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Abstract. When students are working collaboratively and communi-
cating verbally in a technology enhanced environment, the system is not
aware of what collaboration is happening outside of the technology, mak-
ing it difficult to adapt the system to better support the collaboration of
the students. In this paper, we analyze the causal relationships between
collaborative and individual gaze measures and the influence that the
students dialogue, prior knowledge, or success has on these relationships
to find indicators that can be used within an adaptive system. We found
that when students are discussing concrete aspects of the problem, the
causal relationship between their eye gaze measures changes compared
to other types of dialogue patterns. The results also show a clear dif-
ference in causal relations when the pairs with high prior knowledge or
success are compared with the pairs with low prior knowledge or success.
Collaborative gaze causes the individual gaze for pairs with high prior
knowledge and the opposite for the pairs with low prior knowledge.
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1 Introduction

In technology supported collaborative settings, students not only benefit from
the support of the technology, but also from the exchange of ideas and expla-
nations within their group. Currently, many technologies that are developed to
support learning focus on the support of the domain material with support for
collaboration being an afterthought, if explicitly supported at all, as is the case
with individual Intelligent Tutoring Systems (ITSs). Additionally, in the class-
room, students are often collaborating face-to-face and communicating verbally
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with these verbal interactions occurring outside of the system making it difficult
for the system to have a complete picture of the collaboration. For this paper,
we are interested in supporting the collaborative interactions that occur between
students as they work on a collaborative technology where all of the interactions
may not be captured through the system.

Adaptive collaborative learning support (ACLS) can be used to adapt to
the collaborative learning environment to provide appropriate support for the
students by assessing student interactions, comparing them to a set of produc-
tive interactions, and providing interventions that will guide students closer to a
productive interaction [49,53]. Because verbal communication is still difficult to
assess in real-time and students may not always be providing input to the learn-
ing technology. We propose using eye-tracking to assess student collaboration
behaviors by investigating the different causal relationships of different process
variables to find indicators that can be tracked and measured in real-time within
a collaborative setting.

In this paper, we investigate the causal relationships between students’ indi-
vidual and collaborative gaze patterns (i.e., focus and similarity) for elementary
school students working on a collaborative fractions ITS and examine how their
dialogue plays a role in this relationship. For this analysis, we used time series
data from the students working on the tutor. In the following sections, we will
present an overview of the literature, study context, the analysis process, and
causal inference results. These results provide insights into how eye-tracking
measures can be used within collaborative learning environments to assess the
level of collaboration and adapt to the current collaboration state. Specifically,
we will address the following research question for this contribution: 1. What is
the nature of causality between the collaborative and individual gaze patterns
and 2. How do dialogue, prior knowledge and success alter this causality?

2 Related Work

Current implementations of ACLS often use either attributes of the student
dialogue or interactions with the learning technology to assess the current col-
laboration state of the group. Many previous ACLS systems have used shallow
indicators from dialogue to support student collaborations such as the number
of student utterances [17,41], used sentence openers [5,34], or tracked particu-
lar sequences of dialogue actions (e.g., use of a question mark or dialogue talk
moves) [1]. Often this analysis has been done on students who are communicating
through chat where the features are easier to extract. Additionally, by including
features of the learning environment in the assessment of the collaboration, such
as the classification of the dialogue in relation to the actions the students are
taking in the learning environment, often the intervention can be more impactful
[33,52,54]. ACLS systems have also used interactions in the learning technology
to gauge the collaboration, such as the request of hints and error patterns [54].
However, these interactions are not as useful in understanding what is happening
outside of the system if there are long pauses between interactions when students



414 K. Sharma et al.

may be having discussions. Eye-tracking may be able to be used to make this
link between the information provided in the learning technology and the group
discussions that occur outside of them.

Eye-tracking may be a promising method to use to assess student collabora-
tion as research has shown that eye gaze is tied to communication [35]. Previous
research has shown a link between speech and eye gaze when people are working
together on a task. There is a coupling of the collaborators’ eye gaze around a
reference [40], meaning that the collaborators’ gaze may fixate, at approximately
the same point in time, at the object referenced in the dialogue, for example just
before mentioning it and just after hearing about it. The eye gaze has a closer
coupling when each of the collaborators has the same initial information and
when collaborators can visually share important objects that they are referenc-
ing in speech [26,40], suggesting that concrete references may have more of an
impact on eye gaze compared to abstract references.

