
Animating Multiple Instances in BPMN
Collaborations: From Formal Semantics

to Tool Support

Flavio Corradini, Chiara Muzi, Barbara Re, Lorenzo Rossi,
and Francesco Tiezzi(B)

School of Science and Technology, University of Camerino, Camerino, Italy
{flavio.corradini,chiara.muzi,barbara.re,lorenzo.rossi,

francesco.tiezzi}@unicam.it

Abstract. The increasing adoption of modelling methods contributes
to a better understanding of the flow of processes, from the internal
behaviour of a single organisation to a wider perspective where several
organisations exchange messages. In this regard, BPMN collaboration is
a suitable modelling abstraction. Even if this is a widely accepted nota-
tion, only a limited effort has been expended in formalising its seman-
tics, especially for what it concerns the interplay among control features,
data handling and exchange of messages in scenarios requiring multiple
instances of interacting participants. In this paper, we face the problem
of providing a formal semantics for BPMN collaborations including mul-
tiple instances, while taking into account the data perspective. Beyond
defining a novel formalisation, we also provide a BPMN collaboration
animator tool faithfully implementing the formal semantics. Its visuali-
sation facilities support designers in debugging multi-instance collabora-
tion models.

1 Introduction

Nowadays, modelling is recognised as an important practice also in support-
ing the continuous improvement of IT systems. In particular, IT support for
collaborative systems, where participants can cooperate and share information,
demands for a clear understanding of interactions and data exchanges. To ensure
proper carrying out of such interactions, the participants should be provided with
enough information about the messages they must or may send in a given con-
text. This is particularly important when multiple instances of interacting par-
ticipants are involved. In this regard, BPMN [1] collaboration diagrams result
to be an effective way to reflect how multiple participants cooperate to reach a
shared goal.

Even if widely accepted, a major drawback of BPMN is related to the com-
plexity of the semi-formal definition of its meta-model and the possible misunder-
standing of its execution semantics defined by means of natural text description,
sometimes containing misleading information [2]. This becomes a more promi-
nent issue as we consider BPMN supporting tools, such as animators, simulators
c© Springer Nature Switzerland AG 2018
M. Weske et al. (Eds.): BPM 2018, LNCS 11080, pp. 83–101, 2018.
https://doi.org/10.1007/978-3-319-98648-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98648-7_6&domain=pdf

84 F. Corradini et al.

and enactment tools, whose implementation of the execution semantics may not
be compliant with the standard and be different from each other, thus under-
mining models portability and tools effectiveness.

To overcome these issues, several formalisations have been proposed, mainly
focussing on the control flow perspective (e.g., [3–7]). Less attention has been
paid to provide a formal semantics capturing the interplay between control fea-
tures, message exchanges, and data. These perspectives are strongly related,
especially when a participant interacts with multi-instance participants. In fact,
to achieve successful collaboration interactions, it is required to deliver the mes-
sages arriving at the receiver side to the appropriate instances. As messages
are used to exchange data between participants, the BPMN standard fosters
the use of the content of the messages themselves to correlate them with the
corresponding instances. Thus, the data perspective plays a crucial role when
considering multi-instance collaborations. Despite this, no formal semantics that
considers all together these key aspects of BPMN collaboration models has been
yet proposed in the literature.

In this work, we aim at filling this gap by providing an operational seman-
tics of BPMN collaboration models including multi-instance participants, while
taking into account the data perspective, considering both data objects and
data-based decision gateways. Moreover, we go beyond the mere formalisation,
by developing an animator tool that faithfully implements the proposed for-
mal semantics and visualises the execution of multi-instance collaborations. It is
indeed well recognised that process animators play an important role in enhanc-
ing the understanding of business processes behaviour [8] and that, to this aim,
the faithful correspondence with the semantics is essential [9], although it is
not always supported [10]. Visualisation of model execution via an animator
allows to understand the collaboration history, its current state (also in terms
of data-object values) and possible future executions [11]. This is particularly
useful in case of models that are not implemented yet [12]. Our tool, called
MIDA, supports model designers in achieving a priori knowledge of collabora-
tions behaviour. This can allow them to spot erroneous interactions, which can
easily arise when dealing with multiple instances, and hence to prevent undesired
executions.

To sum up, the major contributions of this paper are:

– The definition of a formal semantics for BPMN collaborations considering
control flow elements, multi-instance pools, data objects and data-based deci-
sion gateways. Besides being useful per se, as it provides a precise understand-
ing of the ambiguous and loose points of the standard, a main benefit of this
formalisation is that it paves the way for the development of tools supporting
model analysis.

– The development of the MIDA tool for animating BPMN collaboration mod-
els. MIDA animation features result helpful both in educational contexts,
for explaining the behaviour of BPMN elements, and in practical modelling
activities, for debugging errors common in multi-instance collaborations.

Animating Multiple Instances in BPMN Collaborations 85

The rest of the paper is organised as follows. Section 2 provides the motiva-
tions underlying the work, and presents our running example. Section 3 intro-
duces the formal framework at the basis of our approach. Section 4 shows how
the formal concepts have been practically realised in the MIDA tool. Section 5
compares our work with the related ones. Finally, Sect. 6 closes the paper with
lessons learned and opportunities for future work.

2 The Interplay Between Multiple Instances, Messages
and Data Objects in BPMN Collaborations

To precisely deal with multiple instances in BPMN collaboration models, it
is necessary to take into account the data flow. Indeed, the creation of process
instances can be triggered by the arrival of messages, which contain data. Within
a process instance, data is stored in data objects, used to drive the instance execu-
tion. Values of data objects can be used to fill the content of outgoing messages,
and vice versa, the content of incoming messages can be stored in data objects.
We clarify below the interplay between such concepts. To this aim, we introduce
a BPMN collaboration model, used as a running example throughout the paper,
concerning the management of the paper reviewing process of a scientific con-
ference (this is a revised version of the model in [13, Sect. 4.7.2] and [14]). The
example concerns the management of a single paper, which is revised by three
reviewers; of course, the management of all papers submitted to the conference
requires to enact the collaboration for each paper.

