
Chapter 8
Best Practices for Teaching Information
Systems Modelling

Steve Wade

Abstract The subject of Information Systems Modelling (ISM) grew out of com-
puter science to fill a gap created by the difficulties programmers had in understanding
and solving user problems. The intention behind ISM is to facilitate communication
between technologists (many of whom have no idea of the complexity of organisa-
tions) and end-users and their managers (many of whom are unable to translate their
problems into feasible demands upon technology). “Best practices” in information
system development might therefore be considered to be those practices which con-
tribute in some way to improving communication between these two parties. The
work described here is primarily focussed on documenting practices that address the
issues associated with the seamless transition from a requirements model seamlessly
to a technology based system that satisfies those requirements. This has involved
reflection on lessons learned during thirty years’ experience of teaching Information
Systems Modelling in the context of higher education.

Keywords Information systems modelling · Requirements model
Communication · Pattern language

8.1 Background

The subject of Information Systems Modelling (ISM) grew out of computer science
to fill a gap created by the difficulties programmers had in understanding and solving
user problems. The intention behind ISM is to facilitate communication between
technologists (many of whom have no idea of the complexity of organisations) and
end-users and their managers (many of whom are unable to translate their problems
into feasible demands upon technology). “Best practices” in information system
development might therefore be considered to be those practices which contribute in
some way to improving communication between these two parties.

S. Wade (B)
Department of Computer Science, University of Huddersfield, Huddersfield, UK
e-mail: s.j.wade@hud.ac.uk

© Springer Nature Switzerland AG 2018
J. Carter et al. (eds.), Higher Education Computer Science,
https://doi.org/10.1007/978-3-319-98590-9_8

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98590-9_8&domain=pdf


112 S. Wade

Before considering examples of best practice and how thesemay be taught wewill
consider the possible consequences of poor communication between technologists
and end-users. Focussing on these will enable us to be clearer about the specific
benefits that the practices we consider might offer. We will focus on two possible
consequences of poor communication.

1. The end-user holds limited views about what they need and fails to realise that
alternative superior solutions (which they have been unable to imagine) are
possible.

2. The developers hold misguided opinions about what the users need because this
has not been clearly explained to them.

There is good evidence to suggest that many information system failures are
a result of one or both of these leading to a discrepancy between the system “as
required” and the system “as delivered”. If we are to avoid this discrepancy we need
to deploy development methods that:

1. Provide mechanisms to make sense of and understand the details of human activ-
ities that an information system is developed to support. This involves developing
some kind of information requirements model.

2. Provide a seamless transition between developing the information requirements
model and the design and implementation of a technology-based system to satisfy
the requirements captured in the model.

The work described here is primarily focussed on documenting practices that
address the above requirements. This has involved reflection on lessons learned
during thirty years’ experience of teaching Information Systems Modelling in the
context of higher education. Some lessons were learned in the eighties when we
still made use of plastic flowchart stencils, pencils and plenty of printer paper. More
came in the nineties with the rise of powerful CASE tools supporting development
methods that required the designer to develop and maintain increasingly elaborate,
internally-consistent collections of diagrams. The most significant lessons have been
learned more recently as the evolution of powerful programming environments has
encouraged a more informal approach to modelling.

In addition to learning lessons from the past it is important to prepare students for
the future. Most software systems are embedded in social systems and the resulting
sociotechnical systems’ boundaries and interactions can be hard to identify. For
example, social networks, travel booking and online shopping applications have had
far-reaching effects on the way people form relationships, how they travel and what
they buy. Becker et al. (2016) have argued that software’s critical role in society
demands a paradigm shift in the software engineering mind-set. We argue that our
students need to be prepared for this shift which will focus on architectural issues
that can be addressed through Information Systems Modelling.



