
Efficiently Computing Alignments

Using the Extended Marking Equation

Boudewijn F. van Dongen(B)

Eindhoven University of Technology, Eindhoven, The Netherlands
B.F.v.Dongen@tue.nl

Abstract. Conformance checking is considered to be anything where
observed behaviour needs to be related to already modelled behaviour.
Fundamental to conformance checking are alignments which provide a
precise relation between a sequence of activities observed in an event log
and a execution sequence of a model. However, computing alignments
is a complex task, both in time and memory, especially when models
contain large amounts of parallelism.

When computing alignments for Petri nets, (Integer) Linear Program-
ming problems based on the marking equation are typically used to guide
the search. Solving such problems is the main driver for the time com-
plexity of alignments. In this paper, we adopt existing work in such a way
that (a) the extended marking equation is used rather than the marking
equation and (b) the number of linear problems that is solved is kept at
a minimum.

To do so, we exploit fundamental properties of the Petri nets and we
show that we are able to compute optimal alignments for models for
which this was previously infeasible. Furthermore, using a large collec-
tion of benchmark models, we empirically show that we improve on the
state-of-the-art in terms of time and memory complexity.

Keywords: Alignments · Conformance checking · Process Mining

1 Introduction

Conformance checking is considered to be anything where observed behaviour
needs to be related to already modelled behaviour. Conformance checking is
embedded in the larger contexts of Business Process Management and Process
Mining [2], where conformance checking is typically used to compute metrics
such as fitness, precision and generalization to quantify the relation between a
log and a model.

Fundamental to conformance checking are alignments [3,4]. Alignments pro-
vide a precise relation between a sequence of activities observed in an event
log and a execution sequence of a model. For each trace, this precise relation is
expressed as a sequence of “moves”. Such a move is either a “synchronous move”
referring to the fact that the observed event in the trace corresponds directly to
c© Springer Nature Switzerland AG 2018
M. Weske et al. (Eds.): BPM 2018, LNCS 11080, pp. 197–214, 2018.
https://doi.org/10.1007/978-3-319-98648-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98648-7_12&domain=pdf

198 B. F. van Dongen

the execution of a transition in the model, a “log move” referring to the fact that
the observed event has no corresponding transition in the model, or a “model
move” referring to the fact that a transition occurred which was not observed in
the trace.

Computing alignments is a complex task, both in time and memory, especially
when models contain large amounts of parallelism and traces contain swapped
events. Consider the example in Fig. 1. In this example, the model requires the
process to finish with transitions A and B, while the trace shows them in the
wrong order. The technique of [3,4] will, when reaching the indicated marking,
have to investigate all interleavings of the parallel parts of the model inside the
upper cloud before reaching the conclusion that there is a swap in the end.

A B

<····································, B, A >

Fig. 1. A model ending in A,B and an exam-
ple trace ending in B,A.

In this paper, we present a tech-
nique to efficiently compute align-
ments using the extended mark-
ing equation which, in the exam-
ple above, would recognize the
swapped activities. We present
related work in Sect. 2 followed by
some preliminaries in Sect. 3. In
Sect. 4, we present alignments as well as our incremental technique for com-
puting them. In Sect. 5 we compare our technique to existing approaches and
discuss time and memory use before concluding the paper in Sect. 6.

2 Related Work

In [13], Rozinat et al. laid the foundation for conformance checking. They
approached the problem by firing transitions in the model, regardless of available
tokens and they kept track of missing and remaining tokens after completion of
an observed trace. However, these techniques could not handle duplicate labels
(identically labelled transition occurring at different locations in the model) or
“invisible” transitions, i.e. τ -labelled transitions in the model purely for routing
purposes.

As an improvement to token replay, alignments were introduced in [4]. The
work proposes to transform a given Petri net and a trace from an event log into
a synchronous product net, and solve the shortest path problem using A� [6]
on the its reachability graph. This graph may be considerable in size as it is
worst-case exponential in the size of the synchronous product, in some cases,
the proposed algorithm has to investigate the entire graph despite of tweaks
identified in [16].

To mitigate these complexity issues, [1,10] proposes decomposition tech-
niques for computing alignments. While this leads to shorter processing times,
these techniques cannot always guarantee optimality of the alignment returned.
Instead, they focus on giving bounds on the cost of the alignment. In [7], the
authors provide techniques to identify misconformance based on sets of labels.
The result is not an alignment.

Efficiently Computing Alignments 199

Recently approximation schemes for alignments, i.e. computation of near-
optimal alignments, have been proposed in [14]. The techniques use a recursive
partitioning scheme, based on the input traces, and solve multiple Integer Linear
Programming problems. In this paper, we build on the ideas outlined in [14] and
we combine them with the state-of-the-art to compute optimal alignments for
large process models.

Several techniques exist to compute alignments. Planner-based techniques [5]
are available for safe Petri nets. For safe, acyclic models, constraint satisfaction
[8] can be used. When not using a model, but its reachability graph as input,
automata matching [12] can be applied. The models in this paper are safe. How-
ever, they are cyclic and, due to parallelism, the reachability graphs cannot be
computed in reasonable time.

Finally, in [15] the authors provide a pre-processing mechanism to reduce
the complexity of the alignment problem for structured input. This can also be
applied in the context of this paper.

3 Preliminaries

In the context of conformance checking, we generally assume that there is a
global set of activities A. An event log consists of a set of traces where each
event in a trace refers to a specific activity execution. For sake of simplicity, we
assume a log to be a set of sequences of activities and we also assume all sets to
be totally ordered so that, when translating sets to vectors and vice versa, the
translation respects the ordering.

Event Logs. An event log L ⊆ A∗ is a set of sequences over A and σ ∈ L
a trace. We use σ = 〈a, b, c〉 to denote the fact that σ is a sequence of three
activities a, b, c ∈ A. With σ(i) we denote the ith element of σ. Petri nets. Petri
nets provide a modelling language for modelling business processes. Petri nets
consist of places and transitions and exact semantics are provided to describe
the behaviour of a Petri net [11]. In this paper, transitions can be labelled with
activities or be silent, i.e. their execution would not be recorded in an event log.

