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Abstract. Automated process discovery techniques allow us to extract
business process models from event logs. The quality of models discov-
ered by these techniques can be assessed with respect to various criteria
related to simplicity and accuracy. One of these criteria, namely preci-
sion, captures the extent to which the behavior allowed by a process
model is observed in the log. While several measures of precision have
been proposed, a recent study has shown that none of them fulfills a
set of five axioms that capture intuitive properties behind the concept
of precision. In addition, existing precision measures suffer from scala-
bility issues when applied to models discovered from real-life event logs.
This paper presents a family of precision measures based on the idea
of comparing the k-th order Markovian abstraction of a process model
against that of an event log. We demonstrate that this family of mea-
sures fulfils the aforementioned axioms for a suitably chosen value of k.
We also empirically show that representative exemplars of this family
of measures outperform a commonly used precision measure in terms
of scalability and that they closely approximate two precision measures
that have been proposed as possible ground truths.

1 Introduction

Contemporary enterprise information systems store detailed records of the exe-
cution of the business processes they support, such as records of the creation
of process instances (a.k.a. cases), the start and completion of tasks, and other
events associated with a case. These records can be extracted as event logs con-
sisting of a set of traces, each trace itself consisting of a sequence of events
associated with a case. Automated process discovery techniques [3] allow us to
extract process models from such event logs. The quality of process models dis-
covered in this way can be assessed with respect to several quality criteria related
to simplicity and accuracy.

Two commonly used criteria for assessing accuracy are fitness and precision.
Fitness captures the extent to which the behavior observed in an event log is
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allowed by the discovered process model (i.e. Can the process model generate
every trace observed in the event log?). Reciprocally, precision captures the
extent to which the behavior allowed by a discovered process model is observed
in the event log. A low precision indicates that the model under-fits the log,
i.e. it can generate traces that are unrelated or only partially related to traces
observed in the log, while a high precision indicates that it over-fits (i.e. it can
only generate traces in the log and nothing more).1

While several precision measures have been proposed, a recent study has
shown that none of them fulfils a set of five axioms that capture intuitive prop-
erties behind the concept of precision [15]. In addition, most of the existing pre-
cision measures suffer from scalability issues when applied to models discovered
from real-life event logs.

This paper presents a family of precision measures based on the idea of
comparing the kth -order Markovian abstraction of a process model against that
of an event log using a graph matching operator. We show that the proposed
precision measures fulfil four of the aforementioned axioms for any k, and all five
axioms for a suitable k dependent on the log. In other words, when measuring
precision, we do not need to explore the entire state space of a process model
but only its state space up to a certain memory horizon.

The paper empirically evaluates exemplars of the proposed family of measures
using: (i) a synthetic collection of models and logs previously used to assess the
suitability of precision measures, and (ii) a set of models discovered from 20 real-
life event logs using three automated process discovery techniques. The synthetic
evaluation shows that the exemplar measures closely approximate two precision
measures that have been proposed as ground truths. The evaluation based on
real-life logs shows that for values of up to k = 5, the kth -order Markovian
precision measure is considerably more efficient than a commonly used precision
measure, namely alignments-based ETC precision [1].

The rest of the paper is structured as follows. Section 2 introduces existing
precision measures and the axioms defined in [15]. The family of Markovian
precision measures is presented in Sect. 3 and evaluated in Sect. 4. Finally, Sect. 5
draws conclusions and directions for future work.

2 Background and Related Work

One of the earliest precision measures was proposed by Greco et al. [8], based
on the set difference (SD) between the model behavior and the log behavior,
each represented as a set of traces. This measure is a direct operationalization
of the concept of precision, but it is not applicable to models with cycles since
the latter have an infinite set of traces.

1 A third accuracy criterion in automated process discovery is generalization: the
extent to which the process model captures behavior that, while not observed in the
log, is implied by it.



160 A. Augusto et al.

Later, Rozinat and van der Aalst [14] proposed the advanced behavioral
appropriateness (ABA) precision. The ABA precision is based on the compari-
son between the sets of activity pairs that sometimes but not always follow each
other, and the set of activity pairs that sometimes but not always precede each
other. The comparison is performed on the sets extracted both from the model
and the log behaviors. The ABA precision does not scale to large models and it is
undefined for models with no routing behavior (i.e. models without concurrency
or conflict relations) [15].

De Weerdt et al. [7] proposed the negative events precision measure (NE).
This method works by inserting inexistent (so-called negative) events to enhance
the traces in the log. A negative event is inserted after a given prefix of a trace
if this event is never observed preceded by that prefix anywhere in the log.
The traces extended with negative events are then replayed on the model. If
the model can parse some of the negative events, it means that the model has
additional behavior. This approach is however heuristic: it does not guarantee
that all additional behavior is identified.

Muñoz-Gama and Carmona [13] proposed the escaping edges (ETC) pre-
cision. Using the log behavior as reference, it builds a prefix automaton and,
while replaying the process model behavior on top of it, counts the number
of escaping edges, i.e. edges not in the prefix automaton which represent extra
behavior of the process. Subsequently, to improve the robustness of the ETC
precision for logs containing non-fitting traces, the ETC precision evolved into
the alignments-based ETC precision (ETCa) [1] where the replay is guided by
alignments.

Despite its robustness, ETCa does not scale well to real-life datasets. To
address this issue, Leemans et al. [12] proposed the projected conformance check-
ing (PCC) precision. This precision, starting from the log behavior and the model
behavior builds a projected automaton (an automaton where a reduced number
of activities are encoded) from each of them, i.e. Al and Am. These two automata
are then used to generate a third automaton capturing their common behavior,
i.e. Al,m. The precision value is then computed as the ratio between the number
of outgoing edges of each state in Al,m and the number of outgoing edges of the
corresponding states occurring in Am.

