
Feature-Oriented Composition
of Declarative Artifact-Centric

Process Models

Rik Eshuis(B)

Eindhoven University of Technology,
P.O. Box 516, 5600 MB Eindhoven, The Netherlands

h.eshuis@tue.nl

Abstract. Declarative business process models that are centered
around artifacts, which represent key business entities, have proven useful
to specify knowledge-intensive processes. Currently, declarative artifact-
centric process models need to be designed from scratch, even though
existing model fragments could be reused to gain efficiency in designing
and maintaining such models. To address this problem, this paper pro-
poses an approach for composing model fragments, abstracted into fea-
tures, into fully specified declarative artifact-centric process models. We
use Guard-Stage-Milestone (GSM) schemas as modeling language and
let each feature denote a GSM schema fragment. The approach supports
feature composition at different levels of granularity. Correctness crite-
ria are defined that guarantee that valid GSM schemas are derived. The
approach is evaluated by applying it to an industrial process. Using the
approach, declarative artifact-centric process models can be composed
from existing model fragments in an efficient and correct way.

1 Introduction

In many business processes, data items are being processed in a non-routine way
by knowledge workers. Such data-driven processes are knowledge-intensive [10],
since expert knowledge is required to make progress for individual cases. Appli-
cation domains are case management [1,28,29] and emergency management [10].
Artifact-centric process models are a natural fit to model data-driven pro-
cesses [8,21]. An artifact represents a real-world business entity, such as Product
or Order, about which data is processed and for which activities are performed.

Data-driven business processes are much more unpredictable than traditional
activity-centric processes. The structure of a data-driven process model depends
on the case data that is being processed [10]. Knowledge workers play a key role
in determining this structure while performing the process. Given their expertise,
they have a lot of freedom in deciding how to process individual cases. This suits
a declarative specification of processes [15], in which workers have more freedom
in performing processes than with a procedural specification. Several declarative
process modeling languages have been proposed in the past years [15], including
the Guard-Stage-Milestone (GSM) language for artifacts [9,17].
c© Springer Nature Switzerland AG 2018
M. Weske et al. (Eds.): BPM 2018, LNCS 11080, pp. 66–82, 2018.
https://doi.org/10.1007/978-3-319-98648-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98648-7_5&domain=pdf

Feature-Oriented Composition 67

Designing declarative artifact-centric process models is currently done in an
inefficient way. Such models need to be developed from scratch, even though they
could be defined by reusing fragments in existing models. Since similar fragments
need to be specified again and again for new artifact-centric process models, the
design process is inefficient. Also, maintenance of the different process models is
inefficient, since each occurrence of a fragment across different process models
needs to be maintained separately, so updates need to be replicated.

To address this problem, this paper proposes a feature-oriented approach
for composing declarative artifact-centric process models. A feature denotes a
fragment of a declarative artifact-centric process model. The approach formally
defines how to compose features into declarative artifact-centric process models.
From the same set of features, different artifact-centric process models can be
composed that share common fragments. The approach supports reuse of those
common fragments across different declarative artifact-centric process models.

We use Guard-Stage-Milestone (GSM) [17] as declarative modeling language
for business artifacts. GSM is well-defined [9], thus providing a sound basis for
the approach. Next, its core modeling constructs have been adopted in the OMG
Case Management Model and Notation (CMMN) [7,21]. Therefore, the results
can provide a stepping stone towards managing variability for CMMN models.

The approach is inspired by feature-oriented design in software product
lines [2,23]. Features are used to distinguish common and variable parts in soft-
ware artifacts [2] and this way support reuse of software artifacts [5]. Similar
to feature-oriented composition for software product lines, the approach sup-
ports composition at different levels of granularity [3]. Key difference is that
the approach considers the syntactic and semantic level of business artifacts,
whereas software product lines only consider the syntactic level of software arti-
facts [2,23]. Section 7 discusses related work, also from the area of BPM, in more
detail.

The paper is organized as follows. Section 2 presents a running example and
also introduces GSM schemas [9], which Sect. 3 formally defines. Section 4 defines
the feature composition approach while Sect. 5 presents correctness criteria that
guarantee that the compositions are valid GSM schemas. Section 6 evaluates
the feasibility and potential gain of the approach by applying it to an industrial
process that has several variants. Section 7 discusses related work. Section 8 ends
the paper with conclusions.

2 Motivating Example

To motivate the use of the feature-oriented composition approach and to infor-
mally introduce GSM schemas, we first present an example. It is based on a
real-world process from an international high tech company. The example is
revisited in Sects. 3 and 4 to illustrate key definitions.

In the process, business criteria for a partner contract are assessed: first
data about the partner is gathered and pre-checked, and next a detailed check
is performed to decide whether the criteria should be changed or not. If new

68 R. Eshuis

Initial Data
Gathering

Detailed
Check

IDGS DCU

DCS
PCS

Business
Performance
Evaluation

Check

BPECS

BPECU
PCU

Preliminary Check

Fig. 1. Base GSM schema Business Criteria Assessment (BCAbase)

Table 1. Stages and sentries for BCAbase in Fig. 1. ‘;’ separates different sentries

Stage Plus sentries (guards) Minus sentries (closing)