We define PN = (P, T, F, λ) as a labelled Petri net, where T is a set of
transitions, P is a set of places, F ⊆ P × T ∪ T × P the flow relation and
λ : T → A∪{τ} the labelling function, labelling each transition with an activity
or τ indicating there is no label associated to the transition.

For t ∈ T we use •t = {p ∈ P | (p, t) ∈ F} to denote the preset of t, i.e.
the set of places serving as input of a transition. The postset of t is defined as
t• = {p ∈ P | (t, p) ∈ F}.

A marking m is a multiset of places, i.e., m ∈ B(P). A transition t ∈ T is
enabled in a marking m if and only if •t ≤ m. Firing transition t in m results
in a new marking m′ = m − •t + t•, i.e., tokens are removed from •t and
added to t•. A marking m′ is reachable from m if there is a sequence of firings
θ = 〈t1, t2 . . . tn〉 that transforms m into m′, denoted by m[θ〉m′. We call θ a
firing sequence. For marking m, we use �m to represent them as column vector,
where for each p ∈ P holds that �m(p) = m(p), i.e. the number of tokens in

200 B. F. van Dongen

place p in marking m. Similarly, for firing sequence θ, we use �θ to denote the
parikh vector of θ, i.e. a column vector over T with �θ(t) = #0≤i<|θ|θ(i) = t, i.e.
a vector counting the occurrences of each transition in θ. The set of all reachable
markings of a Petri net given an initial marking is called the statespace.

Marking Equation. The structure of a Petri net can be translated into a so-
called incidence matrix.

For Petri net PN = (P, T, F, λ), The incidence matrix C is a matrix with
|P | rows and |T | columns, such that for all t ∈ T and p ∈ P holds that

C(p, t) =

⎧
⎨

⎩

−1 if (p, t) ∈ F and (t, p)
∈ F
1 if (t, p) ∈ F and (p, t)
∈ F
0 othwerwise

The incidence matrix can be used to mathematically relate markings through
the so-called marking equation in the following way.

For a firing sequence θ ∈ T ∗ between two markings m1 and m2, i.e. m1[θ〉m2,
the marking equation states that: �m1 + C · �θ = �m2.

The marking equation implies that if there is a firing sequence θ from mark-
ing m1 to marking m2, then this equation holds. The inverse is not necessarily
true, i.e. if �θ provides a solution to this equation, then it is not guaranteed that
there exists a firing sequence θ corresponding to �θ.

Where applicable, we mix sets and multisets by assuming a set is a multiset
containing each element only once. As Petri nets in this paper are used to model
processes, they have a clear initial and final marking.

PM = (PN,mi,mf) is a process model consisting of a Petri net (P, T, F, λ)
with initial marking mi and final marking mf . We assume there exists σ ∈ T ∗

such that mi[σ〉mf , i.e. the final marking is reachable from the initial marking.

4 An Incremental Technique for Computing Alignments

Given a Petri net and its initial and final marking, the behaviour of the model
can be seen as the set of possible firing sequences leading from the initial to the
final marking. This set is, in many cases, infinite. An event log captures sequences
of activity executions observed in practice and an alignment is a concept able
to express the precise relation between this sequence and the model.

To explain the concept of an alignment, we use a so-called synchronous prod-
uct net. These synchronous produces are specific types of nets, constructed from
the combination of a model and a trace, where the trace is first converted into
a trace model.

Definition 1 (Trace model). Let σ ∈ A∗ be a trace. TN =
((P, T, F, λ),mi,mf) is a process model called the trace model of σ if and only
if:

– P = {p0 . . . p|σ|},
– T = {t1 . . . t|σ|},
– F = {(pi, ti+1) ∈ P × T | 0 ≤ i < |σ|} ∪ {(ti, pi) ∈ T × P | 0 < i ≤ |σ|},

Efficiently Computing Alignments 201

– for all 0 < i ≤ |σ| holds λ(ti) = σ(i),
– mi = [p0], and
– mf = [p|σ|].

A trace model is a straightforward translation of a sequence of activities into
a linear Petri net model. Using a process model and a trace model, we define
the synchronous product as follows:

Definition 2 (Synchronous Product). Let PN = (Pm, Tm, Fm, λm) and
PM = (PN,mm

i ,mm
f) a process model. Furthermore, let σ ∈ A∗ be a trace with

TN = ((P l, T l, F l, λl),ml
i,m

l
f) its trace model.

The synchronous product SN = ((P, T, F, λ),mi,mf) is a Process Model,
with:

– P = Pm ∪ P l is the combined set of places,
– T = {(tm, tl) ∈ (Tm∪{�})×(T l∪{�}) | tm
=� ∨tl
=� ∨λm(tm) = λl(tl)}

is the set of original transitions merged with synchronous ones,
– F = {((tm, tl), p) ∈ T × P | (tm, p) ∈ Fm ∨ (tl, p) ∈ F l} ∪ {(p, (tm, tl)) ∈

P × T | (p, tm) ∈ Fm ∨ (p, tl) ∈ F l}, is the set of edges,

– for all (tm, tl) ∈ T holds that λ((tm, tl)) =
{

λm(tm) if tm
=�
λl(tl) if tl
=� , i.e. λ

respects the original labelling,
– mi = mm

i
 ml
i is the combined initial marking, and

– mf = mm
f
 ml

f is the combined final marking.

A synchronous product net is a combination of a process model and a trace
model in such a way that for each pair of transitions of which the labels agree, a
synchronous transition is added. Any complete firing sequence of the synchronous
product represents an alignment in which each transition firing represents either
a model move (transitions of the type (tm,�)), a log move (transitions of the
type (�, tl) or a synchronous move (transitions of the form (tm, tl)).

An optimal alignment is an alignment for which a cost function, associating
costs to the firing of each transition, is minimized.

Definition 3 (Optimal alignment). Let SN = ((P, T, F, λ),mi,mf) be a syn-
chronous product model and let c : T → R≥0 be a cost function associating costs
to each transition in the synchronous product. An optimal alignment γ ∈ T ∗ is a
firing sequence of SN , such that mi[γ〉mf and there is no θ ∈ T ∗ with mi[θ〉mf

and
∑

t∈θ c(t) <
∑

t∈γ c(t). We use c(θ) as shorthand for
∑

t∈θ c(t).

