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Abstract. Time-aware business process models capture processes where
temporal properties and constraints have to be suitably managed to
achieve proper completion. Temporal aspects also constrain how deci-
sions are made in processes: while some constraints hold only along
certain paths, decision outcomes may be restricted to satisfy temporal
constraints. In this paper, we present time-aware BPMN processes and
discuss how to: (i) add temporal features to process elements, by con-
sidering also the impact of events on temporal constraint management;
(ii) characterize decisions based on when they are made and used within
a process; (iii) specify and use two novel kinds of decisions based on
how their outcomes are managed; (iv) deal with intertwined temporal
and decision aspects of time-aware BPMN processes to ensure proper
execution.

1 Introduction and Motivation

Time-awareness is undeniably a crucial property of business processes [13,24]. In
the last years, temporal features of process models have been widely considered
and studied with a focus on different intertwined aspects. Among them, we
mention the modeling and checking of temporal constraints at design time [6,
13,17,23], the management of uncertainty for task duration [9], the modular
design of time-aware processes [24], the specification of time patterns [20], and
the modeling of temporal constraints in Business Process Model and Notation
(BPMN) [5,8,12].

In general, temporal features of process models have to be dealt with by
considering how they relate to the semantics of process elements. Particularly,
decision tasks and events [22] are important concepts to consider jointly with
temporal constraints, as they represent points in the process flow where informa-
tion is acquired and used to determine the following flow of process execution.
Indeed, information about decisions is used by exclusive gateways to choose one
among alternative execution flows, based on the evaluation of conditions previ-
ously set by decision tasks or related to event occurrence.

Thus, during execution time-aware processes have to face two different kinds
of uncertainty, one related to activity duration, which is known only after activity
completion, the other one stemming from the outcomes of decision tasks and
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from events that determine which process path to follow. Such uncertainties are
solved only when tasks have been executed and events have occurred.

At design time, given a time-aware business process model, it is desirable
to know whether it is possible to execute it in a correct way, by considering all
the possible combinations of activity durations and decision outcomes. However,
such durations and outcomes are not under the control of a process engine. In
this scenario, if an engine can plan the execution of future steps considering only
the history of already executed elements and made decisions, and guaranteeing
that all the specified temporal constraints are satisfied, we say that the process
is dynamically controllable.

In this paper, we propose a new time-aware well-structured process model
based on BPMN [22] to handle the subtle relations between temporal constraints
and decisions and show how to check if process cases can be executed successfully.
The main novelties of our approach can be summarized as follows: (i) we add
temporal features to process elements, considering also the impact of event occur-
rence on temporal constraint management, (ii) we discuss the relation between
the making and the use of decisions, (iii) we conceptually distinguish two novel
types of decisions, (iv) we describe how to deal with both the uncertainty related
to the effective duration of executed activities and the uncertainty related to deci-
sions made during the process execution, (v) we define the notion of dynamic
controllability (DC) for such processes, and (vi) we show a mapping of time-aware
well-structured BPMN processes onto suitable temporal constraint networks to
check the dynamic controllability of such processes.

1.1 A Motivating Example Taken from the Clinical Domain

As a motivating scenario, let us consider the management of patients diagnosed
with knee osteoarthritis (OA). The process diagram of Fig. 1 shows some impor-
tant treatment steps, excerpt from widely adopted clinical practice guidelines [2].
The core of the diagram is designed by using BPMN [22], which is enriched with
different kinds of temporal constraints, such as activity/gateway durations, event
waiting times, sequence flow delays, and relative temporal constraints.

Knee OA is a common degenerative joint disease involving cartilage and
nearby tissues [2].

In Fig. 1 we focus on pharmacologic treatment, thus leaving nonpharmaco-
logic treatment represented as collapsed subprocess NonPhTr. Moreover, we spec-
ify a type only for decision tasks: those representing human decision-making are
given type user, while tasks enclosing a detailed decision logic are of type busi-
ness rule.

Prior to prescribing treatments, a physician in charge must Check Contraindi-
cations (business rule task T0) to commonly administered drugs, such as parac-
etamol, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), and opioids. Being
potentially life-threatening, absolute contraindications are precisely defined in
clinical guidelines to avoid misinterpretation (hence the use of a business rule
task).
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Fig. 1. BPMN process diagram showing the main steps for treating knee osteoarthritis.
If not specified, the granularity of temporal ranges in the diagrams is minute.

