
iProcess: Enabling IoT Platforms
in Data-Driven Knowledge-Intensive

Processes

Amin Beheshti1(B), Francesco Schiliro1,2, Samira Ghodratnama1,
Farhad Amouzgar1, Boualem Benatallah3, Jian Yang1, Quan Z. Sheng1,

Fabio Casati4, and Hamid Reza Motahari-Nezhad5

1 Macquarie University, Sydney, Australia
{amin.beheshti,jian.yang,michael.sheng}@mq.edu.au,

{francesco.schiliro,samira.ghodratnama,farhad.amouzgar}@hdr.mq.edu.au
2 Australia Federal Police, Canberra, Australia

3 University of New South Wales, Sydney, Australia
boualem@cse.unsw.edu.au

4 University of Trento, Trento, Italy
fabio.casati@unitn.it

5 EY AI Lab, Palo Alto, USA
hamid.motahari@ey.com

Abstract. The Internet of Things (IoT), the network of physical objects
augmented with Internet-enabled computing devices to enable those
objects sense the real world, has the potential to transform many indus-
tries. This includes harnessing real-time intelligence to improve risk-
based decision making and supporting adaptive processes from core
to edge. For example, modern police investigation processes are often
extremely complex, data-driven and knowledge-intensive. In such pro-
cesses, it is not sufficient to focus on data storage and data analysis; and
the knowledge workers (e.g., investigators) will need to collect, under-
stand and relate the big data (scattered across various systems) to pro-
cess analysis: in order to communicate analysis findings, supporting evi-
dences and to make decisions. In this paper, we present a scalable and
extensible IoT-Enabled Process Data Analytics Pipeline (namely iPro-
cess) to enable analysts ingest data from IoT devices, extract knowledge
from this data and link them to process (execution) data. We introduce
the notion of process Knowledge Lake and present novel techniques to
summarize the linked IoT and process data to construct process narra-
tives. This enables us to put the first step towards enabling storytelling
with process data.
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1 Introduction

Information processing using knowledge-, service-, and cloud-based systems has
become the foundation of the twenty-first-century life. Recently, the focus of pro-
cess thinking has shifted towards understanding and analyzing process related
data captured in various information systems and services that support pro-
cesses [2,7,8]. The Internet of Things (IoT), i.e., the network of physical objects
augmented with Internet-enabled computing devices to enable those objects
sense the real world, has the potential to generate large amount of process related
data which can transform many industries. This includes harnessing real-time
intelligence to improve risk-based decision making and supporting adaptive pro-
cesses from core to edge. For example, modern police investigation processes
are often extremely complex, data-driven and knowledge-intensive. Considering
cases such as Boston bombing (USA), the ingestion, curation and analysis of the
big data generated from various IoT devices (CCTVs, Police cars, camera on
officers on duty and more) could be vital but is not enough: the big IoT data
should be linked to process execution data and also need to be related to pro-
cess analysis. This will enable organizations to communicate analysis findings,
supporting evidences and to make decisions.

Current state-of-the-art in analyzing business processes does not provide suf-
ficient data-driven techniques to relate IoT and process related data to process
analysis and to improve risk-based decision making in knowledge intensive pro-
cesses. To address this challenge, in this paper, we present a scalable and exten-
sible IoT-Enabled Process Data Analytics Pipeline to enable analysts to ingest
data from IoT devices, extract knowledge from this data and link them to pro-
cess (execution) data. We present novel techniques to summarize the linked IoT
and process data to construct process narratives. Finally, we offer a Machine-
Learning-as-a-Service layer to enable process analysts to analyze the narratives
and dig for facts in an easy way. We adopt a motivating scenario in policing,
where a knowledge worker (e.g., a criminal investigator) in a knowledge inten-
sive process (e.g., criminal investigation) will be augmented by smart devices to
collect data on the scene as well as locating IoT devices around the investigation
location and communicate with them to understand and analyze evidences in
real time. This paper includes offering:

– A scalable and extensible IoT-Enabled Process Data Analytics Pipeline to
enable analysts to ingest data from IoT devices, extract knowledge from
this data and link them to process (execution) data. We leverage our pre-
vious work [3,9] to ingest and organize the big IoT and process data in Data
Lakes [3] and to automatically contextualize the raw data in the Data Lake
and construct a Knowledge Lake [4].

