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Abstract. New and compelling regulations (e.g., the GDPR in Europe)
impose tremendous pressure on organizations, in order to adhere to
standard procedures, processes, and practices. The field of conformance
checking aims to quantify the extent to which the execution of a process,
captured within recorded corresponding event data, conforms to a given
reference process model. Existing techniques assume a post-mortem sce-
nario, i.e. they detect deviations based on complete executions of the
process. This limits their applicability in an online setting. In such con-
text, we aim to detect deviations online (i.e., in-vivo), in order to provide
recovery possibilities before the execution of a process instance is com-
pleted. Also, current techniques assume cases to start from the initial
stage of the process, whereas this assumption is not feasible in online
settings. In this paper, we present a generic framework for online con-
formance checking, in which the underlying process is represented in
terms of behavioural patterns and no assumption on the starting point
of cases is needed. We instantiate the framework on the basis of Petri
nets, with an accompanying new unfolding technique. The approach is
implemented in the process mining tool ProM, and evaluated by means
of several experiments including a stress-test and a comparison with a
similar technique.
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1 Introduction

Organizations are facing challenges that arisie by digital transformation. Impor-
tant concerns to face are the way processes are managed, their strategic align-
ment w.r.t. the organization’s goals and their compliance with respect to applica-
ble regulations. An example of these challenges is the compliance with the new
regulations on the protection of data in Europe, i.e. GDPR1, where unprece-
dented requirements on the use of data of EU citizens by organizations will
1 See http://eur-lex.europa.eu/eli/reg/2016/679/oj.
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be applicable from May 2018. Are current business processes in organizations
aligned with these new regulations?

Conformance checking is acknowledged as one of the key enabling technolo-
gies for verifying compliance monitoring of regulations [11]. It compares (pre-
scriptive) process models to the actual execution of a process, and allows us to
pinpoint deviations. The detection of compliance problems can be narrowed to
the set of detected deviations [1]. In spite of being a powerful aid, a rigid explo-
ration of conformance checking techniques has only been performed relatively
recently [2,4,8,14,17,18,20–22].

A widespread application mode of conformance in literature is post-mortem:
the relation between the model and the observed behaviour is computed, assum-
ing that traces of observed process behaviour are complete. Such analysis, though
meaningful and accurate, only allows us to detect deviations after they occurred,
which, in some contexts, is too late. For example, consider the case where a trace
of process behaviour represents the treatment of a patient during her life, and
the model encompasses the clinical guidelines to follow for a given disease.

In contrast, online conformance checking techniques consider a live, real-time
stream of events as input, where every event belongs to a particular case, i.e.
process instance. As such, several different unfinished (running) cases at any
position in the stream need to be considered [4,22]. Moreover, in real scenarios
cases may start at different points in the process, not necessarily in its initial
stage, e.g. a patient process being monitored in the middle of her clinical life.
Such warm start mode of online conformance checking allows us to not only
analyze cases from which the full history is available, but also those cases that
lack historical process information.

In this paper, we present a novel framework, accompanied with a correspond-
ing instantiation that builds on top of the notion of Petri net unfoldings [13], that
enables the application of online conformance checking in warm start settings.
To the best of our knowledge, this is the first solution for this important problem.
We present a framework that relies on the notion of behavioural patterns, i.e.,
relations between process activities. In particular, for each possible behavioural
pattern, the number of different behavioural patterns preceding/following it for a
case is assumed to be known. Subsequently, the approach assesses compliance by
checking whether the expected behavioural patterns are either observed or vio-
lated. Additionally, completeness (is the running case expected to be complete?)
and confidence (is the compliance metric reliable?) values provide a more holistic
view on the compliance of running cases.

We provide an instance of the framework based on weak order relations,
accompanied by an implementation in the process mining framework ProM [19].
We validate the approach by means of a synthetic data set containing models
and traces of varying sizes and a data set containing cases that start in different
stages of the process (warm start). Furthermore we assess the applicability of the
approach on a real data set. We also asses the correlation of the technique w.r.t.
the technique presented in [22], which confirms that our framework provides a
good estimation of conformance.
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Fig. 1. Running example considered throughout this paper.

Table 1. Comparison of offline [2] and online conformance values (as proposed in this
paper) based on the process model in Fig. 1.

