
Bringing Middleware to Everyday
Programmers with Ballerina

Sanjiva Weerawarana1, Chathura Ekanayake1, Srinath Perera1(B),
and Frank Leymann2

1 WSO2, Colombo, Sri Lanka
{sanjiva,chathura,srinath}@wso2.com

2 IAAS, University of Stuttgart, Stuttgart, Germany
frank.leymann@iaas.uni-stuttgart.de

Abstract. Ballerina is a new language for solving integration problems.
It is based on insights and best practices derived from languages like
BPEL, BPMN, Go, and Java, but also cloud infrastructure systems like
Kubernetes. Integration problems were traditionally addressed by dedi-
cated middleware systems such as enterprise service buses, workflow sys-
tems and message brokers. However, such systems lack agility required
by current integration scenarios, especially for cloud based deployments.
This paper discusses how Ballerina solves this problem by bringing inte-
gration features into a general purpose programming language.

Keywords: Flow languages · Middleware · Integration technology

1 Introduction

Integration technologies connect various services, APIs and other resources,
resulting in meaningful business activities. Since those business activities mirror
the real world and interact with the real world, they need to behave accordingly
providing security, interruptibility, recoverability, or transactions, respectively.

Often, integration developments are done based on general purpose lan-
guages. Those general purpose languages themselves lack the behavior required
for integrations mentioned before. Such behavior is provided through middle-
ware. Among examples of those are workflow management systems [1], transac-
tion managers, enterprise service buses, identity gateways, API gateways, and
application servers.

However, this behavior is added as an afterthought as middleware. Hence, the
corresponding features lack tighter integration with general purpose languages.
Therefore, building integration solutions has been a counter-intuitive, complex,
and error prone endeavor.

Ballerina1 is a general purpose, transactional and strongly typed program-
ming language with both, textual and graphical syntaxes. It has the aforemen-
tioned behavior natively built in and specialized for the integration domain.
1 https://ballerina.io.

c© Springer Nature Switzerland AG 2018
M. Weske et al. (Eds.): BPM 2018, LNCS 11080, pp. 12–27, 2018.
https://doi.org/10.1007/978-3-319-98648-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98648-7_2&domain=pdf
https://ballerina.io


Bringing Middleware to Everyday Programmers with Ballerina 13

It brings fundamental concepts, ideas and tools of distributed systems directly
into the language and offers a type-safe, parallel environment to implement such
applications. The Ballerina environment has first class support for distributed
transactions, reliable messaging, stream processing, workflows and container
management.

Furthermore, Ballerina offers simple constructs to control parallel executions.
It has a type system designed to simplify the development of distributed appli-
cations, for example by providing common message formats such as JSON and
XML as native data types. It also includes a distributed security architecture to
make it easier to write applications that are secure by design.

Ballerina’s support of parallelism, interruptibility, recoverability, and trans-
actions reveals its suitability as basis for a workflow management system. Key
workflow patterns [2] especially from the control flow, data flow, and exception
handling category can be mapped to Ballerina language elements. For example,
parallel execution may be controlled by fork and join statements (see Sect. 5.1),
or grouping of steps into compensation-based transactions (Sect. 4.3) as well as
ACID-based transactions (Sect. 4.2) are immediate features of the language. It
is obvious how many BPMN language elements can be mapped to Ballerina in
a straightforward manner. In addition, Ballerina goes beyond that by providing
immediate support of resiliency (Sect. 4.5) or security features (Sect. 4.1), for
example, to workflows.

This paper will look at how Ballerina makes workflow and other middleware
behavior an inherent aspect of a programming language, and how Ballerina helps
bringing non-functional properties to everyday programmers.

1.1 History of Integration Technology

Most organizations depend on complex IT infrastructure as they are critical
to organizations’ successful operations. These infrastructures manage resources,
employees, customers, business partners, data related to them, and interactions
between them. Such IT infrastructures are called “Enterprise Systems”.

Enterprise systems are comprised of many components that are often pro-
duced by many different vendors. Single business activities need to use several of
these components, i.e. these components need to be integrated. Similarly, since
these organizations do business with others, these enterprise systems themselves
need to be integrated, i.e. they need to work with other organizations’ enterprise
systems. System integration connects those different, (even geographically) dis-
tributed components into a single system supporting an organization’s business.
We will call “system integration” just “integration” henceforth.

There are several schools of thoughts for building “enterprise systems” archi-
tectures. The leading two are Service Oriented Architecture (SOA) [3] and
Resource Oriented Architecture (ROA) [4]. Both these approaches depend on
interfaces exposed over the network, which we will call services. Services are
defined as “a discrete unit of functionality that can be accessed remotely and
acted upon and updated independently, such as an act of retrieving a credit card
statement online”.