Over the past few years, eye-tracking has become a key source of process
data in educational research. Research using eye-tracking covers a wide range of
educational ecosystems. Eye-tracking has not only been used to understand the
learning processes in various contexts [38,39,46], but it also has been used to
provide students appropriate, real-time, and adaptive feedback on their learn-
ing processes [14,45]. In terms of collaborative learning scenarios, eye-tracking
has most often been used with collaborating partners dialogues. Research has
shown that there is a time lag between looking at an object and referring to the
same object (eye-voice span) [21] and a time lag between a speakers reference
and a listener’s gaze on the referred object (voice-eye span) [3]. Additionally,
in terms of dual eye gaze, there is a lag in the eye-eye (speakers eye listen-
ers eye) span (i.e., the time difference between the moment a speaker looks at
an object and the moment the listener looks at the same object) [40]. Most of
the dual eye-tracking studies have shown that the amount of time that the col-
laborating partners spend while looking at the same objects at the same time
(cross-recurrence) is predictive of several collaborative constructs (e.g., collabo-
ration quality [26]; misunderstandings [11]; learning gains [42]). In this paper, we
go beyond correlational links to explore where there may be causal links between
eye gaze measures and how they change during different forms of dialogue.

In this contribution, we propose a shift from correlation to causality. We bor-
row methods from finance and environmental studies to understand the causal
relation between the different gaze-based variables. The key idea is to use the
“cause” to “forecast” the effect and prepare for “adaptation” in ITSs. This has
been a traditional practice in finance and environmental studies to use the causal-
ity to forecast [10,12,22,28] and to use forecasting for adaptation requirements
[7,8,32,55]. We propose to use the causal relationship between the individual
and collaborative gaze patterns to be able to forecast the behavior and provide
adaptive feedback in a proactive manner.

For understanding the behavioral relation between the individual and col-
laborative gaze, we will use the Granger causality [20], a method that has
been used in a multitude of domains to understand the relationship between
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observable variables. For example, neuro-science [16,19], user-consumption [36],
stock-market [24] and economics [27,50]. We will also explore the nature of this
causal relationship using co-variates such as: pairs’ dialogue, their prior knowl-
edge and success levels.

In our work, we used a fractions ITS as a platform for our research. ITSs
have been shown to be beneficial for student learning [30,31] and are effec-
tive by providing cognitive support for students as they work through problem-
solving activities. This cognitive support comes in the form of step-level guid-
ance, namely, an interface that makes all steps visible, error feedback, and
on-demand hints, which allow the system to adapt to the students current level
of knowledge [51]. The cognitive support provided through the system can pro-
vide support for the student learning of the domain but does not provide support
for the student collaboration when they are working in groups.

3 Methods

3.1 Experimental Design and Procedure

Our data set involves 14 4th and 14 5th grade dyads from a larger study that
investigated the benefits of collaborative versus individual learning [6,37]. Each
teacher paired the students participating in the study based on students who
would work well together and had similar, but not equivalent, math abilities. The
dyads were engaged in a problem-solving activity using a networked collabora-
tive ITS, which allowed them to synchronously work in a shared problem space
where they could see each others actions while sitting at their own computers.
The students were able to communicate verbally through a Skype connection.
Each dyad worked with the tutor for 45 min in a pull-out study design at their
school. The morning before working with the tutor and the morning after work-
ing with the tutor, students were given 25 min to complete a pretest or posttest
individually on the computer to assess their learning. During the experiment,
dual eye tracking data, dialogue data, and tutor log data in addition to the
pretest and posttest measures were collected. We collected eye-tracking data
using two SMI Red 250 Hz infrared eye-tracking cameras.