Trace Offline Online

Conformance Conformance Completeness Confidence

t1 = 〈A, A1, B, E, F 〉 1.00 1.00 1.00 1.00

t2 = 〈B, C, D, F 〉 0.78 1.00 0.60 1.00

t3 = 〈A, A1, A2, A1, B〉 0.80 1.00 1.00 0.50

t4 = 〈B, C, D〉 0.62 1.00 0.50 0.75

The remainder of the paper is structured as follows. In Sect. 2, we motivate
the need for an online conformance checking technique capable of handling the
warm start scenario. In Sect. 3, we present related work. In Sect. 4, we briefly
present background terminology. In Sect. 5, the general framework is described,
which is instantiated in Sect. 6 for weak order relations. We evaluate the instan-
tiation in Sect. 7. In Sect. 8 we discuss limitations of the work, whereas Sect. 9
concludes this paper.

2 Motivation

Consider the process model reported in Fig. 1. Furthermore, consider some pos-
sible executions of such process and their corresponding conformance values as
reported in Table 1. Trace t1 conforms w.r.t. the model: it represents a possi-
ble complete execution of the process. This information is properly captured by
both the offline technique [2] and our online approach. Execution t2, on the other
hand, is compliant with the process but just from activity B onward, i.e. assum-
ing that the initial activity A was executed yet not observed. Such case is known
as a warm start scenario: we start monitoring ongoing process instances rather
than processes started after monitoring. Our approach is explicitly designed to
deal with this problem by additionally quantifying the completeness of the execu-
tion. Note that, as Table 1 reports, offline approaches do not capture the notion
of completeness, and thus, in case of warm start, the final conformance value
is simply decreased. Trace t3 suffers from the opposite problem: it conforms
to the process model only up-until activity B, i.e., we expect to observe future
behaviour. If we do not assume to be in a post-mortem scenario, this trace has no
conformance problem, but is simply partial. Our approach is designed to explic-
itly handle this problem by quantifying the confidence of the execution, i.e. the
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degree of reliability of the reported conformance metric. Again, Table 1 shows
that offline techniques cannot handle this situation. The combination of the last
two problems is present in trace t4, i.e. the trace captures an intermediate exe-
cution of the process which conforms the model but lacks initial and final parts
of the execution. The offline approach reports a conformance of 0.62, whereas
the online approach indicates that, subject to incompleteness and a little lack of
confidence, the behaviour as seen conforms to the model.

3 Related Work

Until recently, conformance checking has only focused on relating modeled and
observed behaviour in a post-mortem fashion. Techniques for this task have
been proposed, with different assumptions and guarantees. Among existing tech-
niques, we observe: rule-based [14,20], token replay-based [14], and alignment-
based techniques [2,3,8,17,18,21]. The work presented in this paper can be seen
as an evolution of the rule-based approaches, where important new features, i.e.
from offline to online and the warm start capability, have been properly incor-
porated.

For online conformance checking, we identify two research lines. In [22] the
authors propose to compute prefix-alignments, i.e. providing explanations for
prefixes of complete behaviour. Unfortunately the complexity requirements are
high and the technique is unable to handle the warm start scenario. An alter-
native approach is presented in [4], where all the possible deviations are pre-
computed on top of the model behaviour, which is used to walk through the
input stream.

4 Background

4.1 Process Models and Behavioural Patterns

We do not assume a specific process modelling formalism, yet we do assume
process models to be defined in context of collections of activities. As such,
we assume a process model to constrain the relative ordering of its activities,
e.g. reconsider the BPMN diagram in Fig. 1, which specifies that we are able
to execute activity A prior to activity A1, yet the reverse is not the case. We
furthermore assume the execution process activities to be atomic. A model M
is potentially an imperative model, e.g. BPMN, Petri net or EPC. The only
requirement we impose on the considered model(s) is the fact that we are able
to deduce a language in terms of the activities it is defined upon.

Given a process model, with a corresponding language and relative ordering
on its activities, we assume that we are able to derive more advanced behavioural
relations, i.e. behavioural patterns, such as weak ordering, parallelism, causality
and conflict. Given two activities part of a process model, formally, we define
a behavioural pattern as a relation that the process imposes on them. As an
example, consider the model in Fig. 1, which dictates that activity A is always
followed by activity A1.
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Definition 1 (Behavioural Pattern). Given a set of activities A and a set
of possible control-flow relations R, a behavioural pattern is defined as b(a1, a2)
where a1, a2 ∈ A are activities and b ∈ R represents a control-flow relation. An
alternative writing of b(a1, a2) is a1 b a2.