14 S. Weerawarana et al.

Services that can create a ROA design and built using REST principles [4]
are called RESTful services. Such service is called a resource. Each part of an
enterprise architecture exposes its capabilities as services (in SOA) or resources
(in ROA). Enterprise integration realize the functions of the organization by
connecting and orchestrating those services, resources, and different data sources.

Middleware that does system integration is often called “Enterprise Service
Bus (ESB)” [5]. ESB is used for designing and implementing communication
between mutually interacting software applications (e.g. WSO2 Enterprise Ser-
vice Bus [6]. When authoring integrations, users need to specify integration logic.
Earlier ESBs have used XML (WSO2 ESB [6] and Java based Domain Specific
Languages (e.g. CAMEL [7])) for this purpose.

Most programming languages, such as Java, C, C#, Java Script, are based
on textual syntax structure. Visual programming [8], where users construct the
program visually by composing constructs selected from a palette, is an alter-
native to textual syntax. ESBs often support visual programming using a data
flow model variant [9]. Among examples are WSO2 ESB’s Studio [6], Mule’s
Anypoint Editor [10], and Boomi Editor [11].

Earlier architectures supporting integrations were centralized in the sense
that ESB(s) host all the integration logic. Later, with the emergence of microser-
vices architecture, focus was given to develop integration logic as independent
entities, where each integration flow can be deployed in its own process. Con-
tainer technologies such as Docker have made this idea practical. Integration
logic used within microservices architecture is called micro-integrations. We use
the word “integration” to encompass both centralized integration as well as
“micro-integrations”.

Some of these services are published and consumed within a single trust
domain (e.g. a single organization). However, services may be published, shared
and consumed beyond a single trust domain. We call them remote APIs, in this
context often abbreviated to just APIs. Middleware that manage APIs is called
“API Manager” [12]. API management lets the organization have a greater con-
trol over creating and publishing APIs, enforcing their usage policies, controlling
access, nurturing the subscriber community, and collecting and analyzing usage
statistics. Integration logic that is available as an API is called an API compo-
sition.

Among related work, software development using visual interfaces is dis-
cussed in [8]. UML [13] is one of those visual languages. Sequence Diagrams
(SDs) that capture the flow of executions are also a part of UML. Sequence dia-
grams have been used to model service based applications [14]. Koch et al. [15]
describes the use of UML for web engineering. Ermagan et al. [16] describe a
new UML profile for modeling services. Furthermore, sequence diagrams have
been used for modeling tests cases [17] and High level Petri Nets [18].

1.2 The Importance of Non-functional Behaviors

Primary focus of a programming language is the grammar to specify how var-
ious elements of the language can be combined into a valid program. Almost



Bringing Middleware to Everyday Programmers with Ballerina 15

all programming languages provide constructs for data flow (e.g. variable defi-
nitions and variable assignments), arithmetic operations, and control flow (e.g.
conditional branching and loop). A language also typically supports exception
handling, controlling parallel executions and input/output processing.

However, non-functional properties such as availability, resiliency, data
integrity, security, observability, recoverability and reliability become important
factors when programming in distributed systems environments. In a distributed
environment, a single use case may involve many services hosted on different
servers. It is possible that one or more of those services become unavailable in
certain time periods. In such situations, it should be possible to identify failed
services and reroute requests to alternative services if possible or handle the error
situation gracefully without causing major disruption to the overall operation.
Furthermore, if a critical operation failed due to some reason, the system should
guarantee the integrity of itself as well as all interacting systems. For example,
assume that a system is handling travel arrangements for a conference involving
multiple external services for airline tickets, conference registration and hotel
reservations. If an air ticket could not be reserved on required dates after regis-
tering for the conference, it may be required to cancel the conference registration,
which in turn should adjust expected participants for relevant tracks and seating
requirements. If all these functions are handled by services, a failure at invoking
the airline service should trigger cancellation actions in conference registration
service and all relevant services invoked by conference registration service.

Another important aspect is the reliable delivery of messages in an environ-
ment where any component can fail, and the number of messages produced per
unit time by a sending component may not match the number of messages that
can be consumed per unit time by its receiving component. In such situations,
a system that sends a message should have a guarantee that the target system
will receive the message even if that system is not available at that moment.

