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Chapter 1
Osteolysis After Total Hip Arthroplasty:  
Basic Science

G. Vallés and N. Vilaboa

�Total Hip Replacement: Clinical Need and Demand

Total hip arthroplasty (THA) represents the most successful and revolutionary  
intervention achieved in orthopedic surgery in the last century [1–3]. This surgery is 
performed to restore the injured or degenerated joint function when conservative 
treatment options have failed and pain, stiffness and other limitations drastically 
reduce the patient’s quality of life. The clinical settings in which hip arthroplasty is 
indicated involve acute and chronic underlying joint-related diseases, mostly degen-
erative osteoarthritis and rheumatoid arthritis but also other arthropathies including 
avascular necrosis, developmental and congenital disorders, neoplasias, fractures 
and post-traumatic degenerative arthritis [4]. In 2010, the number of individuals 
bearing hip implants in USA was estimated in more than 2.5 millions [5]. In Europe, 
countries with high incidence are Germany, Switzerland and Belgium with ratios, of 
296, 287 and 240 THA procedures per 100,000 inhabitants, respectively, while in 
US and UK the frequencies are 184 and 194 [3].

Early hip failure (within 5 years of implantation) is mainly associated to instabil-
ity, aseptic loosening (AL), infections, wear and fracture and has a decreasing trend 
due to improvements in surgery techniques and advances in the biomaterials field. 
However, an alarming prevalence has been detected in some cohorts, especially in 
patients with metal-on metal (MoM) bearings [6, 7]. In the long-term, the survival 
rate (endpoint at revision) of prosthesis after 10–15 years of implantation has been 
estimated about a 90–95% [8–10] although percentages of only 58–62% or even 
less have been also reported after longer service periods [10–12].
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Demographic changes and lifestyle habits, with a younger and more active pop-
ulation suffering from disabling joint diseases, have led to a significant raise in the 
number of THA performed [4, 5, 13]. While THA was initially intended for elderly 
patients with limited activity, current candidates include young and middle-age 
patients as well as physically active elderly individuals [3, 13]. As a consequence, 
the incidence of total hip replacements (THR) increased by a 25% during the 
period 2000–2009 and is expected to increase annually at a rate of approximately 
a 5% per year in the coming years, to such an extent that in the period 2005–2030 
THA procedures will increase a 174% [4, 14]. Approximately half of the joint 
replacements currently performed in USA are made in patients younger than 
65  years. In Europe, 42% of men and 31% of women who underwent THA in 
England and Wales were in this age group [15]. By 2030, 52% of THR might be 
performed in these patients [16, 17]. Given the limited expected time of service of 
prosthesis in patients younger than 50 years, the revision rates will dramatically 
increase in coming years [17, 18].

�Implant Failure: Aseptic Loosening

Implant failure is still a major complication of joint arthroplasty with severe conse-
quences for the patient that impact the health-care system [8, 16, 19–21]. Failure, 
origined by mechanical and/or biological factors, can arise from multifactorial 
causes such as implant design, surgical technique, method of fixation or infection 
but the main factor limiting the longevity of THAs is AL secondary to peripros-
thetic osteolysis [3, 13, 15, 17]. Specifically, implant loosening due to aseptic oste-
olysis accounts for over 70% of total hip revisions while infections, recurrent 
dislocations, periprosthetic fractures and surgical errors contribute to about a 20% 
of the reported failures [21–23]. Instability and infection are complications fre-
quently diagnosed in the early postoperative period, while osteolysis and AL usu-
ally appear in the medium to long-term [18]. Revision surgery is a procedure 
technically more challenging than primary arthroplasty and often associated with 
poorer prognosis and higher risk of failure [24, 25]. The late development and diag-
nosis of AL, usually asymptomatic in early stages, and its association to severe 
periprosthetic bone defects are factors that compromise the revision surgery proce-
dure [18, 26]. Patients for revision surgery are typically in their 70s and 80s, and 
age-associated issues including morbidity and mortality risks undermine the inter-
vention. The exponential growth in the number of primary total joint replacement 
procedures is associated to a concomitant increase in the number of revision opera-
tions. In this regard it has been estimated that the revision burden (ratio of revision/
primary THA) will be about 17% in 2030 [27, 28]. Statistical data have shown that 
10 years after of the primary hip arthroplasty, 24% of cases develop osteolysis and 
about a 15% of recipients require further surgical intervention due to AL [17, 29]. 
In young patients, under 30 years, the percentage of cases which requires revision 
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surgery can reach rates up to 33% while in older patients range from 7% to 15% 
[30]. Regarding components, the acetabular cup is revised more frequently than the 
femoral stem [30, 31]. Currently, 40,000 hip revision procedures due to loosening 
are performed annually in USA and it is expected to increase about a 137% for 
2030 [14, 32].

AL is characterized by areas of osteolysis at the bone-implant interface, identi-
fied radiographically as radiolucent zones, which can result in displacement of the 
prosthetic component [3, 33]. Progression of peri-prosthetic bone loss as assessed 
by radiology is very slow. Osteolytic lesions often appear many years after the pri-
mary surgery and can be associated to mechanically stable implants [34]. Clinical 
symptoms associated to bone tissue destruction may not be clearly apparent or even 
remain silenced.

Several factors determine the longevity of hip implants. Apart from the impor-
tance of a correct surgical technique (orientation and alignment of prosthetic com-
ponents, prosthesis stability, anchorage and osteointegration of the implant …) 
there are significant differences regarding prosthesis- (e.g. type of bearing material, 
prosthesis design, shape of prosthesis, surface technology, type of fixation …) and 
patient- related factors (e.g. age, co-morbidities, level of activity and differences in 
mechanical loading,…) wich influence the host response to the implant and there-
fore its success or failure [17, 35]. In this regard, Engh et al. found that implant wear 
and patient-specific propensity equally contribute to the degree of osteolysis and 
might account for the extent of the area affected by periprosthetic bone loss [36]. 
Research efforts have attempted to identify clinical risk factors and individual sus-
ceptibility to periprosthetic osteolysis in order to predict the outcome and prevent, 
or at least attenuate, the ensuing complications of THA [37]. Over the last years, the 
influence of parameters such as gender, body mass index, and age [21, 37, 38], as 
well as the contribution of genetic factors to the development and progression of AL 
[15, 37, 38] have been considered. Regarding age and gender, young male patients 
show high risk of developing osteolysis [38]. Considering other factors, genetic 
variations affecting molecules involved in inflammation and bone turnover may 
play a role in the predisposition to AL of patients with THA. Particularly, polimor-
phisms in genes encoding proteins such as tumor necrosis factor-α (TNF-α), inter-
leukin-6 (IL-6), transforming growth factor-β (TGF-β), interleukin-1 receptor 
antagonist (IL-1 Ra), matrix metalloproteinase-1 (MMP-1), osteoprotegerin (OPG) 
or receptor activator for nuclear factor kappa-B ligand (RANKL), have been associ-
ated with susceptibility to osteolysis and/or short prosthesis longevity [15, 20, 39–
41]. These proteins are powerful mediators in the biological response to particulate 
wear debris and the periprosthetic bone loss around THR.