Using the notion of behavioural patterns, we formalize process models as
follows.

Definition 2 (Process Model). A process model B is the set of all
behavioural patterns prescribed by the process, such that B ⊆ R × A × A, where
A is the set of activities and R is the set of possible control-flow relations.

In context of this paper, we are primarily interested in behavioural patterns
induced by the possible sequential ordering of activities, i.e. we take a control-
flow perspective. As such we assume the existence of a universe of control-flow
relations R that allow us to induce behavioural patterns. Examples of control-
flow relations present in R are defined in [15]. Consider for example the weak
order relation. Let’s assume the existence of two activities a1 and a2. They are
in weak order relation, expressed as a1 ≺ a2, if there exists an execution of
the process where a1 occurs before a2. Such relations are used not only for the
formal definition of the process, but also for the definition of our observations:
instances of these relations represent the observable units against which we want
to compute the conformance. For example, consider the BPMN model in Fig. 1.
Based on the semantics of BPMN, we deduce, for the control-flow relation ≺
(weak order relation), to have {(≺, A,A1), (≺, A1, B), . . . , (≺,D, F ), (≺, E, F )}.

4.2 Data Streams

A data stream is typically defined as an infinite sequence of data items. As such,
we define a sequence over set X of length n as a function σ : {1, . . . , n} → X,
and an infinite sequence as σ : N+ → X. We also refer to a sequence using
string representation: σ = 〈x1, x2, . . . , xn〉 where xi = σ(i) ∈ X. In context of
this paper, the streams we observe refer to executions of a certain behavioural
pattern. Therefore, we define an observable unit as a behavioural pattern which
is observed in a process instance.

Definition 3 (Observable Unit). Let C denote the set of case ids, let R
denote the set of control-flow relations and let A denote the set of activi-
ties. Let b ∈ R × A × A denote a behavioural pattern. An observable unit
o = (c, b) ∈ C ×R×A×A is a tuple describing a behavioural pattern b ∈ B that
is observed in context of case id c.

The universe of all possible observable units is defined as O = C ×R×A×A.

For each observable unit we assume to have projection operators to extract
the case id and the pattern i.e. given o = (c, b), πc(o) = c and πb(o) = b.

Definition 4 (Stream of Behavioural Patterns). Given the universe of
observable units O = C ×R×A×A, a stream of behavioural patterns is defined
as an infinite sequence of observable units: S : N+ → O.
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Fig. 2. General idea of the 3 conformance measures computed based on a partially
observed process instance: conformance, completeness, and confidence.

A stream of behavioural patterns can be seen as an unbounded sequence
of observable units where their ordering complies with the time order of the
observable units, as defined by the underlying execution time of the correspond-
ing activities. Note that, a stream of behavioural patterns refers to information
at a high level of abstraction, i.e. when compared to the commonly used stream
of executed process events [5]. However, under specific circumstances, e.g. the
behavioural pattern considered in Sect. 6 (we consider a stream of direct follows
relations), a stream of behavioural patterns is easily extracted from a stream of
simple events. We refer to [5,6], where techniques to convert a stream of events
to a stream of behavioural patterns are described.

5 Online Conformance Checking Using Behavioural
Patterns

In this section we present conformance checking in terms of behavioural pat-
terns. We first present the envisioned requirements for an online conformance
checking approach after which we propose a generic framework that fulfills these
requirements.

5.1 Problem Statement

Existing conformance checking techniques quantify conformance using one spe-
cific metric, typically in terms of compliance or deviation costs. In online settings
however, we suffer both from the fact that we perform in-vivo analysis, i.e. new
event data is likely to be observed in the future, as well as the warm start
scenario. Using only one metric to express conformance, therefore, leads to mis-
leading results, i.e. cases that already started and/or that are not finished yet
get falsely penalized for this. To solve these issues, we propose a breakdown of
conformance in:

1. Conformance: Indicating the amount of correct behaviour observed thus-far;
2. Completeness: Indicating whether the entire trace is observed since the begin-

ning.
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3. Confidence: Indicating the possibility that the conformance score remains
stable.

Consider Fig. 2 in which we graphically illustrate the proposed conformance
metrics. Conformance is based on the current knowledge of a case, witnessed by
the observed behaviour. Completeness indicates the degree to what behaviour is
potentially missed for a case. Confidence signifies to what degree we are able to
trust the conformance metric, i.e. if more behaviour is expected in the future,
deviations may occur later as well.

