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Abstract. Domain ontologies may provide the proper level of abstrac-
tion in modeling semantic constraints and business rules in BPM; in fact,
ontologies are intended to define terminologies to be shared within and
across organizations and reused in different applications. In this paper
we show how Answer Set Programming (ASP), a powerful framework for
declarative problem solving, can accommodate for domain ontologies in
modeling and reasoning about Business Processes, especially for process
verification. Description Logics (DLs) provide the formal counterpart of
ontologies, and in our approach knowledge on the process domain is
expressed in a low-complexity DL. Terms from the ontology can be used
in embedding business rules in the model as well as in expressing con-
straints that should be verified to achieve compliance by design. Causal
rules for reasoning on side-effects of activities in the process domain can
be derived, based on knowledge expressed in the DL. We show how ASP
can accommodate them, relying on a reasoning about actions and change
approach, for process analysis, and, in particular, for verifying formulas
in temporal logic.

1 Introduction

In this paper we show how we can accommodate in Answer Set Programming
(ASP) several sources of knowledge for reasoning on Business Processes, in par-
ticular, for verification purposes, i.e. in order to ensure process compliance. A
process model expressed in a standard business process modeling language is
enriched with domain knowledge, in particular, ontological knowledge describ-
ing terms used:

1. in conditions on sequence flow, in particular, conditions in data-based split
gateways;

2. in semantic constraints on the process, i.e., constraints that express “depen-
dencies such as ordering and temporal relations between activities, incompat-
ibilities, and existence dependencies” [31].

As discussed in [31], semantic constraints are a subset of business rules;
while this term in widely used in the BPM context, it is a broad one that com-
prises several types of knowledge about a business domain. Both [36,37] present
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attempts at classifying types of business rules, and the semantic constraints con-
sidered in [31] are stated to be action assertions in terms of the classification in
[36]; in terms of [32,37], semantic constraints can be intended as integrity rules,
while derivation and reaction rules are suitable to be embedded in the process
description.

As [31] points out, semantic constraints abstract from the way some fact
about the case at hand may be actually represented, or computed from stored
data, in the process implementation. This is why we believe that ontological
knowledge is especially suited for expressing them. In fact, the very idea of the
Semantic Web and, in general, of terminological knowledge bases, includes the
fact that terminological knowledge about a domain can be shared and reused
in several applications. Business Process Management applications can there-
fore reuse existing terminologies about a whole domain (like the well-known
SNOMED-CT medical terminology [29]), and an organization can define its own
terminology to be reused in several applications, including management of its
own processes. Domain ontologies are also believed to facilitate shared under-
standing of the process domain across team members [34].

In [31] it is also pointed out that compliance with semantic constraints may
be checked at design time (compliance by design [35]), even though not all excep-
tional situations and process changes (to deal with exceptions) may be considered
in the process model, to avoid it becoming too complicated in order to be read-
able. Therefore, it may be necessary to reason about such constraints at runtime,
as part of execution support; i.e., at design time compliance is checked under
the assumption that no exception occurs, while at runtime the actual exceptions
and process changes occurring in the case at hand are considered; conflicts with
semantic constraints should be pointed out as well as possible ways for restoring
consistency with them. Semantic constraints are also useful in providing intelli-
gible feedback to users and in supporting traceability, e.g., in order to point out
whether and where, in a given process execution, they were violated.

In the work presented in this paper we incorporate contributions from Arti-
ficial Intelligence (Logic-based Knowledge Representation and Reasoning) and
Formal Methods:

– Modeling and reasoning based on description logics [5]. Terminolog-
ical knowledge has been identified, starting from the 1980’s, as a form of
knowledge which can be expressed in suitable sublanguages of first-order log-
ics, description logics (DLs), as well as being useful in formalizing definitions
of the terms used in several domains (as pointed out earlier). While full first-
order logic is undecidable, DLs offer a trade-off between expressiveness and
computational complexity of reasoning, some of them enjoying low complex-
ity while still being able to describe wide terminologies (see, e.g., the already
mentioned SNOMED-CT terminology which can be expressed in EL [3]).
As a result, description logics have been chosen as the basis for the Semantic
Web, and, in particular, the Web Ontology Language (OWL).

– Reasoning about action and change [21], where a domain is described in
terms of fluents, i.e., propositions whose value can change, possible actions
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which have preconditions, direct effects in terms of fluents, and static and
dynamic causal laws which model dependencies between truth values of
fluents, or changes in such truth values.