A more critical non-functional requirement from the workflow perspective is
the interruptibility, which ensures to resume work from the last checkpoint after
a system failure. Depending on the check pointing behavior, a system can avoid
redoing expensive operations and prevent unnecessary compensating actions.
As an example, assume that an order handling process invokes an inventory
service to allocate goods to be shipped. Further, assume that the inventory ser-
vice involves some manual tasks and hence takes few days to complete. Now if
the order handling process crashes (e.g. due to an unexpected shutdown of the
server) after receiving the response from the inventory service, whole state of
the process would be lost. If interruptibility is not supported, order process has
to be started from the beginning after the server restart, which in turn invokes
the inventory service again causing few days of delay. Additionally, some com-
pensation action is required to deallocate previously allocated goods. None of
these problems would arise if recoverability is supported by the order processing
system, which can create a checkpoint immediately after receiving the response
from the inventory service, thus allowing the system to resume from that check-
point after a failure.



16 S. Weerawarana et al.

Such non-functional properties are not available in most of the current pro-
gramming languages as they are not developed for systems integration. In order
to overcome limitations of current programming languages, integration develop-
ers have to use middleware systems such as workflow engines, enterprise service
buses, messages brokers or transaction managers. A typical integration use case
may require functionality offered by many of these systems. Furthermore, func-
tionality provided by middleware systems alone is not sufficient to address most
integration use cases forcing developers to build solutions by combining code
written in programming languages with middleware systems. This often results
in complex solutions consisting of disparate set of systems that require diverse
skill sets and infrastructure.

2 Language Philosophy

Ballerina aims at simplifying integration development by bringing in key features
required for systems integration such as efficient communications over multiple
protocols, resiliency, recoverability, and transactions, into a programming lan-
guage. Therefore, developers can develop integration and workflow style solutions
in the same way as any other application. For example, if it is necessary to invoke
an HTTP endpoint within a program, a developer may create an endpoint with
necessary resiliency parameters such as retry interval, retry count and failure
threshold, and invoke the endpoint. Ballerina runtime will handle all necessary
details such as invoking the endpoint without blocking OS threads, taking spec-
ified actions on endpoint failures and facilitating recovery from runtime failures.
Integration features offered by Ballerina are discussed in later sections.

Ballerina can be used to develop many integration solutions. Developers can
utilize its service publishing capabilities over multiple protocols to develop micro-
services. They can combine its service publishing capabilities with message pro-
cessing and endpoint features to develop micro-integrations. Furthermore, micro-
workflows can be developed using features such as recoverability, compensating
transactions and ability receive multiple inputs. All these solutions result in exe-
cutable Ballerina programs which can be executed in stand-alone mode without
any middleware support.

For many years we observed repeatedly that, when faced with a complex inte-
gration problem, various stakeholders often draw a sequence diagram to develop
a solution to their problem. Hence, a sequence diagram is a suitable visual repre-
sentation that has a shared meaning among integration programmers and archi-
tects.

Ballerina uses UML sequence diagrams (SDs) to build integration solutions.
The Ballerina editor includes a visual and a textual view side by side. Program-
mers can switch between either view in the middle, apply changes in any of the
views, and lossless conversion happens immediately. This enables the user to
build the integration logic either using a visual syntax or using textual syntax.

Another key aspect is to use automatic analysis and intelligent predictions to
reduce the burden on the developer. Unlike middleware implemented separately



Bringing Middleware to Everyday Programmers with Ballerina 17

from general purpose languages, Ballerina has access to the whole program and
can fully control its execution. Therefore, it can perform automatic analysis
effectively and optimize the execution of a program. Among examples are locks
that will be automatically acquired and released allowing maximal concurrency,
auto tuning thread pools, and taint checking built into the language.

3 Language Elements

A detailed description of Ballerina can be found in the language specification
[14]. In this section, we will explore some of its key features.

A typical program includes a service or a main program. Both main pro-
gram and resource is built with many statements. Each statement may define
data types, call functions, define and create workers, and run control statements
such as loops and conditions. Furthermore, Ballerina supports annotations to
associate configurations or additional behaviors with language constructs.

3.1 Type System

Ballerina type system includes three types of values: (i) simple values such as
booleans and integers, (ii) structured values such as maps and arrays and (iii)
behavioral values like functions and streams. Ballerina considers JSON and XML
as native structured types simplifying the handling of message payloads used in
most integration scenarios.

In addition to the above, union, optional and any types are supported. Union
type allows a variable to contain values of more than one type. This is useful for
example for a function to return a string or an error depending on the processing
outcomes. Optional indicates that a variable can be null. Variables of any type
can be assigned with values of any type defined in Ballerina type system, making
it useful for scenarios where the type of the variable is not known at development
type.