Initial Data Gathering E:StartAssessment ;
E:AdditionalInfo

IDGS

Preliminary Check IDGS PCS ; PCU ;
E:AdditionalInfo

Business Performance
Evaluation Check

+Preliminary Check BPECS ; BPECU ;
-Preliminary Check

Detailed Check PCS DCS ; DCU

information arrives before the business criteria have been assessed, the data is
gathered anew and the business criteria check is restarted, if applicable. Figure 1
shows a graphical representation of a GSM schema that models this process.
Each rounded rectangle represents a stage, in which work is performed. Each
circle represent a milestone, which is a business objective. A milestone is typically
achieved by completing the work in a stage, represented by putting the milestone
on the right border of the stage. The status of each stage and milestone is
represented by a Boolean attribute, which is true (false) if the stage is open
(closed) or the milestone is achieved (invalid). Stages and milestones change
status if certain conditions, called sentries, are met (Tables 1 and 2). Each stage
has plus sentries, called guards, that specify when it is opened and minus sentries
that specify when it is closed, which could be never (false). Each guard of a
stage is visualized as a diamond. Each milestone has plus (minus) sentries that
specify when it is achieved (invalidated). Sentries can refer to external or internal
events. External events are named events (prefix E:) or completion events of
atomic stages (prefix C:). Internal events denote status changes of stages and
milestones; a status can become true (prefix +) or false (prefix -). Besides status
changes, sentries can refer to the statuses of stages and milestones; for instance,
the minus sentry of stage Initial Data Gathering closes the stage if the status of
milestone IDGS is true (achieved). Section 3 gives more details on GSM schemas.

The company has offices in different geographic regions, each of which has its
own flavor of the process. This results, among others, in three basic variations
for the preliminary check in this process (see Table 3). These variations can be
combined in a concrete variant, yielding in total eight variants, one of which is
the base process in Fig. 1, in which none of the variations has been chosen.

Feature-Oriented Composition 69

Table 2. Milestones and sentries for BCAbase in Fig. 1

Milestone Full name Plus sentries (achieving) Minus sentries
(invalidating)

IDGS Initial Data Gathering
Successful

C:Initial Data Gathering E:AdditionalInfo

BPECS Business Performance
Evaluation Check
Successful

C:Business Performance
Evaluation Check ∧
BP good

E:AdditionalInfo

BPECU Business Performance
Evaluation Check
Unsuccessful

C:Business Performance
Evaluation Check
∧¬BP good

E:AdditionalInfo

PCS Pre-checks Successful BPECS false

PCU Pre-checks Unsuccessful BPECU false

DCS Detailed Check Successful C:Detailed Check ∧ . . . false

DCU Detailed Check
Unsuccessful

C:Detailed Check ∧ . . . false

Table 3. Variations of BCAbase

1 Business performance is checked if the company has more than 300 employees

2 The credit is checked as part of the preliminary check

3 The addressable market is checked as part of the preliminary check

Specifying these eight variants in separate process models leads to redun-
dancy, both regarding the models and the modeling process. In that case modi-
fying one common element like milestone PCS in those eight variants has to be
done eight times rather than once. Moreover, drawing each of the eight models
has to be done from scratch, since there is no reuse.

To address these problems, we develop an approach based on the technique of
feature-oriented composition, well known from Software Product Lines [2]. The
same feature can be reused in different compositions. In this paper, a feature
denotes a GSM schema, which can be either fully or partially defined (a schema
fragment). The GSM schema fragments for variations 1 and 2 in Table 3 are
presented and discussed in Sect. 4.

A key challenge is how to compose features that denote GSM schema frag-
ments. In Sect. 4, we define a binary feature composition operator ‘•’ that sup-
ports composition at different levels of granularity [2]. A coarse-grained feature
composition adds new stages and milestones to a GSM schema. A fine-grained
feature composition modifies sentries of existing stages or milestones. Feature
composition for GSM schemas requires both granularity levels to be of practical
value. For instance, for the variations in Table 3, the coarse-grained feature for
variation 2 (defined in Sect. 4) specifies extra work, so it needs to introduce addi-
tional stage and milestones to the base schema, while the fine-grained feature for

70 R. Eshuis

variation 1 (also defined in Sect. 4) needs to modify the plus sentries of Business
Performance Evaluation Check and PCS in the base schema.

Designing a new GSM schema variant based on this approach comes down to
selecting the relevant features and defining their composition order. The GSM
schema variant is then automatically derived by composing the GSM schema
fragments corresponding to the selected features in the defined order. This way,
the approach shields designers from the complexity of designing GSM schemas
and allows them to quickly generate different variants from a set of fragments.
Maintaining the variants is efficient, since an update to a shared fragment can
be propagated automatically to all the affected variants by recomposing them.

3 GSM Schemas

Syntax. A GSM schema [9] consists of data attributes and status attributes.
A status attribute is a Boolean variable that denotes the status of a stage or
milestone. For a status attribute of a stage, value true denotes that the stage is
open, value false that the stage is closed. For a status attribute of a milestone,
value true denotes that the milestone is achieved, value false that the milestone
is invalid.

Event-Condition-Action rules define for which event under which condition
a status attribute changes value (action). The event-condition part of a rule is
called a sentry. The event of a sentry is optional. We distinguish between external
and internal events. An external event signifies a change in the environment. It
is either a stage completion event C:S, where S is an atomic stage, as defined
below, or a named external event E:n, where n is an event name. An internal
event signifies a change in value of a status attribute a: internal event +a denotes
that a becomes true, −a that a becomes false. For instance, +Preliminary Check
in Table 1 is an internal event that signifies that stage Preliminary Check gets
opened. The condition of a sentry is a Boolean expression that can refer to data
attributes or status attributes. The action of each rule is that a status attribute
becomes true or false. Given these two distinct actions, we distinguish between
two types of sentries. A plus sentry defines when a stage becomes open or a
milestone gets achieved. A minus sentry defines when a stage is closed or a
milestone gets invalid.

Stages and milestones can be nested inside other stages. A milestone cannot
contain any other milestone or stage. We require that the nesting relation induces
a forest, i.e., the nesting relation is acyclic and if a stage or milestone is nested
in two other stages S1, S2, then either S1 is nested in S2 or S2 in S1. Stage
completion events only exist for the most nested stages, which are called atomic.