Note that there may be many optimal alignments in the general case, i.e.
alignments with the same minimal costs. Typically, the cost function c is chosen
in such a way that 0 costs are only associated to synchronous transitions, i.e.
transitions (tm, tL) ∈ T for which tM
=� and tL
=�. Routing transitions of
the form (τ,�) are typically given a small cost ε > 0, while transitions of the
form (t,�) or (�, t) with t
= τ receive cost 1. For the work in this paper the
cost function should be chosen such that there are no infinite sets of markings

202 B. F. van Dongen

reachable with the same costs, for which the above cost function provides a
sufficient condition. For models that do not contain infinite sets of markings
reachable through routing transitions only, ε = 0 is a valid assignment, which is
what we use in this paper.

4.1 Underestimation Using the Marking Equation

To compute alignments, we build on a technique introduced in [4] with the
parameter settings optimized according to [16]. This technique is based on A�,
which is a shortest path search algorithm that can be guided towards the desti-
nation using a function that underestimates the remaining costs of the optimal
alignment.

Definition 4 (Underestimation Function). Let PN = ((P, T, F, λ),mi,mf)
be a Process model and let c : T → R≥0 be a cost function. We define h : B(P) →
R≥0 to be an underestimation function if and only if for all m ∈ B(P) and σ ∈ T ∗

with m[σ〉mf holds that h(m) ≤ c(σ).

Several underestimation functions exist in literature. The most trivial one is
the function that always returns 0. This function leads to A� behaving like Dijk-
stra’s shortest path algorithm, essentially doing a breadth-first search through
the reachability graph of the synchronous product.

Using the marking equation of the synchronous product, several other under-
estimation functions can be defined.

Definition 5 (ILP-based Underestimation Function). Let PN =
((P, T, F, λ),mi, mf) be a process model with incidence matrix C and let c :
T → R≥0 be a cost function. We use �c to denote a column vector of the cost
values for each transition, i.e. �c(t) = c(t).

We define hILP : B(P) → R≥0 as an ILP based underestimation, such that
for each marking m ∈ B(P) holds that hILP (m) = �cᵀ · �x where �x is the solution
to:

minimize �cᵀ · �x
subject to �m + C · �x = �mf

∀t∈T �x(t) ∈ N

If no solution �x to the linear equation system exists, then hILP (m) = +∞
The ILP-based estimation function uses the marking equation to underesti-

mate the remaining cost to the final marking from any marking reached. Recall
that for any firing sequence, the marking equation has a solution, but not the
other way around. As a consequence, if the marking equation has no solution,
there is no firing sequence to the final marking. Furthermore, by minimizing, we
guarantee to provide a lower bound on the remaining distance.

Theorem 1 (hILP Provides a lower bound on the costs [4]). Let PN =
((P, T, F, λ), mi,mf) be a process model with incidence matrix C and let c : T →
R≥0 be a cost function. Let m ∈ B(P) be a marking and γ ∈ T ∗ an optimal firing
sequence such that m[γ〉mf , i.e. no firing sequence θ ∈ T ∗ with m[θ〉mf exists
such that c(θ) < c(γ). We prove that hILP (m) ≤ c(γ).

Efficiently Computing Alignments 203

Proof. Since γ is a firing sequence, we know that �m + C�γ = �mf (marking
equation). Furthermore, for all t ∈ T �γ(t) = #0≤i<|γ|θ(i) = t ∈ N and �cᵀ ·
�γ = c(γ). Assume �x minimizes the ILP shown in Definition 5 for marking m.
It is trivial that either �cᵀ · �x ≤ �cᵀ · �γ, otherwise �x is not minimizing. Hence
hILP (m) ≤ c(γ).

The estimation function hILP can be used to underestimate the remaining
cost of reaching the final marking in the synchronous product from any marking
reached and is therefore suitable to be used as a heuristic in A�. Unfortunately,
solving the integer linear program for every marking in the model is a complex
task. It is well-known that solving integer linear programs is exponential in the
rank of the matrix, i.e. in the number of transitions and places in the synchronous
product.

Therefore, we relax the constraints a bit and to use a non-integer linear
program to underestimate the remaining cost, i.e. we replace the last line of
Definition 5 by ∀t∈T �x(t) ∈ R≥0 to obtain hLP : B(P) → R≥0.

Since any integer solution is also a real valued solution, for any marking m
holds that hLP (m) ≤ hILP (m) . Therefore, hLP also provided an underestimate,
but the computational complexity is polynomial in the rank of the matrix.

In practice, as hLP provides a worse underestimate than hILP , more markings
need to be expanded when computing alignments, i.e. with a worse underesti-
mation function, A� investigates a larger part of the search space. However, due
to the fact that most LP solvers use Simplex as a solving technique, it is unlikely
that the actual solutions returned are non-integer for real-life examples.

An important property of both functions is the fact that the vectors �x that
provide the minimum can be used to derive a solution in the next marking of
the search space.

Theorem 2 (Minimizing solutions can be reused). Let PN =
((P, T, F, λ),mi,mf) be a process model with incidence matrix C and let c :
T → R≥0 be a cost function. Let m,m′ ∈ B(P) be two markings and �x a vector
minimizing the linear program of Definition 5. Furthermore, let t ∈ T be such
that m[t〉m′ with �x ≥ 1. We show that hILP (m′) = hILP (m) − c(t) with solu-
tion vector �x′ = �x − �1t (where �1t is a vector with 0 on all rows except the row
corresponding to t, which has value 1).

Proof. We prove by contradiction. Let �y be a vector satisfying the constraints
of Definition 5 such that hILP (m′) = �cᵀ · �y < hILP (m) − c(t), i.e. �y provides a
better solution than �x′.

Since m[t〉m′, we know that �m + C ·�1t = �m′ (marking equation). Therefore
�m+C·�1t+C�y = �mf , i.e. �m+C·(�1t + �y) = �mf and since this provides an integer
solution for the linear program, we know hILP (m) ≤ �cᵀ · (�1t + �y). However,
�cᵀ · (�1t + �y) = �cᵀ ·�1t +�cᵀ ·�y = c(t)+�cᵀ ·�y. In other words: hILP (m)−c(t) ≤ �cᵀ ·�y
which contradicts the fact that y provides a better solution than �x′.