8 Best Practices for Teaching Information Systems Modelling 113

8.2 Introduction

This chapter primarily draws on a number of years’ experience teaching an Informa-
tion SystemsModelling module jointly to postgraduate students on anMSc Informa-
tion Systems Management and an MSc Advanced Computer Science. The module
concerns the application of the Unified Modelling Language (UML) throughout the
development lifecycle from requirements analysis to implementation. All the stu-
dents arrive on the module with some background in modelling but those on the
MSc Information Systems Management tend to think in terms of business models
whereas those onMSc Advanced Computer Science tend to view modelling as high-
level programming. This presents the challenge of moving students into a deeper
understanding from different starting points and with different preconceptions about
the nature of the subject.

In the process of delivering thismodulewehave engaged in the following activities
each of which will be described in more detail in the remaining sections of this
chapter:

• The design of a pattern language to organise best practice in the application of
systems development techniques. In developing the pattern language we were
mindful of the need to encourage maximum student ownership of the development
process. The patterns could not therefore comprise simple lists of instructions to
be followed slavishly.

• The development of teaching materials to document the pattern language.
• Running the module. Observing the progress of the module week-by-week in a
number of ways including a range of on-going student feedback mechanisms.

The remaining sections of this chapter reflect on what we have learned from
engagement in these activities.

8.3 The Pattern Language

Patterns have been widely used in information systems design over the last ten years.
A pattern in this context is a generic solution to a recurring problem expressed in
a literary form. The approach has its roots in architecture specifically the work of
Alexander (1979). In ISM patterns have been used to ease communication problems
and the thinking behind complex design (Gamma et al. 1995). Patterns are usually
described by templates which specify the style and structure of a pattern description.
Typically the template will include sections for a description of the problem to be
addressed, the forces acting to create the problem, a generic solution, a specific
example of how this solution might be applied and a discussion of the benefits the
solution should provide.

The following example relates to a common (and hopefully familiar) problem in
domain modelling where students represent a many-to-many relationship between
two objects when the relationship would be better represented by a third object.



114 S. Wade

Problem

How to model the relationship between two classes that have a many-to-many asso-
ciation with each other.

Forces

• Many-to-many relationships occur often in the real world.
• It can be difficult to implement many-to-many associations in some object ori-
ented programming languages.

• Many-to-many relationships have no direct implementation in relational
database systems.

• A many-to-many relationship is usually complicated enough to warrant the
addition of an extra class.

Solution

Transform the many-to-many association between two classes into a trio of classes
by creating an intermediary class with two one-to-many relationships. The name of
the intermediary class should describe the type of relationship being captured.

Example

A many-to-many relationship between Student and Module is reconstructed as two
one-to-many relationships. One between Student and Work Record and the other
between Module and Work Record.

Discussion

We can now store details of module grades for each student as attributes of the new
“work record” class.

Summary

If you find this: consider replacing it with this: 

The idea is that patterns such as this can be used to guide students away from com-
mon problems and into good practice. We have specified many more patterns related
to commonly occurring problems. Initially we used patterns drawn from the publica-
tions of Ambler (1998, 1999) and Evitts (2000). We spent some time re-working and
shaping the documentation for these patterns to give coherence to the collection. A
key feature of the collection is that relationships are drawn between patterns. When
a number of patterns are related to each other in this way we describe the result as a
“pattern language”. We are therefore trying to develop a pattern language to support
the teaching of information systemsmodelling. Further examples of specific patterns
and their relationships will be provided later in this chapter.



8 Best Practices for Teaching Information Systems Modelling 115

8.4 A Framework for the Pattern Language

Most modern courses in Information Systems Modelling are based on the Unified
Modelling Language (UML). The UML provides a suite of diagrams that help us
to visualise the design of a system. It is published by the International Organization
for Standardization (ISO) as an approved ISO standard. Having decided to use the
UML we needed to decide which development method to follow. The most popular
model-centric approach currently in use is theUnifiedSoftwareDevelopment Process
(USDP) but this is both large and complex. Instead of following the USDP we
devised our own simplified method based on our earlier research into the design of
a multi-method framework (Salahat and Wade 2009). In that research we proposed
a framework for bringing together principles from object oriented approaches to
designing software systems and the “soft systems” approach to analysing social
systems as part of Business Analysis (Checkland 1999). This approach requires a
few words of explanation.