– Formal verification based on temporal logics [7], such as LTL.

For the purposes of this paper, all of them (at least, limiting to low-complexity
description logics) can be integrated in Answer Set Programming (ASP) [18], a
powerful framework for declarative problem solving which combines significant
modeling capabilities with efficient solving, relying on inference techniques that
include the ones used in SAT solvers.

In fact, in our previous work we showed the following:

1. ASP (which has been used for reasoning about action already in [8,15,16,26])
can be used for verification (with Bounded Model Checking) of properties,
expressed in an extension of Linear Temporal Logic, of an action domain
modeled in terms of fluents, action laws providing direct effects of actions,
and causal laws [24].

2. The previous framework can be used for reasoning on business processes, in
particular, for verifying process properties in temporal logic; the process can
be modeled in terms of the widely adopted workflow-like languages (as well
as in declarative ones). The approach is described in [22], where, relying on
Constraint Answer Set Programming [19], the framework in [24] is extended to
deal with conditions on numerical variables, used in the process model in data-
based conditions on exclusive splits, and in the formulae to be verified. Process
activities correspond to actions, and fluents are used in modeling the enabling
of activities (according to the workflow model) as well as further pre/post
conditions for activities, expressed in terms of process variables and further
background fluents (in particular, postconditions correspond to annotations
proposed already in [28]).

3. Reasoning about actions performed in ASP can rely on domain knowledge in
a low-complexity DL [23]. More precisely, axioms in the DL describe static
knowledge on a domain, e.g.: someone that teaches a university course is a
lecturer. Causal laws should be associated with such knowledge to control
which fluents may change as side effects of other changes, in order for the
axiom to still hold, after an action whose direct effects are explicitly stated.
Extra knowledge may be necessary to avoid all potential ways for restoring
truth of the axiom; e.g., starting from the situation where John teaches uni-
versity course CS101 (and is then inferred to be a lecturer, according to DL
knowledge), if an action (such as John retiring or being fired) has the direct
effect he is no longer a lecturer, we would like to infer as a side effect that he
does no longer teach CS101 (nor any other course he was teaching), without
considering the scenario where CS101 ceases to be a university course which
would, in principle, be another way of restoring consistency.
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Building on these contributions, in this paper we propose an approach to
process modeling and semantic analysis that is able to exploit terminological
knowledge in relying process activities to semantic constraints, via the definition
of effects and preconditions of activities, and domain knowledge that relates
such effects to the terms used in semantic constraints. The proposed approach
exploits for business process verification the Bounded Model Checking verifica-
tion methodology in ASP developed in [24].

We believe that this can indeed enrich process modeling and analysis in the
BPM field, given that it provides expressive modeling at the semantic level and
relies on the power of ASP solvers for efficient inference.

In the next section we summarize the sources of knowledge of our approach,
and how they are expressed. In particular, in Sect. 2.1 we describe how the
terminological domain knowledge base is represented, and in Sect. 2.2 we discuss
how such a knowledge base can be used in reasoning about action and change.
In Sect. 3 we describe how a process model can be described in terms of the
framework in the preceding section. Section 4 is devoted to explaining how the
model can be encoded in ASP, and how it can be used for process verification.
We finally discuss the properties of our contribution especially in comparison
with related work in the literature.

2 Sources of Knowledge

As sources of knowledge we consider the following ones.

– A domain knowledge base describing terms in the process domain: unary
predicates (classes) describing entities of the domain, and binary predicates,
called roles or properties, describing relations among domain entities. The
knowledge base is formalized as a set of description logic axioms and causal
rules, detailed in Sects. 2.1 and 2.2. At least some of the class predicates
and properties are fluents, i.e., may change their truth values as effect of the
process activities.

– A model for the sequence flow of the process is given, using conventional
gateways. In particular, we refer to BPMN, and in the following we limit our
consideration to models using activities, exclusive and parallel gateways (i.e.,
XOR splits and joins, and AND split and joins).
Following BPMN, conditions on data can be attached to the sequence flow,
out of gateways, in particular, exclusive gateways, thus providing data-based
exclusive gateways. BPMN allows for specifying (in the expressionLanguage

attribute of a model) a language to be used for expressing such data-based
conditions. In this paper we do not detail the specification of one such lan-
guage, but we intend that data-based condition expressions may use terms
from the domain knowledge base.

