
Unbiased, Fine-Grained Description
of Processes Performance from Event

Data

Vadim Denisov1(B), Dirk Fahland1, and Wil M. P. van der Aalst1,2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{v.denisov,d.fahland}@tue.nl

2 Department of Computer Science, RWTH Aachen, Aachen, Germany
wvdaalst@pads.rwth-aachen.de

Abstract. Performance is central to processes management and event
data provides the most objective source for analyzing and improving per-
formance. Current process mining techniques give only limited insights
into performance by aggregating all event data for each process step. In
this paper, we investigate process performance of all process behaviors
without prior aggregation. We propose the performance spectrum as a
simple model that maps all observed flows between two process steps
together regarding their performance over time. Visualizing the perfor-
mance spectrum of event logs reveals a large variety of very distinct pat-
terns of process performance and performance variability that have not
been described before. We provide a taxonomy for these patterns and a
comprehensive overview of elementary and composite performance pat-
terns observed on several real-life event logs from business processes and
logistics. We report on a case study where performance patterns were
central to identify systemic, but not globally visible process problems.

Keywords: Process mining · Performance analysis · Visual analytics

1 Introduction

Performance analysis is an important element in process management relying
on precise knowledge about actual process behavior and performance to enable
improvements [11]. Descriptive performance analysis has been intensively studied
within process mining, typically by annotating discovered or hand-made models
with time-related information from event logs [1–3,23] as illustrated in Fig. 1
(left). These descriptive models provide aggregate measures for performance over
the entire data such as average or maximum waiting times between two process
steps. Models for predicting waiting times until the next step or remaining case
duration learned from event data distinguish different performance classes or
distribution functions based on case properties [4,5,12,15].

However, these techniques assume the timed-related observations to be taken
from stationary processes that are executed in isolation, i.e., that distribution
c© Springer Nature Switzerland AG 2018
M. Weske et al. (Eds.): BPM 2018, LNCS 11080, pp. 139–157, 2018.
https://doi.org/10.1007/978-3-319-98648-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98648-7_9&domain=pdf

140 V. Denisov et al.

89 d

16 mths 36.4 wks

5 d

16 d

60 d

Create Fine

Send Fine

Insert Fine
Notification

Add penalty

Send for
Credit Collection Payment

Create Fine:
Payment

Create Fine:
Send Fine

Send Fine:
Insert Fine Notification

Insert Fine Notification:
Add Penalty

Add Penalty:
Payment

Add Penalty:
Send for Credit Collection

Fig. 1. Performance analysis using a graph-based model (left) and the performance
spectrum (right); see online version for colored figures.

functions describing performance of a case do not change over time and do not
depend on other cases. These assumptions are often made by a lack of a more
precise understanding of the (changes in) process performance across cases and
over time.

In this paper, we consider the problem of descriptive analytics of process
behavior and performance over time. In particular, we aim to provide a com-
prehensive description of raw process behavior without enforcing prior aggre-
gation of data. Note that Fig. 1 (left) only shows aggregates performance and
no temporal patterns or changes over time. The objective of this comprehensive
description is to identify patterns, trends, and properties of interest without the
representational bias of an algorithm or a particular formal model.

We approach the problem through visual analytics which employs structuring
of data in a particular form that, when visualized, allows offloading the actual
data processing to the human visual system [7] to identify patterns of interest for
subsequent analysis. We propose a new simple model for event data, called the
performance spectrum and a corresponding visualization. Figure 1 (right) shows
the performance spectrum of the data used to the discover the model in Fig. 1
(left) over a 20 month period. The performance spectrum describes the event
data in terms of segments, i.e., pairs of related process steps; the performance of
each segment is measured and plotted for any occurrences of this segment over
time and can be classified, e.g., regarding the overall population.

The visualization in Fig. 1 (right) shows that different cases perform very
differently due to systematic and unsystematic variability of performance in the
different steps over time and synchronization of multiple cases. We implemented
this visualization in an interactive exploration tool (ProM package “Performance
Spectrum”) allowing for zooming, filtering, and performance classification and
aggregation of the data.

Unbiased, Fine-Grained Description of Processes Performance 141

Exploring the performance spectrum of real-life logs typically reveals numer-
ous, novel patterns in process performance and behavior as shown in Fig. 1 (right)
that cannot be seen in process models as in Fig. 1 (left). To enable documenting
and conceptualizing these patterns for further analysis, we propose a taxonomy
for describing elementary patterns in the performance spectrum. We evaluated
the performance spectrum and the taxonomy on 12 real-life logs of business and
logistics processes. Numerous elementary patterns as well as larger patterns com-
posed of elementary ones recur throughout different event logs. We show how
these patterns reveal novel insights into the interplay of control-flow, resource,
and time perspective of processes. The performance spectrum of real-life logs
reveals that performance in a case may be dependent on the performance of
other cases, performance generally varies over time (non-stationary), and many
processes exhibit temporary or permanent concept drift. We report on a case
study performed with Vanderlande Industries to identify control-flow problems
in very large logistics processes. Further, we found that each process has a char-
acteristic signature of the patterns in its performance spectrum and that similar
signatures indicate extremely similar processes not only in control-flow but also
in the performance perspective.

The remainder of this paper is structured as follows. We discuss work related
to performance analysis in Sect. 2. We formally define the performance spectrum
in Sect. 3 and introduce the taxonomy for patterns in the performance spectrum
in Sect. 4. We report on our evaluation on real-life event logs in Sect. 5 and
discuss our findings and future work in Sect. 6.

2 Related Work

Analysis of process performance from event data can be divided into descriptive,
predictive, and visual analysis, which we summarize here; see [12] for an extensive
discussion.