We next formally define GSM schemas. We assume a global universe U of
named external events and attributes, partitioned into sets of named external
events UE , data attributes Ud, stage attributes US , and milestone attributes Um.

Definition 1 (GSM schema). A GSM schema is a tuple Γ = (A = Ad ∪AS ∪
Am, E = Eext ∪ Ecmp,�,R = R+ ∪ R−), where

Feature-Oriented Composition 71

– Ad ⊆ Ud is a finite set of data attributes;
– AS ⊆ US is a finite set of stage attributes;
– Am ⊆ Um is a finite set of milestone attributes;
– Eext = { E:n | n ∈ Ev } is a finite set of named external events, where

Ev ⊆ UE;
– Ecmp = { C:S | S ∈ AS ∧ S is atomic } is the set of stage completion events;
– �⊆ (AS ∪ Am)×AS is a partial order on stages and milestones that induces

a forest, i.e., if a1 � a2 and a1 � a3, then a2 � a3 or a3 � a2;
– R+, R− are functions assigning to each status attribute AS ∪Am non-empty

sets of sentries (see Definition 2). For a ∈ AS ∪ Am, R+(a) is the set of
plus sentries that define the conditions when to open stage a ∈ AS or achieve
milestone a ∈ Am, while R−(a) is the set of minus sentries that define the
conditions when to close stage a ∈ AS or invalidate milestone a ∈ Am.

Stage S is atomic if there is no other stage S′ ∈ AS such that S′ � S. The
definition of � ensures that milestones are atomic by default. Relation � is
visually depicted using nesting. For instance, Business Performance Evaluation
Check � Preliminary Check and BPECS � Preliminary Check in Fig. 1.

Each sentry ϕ in set R+(a), where a ∈ AS ∪ Am, maps into an Event-
Condition-Action rule “ϕ then+a”, where sentry ϕ is the Event-Condition part
and action +a denotes for a ∈ AS that stage a gets opened and for a ∈ Am

that milestone a gets achieved. Each sentry ϕ in set R−(a) maps into a rule
“ϕ then−a”, where action −a denotes for a ∈ AS that stage a gets closed and
for a ∈ Am that milestone a gets invalid. For example, the plus sentry for
milestone BPECS (cf. Table 2) is C:Business Performance Evaluation Check Suc-
cessful ∧ BP good; the corresponding Event-Condition-Action rule is C:Business
Performance Evaluation Check Successful ∧ BP good then+BPECS. Each sen-
try in set R+(a) or R−(a) is sufficient for triggering a status change in the stage
or milestone a.

For the definition of sentries, we assume a condition language C that includes
predicates over integers and Boolean connectives. The condition formulas may
refer to stage, milestone and data attributes from the universe of attributes U .

Definition 2 (Sentry). A sentry has the form τ ∧ γ, where τ is the event-part
and γ the condition-part. The event-part τ is either empty (trivially true), a
named external event E ∈ UE, a stage completion event C:S, where S ∈ US is
an atomic stage, or is an internal event +a or −a, where a ∈ US ∪Um is a stage
or milestone attribute. The condition γ is a Boolean formula in the condition
language C that refers to data attributes in Ud and status attributes in US ∪ Um.
The condition-part can be omitted if it is equivalent to true.

Note that a sentry in a GSM schema Γ may or may not refer to attributes that
are defined in A. This distinction leads to two disjoint classes of GSM schemas.

Definition 3 (Base schema; schema fragment). Let Γ = (A, E ,�,R) be a
GSM schema. Then Γ is a base schema if each sentry in R only refers to data
and status attributes in A and events in E. Otherwise, Γ is a schema fragment.

72 R. Eshuis

C:Business
Performance

Evaluation Check

+BPECS

+BPECU

+PCS

+PCU -Preliminary Check

+Detailed Check -Business Performance
Evaluation Check

Fig. 2. Event-relativized dependency graph for C:Business Performance Evaluation
Check (Fig. 1)

Each sentry in a base schema is “grounded”, i.e., it can be evaluated in the
context of the schema. A sentry ϕ in a schema fragment can be non-grounded,
i.e., referring to a data or status attribute not defined in the schema fragment.
By composing the schema fragment with a base schema or other schema frag-
ments, defined in the next section, sentry ϕ becomes grounded. The GSM schema
presented in Sect. 2 is a base schema; Sect. 4 shows example schema fragments.

Semantics and Well-formedness. In a state of the GSM schema Γ , each attribute
in A has been assigned a value. Initially, all status attributes are false. An
incoming external event E ∈ E , i.e., a stage completion event or a named
external event, is processed as follows [9]. Event E can carry in its payload
new values for some data attributes; first, these new values are assigned to
the relevant data attributes in Ad. Next, one or more Event-Condition-Action
rules are fired. Each fired rule changes the value of a status attribute a. If a
becomes false, internal event −a is generated; if a becomes true, internal event
+a is generated. Generated internal events may trigger additional rules to be
fired. Eventually a new state is reached, in which no rules can be applied. In
this new state, the next incoming external event can be processed. The full
effect of processing an incoming external event is called a Business step, or
B-step for short [9,17]. For instance, suppose stage Business Performance Evalu-
ation Check is open and milestones BPECS and BPECU are invalid. If comple-
tion event C:Business Performance Evaluation Check with payload (BP good,true)
is processed, in the B-step data attribute BP good is assigned true, milestone
BPECS is achieved, so stage Business Performance Evaluation Check is closed and
milestone PCS is achieved, which means stage Detailed Check gets opened; no
further rules can be applied.