– Data objects in the process and their states, which are also part of the
BPMN standard, to model, e.g., an “order” whose set of states includes,
for example, “pending” and “confirmed”. The domain knowledge base may
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mention such data objects and relate them to other entities in the process
domain.

– Pre- and postconditions for activities. Postconditions are used to model
the direct effects of activities in terms of the process domain. Postconditions
include state changes for data objects, or, more generally, the case where
a BPMN data object is output of an activity, i.e., the activity creates or
writes the data object (represented as an output data association in BPMN).
Similarly, preconditions include the ones that are represented in the BPMN
process model by input sets for activities (input data associations).

2.1 The Domain Knowledge Base

We consider, as in [23], domain knowledge bases expressed in a fragment of
the description logic EL++ [3]. The fragment, EL⊥, includes the concept ⊥ (the
empty concept, which is false for all individuals) as well as nominals, i.e., concepts
corresponding to single individuals.

As for other description logics, the language of EL⊥ is based on a set NC of
concept names (class names), a set NR of role names (names for properties, i.e.,
binary relations) and a set NI of individual names. A concept in EL⊥ is defined
as follows:

C := A | � | ⊥ | C � C | ∃r.C | {a}

where A ∈ NC , r ∈ NR and a ∈ NI . That is:

– Concept expressions include class names (named concepts) and the concepts
“true” and “false”.

– A concept can be an intersection (�) of concepts (i.e., named concepts or
concept expressions).

– A concept can be built from a role name r and a concept C using an existential
restriction: the instances of concept ∃r.C are the individuals x which are in
relation r with some member y of the concept C.

– A concept can be the nominal {a}, i.e., the concept of “being a”.

A knowledge base in EL⊥ is a pair (T , A), where:

– T (a TBox, i.e., the terminological part) is a finite set of concept inclusions
C1 � C2, where C1 and C2 are concepts,

– A (an ABox, the assertional part) is a set of assertions of the form C(a) and
r(a, b), where C is a concept, r ∈ NR and a, b ∈ NI .

The TBox can be expressed in a normal form [4] where axioms only have the
forms: C1 � D, C1�C2 � D, C1 � ∃r.C2, ∃r.C2 � D, where C1, C2 are from
BCKB , i.e., the set of concepts containing �, all the named concepts occurring
in KB and all nominals {a}, for any individual name a occurring in KB ; and D
is in BCKB ∪ {⊥}.

The semantics of EL⊥ is defined in the usual way for description logics,
based on a domain (a set) Δ, an interpretation of individuals as elements of Δ,



76 L. Giordano and D. Theseider Dupré

of concept names as subsets of Δ, of role names as binary relations on Δ. The
interpretation of concept expressions is defined formalizing the description given
above for the meaning of such expressions. An concept inclusion C1 � C2 is
satisfied in an interpretation if the interpretation of C1 is a subset of the inter-
pretation of C2 (see [3,23] for the formal definitions).

Examples of concepts are:

– ∃Teaches.Course, whose instances are the domain elements who teach a
course;

– ∃Teaches.{cs101}, the ones who teach the individual course cs101 ;
– UndergraduateCourse � ComputerScienceCourse, the concept of undergrad-

uate courses in computer science, which is expressed as the intersection of
undergraduate courses and computer science courses.

Examples of concept inclusions are:

– ∃Teaches.Course � Lecturer , which states that the ones who teach some
course are lecturers;

– Course � ∃HasSubject .ComputerScienceSubject � ComputerScienceCourse,
which states that a course, which has as subject a computer science subject,
is a computer science course. Adding the inverse inclusion would provide a
definition of ComputerScienceCourse.

2.2 Reasoning About Actions with Terminological Knowledge

Given a domain which is modeled with a knowledge base in a description logic,
as above, when reasoning about a process in the domain involving actions and
changes, we will assume that the Tbox axioms do not change and must be sat-
isfied during all the process execution, even though, in the long term, it could
be appropriate to allow for the knowledge base to evolve with new concepts and
new axioms about them, while other axioms may cease to hold, or may be mod-
ified, e.g., in order to provide coverage of cases that were not considered before.
Presumably, the process model itself should change as well, and automated rea-
soning may support process redesign, but we do not address the issue in this
paper and assume that both the process model and the Tbox do not change.

Of course, we do consider that Abox assertions may change as a result of
actions (they are fluents). We summarize in the following the way reasoning
about such actions and changes can be defined [23] to take into account back-
ground knowledge about the domain expressed in an EL⊥ Tbox. The axioms in
the Tbox can be regarded as state constraints, the term used in the literature in
reasoning about actions and change to describe conditions that must hold in all
states.