Depending on the assessed drug tolerance, different treatments are prescribed,
in a stepwise manner. The Core Treatment (task T1) is essentially based on
paracetamol. To improve pain control, topical preparations may be added dur-
ing core treatment. In Fig. 1 the need for topical treatment is represented by
non-interrupting event TT, which leads to the Topical Treatment itself (task T2).
However, paracetamol is often insufficient, even if combined with topical treat-
ment. Thus, a Patient Evaluation (task T3) is scheduled afterwards. If symptoms
persist (gateway 1s), an advanced treatment must be prescribed. The choice
(gateway 2s) of the best treatment for the patient depends on the contraindi-
cations evaluated in T0. In case of contraindications, intra-articular therapy is
preferred. Among existing alternatives, intra-articular hyaluronic acid (iaHA)
and platelets-rich plasma (iaPRP) have shown similar efficacy [16]. Therefore,
during Therapy Evaluation (user task T4) the physician can choose the ther-
apy among the available ones. This decision differs from those made in T0 and
T3 since not all of the possible outcomes are required to be available at run-
time to guarantee that the process can be executed successfully. Indeed, it is
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sufficient that at least one of the available therapies iaHA and iaPRP can be
chosen. Then, gateway 3s uses the decision made in T4 to route the process flow
towards either T5 or T6. If there are no contraindications, NSAIDs drugs (task
T7) may be administered. However, severe adverse drug reactions (ADRs) may
occur while taking NSAIDs: if an ADR is reported, the treatment is immediately
interrupted. In Fig. 1, this scenario is captured by signal boundary event ADR,
whose occurrence interrupts task T7 and leads to Therapy Re-evaluation (task
T8).

The example shows how process execution relies also on temporal and deci-
sion aspects. On the one hand temporal constraints must be satisfied to guaran-
tee that the process is completed successfully. On the other hand, decision tasks
determine which process path is preferred over another.

2 Characterization of Time-Aware BPMN Processes

In this section, we introduce temporal aspects, distinguish the two types of deci-
sions that characterize the novel time-aware BPMN and discuss their relations.
Then, we propose the notion of dynamic controllability for time-aware BPMN
processes. Hereinafter, we consider only well-structured processes as they offer
several advantages in terms of comprehension, modularity, and robustness [6,11,
for a detailed discussion].

2.1 Specification of Temporal Properties and Constraints

Here, we enrich BPMN processes by adding a temporal dimension to a rele-
vant subset of BPMN elements and suitable temporal constraints based on con-
cepts presented in [6,9,23]. The obtained time-aware BPMN fosters the tempo-
ral characterization of tasks, gateways, events, sequence flow edges, and time
lags between process elements. We describe the introduced temporal aspects by
referring to the example of Fig. 1 and borrowing the notions of “activity/event
activation” and “event triggering/handling” from the BPMN standard [22].

– Activities have a duration attribute represented as a range [x, y]G with
0 < x < y < ∞, where x/y is the minimum/maximum allowed time span for
an activity to go from state “started” to “completed” [20] and G (Granularity)
stands for the time unit used (e.g., seconds,. . . ). At run-time, the real duration
of an activity cannot be fixed by the process engine, but only observed after
who is in charge of executing it completes the activity (contingent duration).
Process engine takes into account the real duration to properly enact the
following elements. Who is in charge of executing the activity must observe
the two bounds x and y.
For example, T3 has a duration [5, 10]min: physicians in charge of T3 may
take between 5 and 10 min to execute it.

– Intermediate catching events have a temporal property, [x, y]G with 0 ≤
x ≤ y < ∞, representing the minimum/maximum amount of time during
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which they may be triggered (event waiting time). When x is 0, it means
that the event may be triggered as soon as it is activated. y is the upper
bound on the amount of time allowed for event triggering that prevents the
process to wait infinitely for the occurrence of an event. Since the triggering
of an event is not controlled by the process engine, the actual event waiting
time is only known at run-time. When a catching event is attached to the
boundary of an activity, its waiting time is implied by the duration of the
activity. Specifically, if activity T has a duration [x, y]mG and a boundary
event e, then the event waiting time for e must be [0, y′]mG where y′ < y and
mG is the minimum time granularity considered in the process. This ensures
that e cannot occur at the T completion instant as required by [22]. For
practicality, in case of coarser granularity the model admits y′ ≤ y assuming
that y′ is always before y after the conversion to the minimum granularity.
As an example, task T7, having duration [1, 5] days, and boundary event ADR,
having waiting time [0, 5] days: in this case, since days are coarser than minutes
(the minimum granularity), the upper bounds coincide. If e is non-interrupting
(e.g. TT in Fig. 1), BPMN requires that the duration of the associated activity
includes the duration of all non-interrupting event handlers [22]. As discussed
later, such specification can be satisfied by combining the described temporal
properties, thus allowing designers to think about the elementary temporal
characterization of activities.