– A framework and algorithms for summarizing the (big) process data and
constructing process narrative. We present a set of innovative, fine-grained
and intuitive analytical services to discover patterns and related entities, and
enrich them with complex data structures (e.g., timeseries, hierarchies and
subgraphs) to construct narratives.
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– A spreadsheet-like dashboard to enable analysts interact with narratives and
control their resolution in an easy way. We present a machine-learning-as-a-
service framework, which enable analysts dig for facts in an easy way.

The rest of the paper is organized as follows. In Sect. 2 we provide the related
work and a motivating scenario. We present the IoT-Enabled Process Data Ana-
lytics Pipeline in Sect. 3. We discuss the implementation and the evaluation in
Sect. 4 before concluding the paper in Sect. 5.

2 Related Work and Motivating Scenario

2.1 Internet of Things

The Internet of Things (IoT) has the potential to transform many industries
and enable them to harness real-time intelligence to improve risk-based decision
making and to support adaptive processes from core to edge. In IoT, many of the
objects that surround us will be connected, and will be sensing the real world.
These objects have the potential to generate large amount of data and meta-data
which may contain various facts and evidences. These facts and evidences can
help knowledge workers understand knowledge intensive processes and make cor-
rect decisions [19]. Many of the work in IoT focus on applications such as smart
and connected communities [22], industries (e.g., agriculture, food processing,
environmental monitoring, automotive, telecommunications, and health) [15],
and security and privacy [1]. Mobile crowdsensing and cyber-physical cloud com-
puting presented as two most important IoT technologies in promoting Smart
and Connected Communities [22]. Management of IoT data is an important
issue in rapidly changing organizations. A set of recent work has been focusing
on ingesting the large amount of data generated from IoT devices and store
and organize them in big data platforms. For example, Hortonworks DataFlow
(hortonworks.com) provides an end-to-end platform that collects and organizes
the IoT data in the cloud. Other approaches include Teradata (teradata.com/)
and Oracle BigData (oracle.com/bigdata) focus on data management and ana-
lytics, and do not related the data to process analysis.

Enabling IoT data in business process analytics, as presented in this paper,
is a novel approach to enhance data-driven techniques for improving risk-based
decision making in knowledge intensive processes. The novel notions of Knowl-
edge Lake and narrative, presented in this paper, will enable us to put the first
step towards enabling storytelling with process data. This will enable analysts
to ingest data from IoT devices, extract knowledge from this data and related
the data to process analysis.

2.2 Data-Driven Processes

The problem of understanding the behavior of information systems as well as the
processes and services they support has become a priority in medium and large
enterprises. This is demonstrated by the proliferation of tools for the analysis of

https://hortonworks.com/
http://teradata.com/
https://www.oracle.com/big-data/index.html
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process executions, system interactions, and system dependencies, and by recent
research work in process data warehousing, discovery and mining [24]. Accord-
ingly, identifying business needs and determining solutions to business problems
requires the analysis of business process data which in turn will help in discov-
ering useful information and supporting decision making for enterprises. The
state-of-the-art in process data analytics focus on various topics such as Ware-
housing Business Process Data [14], Data Services and DataSpaces [13], Support-
ing Big Data Analytics Over Process Execution Data [5], Process Spaces [18],
Process Mining [24] and Analyzing Cross-cutting Aspects (e.g., provenance) in
Processes’ Data [6]. In our recent book [8], we provided a complete state-of-
the-art in the area of business process management in general and process data
analytics in particular. This book provides defrayals on: (i) technologies, appli-
cations and practices used to provide process analytics from querying to ana-
lyzing process data; (ii) a wide spectrum of business process paradigms that
have been presented in the literature from structured to unstructured processes;
(iii) the state-of-the-art technologies and the concepts, abstractions and meth-
ods in structured and unstructured BPM including activity-based, rule-based,
artifact-based, and case-based processes; and (iv) the emerging trend in the busi-
ness process management area such as: process spaces, big-data for processes,
crowdsourcing, social BPM, and process management on the cloud.