3.2 Connectors and Endpoints

Interactions with external APIs and services is a fundamental requirement of
integration. Ballerina uses connectors to program interactions with external enti-
ties. Such entities can be generic HTTP endpoints, databases or specific services
such as Twitter, GMail, etc. A connector can be initialized by providing a con-
figuration required for the corresponding external service. For example, a simple
HTTP connector initialization would look like:

endpoint http:Client taxiEP {

url: "http://www.qtaxies.com"

};

Once initialized, any action supported by the connector can be invoked by
providing appropriate parameters as below:



18 S. Weerawarana et al.

taxiEP -> get("/bookings");

The connector concept was introduced in order to differentiate network calls
from other function invocations, so that Ballerina developer is aware of associ-
ated concerns such as latency, probability of failures and security implications.
In fact, Ballerina addresses some of these concerns using resiliency features dis-
cussed in Sect. 4.5. In addition to the connectors shipped with Ballerina, it is
possible to develop custom connectors for any programmable endpoint and use
them in the same way as any other existing connector.

3.3 Error Handling

Programming languages handle errors in two ways. The code can either stop
the execution of the normal flow or return the details back into upper levels to
handle or recover from the error. Languages like Java can support both the above
methods by throwing exceptions. However, if it is recoverable, it is expensive to
unwind and do exception processing, and it is considered an anti-pattern to
throw exceptions in the normal execution flow.

In such cases, languages like Java can return error details (without throwing
exceptions), which must be checked at upper level. However, if upper levels forget
to check it, it will lead to errors.

Ballerina handles both above cases by introducing a first-class error concept
which can both be returned and thrown. Thrown errors behave just like excep-
tions and cause the call stack to be unwound until a matching catcher is found.
However, the language forces the upper levels to check the return value for errors.
It is done by returning a union type of type T|error. The error part has to be
handled using a match expression or explicitly declaring that the error is not
important at assignment via T| . Unless this is done, the compiler will complain
when the program tries to access the value of an union type.

3.4 Ability to Inject Values into a Running Executions

Once a program instance is started, it may be necessary to get additional inputs
after completing certain steps. Such inputs can come from other parallel flows
of the same program instance or from external systems. The former case can
be implemented by most programming languages using shared variables with
appropriate synchronization mechanisms. For example, in Java a thread can wait
on an object to be notified by another thread once required data is available.
Ballerina facilitates parallel executions based on a construct named worker as
explained in Sect. 5.1. Accordingly, it provides an inter worker communication
method to pass variables among workers as below:

function f1() {

worker w1 {

string city = "NY";

city -> w2;



Bringing Middleware to Everyday Programmers with Ballerina 19

}

worker w2 {

string location;

location <- w1;

}

}

In the above example, worker w2 waits for an input from worker w1 and
once the input is available, assigns it to a variable named location.

The more complex scenario is receiving intermediate inputs from external
systems. In this scenario, a process instance is already started and it expects an
external input in order to continue. Furthermore, there can be many instances
of the same program running at the same time. Therefore, the main challenge
here is to identify the correct process instance to deliver the message. A pro-
gram instance can be identified either using a unique instance identifier or using
a combination of variables whose values will be unique to an instance. Such
combinations of variables are called correlation variables. The latter approach
is more flexible as it does not force external systems to be aware of program
instance identifiers. Instead, such systems can just send messages including val-
ues for correlation variables, which are, in most cases, business variables such as
customer identifiers, order numbers, etc. Many workflow systems use this cor-
relation variable based approach for receiving intermediate inputs [19]. Inspired
by this, Ballerina brings a similar concept to programming language level by
allowing programs to receive intermediate inputs, where the Ballerina runtime
environment correlates incoming messages with relevant program instances based
on variables defined in the program flow. The below code fragment shows how
a Ballerina program can receive the location of a customer:

string customer = "smith";

json correlationVars = {"custId": customer};

queue:Message result = custEP -> receive(correlationVars);

string location = result.getTextMessageContent();

Any Ballerina program can send messages to such intermediate reception
points by providing values for correlation variables as below:

string city = "NY";

queue:Message loc = custEP.createTextMessage(city);

json correlationVars = {"custId": "smith" };

loc.setCorrelationID(correlationVars.toString());

custEP -> send(loc);

Thus, it is possible to write Ballerina programs that get messages from any
source such as HTTP services, JMS or file systems and trigger other Ballerina
programs waiting on intermediate inputs. An advantage of this approach is the
flexibility on how external systems can send correlated messages. For example, if
an external system can only send JMS messages, it is possible to write a Ballerina
program to receive JMS messages and trigger a waiting Ballerina program.