3.2 Intelligent Tutoring System

During the study, the dyads engaged with an ITS oriented towards supporting
the acquisition of knowledge about fraction equivalence. Within each problem,
the tutor provided standard ITS support, such as prompts for steps (i.e., reveal-
ing steps sequentially), next-step hints, and step-level feedback (i.e., correct or
incorrect feedback) that allows the problem to adapt to the students problem-
solving strategy [51]. Each of these different supports were displayed as actions
on the screen that could guide the students actions and gaze.

For the collaboration, the ITS support mentioned above was combined with
embedded collaboration scripts, which allowed students to take slightly differ-
ent actions and see different information. The embedded collaboration scripts
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Fig. 1. Example of a fractions interface showing incremental step reveals, feedback,
and hint requests. Students had roles assigned that were displayed through their icon.

included three theoretically proven types of collaboration support: roles, cogni-
tive group awareness, and individual accountability. First, for many steps, the
students were assigned roles [29]. In the tutors, on steps with roles, one student
was responsible for entering the answer and the other was responsible for asking
questions of their partner and providing help with the answer. The tutor indi-
cated the current role for the students through the use of icons on the screen.
A second way in collaboration was supported was by providing students with
information their partner did not have that they were responsible for sharing for
the problem to be completed causing individual accountability [48]. The final
feature was cognitive group awareness, where knowledge that each student has
in the group is made known to the group [25]. On steps where this feature
was implemented, each student was given an opportunity to answer a question
individually before the students were shown each others answers and asked to
provide a consensus answer.

3.3 Variables

For our analysis, we investigated a combination of data streams from eye gaze
measures, dialogue, and test scores. For our eye gaze measures, we used focus
and similarity because these two variables have been used in the recent research
work concerning collaborative eye-tracking [43,46,47] to combine and analyse
gaze behaviour at individual and collaborative levels. We used dialogue abstract
as it can indicate how grounded the speech of the students is to what is occurring
on the problem. Finally, the pretest and posttest scores allowed us to understand
the relation of the causality to student knowledge.

Individual Focus. This is computed in terms of the entropy of the gaze. To
compute the entropy, we divided the screen in 50-by-50 pixels grid. We also
divided the whole problem-solving session into 10 seconds time windows. We
then computed the proportion of the time spent in each block in the spatial
grid for each 10-second time window. This resulted in a series of 2-dimensional
proportionality vectors. Finally, we computed the Shannon Entropy for each of
the vectors. A low entropy value (the minimum possible value is zero) depicts
that the student was looking at only a few elements on the screen, which we
called focused gaze. On the other hand, a high value of entropy indicates more
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elements being looked at in a given time window, which we called unfocused
gaze. Although focus and attention are related concepts, focus, as we defined
here, does not contain the idea of processing the stimulus, as is required in the
definition of attention. Attentive gaze indicates a certain level of processing of
the sensory input. Focused gaze simply indicates a small number of elements
looked over a fixed time period.

Fig. 2. Entropy computation

Collaborative Gaze. In order to compute the similarity between the gaze pat-
terns of the collaborating students, we divided the screen space and the interac-
tion time in the same manner as we did for entropy computation. We computed
the similarity between the two proportionality vectors by using the reverse func-
tion (1/(1+x)) of the correlation matrix of the two vectors. A similarity value of
one will show no similarity between the two gaze patterns during a given time
window. On the other hand, a higher value of similarity will show that the two
participants spent time looking at the similar set of object on the screen during
the same time window. Gaze similarity is an alternative measure of gaze conver-
gence, the only difference between gaze similarity and gaze convergence comes
from the mathematical formulation.

Fig. 3. A typical Similarity computation example

Dialogue Abstraction. Each of the student dialogues were transcribed and
coded for abstraction levels. Abstraction is how grounded within the concrete
aspects of the problem solving and communication the students utterance is.
The level of abstraction is fully dependent on what occurs in the dialogue and
is not intended to infer all mental processes. Within our transcripts, we coded
for abstraction at the utterance level. This allowed us to have a fine-grained
coding for each second of the dialogue without losing the context of the words.
The abstraction codes consisted of five different levels: acknowledgement, read



418 K. Sharma et al.

out loud, interface, problem solving, and metacognitive (See examples below).
The levels of abstraction followed an ordering with acknowledgments being the
least abstract and metacognitive being the most abstract. For the coding, all
statements that were off-task or were with a researcher were marked as “not
applicable” and were discarded from the analysis. An inter-rater reliability anal-
ysis was performed to determine consistency among raters (Kappa = 0.78).