Summarization techniques presented in this paper, is a novel approach to
enable analysts to understand and relate the big IoT and process data to process
analysis in order to communicate analysis findings and supporting evidences in
an easy way. The proposed approach will enhance data-driven techniques for
improving risk-based decision making in knowledge intensive processes.

2.3 Knowledge-Intensive Processes

Case-managed processes are primarily referred to as semistructured processes,
since they often require the ongoing intervention of skilled and knowledgeable
workers. Such Knowledge-Intensive Processes, involve operations that heavily
reliant on professional knowledge. For these reasons, it is considered that human
knowledge workers are responsible to drive the process, which cannot other-
wise be automated as in workflow systems [8]. Knowledge-intensive processes
almost always involve the collection and presentation of a diverse set of arti-
facts and capturing the human activities around artifacts. This, emphasizes the
artifact-centric nature of such processes. Many approaches [11,16,23] used busi-
ness artifacts that combine data and process in a holistic manner and as the basic
building block. Some of these works [16] used a variant of finite state machines
to specify lifecycles. Some theoretical works [11] explored declarative approaches
to specifying the artifact lifecycles following an event oriented style. Another line
of work in this category, focused on querying artifact-centric processes [17].

Another related line of work is artifact-centric workflows [11] where the pro-
cess model is defined in terms of the lifecycle of the documents. Some other
works [20,21], focused on modeling and querying techniques for knowledge-
intensive tasks. Some of existing approaches [20] for modeling ad-hoc processes
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focused on supporting ad-hoc workflows through user guidance. Some other
approaches [21] focused on intelligent user assistance to guide end users dur-
ing ad-hoc process execution by giving recommendations on possible next steps.
Another line of work [6], considers entities (e.g., actors, activities and artifacts)
as first class citizens and focuses on the evolution of business artifacts over time.
Unlike these approaches, in iProcess, we not only consider artifacts as first class
citizens, but we take the information-items (e.g., named entities, keywords, etc.)
extracted from the content of the artifacts into account.

2.4 Motivating Scenario: Missing People

As the motivating scenario, we focus on the investigation processes around Miss-
ing Persons. Between 2008 and 2015 over 305,000 people were reported miss-
ing in Australia (aic.gov.au/), an average of 38,159 reports each year. In USA
(nij.gov/), on any given day, there are as many as 100,000 active missing per-
son’s cases. The first few hours following a person’s disappearance are the most
crucial. The sooner police is able to put together the sequence of events and
actions right before the disappearance of the person, the higher the chance of
finding the person. This entails gathering information about the person including
physical appearance, and activities on social media in the physical/social envi-
ronments of the person, person’s activity data such as phone calls and emails,
and information on the person detected by sensors (e.g. CCTVs).

The investigation process is a data-driven, knowledge-intensive and collabo-
rative process. The information associated with an investigation (case process)
are usually complex, entailing the collection and presentation of many different
types of documents and records. It is also common that separate investigations
may impact other investigation processes, and the more evidences (knowledge
and facts extracted from the data in the data lake [3]) collected the better related
cases can be linked explicitly. Although law enforcement agencies use data analy-
sis, crime prevention, surveillance, communication, and data sharing technologies
to improve their operations and performance, in sophisticated and data intensive
cases such as missing persons there still remain many challenges. For example,
fast and accurate information collection and analysis is vital in law enforcement
applications [10,12]. From the policymakers’ perspective, this trend calls for the
adoption of innovations and technologically advanced business processes that
can help law enforcers detect and prevent criminal acts. Enabling IoT data in
law enforcement processes will help investigators to access to a potential pool of
data evidences. Then, the challenge would be to prepare the big process data for
analytics, summarizing the big process data, constructing narratives and enable
analysts to link narratives and dig for facts in an easy way.

In this paper, we aim to address this challenge by augmenting police officers
with Internet-enabled smart devices (e.g., phones/watches) to assist them in the
process of collecting evidences, access to location-based services to identify and
locate resources (CCTVs, camera on officers on duty, police cars, drones and
more), organize all these islands of data in a Knowledge Lake [4] and feed them
into a scalable and extensible IoT-Enabled Process Data Analytics Pipeline.

http://aic.gov.au/
http://nij.gov/
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3 iProcess: IoT-Enabled Process Data Analytics Pipeline

Figure 1 illustrates the IoT-Enabled Process Data Analytics Pipeline framework.
In the following we explain the main phases of the iProcess pipeline.

