Chapter 7 ®)
Using Graphics to Inspire Failing Gzt
Students

David Collins

Abstract The chapter summarises recent challenges faced by teachers of first year
undergraduate programming and their causes. It proceeds to describe a pragmatic
means of addressing such problems through the provision of parallel second pro-
gramming module provision. The approach provides a means of motivating weaker
students, introducing remedial prerequisite knowledge whilst avoiding the sacrifice
of employability and other perceived goals of early high-flyers in the subject.

Keywords First programming languages -+ Motivating computer science students
The processing language - Failure in programming * Learning edge momentum
theory * Novice programmers

7.1 Introduction

A range of factors have made the teaching of computer programming in UK univer-
sities ever more problematic in recent decades. General grade inflation at A Level
(UK university entrance qualifications) has meant that the skill and experience level
of entrants is difficult to predict. Changes made to both the nature and assessment
of such school qualifications have led to greater selectivity within subjects making
it difficult to rely upon adequate coverage of the individual topics within a disci-
pline—for example, trigonometry or statistics within mathematics. The expansion
of the university system and the concomitant competition between institutions has
paradoxically often led to the direct or indirect (through the university application
clearing system) reduction in entry qualifications. The same competition has led
to league tables which prioritise student satisfaction and ‘added value’ which has
resulted in strong pressures to improve retention and grant higher award levels.
Whilst the above factors have been of influence, computer science courses con-
tinue to experience problems with widespread first-year retention difficulties and low
pass rates. These ultimately manifest as low numbers of upper class degree awards

D. Collins ()
University of Keele, Keele, UK
e-mail: d.j.collins@keele.ac.uk

© Springer Nature Switzerland AG 2018 95
J. Carter et al. (eds.), Higher Education Computer Science,
https://doi.org/10.1007/978-3-319-98590-9_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98590-9_7&domain=pdf

926 D. Collins

(the second worst subject across UK universities) and make CS the worst subject for
students either leaving with no award or with a lower award than they had originally
targeted (Woodfield 2014).

In attempts to deal with these problems, many universities have experimented
with different programming languages and paradigms for their first-year courses.
Although the jury is probably still out regarding the success of most such endeavours,
it is worthy of note that a recent comprehensive survey of first year programming
language adoption in the UK revealed that such experimentation (alternatives to
Java and C) is more common in lower tariff (lower entry qualification requirement)
universities where the need to consider alternatives is likely to be more acute (Murphy
etal. 2017). In my institution, faced with very poor first year performance levels and
consequent retention problems, we also sought a remedy. In common with similarly
ranked universities, at least a third of our students were not significantly benefitting
from their first-year programming experience based upon assessment of their end
of year performance. Some studies suggest that the figure could be even higher,
given a failure of first year university assessments to accurately measure student
programming knowledge and ability (Ford and Venema 2010).

Naturally, we regarded this as a serious problem and engaged in an exhaustive
review incorporating internal focus group interviews and extensive analysis of student
performance statistics. The overall conclusion reached was that we were not attracting
the calibre of students that would benefit from the reasonably mainstream pattern
of programming skill development that was embedded in our CS curriculum. That
much was evident, but there were considerable differences of opinion regarding an
appropriate solution to the problem. The main obstacles were a certain degree of
inertia, a desire to meet expectations of more able students and the ultimate goal of
maximising employability skills.

Streaming students based upon their initial aptitude for programming was a pos-
sible route forward. However, this presented several challenges: could we identify
such students?; could we resource parallel streams?; could we guarantee the efficacy
of an alternative approach for failing students? What we were sure of was that by the
end of the first programming module (Let’s call it CS1), we could identify the failing
group and what the future might hold for them without some form of intervention.

Through the focus group discussions, we identified three major barriers to learning
present in the failing section of the cohort: (i) Expectations and motivation, (ii) Prior
knowledge and experience and (iii) The nature of the programming learning process.
I will consider each of these in turn.