Other risk factor associated to predisposition to osteolysis is the preoperative 
diagnosis, which might influence the host response to the biomaterial. While some 
authors have observed higher rates of loosening in patients who underwent THA 
due to inflammatory arthritis, post-traumatic arthritis, developmental dysplasia or 
osteonecrosis as compared to primary osteoarthritis, others have not found signifi-
cant differences between these groups [15, 42].
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�The Enemy: Wear Debris Particles

Osteolysis is the long-term consequence of the biological response to wear debris 
and products derived from corrosion of implants [3, 33, 43]. Particulate wear debris, 
mainly generated by articulating motion at the bearing surfaces but also by non-
articular surfaces, are the primary causes of periprosthetic bone loss and implant 
loosening [44, 45]. Locally, continous exposure to prosthetic debris combined to 
repetitive mechanical stresses triggers an inflammatory chronic response which is 
highly influenced by the intrinsic properties of wear debris particles. The type of 
prosthesis determines the characteristics of the resultant wear debris particles and 
therefore the magnitude of the host response [33]. Articulating bearings in THA are 
hard-on-hard material such as MoM or ceramic-on-ceramic (CoC) and hard-on-soft 
material (metal-on-polymer) couples, being the most satisfactory the combination 
of a cobalt chrome femoral head articulating on an ultra high molecular weight 
polyethylene (UHMWPE) acetabular component [33, 46]. Wear occurs through five 
major mechanisms: adhesion, abrasion, third body, fatigue, and corrosion. Third 
body wear damage is considered a relevant source of particles in which metal, poly-
mer, cement or even cortical bone debris are entrapped between the UHMWPE 
acetabular component and the hard bearing surface contributing to accelerated dete-
rioration of the implant [3, 47]. Research in materials manufacturing and tribology 
has focused on identifying alternative bearing surfaces that reduce the production of 
wear particles debris [3, 46]. These new materials might give rise to wear particles 
with unknown characteristics.

In general, the standing paradigm of AL states that implant-derived-particles 
stimulate periprosthetic cells to release factors which affect cell functions through 
autocrine and/or paracrine mechanisms [13, 18, 33, 48]. Potentially, all cell types at 
the periprosthetic tissue are targets of wear debris but macrophages are critically 
involved [17, 29, 33, 45]. Macrophages activated by particles produce an array of 
inflammatory, chemotactic and bone-resorbing factors such as chemokines, growth 
factors, cytokines, degradative enzymes and reactive oxygen radicals, among oth-
ers, triggering and perpetuating the periprosthetic osteolytic cascade [3, 24, 43, 48]. 
As result of the inflammatory response, a granulomatous pseudomembrane gener-
ates at the bone-implant interface, which further compromises the interface stability 
and osseointegration of the device. Altered-load bearing effects contribute to abnor-
mal wear processes and production of particles in the implant bed, leading in 
advanced stages of periprosthetic osteolysis to further anomalous mechanical load-
ing [45]. Although osteolysis due to wear debris initiates as a localized phenome-
non, joint fluid can transport wear debris, cells and molecules to adjacent bone sites 
extending the affected bone-implant interface. Morever, high fluid production and 
altered loading increase periprosthetic pressure in the peri-implant region [34, 49]. 
Moreover, the extent of the inflammatory reaction to wear particles is not confined 
to joint and adjacent tissues since wear debris, mainly metal particles, have been 
detected in remote organs including the spleen, liver, kidney and lung [3, 45]. 
Whether systemic dissemination of wear particles may cause side effects, e.g. toxic-
ity and carcinogenicity, is a matter of debate.
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Histological examination of periprosthetic tissues retrieved during revision sur-
gery has revealed significant amounts of prosthesis-derived particles (Fig. 1.1) and 
a multi-cellular composition characterised by the presence, among other cells, of 
macrophages, multinucleated foreign body giant cells containing engulfed particles, 
lymphocytes, fibroblasts and osteoclasts in association to elevated levels of pro-
inflammatory cytokines, such as TNF-α, interleukin-1β (IL-1β), prostaglandin-E2 
(PGE2) and RANKL [33, 50].

The phagocytosable range size of particles able to induce an in vitro inflamma-
tory response has been established in less than 10 μm [33]. In general, nanometer-
sized particles with diameters lower than 150  nm can be internalized through 
endocytosis or pinocytosis, while particles sized between 150 nm and 10 μm utilize 
a phagocytosis-mediated process and particles higher than 20 μm induce multinu-
cleated giant cell formation [33, 51]. The greater the particle load of phagocytosable 
particles, the higher is the local inflammatory response. Regarding shape, elongated 
particles are more reactive than round particles [23].

Originally coined as “cement disease”, as osteolysis due to AL was thought to be 
a response to particles of polymethylmethacrylate (PMMA), later it was observed 
that osteolysis also occurs with cementless implants and potentially all kind of par-
ticles (metals, PE, ceramics, and bone cement) can elicit a biological response in 
joint tissues [3, 33, 43]. Particle chemistry plays an important role [3, 13, 33]. In 
general, metal particles are more pro-inflammatory and/or toxic than polymers or 
ceramics [3, 52–54]. An overview of the most relevant and recent findings about the 
cellular events and molecular pathways modulated by the different types of wear 
debris is presented in the following sections.

a b

Fig. 1.1  Periprosthetic membrane retrieved from a patient undergoing revision surgery due to hip 
aseptic loosening. (a) Optical microscopy imaging. Hematoxylin-eosin staining showing charac-
teristic features of the foreign body reaction induced by wear debris particles, with infiltration of 
inflammatory cells. High amounts of metal particles are found, indicated by white arrows. (b) 
Transmitted polarized light and confocal microscopy imaging. Nuclei of cells in the tissue were 
counterstained with DAPI (blue). UHMWPE particles were detected by polarized light as bright 
areas (indicated by a red arrow) and metal particles were detected by transmitted light (black, 
white arrows) and by reflection (green false colour labelled). Scale bar: 100 μm
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�Polyethylene Particles

Analyses of periprosthetic tissues retrieved during revision surgery have shown that 
UHMWPE wear debris originated from the acetabular liner are the most frequent 
types of debris, standing for 70–90% of the debris load independently if implants 
are cemented or not [3, 17]. Probably due to their abundance, UHMWPE particles 
are considered as key players in the stimulation of periprosthetic bone loss and 
implant loosening. Traditionally, the most used bearing couple was UHMWPE 
articulating against a metallic ball [3]. With hundreds of thousands of UHMWPE 
particles generated in a single step in the periprosthetic space, about 500 billion of 
particles produced per year, and a total amount of trillions of particles during the 
lifetime of a prosthesis, osteolysis was associated to a threshold of 2.16 × 109 and 
polyethylene (PE) particles per gram of interfacial tissue and a wear rate greater 
than 0.1 mm/year of the UHMWPE acetabular liner [3, 17, 23, 55].

Histological examination of periprosthetic tissues have revealed that UHMWPE 
debris appears as small particles or large shards, and exhibit birefringence under 
polarized light [45]. Once isolated from membranes, UHMWPE particles display an 
irregular surface with a predominant globular shape, although other irregular shapes 
are also observed especially in those of larger size, being 90% smaller than 1 μm [3, 
17]. The different sizes and shapes observed have been related to the specific wear 
mode as well as to the implantation period [3, 45]. Small particles can be detected 
within macrophages while large particles are usually included within foreign body 
multinucleated giant cells [45].