– Gateways and sequence flow also have a duration range of the form [l, u]
G, with 0 ≤ l ≤ u ≤ ∞. However, in this case, the process engine plans the
real execution time for such elements by choosing a suitable value of the range.
A range associated to a sequence flow edge connecting an element A to an
element B is called sequence flow delay because it represents the possibility
for the process engine to delay the enacting of B after A is completed. For
example, between T1 and T3 there is a delay of [0, 7] days: considering the
decision in T0 and the completion time of T1, the engine could reduce this
delay even to 0 to guarantee that following tasks can be executed without
constraint violations. If a designer does not set a duration, it is assumed to
be [0,∞]mG.

– Relative constraints are depicted in Fig. 1 as dashed edges that connect
any two process nodes [9]. Relative constraints limit the time distance between
the starting/ending instants of two elements and have the form IS [u, v]IFG,
where IS is the starting (S)/ending (E) instant of the first element, while IF

is the starting/ending instant of the second one [9]. For example, the time
distance between the end of task T0 and the beginning of task T4 is given
by E[4, 13]S days meaning that, if iaHA or iaPRP are needed, the decision of
which one to prescribe must be made after at least 4 days and before 13 days
from the completion of T0. To deal with event instantaneity, we choose to
always adopt the notation IS to denote the triggering instant of one event.
For example, constraint S[5, 50]S days represents the overall minimum and
maximum process durations and holds between events Z and E.
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2.2 Specification of Decisions: A Novel View on Decision Outcomes

The modeling decisions associated to processes is becoming increasingly impor-
tant. Here, we offer a novel view on decision tasks, based on where and how their
outcomes are used in a process.

In our proposal, decisions are made in decision tasks and any following exclu-
sive gateway may use the outcome of such decisions to route the process flow [22].
In this way, there is a greater flexibility compared to the assumption that deci-
sions are made by a decision task immediately preceding the exclusive gate-
way [1]. Moreover, allowing a decision to be made at any place prior to an
exclusive gateway, may increase temporal flexibility during process execution.
For example, T0 determines the therapies contraindicated for a certain patient,
thus affecting which process path is taken at gateway 2s. If the outcome of T0

is that NSAIDs are contraindicated then, to guarantee that at least one of T5

and T6 can be chosen, the delay [0, 7]days between T1 and T3 must be set to 3
days at the most, for not precluding the possibility to satisfy also the overall
duration constraint S[5, 50]S days. Otherwise, a delay of 7 days can be allowed.
Decision tasks and corresponding gateways are given the same coloring scheme
to highlight the connection between where decisions are made and where they
are used. W.l.o.g, we assume that exclusive gateways are binary, i.e., they only
have two alternative outgoing sequence flows. Indeed, if a decision has n alter-
native outcomes, these can be evaluated by setting a proper sequence of �log n�
exclusive gateways.

Beside decision tasks and exclusive gateways, interrupting boundary events,
such as ADR of Fig. 1, may also represent decisions as their occurrence deter-
mines the enactment of an alternative, exception flow. However, being their
triggering instantaneous, interrupting boundary events always represent points
in the process where a decision is made and used at the same time.

Beside their position, decisions may be distinguished at a conceptual level
based on the availability of their outcomes during process run-time. In general,
a process should be guaranteed to be executable for any possible combination
of decision outcomes also with respect to the temporal constraints. Since such
requirement can be very strict, sometimes it reasonable to relax it by admitting
that some paths are not executable at run-time if temporal constraints cannot be
satisfied. In other words, it is reasonable to reduce the possible outcomes of some
decisions in order to guarantee that the process can be completed successfully.

In this regard, we propose a novel perspective aimed to conceptually distin-
guish decisions based on how their outcomes may be chosen at run-time.

Some decisions represent the response of the process to conditions that are
dictated by the context in which the process is executed, such as data-based con-
ditions or event occurrence. At run-time the process must always be guaranteed
to run any of such alternative outcomes. We refer to decisions of this kind as
observations: A decision is called observation when the number of its possible
outcomes cannot be reduced at run-time. Task T0 makes an observation: Physi-
cians must determine which drugs are contraindicated based on well-documented
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evidence. For every possible outcome (alternative flows in 2s), the process must
be executable for any possible duration of other process tasks.