Commonly, process performance is described by enhancing a given or dis-
covered process model with information about durations of activities (nodes
in a model) or waiting times between activities (edges in a model) [1]. In the
visualization, each node and edge can be annotated with one aggregate perfor-
mance measure (avg., sum, min, max) for all cases passing through this node
or edge, as illustrated in Fig. 1 (left). Visualization of performance on a model
is more accurate if the discovery algorithm takes the underlying performance
information into account [8,18]. A non-fitting log can be aligned to a model to
visualize performance [2]. More detailed visualization of performance requires
more dimensions. Wynn et al. [23] plot different process variants (with different
performance) into a 3-dimensional space “above” the process model. Transition
system discovery allows to split occurrences of an activity based on its context
and visualize performance each context separately [3].

Performance prediction for the remaining time until completion of a given
case can be predicted by regression models [5], by annotating transition system
states with remaining times [4], by learning a clustering of transition system

142 V. Denisov et al.

states [6], by combining models for prediction of the next activity in a case with
regression models [12]. Completion time of the next activity can be predicted
by training an LSTM neural network [22], or by learning process models with
arbitrary probability density functions for time delays through non-parametric
regression from event logs [14] that can also be used for learning simulation
models to predict performance [15,17]. These models predict performance of a
single case based on case-specific features. Performance of cases synchronizing
on shared resources can be analyzed through simulation models [16] or from
queuing models [19] learned from event logs. Synchronization in batch activities
can be studied through queue models [13], or through aggregating event logs
into a matrix [10].

The above techniques assume that probability densities for time delays are
stationary for the whole process (do not change over time) or only depend
on the individual case (isolation between cases). Techniques for describing
the performance of all cases construct simpler models through stronger aggre-
gation [3]. Also, the recent temporal network representation abstracts non-
stationary changes in performance over time [18]. Techniques for predicting per-
formance of a single case construct more complex models for higher precision,
e.g., [22]; precision increases further when more assumption are dropped, e.g.,
different distribution functions [15], queues [19], non-stationarity [12]. No cur-
rent model learning technique can describe process performance without mak-
ing assumptions about the data. However, the results of this paper show that
in particular stationarity and isolation of cases do not hold in the performance
perspective.

Assumptions and representational bias of models can be avoided through
visualization and visual analytics [7]. Dotted Chart [21] plots all events per case
(y-axis) over time (x-axis) allowing to observe arrival rates and seasonal patterns
over time. Story graphs [20] plot a case as poly-line in a plane of event types (y-
axis) and time (x-axis) allowing to observe patterns of similar cases wrt. behavior
and performance over time but convolutes quickly with many crossing lines.

In Sect. 3 we propose a model and visualization that avoids the problems
of [20] in describing the performance of each process step without assumptions
about the data (except having a log of discrete events). The visualization shall
reveal where a process violates typical assumption about performance such as non-
stationarity or cases influencing each other; we provide a taxonomy to describe
these phenomena in Sect. 4.

3 Performance Spectrum

We first establish some basic notations for events and logs, and then introduce
our model to describe the performance of any observable dynamic process over
time.

Let A be a set of event classifiers; A is usually the set of activity names, but it
may also be the set of resource names, or a set of locations. Let (T,≤,+, ·, 0) be a
totally ordered set (with addition +, multiplication ·, and 0) of timestamps, e.g.,

Unbiased, Fine-Grained Description of Processes Performance 143

the rational numbers Q. An event e = (a, t) ∈ (A×T) describes that observation
a occurred at time t. A trace σ ∈ (A × T)∗ is a finite sequence of related events.
An event log L ∈ B((A × T)∗) is a multi-set of traces. For σ = 〈e1, . . . , en〉, we
write |σ| = n and σi = ei, i = 1, . . . , n.

The goal of the performance spectrum is to visualize the performance of
process steps over time. We call (a, b) ∈ A × A a process segment describing
a step from activity a to activity b, hand-over of work from resource a to b or
the movement of goods from location a to b. We first formalize the performance
spectrum for a single process segment, and then lift this to views on a process.

Each occurrence of a segment (a, b) in a trace 〈. . . , (a, ta), (b, tb), . . .〉 allows to
measure the time between occurrences of a and b. A histogram H = H(a, b, L) ∈
B(T) describes how often all the time differences tb − ta between a and b have
been observed in L. In contrast, the performance spectrum S(a, b, L) collects the
actual time intervals (ta, tb) observed in L. To aid recognition of patterns, we
allow users to classify each interval (ta, tb) wrt. other observations. The specific
classification depends on the analysis at hand, for example, the actual duration
t = tb − ta, or whether t = tb − ta is in the 25%-quartile of the histogram H,
or other properties such as remaining time until case completion. Generally, a
performance classification function C ∈ T × T × B((A × T)∗) → C maps any
interval (ta, tb) into a class C(ta, tb, L) = c ∈ C. Figure 1 classifies intervals based
on the quartile of the duration in the histogram.

Definition 1 (Detailed performance spectrum). The performance spec-
trum of a segment (a, b) is the bag of all its observation intervals in a trace σ (in
a log L): S(a, b, σ) = [(ta, tb) | ∃1≤i<|σ|(a, ta) = σi, (b, tb) = σi+1] ∈ B(T ×T); we
lift S to L by bag union S(a, b, L) =

∑
σ∈L(L(σ) · S(a, b, σ)). The detailed per-

formance spectrum of a segment (a, b) in log L wrt. performance classification C

is SC(a, b, L) = [(ta, tb, c) | (ta, tb) ∈ S(a, b, L), c = C(ta, tb, L)] ∈ B(T × T × C).