The collaboration model in Fig. 1 combines the activities of three partici-
pants. The Program Committee (PC) Chair organises the reviewing activities.
For the sake of simplicity, we assume that the considered conference has only
one chair. A Reviewer performs the reviewing activity and, since more than
one reviewer takes part in this, he/she is modelled as a process instance of a
multi-instance pool. Finally, the Contact Author is the person who submitted
the paper to the conference. The reviewing process is started by the PC chair,
who assigns the paper to each reviewer (via a multi-instance sequential activity
with loop cardinality set to 3 according to the number of involved reviewers
for each paper). The paper is passed to the PC chair process by means of a
data input. After all reviews are received, and combined in the Reviews data
object, the chair starts their evaluation. According to the value of the Evalu-
ation data object, the chair prepares the acceptance/rejection letter (stored in
the Letter data object) or, if the paper requires further discussion, the decision
is postponed. Discussion interactions are here abstracted and always result in an
accept or reject decision. The chair then sends back a feedback to each reviewer,
attaches the reviews to the notification letter, and sends the result to the contact
author.

In this scenario, data support is crucial to precisely render the message
exchanges between participants, especially because multiple instances of the
Reviewer process are created. In fact, messages coming into this pool might

86 F. Corradini et al.
PC

 C
hi

ar

Review
Managment

Assign
Paper

R
ev

ie
w

er

Paper
Received

Prepare
Review

Submit
Review

Reviews

Reviews
Evaluation

Prepare
Acceptance

Letter

Prepare
Rejection

Letter

Discuss

Feedback
Received

Send
Feedback Send Results

Decision
Process

Completed

C
on

ta
ct

Au
th

or

Review
Request

Feedback

What is
the

decision?

Reject

Accept

Borderline

Letter

 Paper

Paper
Review

 Receive and
Combine
Reviews

Review
Process

Completed

Review

Received

Read

Processed

Evaluation

Fig. 1. Paper reviewing collaboration model.

start a new process instance, or be routed to existing instances already under-
way. Messages and process instances must contain enough information to deter-
mine, when a message arrives at a pool, if a new process instance is needed or, if
not, which existing instance will handle it. To this aim, BPMN makes use of the
concept of correlation: it is up to each single message to provide the informa-
tion that permits to associate the message with the appropriate (possibly new)
instance. This is achieved by embedding values, called correlation data, in the
content of the message itself. Pattern-matching is used to associate a message
to a distinct receiving task or event. In our example, every time the chair sends
back a feedback to a reviewer, the message must contain information (in our case
reviewer name and paper title) to be correlated to the correct process instance
of Reviewer.

According to the BPMN standard, data objects do not have any direct effect
on the sequence flow or message flow of processes, since tokens do not flow along
data associations [1, p. 221]. However, this statement is questionable. Indeed,
on the one hand, the information stored in data objects can be used to drive
the execution of process instances, as they can be referred in the conditional
expressions of XOR gateways to take decisions about which branch should be
taken. On the other hand, data objects can be connected in input to tasks. In
particular, the standard states that “the Data Objects as inputs into the Tasks act
as an additional constraint for the performance of those Tasks. The performers
[...] cannot start the Task without the appropriate input” [1, p. 183]. In both
cases, a data object has an implicit indirect effect on the execution, since it can
drive the decision taken by a XOR gateway or act as a guard condition on a task.
For instance, in our running example, according to the value of the Evaluation
data object, the conditional expression What is the decision? is evaluated and a
branch of the XOR split gateway is chosen. As another example, the task Send
Results can be executed only if an acceptance or rejection letter is stored in the
Letter data object.

Animating Multiple Instances in BPMN Collaborations 87

Fig. 2. Structures of data objects (a) and messages (b) of the paper reviewing example.

Concerning the content of data objects, the standard left underspecified its
structure, in order to keep the notation independent from the kind of data struc-
ture required from time to time. We consider here a generic record structure,
assuming that a data object is just a list of fields, characterised by a name and
the corresponding value. Of course, a field can be used to represent the state of
a data object. More complex XML-like structures, which are out of the scope of
this work, can be anyway rendered resorting to nesting. The structure in terms
of fields of the data objects used in our running example is specified in Fig. 2(a).
Messages are structured as well; the structure of the messages specified in our
example is shown in Fig. 2(b). Values can be manipulated and inserted into data
object fields via assignments performed by tasks.

Guards, assignments, and structure of data objects and messages are not
explicitly reported in the graphical representation of the BPMN model, but are
defined as attributes of the involved BPMN elements. We provide information
on their definition and functioning in Sect. 3, and show how MIDA users can
specify them in Sect. 4.

3 A Formal Account of Multi-instance Collaborations

In this section we formalise the semantics of BPMN collaborations supporting
multiple instances. We focus on those BPMN elements, informally presented
in the previous section, that are strictly needed to deal with multiple instanti-
ation of collaborations, namely multi-instance pools, message exchange events
and tasks, and data objects; additionally, in order to define meaningful collabo-
rations, we also consider some core BPMN elements, whose preliminary formal-
isation has been given in [15,16].

To simplify the formal treatment of the semantics, we resort to a textual rep-
resentation of BPMN models, which is more manageable for writing operational
rules than the graphical notation. Notice that we do not propose an alternative
modelling notation, but we just define a Backus-Naur Form (BNF) syntax of
BPMN model structures.