Conversely, for some decisions it is possible to limit their outcomes at run-
time if this can help to execute the process successfully. In this case, the choice
of the outcomes is still arbitrary, but the set of possible outcomes can be reduced
considering the past execution of previous elements. It must be ensured that at
least one outcome is always allowed. To denote that the decision is guided by the
limitation of its outcomes we refer to decisions of this kind as guided decisions:
A decision is a guided decision when its possible outcomes can be reduced at run-
time to comply with temporal constraints. In Fig. 1, T4 makes a guided decision.
Since iaHA and iaPRP have similar efficacy and safety, physicians may suggest
one or the other without the need for both to always be available when the
decision is made. At run-time, if T4 has been enacted 13 days after T0 (in case
that TT is triggered at day 5 and T2 lasts 7 days), then T6 cannot be allowed as
its execution could violate the upper bound of the process duration constraint
S[5, 50]S; therefore, T4 can only select iaHA task.

In Fig. 1, symbol ? next to the task type icon denotes decision tasks that make
observations, and symbol ! denotes tasks that make guided decisions. Decisions
based on the occurrence of boundary events are always observations.

2.3 Controllability of a Time-Aware BPMN Process

From a temporal perspective, executing a time-aware BPMN process P means: (i)
to schedule the starting time of all elements, (ii) to set the duration of gateways
and sequence flow delays, and (iii) to determine which are the allowed outcomes
of a guided decision before enacting the corresponding decision task. The values
of observations in P are not known in advance as they are incrementally revealed
over time as decision tasks are executed. Similarly, the durations of activities are
only known as the activities complete. Therefore, a dynamic execution of P must
react to observations and contingent durations in real time. A viable execution is
one that guarantees that all relevant constraints–those holding in the paths being
executed–will be satisfied no matter which observation outcomes and durations
are revealed over time. A time-aware BPMN process with a dynamic and viable
strategy is called dynamically controllable (DC).

3 Dynamic Controllability Checking

In this section, we show how to determine if a time-aware BPMN schema is DC.
First, we introduce a temporal-constraint model, called Conditional Simple Tem-
poral Network with Uncertainty and Decision (CSTNUD) [26], that results to be
a well-founded model for representing and reasoning about temporal constraints;
then, we show how to verify the dynamic controllability of a process model P
using a corresponding CSTNUD SP .
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3.1 A Short Introduction to CSTNUD

In general, a temporal-constraint network can be viewed as a graph in which
nodes represent real-valued variables and edges represent binary constraints on
variables. The kind of binary constraint that can be attached to edges charac-
terizes the network and its expressive power. For example, in a Simple Temporal
Network (STN) [10] (T , C), where T is a set of real-valued variables, called
time-points, and C is a set of binary constraints, each constraint has the form
(Y −X ≤ δ), where X,Y ∈ T and δ ∈ R. When it is possible to assign a value to
each time-point of a STN such that all constraints are satisfied, then the STN
is said to be consistent.

By executing a temporal-constraint network we mean that the assignment of
values to time-points is made by an (executing) engine incrementally following
an execution strategy. An execution strategy determines the schedule to apply.
For example, if an STN S has a solution, the earliest execution strategy schedules
S assigning to each time-point its earliest possible execution time.

In [7], Hunsberger et al. proposed Conditional Temporal Network with Uncer-
tainty (CSTNU), that extends STNs including scenarios [14] and contingent
links [21]. A scenario specifies which time-points and constraints to consider
during an execution and it is represented by a conjunction of propositional liter-
als. The value of each proposition is unveiled during the execution (environment
decides its value). A contingent link is a special kind of temporal constraint hav-
ing the form, (A, x, y, C), where A and C are time-points, and 0 < x < y < ∞.
Typically, it assumed that a contingent link is activated when A is executed.
Then, the value for setting C is decided by the environment not by the engine.
However, C is guaranteed to execute such that the temporal difference, C −A, is
between x and y, i.e., the contingent link is satisfied. Contingent links are used
to represent actions with uncertain durations.

In [3] the authors propose CSTN with Decisions (CSTND), a generalization
of STN with scenarios (CSTN) that allows some of the propositional variables
to be assigned not by the environment, but by the engine executing the network.
In [26] CSTND are generalized incorporating contingent links. The resulting
network is called a CSTNU with Decisions (CSTNUD).