It is trivial to see that �x′ is indeed an integer solution to the linear equation
system since �m = �m′ − C · �1t, and therefore �m′ + C · �x − C · �1t = �mf , i.e.

204 B. F. van Dongen

�m′ + C · (�x − �1t) = �mf and thus �m′ + C · �x′ = �mf . Since �x(t) ≥ 1, �x(t) − 1 =
�x′(t) ≥ 0 and hence �x′ provides a solution to the linear equation system for
hILP (m′).

Note that the proof is analogous for the hLP case. Also there, a new solution
can be derived from a previous one when firing transition t, as long as �x(t) ≥ 1.
By guiding A� to favour markings for which the solution can be reused, the
search time can be improved considerably.

(A,-) (B,-)

(B,-) (A,-)

(A,A)

(B,B)

Fig. 2. Synchronous product for the exam-
ple of Fig. 1.

Unfortunately, even when re-
using solutions, there are scenarios
that are common in practical cases
where A� performs poorly (almost
at worst-case, i.e. exploring the full
reachability graph of the synchronous
product net), for example in the case
of Fig. 2.

This is due to the fact that in all
reachable markings, the solution to the linear equation system suggests that
the two synchronous transitions (A,A) and (B,B) can be executed with cost 0,
while in fact, only two sequences are possible with minimal cost of 2, namely
〈(A,−), (B,B), (−, A)〉 or 〈(B,−), (A,A), (−, B)〉.

The root cause for the poor performance in this case is the use of the mark-
ing equation in the heuristic function. In particular, the fact that the vector
�x minimizing the (integer) linear program does not necessarily correspond to
a realizable firing sequence. In the next subsection, we show how the marking
equation can be extended to improve the solution vectors of the linear program.

4.2 Underestimation Using the Extended Marking Equation

We first consider the marking equation again, but this time we also include the
consumption matrix.

Definition 6 (Consumption Matrix). Let PN = (P, T, F, λ) be a Petri net.
The consumption matrix C− is a matrix with |P | rows and |T | columns, such

that for all t ∈ T and p ∈ P holds that C−(p, t) =
{−1 if (p, t) ∈ F

0 othwerwise

The consumption matrix can be used to guarantee that before the firing of a
specific transition, the necessary tokens are present in a Petri net by extending
the marking equation slightly.

Definition 7 (Extended Marking Equation). Let PN = (P, T, F, λ) be a
Petri net, C its incidence matrix and C− its consumption matrix. Let θ1, θ2 ∈ T ∗

be two firing sequences and m1,m2,m3 three markings, such that m1[θ1〉m2 and
m2[θ2〉m3. Furthermore, assume θ2 = 〈t, . . .〉, i.e. θ2 starts with transition t. The

extended marking equation states that:
�m1 + C · (�θ1 + �θ2) = �m3, and
�m1 + C · �θ1 + C− ·�1t ≥ �0

.

Efficiently Computing Alignments 205

The second part of the extended marking equation is essentially a translation
of the enabling condition for Petri nets. If a transition is enabled, we know that
each input place contains sufficiently many tokens. The marking reached after
firing any sequence θ1 in the net is determined by the first part of the original
marking equation. The consumption matrix is then used to express that after
consumption of all tokens required by transition t (but before production of
its output tokens), the net does not have any place with a negative number of
tokens.

As with the original marking equation, the reverse does not hold, i.e. not
all solutions for �θ1 and �θ2 that satisfy these conditions correspond to realizable
firing sequences. However, as these conditions are more restrictive, we can use
them in the estimation function for A� if we can identify the point where we
should split between θ1 and θ2. For this, we reason over the original trace.

Theorem 3 (An optimal alignment is at least as long as the
trace). Let SN = ((P, T, F, λ),mi,mf) be a synchronous product with
PM = ((Pm, Tm, Fm, λm), mm

i , mm
f) the process model and TN =

((P l, T l, F l, λl),ml
i,m

l
f) the trace model for trace σ ∈ A∗ it is constructed from.

Let γ ∈ T ∗ be an optimal alignment for some cost function C : T → R≥0.
We show that |γ| ≥ |σ| = |T l|, i.e. the length of the optimal alignment is longer
than the length of the trace σ.

Proof. This follows trivially from the structure of the synchronous product and
the fact that the token from the place initially marked in the trace model needs
to be “transported” to the final place of the trace model in any trace reaching
this final marking.

We use this property of the optimal alignment to provide a better estimation
function. Simply put, we cut the optimal alignment into a number of k predefined
pieces (where k is less or equal to the length of the sequence) and we guarantee
that after consumption of each transition at the start of each subtrace, the
marking is non-negative.

Definition 8 (Underestimation with k subtraces in the initial mark-
ing). Let SN = ((P, T, F, λ),mi,mf) be a synchronous product model for trace
σ. SN has incidence matrix C and consumption matrix C−. Let c : T → R≥0 be
a cost function and let σ = σ1

◦ . . . ◦σk be a division of the trace into k non-empty
subtraces.

We define hmi
= �cᵀ · ∑

0≤a≤k �xa + �cᵀ · ∑
0≤a<k �ya where �xa and �ya provide

the solution to:

minimize �cᵀ · ∑
0≤i≤k �xi + �cᵀ · ∑

1≤i≤k �yi

subject to �mi + C · �x0 + C · ∑1≤a≤k(�xa + �ya) = �mf (1)
∀1≤a≤k �mi + C · �x0 + C · ∑

1≤b<a(�xb + �yb) + C− · �ya ≥ �0 (2)
∀0≤a≤k ∀t∈T �xa(t) ∈ N (3)
∀1≤a≤k ∀t∈T �ya(t) ∈ {0, 1} (4)
∀1≤a≤k ∀(tm,tl)∈T with tl
= t(1+

∑
1≤b<a |σb|) �ya((tm, tl)) = 0 (5)

∀1≤a≤k
�1ᵀ · �ya = 1 (6)

206 B. F. van Dongen

Note that the assumption is that there is at least one alignment, hence this equa-
tion system is guaranteed to have a solution.