5.2 Process Representation

The foundation of our online conformance checking technique is the notion of
behavioural pattern. Hence, we need a model capturing the following informa-
tion:
1. The set of behavioural patterns prescribed by the model;
2. For each behavioural pattern, the minimum and maximum number of distinct

prescribed patterns that must be observed before, since the beginning of the
case;

3. For each behavioural pattern, the minimum number of distinct patterns still
to observe in order to reach the end of the process (as prescribed by the
reference model).

We formalize such (process) model as follows.

Definition 5 (Process Model for Online Conformance (PMOC)). A
process model for online conformance (PMOC) M = (B,P, F ) is defined as
a triplet containing the set of prescribed behavioural patterns B. Each pattern is
defined according to Definition 1. P contains, for each behavioural pattern b ∈ B,
the pair of minimum and maximum number distinct prescribed patterns (i.e., B)
to be seen before b. We refer to these values as Pmin(b) and Pmax(b). Finally,
for each pattern b ∈ B, F (b) refers to the minimum number of distinct patterns
(i.e., B) required to reach the end of the process from b.

5.3 Computing Online Conformance Metrics

The procedure for the online computation of the conformance checking is
reported in Algorithm 1. The algorithm requires a stream of behavioural patterns
(cf. Definition 4) and a PMOC (cf. Definition 5) as input. The algorithm initial-
izes two maps/functions: obs and inc (lines 1–2). Given a case id as key, these
maps store the set of observed prescribed behavioural patterns and the number
of observed patterns not prescribed. Note that, for each case, the amount of data
to store is bounded by the model, and thus, constant w.r.t. the stream.

The online conformance procedure has an infinite loop to process the
unbounded stream of behavioural relations (lines 3 and 4). The procedure is
then split into 3 steps: (i) updating the maps; (ii) computing the conformance;
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Algorithm 1: Online conformance computation
Input: S: stream of behavioural patterns

M = (B,P, F ): process model for online conformance

1 Initialize map obs // Maps case ids to (finite) set of observed prescribed patterns
2 Initialize map inc // Maps case ids to integers
3 forever do
4 (c, b, t) ← observe(S) // New observable unit from the stream

// Step 1: update internal data structures
5 if b ∈ B then
6 obs(c) ← obs(c) ∪ {b} // If b already in obs(c), then no effect
7 else
8 inc(c) ← inc(c) + 1

// Step 2: compute online conformance values

9 conformance(c) ← |obs(c)|
|obs(c)| + inc(c)

10 Notify new value of conformance(c)
11 if b ∈ B then
12 if Pmin(b) ≤ |obs(c)| ≤ Pmax(b) then
13 completeness(c) ← 1
14 else

15 completeness(c) ← min

{
1,

|obs(c)|
Pmin(b) + 1

}

16 confidence(c) ← 1 − F (b)

maxb′∈B F (b′)
17 Notify new values of completeness(c) and confidence(c)

// Step 3: cleanup
18 if size of obs and inc is close to max capacity then
19 Remove oldest entries from obs and inc

and (iii) housekeeping. In the first step (lines 5–8) the obs and inc data struc-
tures are updated with the new observation: if the pattern refers to prescribed
relation, then it is added to the obs(c) set2. Otherwise, the value of incorrect
observations is incremented.

The second step of the algorithm (lines 9–7) computes the actual confor-
mance. The conformance for a (partial) process instance c is calculated in line 9:
the number of distinct observed prescribed patterns in c (i.e., |obs(c)|) divided
by the sum of the number of prescribed observed patterns and the incorrect
patterns (i.e., |obs(c)| + inc(c)). We quantify, in the interval [0, 1], the cor-
rect behaviour observed, where 1 indicates full conformance (i.e., no incorrect
behaviour) and 0 indicates no conformance at all (i.e., only incorrect behaviour).
Completeness and confidence are updated only when a prescribed behavioural
pattern is observed (line 11) since they require to locate the pattern itself in
the process. Specifically, the completeness of process instance c is calculated
in lines 12–15. It depends on whether the number of distinct behavioural pat-
terns observed so far is within the expected interval for current pattern b (i.e.,