1. Not applicable (NA): The student engages in off-task behavior, converses with
the experimenter, or vocalizations without any context.

2. Acknowledgement (ACK): The student acknowledges their partner, or they
request acknowledgment or a repeat of what the partner has said.

3. Read-out-loud (ROL): The student is reading information provided within
the problem and presented on the screen.

4. Interface (INT): The student discusses actions that can be taken in the inter-
face or engage in work coordination.

5. Problem solving (PRO): The student is providing an answer to the problem
or showing evidence of think aloud as they solve the problem.

6. Metacognitive (META): The student verbally expressing their understanding
of their current knowledge/problem solving state.

Pretest and Posttest Scores. To measure learning, we administered pretest
and posttests to the students. The tests were computer-based and developed to
closely align with the target knowledge covered in the tutors. The test comprised
of 5 procedural and 6 conceptual test items. Two isomorphic sets of questions
were developed, and there were no differences in performance on the test forms
across all participants in the original study, t(79) = 0.96, p = 0.34. The presen-
tation of these forms as pretests and posttests was counterbalanced.

3.4 Data Analysis

We used Granger causality [20] test to examine the causality between the focus
and similarity. The basic definition of Granger causality has two assumptions
[20]. First, that cause occurs before effect and that the cause has information
about the effect that is more important than the history of the effect. Although
Granger causality is defined for linear and stationary time-series contexts, the
variations for non-linear [4,9,18] and non-stationary [15,23] contexts exist. The
basic principle of Granger causality is to compare two models to test if x causes
y. The first model predicts the value of y at time t using the previous n values of
y. The second model predicts the value of y at time t using the previous n values
of both x and y. Mathematically, following is a bivariate linear auto-regressive
model for two variables x and y:

y(t) =
p∑

j=1

α11jx(t − j) +
p∑

j=1

α12jy(t − j) + ε1(t) (1)
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x(t) =
p∑

j=1

α21jx(t − j) +
p∑

j=1

α22jy(t − j) + ε2(t) (2)

Where,
p = model order, maximum lag included in the model
α = coefficients matrix, contribution of each lag value to the predicted value
ε = residual, prediction error

We can conclude that x granger-causes y if coefficients in α12 are jointly
significant from zero. Statistically, this can be tested using F-test with the null
hypothesis α12 = 0. Also, the value of p can be decided based on the AIC [2] or
BIC [44] model estimation values.

4 Results

In this section, we will provide the different analyses to arrive at a causal rela-
tionship between the variables mentioned in the Sect. 3.3. First, we would give
an example about how to determine the granger causality between two variables
to make the method explained in the Sect. 3.4.

Let us take the case of “focus” (the probability that both the participants have
low gaze entropy) and “similarity” (the extent to which the peers looked at a sim-
ilar set of objects in the a given time window). Table 1, comparison 1 shows the
granger causality results for the overall data. The order of the model (Table 1, col-
umn 2) denotes how much lag was used to compute the causal relationship (p in
Eqs. 1 and 2). In the case of Table 1, comparison 1, the lags used are 4 time win-
dows (each time window corresponds to 10 s). To check if similarity granger causes
focus, we create two models given by Eqs. 1 and 2 and compare them using F-test.
The F and p values denote the effect size and significance of the model (Table 1,
columns 3 and 4, respectively). We repeat the same process for checking if focus
granger causes similarity. As we can see in Table 1 comparison 1, that “similarity
granger causes focus” have a higher F (2.51) and lower (and significant) p value
(.03) than “similarity granger causes focus” (F = 2.04, p = .09). Thus, we can
conclude that “similarity granger causes focus”.