Textual Notation of BPMN Collaborations
We report in Fig. 3 the BNF syntax defining the textual notation of BPMN
collaboration models. This syntax only describes the structure of models, without
taking into account all those aspects that come into play to describe the model
semantics, such as token distribution and messages. In the proposed grammar,
the non-terminal symbols C, P and A represent Collaboration Structures, Process

88 F. Corradini et al.

Fig. 3. BNF syntax of BPMN collaboration structures.

Structures and Data Assignments, respectively. The first two syntactic categories
directly refer to the corresponding notions in BPMN, while the latter refers
to list of assignments used to specify updating of data objects. The terminal
symbols, denoted by the sans serif font, are the typical elements of a BPMN
model, i.e. pools, events, tasks and gateways.

We do not provide a direct syntactic representation of Data Objects. The evo-
lution of their state during the model execution is a semantic concern (described
later in this section). Thus, syntactically, only the connections between data
objects and the other elements are relevant. They are rendered by references
to data objects within expressions, used to check when a task is ready to start
(graphically, the task has a connection incoming from the data object), to update
the values stored in a data object (graphically, the task has a connection out-
going to the data object), and to drive the decision of a XOR split gateway. A
data object is structured as a list of fields; the field f of the data object named
d is accessed via d.f.

Intuitively, a BPMN collaboration model is rendered in our syntax as a col-
lection of pools, each one specifying a process. Formally, a collaboration C is a
composition, by means of the ‖ operator, of pools either of the form pool(p, P)
(for single-instance pools) or miPool(p, P) (for multi-instance pools), where p is
the name that uniquely identifies the pool, and P is the enclosed process. At
process level, we use e ∈ E to uniquely denote a sequence edge, while E ∈ 2E a set
of edges. For the convenience of the reader, we refer with ei to the edge incoming
in an element, with eo to the outgoing edge, and with eenb to the (spurious) edge
denoting the enabled status of a start event.

In the data-based setting we consider, messages may carry values. Therefore,
a sending action specifies a list of expressions whose evaluation will return a
tuple of values to be sent, while a receiving action specifies a template to select
matching messages and possibly assign values to data object fields. Formally, a
message is a pair m : ṽ, where m ∈ M is the (unique) message name (i.e., the
label of the message edge), and ṽ is a tuple of values, with v ∈ V and ·̃ denoting
tuples (i.e., ṽ stands for 〈v1, . . . , vn〉). Sending actions have as argument a pair of
the form m : ˜exp. The precise syntax of expressions is deliberately not specified,
it is just assumed that they contain, at least, values v and data object fields d.f.
Receiving actions have as argument a pair of the form m : t̃, where t̃ denotes a

Animating Multiple Instances in BPMN Collaborations 89

Fig. 4. Textual representation of the running example (an excerpt).

template, that is a sequence of expressions and formal fields used as pattern to
select messages received by the pool. Formal fields are data object fields identified
by the ?-tag (e.g., ?d.f) and are used to bind fields to values. In order to store
the received values and allow their reuse, we associate to each message in the
receiving process a data object, whose name coincides with the message name.
Data objects are associated to a task by means of a conditional expression, which
is a guard enabling the task execution, and a list of assignments A, each of which
assigns the value of an expression to a data field. When there is no data object
as input to a task, the guard is simply true, while if there is no data object in
output to a task the list of assignments is empty (ε).

The XOR split gateway specifies guard conditions in its outgoing edges, used
to decide which edge to activate according to the values of data objects. This
is formally rendered as a function G : E → EXP mapping edges to conditional
expressions, where EXP is the set of all expressions that includes the distin-
guished expression default referring to the default sequence edge outgoing from
the gateway (it is assigned to at most one edge). When convenient, we will deal
with function G as a set of pairs (e, exp).

The correspondence between the syntax used here to represent multi-instance
collaborations and the graphical notation of BPMN is exemplified by means
of (an excerpt of) our running example in Fig. 4, while the detailed one-to-one
correspondence is reported in the companion technical report [17]. In the textual
notation, to support a compositional approach, each sequence (resp. message)
edge in the graphical notation is split in two parts: the part outgoing from the
source element and the part incoming into the target element; the two parts are
correlated by the unique edge name. Notably, even if our syntax would allow to
write collaborations that cannot be expressed in BPMN, we only consider those
terms that are derived from BPMN models.

90 F. Corradini et al.

Semantics of BPMN Collaborations
The syntax presented so far represents the mere structure of processes and col-
laborations. To describe their semantics, we mark sequence edges by means of
tokens [1, p. 27]. In particular, we enrich the structural information with a notion
of execution state, defined by the state of each process instance (given by the
marking of sequence edges and the values of data object fields) and the store of
the exchanged messages. We call process configurations and collaboration con-
figurations these stateful descriptions, which produce local and global effects,
respectively, on the collaboration execution.

Formally, a process configuration has the form 〈P, σ, α〉, where: P is a process
structure; σ : E → N is a sequence edge state function specifying, for each
sequence edge, the current number of tokens marking it (N is the set of natural
numbers); and α : F → V is the data state function assigning values (possibly
null) to data object fields (F is the set of data fields and V the set of values).
We denote by σ0 (resp. α0) the edge (resp. data) state where all edges are
unmarked (resp. all fields are set to null). The state obtained by updating in
σ the number of tokens of the edge e to n, written as σ · [e �→ n], is defined as
follows: (σ · [e �→ n])(e′) returns n if e′ = e, otherwise it returns σ(e′). The update
of data state α is similarly defined. To simplify the definition of the operational
rules, we introduce some auxiliary functions to update states. Function inc :
Sσ × E → Sσ (resp. dec : Sσ × E → Sσ), where Sσ is the set of edge states,
updates a state by incrementing (resp. decrementing) by one the number of
tokens marking an edge in the state. They are defined as inc(σ, e) = σ · [e �→
σ(e) + 1] and dec(σ, e) = σ · [e �→ σ(e) − 1]. These functions extend in a natural
ways to sets E of edges. Function reset : Sσ × E → Sσ, instead, updates an
edge state by setting to zero the number of tokens marking an edge in the state:
reset(σ, e) = σ · [e �→ 0]. We use the evaluation relation eval ⊆ EXP × Sα × V