3.1 Process Data-Lake

In order to understand data-driven knowledge-intensive processes, one may
need to perform considerable analytics over large hybrid collections of hetero-
geneous and partially unstructured data that is captured from private (per-
sonal/business), social and open data. Enabling IoT data in such processes will
maximize the value of data-in-motion and will require dealing with big data
organization challenges such as wide physical distribution, diversity of formats,
non-standard data models, independently-managed and heterogeneous seman-
tics. In such an environment, analysts may need to deal with a collection of
datasets, from relational to NoSQL, that holds a vast amount of data gathered
from various data islands, i.e., Data Lake. To address this challenge, we lever-
age our previous work [3], CoreDB: a Data Lake as a Service, to identify (IoT,
Private, Social and Open) data sources and ingest the big process data in the
Data Lake. CoreDB manages multiple database technologies (from relational to
NoSQL), offers a built-in design for security and tracing, and provides a single
REST API to organize, index and query the data and metadata in the Data Lake.

3.2 Process Knowledge-Lake

The rationale behind a Data Lake is to store raw data and let the data analyst
decide how to cook/curate them later. We introduce the notion of Knowledge
Lake [4], i.e., a contextualized Data Lake, to provide the foundation for big data
analytics by automatically curating the raw data in the Data Lake and to pre-
pare them for deriving insights. To achieve this goal, we leverage our previous
work [4], to transform raw data (unstructured, semi-structured and structured
data sources) into a contextualized data and knowledge that is maintained and
made available for use by end-users and applications. The Data Curation APIs [9]
in the Knowledge Lake provide curation tasks such as extraction, linking, sum-
marization, annotation, enrichment, classification and more. This will enable us
to add features - such as extracting keyword, part of speech, and named entities
such as Persons, Locations and Organizations; providing synonyms and stems for
extracted information items leveraging lexical knowledge bases for the English
language such as WordNet; linking extracted entities to external knowledge bases
such as Google Knowledge Graph and Wikidata; discovering similarity among
the extracted information items; classifying, indexing, sorting and categorizing
data - into the data and knowledge persisted in the Knowledge Lake.

This will enable us, for example, to extract and link information about the
missing person from various data islands in the data lake such as the IoT, social
and news data sources and to relate them to missing person case. The goal of this



114 A. Beheshti et al.

F
ig
.
1
.
Io

T
-E

n
a
b
le

d
p
ro

ce
ss

d
a
ta

a
n
a
ly

ti
cs

p
ip

el
in

e.



Enabling IoT Platforms in Data-Driven Knowledge-Intensive Processes 115

phase is to contextualize the Data Lake and turn it into a Process Knowledge-
Lake which contains: (i) a set of facts, information, and insights extracted from
the raw data; (ii) process event data i.e., observed behavior; and (iii) process
models, e.g., manually or automatically discovered. All these three main com-
ponents will enable the process analysts to relate data to process analysis. To
achieve this goal, we present a graph model to define the entities (process data,
instances and models) and the relationships among them.

Definition 1 (Process Knowledge Graph). Let G = (V,E) be an Entity-
Relationship (ER) attributed graph where V is a set of nodes with |V | = n,
and E ⊆ (V × V ) is a set of ordered pairs called edges. Let H = (V,E) be a
RDF graph where V is a set of nodes with |V | = n, and E ⊆ (V × V ) is a set of
ordered pairs called edges. An ER graph G = (VG, EG) with n entities is defined
as G ⊆ H, VG = V and EG ⊆ E such that G is a directed graph with no directed
cycles. We define a resource in an ER graph recursively as follows: (i) The sets
VG and EG are resources; (ii) ∈ is a resource; and (iii) The set of ER graphs are
closed under intersection, union and set difference: let G1 and G2 be two ER
graphs, then G1 ∪ G2, G1 ∩ G2, and G1 − G2 are resources.