Finally, van Dongen et al. [16] proposed the anti-alignment precision (AA).
This measure analyses the anti-alignments of the process model behavior to
assess the model’s precision. An anti-alignment of length n is a trace in the
process model behavior of length at most equal to n, which maximizes the Lev-
enshtein distance from all traces in the log.

In a recent study, Tax et al. [15] proposed five axioms to capture intuitive
properties behind the concept of precision advising that any precision measure
should fulfill these axioms. We start by introducing preliminary concepts and
notations, and then proceed to present the five axioms.
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Definition 1 [Trace]. Given a set of activity labels Σ, we define a trace on
Σ as a sequence τΣ = 〈t1, t2, . . . , tn−1, tn〉, such that ∀1 ≤ i ≤ n, ti ∈ Σ.2

Furthermore, we denote with τi the activity label in position i, and we use the
symbol ΓΣ to refer to the universe of traces on Σ. With abuse of notation,
hereinafter we refer to any t ∈ Σ as an activity instead of an activity label.

Definition 2 [Subtrace]. Given a trace τ = 〈t1, t2, . . . , tn−1, tn〉, with the nota-
tion τ i→j, we refer to the subtrace 〈ti, ti+1, . . . , tj−1, tj〉, where 0 < i < j ≤ n.
We extend the subset operator to traces, i.e., given two traces τ and τ̂ , τ̂ is
contained in τ , shorthanded as τ̂ ⊂ τ , if and only if (iff) ∃i, j ∈ N | τ i→j = τ̂ .

Definition 3 [Process Model Behavior]. Given a process model P (regard-
less of its representation) and being Σ the set of its activities. We refer to
the model behavior as BP ⊆ ΓΣ, where ∀〈t1, t2, . . . , tn−1, tn〉 ∈ BP there
exists an execution of P that allows to execute the sequence of activities
〈t1, t2, . . . , tn−1, tn〉, where t1 is the first activity executed, and tn the last.3

Definition 4 [Event Log Behavior]. Given a set of activities Σ, an event log
L is a finite multiset of traces defined over Σ. The event log behavior of L is
defined as BL = support(L).4

Definition 5 [Precision Axioms].

– Axiom-1. A precision measure is a deterministic function prec : L × P →
R, where L is the universe of event logs, and P is the universe of processes.

– Axiom-2. Given two process models P1, P2 and a log L, if the behavior of L
is contained in the behavior of P1, and this latter is contained in the behavior
of P2, the precision value of P1 must be equal to or greater than the precision
value of P2. Formally, if BL ⊆ BP1 ⊆ BP2 =⇒ prec(L,P1) ≥ prec(L,P2).

– Axiom-3. Given two process models P1, P2 and a log L, if the behavior of L
is contained in the behavior of P1, and P2 is the flower model, the precision
value of P1 must be greater than the precision value of P2. Formally, if BL ⊆
BP1 ⊂ BP2 = ΓΣ =⇒ prec(L,P1) > prec(L,P2).

– Axiom-4. Given two process models P1, P2 and a log L, if the behavior of
P1 is equal to the behavior of P2, the precision values of P1 and P2 must be
equal. Formally, if BP1 = BP2 =⇒ prec(L,P1) = prec(L,P2).

– Axiom-5. Given a process model P and two event logs L1, L2, if the behavior
of L1 is contained in the behavior of L2, and the behavior of L2 is contained
in the behavior of P , the precision value of the model measured over L2 must
be equal to or greater than the precision value measured over L1. Formally, if
BL1 ⊆ BL2 ⊆ BP =⇒ prec(L2, P ) ≥ prec(L1, P ).

Tax et al. [15] showed that none of the existing measures fulfils all the axioms.

2 To enhance the readability, in the rest of this paper we refer to τΣ as τ , omitting
the set Σ.

3 In the case BP = ΓΣ , P corresponds to the flower model.
4 The support of a multiset is the set containing the distinct elements of the multiset.
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3 Markovian Abstraction-Based Precision (MAP)

This section presents a family of precision measures based on kth-order Marko-
vian abstractions. Intuitively, precision measures try to estimate how much of
the behavior captured in a process model can be found in the behavior recorded
in an event log. The computation of our precision measures can be divided into
three steps: (i) abstraction of the behavior of a process model, (ii) abstraction of
the behavior recorded in an event log, and (iii) comparison of the two behavioral
abstractions. We start by defining the kth-order Markovian abstraction, as well
as its features, and then introduce the algorithm to compare a pair of Markovian
abstractions. Finally, we show that our precision measures satisfy four of the five
precision axioms, while the fifth axiom is also satisfied for specific values of k.

3.1 Markovian Abstraction

A kth-order Markovian abstraction (Mk-abstraction) is a graph composed by a
set of states (S) and a set of edges (E ⊆ S×S). In an Mk-abstraction, every state
s ∈ S represents a (sub)trace of at most length k, e.g. s = 〈b, c, d〉, while two
states s1, s2 ∈ S are connected via an edge e = (s1, s2) ∈ E iff s1 and s2 satisfy
the following three properties: (i) the first activity of the (sub)trace represented
by s1 can occur before the (sub)trace represented by s2, (ii) the last activity of
the (sub)trace represented by s2 can occur after the (sub)trace represented by s1,
and (iii) the two (sub)traces represented by s1 and s2 overlap with the exception
of their first and last activity, respectively, e.g. e = (〈b, c, d〉, 〉c, d, e〉). Every state
of an Mk-abstraction is unique, i.e. there are no two states representing the same
(sub)trace. An Mk-abstraction is defined w.r.t. a given order k, which defines
the size of the (sub)traces encoded in the states. An Mk-abstraction contains a
fresh state (denoted as −) representing the sink and source of the Mk-abstraction.
Intuitively, every state represents either a trace of length less than or equal to k or
a subtrace of length k, whilst every edge represents an existing subtrace of length
k+1 or a trace of length less than or equal to k+1. Thus, Mk-abstraction captures
how all the traces of the input behavior evolves in chunks of length k. The
definitions below show the construction of a Mk-abstraction from a given BX ,
and a fundamental property of the Mk-abstractions to show that our precision
measure fulfils the 5 precision axioms.