Bacterial lipopolysaccharide (LPS), possibly derived from subclinical infections 
or systemic sources, may bind to particles and contribute further to the inflamma-
tory reaction [56, 57]. Some evidence suggests that macrophages might not be able 
to induce an inflammatory response if adsorbed endotoxins are not present on 
UHMWPE particles [58]. Proteins present in the physiological fluids, including 
type I collagen, aggrecan proteoglycans, immunoglobulin, fibronectin and albumin, 
can also be adsorbed on UHMWPE surfaces [59]. The interaction of adsorbed pro-
teins and cell surface receptors, such as integrins, has a remarkable role in the mac-
rophage interactions with biomaterials. Specifically, integrins participate in 
receptor-mediated phagocytosis of wear particles of different composition, includ-
ing UHMWPE. The downstream effects of integrin-mediated interactions result in 
the production of pro-inflammatory cytokines and osteoclast activation, as shown 
by Zaveri et al. who have recently reported that Mac-1 integrin and RGD-binding 
integrins are involved in osteolysis induced by UHMWPE particles [59]. Macrophage 
activation can occur not only by phagocytosis of UHMWPE particles but also by 
cell contact through receptor-mediated mechanisms, including Toll-like receptors 
(TLRs), and the cluster of differentiation molecules CD11b and CD14 [60]. Thus, 
Maitra et al. reported that UHMWPE particles stimulate in vitro TLR1/2 and acti-
vate phagocytosis [61]. In a PE particle-induced osteolysis murine calvarial model, 
TLR2 and TLR4 were found highly expressed in macrophages [60]. TLRs act pri-
marily through the adapter protein myeloid differentiation primary response protein 
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(MyD88) and induce activation of nuclear factor kappa-B (NF-кB), mitogen-
activated protein kinases (MAPK) and interferon-regulatory factors (IRFs), leading 
to the release of pro-inflammatory cytokines, growth factors and chemokines [22, 
24]. TLRs are activated by pathogen- or damage-associated molecular patterns in 
response to infection or tissue damage. Oxidative stress, e.g. oxygen intermediates 
and free radicals, may provoke degradation of UHMWPE resulting in products as 
alkane polymers. These degradation products could influence the “original” inmu-
nogenecity of particles, altering their binding affinity to TLRs or other molecules in 
the cells surfaces and thereby activating endogenous signaling systems. Moreover, 
particulate debris affects the host tissue integrity by increasing cell death, which 
generates danger signals such as heat shock proteins that further increase TLR acti-
vation [51].

The inflammasome has been recently involved in the cellular activation by wear 
particles [17, 61]. Inflammasome activation depends on reactive oxygen species 
(ROS), enzymes release and other danger signals. Upon phagocytosis of UHMWPE 
particles, endosomal and lysosomal damage results in release of cathepsins which 
trigger the inflammasome activation. If particles are larger that 20 μm, multinucle-
ated giant cells may activate also NADPH oxidases and generate ROS, also contrib-
uting to its activation [51].

After the initial interaction with macrophages, particles induce an active infiltra-
tion of inflammatory cells into the periprosthetic area. Migration is mediated 
through chemotactic factors such as interleukin-8 (IL-8), macrophage chemotactic 
protein-1 (MCP-1), and macrophage inflammatory protein-1 (MIP-1) released by 
inflammatory and mesenchymal cells, among others, upon challenging with parti-
cles [62]. Thus, the pro-resorptive environment is created not only by locally acti-
vated cells but also by migration of macrophages and osteoclast precursors, i.e. 
monocytes. In this regard, in  vivo studies employing UHMWPE particles have 
shown the contribution of chemotactic factors released by macrophages and mesen-
chymal stem cells (MSCs) to cell recruitment [60]. Specifically, the CCR2/MCP-1 
and the CCR1/MIP-1α ligand/receptor axes are involved in the systemic recruit-
ment of macrophages and MSCs, respectively, in the presence of UHMWPE parti-
cles [60, 63].

The most active field of research during the last decade has been focused in the 
identification of factors associated to the destruction of the bone tissue when 
UHMWPE particles are present. For instance, in vitro stimulation of macrophages 
with these particles increases the expression of genes involved in inflammation and 
osteoclastogenesis such as MMP9 (coding for matrix metalloproteinase-9), CTSK 
(coding for cathepsin K protein), CALCR (coding for calcitonin receptor) and 
TNFRSF11A (coding for receptor activator of nuclear factor kappa-B protein 
(RANK)). In vivo, calvarial models of PE particle-induced osteolysis have corrobo-
rated these findings [16].

Production of factors involved in bone destruction depends on the size and con-
centration of wear particles. Green et al. showed that, for a given tested concentra-
tion, PE particles of 0.24 μm in length induce higher production of TNF-α, IL-1β, 
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IL-6, and PGE2 in macrophages than larger particles. Dose- and size-dependent 
effects were also reported, as sizes range between 0.45 and 1.71 μm were the most 
reactive when higher concentrations were tested [51]. A recent study has shown 
that treatment of peripheral blood mononuclear cells with UHMWPE particles 
below 50 nm does not induce the release of TNF-α, IL-1β, IL-6 and IL-8 [64]. 
Regarding concentration, UHMWPE particles showed a dose-dependent induction 
in the production of TNF-α, IL-1β and IL-6 in macrophages, and in the production 
of RANKL in osteoblasts [16, 51, 65]. PE particles are able to regulate prolifera-
tion and function of osteoblastic or bone-forming cells, through induced expres-
sion of pro-osteoclastogenic factors RANKL, IL-6, IL-8, PGE2 and macrophage 
colony-stimulating factor (M-CSF) and also through the interference in the regula-
tion of matrix synthesis proteins such as collagen or alkaline phosphatase (ALP) 
[16, 66, 67]. Differentiation of osteoblastic cells into a mature, osteocyte-like phe-
notype is tighly regulated by several genes including runt-related ranscription 
factor-2 (Runx2), sclerostin (SOST) and osterix (Osx) whose expression is also 
altered in the presence of PE particles. In osteoprogenitor cells, UHMWPE parti-
cles inhibit in a dose-dependent manner proliferation and osteogenic differentia-
tion [67]. Effects of PE particles on osteoblasts are further influenced by their 
maturation state [66]. A recent study has detected increased expression of cata-
bolic markers incuding matrix metalloproteinase-13 (MMP-13), carbonic anhy-
drase 2 (CA2), cathepsin K, and tartrate resistant acid phosphatase (TRAP) in 
human primary osteocyte-like cultures exposed to PE particles [68]. Moreover, 
in vitro exposure of macrophages to these particles induces spontaneous differen-
tiation into mature and active osteoclasts [69]. In other coexisting cells in the peri-
prosthetic bone bed, studies are scarce. For instance, in fibroblasts, dominant cell 
type in the interfacial membrane, PE particles induce the expression of the pro-
inflammatory cytokine IL-6 [16]. The role of these cells in wear-induced osteolysis 
has been mainly attributed to their interaction and cooperation with macrophages 
to amplify inflammation, fibrosis and osteoclast activation [51]. Macrophages and 
fibroblasts in the interfacial tissues overexpress macrophage migration inhibitory 
factor (MIF), which can up-regulate the expression of pro-inflamatory factors and 
matrix metalloproteinases (MMPs) involved in the periprosthetic bone tissue 
destruction [70]. New lines of evidence have addressed the role of dendritic cells 
(DCs) in UHMWPE particles-induced osteolysis, with a similar role than macro-
phages [51].