The equation system in Definition 8 appears complicated, but is a fairly
straightforward translation of the extended marking equation. Consider an opti-
mal alignment γ ∈ T ∗ for a trace σ of length |σ|. As we know, we can split
this optimal alignment into k ≤ |σ| subtraces, each of which starts with one
transition corresponding to an event from the trace, i.e. γ = γ0◦ . . . ◦γk, where
for 0 < i ≤ k holds that γi = 〈(t, tl), . . .〉 with tl ∈ T l, i.e. γi starts with one
transition that moves the token in the original trace model. γ0 is a (possibly
empty) prefix of transitions of the form (tm,�).

In Definition 8, variables �ya refer to the first transition in each γi, i.e. these
vectors encode the firing of a single transition at the start of each subtrace.
Variables �xa (bound by rule 3) correspond to any other transitions firing (in any
order). These vectors may be empty. Rule 4 guarantees that every element of �ya

is 0 or 1 and rule 5 and 6 ensure that only one element of �ya equals 1 and that
that element corresponds to a transition which is a transition of the synchronous
product corresponding to the start of σa.

Rule 1 is a translation of the original marking equation. It simply states that
when combining the firing of all transitions in all �xa and �ya, the final marking
is reached from the initial marking. Finally, rule 2 uses the extended marking
equation to guarantee that after firing a prefix of transitions γ0 through γa−1,
sufficient tokens are available to fire the first transition in γa (expressed by �ya).

Definition 8 provides again an underestimate for the total cost of an optimal
alignment in the initial marking. It can be generalized to any arbitrary reach-
able marking by assuming that we know how many events of the original trace
remain to be explained, i.e. by adjusting both mi and σ. This information is
generally available by considering the marking of the places in the trace model.
Furthermore, like before, we can relax constraints 3 and 4 from integers to real
valued numbers to reduce the complexity of minimizing the linear inequation
system.

Definition 9 (Underestimation with k subtraces). Let SN = ((P, T, F, λ),
mi, mf) be a synchronous product model for trace σ. Let m ∈ B(P) be a marking
in which l events of trace σ are explained and let σ = σ0

◦σ1
◦ . . . ◦σk be a division

of the trace into k + 1 non-empty subtraces, such that the first l events are in
σ0, i.e. k ≤ |σ| − l.

We define hILP,k : B(P) → R≥0 as an underestimation function, such that
hILP,k (m) = hm following Definition 8.

Like before, we prove that hILP,k indeed provides an underestimation func-
tion, provided that we know, for each marking, how many events have been
explained by the path leading up to this marking. Recall that this information
is trivially derived from the location of the token in the places corresponding to
the trace model.

Efficiently Computing Alignments 207

Theorem 4 (hILP,k is an underestimation function). Let SN =
((P, T, F, λ),mi, mf) be a synchronous product model for trace σ and let σ =
σ0

◦σ1
◦ . . . ◦σk be a division of the trace into k+1 non-empty subtraces, such that

the first l events are in σ0.
Let m ∈ B(P) be a marking in which l events of trace σ are explained. We

prove that for each θ ∈ T ∗ with m[θ〉mf holds that hILP,k(m) ≤ c(θ).

Proof. Let γ ∈ T ∗ be a firing sequence with m[γ〉mf , such that for each θ ∈ T ∗

with m[θ〉mf holds that c(γ) ≤ c(θ), i.e. γ is optimal.
We know that γ = γ0◦ . . . ◦γk such that for 1 ≤ a ≤ k holds that γa = 〈ta, . . .〉

with ta = (tm, tl) and tl = t(1+
∑

0≤b<a |σb|) ∈ T l, i.e. γ can be split into k + 1
subtraces such that all but the first subtrace start with a transition related to an
event in the original trace. We show that γ provides a solution for the inequation
system.

Let �x0 = �γ0 and for all 1 ≤ a ≤ k, let �ya = �1ta
and let �xa = �γa − �ya, i.e.

we translate the subtraces of γ into Parikh vectors, where we separate the first
transitions into vectors �y and the remainder into vectors �x.

It is trivial to see that by definition, conditions 3, 4, and 6 are met by this
translation. Condition 5 is also met, since the only element with value 1 is the
element that satisfies the given condition. Furthermore, Condition 1 is met, since
�m + C · �x0 + C · ∑

1≤a≤k(�xa + �ya) = �m + C · (�x0 +
∑

1≤a≤k(�xa + �ya)) =
�m + C · �γ = �mf . This is again the marking equation which holds for any
sequence.

Condition 2 is more complicated. Let 1 ≤ a ≤ k and let m′ ∈ B(P) be
the marking, such that m[γ0, . . . , γa−1〉m′, i.e. m′ is the marking reached after
executing the first a subtraces. We know that �m + C · �x0 + C · (

∑
1≤b<a(�xb +

�yb) = �m′ (again from the marking equation). Furthermore, we know that firing
transition ta is possible in marking m′ as this is the first transition in γa. Hence
�m′ +C− · �ya ≥ �0 which follows from the extended marking equation. Combining
the two yields �m +C · �x0 +C · (∑1≤b<a(�xb + �yb) ≥ −C− · �ya. Therefore �m +C ·
�x0 + C · (

∑
1≤b<a(�xb + �yb) + C− · �ya ≥ �0.

Since γ provides a solution to the inequation system, we know that any
minimal solution has less or equal costs. Hence hILP,k is an underestimation
function.

It is fairly easy to see that any solution in terms of �x and �y to the inequation
system of Definition 8 can be translated into a solution to the equation systems
of Definition 5 in terms of �z by defining �z = �x0 +

∑
1≤a≤k(�xa + �ya). Hence for

any marking m holds that hLP (m) ≤ hILP (m) ≤ hILP,k(m). Furthermore, the
k-variant can also easily be extended to the real domain in which case hLP (m) ≤
hLP,k(m) ≤ hILP,k(m).