Definition 6 [kth-order Markovian Abstraction]. Given a set of traces BX ,
the k-order Markovian Abstraction is the graph Mk

X = (S,E) where S is the set
of the states and E ⊆ S × S is the set of edges, such that

– S = {−}∪{τ : τ ∈ BX ∧ |τ | ≤ k}∪{τ i→j : τ ∈ BX ∧ |τ | > k ∧ ∣

∣τ i→j
∣

∣

= k}
– E = {(−, τ) : τ ∈ S ∧ |τ | ≤ k}∪{(τ,−) : τ ∈ S ∧ |τ | ≤ k} ∪ {(−, τ) :

∃τ̂ ∈ BX s.t. τ = τ̂1→k} ∪ {(τ,−) : ∃τ̂ ∈ BX s.t. τ = τ̂ (|τ̂ |−k+1)→|τ̂ |} ∪
{(τ ′, τ ′′) : τ ′, τ ′′ ∈ S ∧ τ ′ ⊕ τ ′′

|τ ′′| = τ ′
1 ⊕ τ ′′ ∧ ∃τ̂ ∈ BX s.t. τ ′

1 ⊕ τ ′′ ⊆ τ̂}5
5 The operator ⊕ is the concatenation operator.
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Theorem 1 [Equality and Containment Inheritance]. Given two sets of
traces BX and BY , and their respective Mk − abstractions Mk

X = (SX , EX)
and Mk

Y = (SY , EY ), any equality or containment relation between BX and BY

is inherited by EX and EY . I.e., if BX = BY then EX = EY , or if BX ⊂ BY

then EX ⊆ EY .

Proof. (Sketch) This follows by construction. Specifically, every edge e ∈ EX

represents either a subtrace τx→y : τ ∈ BX ∧ |τx→y| = k + 1, or it represents
a trace τ : τ ∈ BX ∧ |τ | < k + 1. The last implies that from the same sets of
traces the corresponding Mk-abstractions contain the same sets of edges. ��

Note, however, that the theorem above cannot say anything for the traces
in BY \ BX , i.e. adding new traces to BX does not imply that new edges are
added to EX . As a result the relation BX ⊂ BY guarantees only EX ⊆ EY ,
instead of EX ⊂ EY .

Note that, M1-abstraction is equivalent to a directly-follows graph (a well-
known behavior abstraction used as starting point by many process dis-
covery approaches [5,10,17,18]). Instead, if k approaches to infinite then
M∞-abstraction is equivalent to listing all the traces. The Mk-abstraction of
a process model can be built from its reachability graph by replaying it. The
time complexity of such operation strictly depends on k, and it ranges from
polynomial time (k = 1) to double exponential time for greater values of k.
Instead, the Mk-abstraction of an event log can be built always in polynomial
time, since the log behavior is a finite set of traces.

Table 1. Log L∗.

Traces
〈a, a, b〉
〈a, b, b〉
〈a, b, a, b, a, b〉

One can tune the level of behavioral approximation by
varying the order k of the Mk-abstraction. For example, let
us consider the event log L∗ as in Table 1, and the Process-X
(Px) in Fig. 1c. Their respective M1-abstractions: M1

L∗ and
M1

Px
are shown in Fig. 2d and c. We can notice that M1

L∗ =
M1

Px
, though BPx

is infinite whilst BL∗ is not. This is an
example on how the M1-abstraction can over-approximate
the behavior it represents. However, the increase of k can lead to more accu-
rate representations (decreasing the degree of over-approximation) and thus to
behavioral differences between behaviorally-similar abstractions, e.g., L∗ and Px,
can be detected, see Fig. 3d and c. We remark that for k equal to the length of
the longest trace in the log, the behavioral abstraction of this latter is exact.
However, a similar reasoning cannot be done for the model behavior, since its
longest trace may be infinite.

(a) Flower Proc. (b) Process Y (c) Process X

Fig. 1. Examples of processes in the BPMN language.
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−

a b

(a) 1− 2
8 = 0.75

−

a b

(b) 1− 2
8 = 0.75

−

a b

(c) 1− 0
6 = 1.00

−

a b

(d) -

Fig. 2. From left to right: the M1-abstraction of the Flower Process, Process-Y,
Process-X and the event log L∗. The respective labels report the value of their MAP1.

−
a b

aa bb

ab ba

(a) 1− 12
20 = 0.40

−
a b

aa bb

ab ba

(b) 1− 8
16 = 0.50

−
aa bb

ab ba

(c) 1− 4
12 = 0.66

−
aa bb

ab ba

(d) -

Fig. 3. From left to right, the M2-abstraction of the Flower Process, Process-Y,
Process-X and the event log L∗. The respective labels report the value of their MAP2.

3.2 Comparing Markovian Abstractions

The third and final step of our precision measure is the comparison of the
MK-abstractions of the process model and the event log. In short, given two
Mk-abstractions, we compare them using a weighted edge-based graph matching
algorithm.

Definition 7 [Weighted Edge-based Graph Matching Algorithm
(GMA)]. A Weighted Edge-based Graph Matching Algorithm (GMA) is an algo-
rithm that receives as input two graphs G1 = (N1, E1) and G2 = (N2, E2), and
outputs a mapping function IC : E1 → (E2 ∪ {ε}). The function IC maps pairs
of edges matched by a graph matching algorithm or, if no mapping was found,
the edges in E1 are mapped to ε, i.e., ∀e1, e2 ∈ E1 : IC(e1) = IC(e2) ⇒
(e1 = e2) ∨ (IC(e1) = ε ∧ IC(e2) = ε). A GMA is characterised by
an underlying cost function C : E1 × (E2 ∪ {ε}) → [0, 1], s.t. ∀e1 ∈ E1 and
∀e2 ∈ E2 =⇒ C(e1, e2) ∈ [0, 1] and ∀e1 ∈ E1 =⇒ C(e1, ε) = 1. Hereinafter we
refer to any GMA as its mapping function IC .