(1) Expectations and Motivation
For many students, the CS1 course was not what they were expecting to
encounter in their CS degree. Their knowledge of the subject was heavily
influenced by their experiences in school and the portrayal of the subject in
popular culture. At the time, school experiences were extremely varied but
most likely to be focussed on IT solution packages such as spreadsheets and
‘databases’. The adoption of the new computing curriculum within schools
has changed this somewhat, but the delivery of the curriculum appears to be



7 Using Graphics to Inspire Failing Students 97

extremely varied at present. In popular culture, computing could be an exciting
subject capable of addressing (or causing) almost any societal problem. Hack-
ing, social networks, artificial intelligence, robotics and gaming were common
themes expressed by students. In contrast, CS1 exercises tended to be mathe-
matically focussed and rather dry. Many studies, for example (Jenkins 2001),
suggest that only a minority of CS students are intrinsically motivated by the
subject of computer programming, and it is difficult to see how the use of such
exemplars would be likely to improve upon this situation.

(i) Prior Knowledge and Experience
There was a time when most universities could rely upon a common level of
skills and experience in their UG cohort. For example, a GCE O Level quali-
fication in mathematics guaranteed a fundamental knowledge of trigonometry
and calculus—but attained to varying levels. This was no longer the case and
many of the exemplars used in CS1 contained concepts and terminology which
were not universally shared by the cohort. The provision of a discrete mathe-
matics module had been abandoned some time earlier when it became apparent
that failing students on the CS1 module also tended to fail this compensatory
module.

(iii) The nature of the Programming Learning Process
There are now a wide range of theories to account for the unusual distribution
of performance produced by year one computer programming modules. Of
these, the author finds the learning edge momentum theory to be the most com-
pelling (Robins 2010). In this theory, success in acquiring one concept makes
learning other closely linked concepts easier, and failure makes it harder. The
tightly integrated nature of the concepts comprising a programming language,
drives students towards extreme outcomes. Coupled with this, early failure to
master concepts is de-motivational and further exacerbates the problem. Fail-
ing students typically disengage early in a programming module reporting that
they were unable to grasp the introductory concepts. Failing early often means
failing completely.

We needed a prompt and pragmatic solution to the above problems. The essential
approach was to agree an alternative to CS2 (Programming I[I—Data Structures and
Algorithms) for the failing section of the CS1 cohort that would attempt to both
meet the broad learning objectives of CS2 and address the three barriers to learning
described above. CS2 at that stage occurred in the second semester of the first year of
studies. Institutional constraints required that such a module (an alternative to CS2),
would also be available to some successful CS1 students and that completion of the
new module might allow access to CS3 (Advanced Programming) in year two. CS1,
CS2 and CS3 were all taught using the Java programming language. I trust that the
reader appreciates the low probability of a satisfactory outcome!

The choice of language for the new module was astoundingly straightforward. We
needed to build upon previous experience in Java and allow for possible progression
to subsequent Java based modules (CS3). The only language that met these criteria
and also offered some other pedagogic possibilities was the Processing language



98 D. Collins

developed at MIT by Chris Rea and Daniel Shiffman (Reas et al. 2007). Processing
is a graphics oriented language designed for non-science students to create visual art.
The language comes with a simple development environment (subsequently much
improved but no more complex) and a large set of example programs (termed sketches
in the Processing terminology). The language is essentially implemented as a Java
library which entails that it could be imported into a conventional Java program within
a conventional Java IDE. This afforded the possibility of returning to ‘mainstream’
Java toward the end of the new module without requiring any major conceptual leaps.
By now, I am sure that many readers are familiar with the Processing language and
environment so subsequent discussion will relate to how it was used to address our
specific problems. An excellent exposition of the possibilities of the language is
given in Daniel Shiffman’s book (Shiffman 2016).

7.2 The Learning Objectives of Our CS1 and CS2 Modules

Before progressing further, I present the aims and learning objectives of our CS1 and
CS2 programming modules:

CS1

Aim: To introduce computer programming concepts using a generic (non-context
specific) computer language and to develop problem-solving skills in the framework
of computer programming.

And Objectives:

Demonstrate an understanding of the basic concepts of computer programming.
e Evaluate the suitability of computer language data and control structures to
achieve basic problem-solving.

Demonstrate an understanding of the basic software engineering principles.

e Show practical experience of those basic concepts.

CS2

Aim: To develop new programming skills as part of an exploration of several impor-
tant data structures and algorithms used in Computer Science.