This implies that hILP,k provides a better underestimation function than the
previous ones, since it guarantees that if the first vector �x0 corresponds to a
realizable firing sequence, then it reaches a marking that enables the transition
indicated by �y1. So for each splitpoint, the extended marking equations comes
with an additional “guarantee” on a transition being enabled.

208 B. F. van Dongen

However, this comes at a cost of computational complexity, since the inequa-
tion system has more variables (and constraints). Where Definition 5 has |T |
variables, Definition 8 has (2 ∗ k + 1) ∗ |T | variables (of which many are bound
to 0 by constraint 5).

The observation that there are many more variables involved in the k vari-
ants of the underestimation function leads to the question which value for k
should be chosen. Furthermore, the re-use of solutions of the inequation system
to derive new solutions is not as trivial as it is for the traditional underestima-
tion functions. Therefore, we propose an incremental search technique to find
optimal alignments which combines Theorem 2 with Definition 9.

4.3 Incrementally Extending the Heuristic Function

Using the k-based underestimation function, we propose a special version of the
A� search algorithm which incrementally increases the value of k when needed
and maximizes the reuse of previously computes solution vectors. The basic
principle of the search is simple:

We start in the initial marking mi by computing an underestimate for k = 1.
After solving the inequation system, we remember the solution vector �zmi

=
�x0 +

∑
1≤a≤k(�xa + �ya) as well as the estimate h.

Then, we follow the classical A� algorithm to find the optimal alignment. For
each marking m′ reached by firing transition t in marking m, the new underes-
timate value is computed either exactly if for marking m holds that �zm(t) ≥ 1,
in which case h(m′) = h(m) − c(t) and �zm′ = �zm − �1t, (cf. Theorem 2). If
�zm(t) < 1, then h(m′) = max(0, h(m) − c(t)), but �zm′ =⊥, i.e. the underesti-
mate is decreased, but the solution vector is unknown.

During the A� search, we prioritize markings for which the solution vector is
known and since we monotonously decrease the underestimate with the actual
costs, we know that if we ever have to expand a marking for which the solution
vector is unknown, there are no markings with known solution vectors in the
open set of the search algorithm.

If we do visit a marking with an unknown solution vector, we have reached
a point where the original estimate computed in the initial marking corresponds
to a firing sequence that is guaranteed not to be realizable. In that case, we try
to improve the underestimate function by increasing k and choosing a new way
to split the trace. Here, we consider the maximum number of events already
explained by any marking reached in the search space so-far and we split there,
i.e. if a marking explains a events for k = 1, we restart the procedure from
scratch with k = 2 and σ = σ1

◦σ2 with |σ1| = a.
Suppose that in the next iteration, we encounter an unknown solution vector

again, while we have found a marking explaining b events with b > a, we then
restart with k = 3 and σ = σ1

◦σ2
◦σ3 with |σ1| = a and |σ2| = b − a. If b < a,

then we restart with k = 3 and σ = σ1
◦σ2

◦σ3 with |σ1| = b and |σ2| = a − b.
If we encounter again an unknown solution vector with b = a events

explained, we follow the normal steps in the search, i.e. we compute an exact

Efficiently Computing Alignments 209

solution for the state and we requeue the state if the new estimate is higher than
the previous estimate.

This procedure incrementally improves the underestimation function used in
the A�. Worst case, this procedure leads to the entire alignment problem being
encoded as a linear program and especially for larger process models, this implies
that the computation time for the initial marking might increase substantially. It
is therefore advised not to use the ILP variant, but the LP variant. In practical
examples, k does not grow so big and in the experiment section, we show that this
procedure can considerably reduce the computation time of finding alignments.

5 Experiments

The procedure outlined in this paper was implemented in ProM as part of the
normal alignment plugins. It requires the user to install the “alignment” package
in which case the incremental algorithm shows up as a advanced variant in the
conformance checking plugin. The input objects as well as the returned objects
are identical to the classical conformance checking, i.e. optimal alignments are
returned.

In this section, we compare the performance of the algorithm with two exist-
ing alignment techniques. First, the classical A� using optimal parameter set-
tings [16] and second the planner-based approach [5]. Note that, for the former,
we use a completely new codebase which is optimized for memory use and also
part of the aforementioned alignment package in ProM. For the latter, we use
the ProM package “PlanningBasedAlignment”1.

We report the CPU times of all three techniques. For the planner, we show
both the time reported by the software, as well as the wallclock time. The lat-
ter is considerably larger due to the overhead of reading and writing files and
instantiating the external planner processed from Python. As the planner can
only be run in a single thread, we conducted all experiments in single-threaded
mode on a 2.8 GHz Intel Xeon W3530 CPU. The tools were given maximum
10 GB of RAM and for the planner, file IO was done on a 2 GB RAM disk in
physical RAM, eliminating slow disk access. The A� variants were bound to 60 s
per trace. The planner does not support a time limit. It was given as much time
as needed and was only terminated after running out of memory (10 GB). The
A� approaches never needed more than 10 MB of memory to store the internal
data structures for a single trace (including the memory used by the LP Solver
LpSolve). The Java VM however needed about 1 GB to store the event logs and
Petri net objects in memory. The total wallclock time to conduct all experiments
(not including the logs for which the planner ran out of memory) was 9 h for
the planner, 5 h for A� and 35 min for incremental A�. The remaining logs took
32 h in A� (however, 45% of the traces timed out after 60 s) and 2 h using our
incremental version.
1 Due to the new codebase, the time performance of A� cannot directly be compared

to the results presented in [5]. Furthermore, the CPU times reported in [5] were
obtained using a proprietary implementation which is not available for download.

210 B. F. van Dongen

Table 1. Time and memory to align benchmark event logs.