Given a GMA IC , an event log L and a process P as inputs, the kth-order
Markovian abstraction-based precision (hereby MAPk) is estimated applying
Eq. 1.

MAPk(L,P ) = 1 − Σe∈EP
C(e,IC(e))
|EP | (1)
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The selected GMA for the implementation of our MAPk is an adaptation
of the Hungarian method [9], where: the cost of a match between two edges is
defined as the average of the Levenshtein distance between the source states and
the target states; and the final matching is the one minimising the total costs of
the matches.

Figure 1 shows three models in BPMN notation. Their respective Markovian
abstractions are captured in Figs. 2a–c and 3a–c, for k = 1 and k = 2. We
can observe that by increasing k, the quality of the behavior approximation
decreases. Consequently, the MAPk achieves a finer result.

Note that each of the proposed precision measures fulfills the properties of
an ordinal scale. Specifically, given an event log L and for a given k, MAPk

induces an order over the possible process models that fit log L . This property
is desirable given that the purpose of a precision measure is to allow us to
compare two possible process models in terms of their additional behavior.

3.3 Proofs of the 5-Axioms

We now turn our attention to show that our Markovian abrastraction-based
precision measure fulfils the axioms presented in Sect. 2. For the remaining part
of the section, let Lx be a log, Px be a process model, and Mk

Lx
= (SLx

, ELx
) and

Mk
Px

= (SPx
, EPx

) be the Mk-abstractions of the log and the model, respectively.

–Axiom-1. MAPk(L,P ) is a deterministic function. Given a log L and a process
P , The construction of Mk

L and Mk
P is fully deterministic for BP and BL (see

Definition 6). Furthermore, being the graph matching algorithm IC deter-
ministic, and being MAPk(L,P ) function of EL, EP and IC (see Eq. 1), it
follows that MAPk(L,P ) is also deterministic with codomain R.

–Axiom-2. Given two processes P1, P2 and an event log L, s.t. BL ⊆ BP1 ⊆
BP2 , then MAPk(L,P1) ≥ MAPk(L,P2). First, the following relation holds,
EL ⊆ EP1 ⊆ EP2 (see Theorem 1). Then, we distinguish two possible cases:
1. if EP1 = EP2 , then it follows straightforward MAPk(L,P1) =

MAPk(L,P2), because MAPk(L,P ) is a deterministic function of EL,
EP and IC (see Axiom-1 proof and Eq. 1).

2. if EP1 ⊂ EP2 , then EL ⊂ EP2 ∧ (|EP2 | − |EP1 |) > 0. In this case, we
show that MAPk(L,P2) − MAPk(L,P1) < 0 is always true, as follows.

1 − Σe2∈EP2
C(e2,IC(e2))
|EP2 |

−
(

1 − Σe1∈EP1
C(e1,IC(e1))
|EP1 |

)

=

Σe1∈EP1
C(e1,IC(e1))
|EP1 |

− Σe2∈EP2
C(e2,IC(e2))
|EP2 |

< 0

For each edge e1 that can be found both in EP1 and EL, the cost
C(e1,IC(e1)) is 0, being IC(e1) = e1. Instead, for each edge e1 that
can be found in EP1 but not in EL, the cost C(e1,IC(e1)) is 1, being
IC(e1) = ε. It follows that the total cost of matching EP1 over L is
Σe1∈EP1

C(e1,IC(e1)) = |EP1 |−|EL|. A similar reasoning can be done for



166 A. Augusto et al.

the matching of EP2 over L. Indeed, ∀e2 ∈ EP2 ∩EL =⇒ C(e2,IC(e2)) =
0 and ∀e2 ∈ EP2 \ EL =⇒ C(e2,IC(e2)) = C(e2, ε) = 1, therefore
Σe2∈EP2

C(e2,IC(e2)) = |EP2 | − |EL|.
Applying these results to the above inequality, it turns into the following:

|EP1 | − |EL|
|EP1 |

− |EP2 | − |EL|
|EP2 |

=
|EL| (|EP1 | − |EP2 |)

|EP1 | |EP2 |
< 0

This latter is always true, since the starting hypothesis of this second case
is (|EP1 | − |EP2 |) < 0.

–Axiom-3. Given two processes P1, P2 and an event log L, s.t. BL ⊆ BP1 ⊂
BP2 = ΓΣ then MAPk(L,P1) > MAPk(L,P2). For any k ∈ N, the relation
MAPk(L,P1) ≥ MAPk(L,P2) holds for Axiom-2. The case MAPk(L,P1) =
MAPk(L,P2) occurs when Mk

P2
over-approximates the behavior of P2, i.e.

BP1 ⊂ BP2 and EP1 = EP2 . Nevertheless, for any BP1 there always exists
a k∗ s.t. EP1 ⊂ EP2 . This is true since being BP1 strictly contained in BP2 ,
there exists a trace τ̂ ∈ BP2 s.t. τ̂ �∈ BP1 . Choosing k∗ = |τ̂ |, the Mk∗

P2

would produce an edge ê = (−, τ̂) ∈ EP2 s.t. ê �∈ EP1 because τ̂ �∈ BP1 (see
also Definition 6).6 Consequently, for any k ≥ k∗, we have EP1 ⊂ EP2 and
MAPk(L,P1) > MAPk(L,P2) holds, being this latter the case 2 of Axiom-2.