And Objectives:

e write a program that demonstrates important features of computer programming
using an object-oriented programming language;

e describe, explain and evaluate the principles and operation of several data struc-
tures that are widely used in computer science;

e use a programming language to operate, test and evaluate one or more of the
widely used computer science data structures;

e select class, data and control structures for program-based problem-solving.

In common with many other universities these aims and objectives are quite broad
and allow implementation using a wide range of languages and, to a lesser extent,
paradigms (object-oriented has a specific mention). The nature of Processing is such



7 Using Graphics to Inspire Failing Students 99

that it affords much the same opportunities as Java but the reduction in verbosity and
bureaucracy coupled with graphics and animation support allows more creative prob-
lems to be addressed and expressed early in student’s encounter with the language.

The challenge became one of designing a curriculum keeping the afore-mentioned
three barriers to learning in mind. We sought to (i) attempt to provide a level playing
field for students in terms of prior knowledge: (ii) motivate students by selection of
exemplars that would stimulate interest: (iii) ensure that students mastered concepts
incrementally, thus preventing early disengagement and failure. In the pages that fol-
low we describe some of the main aspects of the module using tables to summarise
how we addressed the identified barriers. The module progresses using exemplar pro-
grams, generally incomplete, as the context in which topics are taught and explored
by students. During the practical sessions associated with each topic, completion
of the associated individual exercises is confirmed and recorded by post-graduate
demonstrators.

7.3 The Module

7.3.1 Drawing and Graphic Transformations

In order to introduce the Processing language and provide some revision of basic pro-
gramming principles, the first topic provides an introduction to the procedural produc-
tion of graphic images using primitive drawing shapes. Students are also introduced
to graphical transforms and coordinate systems. Exercises include the reproduction
of example images using repetitions of translations, rotations and scaling.

Additional knowledge and CS programming concepts Motivational material
skills
Coordinate systems Control structures Students are asked to produce

multiple flower and plant
shapes with different
morphologies and at different

scales
Graphical transformations Functions and decomposition
Colour representation Variables and scope
Alpha transparency Constants

Formal and actual arguments

7.3.2 Animated Clock

The second major exemplar involves the animation of a real-time analog clock.
Students are initially provided with a program demonstrating radial motion which



100 D. Collins

also interactively depicts Pythagoras’s theorem, trigonometric relationships and the
expression of angles in degrees and in radians (the majority of our students being
ignorant of the latter upon entry to the module). Some basic initial exercises are
provided which are intended to give students with the opportunity to explore these
concepts. As a final exercise, students are required to EFFICIENTLY simulate the
action of an analog clock.

Additional knowledge and CS programming concepts Motivational material
Skills
Trigonometry Library function calls The production of a functional

program with visual design
selected by the student

Frame-based animation Continuous versus discrete
events

Time zones and time
representations

7.3.3 The Game of Life

For this example, we provide students with a simple but visually captivating version
of Conway’s game of life (Gardner 1970). This provides a stimulating introduction to
the concepts behind finite state machines. Exercises involve modification of survival
and reproduction rules, changes to the grid size and resolution and modification of the
‘neighbourhood’ definition. The exercise provides the opportunity to master the use
of 2/3 dimensional arrays and reasonably complex selection constructs. Students are
expected to modify the code to permit different rules and neighbourhood definitions
to be ‘plugged in’.

Additional knowledge and CS programming concepts Motivational material
skills

State machines 2/3 Dimensional arrays Students are generally
fascinated by the complex
emergent behaviours that
derive from simple rules

Turing, Von-Neumann and Cellular automata
computing history

Modular arithmetic Selection control constructs

Procedural abstraction

Tracing, reading and
debugging code




7 Using Graphics to Inspire Failing Students 101

i ltegui . .

Conway’s game of life implemented in processing with
fade-out effects for dying cells

7.3.4 Card Games

Students are provided with graphics for presentation of playing cards and are asked to
design algorithms for dealing and shuffling. We present some sorting algorithms and
Durstenfeld’s algorithm for shuffling (Durstenfeld 1964). This provides an opportu-
nity to introduce the topic of complexity and we discuss the performance of shuffling
algorithms in this context. The card decks provide an excellent medium for exploring
stacks and queues and associated ADTs.