Research efforts have recently focused in how to fit the paradigm of polarization 
of macrophages when exposed to wear particles. Wear particles contribute to the 
creation of a periprosthetic environment in which macrophages can be polarized to 
M1 (pro-inflammatory) and M2 (anti-inflammatory) phenotypes. Both phenotypes 
have been observed and extensively characterized [17, 60]. Polarization of uncom-
mitted M0 or M1 macrophages toward the M2 phenotype, that promotes bone heal-
ing, has been proposed as therapeutic strategy to decrease the local inflammation. In 
a calvaria model employing UHMWPE particles, bone resorption was reduced after 
administration of the M2 phenotype inducer interleukin-4 (IL-4) [71].
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Broad-scale expression profiling of human macrophages challenged to UHMWPE 
particles revealed changes in the expression of genes related to inflammatory 
response, cell proliferation, cytokine-mediated signaling, response to stress, cell 
migration and death [24]. Among others, particles modulated the transcript levels of 
genes encoding factors with remarkable roles in osteoclastogenesis and bone resorp-
tion such as IL-8, MIP-1α, MIP-1β, macrophage inflammatory protein-3 alpha 
(MIP-3α), interleukin-23 (IL-23), M-CSF, IL-1α and vascular endothelial growth 
factor (VEGF); and cell surface receptors involved in the recognition of particles 
such as β-integrins, protein-coupled receptors, intercellular adhesion molecules, 
TNF receptor superfamily members and TLRs-signaling. Moreover significant up-
regulation of the expression of genes encoding MMPs, including MMP-1 and MMP-
19, was also found.

Overall, these findings show that inflammation and osteoclastogenesis-related 
mechanisms activated by UHMWPE particles are main processes involved in the 
pathogenesis of wear-induced osteolysis. The introduction of highly crosslinked 
polyethylene (HXLPE) to reduce wear and osteolysis in total joint arthroplasty has 
attracted great interest. Moreover, as compared to polymeric and metallic particles, 
HXLPE particles induce a moderate degree of peri-implant osteolysis [72].

�Metallic Particles

Metal particles are massively generated from the bearing surfaces of MoM hip 
replacements, which were conceived as alternative to metal-on-polyethylene (MoP). 
However, adverse long-term effects are associated to MoM, including a higher rate 
of failure as compared to other bearing surfaces [46]. Metals are susceptible to deg-
radation upon exposure to extracellular tissue fluids, and therefore the clinical out-
come and durability of implants are affiliated to particulate corrosion and wear 
products. Metal wear particles arise mainly from the bearing surfaces but also from 
the metal back and fixation screws of the acetabular cup [45, 73]. Under the optical 
microscope, they appear as black to brownish colored entities, with amorphous or 
irregular shapes (flakes or needles) and sharp edges, and sizes ranging from 0.1 to 
5  μm [3]. Ultrastructural methods showed that the majority of metal particles 
retrieved from periprosthetic tissues and joint simulators are in the nanometric 
range [3, 74]. These nanoparticles have a greater relative surface area than mic-
roparticles and are potentially more chemically and biologically reactive [45]. 
About 6–250 × 1012 metal particles are released per year from a MoM articulating 
surface [3]. As particles with other compositions, metallic particles stimulate 
inflammation and bone resorption in detriment of bone formation [75]. Resorption 
areas associate to metal particles and periprosthetic tissues are characterized by 
express inflammatory mediators including IL-8, IL-1β, macrophage inflammatory 
protein-2 alpha (MIP-2α), stromal cell-derived factor 1 (SDF-1) and its receptor 
CXCR4 [9, 76, 77].
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In vitro, exposure to Ti particles induces macrophages to release TNF-α, IL-6, 
IL-1β and PGE2 in a process mediated by tyrosine phosphorylation and MAPK 
pathway [9]. A recent factor associated to induced inflammation by Ti particles is 
the cannabinoid receptor type 2 (CB2), inductor of osteoclastogenesis [78]. Similar 
to described in PE particles, dose- and size-dependent responses have been observed 
and the release of pro-inflammatory factors can occur independently of 
phagocytosis-dependent mechanisms. Concentration-dependent effects have been 
detected for TNF-α, IL-1β and IL-6 [54]. Apart from inflammatory factors, the 
expression of genes encoding osteoclastogenic markers can be induced by Ti par-
ticles, including TRAP, nuclear factor of activated T-cells 1 (NFATC1, also termed 
NFAT2), cathepsin K and RANK, as well as nitric oxide synthase 2 (NOS2), NF-кB 
and MMP-9. By regulating the expression of genes involved in the superoxide dis-
mutase pathways, Ti particles also modulate oxidative stress [16]. Regarding che-
motactic factors, in vitro exposure of primary human monocytes/macrophages to Ti 
particles increased the production of MIP-1α, resulting in increased monocyte 
migration. Other chemokines induced upon exposure to Ti particles in osteoblasts 
and osteoclasts are CCL17 and CCL22. Interestingly, the expression of the gene 
encoding CCR4, receptor of both chemokines, is up-regulated in osteoclast precur-
sors exposed to Ti particles which accounts for macrophage recruitment and bone 
loss [79].

In osteoblastic cells, metal particles modulate the expression of genes encoding 
pro-inflammatory and bone-resorbing factors. In vitro studies have shown that Ti 
particles decrease OPG and induce IL-6 production, effects associated to increased 
nuclear factor IL-6 (NF-IL-6) and NF-кB activation while production of MMP-2 
increases through p38 signaling [9, 16, 80]. Ti particles severely impact on the via-
bility and osteogenic potential of osteoblast precursors [16, 81]. Moreover, Ti par-
ticles produce adverse effects in MSCs that include toxicity and increased IL-8 
production. Induction of genes encoding pro-apoptotic proteins and down-regulation 
of those encoding anti-apoptotic and osteogenic factors has been detected in MSCs 
challenged with Ti particles [16]. Altogether, these findings indicate that Ti particles 
impair the viability, proliferation and differentiation ability of MSCs. Exposure of 
fibroblasts to Ti-based particles induce the expression and/or production of RANKL, 
IL-6 and MCP-1 in a dose-dependent manner and stimulates the release of osteo-
lytic enzymes as stromelysin and collagenase [3, 9, 16]. In human synovial cells, Ti 
particles increase MMP-2 activity [82].

Bacterial endotoxins are detected frequently and in a significant amount adsorbed 
to metallic wear particles [57, 75]. In macrophages, exposure to Ti particles adsorbed 
to LPS results in the regulation of TLRs-mediated responses and the stimulation in 
the production of the proinflammatory cytokines TNF-α, IL-1β and IL-6 [75]. 
Nonetheless, endotoxin-free Ti particles activate TLRs-mediated pathways and 
induce the expression of same genes [83]. However, comparative studies have 
shown that endotoxin-free Ti particles induce inflammation and osteolysis to a 
lower extent than those with adsorbed bacterial debris [84]. As observed with 
UHMWPE particles, NALP3 inflammasome can be activated upon Ti particles 
internalization and subsequent cathepsin release [17].
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In response to implant metal debris challenge, macrophages adopt a pro-
inflammatory M1 phenotype [16, 79]. In a study to clarify whether macrophage 
phenotypes are equally sensitive to Ti particles, these cells were polarized towards 
phenotype M0, M1 and M2 and then incubated with Ti particles. While no signifi-
cant effects were observed in M2-macrophages after Ti particle challenge, 
M1-macrophages experienced drastic changes both at the transcriptome and the 
proteome levels, with a notable increase in the production of inflammatory chemo-
kines (e.g. MCP-1, MIP-1α, IL-8), cytokines (TNF-α, IL-1β) and growth factors 
(e.g. granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte-
colony stimulating factor (G-CSF) and epidermal growth factor (EGF)) [85]. This 
study supports again the notion that the local microenvironment, which determines 
the macrophage phenotype, notably influences the response to particles.