–Axiom-4. Given two processes P1, P2 and an event log L, s.t. BP1 = BP2

then MAPk(L,P1) = MAPk(L,P2). If BP1 = BP2 , then EP1 = EP2 (see
Theorem 1). It follows straightforward that MAPk(L,P1) = MAPk(L,P2)
(see proof Axiom-1 and Eq. 1).

–Axiom-5. Given two event logs L1, L2 and a process P , s.t. BL1 ⊆ BL2 ⊆ BP ,
then MAPk(L2, P ) ≥ MAPk(L1, P ). Consider the two following cases:
1. if BL1 = BL2 , then EL1 = EL2 (see Theorem 1). It follows

MAPk(L2, P ) = MAPk(L1, P ), because MAPk(L,P ) is a deterministic
function of EL, EP and IC (see Axiom-1 proof and Eq. 1).

2. if BL1 ⊂ BL2 , then EL1 ⊆ EL2 (see Theorem 1). In this case, the graph
matching algorithm would find matchings for either the same number or
a larger number of edges between Mk

P and Mk
L2

, than between Mk
P and

Mk
L1

(this follows from EL1 ⊆ EL2). Thus, a smaller or equal number of
edges will be mapped to ε in the case of MAPk(L2, P ) not decreasing the
value for the precision,i.e., MAPk(L2, P ) ≥ MAPk(L1, P ).

In Axiom-3 we showed that there exists a specific value of k, namely k∗,
for which MAPk∗

(Lx, Px) satisfies Axiom-3 and we identified such value being
k∗ = |τ̂ |, where τ̂ can be any trace of the set difference ΓΣ\BPx

. In the following,
we show how to identify the minimum value of k∗ such that all the 5-Axioms are
satified. To identify the lowest value of k∗, we have to consider the traces τ̂ ∈ ΓΣ

such that does not exists a τ ∈ BPx
where τ̂ ⊆ τ . If a trace τ̂ ∈ ΓΣ that is not

a sub-trace of any other trace of the process model behavior (BPx
) is found, by

setting k∗ = |τ̂ | would mean that in the Mk∗
-abstraction of ΓΣ there will be a

state ŝ = τ̂ and an edge (−, τ̂) that are not captured by the Mk∗
-abstraction of

6 Formally, ∃τ̂ ∈ BP2 \ BP1 , s.t. for k∗ = |τ̂ | =⇒ ∃(−, τ̂) ∈ EP2 \ EP1 .
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BPx
. This difference will allow us to distinguish the process Px from the flower

model (i.e. the model having a behavior equal to ΓΣ), satisfying in this way the
Axiom-3. At this point, considering the set of the lengths of all the subtraces
not contained in any trace of BPx

, Z = {|τ̂ | : τ̂ ∈ ΓΣ ∧ � ∃ τ ∈ BPx
| τ̂ ⊆ τ},

we can set the lower-bound of k∗ ≥ min(Z).
Note that the value of k∗ is equal to 2 for any process model with at least

one activity that cannot be executed twice in a row. If we have an activity ̂t
that cannot be executed twice in a row, it means that

∣

∣〈̂t,̂t〉∣∣ ∈ Z and thus we
can set k∗ = 2. In practice, k∗ = 2 satisfies all the 5-Axioms in real-life cases,
since it is very common to find process models that have the above topological
characteristic.

4 Evaluation

In this section, we report on a two-pronged evaluation we performed to assess
the following two objectives: (i) comparing our family of precision measures to
state-of-the-art precision measures; and (ii) analysing the role of the parameter k.

To do so, we implemented the Markovian Abstraction-based Precision
(MAPk) as a standalone open-source tool7 and used it to carry out a qualitative
evaluation on synthetic data and a quantitative evaluation on real-life data.8 All
experiments were executed on an Intel Core i5-6200U @2.30 GHz with 16 GB
RAM running Windows 10 Pro (64-bit) and JVM 8 with 12 GB RAM (8 GB
Stack and 4 GB Heap).

4.1 Qualitative Evaluation

In a previous study, van Dongen et al. [16] showed that their anti-alignment
precision was able to improve on a range of state-of-the-art precision measures.
To qualitatively assess our MAPk, we decided to repeat the experiment carried
out in [16] using the same synthetic dataset. Table 2 and Fig. 4 show the syn-
thetic event log and a model, called “original model”, that was used to generate
eight variants: a single trace model capturing the most frequent trace; a model
incorporating all separate traces; a flower model of all activities in the log; a
model with activities G and H in parallel (Opt. G || Opt. H, see Fig. 5); one
with G and H in self-loop (�G, �H, Fig. 6); a model with D in self-loop (�D,
Fig. 7); a model with all activities in parallel (All parallel); and a model where all
activities are in round robin (Round robin, Fig. 8). Using each log-model pair, we
compared our precision measure MAPk to the precision measures discussed in
Sect. 2 (these include those evaluated by van Dongen et al. [16]), namely: traces
set difference precision (SD), alignment-based ETC precision (ETCa), negative
events precision (NE), projected conformance checking (PCC), anti-alignment
precision (AA). We left out the advanced behavioral appropriateness (ABA) as
7 Available at http://apromore.org/platform/tools.
8 The public data used in the experiments can be found at https://doi.org/10.6084/

m9.figshare.6376592.v1.

http://apromore.org/platform/tools
https://doi.org/10.6084/m9.figshare.6376592.v1
https://doi.org/10.6084/m9.figshare.6376592.v1
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it is not defined for some of the models in this dataset. We limited the order k
to 7, because it is the length of the longest trace in the log. Setting an order
greater than 7 would only (further) penalise the cyclic behavior of the models,
which is not necessary to assess the models’ precision.

Table 2. Test log [16].

Traces #

〈A, B, D, E, I〉 1207

〈A, C, D, G, H, F, I〉 145

〈A, C, G, D, H, F, I〉 56

〈A, C, H, D, F, I〉 23

〈A, C, D, H, F, I〉 28
Fig. 4. Original model [16].