20 S. Weerawarana et al.

4 Non-functional Properties

4.1 Security

Ballerina guarantees security for sensitive parameters using a compiler level taint
checking mechanism. There can be functions and connector actions that take sen-
sitive parameters such as SQL queries or file paths. Assigning untrusted values
into those parameters can cause major security vulnerabilities such as SQL injec-
tion attacks. In order to prevent such vulnerabilities, Ballerina programmers can
mark relevant parameters with the @sensitive annotation as below:

function selectData(@sensitive string query, string params)

returns string { .. }

If a tainted variable (i.e. a variable that may contain an untrusted value) is
assigned to a parameter marked with @sensitive annotation, Ballerina compiler
will produce an error. Furthermore, sensitivity of parameters is automatically
inferred when calling functions. This can be illustrated using the below sample
code:

function getAddress(string username) {

string query = "select address from user" +

"where uid = ’" + username + "’";

string address = selectData(query, null);

}

In this case, username parameter of the getAddress function is also con-
sidered sensitive by the compiler as its value is used to derive the sensitive
query parameter of the invoked selectData function. Similarly, functions can
mark return values as tainted to indicate that they are not safe to be used as
sensitive parameters. This is done using the @tainted annotation as below:

function readUsername() returns @tainted string { ... }

4.2 Distributed ACID Transactions

Being an integration language, Ballerina programs have to interact with many
external systems including databases, message brokers and other services, which
are often required to be grouped into a single unit of work. Therefore, Ballerina
programs have to support distributed transactions involving all participating
entities to ensure integrity of the corresponding integration scenarios. Ballerina
language provides constructs to mark transaction boundaries to coordinate the
joint outcome of invoked endpoints based on a 2PC protocol. Below is an example
of a transaction within a Ballerina program:

transaction with retries = 0, oncommit = commitFunc, onabort = abortFunc

{

_ = bankDB -> update("UPDATE ACCOUNT SET BALANCE = (BALANCE - ?)" +



Bringing Middleware to Everyday Programmers with Ballerina 21

"WHERE ID = ?", 1000, ‘user1’);

match depositMoney("acc1", 1000) {

error depositError => {

abort;

}

() => isSuccessful = true;

}

}

In this example, the update action of a database connector (i.e. bankDB) is
invoked to decrease the amount to be transferred. However, if the depositMoney
function fails, the transaction is aborted so that Ballerina runtime will rollback
the database transaction as well. In addition to coordinating transactions of
invoked endpoints, Ballerina programs can participate in distributed transac-
tions as well. If a Ballerina program B1 invokes another Ballerina program B2
within a transaction, B2 automatically participates in the transaction initiated
by B1. If B2 also defines a transaction, B2 ’s transaction will not be commited
until B1 is ready to commit. Similarly, if B2 invokes another Ballerina program
B3, B1 ’s transaction is propagated to B3 as well (transaction infection).

4.3 Compensation-Based Transactions

Compensation is another technique of maintaining integrity [20], especially for
long running interactions or interactions that do not support ACID semantics.
Distributed ACID transactions mentioned above are inherently subject to block-
ing. This is not be suitable for tasks that span longer time periods (more than
several seconds). Instead, compensation-based mechanisms allow each partici-
pating entity to commit work immediately. In addition, each such entity has to
provide a corresponding compensation action, which will be triggered if the over-
all task fails. Such compensation mechanisms are implemented in many work-
flow systems and Ballerina language introduces this concept at programming
language level. In workflow languages such as BPMN, compensation actions
can be associated with BPMN activities using compensation boundary events.
However, programming language statements are too fine grained as compens-
able units. Therefore, a grouping construct named scope is introduced (like in
BPEL), so that compensation actions can be associated with a scope containing
multiple statements. Scopes can be nested. A construct named compensate is
introduced to trigger compensations of completed scopes. It can be invoked with
or without a scope name. If a scope name is given, only the named scope and its
child scopes are compensated. If a scope name is not given, all completed scopes
within the current scope are compensated. Compensation actions are triggered
in the reverse of the completion order. Following is a Ballerina code snippet with
compensations:

scope s1 {

scope s2 {

...



22 S. Weerawarana et al.

} compensation(var2, var3) { ... }

scope s3 {

result = ...

} compensation(var4) { ... }

if (result == -1) {

compensate();

}

} compensation (var1) { ... }

In the above example, if the compensation is triggered, compensation actions
of scopes s3 and s2 are invoked in that order. However, the compensation actions
of scope s1 will not be invoked as s1 is not completed at the time of compensa-
tion.