Figure 1 (right) visualizes the detailed performance spectrum S = S(a, b, L) of
six different segments. For each segment (a, b) we fix coordinates ya and yb on
the y-axis and plot each classified observation (ta, tb, c) ∈ SC(ai, bi, L) as a line
from (ta, ya) to (tb, yb). In Fig. 1 each line is colored based on the quartile of the
duration tb − ta.

The detailed performance spectrum visualizes variability of durations in a
segment across cases and time. To capture and visualize also the amount of
cases of particular performance over time, we define an aggregate performance
spectrum. We group segments into bins of a user-chosen period p depending on
whether they start , stop, or are pending in a bin, and then aggregating the
observations (ta, tb, c) in each bin wrt. their class c (for finitely many classes C),
akin to relational algebra or SQL operations.

Definition 2 (Aggregated performance spectrum). Let S = S(a, b, L) be a
detailed performance spectrum with finite performance classes C = {c1, . . . , ck}.
Let period p ∈ T and grouping g ∈ {start , stop, pending}. The binning of S wrt.
p and g is the sequence of multisets 〈b0, b1, . . .〉 such that for i = 0, 1, . . . holds

– bi = [(ta, tb, c) ∈ S | i · p ≤ ta < (i + 1) · p] if g = start,

144 V. Denisov et al.

– bi = [(ta, tb, c) ∈ S | i · p ≤ tb < (i + 1) · p] if g = stop, and
– bi = [(ta, tb, c) ∈ S | i · p ≤ tb and ta < (i + 1) · p] if g = pending (the segment

started before the end of the bin, and ends after the start of the bin).

The aggregation of S wrt. p and g is the sequence aggg(S, p) of vectors
〈v0, v1, . . .〉 where each vi = (v1

i , . . . , vj
i , . . . , v

k
i) ∈ Nk counts how often per-

formance class cj occurred in bin bi: vj
i = |{(ta, tb, c

j) | (ta, tb, c
j) ∈ bi}|.

The aggregated performance spectrum of a segment (a, b) in a log L is then
SCg,p(a, b, L) = aggg(SC(a, b, L), p).

An aggregated performance spectrum A of one segment (a, b) can be visualized
as a series of stacked bar-charts as shown in Fig. 7 where the k-th bar starts at
x-coordinate k · p and has width p; the bottom-line of the series of bar-charts is
at y-coordinate yb and the height of all bars is normalized wrt. yb − ya.

Visualizing the performance spectrum of multiple process segments on a 2D
plane requires some compromises. As the x-axis of the plane is used for visualiz-
ing time, we can only visualize control-flow by mapping segments along the single
dimension of the y-axis. This forces to visualize even alternative segments (a, b)
and (b, c) in a sequential manner. To give the user control over this sequential-
ization we let a user specify the (sub-)trace variants Var that shall be mapped
(one after the other) onto the y-axis as in Fig. 1 (right). The notion of a view
provides all parameters for a performance spectrum.

Definition 3 (View). A view V = (Var ,C, g, p) is a set Var of (sub-)trace
variants Var = {σ0, . . . , σk} ⊆ A∗, a performance classification C, a grouping
g ∈ {start , stop, pending , none} and period p ∈ T . The segment sequence of
variant σi = 〈ai

1, a
i
2, . . . , a

i
ni

〉 ∈ Var is seg(σi) = 〈(ai
1, a

i
2), . . . , (a

i
ni−1, a

i
ni

)〉. The
segment sequence of all variants Var is their concatenation, i.e., seg(Var) =
seg(σ1)seg(σ2) . . . seg(σk).

For example, for traces 〈a, b, c, d, e〉, 〈a, b, f, d, e〉, 〈a, b, c, b, f, e〉, the variants
Var = {〈b, c, d, e〉, 〈f, d, e〉} yield the segment sequence seg(Var) = 〈(b, c), (c, d),
(d, e), (f, d), (d, e)〉.

Let L be a log, V = (Var ,C, g, p) be a view. The performance spectrum of
L wrt. V with g = none is the sequence of the detailed performance spectra
along the segment sequence seg(Var): S(L, V) = 〈SC(a, b, L)〉(a,b)∈seg(Var). The
aggregated performance spectrum of L wrt. V with g 	= none is the sequence of
aggregated spectra Sg,p(L, V) = 〈SCg,p(a, b, L)〉(a,b)∈seg(Var).

For the visualization in Fig. 1, the segments seg(Var) are mapped to the
y-axis in order of seg(Var) in equidistant steps for some length ydist : in the
i-th segment (ai, bi) = seg(Var)i, ai and bi get y-coordinates ya,i = i · ydist
and yb,i = (i + 1) · ydist . By default any two consecutive segments touch at
yb,i = ya,i+1; an extra gap can be added whenever b 	= a. Figure 7 visualizes the
view of an aggregate performance spectrum.

An optimal definition of Var for a given log is outside the scope of this
paper, and we assume user input. Yet we identified some principles. There are two
canonical trace variants Var for views on a log L. The minimal variant defines the

Unbiased, Fine-Grained Description of Processes Performance 145

most frequent variant in L, visualizing all its process segments consecutively. The
maximal variant includes all individual observed process segments Varmax (L) =
{〈(a, b)〉 | 〈. . . , (a, ta), (b, tb), . . .〉 ∈ L} in no specific order. Mapping segments
consecutively along the y-axis allows to follow the flow of multiple cases over
time as shown in Fig. 1 (right). Choices in a process can be handled by defining
two alternative trace variants in the view; thereby segments (a, b) occurring
multiple times in Var are replicated (with the entire performance spectrum),
allowing to see the flow of the variant through this segment in the performance
context of other variants. Handling loops and concurrency requires event log pre-
processing. Loops can be unrolled through label refinement [9] in the log. In case
of concurrency, analyzing the performance of segment (a, b) with Definition 1
requires filtering from the log all activities concurrent to a and b. In case studies
with Vanderlande, Varmax (L) in combination with a hierarchical naming scheme
of events allowed to visually group and analyze related segments even in very
complex processes (of 10000s of segments).