The language we consider for reasoning about action and change involves
predicate symbols and constants. Such symbols include the concept names, role
names and individual names occurring in the EL⊥ domain knowledge base.

The fluents F are ground atomic propositions p(a1, . . . , ak) where p is a
predicate symbol and a1, . . . , an are constants.
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A fluent literal l is a fluent f or its explicit negation −f . Two literals f and
−f are the complement of each other. We denote by Lit the set of fluent literals.

If a concept ∃r.C occurs in the KB , the predicate names in the action theory
include a name ∃r.C, so that, for a individual name a, the fluent literals (∃r.C)(a)
and −(∃r.C)(a) belong to Lit.

A state S is a set of literals in Lit. A state S is consistent if it is not the case
that both a literal and its complement belong to S. A state S is complete if for
any fluent literal l, S contains l or its complement.

For describing an action theory, laws are introduced in a notation in the line
of the literature of reasoning about actions and change [8,16,26]. Action laws
describe the direct effects of actions. They have the form:

α causes φ if ψ1 after ψ2

meaning that the execution of action α in a state in which ψ2 holds causes φ to
hold in the new state as a direct effect, if ψ1 holds in the new state as well. The
action name α corresponds to an activity in a process model, φ is a literal in
Lit and ψi = L1 ∧ . . . ∧ Lm, not Lm+1 ∧ . . . ∧ not Ln is a conjunction of literals
Li ∈ Lit or their default negations. The informal meaning of default negation
in not Lj is that “Lj is not believed”, its formal semantics is the stable model
semantics [20].

The action name can have parameters also occurring in φ, ψ1 and ψ2, and a
parametric action law is a shorthand for all its instances with individual names;
the same applied to other types of laws described below. An example (instance)
of action law is:

retire(john) causes − Lecturer(john)

Non-deterministic effects of actions can be defined using default negation in
the body of action laws. For instance, after flipping a coin, the result may be
head or not:

flip causes head if not − head

flip causes − head if not head

Causal laws describe indirect effects of actions. They have the form:

caused φ if ψ1 after ψ2

meaning that ψ1 causes φ to hold whenever ψ2 holds in the previous state; φ is
a literal in Lit and ψ1 and ψ2 are as in action laws. If the condition ψ2 is �, the
causal law is said to be static, since it only involves conditions on a single state,
and the after part is omitted.

An example causal law, that, as we shall see, could be associated with the
Tbox axiom ∃Teaches.Course � Lecturer , is:

caused Lecturer(x) if Teaches(x, y) ∧ Course(y)
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Precondition laws describe the executability conditions of actions. They have the
form: α executable if ψ, meaning that the execution of action α is possible in a
state where the precondition ψ holds; α is an action name and ψ is a conjunction
of literals or default negations of literals. An example is: retire(x) executable
if aged(x).

The constraints define conditions that must be satisfied by all states. They
have the form: ⊥ if ψ, meaning that any state in which ψ holds is inconsistent.

Initial state laws are needed to introduce conditions that have to hold in the
initial state. They have the form: Init φ if ψ. When φ = ⊥, we get the a
constraint on the initial state Init ⊥ if ψ.

Most fluents are intended to be frame fluents, i.e., their truth value persists
across action occurrences. For all such fluents p, the following causal laws, said
persistency laws, are introduced:

caused p if not − p after p

caused − p if not p after − p

meaning that, if p holds in a state, then p will hold in the next state, unless
its negation −p is caused to hold (and similarly for −p). Persistency of a
fluent is blocked by the execution of an action which causes the value of
the fluent to change, or by a nondeterministic action which may cause it to
change.

Persistency laws are not provided for literals such as (∃r.C)(a); their value in
a state is rather derived, using causal laws, from the one of literal with “simple”
predicate names, i.e., (∃r.B)(x) is caused if r(x, y) ∧ B(y).

Initial state laws that correspond to what is known about the initial state
may incompletely specify it. As we want to reason about all the possible complete
states, the laws:

Init p if not − p

Init − p if not p

for completing the initial state are introduced for all “simple” literals p.
In [23] a semantics is defined for action execution. Given a state (a set

of literals) S which is consistent and complete (i.e., it contains either l or −l
for all fluent literals), such a semantics defines which are the possible result-
ing states if an action α is executed in S, and is based on the answer set
semantics [18].