102

D. Collins

Additional knowledge and
skills

CS programming concepts

Motivational material

Numeric distributions

Sorting and shuffling
algorithms

Statistical concepts

Algorithmic and
computational complexity

Randomness

Arraylists

Random number
implementations

Abstract data types, stacks and
queues

Card games require a range of
algorithms and data types. The
relevance and purpose is
immediately apparent to
students. Students are invited
to devise their own shuffling
algorithms initially which
provides a natural vehicle for
exploring complexity

7.3.5 Sprite Based Animation

Animation in Processing is essentially frame-based. In this section of the module
we introduce the use of sprite sequences on scrolling backgrounds. Sprites may be
controlled via the keyboard or with the use of a gaming input device.

Additional knowledge and
skills

CS programming concepts

Motivational material

Seamless textures

File handling

Easing in animation

Object arraylists

Frame buffering

Asset management

Multiple animation timelines

Weaker students in particular
are delighted to be able to
produce a program that
approaches the quality of a
published (but retro) game

7.3.6 Lunar Lander

Students are provided with a background lunar image and a transparent GIF repre-
senting the landing craft. They are also provided with an example program depicting
objects falling under the influence of gravity that uses a skeleton implementation



7 Using Graphics to Inspire Failing Students 103

of a Vector class. They are then expected to complete the Lunar Lander Program
using the keyboard to deliver 2 dimensional thrust to counter gravity and gracefully
land the craft at a randomly selected location. This requires implementation of new
methods for the Vector class.

Additional knowledge and CS programming concepts Motivational material
skills
Forces and Newtonian physics | Classes and objects A playable game with realistic
control
Vectors Keyboard polling/state
detection
Discretization A vector ADT and its
implementation

7.3.7 Image Processing

Students receive basic lectures on Image formats, manipulation of pixel information
and the construction of filters using convolution matrices.

They are provided with a scene of crime image in which a poorly illuminated
suspect is seen next to a car with a number plate which is indiscernible. The final task
requires the construction and application of filters (incrementally) that will clean-up
the image to the extent that the suspect is identifiable and the number plate readable.

Additional knowledge and CS programming concepts Motivational material
skills
Matrices Convolution filters The real-world challenge

present in the exercise task is
highly motivational to students
and encourages them to master
a topic that often produces
despair when presented in a
more traditional image
processing context

Image representation and Matrix manipulation
compression schemes

Bitmap versus scalar graphics

Normalisation




104 D. Collins

7.3.8 Collision Detection

Students are presented with a complete program (based upon the game of Asteroids)
that visually represents coarse and fine collision detection and their affect upon maxi-
mum animation frame-rates. Students are required to assess the relative performance
of coarse and fine approaches and derive a strategy for optimising the compromise
between accuracy and performance.

Additional knowledge and CS programming concepts Motivational material
skills
Further trigonometry Collision detection algorithms | Students tend to be familiar

with this problem and are
inspired to find strategies that
produce optimal game-play

Heuristic lgorithms

7.3.9 Boids

This is by far the most complex programming example provided to students—an
object-oriented version of Craig Reynold’s (Reynolds 1987) Boid simulation written
in the Processing language. Lectures introduce the concepts involved and describe
the overall design, the main classes and broad implementation details.

The exercises require students to read and follow the logic of this relatively com-
plex piece of code. For example, they are instructed to alter the weighting applied to
the three vectors that determine the speed and acceleration of Boids at each discrete
decision cycle (which corresponds to the frame-rate). In order to provide more real-
istic behaviour, they are encouraged to experiment with allocation of weights using a
Gaussian distribution. They are expected to modify the definition of neighbourhoods
and, as a final exercise, to consider means of improving performance of the algorithm
to provide real-time flocking utilising more sophisticated Boid animations. Specifi-
cally, they are asked to consider a means of avoiding the need to check the position
of each Boid in each cycle in order to determine whether it might be considered a
neighbour for purposes of calculation of the required alignment vector.