4.4 Interruptibility

Compiled Ballerina programs run on Ballerina Virtual Machine (BVM) as dis-
cussed in Sect. 5. BVM supports interruptibility by persisting the state of running
programs. A persisted state is a special kind of checkpoint. If a connector devel-
oper (not Ballerina programmer) has indicated that a certain connector action
should not be repeated after a recovery, BVM makes a checkpoint whenever a
program completes that action. Such actions can include invocations of external
services or database operations. For example, if a service is invoked to reserve a
ticket, it should not be re-invoked when the invoking program is resumed after
a failure. Similarly, if a connector developer has indicated that an action can
take long time to complete, BVM makes a checkpoint before a program invokes
that action. An example of such action is the waiting for a reception of an inter-
mediate input as mentioned in Sect. 3.4. As such operations can take long time
periods, there is more probability of failure at those points. Therefore, check-
pointing before starting such operations allows BVM to resume programs from
those points in case of a failure. Furthermore, Ballerina has a language element
named checkpoint in order to allow programmers to define checkpoints anywhere
within a program. If the BVM stops due to any reason (e.g. server crash) and
is subsequently restarted, it will resume all program executions from the last
available checkpoint.

When a Ballerina program is invoked as an HTTP resource, the program can
send a reply back to the client using an HTTP response message. However, if the
BVM is restarted, the underlying TCP connection with the client will have been
terminated and BVM will not get a connection to send the HTTP response. In
this scenario, a client can resend the original request, which will be correlated
by the BVM with the corresponding program instance. Then once the program
reaches the replying point, it will reply using the new correlated connection.
If the program has reached the replying point before receiving the correlating
request, the program state will be saved until such request is received. Thus,
Ballerina supports request-response behavior for long running flows even after
system failures.



Bringing Middleware to Everyday Programmers with Ballerina 23

4.5 Resiliency

Distributed environments that Ballerina programs are expected run may con-
tain unreliable networks, failure prone servers, overloaded systems, etc. In order
to facilitate development of robust programs for such environments, Ballerina
provides a set of resiliency features, namely circuit breaking, failing over, load
balancing and retrying with timeouts. Circuit breaking allows programmers to
associate suspension policies with connectors so that connectors stop sending
messages to unresponsive endpoints if suspension criteria is met. For example,
an HTTP connector can be configured to suspend further requests for 5 min if
more than 5% of requests fail within 30 s.

Similarly, failover configurations can be associated with connectors to select
alternative endpoints if one endpoint fails. Load balancing configuration specifies
a set of endpoints and a load balancing algorithm, so that requests are distributed
among specified endpoints according to the given algorithm. This is useful to
avoid overloading backend systems, especially where a dedicated load balancer
is not available. Finally, a retry configurations can be defined for connectors to
force the connector to retry sending the request in case of a failure.

5 Architectural Aspects

Ballerina is a compiled language. Ballerina compiler takes Ballerina programs
as input and generates intermediate code. This intermediate code can be exe-
cuted in Ballerina Virtual Machine (BVM). The Ballerina compiler performs
syntax checks and transforms programs into an intermediate format containing
instructions understood by the BVM. The BVM performs the fetch-, decode-,
execute-cycle acting as a CPU for Ballerina intermediate code. In addition to
executing instructions, the BVM performs tasks such as listening for incoming
messages, concurrency control, exception handling and transaction management.

5.1 Thread Model

Ballerina is a parallel language and natively support parallel executions. Each
execution of a resource or a main program has implicit workers. However, workers
may be created explicitly, they can safely talk to each other, synchronize data,
and support complex scenarios such as fork and join based on corresponding
language syntax.

A worker can be considered as a sequence of Ballerina instructions with a
storage to store variables, input arguments and return values used within those
instructions. BVM can execute a worker by assigning it to an OS thread. A
worker that needs to be executed synchronously is run in the same thread as
its invoker (e.g. synchronous function calls). Asynchronously executed workers
are assigned to new threads taken from a thread pool. BVM executes a worker
in its assigned OS thread until a blocking instruction is reached (e.g. sleep or
connector invocation). At this point, BVM saves the context of the worker in an



24 S. Weerawarana et al.

appropriate callback function and releases the assigned OS thread. Therefore,
the OS thread previously assigned for the blocked worker will become available
to run an unblocked worker. Once the blocking action returns and its callback
is invoked, the callback function gets the saved worker context and lets BVM to
execute it by assigning an OS thread.

Each Ballerina function can have one or more workers. Ballerina programmers
can define workers explicitly within a function as below:

function f1() {

worker w1 { ... }

worker w2 { ... }

}

In this case, workers w1 and w2 will be executed in parallel. If workers are
not defined within a function, a default worker is associated with it by the BVM.
In addition to the workers associated with functions, Ballerina provides fork/join
constructs to trigger parallel flows as below:

fork {

worker w1 { ... }

worker w2 { ... }

} join (all) { ... }

Furthermore, it is also possible to start any function asynchronously by using
the start keyword as below:

future<int> result = start f2();

...

int value = await result;

In this case, the future statement immediately returns without waiting for
f2 to complete. Then the Ballerina program can call await at any point later in
the program to wait for the function to complete and get the result.