In the following we combine and extend concepts from earlier work [3,7,14,
26].

Definition 1 (Label representing scenario). Let P be a set of propositional
letters. A label � over P is a conjunction, � = l1∧· · ·∧lk, of literals li ∈ {pi,¬pi}
on distinct variables pi ∈ P. The empty label is denoted by �. For labels, �1 and
�2, if �1 |= �2, we say �1 entails �2. P∗ denotes the set of all labels over P.

Definition 2 (CSTNUD). A Conditional STN with Uncertainty and Decision
is a tuple, 〈T ,P, CP,DP, C,OT ,O,L〉, where:
– T is a finite set of temporal variables or time-points;
– P is a finite set of propositional variables, i.e., boolean variables;
– (CP,DP) is a partition of P into contingent propositional variables

(observations) CP and controllable propositional variables (decisions) DP;
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Fig. 2. An example of CSTNUD. b, e and h are relative to B!, E? and H!, respectively.

– C is a finite set of labeled constraints, each of the form, (l ≤ Y − X ≤ u, �),
where: X,Y ∈ T ; l ≤ u; l, u ∈ R; and � ∈ P∗;

– OT ⊆ T is the set of disclosing time-points; and
– O : P → OT is a bijection that associates each p ∈ P to a disclosing time-

point O(p) ∈ OT , i.e., to a time-point that, when executed, determines the
disclosure of value of the associated proposition variable. If p ∈ CP, then its
O(p) is called an observation time-point; otherwise a decision time-point.

– L is a set of contingent links each of the form (A, x, y, C, �), where: 0 < x <
y < ∞; A,C ∈ T are the activation and contingent time-points; � ∈ P∗; and
distinct contingent links have distinct contingent time-points.

When an observation time-point is executed, the environment assigns a truth
value to the corresponding observation; however, when a decision time-point is
executed, the decision is assigned a truth value by the engine. P ! represents
the decision time-point associated to decision p, while Q? the observation time-
point associated to observation q. As shown in [4], w.l.o.g. in Definition 2 only
constraints are labeled, not time-points.

Viewed as a graph, a CSTNUD edge represents either a labeled constraint or a

contingent link. In particular, each edge having the form X
〈[l, u], �〉

Y represents
a labeled constraint, (l ≤ Y −X ≤ u, �), and it is called also standard edge; each
edge having the form A

〈[x, y], �〉
C represents the labeled contingent link (A, x, y,

C, �), and it is called contingent. The pair 〈[l, u], �〉 is called labeled range/value.
If between two time-points there exist more labeled constraints, the standard
edge connecting them has more labeled ranges, one for each labeled constraint.

Figure 2 shows a CSTNUD having 7 time-points of which 2 are contingents
and 3 are disclosing time-points. Contingent link (B!, 3, 7, E!, b) is activated only
if decision b is true, while contingent link (E?, 3, 5, S,¬e) is activated only if
observation e is false. For example, if (B!, 3, 7, E!, b) is executed (b true), and
it lasts 7, and the observation e results true, for executing the network without
violating the constraint between B! and I2 is necessary to set decision h to false.

In [26], the execution semantics of a CSTNUD is given as a two-player game in
which Pl1 models the executing agent and Pl2 models the environment, assumed
as the most powerful possible player. A game runs in turns: at any time instant t,
there exist two turns: the Pl1 turn, T1(t), and the Pl2 one, T2(t), occurring after
T1(t). At each turn, a player may decide to make k move(s), with 0 ≤ k < ∞.
A Pl1 move is either the execution of a non-contingent time-point X or the
assignment of a truth-value to a decision d. A Pl2 move is either the execution
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of a contingent time-point C or the assignment of a truth-value to a observation p.
Pl2 is guaranteed to always have full information on what Pl1 has done before.
During the game, the conjunction of truth-values of propositional variables is
represented by the label �cps . Pl1 wins the game when there are no more time-
points to execute and for each constraint (l ≤ Y − X ≤ u, �) ∈ C such that
�cps |= �, then the execution times S(X) of X and S(Y ) of Y satisfy the
constraint l ≤ S(Y )−S(X) ≤ u. Pl2 wins otherwise. We denote by σi a winning
strategy if Pli wins the game by following σi. Informally, a CSTNUD has the
dynamic controllability property if Pl1 has a winning strategy that is based only
on the history of past moves made in the game. The history is defined in terms of
execution sequence, the ordered sequence of executed time-points and assigned
propositions [26]. Usually, Z1(Z2) represents an execution sequence of Pl1 (Pl2)
and σ1(Z1, t)(σ2(Z2, t)) represents a moved-based strategy that tells a player to
make a move at time instant t only if the move is applicable at t [26].