7 Using Graphics to Inspire Failing Students

105

Additional knowledge and
skills

CS programming concepts

Motivational material

Numeric distributions

OO design

Complexity

Code optimisation

Algorithmic optimisation

Students are fascinated by
Boid behaviour and in
particular with the
complexities of behaviour that
can result from the application
of such simple rules

7.3.10 Recursion

Recursion can be a difficult subject for students and benefits greatly from a graphical
treatment. Students are provided with a range of examples including binary trees,
Sierpinski triangles, Koch snowflakes and Mandelbrot sets. A range of exercises
provide experience in using linear, binary and tail recursion. The final (non-trivial)
exercise requires that students add realism to the construction of a binary tree.

Additional knowledge and
skills

CS programming concepts

Motivational material

Fractals

Recursion and recursion types

Complex numbers

Recursion performance

Binary trees

Binary search trees

Recursion is explored through
graphics—binary trees,
Sierpinski triangles and
fractals. Students are highly
motivated by the task of
introducing realism into the
construction of a graphical
binary tree

7.3.11 The Relationship Between Processing and Java
(and Python, Javascript and Android)

The final topic of the module provides students with the opportunity to use Pro-
cessing as a Java library within the NetBeans IDE. Lectures describe the language
implementation and the manner in which it can be incorporated in a conventional



106 D. Collins

Java application. Processing implementations for Python, Javascript and Android are
also described and demonstrated.

Additional knowledge and CS programming concepts Motivational material
skills

Comparative programming Programming frameworks At this stage many students
languages have discovered the

relationship between java and
processing. This topic
formalises that understanding

APIs

Wrapper classes

The above list of exemplar-led topics is not exhaustive and we do change the
examples used with each delivery of the module. The module has now been running
for 8 years and we recognise that some of the examples are becoming stale and would
benefit from new materials. We are also aware that the materials may have a gender
bias that we would like to address without falling prey to obvious stereotypes.

7.4 Module Assessment

The module is assessed by examination and coursework. During the fourth week
of the module students are required to submit a proposal for their assignment work
(with the benefit of a list of future topics that will be covered). We point them at
the more complex Processing exemplars provided with the environment and at the
OpenProcessing.org website (www.openprocessing.org) for inspiration. The latter
provides a virtual gallery through which students may showcase their work to the
world. Each student is briefly interviewed regarding their choice of subject and is only
allowed to proceed if the lecturer considers the project to be suitably challenging and
capable of expressing the module’s learning objectives. The progress of each student
on their assignment work is monitored throughout the remaining practical sessions.


http://www.openprocessing.org

7 Using Graphics to Inspire Failing Students 107

E‘Gm - ®

A game produced by a first year student

7.5 Discussion

There are many variables that determine the success and failure of a module. The
introduction of this module was not a controlled experiment and it would not be
appropriate to make comparisons or draw conclusions as if this were the case. How-
ever, we can broadly point to some of the benefits and problems.

Retention problems were dramatically reduced and weaker students were
undoubtedly inspired by the new approach. Much of the student work produced
in coursework assignments far exceeded our expectations and continues to do so to
the present day. Stronger students had sufficient new materials as to be challenged by
the approach but there were some criticisms such as the absence of access modifiers
and the simplification of type casting methods in the Processing language. In prac-
tice, some of the more capable students possibly felt patronised by the introduction of
what they perceived to be a simpler programming environment. Indeed, many were
quick to import the Processing core into a Net Beans or Eclipse Java environment.

Processing has a pre-processor that wraps the processing code inside a Java class
and allows access to functions without having to declare and instantiate the classes
to which they belong. Combined with rich graphical features this allows the student
to focus on algorithmic content. In reality, the language is a slightly more accessible
form of Java coupled with a simple IDE and a feature rich Graphical API. Changes
to the intrinsic Java are generally akin to being able to introduce println() rather than
explain System.out.println(). The latter requires suspension of full understanding



108 D. Collins

in weaker students and partially explains why the language creates a learning-edge
problem with failure to understand one concept at a specific time leading to lack of
confidence and unpreparedness to tackle subsequent related concepts.