2 If obs has no key c, obs(c) returns the empty set. If inc has no key c then inc(c)
returns 0.
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Pmin(b) ≤ |obs(c)| ≤ Pmax(b)3) or not. In the former case, we assume complete-
ness is perfect (therefore value 1). In the latter case, the problem could be due
to two reasons: we observe less patterns than expected (|obs(c)| < Pmin(b))
and in this case we have the ratio of observed pattern over the minimum
expected. Alternatively we observe more behavioural patterns than expected
(|obs(c)| > Pmax(b)) and in this case we assume a completeness value of 1. Note
that this last case could represent a “false positive”: we count the number of
observed correct patterns without checking which exact patters we are dealing
with. This approximation is imposed by online processing constraints. Finally,
the confidence of case c is calculated in line 16 as 1 minus the ratio of pat-
terns still to observe (i.e., F (b)) and the overall maximum number of future
patterns (i.e., maxb′∈B F (b′)). Confidence also ranges in [0, 1]: 1 indicates strong
confidence (i.e., the execution reached the end of the process), 0 means low con-
fidence (i.e., the execution is still far from completion, therefore there is room
for changes). Observe that, the metrics computed by the algorithm implement
the metrics described in the problem statement section (cf. Subsect. 5.1).

The third step of the algorithm (lines 18, 19) consists of cleanup operations.
Specifically, only a finite amount of memory is available: we can store only some
process instances. This step of the algorithm takes care of that: once the size of
obs and inc reaches the memory limit, oldest entries are removed. For the sake
of readability, we do not focus on the actual procedures to achieve that (cf. [5,6]
for possible solutions).

Suitability of the Algorithm for Online Settings. The computational complexity
of the main loop of the algorithm is constant for each event (given the reference
model as input). Specifically, step 1 (lines 5–8) updates hash maps in constant
time. All computations in step 2 (lines 9–17) require constant time complexity
(note that maxb′∈B F (b′) depends just on the model and can be pre-computed in
advance). Finally, step 3 (lines 18, 19), can be realized to require constant time
complexity (e.g., using LinkedHashMaps). The space required by the procedure
is bounded by an imposed maximum number of keys in obs and inc. Then, since
obs stores sets of prescribed behavioural patterns (which are finite) and inc stores
just one integer, the whole memory can not grow above the imposed threshold.
Since processing a single event takes a constant amount of time and fixed amount
of space, the procedure is suitable for online processing.

6 Online Conformance Checking Using Weak Ordering
Relations

In this section, we present an instantiation of the framework proposed in this
paper. We do so by computing three matrices out of the original model before

3 Pmin(b) and Pmax(b) refer to the min./max. number of distinct patterns to be seen
before b.
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Fig. 3. General idea of the approach presented in this paper. Steps 1–3 are performed
once, offline. Step 4 is the only online activity.

the actual online analysis. These matrices contain the information about the
possible relations between pairs of activities in the process model (behavioral
patterns) that is needed by PMOC (cf. Definition 5). In particular, for each pos-
sible behavioural pattern, we compute the (min. and max.) number of different
behavioural patterns preceding/following it for each case in the model. The com-
putation of these matrices allows us to retrieve information online in constant
time. The roadmap for the computation of the three matrices out of a process
model is shown in Fig. 3, while each of the steps is described in more detail in
the remaining of the section.

Step 1©: Input Process Models

As mentioned in Sect. 4, we do not assume a specific process modelling formalism.
However, in the context of this particular instantiation, we assume that the
model can be represented as a Petri net, possibly through a transformation from
other process modelling languages (e.g., transforming BPMN into Petri nets
[7]). For instance, Fig. 4 shows the Petri net system representation of the BPMN
process in Fig. 1, where transitions, places, arcs and tokens are represented as
squares, circles, directed black arrows and black dots, respectively.

Given a (transformed) Petri net, an additional reverse net is computed. The
reverse net is a net with the same set of places and transitions as the original
one, but where the direction of the edges is inverted. The use of this additional
net is made clear in Step 3©. Some notions used later in this section relate to the
execution semantics of Petri nets, which we briefly/informally introduce here. A
transition t is enabled iff there is at least one token in each place in the preset
of t. An enabled transition t can be fired and, as a consequence, modifies the
distribution of tokens over the net, thus producing a new marking. The firing
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Fig. 4. Labeled net system of the model in Fig. 1.

of a transition t removes one token from each place in its preset and puts one
token in each place in its poset. Finally, a marking is reachable if it is produced
by the firing of a sequence of transitions. We restrict to Petri nets systems whose
reachable markings contain up to 1 token in every place, i.e. safe Petri nets.