Definition 3 (Dynamic Controllability [26]). A CSTNUD is dynamically
controllable (DC) if Pl1 has a winning strategy such that for any t > 0 and any
pair of execution sequences Z1, Z2, if σ2(Z1, t

′) = σ2(Z2, t
′) for 0 ≤ t′ < t, then

σ1(Z1, t) = σ1(Z2, t).

In [26] a DC checking algorithm for CSTNUDs based on Timed Game Automata
(TGA) is proposed, while a DC checking algorithm based on constraint propa-
gation for a sub class of CSTNUDs is presented in [3].

3.2 Mapping Time-Aware BPMN onto CSTNUD

To verify the dynamic controllability of a process model P , it is convenient
to transform it into an CSTNUD SP using the transformation rules depicted in
Tables 1 and 2. Such rules are described in the proof of Theorem 1. The obtained
SP may be checked for DC by applying one of the available algorithms for DC
checking [3,26]. The following theorem shows that the process model P results
to be DC if and only if SP is DC.

Theorem 1. Given a time-aware BPMN process P , there exists a CSTNUD SP

such that P is dynamically controllable if and only if SP is DC.

Proof. W.l.o.g., we assume that all temporal ranges have the same base gran-
ularity mG. In case that P contains ranges with different time granularities,
it is possible to convert them to mG. Tables 1 and 2 give the mapping of the
elements that can be used to transform a time-aware BPMN fragment into the
corresponding CSTNUD. By applying the proposed mappings to P , one can sim-
ply verify that the obtained SP represents all precedence relations and temporal
constraints of P . Let us consider each mapping in detail.

– Task/Subprocess. Each task A is transformed into two CSTNUD time-points,
AS and AE , representing its start and end instants. The duration range, [x, y],
is converted to the contingent link (AS , x, y, AE , �). The label � is determined
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Table 1. Mapping of time-aware BPMN fragments to CSTNUDs.

considering the (possible) XORSplit/XORJoin gateways that are present in
the path, Π, from the start event to A in P : (i) Initialize � = �; (ii) For each
(possible) XORSplit i in Π associated to proposition p, add p or ¬p to �
according to the branch present in Π; (iii) For each (possible) XORJoin i

in Π associated to proposition p, remove any p literal from �. The obtained
label represents the scenario in SP where AS and AE have to be executed and
their contingent link observed. The mapping of a subprocess onto a CSTNUD
is equivalent.

– Decision Task (observation). The conversion is analogous to the one of
a task as for its duration attribute. As regards the observation made, it is
necessary to represent all the possible outcomes by adding to SP a suitable
number of observation time-points. In particular, if an observation of a deci-
sion task A in P can assume n distinct values, then, in SP there must be
�log n� propositions, associated to new A?1, . . . , A?�log n� observation time-
points. In this way, each A outcome is represented by a proper combination
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of truth-values of such �log n� propositions. A?1, . . . , A?�log n� are added in
sequence after the CSTNUD time-point AE . The temporal distance between
A?1, . . . , A?�log n� and AE is set to 0 to constrain that the observation values
are available at the same instant in which AE is executed.

– Decision Task (guided decision). The conversion is analogous to the one
of a decision task making an observation. In this case, however, the possible
outcomes of a decision task are represented using decision time-points instead
of observation ones to capture the semantics associated to guided decisions.

– ANDSplit/ANDJoin gateways. The conversion is analogous to the one of a task.
In this case, however, duration attribute [x, y] is converted to a standard edge
as gateways are executed by the process engine.

– XORSplit/XORJoin gateways. The conversion is analogous to the one of an
ANDSplit/ANDJoin as regards its duration attribute. As for scenario, if �
is the scenario in which a XORSplit is present, then all converted elements
located in its true outgoing flow will have a label entailing �p, while all con-
verted elements located in its false outgoing flow will have a label entailing
�¬p, where p is the proposition associated to the considered XORSplit. In case
of XORJoin, the process is reverse: the scenario label is updated removing p
literal.

– Sequence Flow Delay. A sequence flow edge having temporal delay [l, u] is
converted to a standard edge having 〈[l, u], �〉 as labeled range.