The teaching of Information Systems Modelling tends to focus on issues related
to ‘hard’ systems design. Hard systems are the technical systems that are produced
during a development project. Each hard system will be embedded in its social
context. This context can be seen as a “soft” densely interconnected system of human
activities. It can be argued that hard systems should not be analysed in isolation
from the soft systems within which they reside. In analysing the present system or
designing a new system, there is the need to consider both the hard system that will
be the product of the development, and the soft system within which it will be used.
This is challenging because the workings of the soft system are often difficult to
understand and the needs of the organisation can be difficult to predict. The UML
covers all aspects of hard systems design but has much less to say about the soft
system. In contrast Soft SystemsMethodology (SSM) focusses on the soft approach.

In addition to augmenting UML modelling with techniques from SSM we also
wanted to introduce students to Persona Analysis as a means of developing empathy
for users.

Defining personas is an established practice in user-interface design. Blomkvist
(2002) describes personas as follows:

A persona is a model of a user that focuses on the individual’s goals when using an artefact.
Themodel has a specific purpose as a tool for software andproduct design. The personamodel
resembles classical user profiles, but with some important distinctions. It is an archetypical
representation of real or potential users. It’s not a description of a real, single user or an aver-
age user. The persona represents patterns of users’ behaviour, goals and motives, compiled
in a fictional description of a single individual. It also contains made-up personal details, in
order to make the persona more ‘tangible and alive’ for the development team. (Blomkvist
2002)

We ask students to develop personas that include a fictional name and life story, a
picture, and a ‘tag line’—a phrase, supposedly written by the persona, that represents
the character of the persona as related to the development project. The case studies
that we use in teaching relate to our own department. Accordingly we encourage
students to develop a persona for each of the following: A Student of Computer



116 S. Wade

Science, a Student of Information Systems, a Course Administrator, a Lecturer and
a representative of an organisation providing industrial placement opportunities.

Although the primary application of personas has been in the context of user-
interface design, we have found spending time developing them focusses attention
on requirements in a concrete way. Rather than referring to users in an abstract form,
students refer to personas by name. So our student of Computer Science becomes Jo
Smith who has a first degree in Software Engineering a great deal of confidence in
his programming ability but lacks confidence in writing essays and reports—his tag
line is “I would rather write code than prose”. In contrast our student of Information
Systems becomes Sue Rachel who has a first degree in Law, is fascinated by the
impact of technology on society but lacks confidence in her ability to write code.
Her tag line is: “technology will never replace great people but it can help ordinary
people to achieve great things”.

Following the basic structure of this framework we developed patterns and teach-
ing materials based around the following topics:

• How to use Persona Analysis to help the developer focus on the needs of the user.
• How to use Soft Systems Methodology to learn about a problem situation.
• How to extract Use Cases from the soft systems models.
• How to develop sequence diagrams related to each Use Case.
• How to develop a domain model from the collection of sequence diagrams.
• How to convert the domain model into a class diagram and database design.
• How to implement the class diagram as an object oriented software system using
the, “naked objects”, implementation pattern.

We have used the step-by-step approach implied by these questions as the basis for
a course structure and an assignment specification. We have adopted a “scaffolded”
approach to teaching (Larkin 2001). which involves working through a number of
exercises following the structure implied above then asking students to apply the
techniques to related case studies for their coursework. The case studies used for
assessment were based around the needs of an academic department like our own.

It is beyond the scope of this chapter to discuss each of these topics in detail but
for those unfamiliar with the techniques, the following examples are intended to give
an idea of what deliverables are produced during each step of the method.