The rules need to be processed for each B-step in an order that ensures that
each rule for a stage or milestone attribute a is only evaluated if the event-
and condition-parts of the rule are stable, so the stage and milestone attributes
referenced in those parts do not change value in the B-step after the rule for a has
been processed. Therefore, the rules of these referenced stages and milestones are
processed before the rule for a. The processing order of rules must be acyclic. To
check this, for each external event E ∈ E an event-relativized dependency graph,
denoted erDG(E), can be constructed [9]. The graph contains E plus all internal
events (in)directly caused by E. An edge from E or �a1, for � ∈ {+,−}, to +a2

(to −a2) is inserted if a plus (minus) rule for a2 either (i) contains a1 in the
condition-part, or (ii) contains either E, or +a1, if �=+, or −a1, if �=−, in

Feature-Oriented Composition 73

the event-part. Figure 2 shows the event-relativized dependency graph for event
C:Business Performance Evaluation Check of BCAbase, defined in Sect. 2.

Definition 4. Let Γ be a GSM schema. Γ is well-formed if for each event E ∈
E, the event-relativized dependency graph erDG(E) is acyclic [9].

4 Feature Composition

In this section, we introduce and define feature composition. A feature is a
specific functionality of a software artifact that is discernible for an end user [2].
In this paper, each feature denotes a GSM schema. If a feature corresponds to a
base GSM schema, we call it complete, since it is executable by itself. Otherwise,
the feature corresponds to a GSM schema fragment and we call it partial, since
composition with other features is required to derive a base GSM schema, which
can be executed.

To define feature composition, we use a function composition operator ‘•’ [5],
also known as superimposition [3]. Let Γ comp be a (partial) feature composition
and Γ add a new feature. Both Γ comp and Γ add denote GSM schemas. Then GSM
schema Γ add •Γ comp is the result of adding, also called applying, Γ add to Γ comp.
In Γ add • Γ comp, the entire schema of Γ add is embedded into Γ comp. Sentries
of stages and milestones that are defined in Γ comp are redefined (overridden by
Γ add) in Γ add • Γ comp, if these stages and milestones also are in Γ add.

In some cases, the sentries in the schemas of Γ comp and Γ add for a common
stage or milestone should be merged rather than overridden. To specify merging,
we use an additional keyword orig in conditions of sentries of GSM schemas.
Given a feature composition Γ add • Γ comp, if a sentry of Γ add contains keyword
orig, this refers to the original definition of the sentry according to Γ comp. For
instance, if a milestone m has a plus sentry orig ∧ x = 10 in Γ add and m has a
plus sentry E:n ∧ y < 5 in Γ comp, then orig refers to E:n ∧ y < 5. Consequently,
orig can only be used in sentries for stages and milestones that belong to both
Γ comp and Γ add.

Example. The example in Sect. 2 has one complete feature, base GSM schema
BCAbase, and three partial features, one for each variant in Table 3. The sen-
tries for the GSM schema fragments F1 and F2 of variants 1 and 2, respec-
tively, are shown in Tables 4 and 5. Feature F1 only refers to stage, mile-
stone and data attributes that have been defined already in BCAbase. In
F1 there are two plus sentries for PCS. The semantically equivalent sentry
orig∨(IDGS∧employee count<300) is not allowed, since it is not sentry compos-
able (defined in Sect. 5). The minus sentries in F1 are not redefined, indicated
with orig.

74 R. Eshuis

PCSCredit
Check

CCS

CCU
PCU

Preliminary Check

Fig. 3. GSM schema for partial
feature Credit Check (F2)

The GSM schema for feature F2 does intro-
duce new attributes (see Fig. 3): stage attribute
Check Credit, milestone attributes CCS and CCU,
and data attribute rating. Since the base schema
does not contain these new stage and mile-
stones, their plus and minus sentries cannot use
orig. However, these sentries may refer to stages
or milestones not present in the fragment. For
instance, the plus sentry of new stage Check Credit refers to milestone IDGS,
which is not part of F2.

Definition. In the formal definition of ‘•’, sentries in Γ add may contain the
keyword orig in the condition-part. Given sentries ϕ and ψ, sentry ϕ[orig/ψ] is
the result of replacing each occurrence of orig in ϕ by (ψ).

Definition 5 (Feature composition). Let Γ comp be a base GSM schema and
Γ add a GSM schema fragment that is added to Γ comp. Sentries of Γ add can
use the keyword orig in their condition-parts. Then Γ add ·Γ comp is the GSM
schema Γ = (A = Ad ∪ AS ∪ Am, E = Eext ∪ Ecmp,�,R = R+ ∪ R−) where

Table 4. Sentries for partial feature F1. S = Stage; M = Milestone

Type Name Plus sentries Minus sentries

S Business Performance
Evaluation Check

orig ∧ employee count ≥ 300 orig

S Preliminary Check orig orig

M PCS IDGS ∧ employee count < 300 ; orig orig

M PCU orig orig

Table 5. Sentries for partial feature F2. S = Stage; M = Milestone; CCS=Credit Check
Successful; CCU=Credit Check Unsuccessful

Type Name Plus sentries Minus sentries

S Check Credit IDGS CCS ; CCU;-Preliminary Check

S Preliminary Check orig orig

M CCS C:Credit Check ∧ rating ≥ 8 +Check Credit

M CCU C:Credit Check ∧ rating < 8 +Check Credit

M PCS orig ∧ CCS orig

M PCU orig ; CCU orig

Feature-Oriented Composition 75

– Ad = Acomp
d ∪ Aadd

d ;
– AS = Acomp

S ∪ Aadd
S ;

– Am = Acomp
m ∪ Aadd

m ;
– Eext = Ecomp

ext ∪ Eadd
ext ;