We assume to start action execution in a state which satisfies the Tbox T ;
however, in general there is no guarantee that, if an action α is applied to a
state satisfying T , the state that can result, according to the semantics, will still
satisfy T .
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However, suitable causal laws can be associated with (normalized) axioms in
T in order to guarantee this1 [23]; here we describe part of them. For inclusions
A � B, two causal laws are needed:

caused B(x) if A(x) and caused − A(x) if − B(x)

For an axiom ∃r.B � A, the laws:

caused A(x) if (∃r.B)(x)
caused −(∃r.B)(x) if − A(x)

and at least one of:

caused −r(x, y) if − A(x) ∧ B(y)
caused −B(y) if − A(x) ∧ r(x, y)

should be introduced.
For example, an axiom ∃approved by.examiner � approved relative to insur-

ance claim processing, has the associated causal law:

caused approved(x) if (∃approved by.examiner)(x)

where (∃approved by.examiner)(x) is in turn caused, if approved by(x, y) and
examiner(y)). If we admit that the claim, after being approved by an examiner,
can be made −approved by a manager, the causal law:

caused − approved by(x, y) if − approved(x) ∧ examiner(y)

is introduced, while the other possible causal law is not, because we do not expect
examiner(y) to become false as a side effect of approved by(x, y) becoming false.

There is an option also for the case of an axiom A � B � D; besides the law
caused D(x) if A(x) ∧ B(x), at least one of:

caused − A(x) if − D(x) ∧ B(x)
caused − B(x) if − D(x) ∧ A(x)

should be introduced.
The presence of such options requires further pieces of domain knowledge,

besides the axioms in T . The choice of causal rules to be discarded should in
general be made for each single axiom, while in some cases it can be derived from
more general knowledge. In the literature about ontologies, and, in particular,
Temporal Description Logics, a distinction is introduced between rigid and tem-
poral concepts and roles [1], i.e., the ones that are supposed not to change their
truth values across time, and the ones that may change. If such a distinction
is present, it can be used to discard optional causal rules: if a concept or role
1 As a consequence of the introduction of the causal laws for the axioms in T , there

is no need to exploit a DL reasoner, as each state is guaranteed to satisfy T .
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Fig. 1. Example process model

is identified as rigid, optional causal rules where concept or role occurs in the
head (the “caused” part) will not be included. Transformation rules, a type of
business rules identified in [32,37], can also represent a source of knowledge for
selecting optional causal rules.

As detailed in [23], the representation of an action domain with terminological
knowledge can be encoded in ASP, and an ASP solver can be used to determine,
e.g., whether a given literal holds in some of the resulting states, or in all the
resulting states, after executing a given sequence of actions. In Sect. 4 we present
such an encoding and show that it can be combined with the ASP representation
of the sequence flow of a process model, and an ASP representation of Bounded
Model Checking, in order to verify semantic constraints.

Before that, in the next section we show how an action domain description
can be derived, in a semi-automated translation, from a process model described
using the basic elements of BPMN.

3 Process Models as Action Domains

Consider a simple process model for insurance claim processing whose control
flow is described in Fig. 1 (additional knowledge is not shown since only part of
it can be represented in BPMN). In this model, a claim is assigned to a claims
examiner, who provides a (preliminar) acceptance or rejection, and then possibly
reviewed by a claims manager. We do not detail the accept/reject final part in
terms of sending letters or performing payment.

All activities refer to a data object Claim, which is output of the start event
Receive claim and is both input and output of all the other activities.

The activity Assign claim also has as output the examiner who had the claim
assigned and the manager who should possibly review the claim. Examiner and
manager are input to the activities executed by them (alternatively, swim lanes
could be used to represent actors in the process).

In general, in the representation of activities as actions in the action domain,
a choice should be made on which parameters are introduced for the action. As a
default, if an activity a has a data object as input, it will have it as a parameter.
Therefore, all activities in the process have as parameters a claim identifier, and
the person executing the activity.

When executing the process, it is of course necessary to assign specific values
to data objects (the claim identifier, the examiner and manager, as well as other
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variables that may appear in the model). When reasoning about the process,
considering all possible values that a data object can assume could be unnec-
essary (other than, of course, source of intractability or undecidability). In the
example model, the actual value of the claim identifier and the actual names of
the examiner and manager are not supposed to influence process execution (as
we shall see, they do not occur in the data-based conditions), and are therefore
irrelevant.