to evaluate an expression over a data state. This is a relation, not a function,
because an expression may contain non-deterministic operators and, in such
a case, its evaluation results in one of the possible values for that expression
with respect to the given data state. Notation eval(exp, α, v) states that v is
one of the possible values resulting from the evaluation of the expression exp
on the data state α. This relation is not explicitly defined, since the syntax of
expressions is deliberately not specified; we only assume that eval(default, α, v)
implies v = false for any α. The relation extends to tuples component-wise.
Finally, relation upd ⊆ Sα × A

n × Sα, where Sα is the set of data states and
A is the set of assignments, is used to update data object values. Notation
upd(α,A, α′) states that α′ is one of the possible states resulting from the update
of α with assignment A. The relation is inductively defined as follows: for any
α, upd(α, ε, α); upd(α, d.f := exp, α · [d.f �→ v]) with v such that eval(exp, α, v);
and upd(α, (A1, A2), α′′) with α′′ such that upd(α′, A2, α

′′) and α′ such that
upd(α,A1, α

′).
A collaboration configuration has the form 〈C, ι, δ〉, where: C is a collabora-

tion structure; ι : P → 2Sσ×Sα is the instance state function mapping each pool
name (P is the set of pool names) to a multiset of instance states (ranged over

Animating Multiple Instances in BPMN Collaborations 91

by I and containing pairs of the form 〈σ, α〉); and δ : M → 2V
n

is a message state
function specifying, for each message name m, a multiset of value tuples repre-
senting the messages received along the message edge labelled by m. Function δ
can be updated in a way similar to σ, enabling the definition of the following aux-
iliary functions. Function add : Sδ ×M×V

n → Sδ (resp. rm : Sδ ×M×V
n → Sδ),

where Sδ is the set of message states, allows updating a message state by
adding (resp. removing) a value tuple for a given message name in the state:
add(δ,m, ṽ) = δ · [m �→ δ(m)+{ṽ}] and rm(δ,m, ṽ) = δ · [m �→ δ(m)−{ṽ}], where
+ and − are the union and substraction operations on multisets. Finally, the
instance state function ι can be updated in two ways: by adding a newly created
instance or by modifying an existing one: newI (ι, p, σ, α) = ι·[p �→ ι(p)+{〈σ, α〉}]
and updI (ι, p, I) = ι · [p �→ I].

Let us go back to our running example. The scenario in its initial state is
rendered as the collaboration configuration 〈(pool(ppc, Ppc) ‖ miPool(pr, Pr) ‖
pool(pca, Pca)), ι, δ〉 where: ι(ppc) = {〈σ, α〉} with σ = σ0 · [eenb �→ 1] and α =
α0 · [Paper.title, . . . ,Paper.body �→ title, . . . , text]; and ι(pr) = ι(pca) = H. The
α function of the ppc instance is initialised with the content of the Paper data
input.

The operational semantics is defined by means of a labelled transition sys-
tem (LTS), whose definition relies on an auxiliary LTS on the behaviour of
processes. The latter is a triple 〈P,L,→〉 where: P, ranged over by 〈P, σ, α〉,
is a set of process configurations; L, ranged over by �, is a set of labels; and
→⊆ P × L × P is a transition relation. We will write 〈P, σ, α〉 �−→ 〈P, σ′, α′〉 to
indicate that (〈P, σ, α〉, �, 〈P, σ′, α′〉) ∈→. Since process execution only affects
the current states, and not the process structure, for the sake of readability we
omit the structure from the target configuration of the transition. Similarly, to
further improve readability, we also omit α when it is not affected by the tran-
sition. Thus, for example, a transition 〈P, σ, α〉 �−→ 〈P, σ′, α〉 can be written as
〈P, σ, α〉 �−→ σ′. The labels � used by the process transition relation have the
following meaning. Label τ denotes an action internal to the process, while !m : ṽ
and ?m : ẽt, A denote sending and receiving actions, respectively. Notation ẽt
denotes an evaluated template, that is a sequence of values and formal fields.
Notably, the receiving label carries information about the data assignments A
to be executed, at collaboration level, after the message m is actually received.
Label new m : ẽt denotes taking place of a receiving action that instantiates a
new process instance (i.e., it corresponds to the occurrence of a start message
event in a multi-instance pool). The meaning of internal actions is as follows: ε
denotes an internal computation concerning the movement of tokens, while kill
denotes taking place of the termination event.

An excerpt of the operational rules defining the transition relation of the
processes semantics is given in Fig. 5 (we present here the rules for the BPMN
elements used in our running example; we refer to [17] for a complete account).
Rule P -Start starts the execution of a (single-instance) process when it has
been activated (i.e., the enabling edge eenb is marked). The effect of the rule is
to increment the number of tokens in the edge outgoing from the start event

92 F. Corradini et al.

Fig. 5. BPMN process semantics.

and to reset the marking of the enabling edge. Rule P -End instead is enabled
when there is at least one token in the incoming edge of the end event, which
is then simply consumed. Rule P -StartRcv starts the execution of a process by
producing a label denoting the creation of a new instance and containing the
information for consuming a received message at the collaboration layer (see rule
C -CreateMi in Fig. 6). Rule P -XorSplit1 is applied when a token is available in
the incoming edge of a XOR split gateway and a conditional expression of one
of its outgoing edges is evaluated to true; the rule decrements the token in the
incoming edge and increments the token in the selected outgoing edge. Notably,
if more edges have their guards satisfied, one of them is non-deterministically
chosen. Rule P -XorSplit2 is applied when all guard expressions are evaluated
to false; in this case the default edge is marked. Rule P -XorJoin is activated
every time there is a token in one of the incoming edges, which is then moved to
the outgoing edge. Rule P -Task deals with tasks, possibly equipped with data
objects. It is activated only when the guard expression is satisfied and there
is a token in the incoming edge, which is then moved to the outgoing edge.
The rule also updates the values of the data objects connected in output to