– Ecmp = Ecomp
cmp ∪ Eadd

cmp;
– �=�comp ∪ �add;
– for each a ∈ A,

R+(a) =

⎧
⎨

⎩

{ϕ[orig/ψ] | ϕ ∈ Radd
+ (a), ψ ∈ Rcomp

+ (a)} , if a ∈ Acomp ∩ Aadd

Rcomp
+ (a) , if a ∈ Acomp \ Aadd

Radd
+ (a) , if a ∈ Aadd \ Acomp

R−(a) =

⎧
⎨

⎩

{ϕ[orig/ψ] | ϕ ∈ Radd
− (a), ψ ∈ Rcomp

− (a)} , if a ∈ Acomp ∩ Aadd

Rcomp
− (a) , if a ∈ Acomp \ Aadd

Radd
− (a) , if a ∈ Aadd \ Acomp

Most lines in the definition above use simple set union. The definition of R is
most involved. The basic principle is that if a stage or milestone a is defined in
only one of the two input GSM schemas, the sentries for a in the composition Γ
are those of the input schema. If a occurs in both input schemas, the sentries for
a in Γ add override the sentries for a in Γ comp. Using orig, the original sentries
in Γ comp can be reused in the definition of the overridden sentries in Γ .

The GSM schema resulting from the composition F1•BCAbase (Table 6) illus-
trates that using the ‘•’ operator, sentries can be merged with the original sen-
tries (the plus sentry of Business Performance Evaluation Check in F1 has been
merged with the one in BCAbase) and added to the original sentries (the plus
sentry for PCS in F1 has been added to the plus sentry for PCS in BCAbase).

Table 6. Sentries of F1 • BCAbase for the stages and milestones that are both in F1

and BCAbase. S= Stage; M = Milestone

Type Name Plus sentries Minus sentries

S Business Performance
Evaluation Check

+Preliminary Check ∧
employee count ≥ 300

BPECS ; BPECU ;
-Preliminary Check

S Preliminary Check IDGS PCS ; PCU ;
E:AdditionalInfo

M PCS IDGS ∧ employee count
< 300 ; BPECS

false

M PCU BPECU false

Discussion. If more than two features are composed, they are ordered in a
composition chain. For instance, a possible chain is F1 • F2 • BCAbase. Operator
‘•’ (Definition 5) requires that the righthand feature is complete. Therefore ‘•’
is right associative.

The ordering of features in a composition chain influences the outcome. In
other words, the feature composition operator ‘•’ is not commutative. A simple

76 R. Eshuis

example to illustrate this: consider Γ12 = F1 •F2 •BCAbase versus Γ21 = F2 •F1 •
BCAbase. In Γ12, one of the plus sentries for PCS is IDGS∧employee count < 300.
while in Γ21 the corresponding plus sentry is IDGS∧employee count < 300∧CCS.
The first sentry allows PCS to become true while CCS is false, which is obviously
not desirable. So in this example, feature F1 should be applied before F2, so the
valid composition order is F2 • F1 • BCAbase.

In general, there are two options to handle this issue: either define correctness
conditions that guarantee that ‘•’ is commutative or help designers to live with
this lack of commutativity. Defining additional correctness conditions that guar-
antee that ‘•’ is commutative would obviously have to rule out features F1 and
F2, which are perfectly valid. We therefore favor the other option. In particular,
it is useful to define additional dependency constraints between features that
help designers to manage the correct sequencing of features, if multiple need to
be applied to derive an artifact-centric process model. The feature composition
chain then has to respect these dependencies.

5 Correctness

The outcome of feature-oriented composition of two GSM schemas may be a
structure that is not a GSM schema or not a well-formed GSM schema. We
define constraints in this section that ensure that feature-oriented composition
produces (well-formed) GSM schemas.

From a syntax point of view, two constraints need to be satisfied. First, the
hierarchies of Γ add and Γ comp should be composable to ensure that the resulting
relation �, defined in Definition 5, is a hierarchy.

Definition 6 (Hierarchy composable). Let Γ comp be a base GSM schema
and Γ add be a GSM schema fragment that is added to Γ comp. The hierarchies of
Γ comp and Γ add are composable if the following conditions are met:

– For each pair a1, a2 ∈ (Acomp
S ∪ Acomp

m) ∩ (Aadd
S ∪ Aadd

m), where a1
= a2,
a1 �comp a2 iff a1 �add a2.

– For each pair a1, a2 ∈ Aadd
S ∪ Aadd

m , if a1 �add a2 and a2
∈ Acomp
S ∪ Acomp

m

then a1
∈ Acomp
S ∪ Acomp

m .
– For each pair a1, a2 ∈ Aadd

S ∪ Aadd
m , if a1 �add a2 and a2 ∈ Acomp

S ∪ Acomp
m

then a2 is not atomic in Γ comp.

S
S1

S2

Fig. 4. Base schema (S1, S) and
fragment schema (S2, S) that are
not hierarchy composable

The first condition states that for stages
and milestones that are shared between
Γ comp and Γ add the hierarchy relations
�comp and �add are consistent. The sec-
ond condition rules out that a new stage is
inserted by Γ add in the middle of the hierar-
chy of Γ comp. For instance, the condition is
violated for Fig. 4; if the hierarchies are com-
posed, stage S gets two parents. The third

Feature-Oriented Composition 77

condition is that inserting a new stage inside an existing stage S is allowed,
provided S is not atomic in Γ comp. If S is atomic in Γ comp, then S generates
a completion event C:S, which is not generated if S is not atomic. Hence, the
condition ensures that rules triggered by C:S in Γ comp are also triggered in
Γ add • Γ comp. Under these conditions, the hierarchy relation in the composition
Γ add • Γ comp is consistent with the hierarchy relations in both Γ add and Γ comp.

The second constraint is that the sentries must be composable if orig is used,
i.e., merged sentries for R as defined in Definition 5 satisfy the sentry syntax of
Definition 2.