Then, when an object is output of an activity, we represent its value with an
individual name with the only constraint that it should be different from other
names. We will then consider the parametric activities to be instantiated with
such parameters. This can be considered as a default in an automatic translation,
but, in general, such a translation can only be semi-automated, given that the
choice of a suitable abstraction on data is essential for the model to be useful. As
discussed before, ontologies can help to this purpose: in the example considered
here, suppose there are two classes of examiners, expert ones and in training,
and that process execution depends on the class of the examiner, but not on who
actually the examiner is. Then, in the model, two alternative, nondeterministic
postconditions in terms of examiner type can be considered, rather than all
possible individual names.

In the example we will use as values the names claim, examiner, manager
of the data objects themselves. To avoid redundancy, we remove “claim” from
the name of the activity. The action instances that are considered in the action
domain corresponding to the process model are then:

assign(claim)
examine(examiner , claim)
review(manager , claim)
reject(examiner , claim)
accept(examiner , claim)

The control flow of the process model can be represented with action laws
and precondition laws resulting from an automated translation similar to the one
described in [22] (Appendix A) for a subset of YAWL, analogous to the subset
of BPMN used in this paper. In the following we use the terms “activity” (in the
process model) and “action” (in the action domain) interchangeably. Fluents
are introduced to represent the enabling of activities, which is a precondition
for the action. In case of two activities in sequence, execution of the first one
disables itself, and enables the next one. With a parallel split, all outgoing flows
are enabled, and with parallel join, enabling is necessary from all incoming flows.
With nondeterministic exclusive split, the pattern for nondeterministic actions
is used.

Data-based conditions for exclusive splits are the most interesting case for
the approach proposed in this paper, since, as pointed out in the introduction,
they are the place in the model where terms from the domain knowledge (in
particular, concept names and role names applied to data objects) can be conve-
niently used. For the model in Fig. 1, we suppose that the condition for review-
ing a claim it that it is approved by the examiner and the customer is suspect
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of being a fraudster (in a variation of the example, another sufficient condi-
tion could be that the examiner is in training). The condition can be expressed
as PossiblyFraudolentClaim(claim) where the concept is defined in the domain
knowledge base as Claim � ∃HasCustomer .SuspectFraudster . How a customer is
actually suspected to be a fraudster (also due to previous claim history) could
indeed be one of the cases mentioned in the introduction, where in the model
we want to abstract from the way this is explicitly stored or computed2. Notice
that, given that the initial state is made complete (see Sect. 2.2), the possible
complete initial states will contain either PossiblyFraudolentClaim(claim) or its
complement.

Further action laws state that:

– examine(examiner , claim) has an effect examined(claim) and a nondetermin-
istic effect approved by(examiner , claim) or −approved by(examiner , claim)

– review(manager , claim) has a nondeterministic effect approved(claim) or
−approved(claim).

The causal laws in Sect. 2.2, associated with the domain knowledge axiom
∃approved by.examiner � approved, imply that if the claim is approved by the
examiner and does not undergo review, it will remain approved; while if it is
made not approved by the manager’s review, it will no longer be considered as
approved by the examiner.

The second exclusive split is (obviously) conditioned on approved(claim).

4 ASP Representation

An action domain, including the one derived from a process model as described
in the previous section, can be represented in ASP as follows [23].

States are represented as integers, starting with the initial state 0. The predi-
cate occurs(Action,State) represents the fact that Action occurs in State; occur-
rence of exactly one action in each state must be imposed:

−occurs(A,S ) ← occurs(A1 ,S ), action(A), action(A1 ),A �= A1 , state(S ).
occurs(A,S) ← not − occurs(A,S), action(A), state(S).

(in state-of-the art ASP solvers [18], this can also be expressed with choice rules,
whose syntax we do not introduce here).

In order to represent the fact that a literal holds in a state, we use different
predicates:

– holds inst(Concept ,Name,State) represents the fact that an assertions of the
form C(a) holds in a state.

– holds triple(Role,NameA,NameB ,State) is used for role assertions r(a, b)

2 It could be modeled separately in a decision model, an issue we do not address in
this paper.



Enriched Modeling and Reasoning on Business Processes 83

– holds(Fluent ,State) is used for other fluents (for an action domain derived
from a process model, they are used to model control flow).