Step 2©: Finite Representation of Process Model Behavior Through
Unfoldings

The information about the behavioral patterns required by our framework can be
extracted by analyzing the state space (markings) of the Petri net. Specifically,
at each marking, the number of behavioral patterns are computed and counted,
and the number of different behavioural patterns preceding/following the last
observed pattern is stored. Nevertheless, if a net is cyclic then the number of
behavioural patterns it can produce is infinite. Several authors have proposed
techniques for computing finite Petri net representations of the behavior of a net
known as complete prefix of an unfolding. For instance, [13] introduces a way to
truncate the unfolding of a net at a finite level, while keeping a representation of
any reachable marking. Then, a framework for constructing a canonical unfolding
prefix, complete with respect to a suitable property, not limited to reachability,
was proposed in [10]. Our own work relies on such a framework, i.e. we compute a
finite fragment of the unfolding capturing enough information about the distinct
behavioral patterns in a net.

The new unfolding, specially developed for this instantiation, analyses each
reachable marking at every possible case and computes the set of behavioral pat-
terns between the transitions (activities) that were fired to reach such marking.
The idea of this new unfolding is to keep firing transitions in the original net
and create new instances of places and transitions whenever they are fired, in
the case of transitions, or visited by a token, in the case of places. Then, the
unfolding stops once it finds information that has been observed before. As a
concrete example, consider the weak order relation between activities. Figure 5
shows the complete prefix unfolding for the running example (unfolding of the
net shown in Fig. 4). Observe that p′

2, p′′
2 and p′′′

2 are instances of the place p2.
However, the unfolding stopped at p′′′

2 because the weak order relations are the
same as those captured at the marking in p′′

2 . In [10], the necessary conditions
that a notion of equivalence between execution states shall satisfy to guarantee
that the complete prefix unfolding is canonical and finite are defined. In our case,
a pair of markings are equivalent if they have (i) the same places, (ii) the same
relations (i.e., weak order) between activities executed to reach such marking,
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Fig. 5. Weak order relation preserving unfolding computed by our new unfolding tech-
nique. The unfolding stops when reaching p′′′

2 since the induced weak order relations
are the same as those observed in p′′

2 .

and (iii) the same set of activities that were lastly executed for reaching such
markings. These conditions allow to prove canonicity and finiteness of the new
complete prefix unfolding.

Step 3©: Computation of PMOC’s Data Structures via Reachability
Graphs

Given the complete prefix unfolding described above, different ways to compute
the weak order relations can be envisioned. For simplicity, in our implementation
we construct the corresponding reachability graph TS = (S, TR, s0). Such graph,
which is always finite, is used to derive the set of allowed weak order relations:
for each state s ∈ S it is possible to compute the set tsin ⊂ TR with all non-silent
transitions immediately leading to s, and the set tsout ⊂ TR with all non-silent
transitions immediately leaving s. In case there is a silent transition connected
to s it is necessary to recursively follow it and retrieve all incoming/outgoing
transitions which will be part of tin/tout. The set

⋃
s∈S{x ≺ y | x ∈ tsin, y ∈ tsout}

represents all weak order relations that can be extracted from TS. A weak order
relation x ≺ y, defined as x entering s ∈ S and y leaving s, might appear several
time in TS. By finding the longest and shortest paths from s0 to all occurrences
of s, and converting these paths into distinct weak order relations, it is possible to
identify the minimum and maximum number of weak order relations preceding
x ≺ y.

For the purpose of this paper we do not only require the minimum and
maximum number of relations preceding a given one, but also the minimum
number of relations required to reach the end of the model. Thus, we use the
reverse net for computing such information by computing the complete prefix
of the reverse net (reusing the methodology in Step 2©), and then counting
the distinct relations over the corresponding reachability graph.4 Observe that

4 In general, not all Petri nets can be reversed for computing the minimal number of
relations to reach the end. Hence, for computing confidence, we assume in the real-
ization of the framework presented in Sect. 6 a proper subclass, i.e., sound workflow
nets.
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Fig. 6. Performance of the system during a stress test involving 2 million events.

by inverting the direction of the weak order relations in the reverse net, we
obtain information referring to the end of the model: the distances now refer to
the minimum/maximum number of relations to reach the end. The techniques
described in this section allow the computation of the information needed to
have a proper process model abstraction for online conformance checking (cf.
Definition 5).