Definition 2 (Entity). An entity E is represented as a data object that exists
separately and has a unique identity. Entities are described by a set of attributes
but may not conform to an entity type. Entities can be complex such as Process
Model, Process Instance and a (IoT, Social or private) Data Source. One way
would be to define “stream events” meaning events that are tied to a specific
timestamp or sequence number, and associated to a specific IoT device. Entities
can be also simple such as artifacts (e.g., structured such as customer record
or unstructured such as an email), actors and activities. Entities can be atomic
information items such as a keyword, phrase, topic and named entity (e.g.,
people, location, organization) extracted from unstructured artifacts such as
emails, images (extracted from IoT devices) or social items (such as a Tweet in
Twitter). This entity model offers flexibility when types are unknown and takes
advantage of structure when types are known. Entities can be of type stream,
such as ‘stream events’ meaning events that are tied to a specific timestamp or
sequence number, and associated to a specific IoT device.

Definition 3 (Relationship). A relationship is a directed link between a pair of
entities, which is associated with a predicate defined on the attributes of entities
that characterizes the relationship. Relationships can be described by a set of
attributes but may not conform to a relationship type. Relationships can be [2]:
Time-based, Content-based and Activity-based. We define the following explicit
relationships:

– Process
(Instance-of)−−−−−−−−→ Model: express that a process is an instance of a process

model.
– Process

(Used)−−−−→ Artifact: express that a process used an artifact during its
execution.
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– Artifact
(Generated-by)−−−−−−−−−→ Process: express that an artifact was generated by a

process.
– Process

(Controlled-by (R))−−−−−−−−−−−−→ Actor: express that a process was controlled by an
actor. Given that a process may have been controlled by several actors, it is
important to identify the roles of actors.

– Process1
(Triggered-by)−−−−−−−−−→ Process2: express a process oriented view where a

process triggered another process.
– Artifact

(Organized-in)−−−−−−−−−→ Data − Island: express that an artifact (e.g., an
email in a private dataset or an image extracted from a CCTV camera) is
organized in a Data Island (i.e., a Data source in the Data Lake).

– Information − Item
(Extracted-from)−−−−−−−−−−−→ Artifact: express that an information

item (e.g., a topic extracted from a Tweet or a named entity such as a person,
extracted from an Image) is extracted from an artifact (e.g., an email or an
image, extracted from a CCTV camera, in a private data source).

– Information − Item1
(Similar-to)−−−−−−−−→ Information − Item2: express that an

information item (e.g., a person named entity extracted from an Image) is
similar to another information item (e.g., a person named entity extracted
from an email or a Tweet in Twitter (twitter.com)

Notice that ‘Process’ refers to a process instance and ‘Model’ refers to a
process model. A Process Instance or Case, is a triple C = (PF , Nstart, Nend),
where PF is a path in which the nodes in P are of type ‘event’, grouped using
the function F (e.g. a function can be a ‘Correlation Condition’), and are in
chronological order. A Process Model, allows the generation of all valid (accept-
able) case C of a process, e.g. implemented by service or a set of services [2].
Various process mining algorithms and tools (e.g., PROM), include our previous
work [18], can be used to automatically extract the first type of relationship.
Process instances and services can be instrumented to automatically construct
the other type of relationship.

3.3 Process Narratives

In this phase, we present an OLAP [5] style process data summarization tech-
nique as an alternative to querying and analysis techniques. This approach will
isolate the process analyst from the process of explicitly analyzing different
dimensions such as time, location, activity, actor and more. Instead, the system
will be able to use interactive (artifacts, actors, events, tasks, time, location,
etc.) summary generation to select and sequence narratives dynamically. This
novel summarization method will enable process analysts to choose one or more
dimensions (i.e., attributes and relationships), based on their specific goal, and
interact with small and informative summaries. This will enable the process ana-
lysts to analyze the process from various dimensions. Figure 2(B) illustrates a
sample OLAP dimension.

In OLAP [5], cubes are defined as set of partitions, organized to provide a
multi-dimensional and multi-level view, where partitions considered as the unit

http://twitter.com/
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of granularity. Dimensions defined as perspectives used for looking at the data
within constructed partitions. In police investigation scenarios, such as Boston
bombing, process cubes can enable effective analysis of the Process Knowledge
Graph from different perspectives and with multiple granularities. For example,
by aggregating and relating all evidences from the person of interest, location of
the incident and more. Following, we define a process cube.