Definition 7 (Sentry composable). Let Γ comp be a base GSM schema and
Γ add be a GSM schema fragment that is added to Γ comp. A sentry ϕ ∈ Radd(a),
where a ∈ Aadd

S ∪Aadd
m , is sentry composable if the following conditions are met:

– If ϕ contains orig, then a ∈ Acomp
S ∪ Acomp

m .
– If ϕ contains orig and has a non-empty event-part, then

• if ϕ ∈ Radd
+ (a), then each rule in Rcomp

+ (a) has an empty event-part;
• if ϕ ∈ Radd

− (a), then each rule in Rcomp
− (a) has an empty event-part.

– If ϕ contains orig and has an empty event-part, then ϕ is in conjunctive
normal form and orig only occurs as conjunct in ϕ.

– If ϕ references a stage or milestone a that is not in Aadd, then a ∈ Acomp.

The first condition in the definition ensures that if a sentry ϕ for a uses orig,
then the attribute a exists in the base GSM schema. This way, orig can always
be substituted by another sentry. The second and third condition ensure that a
sentry for a in the base GSM schema and a sentry for a in the schema fragment
can be composed properly into a new sentry of the form τ ∧ γ. For instance, if a
sentry ϕ in Γ add uses orig and is triggered by a completion event C:S, then the
sentry of Γ comp referred to by orig should have no trigger event. Note that a
sentry of the form orig∨ϕ, which is ruled out by the third condition, is equivalent
to pair of sentries orig and ϕ. Thus, this condition does not diminish expressive
power. The fourth condition makes sure that each sentry in the schema fragment
becomes grounded.

Under these two constraints, the result of feature composition is guaranteed
to be a GSM schema.

Lemma 1. Let Γ comp be a base GSM schema and Γ add be a GSM schema frag-
ment such that Γ = Γ add ·Γ comp. If Γ comp and Γ add have composable hierar-
chies and each rule in Γ add is sentry composable, then Γ is a GSM schema.

Proof. (Sketch.) We focus on showing that each sentry in Γ satisfies the syntax
defined in Definition 2. Suppose a sentry ϕ = τ1 ∧ γ1 from Γ add contains orig.
By Definition 5, orig is contained in γ1. By the first condition of Definition 7,
a ∈ Acomp

S ∪ Acomp
m . We prove that the new sentry is of the form τ ∧ γ (cf.

Definition 2). There are two cases.

(a) Sentry ϕ has a non-empty event-part τ1. By the second condition of Defini-
tion 7, any sentry ψ = τ2 ∧ γ2 from Γ comp that orig is substituted with, has
an empty event-part, so the new sentry is τ1 ∧ γ′

1, where γ′
1 = γ1[orig/γ2].

78 R. Eshuis

(b) Sentry ϕ has an empty event-part τ1. Let ψ = τ2∧γ2 be the sentry from Γ comp

that orig is substituted with. Either the sentry ψ has an empty event-part,
in which case the new sentry is γ1[orig/γ2]. Or the sentry ψ has a non-empty
event-part. By the third condition of Definition 7, γ1 is in conjunctive normal
form with orig as a conjunct. Let γmin be γ1 minus the conjunct orig. The
new sentry is τ2 ∧ γ2 ∧ γmin. ��
Though Lemma 1 shows under which conditions Γ is a GSM schema, it might

be that Γ is not well-formed due to a cycle in an event-relativized dependency
graph for some event E. Such a cycle is caused by a different processing order of
the rules (in)directly triggered by E in Γ comp and Γ add. To rule out such cycles,
we introduce a third constraint: the ordering of status attributes in both Γ add

and Γ comp is consistent for each event E, so it is not the case that a1 before a2

in Γ comp yet a2 before a1 in Γ add while processing E. This can be checked by
inspecting all the event-relativized dependency graphs of both Γ add and Γ comp.

Definition 8. (Consistent rule orderings). Let Γ comp be a base GSM
schema and Γ add a GSM schema fragment that is added to Γ comp. Then Γ comp

and Γ add have consistent rule orderings if for each event E the orderings
of status attributes in erDGcomp

Γ (E) and erDGadd
Γ (E) are compatible, so for

a1, a2 ∈ Acomp ∩ Aadd, a1 before a2 in erDGcomp
Γ (E) implies a2 not before a1 in

erDGadd
Γ (E).

If the third constraint is satisfied too, then composition Γ is guaranteed to
be a well-formed GSM schema.

Lemma 2. Let Γ comp be a well-formed base GSM schema and Γ add be a well-
formed GSM schema fragment such that Γ = Γ add ·Γ comp. If Γ comp and Γ add

have composable hierarchies, each sentry in Γ add is sentry composable, and
Γ comp and Γ add have consistent rule orderings, then Γ is well-formed.

Proof. By Lemma 1, Γ is a GSM schema. Suppose Γ is not well-formed. By
Definition 4 there is an event E such that erDG(E) contains a cycle between
nodes a1 and a2. Since Γ comp and Γ add are well-formed, the event-relativized
dependency graphs for E in Γ comp and Γ add are acyclic. Hence, in one graph the
ordering is a1 before a2, in the other a2 before a1. Therefore, Γ comp and Γ add

have inconsistent rule orderings. ��

6 Evaluation

To evaluate the feasibility and potential gain of the approach, we applied the
approach to model variants of a real-world process of an international high tech
company with offices in different regions of the worlds. In the process the expired
due diligence qualification of a business partner of the company is renewed. The
company has defined a standard due diligence process, but offices in certain
regions can use their own variant of the process. The standard process and the
variants had been modeled before in separate GSM schemas [30].