7 Experimental Evaluation

In this section, we present an experimental evaluation of the proposed techniques
in terms of performance, as well as its indicative power of conformance. We
additionally compare our technique against an alternative, state-of-the-art online
conformance checking technique. The proposed technique is available as ProM
plugin.5

7.1 Stress Test

We performed a stress test of our prototype. We randomly generated a BPMN
model containing 64 activities and 26 gateways. The model was then used to
simulate an event stream of 2 million events6. The test was performed on a
standard machine, equipped with Java 1.8(TM) SE Runtime Environment on
Windows 10 64 bit, an Intel Core i7-7500U 2.70 GHz CPU and 16 GB of RAM.
Results of the test are reported in Fig. 6. After an initial phase, when the con-
structed data structures were still in memory, the Java Virtual Machine was
able to remove these unreferenced objects. This explains the drop in the mem-
ory and the stabilization of the processing time, after about 100k event. From
that moment on, the memory used remained permanently around 100 MB and
the average processing time persisted below 0.009 ms/event.

This test shows that the implemented prototype is capable of sustaining
a high load of events on a standard laptop machine. Moreover, we observe
that both the processing time and memory usage show a relatively stable, non-
increasing trend. This aligns well with our expectations and the general require-
ments of data stream analysis.
5 See https://svn.win.tue.nl/repos/prom/Packages/StreamConformance/.
6 Models and streams available at https://doi.org/10.5281/zenodo.1194057.

https://svn.win.tue.nl/repos/prom/Packages/StreamConformance/
https://doi.org/10.5281/zenodo.1194057


Online Conformance Checking Using Behavioural Patterns 263

7.2 Correlation with Alternative Conformance Metrics

In this section, we examine the correlation of the proposed metrics with the
alternative described in [22], which reports a potential deviation in terms of
costs, rather than a conformance metric. Hence, the higher the cost of deviation,
the less conformance. As the metric in [22] is a more informed technique (at the
expense of using more memory) than the one proposed in this paper, a correlation
between both metrics shows that our technique reflects online conformance well.

We generated 12 random process models [9] with number of activities accord-
ing to a triangular distribution with lower bound 10, mode 20, and upper bound
30. We did not include duplicate labels, a probability of 0.2 for addition of silent
activities, moreover, the probability of control-flow operator insertion was: 0.45
for sequence, 0.2 for parallel and xor-split operators, 0.05 for an inclusive-or oper-
ator and 0.1 for loop constructs. From these models a collection of event logs has
been created (each log contains 1000 traces), subsequently treated as streams by
both techniques. Incremental noise levels (both on a trace- and event-level) were
introduced in the logs. Probability of trace- and event-level noises ranged from
0.1 to 0.5 with steps of 0.1. In order to compute the conformance, the technique
presented in this paper needs, at least, two events. Hence for a fair comparison,
we only consider conformance values from the second event onward, yielding a
total of 2,977,744 analyzed events (See footnote 6).

In Fig. 7 we present a scatter-plot of the conformance metric (this paper)
versus the incremental alignment-based costs (alternative approach). Figure 7a
plots all results, i.e. all events, where the size of the dot indicates the num-
ber of instances for the specific value combination. Spearman’s rank correlation
coefficient for the whole data set (ρ-value) is −0.9538502. As the chart reports,
coordinate (0, 1.0) dominates the data (in 73.4% of cases both techniques agree
on no deviation). Hence, the data is extremely skewed (vast majority of results
at coordinate (0, 1.0)) which explains the strong negative correlation. Nonethe-
less, the result shows that the two metrics generally agree when no deviations
occur. In Fig. 7b, we present the same results but only for combinations in which
at least one of the techniques identifies a deviation. In general, when alignment
costs increases, the conformance metric decreases. However, we observe that
the conformance values are spread around, i.e. we do not observe a clear lin-
ear trend. This is supported by the corresponding ρ-value of −0.2951334, pre-
sented in Table 2, which shows a correlation matrix for non-conforming results
(cf. Fig. 7b) of the conformance metrics presented in the paper and the costs as
defined in [22]. Correlations among the metrics presented in this paper are the
strongest. The fact that completeness and conformance depict the strongest cor-
relation is explained by the fact that the data set in general contains complete
cases. For confidence, weaker correlation is found. Based on the data used, it is
expected that once a case matures, relatively more correct behaviour is observed
than incorrect behaviour. The correlation between costs and completeness is neg-
ligible. For costs and confidence we observe a weak positive correlation: towards
the end of a trace, the likelihood of having observed noise, and thus costs, goes
up.
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Fig. 7. Scatter plots of conformance metric versus incremental alignment costs [22].