Animating Multiple Instances in BPMN Collaborations 93

the task. Rule P -TaskRcv is similar, but it produces a label corresponding to
the consumption of a message. In this case, however, the data updates are not
executed, because they must be done only after the message is actually received;
therefore, the assignment are passed by means of the label to the collaboration
layer. Rule P -TaskSnd sends a message, updates the data object and moves the
incoming token to the outgoing edge. The produced send label is used to deliver
the message at the collaboration layer. We consider tasks with atomic execution;
relaxation of this requirement is shown in [17]. Finally, rule P -Int1 deals with
interleaving in a standard way for process elements.

Now, the labelled transition relation on collaboration configurations for-
malises the message exchange and the data update according to the process
evolution. The LTS is a triple 〈C,Lc,→c〉 where: C, ranged over by 〈C, ι, δ〉, is a
set of collaboration configurations; Lc, ranged over by l, is a set of labels; and
→c⊆ C × Lc × C is a transition relation. We apply the same readability simplifi-
cations we use for process configuration transitions. Labels l are as follows: τ is
an internal action, !m : ṽ is a sending action, and ?m : ṽ and new m : ṽ are receiving
actions. Notably, at collaboration level the receiving labels just keep track of the
received message. To define the collaboration semantics, an auxiliary function is
needed: match(ẽt, ṽ) is a partial function performing pattern-matching on struc-
tured data (like in [18]), thus determining if an evaluated template ẽt matches a
tuple of values ṽ. A successful matching returns a list of assignments A, updating
the formal fields in the template; otherwise, the function is undefined.

The relevant operational rules defining the transition relation of the collabo-
ration semantics are given in Fig. 6 (the full account is in [17]). Rule C -CreateMi
deals with instance creation in the multi-instance case. An instance is created
if there is a matching message; as result, the assignments for the received data
are performed, and the message is consumed. The created instance is added to
the multiset of existing instances of the pool. The (omitted) single-instance case
is similar, except that the instance is created only if no instance exists for the
considered pool (ι(p) = H). The next three rules allow a single pool to evolve
according to the evolution of one of its process instances 〈P, σ, α〉. In particu-
lar, if the process instance performs an internal action (rule C -InternalMi) or
a receiving/delivery action (rules C -ReceiveMi or C -DeliverMi), the pool per-
forms the corresponding action at collaboration layer. As for instance creation,
rule C -ReceiveMi can be applied only if there is at least one matching mes-
sage. Recall indeed that at process level the receiving labels just indicate the
willingness of a process instance to consume a received message, regardless the
actual presence of messages. The delivering of messages is based on the correla-
tion mechanism: the correlation data are identified by the template fields that
are not formal (i.e., those fields requiring specific matching values). Moreover,
when a process performs a sending action, the message state function is updated
in order to deliver the sent message to the receiving participant. Finally, rule
C -Int1 permits interleaving the processes execution.

It is worth noticing that the semantics has been defined according to a global
perspective. Indeed, the overall state of a collaboration is collected by functions ι

94 F. Corradini et al.

and δ of its configuration. On the other hand, the global semantics of a collabora-
tion configuration is determined, in a compositional way, by the local semantics
of the involved processes, which evolve independently from each other. The use
of a global perspective simplifies (i) the technicalities required by the formal
definition of the semantics, and (ii) the implementation of the animation of the
overall collaboration execution. The compositional definition of the semantics,
anyway, would allow to easily pass to a purely local perspective, where state
functions are kept separate for each process.

4 The MIDA Animation Tool

In this section, we present our BPMN animator tool MIDA (Multiple Instances
and Data Animator) and provide details about its implementation and use.
MIDA is based on the Camunda bpmn.io web modeller. More precisely, we
have integrated our formal framework into the bpmn.io token simulation plug-
in. The MIDA tool, as well as its source code, user guide and examples, are
freely available from http://pros.unicam.it/mida/.

MIDA is a web application written in JavaScript. Its graphical interface,
shown in Fig. 7, is conceived as a modelling environment. It allows users to create
BPMN models using all the facilities of the Camunda modeller. In particular,
data/message structures, guards and assignments can be specified by using the
Property Panel, which permits accessing element attributes. This information is
stored in appropriate elements of the standard XML representation of the BPMN
model. When the animation mode is activated, by clicking the corresponding
button, one or more instances of the desired processes can be fired. To do this,

Fig. 6. BPMN collaboration semantics.

http://pros.unicam.it/mida/

Animating Multiple Instances in BPMN Collaborations 95

Fig. 7. MIDA web interface.

users have to press the play button depicted over each fireable start event. This
creates a new token labelled with a number uniquely representing a process
instance. Tokens will cross the model following the rules induced by our formal
semantics. The execution of a process instance terminates once all its tokens
cannot move forward. We refer to the MIDA’s user guide for more details on
the practical use of the tool.