Changes in mechanotransduction and adhesive properties of cells treated with 
metal particles have also been addressed in in vitro studies. For example, Preedy 
et al. observed that Ti particles increase osteoblast elasticity [86].

In vivo studies employing calvaria or air pouch models have corroborated the 
in  vitro findings regarding Ti particles induction of TNF-α, cyclooxygenase-2 
(COX-2), IL-1β, MMP-9, MCP-1, RANK, RANKL, NFATC1, VEGF and CB2 
expression and/or production [9, 16]. Similar results were observed when Ti-alloy 
particles were investigated [16].

Concerns about wear debris derived from CoCr are mainly based on ions release. 
Co and Cr ions can travel through lymh and blood with harmful consequences for 
heart, brain and thyroid, spleen or liver [9]. CoCr alloy particles have been histo-
logically identified in necrotic areas with infiltrating macrophages and lymphocytes 
[87]. In the local tissues, Co-Cr alloy particles and ions impair the expression of 
proteins related with osteoblastic differentiation (OPG, Osx and osteocalcin (OCN)) 
and increase those related with inflammation and osteoclastogenesis (IL-6, RANKL, 
MCP-1 and NFATC1) [16]. Co ions affect osteoblasts and neutrophils functions and 
stimulate chemokine secretion in both cell types [88]. Ions released from a CoCr 
alloy (CoCr29Mo6) induced necrosis in osteoblasts and peripheral blood mononu-
clear cells (PBMCs) and also stimulated IL-6, IL-8, and MMP-1 expression in these 
cell types [89]. Co and Cr ions are highly cytotoxic for macrophages and lympho-
cytes, inducing apoptosis [9]. Exposure to CoCr particles, increase expression and/
or production of pro-inflammatory factors (IL-1α, IL-6, interleukin-10 (IL-10), 
IL-8, GM-CSF and PGE2) in monocyte-macrophage lineage cells, reduce viability 
in histiocytes and fibroblasts and affect osteogenic differentiation in MSCs [9, 16, 
90]. Treatment of THP-1 cells with a CoCr alloy (ASTM F75) particles increase the 
production of TNF-α, IL-1β and IL-8 through TLR4 signaling pathway [91]. In 
fibroblasts, CoCr nanoparticles increase the production of ROS and induce apopto-
sis [9, 92]. Regarding size, CoCr nanoparticles release more ions and are more 
cytotoxic than CoCr microparticles [93].

After being phagocytosed by macrophages metal nanoparticles trigger endoplas-
mic reticule (ER) stress. Periprosthetic tissues express large amounts of ER stress-
associated molecules (Ca2+, IRE1-α, GRP78/Bip, CHOP, cleaved Caspase-4, and 
JNK). It has been speculated that apoptosis in macrophages challenged to metal 
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particles might be mediated by ER stress pathways, also linked to inflammation and 
osteoclastogenesis [94]. Similar to UHMWPE particles, chemical changes in metal 
particles surface altere the recognition of particles by cells and their subsequent 
effects [9, 95]. Also, release of endogenous alarmins has been proposed to contribute 
to positive feedback mechanisms in the periprosthetic tissue challenged with metal-
lic debris [84, 18].

Several studies report a scarce number of T-lymphocytes in periprosthetic tis-
sues, concluding that osteolysis occurs independently of these cells [51]. However, 
lymphocytes play a key role in hypersensitivity reactions leading to early osteoly-
sis [45, 51]. Hypersensitivity or allergy to metallic components is a matter of con-
cern to orthopaedic surgeons. This reaction is usually a cell-mediated (type-IV 
delayed hypersensitivity) response, characterized by activation of delayed-type 
hypersensitivity T lymphocytes by haptenic antigen and cytokine release which 
leads to recruitment of cytotoxic T-cells and macrophages activation. Activated 
macrophages mediate delayed-type hypersensitivity T lymphocytes activation, 
self-perpetuating the inflammatory response [9, 79]. Another adverse local tissue 
reaction is the aseptic lymphocyte-dominated vasculitis-associated lesions 
(ALVaL). This response is similar to the type IV hypersensitivity response, charac-
terized by inflammation accompanied by lymphocytic infiltration, accumulation of 
plasma cells and macrophages and soft tissue necrosis [3, 9, 96]. Pseudotumors, 
mainly affecting soft tissues, are another complication of metal THA. Pseudotumors 
are identified as a solid or cystic mass-forming tissue characterized by necrosis 
areas, mononuclear cell infiltration and giant multinucleated cells, with high 
degree of perivascular lymphocytic aggregation. The prevalence of pseudotumors 
in hip implanted patients is a controversial issue. While some authors estimated a 
low frequency, just about a 1% within 5 years of MoM implantation, others have 
found a much higher incidence, up to 60% [3, 9, 97]. This absence of consensum 
may be explained due to the asymptomatic nature in some cases and the similarity 
with other adverse reactions. In this regard, Catelas et al. have stated relevant dif-
ferences in the proteome of pseudotumors and osteolytic tissues which correlate 
with predominant adaptive immune responses in patients with pseudotumors and 
innate immune responses in patients with periprosthetic osteolysis [98]. One 
molecular mechanism which might explain the local soft tissue growing around 
the implant (fibro-pseudotumors) is the induction of hypoxia and angiogenesis by 
metal debris, which increases the levels of transcription factor hypoxia inducible 
factor 1 alpha (HIF-1α) and VEGF [79]. Finally, some studies suggested an asso-
ciation between MoM implants and risk for developing cancer but epidemiological 
studies have not been able to prove increased incidence of cancer in patients with 
these implants [9, 99].

In summary, existing data employing metal and metal-alloys wear debris and 
their byproducts indicate their involvement in the induction of adverse local tissue 
reactions, based not only in the activation of inflammation and bone resorption-
related mechanisms but also in the induction of the oxidative stress and cytotoxicity. 
These effects are mainly dose- and concentration-dependents which,  in the context 
of metal particles exhibiting submicrometric and nanometric sizes and being 
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released in high amounts to the periprosthetic space, represent a clear threat to tis-
sue homeostasis.

�Ceramic Particles

Ceramics present chemical and mechanical advantageous properties for the manu-
facturing of orthopaedic devices, especially for young patients, including biochemi-
cal inertness, hardness, high-strength and corrosion and wear resistance [3, 100, 
101]. Currently, the most used ceramic materials in clinical practice are alumina 
(AL2O3) and zirconia (ZrO2) [3]. Hip implant revisions of Al2O3-based components 
have been associated to their brittleness and the subsequent risk of catastrophic 
failures due to deficiencies in the manufacture [3, 102]. A great variability in the 
frequency of ceramics fracture rate has been reported but in general, incidence is 
small [3, 103]. Wear volume of ceramic bearing couples is lower than that of metal-
lic and therefore a lower risk of revision is expected [3, 104]. Moreover, PE compo-
nent exhibits a lower linear wear in CoP (0.034 mm/year) than in MoP (0.1 mm/
year) bearings. On crosslinked PE, ceramics display a wear rate of 0.019 mm/year 
compared to 0.03 for metals [3]. Relative inertness and low abundance of ceramic 
wear debris in the periprosthetic space imply limited adverse biologic reactions and 
risk of osteolysis associated to this type of material.