Fig. 5. Opt. G || Opt. H model [16]. Fig. 6. �G, �H model [16].

Fig. 7. �D model [16]. Fig. 8. Round robin model [16].

Table 3 reports the results of our qualitative evaluation.9 To discuss these
results, we use two precision measures as a reference, as these have been advo-
cated as possible ground truths of precision, though none of them satisfies the
axioms in [15]. The first one is AA. This measure has been shown [16] to be
intuitively more accurate than other precision measures. The second one is SD,
as it closely operationalizes the definition of precision by capturing the exact
percentage of model behavior that cannot be found in the log. As discussed in
Sect. 2 though, this measure can only be computed for acyclic models, and uses
a value of zero for cyclic models by design.

From the results in Table 3, we can observe that MAP1 does not penalise
enough the extra behavior of some models, such as the original model, which
cannot be distinguished from the single trace and the separate traces models
9 Some values differ from those in [16] as we used each measure’s latest implementation.
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Table 3. Comparison of different precision measures over synthetic dataset (* indicates
a rounded-down value: 0.000∗ > 0.000).

Process variant Model

traces

(#)

SD ETCa NE PCC AA MAP1 MAP2 MAP3 MAP4 MAP5 MAP6 MAP7

Original model 6 0.833 0.900 0.995 1.000 0.871 1.000 0.909 0.880 0.852 0.852 0.852 0.852

Single trace 1 1.000 1.000 0.893 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Separate traces 5 1.000 1.000 0.985 0.978 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Flower model 986,410 0.000 0.153 0.117 0.509 0.000 0.189 0.024 0.003 0.000 0.000 0.000 0.000

Opt. G || Opt. H 12 0.417 0.682 0.950 0.974 0.800 0.895 0.645 0.564 0.535 0.535 0.535 0.535

�G, �H 362 0.000 0.719 0.874 0.896 0.588 0.810 0.408 0.185 0.080 0.034 0.015 0.006

�D 118 0.000 0.738 0.720 0.915 0.523 0.895 0.556 0.349 0.223 0.145 0.098 0.069

All parallel 362,880 0.000 0.289 0.158 0.591 0.033 0.210 0.034 0.006 0.001 0.000∗ 0.000∗ 0.000∗

Round robin 27 0.000 0.579 0.194 0.594 0.000 0.815 0.611 0.496 0.412 0.350 0.306 0.274

(all have a precision of 1). Also, the values of MAP1 are far away from those of
both AA and SD (with the exception of the simplest models, i.e. single trace and
separate traces). As we increase k, MAPk tends to get closer to AA and to SD,
barring a few exceptions. In particular, the more is the cyclic behavior allowed
by a model, the quicker MAPk tends to zero. In this respect, let us consider
the cyclic models in our datasets: (i) the flower model, (ii) the �G, �H model
(Fig. 6), (iii) the �D model (Fig. 7), and (iv) the round robin (Fig. 8). The value
of our precision measure tends to zero faster in the flower model (k=3) than in
the other cyclic models, because the flower model allows the greatest amount of
cyclic behavior, due to all the possible combinations of activities being permitted.
At k = 7 this is consistent with both SD and AA. Similarly, our measure tends
to zero slower in the round robin model because this model is very strict on
the order in which activities can be executed, despite having infinite behavior.
In fact, it only allows the sequence 〈A,B,C,D, F,G,H, I〉 to be executed, with
the starting activity and the number of repetitions being variable. This is taken
into account by our measure, since even with k = 7 we do not reach a value of
zero for this model, as opposed to SD and AA. This allows us to discriminate
the round robin model from other models with very large behavior such as the
flower model. This is not possible with SD and AA, because both models have
a precision of zero in these two measures. As for the other two cyclic models
in our dataset, MAPk tends to zero with speeds between those of the flower
model and the round robin model, with the �G, �H model being faster to drop
than the �D, due to the former allowing more cyclic behavior than the latter.
Similar considerations as above apply to these two models: even at k = 7 their
precision does not reach zero, which allows us to distinguish these models from
other models such as the all parallel model, which has a very large behavior
(360K+ distinct traces). While in SD the precision of these two models is set
to zero by design, for AA these two models have a precision greater than zero,
though the �G, �H model has a higher precision than the �D model (0.588
vs. 0.523). This is counter-intuitive, since the former model allows more model
behavior not permitted by the log (in terms of number of different traces) than
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the latter model does. In addition, AA penalizes more the round robin model,
despite this has less model behavior than the two models with self-loop activities.
Altogether, these results show that the higher the k, the more the behavioral
differences that our measure can catch and penalise.

In terms of ranking (see Table 4), our measure is the most consistent with
the ranking of the models yielded by both SD (for acyclic models) and AA (for
all models), than all other measures. As discussed above, the only differences
with AA are in the swapping of the order of the two models with self loops,
and in the order of the round robin model. Note that given that both the round
robin and the flower model have a value of zero in AA, the next model in the
ranking (all parallel) is assigned a rank of 3 instead of 2 in MAPk. This is
just the way the ranking is computed and is not really indicative of a ranking
inconsistency between the two measures. Another observation is that the ranking
yielded by our family of metrics remains the same for k > 1. This indicates that
as we increase k, while the extent of behavioral differences we can identify and
penalize increases, this is not achieved at the price of changing the ranking of
the models.

Table 4. Models ranking yielded by the precision measures over the synthetic dataset.