MIDA animation features may be an effective support to business process
designers in their modelling activities, especially when multi-instance collabo-
rations are involved. Indeed, in this context, the choice of correlation data is
an error-prone task that is a burden on the shoulders of the designers. For
example, let us consider the Reviewer participant in our running scenario; if
the template within the task for receiving the feedback would not properly
specify the correlation data (e.g., t̃3 = 〈?Feedback.reviewerName, ?Feedback.title,
?Feedback.evaluation〉), the feedback messages could not be properly delivered.
Indeed, each Reviewer instance would be able to match any feedback message,
regardless the reviewer name and the paper title specified in the message. Thus,
the feedback messages could be mixed up. Fortunately, MIDA allows to detect,
and hence solve, this correlation issue. Similarly, MIDA helps designers to detect
issues concerning the exchange of messages. In fact, malformed or unexpected
messages may introduce deadlocks in the execution flow, which can be easily
identified by looking for blocked tokens in the animation. For instance, in the
running example a feedback message without the evaluation field would be never
consumed by a receiving task of the Reviewer instances. Finally, since our ani-
mation is based on data object values, also issues due to bad data handling can
be detected using MIDA. For instance, let us suppose that the Discuss task in
PC Chair would not be in a loop, but it would have its outgoing edge directly
connected to the XOR join in its right hand side. After the execution of the
Discuss task, the task Send Feedback would be performed, and the task Send
Results would be activated. However, the guard of the latter task would not
be satisfied, because the Letter data object would not be properly instantiated.
This would cause a deadlock, which can be found out by using MIDA.

96 F. Corradini et al.

To sum up, the MIDA tool can support designers in debugging their multi-
instance collaboration models, as it permits to check the evolution of data, mes-
sages and processes marking while executing the models step-by-step. Like in
code debugging, the identification of the bug is still in charge of the human user.

5 Related Work

In this section we discuss the most relevant attempts in formalising multiple
instances and data for BPMN models. We then compare MIDA with other
animation tools.

On Formalising Multiple Instances and Data. Many works in the litera-
ture attempted to formalise the core features of BPMN. However, most of them
(see, e.g., [3–7]) do not consider multiple instances and data, which are the focus
of our work. Considering these features in BPMN collaborations, relevant works
are [19–22]. Meyer et al. in [19] focus on process models where data objects are
shared entities and the correlation mechanism is used to distinguish and refer
data object instances. Use of data objects local to (multiple) instances, exchange
of messages between participants, and correlation of messages are instead our
focus. In [20], the authors describe a model-driven approach for BPMN to include
the data perspective. Differently from us, they do not provide a formal semantics
for BPMN multiple instances. Moreover, they do not use data in decision gate-
ways. Moreover, Kheldoun et al. propose in [21] a formal semantics of BPMN
covering features such as message-exchange, cancellation, multiple instantiation
of sub-processes and exception handling, while taking into account data flow
aspects. However, they do not consider multi-instance pools and do not address
the correlation issue. Semantics of data objects and their use in decision gate-
ways is instead proposed by El-Saber and Boronat in [22]. Differently from us,
this formal treatment does not include collaborations and, hence, exchange of
messages and multiple instances. Considering other modelling languages, YAWL
[23] and high-level Petri nets [24] provide direct support for the multiple instance
patterns. However, they lack support for handling data. In both cases, process
instances are characterised by their identities, rather than by the values of their
data, which are however necessary to correlate messages to running instances.

Regarding choreographies, relevant works are [25–27]. Gómez-López et al. [25]
study the choreography problem derived from the synchronisation of multiple
instances necessary for the management of data dependencies. Knuplesch et al.
[26] introduces a data-aware collaboration approach including formal correctness
criteria. However, they define the data perspective using data-aware interaction
nets, a proprietary notation, instead of the wider accepted BPMN. Improving
data-awareness and data-related capabilities for choreographies is the goal of
Hahn et al. [27]. They propose a way to unify the data flow across participants
with the data flow inside a participant. The scope of data objects is global to
the overall choreography, while we consider data objects with scope local to
participant instances, as prescribed by the BPMN standard. Apart from the
specific differences mentioned above, our work differs from the others for the

Animating Multiple Instances in BPMN Collaborations 97

focus on collaboration diagrams, rather than on choreographies. This allows us
to specifically deal with multiple process instantiation and messages correlation.

Finally, concerning the correlation mechanism, the BPMN standard and,
hence, our work have been mainly inspired by works in the area of service-
oriented computing (see the relationship between BPMN and WS-BPEL [28]
in [1, Sect. 14.1.2]). In fact, when a service engages in multiple interactions, it
is generally required to create an instance to concurrently serve each request,
and correlate subsequent incoming messages to the created instances. Among the
others, the COWS [18] formalism captures the basic aspects of SOC systems, and
in particular service instantiation and message correlation à la WS-BPEL. From
the formal point of view, correlation is realised by means of a pattern-matching
function similar to that used in our formal semantics.

Business Process Animation. Relevant contributions about animation of
business processes are proposed by Allweyer and Schweitzer [12], and by Sig-
navio and Visual Paradigm. Differently from us, in their implementations they
do not fully support the interplay between multiple instances, messages and
data. Allweyer and Schweitzer propose a tool for animating BPMN models that,
however, only considers processes, as it discards message exchanges, both seman-
tically and graphically. In addition, gateway decisions are performed manually by
users during the animation, instead of depending on data. The animator of the
Signavio modeller allows users to step through the process element-by-element
and to focus completely on the process flow. However, it discards important ele-
ments, such as message flows and data objects. Hence, Signavio animates only
non-collaborative processes, without data-driven decisions, which instead are key
features of our approach. Finally, Visual Paradigm provides an animator that
supports also collaboration diagrams. This tool allows users to visualise the flow
of messages and implements the semantics of receiving tasks and events, but it
does not animate data evolution and multiple instances.

6 Concluding Remarks

This paper aims at answering the following research questions:

RQ1: What is the precise semantics of multi-instance BPMN collaborations?
RQ2: Can supporting tools assist designers to spot erroneous behaviours related
to multiple instantiation and data handling in BPMN collaborations?