Ceramic debris appears as fine greyish-brown particles (ZrO2) and brown, 
brownish-green or black granules (Al2O3) [45, 105, 106]. Regarding size, ceramic 
particles are similar to metal particles, and ten times smaller than polymeric parti-
cles. More in detail, some studies have shown a range from 0.13 to 7.2 μm in tissues 
around loosened CoC hip implants and others have reported a bimodal size distribu-
tion, with most of them in the nanometric-order (5–90  nm) and submicron- to 
micron-scale for the rest (up to 3.2 μm) [3, 106, 107].

Manufacturing defects, instability or mal position of hip prosthesis components 
are main factors involved in the generation of ceramic particles, which once pro-
duced are “potential” inducers of periprosthetic osteolysis [3, 60, 108]. In fact, pro-
duction of ceramic debris associated to occasional osteolytic areas has been 
considered as the consequence of mechanical instability rather than the origin of 
failure [108]. Typical foreign body reaction was only observed in association to 
large amounts of wear particles [109]. The cellular mechanisms involved in the 
biological response to ceramic particles are a controversial issue, not fully eluci-
dated. While some authors state that ceramics are able to activate cells in a similar 
manner to metallic debris due to their comparable size, others express doubts about 
the involvement of the same mechanisms. In fact, studies in retrieved tissues have 
shown a differential cellular response to accumulated ceramic wear debris [110]. 
Biocompatibility of ZrO2 particles seems to be greater than that of Ti particles since 
induction of pro-inflammatory gene expression was significantly lower in macro-
phages challenged with ZrO2. In vivo experiments support these findings, with 
higher extent of inflammation and bone resorption induced by Ti or PE particles 
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than ceramics [83, 111]. Bylski et al. exposed THP-1 macrophage-like cells to dif-
ferent concentrations of Al2O3 and Ti particles and found that, regardless of particle 
size and time exposure, ceramic caused only minor up-regulations of RANK, TNF-α 
and OPG mRNA levels while Ti highly stimulated the expression these genes and 
led to cytotoxic effects in a dose- and time-dependent manner [107]. Also, minor 
induction in the production of pro-inflammatory proteins such as IL-1β and MCP-1 
has been reported after exposure of primary human macrophages to Al2O3 particles 
[112]. In a comparative study using murine macrophage cells treated with PE or 
ceramic particles, the latter led to lower release of TNF-α [113].

The negligible in vitro effects of Al2O3 particles on cell viability and cytokines 
production may account for the low incidence of osteolysis in patients with CoC 
prosthesis [60]. Once again, particle size, composition and concentration are rele-
vant factors to consider [114, 115, 116]. Regarding induction of pro-inflammatory 
cytokines, neither Al2O3 or ZrO2 particles induced IL-1 or IL-6 production in human 
fibroblast-like synoviocytes isolated from patients with osteoarthritis or rheumatoid 
arthritis [117]. Al2O3 and ZrO2 are susceptible of internalization in J774 cells, induc-
ing both type of particles the release of TNF-α at same extent [118].

Exposure of human macrophages to ZrO2 or TiO2 nanoparticles upregulated the 
expression of TLR7 and TLR10 [119]. Moreover, ZrO2 nanoparticles induced IL-1β 
production and IL-1Ra synthesis while in LPS-treated macrophages IL-1Ra release 
is reduced, therefore promoting the creation of a pro-inflammatory environment, 
amplifying the M1 macrophage-effector functions.

A recent study has evaluated the ZrO2 effects on osteoclasts, whose recruitment 
and activation are directly involved in the periarticular osteolysis [120]. Exposure of 
osteoclasts to ZrO2 increased cell fusion and expression of osteoclast function- and 
bone matrix-related proteins including vitronectin receptor (VNR), TRAP, RANK 
and cathepsin K without stimulating osteoclast bone resorptive capacity. Moreover, 
higher expression of MMP-1 and an impaired production of the tissue inhibitor of 
this metalloproteinase were observed.

AL2O3 particles can be internalized by osteoblastic MG-63 cells which resulted 
in decreased proliferation, ALP activity and TGF-β1 secretion [121]. In contrast, 
exposure of these cells to ZrO2 stimulated proliferation and ALP activity. 
Interestingly, both types of particles induced the production of PGE2 in a dose-
dependent manner. Treatment of primary human osteoblasts with Al2O3 induced the 
expression and secretion of IL-6 [122] and affected the osteoblastic function by 
decreasing the C-terminal type I procollagen (PICP) secretion and ALP activity 
[123]. The paracrine interactions between macrophages and osteoblasts were also 
affected by treatment of these cell types with Al2O3 particles which resulted in 
increased production of IL-6 and GM-CSF as assessed in a a co-culture in vitro 
model [124]. Another study examined the cross talk between macrophages and 
osteoblasts in the presence of Al2O3 particles employing media conditioned by 
osteoblasts exposed to particles in which a slight decrease in OPG-to-RANKL ratio 
was detected [125]. In this study, secretion of TNF-α, IL-6 and GM-CSF by PBMCs 
was not induced by culturing these cells with media conditioned by osteoblast 
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exposed to Al2O3. Osteoclasts formation assays showed an increase in TRAP-
positive aggregates which suggested the activation of osteoclastogenesis although 
osteoclast generation was not enhanced in PBMC cultures exposed to conditioned 
medium of osteoblasts challenged with Al2O3.

In summary, although ceramics present advantages in comparison to other mate-
rials, they still seem able to elicit an adverse local reaction. However, the moderate 
wear rate of ceramic components together with the limited effects of ceramic 
particles-induced biological responses may significantly account for the low inci-
dence of osteolysis in patients bearing this type of prosthesis.

�Cement Particles

PMMA debris arise from the fragmentation of the cement used to fix components 
of THA [3, 126]. Bone cement is frequently applied to the femoral stem but also 
the acetabular shell may be fixed to the adjacent bone. PMMA-based bone cement 
was introduced by Charnley as an effective mean to achieve stable fixation 
between the bone bed and the implant, and later as matrix for local delivery of 
antibiotics [126]. Apart from favouring formation of a fibrous interfacial tissue, 
PMMA experiences brittleness and shrinkage, lack of adherence to the bone and 
during its application, the in situ exothermic polymerization reaction can damage 
the adjacent bone tissue. In general, cemented prostheses are not options for 
young and active patients, with good bone stock quality, as PMMA can cause 
third body wear and secondary loosening of the hip components [127]. PMMA 
third-body abrasive particles originated from the failure of the cement mantle can 
induce surface damage, especially relevant in PE and Ti-based components [3, 
128]. ZrO2 and BaSO4 are used as radio-opaque contrast media in bone cement, 
and therefore disintegration of the cement mantle can produce PMMA and/or 
ZrO2 or BaSO4 particles which can contribute to direct cell responses and also to 
third-body wear [3, 126].

Acrylic particles found in the capsular tissue present a size range from 1–2 μm to 
several hundreds of microns. Several shapes have been observed, being the smallest 
particles similar to dust granules and the largest ones like pearls clusters or grapes 
bunch [3]. Under light microscopy, particles present a size between 0.5 and 2 μm 
with grey or yellow brown colour and under polarized light, they show slight white 
birefringence [129].