4 Performance Patterns

Performance spectra of processes may contain an overwhelming amount of infor-
mation and are – for the untrained eye – more difficult to read and interpret than
known visualizations. However processes with similar performance characteris-
tics show similar patterns in their performance spectra, and vice versa, simi-
lar patterns mean similar performance characteristics. Such patterns introduce
a higher abstraction level over ‘plain’ performance spectra, thereby aiding in
description and analysis of performance. Next, we illustrate the idea of patterns
in the performance spectrum distinguishing elementary and composite patterns.
We provide a taxonomy of elementary patterns in Sect. 4.2. We discuss composite
patterns in Sect. 4.3, but posit their systematization in future work.

4.1 Elementary Patterns

Intuitively, a performance pattern is a specific configuration of the lines and bars
in a performance spectrum that (1) is visually distinct within a larger part of
the spectrum, (2) describes a particular performance scenario (of multiple cases
over time), and (3) repeats when this scenario repeats. An elementary pattern
relates to a single segment and cannot be broken down further without loss of
its meaning.

Fig. 2. The elementary pattern shows a
FIFO behavior with constant waiting time

The elementary pattern shown in
Fig. 2 occurred in segment (Insert
Fine Notification, Add penalty) of the
Road Traffic Fines Management (RF)
log1 and consists of many parallel
inclined lines of the same color, cor-
responding to multiple observations distributed over time. Non-crossing lines
1 https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

146 V. Denisov et al.

show a strict FIFO order and identical inclinations show a constant waiting
time for all cases. Variation in density of the lines (and in the height of the
bars of the aggregated performance spectrum) shows continuous, varying work-
load throughout the entire log. Patterns with such characteristics are typical for
highly standardized automated activities with strict time constraints. Note that
existing models describe the performance of this segment as “constant” delay of
60d.

We consider the pattern to be “elementary” in the sense that we cannot
decompose it further without losing its key qualities: single segment, strict FIFO
with constant time, workload is continuous and varying.

4.2 Taxonomy of Elementary Patterns

We observed a great variety of elementary patterns and combinations of patterns
in the performance spectra of real-life processes (see Sect. 5). That makes it
impossible to provide a comprehensive catalog. Nevertheless, we are able to
provide a comprehensive taxonomy of parameters of elementary patterns. It
allows us to completely and unambiguously describe performance of a process
over time in a way that patterns that correspond to similar performance scenarios
have identical descriptions and identical descriptions of patterns mean similar
performance scenarios, while changing the value of any parameter in a pattern
would mean a different performance scenario.

The taxonomy provides parameters to characterize the Shape of lines and
bars in a process in a particular Scope over time; line density and bar height
describe Workload while their color describes Performance. The parameter values
form a hierarchy which is shown together with typical patterns having these
characteristics in Fig. 3. We provide a unique short-hand value [in brackets] for
each parameter, to allow succinct notation of patterns.

Scope parameters capture the place of pattern in the performance spectrum.

– size: one segment [1 seg], one subsequence [1 sub-seq], several subsequences
[>1 sub-seq]

– occurrence: globally [glob], as a local instance [loc]
– repetitions (for patterns occurring in local instance): once [once], regular [reg],

periodic [per=T], arbitrary [arb],
– overlap (for repeating patterns): overlapping [overlap], non-overlapping
– duration: absolute value [D=T]

Size describes the pattern length from the control-flow perspective: a single seg-
ment, a single subsequence or several subsequences of event classifiers. Although
all elementary patterns have size 1 seg, we include this parameter in the tax-
onomy for compatibility with composite patterns. A pattern occurrence can be
either global, when it occurs continuously throughout a segment without clear
boundaries, otherwise it distinctly occurs as a local instance. Pattern instances

Unbiased, Fine-Grained Description of Processes Performance 147

TYPE

detailed combined aggregated

<number of classes>

<subset of classes>

FIFO-variable speed

PERFORMANCE

Classifiers: quar le-based [25%],
median-propor onal [x·med]

SHAPE ORDER

unordered FIFO LIFO

batching on start batching on end

FIFO-constant speed

batching on start + end

CLASSES PRESENTED

1 >1

as a local instance

REPETITIONS

periodic

regular

Aggrega on func ons: {cases started, cases stopped, cases pending}

peaks

<period=T>

WORKLOAD CHARACTER

continuous sparse

WORKLOAD

SCOPE

DURATION= <abs. value>

once

arbitrary

WORKLOAD TRENDS
(total / for class C)

steady variable

growing falling

AMOUNT OF WORKLOAD

Zero [0] non-zero [>0]

low medium high

SIZE

segment 1 sub-sequence >1 sub-sequence

OCCURRENCE

globally

overlapping

OVERLAPPING

non-overlapping

drops

Fig. 3. Taxonomy of elementary patterns

may occur once or repeat (1) periodically in particular intervals T , (2) regu-
larly, i.e., seemingly systematic but not periodic, or (3) arbitrarily. Repeated pat-
tern instances can be overlapping or non-overlapping in time. Parameter duration
describes the absolute duration over time (e.g. as an interval in seconds).

Shape parameters describe the appearance of lines and bars in the visualization
of the performance spectrum.