Definition 4 (Process Cube). A process cube defined to extend decision sup-
port on multidimensional networks, e.g., process graphs, considering both data
objects and the relationships among them. We reuse and extend the definition
for graph-cube proposed in our previous work [5]. In particular, given a multi-
dimensional network N , the graph cube is obtained by restructuring N in all
possible aggregations of set of node/edge attributes A, where for each aggrega-
tion A′ of A, the measure is an aggregate network G′ w.r.t. A′. We define pos-
sible aggregations upon multidimensional networks using Regular Expressions.
In particular, Q = {q1, q2, ..., qn} is a set of n process cubes, where each qi is a
process cube, a placeholder for set of related entities and/or relationships among
them, and can be encoded using regular expressions. In this context, each process
cube qi can extensively support multiple information needs with the graph data
model (e.g., Definition 1) and one algorithm (regular language reachability). The
set of related process cubes Q is designed to be customizable by local domain
experts (who have the most accurate knowledge about their requirement) to
codify their knowledge into regular expressions. These expressions can describe
paths through the nodes and edges in the attributed graph: Q can be constructed
once and can be reused for other processes. The key data structure behind the
process cube is the Process Knowledge Graph, i.e., a graph of typed nodes, which
represent process related entities (such as process instances, models, artifacts,
actors, data sources, and information items), and typed edges, which label the
relationships of the nodes to one another, illustrated in Fig. 2(A). We leveraged
the graph mining algorithms in our previous work [5] to walk the graph from
one set of interesting entities to another via the relationship edges and discover
which entities are ultimately transitively connected to each other, and group
them in folder nodes (set of related entities) and path nodes (set of related pat-
terns). We use correlation-conditions [18] to partition the Process Knowledge
Graph based on set of dimensions coming from the attributes of node entities.
We use a path-condition [5] as a binary predicate defined on the attributes of
a path that allows to identify whether two or more entities are related through
that path.

Definition 5 (Dimensions). Each process cube qi has a set of dimensions
D = {d1, d2, ..., dn}, where each di is a dimension name. Each dimension di
is represented by a set of elements (E) where elements are the nodes and edges
of the Process Knowledge Graph. In particular, E = {e1, e2, ..., em} is a set
of m elements, where each ei is an element name. Each element ei is rep-
resented by a set of attributes (A), where A = {a1, a2, ..., ap} is a set of p
attributes for element ei, and each ai is an attribute name. A dimension di can be
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considered as a given query that require grouping graph entities in a certain way.
Correlation-conditions and path-conditions can be used to define such queries.

A dimension uniquely identifies a subgraph in the Process Knowledge Graph,
which we call a Summary. Now, we introduce the new notion of Narrative.

Definition 6 (Narrative). A narrative N = {S,R}, is a set summaries S =
{s1, s2, ..., sn} and a set of relationships R = {r1, r2, ..., rm} among them, where
si is a summary name and rj is a relationship of type ‘part-of’ between two sum-
maries. This type of relationship enables the zoom-in and zoom-out operations
(see Fig. 2(C)) to link different pieces of a story and enable the analyst to interact
with narratives. Each summary S = {Dimension, V iew − Type, Provenance},
identified by a unique dimension D, relates to a view type V T (e.g., process,
actor or data view) and assigned to a Provenance code snippet P to document
the evolution of the summary over time (more nodes and relationships can be
added to the Process Knowledge Graph over time). We leverage our work [6] to
document the evolution of summaries over time.

The formalism of the summary S will enable to consider different dimensions
and views of a narrative, including the event structure (narratives are about
something happening), the purpose of a narrative (narratives about actors and
artifacts), and the role of the listener (narratives are subjective and depend on
the perspective of the process analyst). Also, it considers the importance of time
and provenance as narratives may have different meanings over time. We develop
a scalable summary generation algorithm and support three types of summaries.
Figure 3 illustrates the scalable summary generation process. Following we intro-
duce these summaries:

– Entity Summaries: We use correlation conditions to summarize the Process
Knowledge Graph based on set of dimensions coming from the attributes
of node entities. In particular, a correlation condition is a binary predicate
defined on the attributes of attributed nodes in the graph that allows to iden-
tify whether two or more nodes are potentially related. Algorithm 1 in Fig. 3,
will generate all possible entity summaries. For example, one possible sum-
mary may include all related images captured in the same location. Another
summary may include all related images captured in the same timestamp.