Process variant SD ETCa NE PCC AA MAP1 MAP2 MAP3 MAP4 MAP5 MAP6 MAP7

Original model 7 7 9 8 7 7 7 7 7 7 7 7

Single trace 8 8 6 8 8 7 8 8 8 8 8 8

Separate traces 8 8 8 7 8 7 8 8 8 8 8 8

Flower model 1 1 1 1 1 1 1 1 1 1 1 1

Opt. G || Opt. H 6 3 7 6 6 5 6 6 6 6 6 6

�G, �H 1 5 5 4 5 3 3 3 3 3 3 3

�D 1 6 4 5 4 5 4 4 4 4 4 4

All parallel 1 2 2 2 3 2 2 2 2 2 2 2

Round robin 1 4 3 3 1 4 5 5 5 5 5 5

On average it took less than a second per model to compute MAPk, except
for the all parallel model, for which it took 3.8 s at k = 7, due to the large
number of distinct traces yielded by this model.

4.2 Quantitative Evaluation

In our second evaluation, we used two datasets for a total of 20 logs. The first
dataset is the collection of real-life logs publicly available from the 4TU Cen-
tre for Research Data, as of March 2017.10 Out of this collection, we retained
twelve logs related to business processes, as opposed to e.g. software develop-
ment processes. These include the BPI Challenge (BPIC) logs (2012-17), the

10 https://data.4tu.nl/repository/collection:event logs real.

https://data.4tu.nl/repository/collection:event_logs_real
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Road Traffic Fines Management Process (RTFMP) log, and the SEPSIS log.
These logs record executions of business processes from a variety of domains,
e.g. healthcare, finance, government and IT service management. In seven logs
(BPIC14, the BPIC15 collection, and BPIC17), we applied the filtering technique
proposed in [6] to remove infrequent behavior. The second dataset is composed
of eight proprietary logs sourced from several companies in the education, insur-
ance, IT service management and IP management domains. Table 5 reports the
characteristics of both datasets, highlighting the heterogeneous nature of the
data.

Table 5. Descriptive statistics of the real-life logs (public and proprietary).

First, we discovered different process models from each log, using three state-
of-the-art automated process discovery methods [3]: Split Miner [4] (SM), Induc-
tive Miner [11] (IM), and Structured Heuristics Miner [2] (SHM). Then, we mea-
sured the precision for each model with our MAPk measure, by varying the order
k in the range 2–5. Unfortunately, we were not able to use any of the previous
reference measures, because SD does not work for cyclic models (all models dis-
covered by IM were cyclic) and AA does not scale to real-life models [16]. Thus,
we resorted to ETCa as a baseline, since this is, to date, the most-scalable and
widely-accepted precision measure for automated process discovery in real-life
settings [3].

Table 6 shows the results of the quantitative evaluation. In line with the for-
mer evaluation, the value of MAPk decreases when k increases. However, being
the behavior of the real-life models more complex than the one of the synthetic
models, for some logs (e.g. the BPIC15 logs), it was not possible to compute
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MAP4 and MAP5 for the models discovered by IM. This was due to scalabil-
ity issues, as the models discovered by IM exhibit flower-like behavior (with
more than 50 distinct activities per flower construct). This is reflected by the
very low values of MAP2 and MAP3 for IM. However, we recall that by design,
for small values of k, MAPk compares small chunks of the model behavior to
small chunks of the log behavior. Thus, low values of MAPk can already indi-
cate poorly-precise models. ETCa and MAP5 agreed on the precision ranking
50% of the times. This result is consistent with our qualitative evaluation. Also
in-line with the former evaluation, ETCa showed to be very tolerant to infinite
model behavior, regardless of the type of such behavior. The clearest example
supporting this flaw is the SEPSIS log case. The models discovered by IM and
SM are shown in Figs. 9 and 10. We can see that more than the 80% of the
activities in the IM model are skippable and over 60% of them are inside a long
loop, resembling a flower construct with some constraints, e.g. the first activity
is always the same. Instead, the model discovered by SM, even if cyclic, does not
allow many variants of behavior. Consequently, for the IM model, the value of
MAPk drastically drops when increasing k from 2 to 3, whilst it remains 1 for
the SM model. In constrast, ETCa reports a precision of 0.445 for IM, which is
counter-intuitive considering the flower-like model.

As discussed in Sect. 3, k = 2 is sufficient to satisfy all the 5-Axioms in
practice. However, as we also observe from the results of this second experiment,
higher values of k lead to finer results for MAPk. In fact, the notable drops of
value from k = 2 to k = 3 (e.g. in SEPSIS, BPIC17f and PRT9), confirm that
the 5-Axioms are a necessary but not sufficient condition for a reliable precision
measure [15].

Finally, Tables 7 and 8 report statistics on the time performance of MAPk

and ETCa. We divided the results by public and private logs to allow the
reproducibility of the experiments for the set of public logs. We can see that
MAPk scales well to real-life logs, being quite fast for models with a reason-
able state-space size (i.e. with non-flower constructs), as those produced by SM
and SHM, while ETCa remains slower even when compared to MAP5. How-
ever, as expected, by increasing k the performance of MAPk reduces sharply for
flower-like models, as those produced by IM.

Fig. 9. Model discovered by IM from the SEPSIS log.
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Table 6. Comparison of MAPk results with k = 2–5 using three discovery methods
on 20 real-life logs.