Log Cases Classical A� [16] Incremental A� Planner [5] cost
time (s) (timeout) solved LPs time (s) solved LPs pre (s) src (s) clock (s)

[18] road fines 10,247 0.2 458 0.2 176 4.3 1.6 2,362.4 7,284
[17] bpi12 12,136 7.9 29,089 1.3 759 10.8 43.4 3,111.0 57,727
[19] sepsis 1,051 120.0 440,825 10.7 5,553 1.8 59.6 323.4 2,448

[9] Fitting logs 4,004 4.6 2,935 4.5 2,935 15.2 13.7 1,123.9 53
[9] Noisy logs 16,016 52.6 100,529 21.7 14,155 55.3 237.8 4,671.8 12,111

[20] Fitting log (prBm6) 1,201 5.0 1,126 4.3 1,126 72.6 24.5 679.4 14
[20] Noisy logs 6,506 132,824.2 2,182 24,016,461 8,190.7 47,270 1,465.0 Out of Mem 98,708
[21] Fitting logs 38,019 53.2 25,620 51.5 25,620 326.2 185.1 12,022.5 253
[21] Noisy logs 28,014 15,503.4 11,756,515 488.5 76,857 288.1 575.5 9,618.0 91,603

[20] prAm6 1,201 55.0 29,496 99.2 2,752 64.3 798.3 1,475.1 4,969
[20] prCm6 501 1,780.4 804,518 1,302.7 7,683 31.7 166.1 445.1 12,552
[20] prEm6 1,201 29.1 7,200 60.8 4,800 148.5 Out of Mem 4,880
[20] prFm6 1,201 30,847.8 514 2,702,736 1,354.8 7,878 396.1 Out of Mem 21,425
[20] prGm6 1,201 71,941.9 1,200 18,643,107 1,526.6 13,794 253.4 Out of Mem 26,411
[21] pr1151 l4 2,001 2,467.9 1,457,592 68.9 7,486 26.9 61.4 715.8 9,044
[21] pr191 l4 2,001 3,978.8 2,702,250 126.5 11,707 30.5 94.1 763.7 16,044

Table 1 shows the results for three real life logs, three collections divided
in fitting and non-fitting logs2 and selected individual model/log combinations
from these collections. We show the number of cases and per algorithm, the
time needed to align all traces, the number of traces that reached the timeout
and the number of linear programs solved. The time is the total time needed
to align all traces in the log (including the timed-out ones). If the planner ran
out of memory, we show the pre-processing time (excluding IO) for translating
the traces to PDDL files. For each row, the fastest technique (wallclock time) is
highlighted.

The table shows that for the top three real-life cases, the incremental A�

outperforms the others, mainly due to the significant reduction in number of
LP’s that are solved. For the entire collections, the totals are shown over the full
collection, divided into fitting and noisy event logs. For fitting event logs, the
performance of both A� variants is equal. For noisy logs, the incremental version
is orders of magnitude faster. The planner’s preprocessing time is already higher
than the computation time for both A� variants.

The models from [20] present the worst-case scenario for incremental A�.
These logs are created using swapping of events in various parts of the model.
The incremental A� needs to reach the swapped event, after which a splitpoint
will be introduced. For prAm6 and prEm6, we see that A� is faster despite the
reduction in number of LPs solved, i.e. the CPU can investigate enough states
per second to eliminate the need for incremental A�. This is due to the location
of the swaps in these logs. For prEm6 the planner runs out of memory, but the
pre-processing time (excluding IO) is already higher than the A� time.

For prCm6, a model which does not have a large amount of parallelism, the
planner is fastest in the reported time, but not in wallclock time.

2 Note that the cost are never 0, due to the empty trace that is always included in
the computation. Furthermore, for the largest of these logs, no optimal alignments
could be computed before.

Efficiently Computing Alignments 211

For prFm6 and prGm6, regular A� runs out of time for many (if not all) of
the traces. This is due to the fact that these models contain vast amounts of par-
allelism and swapped events towards the end of the traces. The full reachability
graph is therefore expanded by A�. Our incremental version however correctly
identifies the swaps and returns optimal alignments, whereas the planner runs
out of memory, probably also due to the parallelism.

Figure 3 shows the relation between the cost of the alignment, the time to
compute the alignment and the memory use for the two A� variants for model
prCm6. The planner is not included here as it does not report the time per
trace, but only the total time for the entire event log. We see that the times
per trace are comparable for the two algorithms (time is plotted on the lefthand
axis, with logarithmic scale). As the costs of the alignments increase, so does the
computation time. The time complexity for this model shows a polynomial trend
in the cost of the alignment, as does the memory use. For regular A� the memory
use is rather low, as markings are not explicitly stored (they are computed when
needed by following the firing sequence back to the root). For incremental A�,

y = 1171.3x2.3944

R² = 0.9643

y = 451.63x2.6005

R² = 0.9822

y = 27.081x1.3735

R² = 0.9884

y = 21.48x0.6599

R² = 0.7506

0

1024

2048

3072

4096

5120

6144

7168

8192

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50 60

Pe
ak

 m
em

or
y u

se
d

(k
b)

Ti
m

e t
o

co
m

pu
te

 al
ig

nm
en

t (
in

 se
co

nd
s)

Cost of the optimal alignment found

Time A*
Time Incremental
Memory A*
Memory Incremental

Fig. 3. Time and memory use of both approaches vs. the cost of the optimal alignment
found for prCm6 of [20]. The trendlines show polynomial time and memory complexity.

y = 1868.3e0.0728x

R² = 0.8548

y = -0.097x3 + 33.487x2 - 1204.9x
R² = 0.9531

y = 2506.5e0.0813x

R² = 0.8277

y = -0.2265x3 + 64.397x2 - 2048.1x
R² = 0.9649

0.001

0.01

0.1

1

10

100

0 20 40 60 80 100 120 140 160

Ti
m

e t
o

al
ig

n
th

e t
ra

ce
 (

se
co

nd
s)

Length of the original trace in the log

pr1151 A*

pr1151 Incremental

pr1912 A*

pr1912 Incremental

Fig. 4. Time to compute optimal alignments for the two most complex models in [21].
Trendlines show exponential time complexity for A� and cubic complexity for the
incremental approach.

212 B. F. van Dongen

the memory is dominated by the size of the linear program. For example, the
maximum number of linear programs solved was 31 for model prCm6 with trace
“instance 124” (highlighted). About 6 MB of memory is needed there, mainly
to store the non-zero coefficients of a linear program of 11,688 rows and 10,262
columns in the solver. The total time to compute the optimal alignment was
22 s for incremental A�, of which 16 s was spent in the LP solver (for all 31 LPs
together) and the remaining 6 s on investigating 7,575 markings. For the same
trace, the classical A� searched 9,792 markings and solved 8,706 LPs in 25 s.