– type: detailed [det], aggregated [agg], combined [comb]
– order: unordered [unord], LIFO [LIFO], FIFO with variable time [FIFO-var],

FIFO with constant time [FIFO-const], batching on start [batch(s)], batching
on end [batch(e)], batching on start and end [batch(s+e)]

A pattern described just in terms of lines (bars) of a detailed (aggregated) perfor-
mance spectrum is detailed (aggregated); if it requires both it is combined. Order

148 V. Denisov et al.

describes the configuration of lines in a detailed pattern: (1) unordered when lines
irregularly cross each other, (2) LIFO when lines end in reversed order of starting,
(3) FIFO when lines never cross. (3b) Non-crossing lines of variable inclination
mean variable time [FIFO-var], where multiple lines starting (or ending) in a very
short period show multiple cases batching on start (or on end). (3c) Lines of iden-
tical inclination show constant time [FIFO-const], where multiple lines starting
and ending in a very short period (with no lines before/after) show batching on
start and end.

Workload describes the height of bars in aggregated or combined patterns, and
the density of lines in detailed patterns over time.

– aggregation function: segment instances started [start], stopped [stop], cases
pending [pend], see Definition 2

– workload character: continuous [cont], sparse [sparse]
– amount of workload: zero [0], non-zero [>0], low [low], medium [med], high

[high]
– workload trends (for a performance class or in total): can be steady [steady],

variable [var], growing [grows], falling [falls], showing peaks [peak] or drops
[drop]

Workload is characterized by the aggregation function defined in the view of
the performance spectrum (Definition 3). Workload character can be continuous
or sparse (when there are longer gaps between lines or bars), and it is visible
in both detailed and aggregated patterns. Amount of workload is categorized as
zero or non-zero, the latter can be categorized further as low, medium or high in
relation to the maximum number of observations made on a segment (within the
time period p of the view, see Definition 3). The trend over time can be steady
(bars have about same height) or variable, the latter splits further into steadily
growing, falling workload or showing peaks (a few high bars surrounded by lower
bars) or drops.

Performance is described in terms of the performance classes present in the
pattern with respect to the classifier C of the view (Definition 3) chosen by the
user.

– classes presented: 1, > 1, number of classes, subset of classes
– Classifiers: various, we discuss quartile-based [25%] (e.g., all observations

belonging to the 26%–50% quartile), median-proportional [x·med] (e.g., all
observations 2–3 times longer than the median duration)

In the visualization of the performance spectrum, classes are coded by colors.
A monochrome pattern has 1 class presented while a multi-colored one has > 1
classes presented.

Now we show how the taxonomy describes the elementary patterns E1–E3
found in the RF log and highlighted in Fig. 4 (left). Pattern E1 occurs in a single
segment in local instances with a duration of 6 months, instances repeat regularly
and overlap; the detailed pattern shows batching on end in a continuous work-
load for 4 performance classes in a quartile-based classifier. Using the short-hand

Unbiased, Fine-Grained Description of Processes Performance 149

Fig. 4. Three elementary patterns E1, E2, and E3 (left) and two occurrences of a
composite pattern consisting of E1–E3 (right).

notation, we write E1 = [Scope(seg,loc,reg,overlap,D=6mo), Shape(det,batch(e)),
Work(cont), Perf(25%,4 classes)]. Similarly, we can characterize E2 =
[Scope(seg,glob), Shape(det,FIFO-const), Work(sparse), Perf(25%,1 class)] and E3
= [Scope(seg,loc,reg,overlap,D=1mo), Shape(det,batch(s)), Wo(cont), Perf(25%,4
classes)].

In case of creating a catalog of elementary patterns, some additional infor-
mation can be added to pattern descriptions: a unique identifier and name and a
meaning depending on the domain and the chosen event classifier, e.g., resources
in a business process, or physical locations of a material handling system.

4.3 Composite Patterns

In the previous sections, we described performance of single process segments
through elementary patterns. However, the performance spectrum of real-life
processes gives rise to composite patterns comprised of several elementary ones.
While a full taxonomy is beyond the scope of this paper, we outline some basic
principles for describing composite patterns by relating elementary patterns to
each other in their context.

The context of a pattern P1 as shown in Fig. 5(a) consists of (1) observations
earlier and later than P1 in the same process segment, (2) observations before and
after P1 in the control flow perspective, and (3) a distinct pattern P2 occurring
simultaneously to P1 in the same segment. Using this context, the taxonomy
can be extended with further parameters. For instance, observations before and
after can be used to characterize performance of a pattern in context and the
performance variants contained in the same timed period as shown in Fig. 5(b).

PERFORMANCE IN CONTEXT

slower faster

the same

diverse

empty

VARIANTS CONTAINED

1 >1

<number of
variants>

a er

earlier later

before

P1
P2

context

CONTEXT(a) (b)

Fig. 5. (a) Pattern context, and (b) Context parameters

150 V. Denisov et al.

Figure 4 (right) shows two instances of a composite pattern consisting of the
elementary patterns E1, E2, and E3, described in Sect. 4.2. E1 and E3 align at a
synchronization point SP, that shows synchronization of multiple cases in a “sand
clock” pattern, while the cases in E2 do not synchronize with the cases in E1
or E3: we can clearly see 2 variants of behavior contained (E1+E3 and E2). The
performance context of the composite pattern is diverse.

The taxonomy of Fig. 3 and the new parameters of Fig. 5 only partially
describe composite patterns. In particular, a comprehensive taxonomy for pre-
cisely describing the alignment of patterns to each other in their context is
subject of future work.