The answer to RQ1 is mainly given in Sect. 3, where we provide a novel opera-
tional semantics clarifying the interplay between control features, data, message
exchanges and multiple instances. The answer to RQ2 is instead given in Sect. 4,
where we propose MIDA, an animator tool, based on our formal semantics,
that provides the visualisation of the behaviour of a collaboration by taking
into account the data-based correlation of messages to process instances. We
have shown, on our running example, that MIDA supports the identification
of erroneous interactions, due e.g. to incorrect data handling or wrong message
correlation.

98 F. Corradini et al.

We conclude the paper by discussing lessons learned, and the assumptions
and limitations of our approach, also touching upon directions for future work.

Lessons Learned. The BPMN standard has the flavour of a framework rather
than of a concrete language, because some aspects are not covered by it, but
left to the designer [13]. For example, the standard left underspecified the inter-
nal structure of data objects: “Data Object elements can optionally reference a
DataState element [...] The definition of these states, e.g., possible values and
any specific semantics are out of scope of this specification” [1, p. 206]. This gap
left by the BPMN standard must be filled in order to concretely deal with data
in our formalisation, and hence in the animation of BPMN collaboration models.
To this aim, we consider a generic record structure for data objects. Similarly,
the expression language operating on data is left unspecified by the standard.
This is not an issue for the formalisation, but the expression language has to
be instantiated in the concrete implementation of the animator. In MIDA, for
the sake of simplicity, we resort to the expression language of JavaScript, as this
is the programming language used for implementing the tool. It conveniently
allows, for example, to define expression operators that randomly select a value
from a given set, which are used to define non-deterministic behaviours in our
running example (see, e.g., operator assignscore() used by the Prepare Review
task).

In addition, the lack of a formal semantics in the standard may lead to dif-
ferent interpretations of the tricky features of BPMN. In this work we aim at
clarifying the interplay between multiple instances, messages and data objects.
In particular, the standard provides an informal description of the mechanism
used to correlate messages and process instances [1, p. 74], which we have for-
malised and implemented by following the solution adopted by the standard for
executable business processes [28].

Assumptions and Limitations. Our formal semantics focusses on the com-
munication mechanisms of collaborative systems, where multiple participants
cooperate and share information. Thus, we have left out those features of BPMN
whose formal treatment is orthogonal to the addressed problem, such as timed
events and error handling. To keep our formalisation more manageable, multi-
instance parallel tasks, sub-processes and data stores are left out too, despite
they can be relevant for multi-instance collaborations. We discuss below what
would be the impact of their addition to our work.

Let us first consider multi-instance tasks. The sequential instances case, as
shown in the formalisation of our running example, can be simply dealt with as a
macro; indeed, it corresponds to a task enclosed within a ‘for’ loop. The parallel
case, instead, is more tricky. It is a common practice to consider it as a macro
as well, which can be replaced by tasks between AND split and join gateways
[3,23], assuming to know at design time the number of instances to be generated.
However, this replacement is no longer admissible when this kind of element is
used within multi-instance pools [17], thus requiring a direct definition of the
formal semantics of multi-instance parallel tasks.

Animating Multiple Instances in BPMN Collaborations 99

Similar reasoning can be done for sub-processes, which again are not mere
macros. In fact, in general, simply flattening a process by replacing its sub-
process elements by their expanded processes results in a model with different
behaviour. This because a sub-process, for example, delimits the scope of the
enclosed data objects and confines the effect of termination events. Therefore, it
would be necessary to explicitly deal with the resulting multi-layer perspective,
which adds complexity to the formal treatment. The formalisation would become
even more complex if we consider multi-instance sub-processes, which would
require an extension of the correlation mechanism.

Moreover, we do not consider BPMN data stores, used to memorise shared
information that will persist beyond process instance completion. Providing a
formalisation for data stores would require to extend collaboration configurations
with a further state function, dedicated to data stores. Moreover, the treatment
of data assignments would become more intricate, as it would be necessary to dis-
tinguish updates of data objects from those of data stores, which affect different
data state functions in the configuration.

Finally, values of data objects can be somehow “constrained” by assign-
ments. Indeed, as mentioned above in the Lessons learned paragraph, assignment
expressions can restrict the set of possible values that can be assigned to a data
object field. Moreover, guard expressions of tasks or XOR split gateways can
check if data object values respect given conditions. However, such constraints
imposed on data object values are currently “hidden” in the expressions and,
hence, in their evaluation. Assignments could be extended with an explicit defi-
nition of constraints in order to ease their specification and make more evident
the effects of assignments on data values.

Future Work. We plan to continue our programme to effectively support mod-
elling and animation of BPMN multi-instance collaborations, by overcoming the
above limitations. More practically, we intend to enlarge the range of functional-
ities provided by MIDA, especially for what concerns the data perspective, and
improve its usability. Moreover, we plan to exploit the formal semantics, and
its implementation, to enable the verification of properties using, e.g., model
checking techniques.

References

1. OMG: Business Process Model and Notation (BPMN V 2.0) (2011)
2. Suchenia, A., Potempa, T., Ligȩza, A., Jobczyk, K., Kluza, K.: Selected approaches

towards taxonomy of business process anomalies. In: Pe�lech-Pilichowski, T., Mach-
Król, M., Olszak, C.M. (eds.) Advances in Business ICT: New Ideas from Ongoing
Research. SCI, vol. 658, pp. 65–85. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-47208-9 5

3. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

https://doi.org/10.1007/978-3-319-47208-9_5
https://doi.org/10.1007/978-3-319-47208-9_5

100 F. Corradini et al.

4. Decker, G., Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Transforming BPMN
diagrams into YAWL nets. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240, pp. 386–389. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85758-7 30

5. Wong, P.Y.H., Gibbons, J.: A process semantics for BPMN. In: Liu, S., Maibaum,
T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-88194-0 22

6. Börger, E., Thalheim, B.: A method for verifiable and validatable business process
modeling. In: Börger, E., Cisternino, A. (eds.) Advances in Software Engineering.
LNCS, vol. 5316, pp. 59–115. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-89762-0 3