Table 2. Correlation matrix (ρ-values, Spearman) for non-conforming results (cf.
Fig. 7b), showing the conformance metrics of this paper and costs as defined in [22].

Metrics from this paper Cost [22]

Conformance Completeness Confidence

Metrics
from this
paper

Conformance 0.52282662 0.3862707 −0.29513342

Completeness 0.1851850 −0.02546182

Confidence 0.25104526

We conclude that the two metrics largely agree when no noise is present
(with a minor number of outliers). When both methods observe deviations, cor-
responding quantifications do not clearly correlate. This is partly due to the fact
that the alignment based approach always explains observations in terms of the
model, whereas the approach in this paper does not. Secondly, the use of weak
order relation as a behavioural pattern leads to the use of a strong abstraction
of the model: this representational bias seems not in-line with the deviation
approximation of the alternative approach.

7.3 Real-World Event Data Test

Finally, we investigated the real event log of an information system manag-
ing road traffic fines for the Italian police [12]. This log has a reference model,
designed with the help of domain experts and regulators [12]. To avoid the
state explosion problem during the computation of the matrices, we removed
self-loops from the model7. Additionally, to focus on most relevant traces, we
discarded all process instances with just one or two activities. The resulting log
contains 316 868 events, over 83 614 cases. The processing of the log, (excluded
the offline computations, and with support for up to 10 000 process instance in

7 This limitation only affects Sect. 6: it is possible to manually define the behavioural
patterns.
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Fig. 8. Online conformance on the road traffic fines log.

parallel) took 44 967 ms (0.14 ms/event). Figure 8 contains the binned results of
the analysis. The x axis reports the different events (by time, grouped in bins
of 3 000 events). The y axes of the charts report conformance, completeness and
confidence levels (grouped in bins of 0.25). Each point represents several events
(bubble size proportional to number of events) but different process instances
can be intertwined. Therefore, two consecutive events could refer to cases with
very different conformance levels (this explains fluctuations). We can see that
the conformance values are mostly at 1: only few events deviated from the refer-
ence model (93.5% of the events have conformance 1 and 99.6% of events have
conformance ≥0.5). Average conformance value is 0.97, suggesting very high con-
formance in general. 99.8% of the events have completeness of 1: most executions
actually started from the beginning with just sporadic warm starts. Finally, con-
fidence has mostly value 1 (99.4% of events). This is due to the specific behaviour
of the process which allows immediate termination of the execution right after
the execution of the first activity.

8 Discussion

The approach presented in this paper can be used to monitor any set of
behavioural patterns, i.e. we represent processes models as sets of prescribed
behavioural patterns and streams as infinite sequences of behavioural patterns.
Because of this, the framework is rather abstract and allows us to monitor any
possible set of relations. Note that we could also use the organizational perspec-
tive, rather than the control-flow perspective. An example relation which might
be relevant for monitoring purposes is whenever pairs of activities have to be per-
formed collaboratively and simultaneously (i.e., cooperation [16]). The provided
instantiation automatically extract instances of weak order behavioural patterns
out of a Petri net and an event stream. We focus on weak order relations since
they are widely used and relatively easy to deduce. Clearly, using more advanced
behavioural patterns such as causality, parallism and/or different perspectives,



266 A. Burattin et al.

i.e. organizational, requires a corresponding algorithmic design to deduce such
patterns from the process model and/or stream under study.

9 Conclusions and Future Work

In this paper we present a generic approach to compute the conformance of data
streams against a reference process model. In order to cope with all possible
scenarios, the approach decomposes the actual conformance into 3 metrics: the
actual conformance, the completeness and the confidence. Thus, the technique
can be used on partial executions and on traces already running (i.e., warm
start). Moreover, we provide an instantiation of the generic approach for the
case of weak order relations, which is based on a new unfolding technique. This
instantiation is implemented and available in ProM and it has been verified on
large dataset for stress test, on a real dataset, and it has also been compared
against a prefix-alignment based approach. As future work we plan to inves-
tigate further realizations of the framework, including declarative models, to
understand which behavioural patterns are useful in order to converge towards
optimal approaches bearing in mind that, being online, approximations must be
in place.
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