Log BPIC12 BPIC13cp BPIC13inc BPIC14f BPIC151f

Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM

ETCa 0.762 0.502 - 0.974 1.000 0.992 0.979 0.558 0.978 0.673 0.646 - 0.880 0.566 -

MAP2 1.000 0.089 0.083 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.775 0.285 1.000 0.020 0.016

MAP3 1.000 0.014 0.021 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.754 0.168 1.000 0.003 0.005

MAP4 0.546 0.002 0.010 1.000 1.000 1.000 1.000 0.990 1.000 1.000 0.750 0.116 1.000 - 0.002

MAP5 0.234 - - 1.000 1.000 1.000 1.000 0.861 1.000 1.000 0.718 - 1.000 - -

Log BPIC152f BPIC153f BPIC154f BPIC155f BPIC17f

Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM

ETCa 0.901 0.556 0.594 0.939 0.554 0.671 0.910 0.585 0.642 0.943 0.179 0.687 0.846 0.699 0.620

MAP2 1.000 0.024 0.899 1.000 0.035 0.872 1.000 0.017 0.810 1.000 0.007 0.826 0.764 0.604 0.170

MAP3 1.000 0.003 0.629 1.000 0.004 0.561 1.000 0.002 0.546 1.000 - 0.584 0.533 0.399 0.080

MAP4 1.000 - 0.380 1.000 - 0.310 1.000 - 0.333 1.000 - 0.371 0.376 0.268 0.039

MAP5 1.000 - 0.212 1.000 - 0.154 1.000 - 0.189 1.000 - 0.226 0.255 0.172 0.019

Log RTFMP SEPSIS PRT1 PRT2 PRT3

Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM

ETCa 1.000 0.700 0.952 0.859 0.445 0.419 0.985 0.673 0.768 0.737 - - 0.914 0.680 0.828

MAP2 1.000 0.554 0.323 1.000 0.226 0.227 1.000 1.000 0.796 1.000 0.873 1.000 1.000 0.970 0.978

MAP3 1.000 0.210 0.093 1.000 0.051 0.072 1.000 1.000 0.578 1.000 0.633 1.000 1.000 0.843 0.652

MAP4 1.000 0.084 0.027 1.000 0.009 0.021 1.000 1.000 0.386 1.000 0.240 0.438 1.000 0.643 0.328

MAP5 1.000 0.039 0.008 1.000 - - 1.000 1.000 0.241 1.000 - 0.151 1.000 0.529 0.157

Log PRT4 PRT6 PRT7 PRT9 PRT10

Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM SM IM SHM

ETCa 0.995 0.753 0.865 1.000 0.822 0.908 0.999 0.726 0.998 0.999 0.611 0.982 0.972 0.790 -

MAP2 1.000 1.000 1.000 1.000 0.938 0.984 1.000 0.922 0.973 1.000 0.602 0.680 1.000 0.065 -

MAP3 1.000 1.000 1.000 1.000 0.916 0.946 1.000 0.709 0.742 1.000 0.277 0.294 1.000 0.007 -

MAP4 1.000 1.000 0.972 1.000 0.622 0.641 1.000 0.596 0.700 1.000 0.121 0.098 0.666 0.001 -

MAP5 1.000 1.000 0.854 1.000 0.314 0.318 1.000 0.556 0.673 1.000 0.062 0.029 0.434 0.000∗ -

Table 7. Time performance statistics (in seconds) using the twelve public logs (+
indicates a result obtained on a subset of the twelve logs, due to some of the models
not being available).

Split Miner Inductive Miner Struct. Heuristics Miner

Precision Avg Max Min Total Avg Max Min Total Avg Max Min Total

ETCa 60.0 351.9 0.3 720.3 84.2 642.7 0.1 1009.8 34.0 101.4 0.2 305.9

MAP2 1.9 7.3 0.1 23.2 5.4 15.2 0.1 65.3 6.2 24.4 0.4 74.3

MAP3 2.0 7.7 0.1 22.5 109.6 426.7 0.1 1205.7 18.5 59.9 0.2 203.7

MAP4 3.7 16.9 0.2 44.7 927.9+ 3970.5+ 0.1+ 6495.0+ 102.8 476.2 0.1 1233.7

MAP5 7.3 24.7 0.2 87.9 - - - - 29.8+ 102.2+ 0.2+ 238.1+



174 A. Augusto et al.

Table 8. Time performance statistics (in seconds) using the eight proprietary logs.

Split Miner Inductive Miner Struct. Heuristics Miner

Precision Avg Max Min Total Avg Max Min Total Avg Max Min Total

ETCa 16.1 106.5 0.2 129.1 16.4 99.2 0.2 114.9 74.3 350.2 0.7 520.1

MAP2 4.8 32.1 0.1 38.3 6.3 35.6 0.1 50.7 10.6 57.6 0.1 85.2

MAP3 7.3 51.3 0.1 58.5 11.4 42.6 0.1 91.2 11.7 55.1 0.1 93.6

MAP4 9.3 58.8 0.1 74.5 121.8 604.7 0.4 974.5 60.9 382.4 0.4 486.9

MAP5 15.3 71.8 0.1 122.4 711.1 4841.7 0.8 4977.6 75.1 267.8 0.7 525.8

Fig. 10. Model discovered by SM from the SEPSIS log.

5 Conclusion

This paper presented a family of precision measures based on the idea of com-
paring the kth -order Markovian abstraction of a process model against that of
an event log using graph matching algorithms. We showed that this family of
precision measures, namely MAPk, fulfils four of the five axioms of precision
of [15] for any value of k and all five axioms for a suitable value of k, dependent
on the event log. The empirical evaluation on real-life logs shows that the exe-
cution times of the MAPk (with k up to 5) are considerably lower than those
of the ETCa precision, which is commonly used to evaluate automated process
discovery techniques. We also showed on synthetic model-log pairs, that the pro-
posed measure approximates two (unscalable) measures of precision that have
been previously advocated as possible ground truths in this field.

Given that our measure abstracts from the model structure and focuses only
on its behavior, though in chunks, the only limitation to its usage is scalability,
which indirectly affects also the quality of the results. Even if MAPk is scalable
for acyclic process models, for cyclic real-life models, MAPk showed to be scal-
able only for low values of k. Despite the evaluation highlights that low k-orders
are sufficient to compare (rank) different models discovered from the same log,
higher values of k may return more accurate results.

Possible avenues for future work include the design of more efficient and
formally grounded instances of this family of precision measures by exploring
alternative behavioral abstractions (besides Markovian ones) and alternative
comparison operators.
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