– Relationship Summaries: We use correlation conditions to summarize the
Process Knowledge Graph based on set of dimensions coming from the
attributes of attributed edges. Algorithm 2 in Fig. 3, will generate all
possible relationship summaries. For example, one possible summary may
include all related relationships typed controlled-by and have the follow-
ing attributes “Controlled-by (role = ‘Investigator’; time = ‘τ1’; location =
‘255.255.255.0’)”. In the relationship summaries, we also store the nodes from
and to the relationship, e.g., in this example the process instance and the
actor.

– Path Summaries: We use path conditions to summarize the Process Knowl-
edge Graph based on set of dimensions coming from the attributes of nodes
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and edges in a path, where a path is a transitive relationship between two
entities showing a sequence of edges from the start entity to the end. In par-
ticular, a path condition defined on the attributes of nodes and edges that
allows to identify whether two or more entities (in a given Process Knowl-
edge Graph) are potentially related through that path. Algorithm 3 in Fig. 3,
will generate all possible path summaries. For example, one possible relation-
ship summary includes all related images captured in the same location and
contain the same information item, e.g., the missing person. Another rela-
tionship summary includes all related Tweets or emails sent on timestamp τ1
and include the keyword Maisie (the missing person).

3.4 Process Analytics

In this phase, we present a spreadsheet like interface on top of the scal-
able summary generation framework. The goal is to enable analysts to interact
with the narratives and control the resolutions of summaries. A narrative N
can be analyzed using three operations: (i) roll-up: to aggregate summaries by
moving up along one or more dimensions, and to provide a smaller summary
with less details. (ii) drill-down: to disaggregate summaries by moving down
dimensions; and to provide a larger summary with more details; (iii) slice-and-
dice: to perform selection and projection on snapshots. To achieve this goal, we
use the notion of spreadsheets and organize all the possible summaries in the
rows and columns of a grid. Each tab in the spreadsheet defines a summary
type (e.g., entity, relationship or path summary), the rows in a tab are mapped
to the dimensions (e.g., Attributes of an entity), and the columns in a tab are
mapped to various data islands in the Data Lake. Each cell will contain a specific
summary.

We make a set of machine learning algorithms available as a service and to
enable the analysts to manipulate and use the summaries in spreadsheets to
support: (i) roll-up: the roll-up operation performs aggregation on a spreadsheet
tab, either by climbing up a concept hierarchy (i.e., rows and columns which
represent the dimensions and data islands accordingly) or by climbing down a
concept hierarchy, i.e., dimension reduction; (ii) drill-down: the drill-down oper-
ation is the reverse of roll up. It navigates from less detailed summaries to more
detailed summaries. It can be realized by either stepping down a concept hier-
archy or introducing additional dimensions. For example, in Fig. 4, applying the
drill-down operation on the cell intersecting time (dimension) and CCTV1 (data
source) will provide a more detailed summary, grouping all the items over differ-
ent points in time. As another example, applying the drill-down operation on the
cell intersecting country (dimension) and Twitter (data source) will provide a
more informative summary, grouping all the tweets, twitted in different counties;
and (iii) slice-and-dice: the slice operation performs a selection on one dimen-
sion of the given tab, thus resulting in a sub-tab. The dice operation defines a
sub-tab by performing a selection on two or more dimensions. This will enable
analyst, for example to see Tweets coming from 2 dimensions such as time and
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Fig. 4. Presenting a spreadsheet like interface on top of the scalable summary genera-
tion framework.

location. The slice-and-dice operation can be simply seen as a regular expression
which groups together different entity and/or relationship summaries (presented
in the spreadsheet tabs) and weaves them together to construct path summaries,
illustrated in Fig. 4.