– Intermediate Event. Since the temporal range of an intermediate event rep-
resents the waiting time allowed for event triggering, its mapping is analogous
to the one of a task. Moreover, the end time-point IE? is also an observation
time-point associated to a proper proposition i for representing if the event
occurred (true value). In this way, the semantics of the CSTNUD fragment is
the following: the execution of IE? reveals if the event occurred or not and,
in case of occurrence, the execution time of IE? is the exact instant in which
the event occurred.

– Boundary Interrupting Event. This conversion can be split in two parts
that work in parallel, one for task A and one for interrupting event B. y′ < y
as required by BPMN [22]. Task A and event B are mapped using the previ-
ous mappings for tasks and intermediate events, respectively. The contingent
links associated to A and B must start at the same time: in Table 1, BS

is at distance 0 from AS . In SP , after BE?, there are time-points and con-
straints related to the temporal characterization of subprocess BP (represent-
ing exception handling) that are labeled by �b to represent the fact that they
must be considered only in case B occurs. Both AE and BPE are connected
to time-point that represents the original exclusive gateway assumed
instantaneous for simplicity.

Since the value of an observation cannot be constrained in any way, the
obtained CSTNUD fragment allows also the representation (and reasoning) of
cases that are not possible in a real process run. For example, in the CSTNUD it
is possible that (i) the contingent link associated to B lasts more than the con-
tingent link associated to A, (ii) the proposition b is set true and, therefore, (iii)
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all temporal constraints associated to the interruption branch must be observed.
But this case cannot occur in a real run of P because all interrupting events
must occur prior to task completion [22]. Therefore, the dynamic controllability
of this CSTNUD fragment guarantees the dynamic controllability of the original
fragment containing Boundary Interrupting Event even for execution cases that
can never occur. On the other hand, since it is necessary to guarantee the con-
trollability for any possible combination of task duration and event occurrence,
all real cases are simpler cases of the real worst case in which A completes at its
maximum and B occurs at the last possible instant and BP completes at its max-
imum, that it is captured by the this conversion. In case that there exist some
relative constraints (explained below) involving the start/end of task BP or the
end of task A, in their corresponding CSTNUD edges, labels have to be adjusted
considering literals b/¬b to guarantee that the edges are considered in the right
scenarios. For example, in the edge associated to a relative constraint involving
the end instant of A, the label must contain also ¬b because the constraint has
to be considered only when A is not interrupted.

– Boundary Non-Interrupting Event. The conversion is analogous to the one
of a boundary interrupting event. In this case, however, there is a small com-
plication given by the fact that the BPMN semantics dictates that, in case
of event occurrence, task A (cf. Table 1) must wait the completion of event
handler represented by BP for reaching state “complete” [22]. Thus, to prop-
erly represent such temporal constraint in the CSTNUD, it is necessary to
add a join time-point after AE . has to be executed after AE and BPE

in case the event occurred (proposition b is true) and immediately after AE

in case the event did not occur. Such behavior is ensured by associating two
temporal ranges to the edge AE → : 〈[0,∞], �b〉 represents the delay to
observe in case the event occurred (b is true), while 〈[0, 0], �〉 represents the
0 delay in case the event did not occur. After , there is the delay 〈[0, ε1], �〉
corresponding to the sequence flow delay associated to the flow outgoing of
A in the BPMN fragment.

– Relative Constraints. Let us consider a relative constraint 〈IF〉[l, u]〈IS〉
between two elements A and B, where IF and IS represent the kind of instants
to be considered, i.e., S or E. In Table 2, A and B are tasks for space reasons,
but they can be any combination of tasks, subprocesses, gateways and events.
A relative constraint is converted to a CSTNUD edge between the time-points
associated to instants AIF and BIS with labeled range 〈[l, u], �〉. If �A/�B is
the scenario where A/B are mapped, then � must satisfy � |= �A�B , i.e.,
relative constraints can be defined only in consistent scenarios.

As introduced above, a time-aware BPMN process is dynamically controllable
if it is possible to execute it by satisfying all relevant constraints while reacting in
real time to (i) the observation values that occur, (ii) tasks/subprocess durations,
and (iii) event occurrences.

According to the two-player semantics of CSTNUDs, a CSTNUD is dynam-
ically controllable if it is possible to execute it in a way such that, no matter
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Table 2. Mapping of relative constraints between BPMN elements to CSTNUDs. For
brevity, only tasks are exemplified but it is possible to consider any pair of elements.

how the execution of any contingent link turns out and any observations turns
out (Pl2 execution strategy), it is possible to set a sequence of decisions and to
schedule all non-contingent time-points in real time (Pl1 strategy) satisfying all
relevant constraints.

