regular graphs will be
reduced to the matching problem of the specific kind in this theorem (similar to
reductions in [8,19]). Let G = (V,E) with V = {t1, . . . , tn} be a 3-regular graph.
To get a convenient access to the neighbours of a given v ∈ V define for r ∈ [4]
the (not unique) mappings ℘r : [n] → [n] where ℘r(i) = j indicates that the rth

neighbour of ti is tj (they are assumed to be arbitrary but fixed). Define for a
given graph G a pattern matching instance: let X = {xi,j | i, j ∈ [n]} ∪ {yi, y

′
i |

i ∈ [n]} be the set of variables and Σ = {a,#, 	} be the set of terminal symbols.
For all i ∈ [n] set αi = x℘1(i),i . . . x℘4(i),i, α

′
i = yi#xi,℘1(i) . . . xi,℘4(i)#y′

i, wi =
a5, w′

i = (#a8)2#(a4#)2, β1 = α1 	 · · ·	αn 	y1 . . . yny′
1 . . . y′

n	, β2 = α′
1 	 · · ·	α′

n,
and v1 = w1 	 · · · 	 wn 	 (#a8)2n− n

4 (a4#)n+n
4 	, v2 = w′

1 	 · · · 	 w′
n. Finally set

β = β1β2 and v = v1v2. Notice that, in contrast to β, v contains only terminal
symbols and hence (β, v) is a pattern matching instance.

By definition, β1 and β2 are regular and, since, for every i, j ∈ [n], xi,j occurs
in αj if and only if it occurs in α′

i, and all variables yi, y
′
i, i ∈ [n] occur in both

β1 and β2, we get var(β1) = var(β2), i.e., skel(β1) is a permutation of skel(β2).
This, alongside the next result, allows us to reach the conclusion.

Lemma 1. The graph G has a perfect code if and only if β matches to v.

Remark 2. The reduction from above can easily be modified for erasing sub-
stitutions: Set wi = a and w′

i = #a4##, and the factor matched against
y1 . . . yny′

1 . . . y′
n is then (#a4)n−n

4 #
n
4 . The proof is analogous.
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