Feature-Oriented Composition 79

Based on the existing GSM schemas for this process, we defined a base schema
DDPbase for the standard process and four features that refine the base schema:
FDDP
1a , FDDP

1b , FDDP
2 , and FDDP

3 ; all are available in an online appendix [11]. The
first two features are alternatives. Similar to F1 (Table 4) and F2 (Table 5), each
fragment schema of a feature uses orig as sentry or as conjunct of a sentry to
specify the connection between the base schema and the fragment schema.

Table 7. Descriptive statistics of due diligence process and its variants

GSM

schema

Feature

composition

#

Stages

#

Milestones

#

Sentries

Overlap with DDPbase in:

%

Stages

%

Milestones

#

Sentries

%

Sentries

Base

schema

DDPbase 9 15 60

Variant 1 FDDP
1a • DDPbase 10 16 66 90 93 59 89

Variant 2 FDDP
1b • DDPbase 11 17 71 82 88 59 83

Variant 3 FDDP
2 • DDPbase 10 16 65 90 93 60 92

Variant 4 FDDP
3 • DDPbase 10 16 66 90 93 60 91

Table 7 shows descriptive statistics of the base schema and four different
variants that are derived by applying each of the four features to the base schema.
Each variant is equivalent to an existing variant [30]. Note that the base schema
is embedded in each of the variants. Hence, there is an overlap between each
variant and the base schema. For instance, the first variant shares 9 out of 10
stages and 15 out of 16 milestones with the base schema. Variant 1 and 2 each
have a sentry that is derived from a sentry of the base schema; the corresponding
sentry in the feature uses conjunct orig. Hence, for variants 1 and 2, 59 sentries
of the base schema appear in the variant rather than 60.

Table 7 shows that the overlap between the variants is huge. If the variants are
modeled separately, this causes maintenance problems. For instance, changing
the name of a milestone m shared by all four variants needs to be done four
times. By using features, this overlap can be managed efficiently. The milestone
m needs to be updated only once, for the base schema. The change is then
propagated to the variants derived from the base schema by recomposing them.
Another benefit of the approach is that many more variants can be derived than
just the ones in Table 7. In total 3 * 2 * 2 = 12 variants (incl. the base schema) can
be derived, without modifying any of the fragment schemas or the base schema.

To conclude, the preliminary evaluation on a real-world process shows that
by using the approach, variants in a family of GSM schemas can be expressed as
feature compositions. Using features avoids duplicates and thus eases the design
and maintenance of declarative artifact-centric process variants.

7 Related Work

For artifact-centric process models, no directly related work on composition of
model fragments exists. The general problem of designing artifact-centric process

80 R. Eshuis

models, either by defining a methodology for specifying declarative business arti-
facts [6] or by defining an automated synthesis of artifact-centric process mod-
els [13,14,20,24] has been addressed. The feature-oriented composition approach
facilitates reuse of model fragments and the generation of different but related
variants, rather than designing a single artifact-centric process model.

Alternatives to artifact-centric process models are object-aware process mod-
els [18,25] and case management models [1,22,28] (though artifact-centric pro-
cess models can be used for case management too [12,21]). For one of these
alternatives, an approach has been defined for composing production case man-
agement models out of procedural process models [22]. Composition at a fine-
grained level (overriding) is not supported and features are not used.

Variability has been well studied for activity-centric business processes.
Recent surveys [4,19] describe the state of the art in variability modeling from
the angles of procedural modeling languages [19] and of different phases of the
business process life cycle [4], which includes procedural modeling languages. The
surveyed mechanisms for modeling variability [4,19] are specific to procedural,
flowchart-like languages (e.g. specializing activities [19]). Variability support for
declarative, activity-centric business processes has been developed [27], but all
variants are encoded in a single declarative process model from which a process
variant is generated by hiding activities and omitting constraints, rather than
composing a process variant from fragments in a modular fashion using fea-
tures. Another survey [26] lists papers that have applied variability techniques
from software product lines, such as feature models, to activity-centric, proce-
dural business processes. To the best of our knowledge, there is no related work
that applies feature composition to declarative or procedural process models.

In earlier work [12], we defined the change operations insertion and dele-
tion for monotonic GSM schemas (each attribute can be written only once
during an execution) without hierarchy. An alternative approach for deriving
GSM schema variants can be defined by using the GSM change operations in
combination with Provop [16], an existing approach for managing variability in
procedural process models in terms of change operations. Though that alterna-
tive approach allows reducing a base schema, not possible with feature-oriented
composition, it is restricted to monotonic GSM schemas without hierarchy, while
the feature-oriented composition approach supports non-monotonic, hierarchical
GSM schemas.

In software engineering, features have been applied both at the level of mod-
eling languages [23] and programming languages [2]. The feature-oriented design
approach defined in Sect. 4 resembles most closely the feature composition app-
roach for software artifacts developed by Batory et al. [5] and extended by Apel
et al. [3]. That approach also uses a composition operator (called superimposi-
tion [3]) and supports merging of method bodies using an orig-like construct.
Since merging of GSM schemas can result in incorrect schemas, we consider
correctness issues, which are ignored for software artifacts [3,5].

Feature-Oriented Composition 81

8 Conclusion

The main contribution of this paper is a formally defined, feature-oriented app-
roach for composing declarative artifact-centric process models. The approach
defines how to compose features that denote GSM schemas, some of which are
partially specified, into completely specified GSM schemas. Correctness criteria
are defined that guarantee that valid GSM schemas are derived. The approach
supports reuse of model fragments. The approach has been evaluated by apply-
ing it to a GSM schema of an industrial process. Using the approach, declarative
artifact-centric process models can be designed in an efficient and correct way.

One direction for further work is evaluating the approach in more case stud-
ies. Another direction is developing tool support for the approach based on an
existing feature composition tool like FeatureHouse [3].