5 Evaluation

We implemented the transformation of logs into detailed and aggregated per-
formance spectra and their visualization through an interactive ProM plug-in in
package “Performance Spectrum”.2 We applied our implementation on 11 real-
life event logs from business processes (BPI12, BPI14, BPI15(1-5), BPI17, Hos-
pital Billing, RF)3 and on 1 real-life log from logistics (BHS) provided by Van-
derlande. We illustrate how the performance spectrum provides detailed insights
into performance for RF; for BHS we report on a case study for identifying per-
formance problems; and we summarize performance characteristics of the 11
business process logs.

5.1 Road Traffic Fine Management Process (RF)

Event Log and View. The RF event log consists of 11 activities, more
than 150.000 cases and 550.000 events over a period of 12 years. We ana-
lyze the 3 trace variants R1-R3 of Fig. 6, which cover > 80% of the
events in the log, by defining a view for the sub-sequences {〈Create Fine,
Payment〉, 〈Create Fine,Send Fine, Insert Fine Notif.,Add penalty,Payment〉,
〈Add penalty,Send for CC〉} and quartile-based performance classes.

First, we discuss the detailed patterns P1-P5 that can be observed in the
performance spectrum of a 2-years period in Fig. 6 which represents behavior
typical for the entire 12-years period. All cases start from activity Create Fine
and continue either with activity Payment (variant R1) or activity Send Fine
(R2 and R3).

P1: Segment S1 Create Fine:Payment globally contains many traces of vari-
able duration, which are continuously distributed over time and can overtake
each other, i.e., P1 = [Scope(seg,glob), Shape(det,unord), Work(cont), Perf(25%,4
classes)]. We can clearly observe that traffic offenders pay at various speeds.

P2: The performance spectrum of Fig. 6 shows that the sub-trace 〈 Create
Fine, Send Fine Insert Fine notification〉 shared by R2 and R3 contains the
2 source code and further documentation available at https://github.com/

processmining-in-logistics/psm.
3 available at https://data.4tu.nl/repository/collection:event logs real.

https://github.com/processmining-in-logistics/psm
https://github.com/processmining-in-logistics/psm
https://data.4tu.nl/repository/collection:event_logs_real

Unbiased, Fine-Grained Description of Processes Performance 151

S1

S2

S3

S4

S5

S6

R1

R2

R3

0-25% 26-50% 51-75% 76-100%

P2

P4

P5

P1

P3

Fig. 6. Detailed performance spectrum of Road Traffic Fines Management log for
years 2002 and 2003 for trace variants R1: 〈Create Fine,Payment〉, R2: 〈Create Fine,
Send Fine, Insert Fine Notif.,Payment〉, and R3: 〈Create Fine,Send Fine, Insert Fine
Notif.,Add penalty,Send for CC〉.

composite pattern P2 which we already discussed in Sect. 4.3. P2 consists of two
different performance variants. The “sand clock” pattern of E1+E3 of Sect. 4.1
shows that cases are accumulated over a period of 6 months; the period until
Insert fine notification varies from zero up to 4 months. Cases in pattern E2 of
Sect. 4.1 are not synchronized but processed instantly.

P3: The two variants E1+E3 and E2 vanish in the next segment S3 Insert
Fine Notif.:Add penalty where all cases show a strong FIFO behavior: P3 =
[Scope(seg,glob), Shape(det,FIFO-const), Work(cont), Perf(25%,2 classes)]; the
switch from CEST to CET in October shows as a slower performance class
in Fig. 6. After Add penalty, R2 continues with Payment (S5 in Fig. 6) and R3
continues with send for CC (S6 in Fig. 6).

P4: On segment S5 Add penalty :Payment we surprisingly observe emergent
batching on start despite the absence of batching on end in the preceding segment
S4. The “sand-clock” batching in P2 results in groups of “fast” cases which
are forwarded by the FIFO pattern P3 and together create a new batching on
start pattern P4 (similar to E2) in segment S5 that can take months to years to
complete the Payment.

P5: The alternative segment S6 Add penalty :Send for CC shows batch-
ing on end every 12 months for cases that entered the batch 20 to 6
months prior: P5 = [Scope(seg,loc,per= 12mo,D=20mo), Shape(det,batch(e)),
Work(cont), Perf(25%,4 classes)]. The 6-month delay revealed by P5 is man-
dated by Italian law. A unique pattern for this process occurs in segment Add
Penalty :Send Appeal to Prefecture in Fig. 7(b) where a batch on end pattern
occurs only once with a duration of 10 years.

152 V. Denisov et al.

(a)

(b)
SP

gap

gap

gap

LOW LOAD

CONCEPT
DRIFT

Fig. 7. Aggregated performance spectrum of Road Traffic Fines Management log
(2000–2012)

Aggregated Patterns are shown in Fig. 7(a), where every bar shows how
many segments start every month. Here we can see patterns related to work-
load, for example, in the first quarter of 2004 we can see a gap pattern of 3
months, gap=[Scope(seg,loc,once,D=3mo), Shape(agg,batch(e)), Work(0)]. This
gap pattern propagates to subsequent segments creating a composite pattern
surrounded by context with much higher load. Figure 7(a) also reveals concept
drift in the control-flow perspective: the medium non-zero workload in segments
Insert Fine Notification:Payment and Payment :Add penalty drops to 0 in 2007
(up to some outliers).

5.2 Baggage Handling System of a Major European Airport (BHS)

Event Log and View. In this case study, we analyzed flows of bags through
a Vanderlande-built baggage handling system (BHS). In the event log, each
case corresponds to one bag, events are recorded when bags pass sensors on
conveyors, and activity names describe locations of sensors in the system. For
1 day of operations, an event log contains on average 850 activities, 25.000–50.000
cases and 1–2 million events.

a1 a2 a3 a4 a5 s

Fig. 8. The path from Check-In counter a1
to sorter entry point s

To provide examples of the BHS
performance spectrum and patterns,
we selected conveyor subsequence
〈a1, a2, a3, a4, a5, s〉 that moves bags
from Check-In counter a1 to a main
sorter entry point s. Cases starting in
a1 correspond to the BHS registering that a passenger put a bag onto the belt
of the Check-In counter. We chose this particular part because (1) any BHS
has such paths and (2) it shows many typical performance patterns of a BHS.
The diagram of the corresponding system part in Fig. 8 shows that more bags
join from other Check-In counters on the way in points a2-5. We first discuss
elementary detailed patterns in the performance spectrum and then show how
their compositions explain complex system behavior.