The example used here relates to the decision to introduce a Peer Tutoring System
into an academic department to provide extra help to students on a programming
module. The idea being that students who are confident in their programming skills
would run support sessions for their less confident colleagues. We initially asked
students to develop a simple persona for the type of people who would use this
system.As explained above a persona is a fictional character that typically has a name,
a picture, behavioural traits, common tasks, and a goal that describes the problem the
persona wants to see solved or the benefit the character wants to achieve. Personas
are not considered in the UML so we devised our own simple template based on
the facets listed above. In filling out this template the developer is encouraged to
visualise the user in a concrete, tangible way. So the personas mentioned above,



8 Best Practices for Teaching Information Systems Modelling 117

Fig. 8.1 Initial rich picture raising issues for the peer tutoring system

named Jo Smith and Sue Rachel, may be involved in the peer tutor system as a peer
tutor and peer tutee respectively.

Moving on from Persona Analysis we next ask students to conduct a simple
business analysis—with no attention to the designof software.Again this is somewhat
outside the scope of the UML so, as explained above, we have introduced techniques
from Soft SystemsMethodology. The first of these is a rich picture. The figure below
shows a rich picture that we might use to get things started (Fig. 8.1).

We have found rich pictures to be a good way to encourage discussion about the
problem situation without focus on any proposed solution. The discussion leads to
the development of a root definition: This is defined in SSM as a succinct description
of the Human Activity System (HAS) that is required. It is possible to develop
multiple root definitions each offering a different perspective on what is required.
The following is a possible root definition for the peer tutoring system:

A system owned by the course that provides programming skills support to students using
volunteers with programming experience from the student cohort. The quality of this support
will be monitored by academic staff.

Once we have developed a root definition, or set of definitions, we move to develop-
ing more detailed activity models. These are called Conceptual Models in SSM and
we would develop one for each root definition. The following example, originally
presented in Wade et al. (2012), includes activities that might be supported by soft-
ware and others that will be enacted by humans without the assistance of software
(Fig. 8.2).

In developing this type of diagram we encourage discussion about the social
systemwe are supporting. In this simple case discussionmight focus on the following
questions:

• Will weaker students attend these sessions or will they be primarily attractive to
students who are already competent programmers but want further opportunities
to develop their skills?



118 S. Wade

Fig. 8.2 Activity diagram

• Should some (weaker) students be required to attend the sessions? If so how do
we identify people in this position?

• Should we pay peer tutors? Are their alternatives to rewarding them with money?

This discussion might lead us to develop additional activity models. For example
we might consider the need to monitor attendance at the sessions and develop the
following for an “attendance monitoring” system (Fig. 8.3).

In developing these models we have not concerned ourselves with the question
of how software might be able to assist the people involved. This would be the role
of a Use Case Model. Use Cases are part of the UML and represent activities that
require software support. If wewere to develop aUse CaseDiagram from our activity
models wewould bemaking the transition from business analysis to software design.
The following Use Case diagram could be derived from the conceptual model above
(Fig. 8.4).

If we focus on the “Print Class List” Use Case we might prototype a simple user
interface like this (Fig. 8.5).

Behind this interface our software system might be composed of collaborating
objects. The following high-level sequence diagram depicts the role that a number
of objects might have, “behind the scenes” (Fig. 8.6).

We found that students found the transition from Use Case Models to Sequence
Diagrams difficult so we provided the following pattern and discussed it in class.

Problem

It is hard to develop sequence diagrams from the Use Case Module. What can I do
to make this transition easier?