4 Implementation and Evaluation

We focus on the motivating scenario, to assist knowledge workers in the
domain of law enforcement collect information from the investigation scene as
well as the IoT-enabled devices of interest in an easy way and on a mobile
device. The goal here is to contribute to research and thinking towards making
the police officers more effective and efficient at the front-line, while augmenting
their knowledge and decision management processes through Information and
Communication Technology. We develop ingestion services to extract the raw
data from IoT devices such as CCTVs, location sensors in police cars and smart
watches (to detect the location of people on duty) and police drones. These
services will persist the data in the data lake. Next and inspired by Google
Knowledge Graph (developers.google.com/knowledge-graph/), we focused on
constructing a policing process knowledge graph: an IoT infrastructure that
can collaborate with internet-enabled devices to collect data, understand the
events and facts and assist law enforcement agencies in analyzing and under-
standing the situation and choose the best next step in their processes. There
are many systems that can be used at this level including our previous work
(Curation APIs) [9], Google Cloud Platform (cloud.google.com/), and Microsoft
Computer Vision API (azure.microsoft.com/) to extract information items from
artifacts (such as emails, images, social items).

We have identified many useful machine learning algorithms and wrapped
them as services to enable us to summarize the constructed knowledge graph,
and to extract complex data structures such as timeseries, hierarchies, pat-
terns and subgraphs and link them to entities such as business artifacts, actors,
and activities. Figure 5, illustrates the taxonomy of these services. We use a

https://developers.google.com/knowledge-graph/
https://cloud.google.com/
http://azure.microsoft.com/
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spreadsheet-like dashboard that enables the knowledge workers interact with
the summaries in an easy way. The dashboard enables monitoring the entities
(e.g., IoT devices, people, and locations) and dig for the facts (e.g., suspects,
evidences and events) in an easy way. A set of services has been developed to
link the dashboard to the knowledge graph and the data summaries. A demon-
stration of the prototype can be found in: https://github.com/unsw-cse-soc/
CoreKG.

The evaluation of accuracy and performance of the Data Lake and knowl-
edge extraction services demonstrated in [3,9]. Figure 6 shows the performance
of our access structure as a function of available memory for entity/relationship
and path summaries. These summaries have been generated from a Tweet
dataset having over 15 million tweets, persisted and indexed in the MongoDB
(mongodb.com) database in our Data Lake. For the path summaries, we have
limited the dept of the path to have maximum of three transitive relationship
between the starting and ending nodes. The experiment were performed on Ama-
zon EC2 platform using instances running Ubuntu Server 14.04. The memory
size is expressed as a percentage of the size required to fit the largest partition of
data in the hash access structure in physical memory. For efficient access to sin-
gle cells (i.e. a summary) we built a partition level hash access structure where
the partitions will be kept in memory and the operations will evaluated for one
partition at a time. If a summary does not fit in memory we incur an I/O if a ref-
erenced cell is not cached. In the case of entity/relationship summary Fig. 6(A),
this occurs when the available memory is around 40% of the largest summary,
and for the path summary Fig. 6(B) this occurs when the available memory is
around 30% of the largest summary.

As future work, we will evaluate the usability of the approach regarding the
intended application audience, i.e., the police and expert users.

Fig. 6. Scalability with size of physical memory for entity and relationship summaries
(A) and scalability with size of physical memory for path summaries (B).

5 Conclusion and Future Work

The large amount of raw data generated by IoT-enabled devices provide real-time
intelligence to organizations which can enhance knowledge intensive processes.

https://github.com/unsw-cse-soc/CoreKG
https://github.com/unsw-cse-soc/CoreKG
http://mongodb.com/
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For example, one of the interventions that have emerged as a potential solu-
tion to the challenges facing law enforcement officers is interactive constable on
patrol system. In such a system, Internet-enabled devices and a mobile appli-
cation that delivers policing capabilities to front-line officers (to make the work
of the force more efficient and appropriate) plays an important role. Such an
application improves knowledge exchange, communication practices, and analy-
sis of information within the police force. To achieve this goal, in this paper, we
present a scalable and extensible IoT-Enabled Process Data Analytics Pipeline
(namely iProcess) to enable analysts to ingest data from IoT devices, extract
knowledge from this data and link them to process (execution) data. To enhance
the real-time dashboard, as a future work, we are working on a novel Platform-
as-a-Service that makes it easy for developers of all skill levels to use machine
learning technology, the way people use spreadsheet.
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