An action law :
α causes L0 if ψ1 after ψ2

where ψ1 = L1 ∧ . . . ∧ Lm, not Lm+1 ∧ . . . ∧ not Ln and ψ2 = L′
1 ∧ . . . ∧

L′
m, not L′

m+1 ∧ . . . ∧ not L′
n is translated to:

h0 ← state(S), S′ = S + 1, occurs(a, S), h1 . . . hm, not hm+1 . . . not hn,
h′
1 . . . h′

m, not h′
m+1 . . . not h′

n

where h0 = (−)holds inst(C0, a0, S
′) if L0 = (−)C0(a0), h0 = (−)holds triple

(r0, a0, b0, S
′), if L0 = (−)r0(a0, b0), and h0 = (−)holds(p(a1, .., an), S′) if L0 =

(−) p(a1, .., an) and similarly for the hi’s and h′
j ’s, using S′ for the hi’s and S

for the h′
j ’s; where C0 in holds inst stands for the ground term representing C0 ,

and similarly for p(a1 , .., an).
Other laws can be translated to ASP in a similar way.
In [24] we showed (for a variant of the action language used in this paper,

which can be similarly encoded in ASP) that, given an action domain, temporal
properties of the domain, expressed in Dynamic Linear Time Temporal Logic
[27], an extension of Linear Time Temporal Logic [7], can be verified in ASP in
a Bounded Model Checking (BMC [9]) approach. The ASP encoding in [24] is
suitable for verifying systems with infinite computations which can be finitely
represented (with a loop back to a previously reached state). The approach
relies on the definition of a predicate sat(T alpha,S ), where T alpha is a term
representing a temporal logic formula α, and S is a state, which corresponds
to the fact that α holds in S . The predicate can be defined inductively on the
structure of α.

In [22] we showed how the approach can be adapted to the verification of
properties of finite executions of a business process model. Model checking should
either find a counterexample for the formula to be verified (an interpretation fal-
sifying the formula) or ensure that no counterexample exists. BMC is in general a
partial decision procedure for model checking: it considers executions of bounded
length, iteratively increasing the bound; if no model exists, in general the proce-
dure would not stop. There are, however, cases where a completeness threshold
can be identified (a value such that, if a counterexample exists, it can be found
using such a value as bound). An obvious case is the one where the workflow
of a business process model is loop-free. Appendix B of [22] reports results that
demonstrate the scalability of the approach, also considering non-loop-free work-
flows. Processes with up to 200 activities (a size which is in line with the one
of real-world processes in [17]) and run length of more than 100 activities are
considered. Properties in LTL are verified, while DLTL can be useful for the
declarative specification of process models.

The same approach3 can be used for verifying LTL properties of action
domains in this paper, where LTL formulae can be built from fluents, including
3 The work in [22] allows for conditions on numerical data – e.g., the piece number

in an order is larger than 50000 – to be used in the model and in the formulae to
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assertions in the language of domain knowledge. The analysis is performed on
the finite domain represented by the set of constants in the ASP encoding. This
is without loss of generality as regards the domain knowledge, given that it is
expressed in EL⊥; but it relies on the assumption that the domains for data
objects are assumed to be finite.

As an example, the formula:

�(examined(claim) ∧ ¬approved(claim) → ¬♦approved(claim))

corresponds to the property that an examined claim which is not approved can-
not become approved. In the model described in Sect. 3, it indeed holds, because
the claim is reviewed only if it was approved by the examiner (and the customer
is suspected to be fraudolent), while if was not approved by the examiner, it
does not undergo review and its approval is not modified. The formula can be
verified to hold using the approach described above.

We can observe that the (grounding of the) ASP program has polynomial
size in the size of the input (ontology and business process). More precisely,
let n be the size of the ontology, m the size of the business process, d the size
of data domains and annotations, f the size of the formula to be checked by
bounded model checking, and k (a constant) the length of the sequence searched
for in a BMC verification of a formula (i.e. the number of states). The size of
the BP encoding is O(m × d × k), while the size of the action theory and BMC
encoding is O((n2 + f) × d × k). O(n2) is an upper bound on the size of causal
laws, taking into consideration the number of possible contrapositives of EL⊥

inclusions. From this observation and the fact that the final ASP encoding is a
normal (non disjunctive) logic program, it follows that checking satisfiability of
a temporal formula over a BP specification is in NP.