Unbiased, Fine-Grained Description of Processes Performance 153

a1:a2

a2:a3

a5:s

S1

S2

S3

S4

S5

Y

P1 P2
P1

P3

P2P1Z1

P3

P6
P4

Z1

P3 Z1 P3

P5

L L with context
normal speed 2 mes slower 3 mes slower very slow

other pa erns

a3:a4

a4:a5

P6

Fig. 9. Performance spectrum of bags movements between Check-In counters and the
main sorter

The detailed performance spectrum in Fig. 9 shows events over the period
of 1 h in a median-proportional performance classification. In the first segment
S1 a1 :a2 we can observe pattern P1 (FIFO, constant waiting time, variable
workload, normal performance) and P2 (batching on start and end with very
slow performance). Empty zone Z1 shows zero workload. In BHS, FIFO behavior
is typical for conveyors, where bags cannot overtake each other, and variable
workload is typical for manual operations: a counter’s arrival process depends on
a passenger flow and their service times, which vary from passenger to passenger.
Despite conveyors having constant speed S1 shows not only P1 but also P2 and
Z1: some conveyors were temporarily stopped and all bags on them ‘share’ the
same delay, as in P2.

By looking at S1 alone, we cannot explain causes of the delays in those pattern
instances. But as segments in a BHS are synchronized through movement of
physical objects on conveyors, we can identify the cause by following the control-
flow of Fig. 8. After P4 in S2 we observe Z1 in S3 and S4, both having non-zero
workload earlier (P3) and later (P3,P6), followed by non-zero workload P5 in S5
(FIFO, constant waiting time, high workload, normal performance). This gives
rise to pattern L and its context highlighted in Fig. 9. Reading pattern L from
S4 backwards gives the following interpretation: the conveyors in S3 and/or S4
stopped operation, so bags from S2 could not move further to S3. When S2 was
stopped, S1 also was stopped (point Y), because bags could not enter S2. The
slow cases of P2 and P4 are the bags waiting on a stopped conveyor. This is
called a die-back scenario, where delays or non-operation (in S3,S4) propagate
backwards through the system. When S3 and S4 return to operations, waiting
bags of S1 and S2 (and from other parts that are not included in Fig. 9) resume
their movement. The two times slower performance in P6 shows that S2 and S3
are at their capacity limits in this restart phase until all workload decreased.
Figure 9 shows that Pattern L repeats regularly during the day.

154 V. Denisov et al.

Table 1. Presence of selected pattern classes in real-life event logs.

BPl12 BPl14 BPl15-1 BPl15-2 BPl15-3 BPl15-4 BPl15-5 BPl17 Hospital H-billing Road fine

unord,low glob glob glob glob glob gob glob glob glob

unord,high glob glob glob

FIFO glob glob glob

FIFO+unord reg glob

FIFO (weekly) glob glob arb glob

batching arb per per reg

workload spikes arb reg

concept drift once once once arb arb arb once reg

sparse work reg reg glob* glob* glob* glob* glob* glob glob

Using the same reasoning as explained above, we identified the root cause
of critical performance problems in the BHS of a large European airport which
could not be identified with existing process mining tools. Our analysis took
one week and was confirmed as correct by experts of Vanderlande who required
several weeks of manual data analysis and years-long experience to identify the
root cause.

5.3 Comparison of Event Logs

We compared the 11 real-life business process event logs regarding the types of
performance patterns they contain. We visualized the performance spectrum of
each log and noted the properties of the immediately visible patterns (in terms
of the taxonomy of Sect. 4.2), see https://github.com/vadimmidavvv/psm for
details.

Table 1 shows the results. We identified combined patterns of unordered
behavior with low and high workload; detailed patterns of FIFO behavior, also
overlaid with an unordered variant, FIFO+unord, and occurring only Mon-Sat,
FIFO(weekly), and various forms of batching. The aggregate patterns showed
workload spikes, concept drift, and sparse work.

The cells in Table 1 indicate for each log the occurrence and repetition values
of the patterns according to the taxonomy of Fig. 3. The logs differ strongly in the
presence and repetition of patterns, indicating that very different performance
scenarios occur in these processes. Interestingly, the BPI15 logs which all relate
to the same kind of process that is being executed in different organizations
all show very similar patterns: glob* for sparse work means that sparse work co-
occurs globally in a synchronized way: a large number of segments show behavior
during exactly the same days.

6 Conclusion

In this paper, we proposed the performance spectrum as a novel visualization of
process performance data in event logs. We project each process step (from one

https://github.com/vadimmidavvv/psm

Unbiased, Fine-Grained Description of Processes Performance 155

activity to the next) in a log over time. By making time explicit and avoiding
aggregation, the performance spectrum reveals non-stationarity of performance
and synchronization of different cases over time. We provided a taxonomy to
isolate and describe various performance phenomena in terms of distinct ele-
mentary and composite patterns. Applying the technique on 12 real-life event
logs validated its usefulness in exploration of data for identifying expected and
unusual performance patterns and in confirming that process performance is
neither stationary nor are cases isolated from each other. Future research is
to automatically identify performance patterns from event logs and annotat-
ing process models with identified patterns. We believe the insights obtained
through visual analysis to be useful in further research on performance predic-
tion: improve queueing-based predictions based on FIFO-related patterns, aid
discovery and identification of batching activities, aid in developing improved
prediction models, simulation models, and prescriptive models that incorporate
insights on non-stationary, or cross-case conformance checking of performance
models. The identified patterns suggest also the need for performance-based fil-
tering and sorting of event data.