7. Van Gorp, P., Dijkman, R.: A visual token-based formalization of BPMN 2.0 based
on in-place transformations. Inf. Softw. Technol. 55(2), 365–394 (2013)

8. Hermann, A., et al.: Collaborative business process management - a literature-
based analysis of methods for supporting model understandability. In: WI, pp.
286–300 (2017)

9. Becker, J., Kugeler, M., Rosemann, M.: Process Management: A Guide for the
Design of Business Processes. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-540-24798-2

10. Emens, R., Vanderfeesten, I., Reijers, H.A.: The dynamic visualization of business
process models: a prototype and evaluation. In: Reichert, M., Reijers, H.A. (eds.)
BPM 2015. LNBIP, vol. 256, pp. 559–570. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-42887-1 45

11. Momotko, M., Nowicki, B.: Visualisation of (distributed) process execution based
on extended BPMN. In: DEXA, pp. 280–284. IEEE (2003)

12. Allweyer, T., Schweitzer, S.: A tool for animating BPMN token flow. In: Mendling,
J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 98–106. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33155-8 8

13. Weske, M.: Business Process Management. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73522-9

14. Corradini, F., Fornari, F., Muzi, C., Polini, A., Re, B., Tiezzi, F.: On avoiding
erroneous synchronization in BPMN processes. In: Abramowicz, W. (ed.) BIS 2017.
LNBIP, vol. 288, pp. 106–119. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59336-4 8

15. Corradini, F., Polini, A., Re, B., Tiezzi, F.: An operational semantics of BPMN
collaboration. In: Braga, C., Ölveczky, P.C. (eds.) FACS 2015. LNCS, vol. 9539, pp.
161–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28934-2 9

16. Corradini, F., Muzi, C., Re, B., Rossi, L., Tiezzi, F.: Global vs. local semantics
of BPMN 2.0 Or-Join. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J.,
Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 321–336. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-73117-9 23

17. Corradini, F., Muzi, C., Re, B., Rossi, L., Tiezzi, F.: Animating multiple instances
in BPMN collaborations. Technical report, University of Camerino (2018). http://
pros.unicam.it/mida/

18. Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. J. Appl. Log.
10(1), 2–31 (2012)

19. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting complex
data dependencies in business processes. In: Daniel, F., Wang, J., Weber, B. (eds.)
BPM 2013. LNCS, vol. 8094, pp. 171–186. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40176-3 14

https://doi.org/10.1007/978-3-540-85758-7_30
https://doi.org/10.1007/978-3-540-85758-7_30
https://doi.org/10.1007/978-3-540-88194-0_22
https://doi.org/10.1007/978-3-540-89762-0_3
https://doi.org/10.1007/978-3-540-89762-0_3
https://doi.org/10.1007/978-3-540-24798-2
https://doi.org/10.1007/978-3-540-24798-2
https://doi.org/10.1007/978-3-319-42887-1_45
https://doi.org/10.1007/978-3-319-42887-1_45
https://doi.org/10.1007/978-3-642-33155-8_8
https://doi.org/10.1007/978-3-540-73522-9
https://doi.org/10.1007/978-3-540-73522-9
https://doi.org/10.1007/978-3-319-59336-4_8
https://doi.org/10.1007/978-3-319-59336-4_8
https://doi.org/10.1007/978-3-319-28934-2_9
https://doi.org/10.1007/978-3-319-73117-9_23
http://pros.unicam.it/mida/
http://pros.unicam.it/mida/
https://doi.org/10.1007/978-3-642-40176-3_14
https://doi.org/10.1007/978-3-642-40176-3_14

Animating Multiple Instances in BPMN Collaborations 101

20. Meyer, A., et al.: Data perspective in process choreographies: modeling and exe-
cution. In: Techn. Ber. BPM Center Report BPM-13-29 (2013). BPMcenter.org

21. Kheldoun, A., Barkaoui, K., Ioualalen, M.: Formal verification of complex business
processes based on high-level Petri nets. Inf. Sci. 385–386, 39–54 (2017)

22. El-Saber, N.A.: CMMI-CM compliance checking of formal BPMN models using
Maude. Ph.D. thesis, Department of Computer Science (2015)

23. Wohed, P., et al.: Pattern-based analysis of UML activity diagrams. Beta, Research
School for Operations Management and Logistics, Eindhoven (2004)

24. Van Der Aalst, W.M., Ter Hofstede, A.H.: YAWL: yet another workflow language.
Inf. Syst. 30(4), 245–275 (2005)

25. Gómez-López, M.T., Pérez-Álvarez, J.M., Varela-Vaca, A.J., Gasca, R.M.: Guiding
the creation of choreographed processes with multiple instances based on data
models. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp.
239–251. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7 18

26. Knuplesch, D., et al.: Data-aware interaction in distributed and collaborative work-
flows: modeling, semantics, correctness. In: CollaborateCom, pp. 223–232. IEEE
(2012)

27. Hahn, M., Breitenbücher, U., Kopp, O., Leymann, F.: Modeling and execution of
data-aware choreographies: an overview. Comput. Sci.-Res. Dev. 33, 1–12 (2017)

28. OASIS WS BPEL TC: Web Services Business Process Execution Language Version
2.0. Technical report, OASIS, April 2007

http://bpmcenter.org/
https://doi.org/10.1007/978-3-319-58457-7_18

	Animating Multiple Instances in BPMN Collaborations: From Formal Semantics to Tool Support
	1 Introduction
	2 The Interplay Between Multiple Instances, Messages and Data Objects in BPMN Collaborations
	3 A Formal Account of Multi-instance Collaborations
	4 The MIDA Animation Tool
	5 Related Work
	6 Concluding Remarks
	References