In Fig. 4, we show the computation time per trace for the two most complex
event logs in Table 1. For each trace, we plot the time needed to align it in the
model using classic A� (on a logarithmic axis) as well as our incremental version
(again the planner is omitted as it does not report times per trace). These
models contain considerably more parallelism which results in an exponential
time trendline for A�. More interestingly though, the time complexity for the
incremental version shows a cubic trend in both cases. This difference is explained
by the parallelism in the model, which leads to considerable differences in the
percentage of the time that is spent in the LP solver, as well as the number
of solved LPs. The incremental version spends 72% of the computation time
in the solver for pr1151 (70% for pr1912), vs. 99% (99%) for the classical one.
Per trace however, the incremental version solves only 7.0 (4.9) LPs per trace
rather than 953 (1612). The time per solve call is roughly 4.5 times higher for
the incremental version as the linear programs are larger.

The main difference between the various datasets is the length of the traces
compared to the size of the model. As our technique explicitly exploits the trace
to identify split-points, it benefits from long traces in relatively small models.
In [20], the models do not contain loops, so the traces are relatively short (up to
271 events) compared to the model size (up to 429 transitions). In the other
datasets, the trace lengths are up to three times the number of transitions in the
models.

6 Conclusion

Computing optimal alignments is a time consuming task which is essential in
the context of conformance checking. Traditional algorithms for computing opti-
mal alignments use the marking equation borrowed from Petri net theory as an
underestimating heuristic function in the context of an A� search. Unfortunately,
this heuristic is proven to perform poorly in certain cases which cause the A� to
expand nearly the full reachability graph of the Petri net, leading to excessive
computation times.

In this paper, we reconsider the heuristic function by exploiting knowledge
of the traces being aligned. Essentially, we use the original trace to guarantee
progress in the depth of the A� search. We do this by splitting the marking
equation into a number of sub-problems which together provide a more accurate
under estimation of the remaining cost. Rather than starting the search with
the fully split marking equation, we use A� itself to decide when to split the

Efficiently Computing Alignments 213

marking equation and we show this leads to a considerable reduction in number
of computed linear programs.

The work is implemented in ProM and we use publicly available benchmark
datasets to compare our work to existing techniques, showing significant improve-
ments in computation time. For future work, we develop techniques select appro-
priate splitpoints in advance.

References

1. van der Aalst, W.M.P.: Decomposing Petri nets for process mining: a generic app-
roach. Distrib. Parallel Databases 31(4), 471–507 (2013)

2. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. Wiley Inter-
discip. Rev.: Data Min. Knowl. Discov. 2(2), 182–192 (2012)

4. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Depart-
ment of Mathematics and Computer Science. Eindhoven University of Technology,
July 2014

5. de Leoni, M., Marrella, A.: Aligning real process executions and prescriptive process
models through automated planning. Expert Syst. Appl. 82, 162–183 (2017)

6. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

7. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2018)

8. López, M.T.G., Borrego, D., Carmona, J., Gasca, R.M.: Computing alignments
with constraint programming: the acyclic case. In: Proceedings of ATAED, Torun,
Poland, CEUR Workshop Proceedings, vol. 1592, pp. 96–110. CEUR-WS.org
(2016)

9. Măruşter, L., Weijters, A.J., van der Aalst, W.M., van den Bosch, A.: A rule-based
approach for process discovery: dealing with noise and imbalance in process logs.
Data Min. Knowl. Discov. 13(1), 67–87 (2006)

10. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit
decomposed conformance checking. Inf. Syst. 46, 102–122 (2014)

11. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

12. Reißner, D., Conforti, R., Dumas, M., La Rosa, M., Armas-Cervantes, A.: Scalable
conformance checking of business processes. In: Panetto, H., et al. (eds.) OTM
2017. LNCS, vol. 10573, pp. 607–627. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69462-7 38

13. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

14. Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior of
large structured process models. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM
2016. LNCS, vol. 9850, pp. 197–214. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45348-4 12

15. Taymouri, F., Carmona, J.: Model and event log reductions to boost the compu-
tation of alignments. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.) SIMPDA
2016. LNBIP, vol. 307, pp. 1–21. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74161-1 1

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-319-69462-7_38
https://doi.org/10.1007/978-3-319-69462-7_38
https://doi.org/10.1007/978-3-319-45348-4_12
https://doi.org/10.1007/978-3-319-45348-4_12
https://doi.org/10.1007/978-3-319-74161-1_1
https://doi.org/10.1007/978-3-319-74161-1_1

214 B. F. van Dongen

16. van Zelst, S.J., Bolt, A., van Dongen, B.F.: Tuning alingment computation: an
experimental evaluation. In: Proceedings of ATAED, 25–30 June 2017, Zaragoza,
Spain, pp. 1–15 (2017)

17. van Dongen, B.F.: BPI challenge dataset, 2012, in 4TU Center for Research Data.
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

18. de Leoni, M., Mannhardt, F.: Road Fines dataset, 2015, in 4TU Center for Research
Data. https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

19. Mannhardt, F.: Sepsis dataset, 2016, in 4TU Center for Research Data. https://
doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

20. Munoz-Gama, J.: Synthetic dataset, 2013, in 4TU Center for Research Data.
https://doi.org/10.4121/uuid:44c32783-15d0-4dbd-af8a-78b97be3de49

21. Munoz-Gama, J.: Synthetic dataset, 2014, in 4TU Center for Research Data.
https://doi.org/10.4121/uuid:b8c59ccb-6e14-4fab-976d-dd76707bcb8a

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:44c32783-15d0-4dbd-af8a-78b97be3de49
https://doi.org/10.4121/uuid:b8c59ccb-6e14-4fab-976d-dd76707bcb8a

	Efficiently Computing Alignments
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 An Incremental Technique for Computing Alignments
	4.1 Underestimation Using the Marking Equation
	4.2 Underestimation Using the Extended Marking Equation
	4.3 Incrementally Extending the Heuristic Function

	5 Experiments
	6 Conclusion
	References