8 Best Practices for Teaching Information Systems Modelling 119

Fig. 8.3 Activity diagram for attendance monitoring. Taken from Wade et al. (2012)

Forces

A high level Use Case Diagram (such as the one presented above) is fine for a, “mile
high”, view of the computer systems behaviour. Formany stakeholders, such as spon-
sors and managers, this will be enough. As designers however we need to open these
up and define them in detail. We know what the system presents to the various users
(or actors),weneed to define infinedetail the, “how”, of that interaction; untilwehave
done this we cannot begin to develop a sequence diagram. There is no prescription
in UML regarding what detailed information should be recorded about a use case

Solution

Document the detailed logic of aUseCase as a series of steps.Where appropriate each
step should include reference to one or more domain classes and identify the role that
this class should play in the implementation of the Use Case.We can use this descrip-
tion as the basis for developing an initial sequence diagram. The way in which this
is done is specified in the “Develop Sequence Diagram from Primary Path” pattern.



120 S. Wade

Fig. 8.4 A use case model. Taken from Wade et al. (2012)

Fig. 8.5 Screenshot for a use case. Taken from Wade et al. (2012)



8 Best Practices for Teaching Information Systems Modelling 121

Fig. 8.6 A sequence diagram. Taken from Wade et al. (2012)

Example

This Use Case is concerned with enrolling an existing student in a peer tutor session
for which she is eligible.

Key Steps:

1. The use case begins when a student wants to enrol in a peer-tutor session.
2. The student inputs her name and student number into the system.
3. The system verifies the student is eligible to enrol in classes at the university.
4. The system displays the list of available peer tutor sessions.
5. The student indicates the session in which she wishes to enrol.
6. The system checks that the student is enrolled on the appropriate module to join

the session.
7. The system asks the student to confirm that she wants to enrol in the session.
8. The student indicates she wants to enrol in the session.
9. The system creates an enrolment the student in the session.

These steps can then bemapped tomessages passed between objects in a sequence
diagram like the one presented above. Itmay be that each line in theUseCase descrip-
tion would map to a single message passed between objects. We would develop a
sequence diagram for every use case then develop a domain model consistent with
all of these sequence diagrams. A domain model derived from this single sequence
diagram might look like this (Fig. 8.7).

This domainmodel can be used as the basis for an object oriented software system
design and a relational database structure. We have developed patterns to translate
the domain model to a physical database design principally by adding primary and
foreign keys to create relationships between tables. A separate pattern discussesways
of mapping inheritance relationships to relational structures.



122 S. Wade

Fig. 8.7 A domain model. Taken from Wade et al. (2012)

In developing User Interfaces we encourage students to use the Naked Objects
architectural pattern Pawson (2002) to generate a graphic user interface directly from
the domain model. The pattern uses reflection to automatically generate an initial
user interface. Typically this interface will present a series of windows containing
icons representing each of the domain classes. A class can then be accessed by
double-clicking on its icon to reveal its operations. In the above example I can select,
“Module,” select a specific module then right-click on that module’s “Create Class
List” operation to see a list of students currently enrolled on the module. Other
functionality can be achieved by dragging and dropping; so for example if I wish
to enrol a student onto a module I can drag the icon representing that student on
to the icon representing the module thereby creating the relationship between them.
An advantage of applying this pattern is that the resulting relationship between the
domainmodel andwhat appears in the interface is very direct. A change in the domain
model (e.g. the addition of an operation on, “Student”, named “Get Coursework
Marks”) feeds through into the code and then directly into the user interface. From
a teaching perspective this helps to reinforce the idea that modelling is both about
representing the real world and designing software.

An important part of our teaching has been to identify specific issues that cause
difficulties for students then provide specific, detailed guidance of how to ameliorate
these difficulties. More specifically we have considered the difficulty of conducting
a thorough business analysis before transitioning to design, the transition from a Use
Case view to a behind-the-scenes view of the software architecture, the transition
from design to implementation with specific attention being paid to the design of an
interface that reflects the structure of the software.Wehavediscussed these transitions



8 Best Practices for Teaching Information Systems Modelling 123

in terms of patterns that capture good practice and the relationships between these
patterns.