Our technique is currently limited by the fact that process logic has to be
flattened into sequences along the y-axis of the visualization, lack of support
for concurrency and choices, and the very large variety of composite patterns
cannot be described well by our taxonomy. Future work comprises the extension
of the taxonomy, enhancement of process models with performance patterns,
identifying “optimal” views for a particular analysis questions, and improved
visualizations to handle concurrency and choices.

Acknowledgements. The research leading to these results has received funding from
Vanderlande Industries in the project “Process Mining in Logistics”. We thank Elena
Belkina for support in the tool development.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

2. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. Wiley Inter-
discip. Rev.: Data Min. Knowl. Discov. 2(2), 182–192 (2012)

3. van der Aalst, W.M.P., Pesic, M., Song, M.: Beyond process mining: from the
past to present and future. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp.
38–52. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13094-6 5

4. van der Aalst, W.M.P., Schonenberg, H., Song, M.: Time prediction based on
process mining. Inf. Syst. 36, 450–475 (2011)

5. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle
time prediction: when will this case finally be finished? In: Meers-
man, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 319–336.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88871-0 22

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-642-13094-6_5
https://doi.org/10.1007/978-3-540-88871-0_22

156 V. Denisov et al.

6. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for pre-
dicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012.
LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33606-5 18

7. Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.:
Visual analytics: definition, process, and challenges. In: Kerren, A., Stasko, J.T.,
Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp.
154–175. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70956-
5 7

8. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Using life cycle information
in process discovery. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP,
vol. 256, pp. 204–217. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
42887-1 17

9. Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.: Handling
duplicated tasks in process discovery by refining event labels. In: La Rosa, M.,
Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 90–107. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 6

10. Martin, N., Swennen, M., Depaire, B., Jans, M., Caris, A., Vanhoof, K.: Retrieving
batch organisation of work insights from event logs. Decis. Support Syst. 100, 119–
128 (2017)

11. Maruster, L., van Beest, N.R.T.P.: Redesigning business processes: a methodology
based on simulation and process mining techniques. Knowl. Inf. Syst. 21(3), 267–
297 (2009)

12. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and activity sequence
prediction of business process instances. Computing 1–27 (2018). https://doi.org/
10.1007/s00607-018-0593-x

13. Pufahl, L., Bazhenova, E., Weske, M.: Evaluating the performance of a batch activ-
ity in process models. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP,
vol. 202, pp. 277–290. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15895-2 24

14. Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic petri
nets with arbitrary delay distributions from event logs. In: Lohmann, N., Song, M.,
Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 15–27. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06257-0 2

15. Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-
markovian stochastic petri nets. Inf. Syst. 54, 1–14 (2015)

16. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation
models. Inf. Syst. 34, 305–327 (2009)

17. Senderovich, A., et al.: Data-driven performance analysis of scheduled processes.
In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS,
vol. 9253, pp. 35–52. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23063-4 3

18. Senderovich, A., Weidlich, M., Gal, A.: Temporal network representation of event
logs for improved performance modelling in business processes. In: Carmona, J.,
Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 3–21. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-65000-5 1

19. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining for delay
prediction in multi-class service processes. Inf. Syst. 53, 278–295 (2015)

20. Shrestha, A., Miller, B., Zhu, Y., Zhao, Y.: Storygraph: extracting patterns from
spatio-temporal data. In: ACM SIGKDD Workshop IDEA 2013, pp. 95–103. ACM
(2013)

https://doi.org/10.1007/978-3-642-33606-5_18
https://doi.org/10.1007/978-3-642-33606-5_18
https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1007/978-3-319-42887-1_17
https://doi.org/10.1007/978-3-319-42887-1_17
https://doi.org/10.1007/978-3-319-45348-4_6
https://doi.org/10.1007/s00607-018-0593-x
https://doi.org/10.1007/s00607-018-0593-x
https://doi.org/10.1007/978-3-319-15895-2_24
https://doi.org/10.1007/978-3-319-15895-2_24
https://doi.org/10.1007/978-3-319-06257-0_2
https://doi.org/10.1007/978-3-319-23063-4_3
https://doi.org/10.1007/978-3-319-23063-4_3
https://doi.org/10.1007/978-3-319-65000-5_1

Unbiased, Fine-Grained Description of Processes Performance 157

21. Song, M., van der Aalst, W.M.: Supporting process mining by showing events at a
glance. In: Proceedings of the 17th Annual Workshop on Information Technologies
and Systems (WITS), pp. 139–145 (2007)

22. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process mon-
itoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017.
LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59536-8 30

23. Wynn, M.T., et al.: ProcessProfiler3D: a visualisation framework for log-based
process performance comparison. Decis. Support Syst. 100, 93–108 (2017)

https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-319-59536-8_30

	Unbiased, Fine-Grained Description of Processes Performance from Event Data
	1 Introduction
	2 Related Work
	3 Performance Spectrum
	4 Performance Patterns
	4.1 Elementary Patterns
	4.2 Taxonomy of Elementary Patterns
	4.3 Composite Patterns

	5 Evaluation
	5.1 Road Traffic Fine Management Process (RF)
	5.2 Baggage Handling System of a Major European Airport (BHS)
	5.3 Comparison of Event Logs

	6 Conclusion
	References