The module has undoubtedly led many failing students from CS1 to develop
an intrinsic motivation to further develop their programming skills. Students exhibit
pride in their work and a desire to demonstrate to, and seek the opinions of their peers.
The current module lecturer has persuaded a major European company to sponsor
an annual award for the best student assignment work. The module’s introduction
was a pragmatic solution to a problem and saved us from having to meddle with
the now long standing and conventional approach to teaching programming with the
Java language that is embodied in our CS1-CS2-CS3 programming strand. Since
that time, many UK universities have adopted Processing as a first programming
language. Interestingly, Murphy et al’s recent survey of language use concluded:

The results in this first UK survey indicate a dominance of Java at a time when universities
are still generally teaching students who are new to programming (and computer science),
despite the fact that Python is perceived, by the same respondents, to be both easier to teach
as well as to learn. (Murphy et al. 2017)

Of course, the likely explanation for the above is that the respondents have goals
other than ‘teachability’ in mind when selecting a first language — employability
would undoubtedly feature highly.

From my perspective as a teacher of programming, the module undoubtedly
extended my ‘shelflife’. Instead of trying to avoid the weary gaze of yawning students
as they tested stack implementations full of meaningless characters and numbers, I
was able to witness genuine excitement in students as they retrieved cards from a
discard pile or added visual leaf nodes to a binary tree. Early on, it was apparent
that some students from CS1 had not really understood two-dimensional arrays.
Conway’s life provided both motivation and visual feedback that allowed weaker
students to both perceive their relevance and master the topic. Students with little
mathematical or scientific background picked up an understanding of trigonometry,
Newton’s laws, parabolic curves and frequency distributions pretty much as a side-
effect of wanting to make a game more playable or realistic. Above all, students
became far more enthusiastic and attended lectures and practical sessions with relish
rather than a sense of guilt or obligation.

Even better was the fact that no compromises were being made in the teaching
process. I was still teaching Java to attain the same learning objectives in the context
of Computer Science and Software Engineering as were adopted by our CS2 mod-
ule. Effectively I was provided with an additional teaching tool with which I could
create teaching materials that were stimulating yet understandable. The overheads
involved in using Processing rather than pure Java were negligible and ultimately led
students to understand how they might design an effective application framework.
I am indebted to the Processing team for their generous contribution to computing

pedagogy.



7 Using Graphics to Inspire Failing Students 109
References

Durstenfeld R (1964) Algorithm 235: random permutation. Commun ACM 7(7):420

Ford M, Venema S (2010) Assessing the success of an introductory programming course. J Info
Technol Educ 9:133-145

Gardner M (1970) Mathematical games—the fantastic combinations of John Conway’s new solitaire
game “life”. Sci Am 223:120-123. ISBN 0-89454-001-7

Jenkins T (2001) The motivation of students of programming

Murphy E, Crick T Davenport JH (2017) An analysis of introductory programming courses at UK
Universities. Art Sci Eng Program 1(2), Article 18

Reas C, Fry B, Maeda J (2007) Processing: a programming handbook for visual designers and
artists (1st edn). The MIT Press, p 736. ISBN 0-262-18262-9

Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Comput Graphics
21(4):25-34

Robins A (2010) Learning edge momentum: a new account of outcomes in CS1. Comput Sci Educ
20(1):37-71. https://doi.org/10.1080/08993401003612167

Shiffman D (2016) Learning processing—a beginner’s guide to programming images, animation,
and interaction. Morgan Kaufmann. ISBN 978-0-12-394443-6

Woodfield R (2014) Undergraduate retention and attainment across the disciplines [Internet].Higher
Education Academy, New York. Available from www.heacademy.ac.uk/node/10293. Accessed
17 June 2018


https://doi.org/10.1080/08993401003612167
http://www.heacademy.ac.uk/node/10293

	7 Using Graphics to Inspire Failing Students
	7.1 Introduction
	7.2 The Learning Objectives of Our CS1 and CS2 Modules
	7.3 The Module
	7.3.1 Drawing and Graphic Transformations
	7.3.2 Animated Clock
	7.3.3 The Game of Life
	7.3.4 Card Games
	7.3.5 Sprite Based Animation
	7.3.6 Lunar Lander
	7.3.7 Image Processing
	7.3.8 Collision Detection
	7.3.9 Boids
	7.3.10 Recursion
	7.3.11 The Relationship Between Processing and Java (and Python, Javascript and Android)

	7.4 Module Assessment
	7.5 Discussion
	References