We present the patterns in a manner based around the metaphor of different devel-
opment “rooms”. The first room is concernedwith developing user personas it is adja-
cent to a room for developing an “analysis” model based on Soft Systems Method-
ology. This room contains patterns for developing a range of soft systems models
including rich pictures, root definitions and conceptual models. An adjoining room
contains patterns for making the transition from analysis to design by translating the
analysis model into a Use Case Model with carefully structured documentation of
each use case. The next room contains patterns for moving into physical design and
then into code. These include: “Develop a sequence diagram showing how domain
classes may co-operate in the implementation of a use case”. This will involve ensur-
ing that the detailed steps in our use case description relate to the messages being
passed on the sequence diagram. A related pattern will explain how to assign oper-
ations to classes that map to messages on the sequence diagram.

As mentioned above when a number of patterns are related to each other in this
waywe describe the result as a “pattern language”.We are therefore trying to develop
a pattern language to support information systems modelling. We would argue that
patterns are particularly suited to this purpose. They are descriptive, not prescriptive
(unlike most detailed development methods). They capture expertise in an open-
ended format that lends itself to a “hypertextual” structure of resources with links
between related patterns that can be explored without forcing a specific sequence
of activities. The patterns can also be used as the basis for developing assignment
specifications. We will say more on this latter topic in the closing sections of this
chapter.

8.5 Running the Module

In light of the above discussionwe have been able to propose the following guidelines
for developing a module in this area:

1. Design a portfolio-based assessment that can be completed in instalments each
instalment being aligned to patterns used in teaching. For each pattern we specify
deliverables that can be represented in an assessment grid. In the case of the
patterns described above, one instalment could be a Use Case model that is
consistent with earlier conceptual models and which is described in steps that
map to messages in a sequence diagram. The patterns then become part of the
explanation of what is required and are clearly linked to the feedback grid.

2. Provide formative in-class surveys that encourage students to reflect on their
understanding of key patterns. In the first example above can they provide an
example of a many to many relationship between two classes that could be better
represented by a third class? Can they see how the proposed solution would help?
Can they apply this learning to the coursework case studies?



124 S. Wade

3. Encourage students to discuss the individual patterns and how they may be
applied to case studies before they complete the in-class surveys or work on the
assignment. Students should be encouraged to identify new patterns and fit them
into the pattern language or to improve the documentation of existing patterns.

4. Collect data on a regular basis by inspecting samples of student coursework on a
week-by-week basis and in-class surveys. Use the feedback to inform improve-
ments to pattern descriptions and the identification of new patterns.

These four guidelines work together to steer the students through the assessment
process by frequently monitoring their progress. Hopefully this will lead to contin-
uous improvement in the clarity of the coursework specification and the teaching
materials.

With respect to Step 4 above we employ a variety of different ways to collect
evaluative information. These include: a pre-course questionnaire that we distribute
before teaching begins this is intended to establish the background knowledge and
expectations of our students; a series of anonymous in-class surveys to test stu-
dents understanding and self-confidence in applying the patterns under discussion;
short reflective essays were made part of the coursework portfolio in which students
were asked to give their personal opinions about the usefulness of the pattern-based
approach and focus group discussions were held in class.

In addition to the above, during marking, we carried out an analysis of the most
common mistakes made by students in their coursework. We discovered a number
of recurring mistakes and made changes to the pattern language to discourage these.
A number of examples are given below.

• Inconsistencies between diagrams. For example operations appearing in the
sequence diagram that are not present in the class diagram.

• Failure to use domain-specific vocabulary as presented in the case study materials.
In the above example we referred to “Pathway” where others may have used the
term “Course”. It is important that the language used in the models can be found
in the user documentation.

• Operations that have ambiguous or misleading names. We have seen operations
with names like “Update all” or “Reconsider” these names are almost meaningless
to anyone but the original programmer.

• Database concepts (e.g. primary and foreign key dependencies) used in the domain
model. The domain model is meant to be an abstract representation that might be
used in the design of object oriented software or an ontology it is not a physical
database design.