5 Conclusion and Related Work

In the paper we described how domain knowledge in the form of ontologies can
be accommodated in modeling and reasoning about business processes in Answer
Set Programming. We build on contributions in our previous work [22–24], but
their combination for the verification of BPMN process models enriched with
domain knowledge is novel. As a reasoning task, we emphasized verification of
compliance by design, but other reasoning tasks can be accommodated as well.
Consider, for example, compliance at runtime which should take into account
a specific partial execution (whose events are given, up to a current time), but
also exceptional situations occurring in the case at hand (exception not neces-
sarily considered in the general process model). The model description in ASP

be verified. In order to deal with them, without considering all individual values in
the – finite but large – numerical domain, it relies on Constraint ASP [19]. In this
paper we do not consider this feature, which can however be integrated with the ones
addressed here, and would provide another form of abstraction, complementary to
the use of ontologies.



Enriched Modeling and Reasoning on Business Processes 85

is modular, elaboration tolerant, and can easily accommodate, e.g., for addi-
tional actions with their enabling conditions (not necessarily related to the basic
workflow structure).

Our contribution is related to several ones in the literature.
Ly et al. in [31] provide thorough motivations for the use of semantic con-

straints in BPM; first-order predicate logic is used as a language for expressing
such constraints (while also mentioning description logics as a suitable option)
but the paper does not describe the use of automated reasoning based on such
a description of semantic constraints in logic. Actually, as pointed out in [31],
ontological modeling and reasoning can also be useful to relate specific activi-
ties to abstract classes of activities, such as, in the medical domain, “invasive
procedures”, e.g., to ensure compliance of processes with the constraint that the
patient has to be informed prior to invasive procedures. The approach in the
paper can be extended with such a feature.

An early approach using logic-based reasoning about actions and change for
modeling and verification of business processes is presented in [30], based on
the ConGolog language. The work is in the line of declarative modeling of pro-
cesses, while our work is aimed at enhancing BPMN-like models with semantic
knowledge and reasoning.

Awad et al. [2] developed a framework for the verification of compliance of
a BPMN process to requirements expressed with visual patterns, mapped to
temporal logic. The requirements may involve data objects and their states.
Other than being based on different inference machinery, our work allows for
ontological knowledge to be accommodated in modeling and reasoning.

In [10] Calvanese et al. present an approach where decision models in the
DMN standard [33] are integrated with domain knowledge. Representation and
reasoning in such integrated models can be expressed in a version of the ALC
description logic with datatypes; this provides, among other things, complexity
results for reasoning tasks on decision models, such as analyzing their com-
pleteness. The integration of decision models into knowledge representation for-
malisms, and, in particular, the FO(.) language, is also studied in [13]. The inte-
gration of decision models in the approach presented in this paper is a subject
for future work.

Colombo Tosatto et al. [12] study the complexity of the problem of busi-
ness process regulatory compliance, considering achievement and maintenance
obligations, showing that verifying partial compliance is an NP-complete prob-
lem, and verifying full compliance is a co-NP-complete problem. While in this
paper we do not deal with obligations, it has to be noticed that different kinds
of obligations could be modeled in our temporal action language by suitably
introducing deontic fluents, as done in [25], where a deontic temporal extension
of ASP is developed. We observed in Sect. 4 that the complexity of checking the
satisfiability of a temporal formula over the BP specification is in NP; this is in
agreement with the complexity result for partial compliance in [12].

In [11] Calvanese et al. study plan synthesis for a variant of Knowledge and
Action Bases (KAB), a dynamic framework introduced in [6] where states are
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DL knowledge bases and an initial ABox evolves over time due to actions which
have conditional effects. In particular, [11] focuses on state bounded KABs, for
which plan existence is proved to be decidable and shows that, for lightweight
DLs, plan synthesis can be compiled into ADL planning.

De Masellis et al. in [14] describe a framework for business process verification
combining a control flow model based on Petri Nets with a data model à la
Data Centric Dynamic systems. In particular, they adopt the data interaction
formalism in [6,11] and prove the decidability of reachability (which in general is
undecidable) under three notions of state boundedness. The framework is then
encoded in a C-based action language. Finiteness of the domain is guaranteed by
the fact that the model is state-bounded. In our approach we can consider the
domain to be finite (for each fixed bound in the BMC), by assuming that the data
type of objects in the business process is finite. We uniformly model in ASP the
business process, the action language (including the constraints extracted from
ontological domain knowledge, which is not considered in [14]) and the bounded
model checking verification for general formulas, which subsumes reachability
analysis.
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