Localized areas of osteolysis exhibiting foreign body response to cement parti-
cles are frequently observed [60]. PMMA, ZrO2 and BaSO4 particles of phagocytos-
able size can be internalized and stored within macrophages while the 
non-phagocytosable large cement fragments are surrounded by foreign body giant 
cells. Aggressive granulomatous lesions as well as non-granulomatous AL around 
cemented total hip prostheses have been observed. PMMA particles are also able to 
activate the lymphocyte-mediated immune response [3].
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Cell surface receptor complement receptor 3 (CR3) is involved in the phagocy-
tosis and activation of signaling pathways of macrophages exposed to PMMA [48]. 
Production of inflammatory mediators is also mediated by TLRs in a manner partly 
dependent on MyD88 signaling pathway, since inhibition of this adaptor molecule 
decreased the induced production of TNF-α in RAW 264.7 murine macrophages 
exposed to PMMA [22]. As described for polymeric and metallic particles, PMMA 
particles activate the NALP3 inflammasome [130]. Phagocytosed cement particles 
induce caspase-1 activation in monocyte/macrophage cells and the release of down-
stream effectors IL-1β and TNF-α, both involved in the amplification of osteoclas-
togenesis mediated by RANKL.

In vitro studies suggest that PMMA particles may have more potent osteolytic 
effects than high density PE particles [131]. In fact, the activation of macrophages 
by PMMA particles has long been considered as a key mechanism in wear-induced 
osteolysis of cemented implants [3, 48]. Apart from peri-implant resident cell acti-
vation, PMMA particles are also able to recruit peripheral monocyte/macrophages, 
promoting the systemic trafficking of macrophages to the site of inflammation [3], 
as observed after PMMA injection in the medullary canal of nude mice and the 
intravenous administration of RAW264.7 macrophages stably expressing a biolumi-
nescent reporter gene [132]. This finding was corroborated using a severe combined 
immunodeficiency mouse chimera model, in which fragments of periprosthetic 
granulomatous tissues and bone chips retrieved during revision surgery in loosened 
patients were implanted in mice [133]. PBMCs isolated from patients during revi-
sion surgery were fluorescently labeled and cultured with cement particles before 
intraperitoneal injection. Fluorescent-labeled PBMCs challenged with PMMA par-
ticles and a high number of TRAP-positive cells accumulated in transplanted peri-
prosthetic tissues.

The chemotactic effects induced by PMMA particles leading to migration of 
human monocyte and MSCs have been studied in in  vitro studies [60, 79]. 
Macrophages challenged with cement particles increase MCP-1 release. Like MCP-
1, MIP-1α is expressed in periprosthetic tissues and produced by cells of the mono-
cytic/macrophagic lineage after priming with PMMA particles [22]. Moreover, 
neutralizing antibody to MIP-1α lessened the migration of monocytes induced by 
media conditioned by macrophages exposed to PMMA particles [134]. An indepen-
dent study confirmed the involvement of MCP-1 and MIP-1α induced by PMMA 
particles in the homing of monocytes and MSCs, suggesting the involvement of 
various chemokines in the recruitment of macrophages and MSCs [135]. Fibroblasts, 
a cell source of chemokines, increase MCP-1 release upon exposure to PMMA 
particles [136].

Exposure of macrophages to PMMA increases the expression of pro-inflammatory 
cytokines, via activation of the NF-κΒ pathway [137, 138]. Among other 
macrophage-releated cell types, dose- and time-dependent induction of the secre-
tion of IL-1 and PGE2 has been observed in peritoneal macrophages [60] while 
induction in the release of IL-1β and TNF-α was described in bone marrow 
macrophages [139]. In line with this, Pearle and colleagues performed microarrays 
profiling of monocytes and unfractionated PBMCs exposed to PMMA and Ti par-
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ticles to assess, respectively, the activation of the innate immune system and the 
innate and adaptive immune system [140]. Exposure of monocytes to PMMA 
induced the transcript levels of TNF-α, IL-1α, IL-1β, IL-6, IL-8 and COX-2, key 
regulator of PGE2 synthesis, as well as the chemokines MIP-3α and CCL11. Similar 
data were obtained in PBMC exposed to PMMA. Comparison with data obtained 
from cells exposed to Ti particles suggested that PMMA-inflammatory effects are 
mediated by the activation of the innate immune system, i.e., monocytes, in a T cell-
independent manner, while lymphocytes are not essential mediators in PMMA-
induced osteolysis.

Apart from the induction in the inflammatory response, PMMA particles contrib-
ute to mononuclear phagocytes and macrophages differentiation into TRAP-positive 
cells with resorptive capacity [131, 141]. Other osteoclastic phenotypic markers 
might be regulated by PMMA particles, as murine RAW264.7 cells exposed to 
PMMA upregulated cathepsin K and RANK expression [142]. PMMA particles 
stimulate osteoclastogenesis, at least in part, by induction of RANKL and TNF-α 
expression and by activation of NF-кB [143]. Signaling pathways that cooperate 
with RANKL-induced during differentiation of macrophages into osteoclasts, like 
MAPK pathway, are also activated. Expression and activity of the transcription fac-
tor NFAT2, involved critically in osteoclast lineage commitment, increases in osteo-
clast precursors exposed to PMMA particles [144]. PMMA-derived effects on the 
osteoclastic lineage seem to be dependent on their stages of development, increas-
ing the number of osteoclasts precursors and enhancing the number and bone 
resorption capacity of mature cells [145].

As mentioned before, macrophages exhibit functional plasticity in order to adapt 
to the dynamic periprosthetic microenvironment. Macrophages challenged by 
PMMA particles exhibit characteristics of M1 phenotype [146]. However, macro-
phages may evolve from M1 to M2 phenotype as proven in in vitro experiments in 
which M1 macrophages were treated with IL-4 prior to exposure to PMMA parti-
cles or were simultaneously treated with IL-4 and particles [139].

Exposure to PMMA particles impairs viability, proliferation and osteogenic dif-
ferentiation of osteoprogenitor cells. Transcript levels of the transcription factors 
Runx2, Osx and Dlx5 that orchestrate osteogenic differentiation, and OCN decrease 
after exposure of MC3T3-E1 to PMMA particles [138, 147]. Effects on osteopro-
genitor proliferation and differentiation have been found to be dose-dependent [148]. 
The more potent inhibitory effects of PMMA particles have been detected in the 
early phase of osteoprogenitor differentiation, as shown in cultures of murine bone 
marrow cells [148, 149]. PMMA-induced inhibition of osteoblastic differentiation is 
characterized by altered expression of genes encoding bone morphogenetic protein 
3 (BMP3) and SOST, which are negative regulators of bone formation [150].

Regarding mature bone-forming cells, proliferation and collagen synthesis of 
osteoblastic cells exposed to PMMA were reported to be inhibited whereas OCN 
and IL-6 production were stimulated [151]. Additionally, apoptotic rates and 
MMP-1 expression were enhanced in osteoblasts exposed to PMMA [152]. As 
observed with other types of particles, the mechanisms involved in osteoblasts dys-
function after exposure to PMMA particles are not totally understood. Among other 
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participating mechanisms, inhibition of MAPK activity and reduced TGF-β1 pro-
duction, which play an essential role in differentiation and the response to environ-
mental stress, have been proposed [150]. A recent study has addressed the 
consequences of the physical stress stimuli that PMMA particles impose to osteo-
blasts that include an increase in the elastic modulus with time, production of  
calcium and changes in cytoskeleton organisation which influence cell behaviour 
and function [86]. Addition of radio-opaque agents favors macrophage-osteoclast 
differentiation and their resorptive activity, being more resorptive PMMA contain-
ing BaSO4 than ZrO2 [153]. Moreover, exposure of osteoblastic cells to cements 
containing these radio-opaque agents increased the expression ratio RANKL/OPG 
[154]. Such imbalance might be related to stimulation of osteoclast differentiation 
and inhibition of osteoclast apoptosis.