• Operations not supported by attributes or relationships. Some operations depend
on the availability of connections to other classes or of data properties that must
be included in the domain model.

• A lack of consistency between the SSM models and the Use Case Model. For
exampleUseCases that cannot be inferred from the activities in conceptualmodels.

We continue to work on developing patterns that will steer students away from
these types of mistake. We plan to present these via a website based on our “rooms”



8 Best Practices for Teaching Information Systems Modelling 125

metaphor with hyperlinks between related patterns. We would argue that working in
this way has encouraged us and our students to consider important aspects of infor-
mation systems design that are often overlooked in courses that teach Information
Systems Modelling. A few of these are listed below:

• We encourage students to adopt multiple system viewpoints from different per-
sonas. The acknowledgment and exploration of these viewpoints emphasises the
important point that typically most systems have more than one purpose and many
unexpected consequences;

• We are encouraging our students to consider the total problem situation and to be
aware of the need to ensure that all, not just the most obvious, significant issues
are addressed;

• Our approach is strongly goal-oriented. The central focus on Use Cases ensures
that derived requirements are justified with respect to stated goals;

• All the techniques documented in our pattern language are well established and
well tried. We haven’t presented patterns for anything that has not, in one form
or another, proved useful to developers. We hope the manner of presentation is
more effective than user manuals or detailed methodology documentation but the
intention is not to present anything new but to organise and document the distilled
wisdom of the many talented software engineers and systems analysts who have
worked in this area over the years.

8.6 Conclusion

This paper has described our approach to teaching Information Systems Modelling
over a number of years. We have described the approach as being built around
the scaffold of a multi-method systems development framework which we have
documented in the form of a pattern language. This basic structure has been tried
and tested through a number of feedback mechanisms (including in-class surveys,
focus group discussions and reflective essays) and a concordant assessment strategy.
The results obtained through these feedback mechanisms have encouraged us to
continuously refine our teaching materials and assessment strategies—we believe
these changes have all been improvements.

References

Alexander C (1979) The timeless way of building. Oxford University Press, New York
Ambler SW (1998) Software process patterns. Cambridge University Press
Ambler SW (1999) More software process patterns. Cambridge University Press
Becker C, Betz S, Chitchyan R, Duboc L, Easterbrook SM, Penzenstadler B, Venters CC (2016)
Requirements: the key to sustainability. IEEE Softw 33(1):56–65



126 S. Wade

Blomkvist S (2002) The user as a personality: using personas as a tool for design. Position paper
for the workshop ‘Theoretical perspectives in Human Computer Interaction’ at the Interaction
and Presentation Laboratory of the Royal Institute of Technology, Sweden, September 3, 2002.
Available at http://www.nada.kth.se/~tessy/Blomkvist.pdf

Checkland P (1999) Soft systems methodology: a 30-year retrospective. Wiley, Chichester
Evitts P (2000) A UML pattern language. Macmillan Technical, Indianapolis, Ind
Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-
oriented software. Addison Wesley, Reading, MA

LarkinMJ (2001)Providing support for student independence through scaffolded instruction.Teach-
ing Exceptional Children 34(1):30–34

Pawson R (2002) Naked objects. IEEE Softw 19(4):81–83
Salahat M,Wade S (2009) A systems thinking approach to domain-driven design. In the proceeding
of UKAIS2009 conference. Oxford University, Oxford, UK

Wade S, Salahat M, Wilson D (2012) A Scaffolded Approach to Teaching Information Systems
Design. Innovation Teaching Learn Info Comput Sci 11(1):56–70

http://www.nada.kth.se/%7etessy/Blomkvist.pdf

	8 Best Practices for Teaching Information Systems Modelling
	8.1 Background
	8.2 Introduction
	8.3 The Pattern Language
	8.4 A Framework for the Pattern Language
	8.5 Running the Module
	8.6 Conclusion
	References