A common problem in parallel programs is to handle shared data safely.
Ballerina supports this via a lock statement. Ballerina goes beyond languages like
Java by automatically analyzing the locked data structures, figuring out minimal
shared scope, and then locking at that level to allow maximal concurrency.

5.2 Non-blocking I/O

Ballerina supports non-blocking I/O without any additional overhead for pro-
grammers. From a programmer’s perspective, I/O calls work in a blocking man-
ner, so that the statement immediately after the I/O call is executed only
after the I/O call returns with a response. An invoking program can access
the response immediately as shown below:

var result = clientEndpoint -> get("/get?test=123");

io:println(result);



Bringing Middleware to Everyday Programmers with Ballerina 25

However, according to the thread model discussed in Sect. 5.1, BVM releases
the underlying OS thread whenever an I/O call is made and stores the program
state in a memory structure along with next instruction pointer. When the result
of the I/O call is available, BVM allocates a new thread from its thread pool to
continue the saved program state. Therefore, Ballerina programmer sees it as a
blocking I/O call although OS threads are not blocked.

5.3 Observability

Observability is a measure of how well internal states of a system can be inferred.
Monitoring, logging, and distributed tracing can be used to reveal the inter-
nal state of a system to provide observability. Ballerina becomes observable by
exposing itself via these three methods to various external systems allowing them
to monitor metrics such as request count and response time statistics, analyze
logs, and perform distributed tracing. It follows open standards when exposing
observability information so that any compatible third party tool can be used
to collect, analyze and visualize information.

6 Measurements

Performance is a critical factor for integration software, as a typical deployment
may have to connect with many external systems and process thousands of
requests per second. These requests may be sent by hundreds of different clients.
Two commonly used measurements for evaluating performance are latency and
throughput. Latency of a request is the round trip time between sending a request
to a system and receiving a response. Throughput is the number of requests that
can be processed by a system in a unit time.

We compared these two measurements of Ballerina with those of WSO2 ESB
for different concurrency levels. A basic integration scenario of receiving a mes-
sage from a client over HTTP, sending it to a backend system, receiving the
response from the backend and sending the response back to the client is consid-
ered for these tests. A Message of size 1kB is used and zero backend processing
time is simulated (i.e. backend responds immediately). Tests are conducted on
Intel Core i7-3520M 2.90GHz 4 machines with 8 GB RAM and JVM heap size
of 2 GB is allocated. Ballerina/WSO2 ESB, client (JMeter2) and the backend
(WSO2 MSF4J3) are run on three separate machines. Results for latency and
throughput are shown in Fig. 1(a) and (b) respectively:

According to the results, Ballerina outperforms ESB at all concurrency lev-
els. Ballerina can process a request in 5 ms for 200 concurrent clients whereas
ESB takes 10 ms for the same scenario. Performance difference is also significant
for throughput, where Ballerina shows around 24000 transactions per second
(TPS) for 200 concurrent clients while ESB shows only around 14000 TPS.

2 https://jmeter.apache.org.
3 https://wso2.com/products/microservices-framework-for-java.

https://jmeter.apache.org
https://wso2.com/products/microservices-framework-for-java


26 S. Weerawarana et al.

(a) Variation of latency with num-
ber of concurrent clients

(b) Variation of throughput with
number of concurrent clients

Fig. 1. Comparison of Ballerina with ESB

These results indicate that Ballerina can process requests faster and serve more
requests concurrently without considerably degrading performance, which is a
desirable property for integration systems.

7 Conclusion and Outlook

The main objective of the Ballerina project is to create a programming language
for integration. Therefore, in addition to providing general purpose programming
constructs, Ballerina has built-in support for a broad set of integration features.
Such features include efficient service invocations, listening for incoming connec-
tions, transactions, support for multiple protocols and simplified database access.
By recognizing the possible long running nature of certain integrations, some fea-
tures of workflow systems were absorbed into Ballerina. As a result, persistence
based interruptibility is introduced to support recovery from unexpected fail-
ures during long-running workflows. Furthermore, compensation is introduced
to support long-running transactions. Then, the ability to receive intermediate
inputs with correlations were implemented, so that a single Ballerina program
can receive messages from any number of channels. Combining all these fea-
tures, Ballerina can be used as a programming language for programming short
running integrations as well as long-running workflows.

As future work, we are planning to improve the current Ballerina workflow
implementation to production ready state. In addition, once Ballerina constructs
equivalent to other critical BPMN constructs are introduced, a (partial) mapping
from BPMN to Ballerina can be performed. By extending this idea, it is possible
to develop a BPMN editor, which generates Ballerina code that can run in the
BVM.