Collected evidence indicates that cement-derived wear particles elicit important 
adverse cellular reactions that lead to to periprosthetic osteolysis. Cement particles 
are found in high proportion in the periprosthetic bone bed which facilitates their 
direct action and severe effects on bone and immune cells.

�Perspectives

Research efforts in THR have been oriented toward the improvement of the tribol-
ogy of materials used in prostheses manufacturing as well as to the elucidation of 
the biological processes triggered by wear particles [26]. Important advances in 
orthopaedic materials concerning their microstructure, surface characteristics and/
or design have been made and multiple biomaterials have been generated as promis-
ing alternatives including advanced composites and hybrid materials [155–157]. 
Among others, coatings of the material surfaces with bioceramics or functionaliza-
tion with extracellular matrix proteins, biological peptides or growth factors are 
expected to stimulate physiological mechanisms that counterbalance the develop-
ment of osteolysis [50, 158]. However, novel materials still face issues regarding 
their long-term performance and biological response to wear and corrosion debris. 
Moreover, a deeper understanding of the local and systemic biological responses to 
materials is needed. The identification of signaling pathways and cellular and 
molecular mediators that contribute to periprosthetic osteolysis will facilitate not 
only the generation of mimetic, self-diagnosing and multifunctional materials but 
also the development of targeted and personalized therapeutic strategies. Innovations 
in genotyping, pharmacogenomics and large-scale molecular phenotyping will 
facilitate the identification of the mechanisms involved in the pathogenesis of oste-
olysis that then will be used to design strategies for the diagnosis, prevention and 
treatment of AL [24, 159]. For instance, recent progresses in the understanding of 
the signaling pathways that integrate ER stress, apoptosis, inflammation or osteo-
clastogenesis have been proposed as promising therapeutic targets to mitigate wear 
particle-induced osteolysis [94, 160]. Acting upstream of the inflammatory cascade 
activated by wear particles might lead to better therapeutic control of the local 
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process, in opposition to systemic management which might be associated to 
adverse side-effects. Three main events triggered by the presence of particles can be 
targeted: cellular chemotaxis, polarization of macrophages and NF-κΒ signaling 
[60, 85, 161, 162]. Protein phosphatase 2A, a major serine-threonine phosphatase 
involved in NF-кB and c-Jun N-terminal kinase signaling pathways has been pro-
posed as new target for pharmacological intervention in Ti-induced osteolysis [163]. 
Inhibition of the glycogen synthetase kinase 3 beta, regulator in the canonical Wnt 
signaling pathway which is essential in the maintenance of normal bone mass, has 
been suggested as a target of molecules to treat wear-debris induced osteolysis 
[164]. Other proposed targets explored are bone morphogenetic proteins [165] and 
protein kinase C [166]. Therefore, the more we know about intracellular signaling 
activated by wear particles, the more options we have to develop therapeutic inter-
ventions for aseptic implant loosening.

Other therapeutic intervention has focused in controlling the levels of RANKL 
and OPG [50]. Specific materials, such as biosilica and microstructured Ti surfaces, 
are able to stimulate the endogenous production of OPG.  Treatments with anti-
resorptive bisphosphonates (e.g. alendronate and zolendronate), RANKL antibodies 
or OPG-like molecules have been proposed. Some of these drugs have proven their 
efficacy in pathologies associated to catabolic bone disorders, but might have an 
important impact at systemic level. Unwanted side effects have been also associated 
to anti-inflammatory drugs as corticosteroids or TNF-α antagonists or IL-1 antago-
nists, which have been suggested to treat wear-induced osteolysis [51]. Other phar-
macological agents assayed include the synthetic molecules OA-14 
((N-(3-(dodecylcarbamoyl)phenyl)-1H-indole-2-carboxamide)) [167] and metho-
trexate [168] or the ursolic acid [169].

An active research has been performed testing agents able to modulate the 
NF-кB signaling pathway, including natural bioactive compounds such as trip-
tolide, notoginsenoside R1 or sophocarpine [170–172], antibiotics as rifampin 
[173], bioflavonoids such as anthocyanin or amentoflavone, [174, 175], compo-
nents of the omega-3 fatty acids such as the docosahexanoic acid [176] or the pro-
biotic Lactobacillus casei [177]. In this search of modulators of NF-кB, the hormone 
melatonin has been reported as candidate for the treatment of wear debris-induced 
osteolysis [178]. Sirtuin 1, NAD(+)-dependent histone deacetylase which regulates 
the transcriptional activity of NF-κB, has been considered as a pharmacological 
target in osteoblast and macrophages challenged to metal particles [179, 180]. 
Statins such as simvastatin and pitavastatin, employed as lipid-lowering medica-
tion, have been also proposed for the prevention and/or treatment in wear particle-
induced bone resorption. Our group reported that simvastatin down-regulates IL-6 
secretion in osteoblastic cells cultured in isolation or co-cultured with macrophages 
and exposed to Ti particles [181]. In order to improve the local efficacy of anti-
inflammatory and/or anti-osteolytic therapeutic agents different methods to concen-
trate the drug preferentially into the inflammatory area have been proposed, avoiding 
or reducing systemic exposure. In this regard, local delivery of dexamethasone con-
jugated to the copolymer HPMA or covalently conjugated to TiO2 particles has 
been assayed [182, 183].
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Gene therapy has also emerged as a potential therapeutic avenue. For instance, 
in vitro and in vivo models have shown the effectiveness of viral gene delivery of 
IL-10, IL-1Ra and OPG in Ti- and UHMWPE-induced osteolysis models [184–
189]. Other therapeutic experimental approaches employed small interfering RNA 
to silence TNF-α, the catalytic subunit of phosphoinositide 3-kinase (PI3K) p110β 
or the chemokine receptor CXCR2 [190–192]. Although promising preliminary 
results have been achieved, the implementation of gene therapy into orthopaedic 
practice is still a distant possibility.

Other important aspect to consider is the early diagnosis of wear particles-
induced osteolysis. Therefore, efforts are focused in the search of biomarkers as 
diagnostic and prognostic tools to monitor the progression of the disease. Different 
biomarkers in synovial fluid, urine and serum have been proposed, but still none 
have proved relevant clinical utility [193, 194]. In this regard, our group has been 
focused during the last years in the identification of serum proteins with potential to 
be regarded as biomarkers.

�Concluding Remarks

Wear particles-induced osteolysis is one of the major challenges for orthopedic sur-
geons due to the absence of clinical signs and symptoms until late stages of destruc-
tion and failure. The increasing demand of hip arthroplasties and the growing 
incidence in young patients, with predictions pointing to a substantial increase in 
revision surgeries, highlights that this issue has to be seriously considered. Currently, 
strategies are focused on improving the implant behaviour and limiting the biologi-
cal response to its degradation products. Despite intense research efforts in the 
materials field, the long-term performance of novel biomaterials is still unknown. In 
the biomedical field, it is imperative to unravel the cellular and molecular mecha-
nisms triggered by wear debris to establish effective medical interventions. Too 
many questions that still remain not answered and become major challenges for 
basic research groups.
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