Considering the provided mapping and, in particular, the mapping of process
fragments containing boundary events, it is a matter of definitions to verify that,
given a process diagram P and its corresponding CSTNUD SP , the dynamic
controllability in SP implies the dynamic controllability in P and vice-versa. �

4 Discussion and Related Work

Our approach is general and can be extended to other BPMN elements. For
example, delays can be easily applied also to message flows while the concepts
of duration and relative constraints can be applied to loop activities with some
conditions. Moreover, we could easily include absolute temporal constraints. Our
proposal of decision modeling can also be used to represent inclusive gateways.
It would simply require to extend the mapping shown in Table 1.

The adoption of the CSTNUD model seems to be the more promising for
checking a time-aware BPMN process considering techniques different from TGA
as done in other proposals [5,25]. Indeed, while in [26] the author proposed a
first CSTNUD DC checking algorithm based on TGA (The decision problem of
reachability-time games in TGA with at least two clock is in EXP [15]), in [3] the
problem of checking the DC of a CSTNUD was proven to be PSPACE-complete.
Moreover, the authors proposed more efficient algorithms for checking the DC
of some subclasses of CSTNUDs and this efficiency seems to be preserved for
more general CSTNUD instances [3].

A significant analysis of temporal constraint modeling for process-aware infor-
mation systems is presented in [20], where language-independent time patterns
are defined, formalized, and their relevance is empirically shown.

As for modeling temporal constraints by means of BPMN or related exten-
sions, relevant proposals are presented in [5,8,12,23,25]. In [25], the authors
proposed an extension of BPMN for representing activity/process durations and
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resource constraints and show how to check if a process satisfies or not busi-
ness requirements by using TGA. In [5] authors adopted the same verification
approach for another extension of BPMN including more kinds of temporal con-
straints, while in [12] the authors proposed an encoding of timed business pro-
cesses into the Maude language for automatically verifying properties of a simpler
extension of BPMN where only task timeouts and sequence flow delays can be
expressed. All these proposals lack of a formal characterization of decisions and
do not address how such decisions and temporal constraints can be modeled in
the corresponding TGA/Maude language, which is indeed an important chal-
lenge. Finally, they do not consider events and their temporal characterization.
In [8] the authors presented a modular approach to express various nuances
of activity duration by combing BPMN elements in suitable blocks aimed to
enhance re-use. Despite duration violations are managed, the authors did not
consider the formal verification of the proposed cases. In [23], authors devised
a process model enriched with temporal conditions in the formulation of condi-
tional constructs, in particular XOR-splits and loops, and provided the related
notions of schedule and controllability. The idea that a XOR-split/loop can check
a temporal condition is quite interesting but they do not consider the issue of
verifying process cases containing such rich elements.

In [18] authors introduced controlled violations (based on relaxation vari-
ables) of activity durations and proposed an approach based on constraint sat-
isfaction to determine the best schedule for process while minimizing the cost
of violations. Their approach does not consider events and different kinds of
decisions.

Finally, in [19] the authors discuss user decisions made in knowledge-intensive
processes by comparing them to decisions based on history data which cannot be
freely made. Despite sharing the same concept of “freedom to decide”, the pro-
posed guided decisions limit their outcomes at run-time only when it is necessary
to guarantee a successful execution.

5 Conclusions

In this paper, we presented a novel extension of time-aware BPMN where events
can be temporally characterized and decisions are distinguished into two types.

As regards temporal characterization, we proposed to distinguish between
durations that can be limited by a process engine and durations that become
known only at run-time. As regards decisions, we proposed that they can be
made and used in different points in the process to allow a greater flexibility with
respect to temporal constraints. Moreover, they can be of two kinds: observations,
for which the process has to be guaranteed to run for all possible outcomes, and
guided decisions, for which the number of possible outcomes can be reduced at
run-time to ensure a successful execution.

At application level, it is important to have processes that can be executed
reacting to already executed activities, event occurrences and past decisions;
we formalized this property as dynamic controllability for time-aware BPMN
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processes. For verifying whether a BPMN process is dynamically controllable,
we propose to map it onto a corresponding CSTNUD instance, whose dynamic
controllability is likely to be checked by algorithms beyond the common adopted
TGA model checking approach.
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