From the runtime perspective, we are planning to implement the BVM using
the LLVM infrastructure in order to increase performance.



Bringing Middleware to Everyday Programmers with Ballerina 27

References

1. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice
Hall PTR, Upper Saddle River (2000)

2. Workflow patterns. http://www.workflowpatterns.com/. Accessed 10 Jun 2018
3. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Pearson

Education India, Noida (2005)
4. Duggan, D.: Enterprise Software Architecture and Design: Entities, Services, and

Resources, vol. 10. Wiley, Hoboken (2012)
5. Schmidt, M.-T., Hutchison, B., Lambros, P., Phippen, R.: The enterprise service

bus: making service-oriented architecture real. IBM Syst. J. 44(4), 781–797 (2005)
6. WSO2 Enterprise Service Bus. http://wso2.com/products/enterprise-service-bus/.

Accessed 30 May 2018
7. Apache camel. http://camel.apache.org/. Accessed 30 May 2018
8. Sundararajan, P., et al.: Software development using visual interfaces. US Patent

7,793,258, 7 September 2010
9. Hils, D.D.: Visual languages and computing survey: data flow visual programming

languages. J. Vis. Lang. Comput. 3(1), 69–101 (1992)
10. Mule anypoint studio. https://www.mulesoft.com/lp/dl/studio. Accessed 30 May

2018
11. Dell boomi platform. https://boomi.com/platform/integrate/. Accessed 30 May

2018
12. API management. https://en.wikipedia.org/wiki/API management. Accessed 30

May 2018
13. O.UML, Unified Modeling Language. Object Management Group (2001)
14. Ballerina language specification, v0.970, working draft. https://ballerina.io/res/

Ballerina-Language-Specification-WD-2018-05-01.pdf. Accessed 30 May 2018
15. Koch, N., Kraus, A.: The expressive power of UML-based web engineering. In:

Second International Workshop on Web-oriented Software Technology (IWWOST
2002), vol. 16. CYTED (2002)

16. Ermagan, V., Krüger, I.H.: A UML2 profile for service modeling. In: Engels, G.,
Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp.
360–374. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75209-
7 25

17. Sarma, M., Kundu, D., Mall, R.: Automatic test case generation from UML
sequence diagram. In: 2007 International Conference on Advanced Computing and
Communications, ADCOM 2007, pp. 60–67. IEEE (2007)

18. Alhroob, A., Dahal, K., Hossain, A.: Transforming UML sequence diagram to high
level petri net. In: 2010 2nd International Conference on Software Technology and
Engineering (ICSTE), vol. 1, pp. V1–260. IEEE (2010)

19. Görlach, K., Leymann, F., Claus, V.: Unified execution of service compositions.
In: Proceedings of the 6th IEEE International (2013)

20. Leymann, F.: Supporting business transactions via partial backward recovery in
workflow management systems. In: Lausen, G. (ed.) Datenbanksysteme in Büro,
Technik und Wissenschaft, pp. 51–70. Springer, Heidelberg (1995). https://doi.
org/10.1007/978-3-642-79646-3 4

http://www.workflowpatterns.com/
http://wso2.com/products/enterprise-service-bus/
http://camel.apache.org/
https://www.mulesoft.com/lp/dl/studio
https://boomi.com/platform/integrate/
https://en.wikipedia.org/wiki/API_management
https://ballerina.io/res/Ballerina-Language-Specification-WD-2018-05-01.pdf
https://ballerina.io/res/Ballerina-Language-Specification-WD-2018-05-01.pdf
https://doi.org/10.1007/978-3-540-75209-7_25
https://doi.org/10.1007/978-3-540-75209-7_25
https://doi.org/10.1007/978-3-642-79646-3_4
https://doi.org/10.1007/978-3-642-79646-3_4

	Bringing Middleware to Everyday Programmers with Ballerina
	1 Introduction
	1.1 History of Integration Technology
	1.2 The Importance of Non-functional Behaviors

	2 Language Philosophy
	3 Language Elements
	3.1 Type System
	3.2 Connectors and Endpoints
	3.3 Error Handling
	3.4 Ability to Inject Values into a Running Executions

	4 Non-functional Properties
	4.1 Security
	4.2 Distributed ACID Transactions
	4.3 Compensation-Based Transactions
	4.4 Interruptibility
	4.5 Resiliency

	5 Architectural Aspects
	5.1 Thread Model
	5.2 Non-blocking I/O
	5.3 Observability

	6 Measurements
	7 Conclusion and Outlook
	References