References

1. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm
for business process support. Data Knowl. Eng. 53(2), 129–162 (2005)

2. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37521-7

3. Apel, S., Kästner, C., Lengauer, C.: Language-independent and automated soft-
ware composition: the featurehouse experience. IEEE Trans. Softw. Eng. 39(1),
63–79 (2013)

4. Ayora, C., Torres, V., Weber, B., Reichert, M., Pelechano, V.: VIVACE: a frame-
work for the systematic evaluation of variability support in process-aware informa-
tion systems. Inf. Softw. Technol. 57, 248–276 (2015)

5. Batory, D.S., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE
Trans. Softw. Eng. 30(6), 355–371 (2004)

6. Bhattacharya, K., Hull, R., Su, J.: A data-centric design methodology for business
processes. In: Handbook of Research on Business Process Modeling, pp. 503–531
(2009). Chapter 23

7. BizAgi and others: Case Management Model and Notation (CMMN), v1.1. OMG
Document Number formal/16-12-01, Object Management Group, December 2016

8. Cohn, D., Hull, R.: Business artifacts: a data-centric approach to modeling business
operations and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

9. Damaggio, E., Hull, R., Vacuĺın, R.: On the equivalence of incremental and fixpoint
semantics for business artifacts with guard-stage-milestone lifecycles. Inf. Syst. 38,
561–584 (2013)

10. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: characteris-
tics, requirements and analysis of contemporary approaches. J. Data Semant. 4(1),
29–57 (2015)

11. Eshuis, R.: Appendix to: Feature-Oriented Composition of Declarative Artifact-
Centric Process Models (2018). http://is.ieis.tue.nl/staff/heshuis/foc-appendix.
pdf

12. Eshuis, R., Hull, R., Yi, M.: Property preservation in adaptive case management.
In: Barros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS,
vol. 9435, pp. 285–302. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48616-0 18

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
http://is.ieis.tue.nl/staff/heshuis/foc-appendix.pdf
http://is.ieis.tue.nl/staff/heshuis/foc-appendix.pdf
https://doi.org/10.1007/978-3-662-48616-0_18
https://doi.org/10.1007/978-3-662-48616-0_18

82 R. Eshuis

13. Eshuis, R., Van Gorp, P.: Synthesizing data-centric models from business process
models. Computing 98(4), 345–373 (2016)

14. Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business
processes. In: Proceedings of (ICDT), pp. 225–238 (2009)

15. Goedertier, S., Vanthienen, J., Caron, F.: Declarative business process modelling:
principles and modelling languages. Enterp. IS 9(2), 161–185 (2015)

16. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process
models: the Provop approach. J. Softw. Maint. 22(6–7), 519–546 (2010)

17. Hull, R., et al.: Introducing the Guard-Stage-Milestone approach for specifying
business entity lifecycles. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS,
vol. 6551, pp. 1–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19589-1 1

18. Künzle, V., Reichert, M.: PHILharmonicFlows: towards a framework for object-
aware process management. J. Softw. Maint. 23(4), 205–244 (2011)

19. La Rosa, M., van der Aalst, W.M.P., Dumas, M., Milani, F.: Business process
variability modeling: a survey. ACM Comput. Surv. 50(1), 2:1–2:45 (2017)

20. Lohmann, N.: Compliance by design for artifact-centric business processes. Inf.
Syst. 38(4), 606–618 (2013)

21. Marin, M., Hull, R., Vacuĺın, R.: Data centric BPM and the emerging case man-
agement standard: a short survey. In: La Rosa, M., Soffer, P. (eds.) BPM 2012.
LNBIP, vol. 132, pp. 24–30. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36285-9 4

22. Meyer, A., Herzberg, N., Puhlmann, F., Weske, M.: Implementation framework for
production case management: modeling and execution. In: Proceedings of EDOC
2014, pp. 190–199. IEEE Computer Society (2014)

23. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-28901-1

24. Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. Int. J. Coop. Inf.
Syst. 24(1), 1–44 (2015)

25. Redding, G., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: A flexible, object-
centric approach for business process modelling. Serv. Oriented Comput. Appl.
4(3), 191–201 (2010)

26. dos Santos Rocha, R., Fantinato, M.: The use of software product lines for business
process management: a systematic literature review. Inf. Softw. Technol. 55(8),
1355–1373 (2013)

27. Schunselaar, D.M.M., Maggi, F.M., Sidorova, N., van der Aalst, W.M.P.: Config-
urable declare: designing customisable flexible process models. In: Meersman, R.,
et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 20–37. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33606-5 3

28. Slaats, T., Mukkamala, R.R., Hildebrandt, T., Marquard, M.: Exformatics declar-
ative case management workflows as DCR graphs. In: Daniel, F., Wang, J., Weber,
B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 339–354. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40176-3 28

29. Swenson, K.D.: Mastering the Unpredictable: How Adaptive Case Management
will Revolutionize the Way that Knowledge Workers Get Things Done. Meghan-
Kiffer, Tampa (2010)

30. Yi, M.: Managing business process variability in artifact-centric BPM. Master’s
thesis, Eindhoven University of Technology (2015)

https://doi.org/10.1007/978-3-642-19589-1_1
https://doi.org/10.1007/978-3-642-19589-1_1
https://doi.org/10.1007/978-3-642-36285-9_4
https://doi.org/10.1007/978-3-642-36285-9_4
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/978-3-642-33606-5_3
https://doi.org/10.1007/978-3-642-40176-3_28

	Feature-Oriented Composition of Declarative Artifact-Centric Process Models
	1 Introduction
	2 Motivating Example
	3 GSM Schemas
	4 Feature Composition
	5 Correctness
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