The remainder of this section presents the main results for this contribution.
We observe that similarity Granger causes focus during the whole interaction
(Table 1, Comparison 1). This causality also holds up when the dyads are engaged
in a dialogue (Table 1, Comparison 2). Considering the data from the individual
dialogue categories, The same causality holds when the peers are talking about
interface issues (INTF, Table 1, Comparison 3). However, the causality changes
the polarity (that is focus Granger causes similarity) while the peers are talk-
ing about problem solving (Table 1, Comparison 4); And there is no conclusive
causality for ACK and META.
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Table 1. The Granger causality model, across different data types, for collaborative
similarity and probability that both participants have high focus. The direction of
causality is denoted with a *.

Model Order F-value p-value

Overall Data (1)

Focus <- Similarity 4 2.51 .03*

Similarity <- Focus 4 2.04 .09

Participants Engaged in Dialogue (2)

Focus <- Similarity 8 2.12 .03*

Similarity <- Focus 8 0.93 .47

Participants Engaged in Dialogue w/INTF Abstraction (3)

Focus <- Similarity 6 2.83 .009*

Similarity <- Focus 6 1.01 .41

Participants Engaged in Dialogue w/PRO Abstraction (4)

Focus <- Similarity 5 0.21 .95

Similarity <- Focus 5 2.52 .02*

Dyads with High Average Posttest Scores (5)

Focus <- Similarity 2 3.91 .02*

Similarity <- Focus 2 1.70 .18

Dyads with Low Average Posttest Scores (6)

Focus <- Similarity 3 7.04 .00001*

Similarity <- Focus 3 2.04 .11

Dyads with High Average Posttest Scores w/PRO Abstraction (7)

Focus <- Similarity 2 2.81 .05*

Similarity <- Focus 2 1.01 .31

Dyads with Low Average Posttest Scores w/PRO Abstraction (8)

Focus <- Similarity 3 0.54 .44

Similarity <- Focus 3 2.74 .05*

Dyads with High Average Pretest Scores (9)

Focus <- Similarity 3 6.49 .0002*

Similarity <- Focus 3 .04 .98

Dyads with Low Average Pretest Scores (10)

Focus <- Similarity 3 0.11 .95

Similarity <- Focus 3 4.42 .004*

However, when we divide the data into pairs with high and low average posttest
scores, we observe a few different relations. For the pairs with high posttest average
similarity Granger causes focus (Table 1, Comparison 5) This polarity does not
change for “PRO” abstraction (Table 1, Comparison 7). For the pairs with low
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posttest average focus Granger causes similarity (Table 1, Comparison 6) and the
polarity changes for “PRO” abstraction (Table 1, Comparison 8).

This result shows that there is some kind of interaction between the focus,
similarity and performance. There is also an interaction between the focus, sim-
ilarity and dialogue. Finally, we considered the relation between the pre and the
post test scores. There is a positive significant correlation between the average
pretest and the posttest scores for the pairs (r(27) = 0.57, p = .001), indicat-
ing that prior knowledge also contributes in the success. Therefore, we divided
the dataset into dyads with low and high average pretest scores and found that
similarity granger causes focus for the pairs with high average pretest scores
(Table 1, Comparison 9); whereas, focus granger causes similarity for the pairs
with low average pretest scores (Table 1, Comparison 10).

5 Discussion and Conclusions

Granger causality is useful for forecasting the caused variable. In this paper, we
examined the causal relation between individual and collaborative gaze-patterns,
and used the dialogue, pretest and posttest scores as co-variates to explain the
observed causality in detail. By understanding the causality, we can better use
these measures to assess the collaborative state of students and develop inter-
ventions to guide the collaborative process.

In our analysis, we found that overall the collaborative similarity is causing
the individual focus. This causality switches, that is individual gaze causes col-
laborative gaze, when the pairs are talking about “how to solve the problem?”
One plausible explanation for this is that when two peers are talking about ways
to solve problems, they both are individually focused on the problem description
areas and hence start looking at the same section of the screen. Moreover, there
is no conclusive causality during the episodes when the peers are in “ACK” or
“META” abstraction. This may be explained by the fact that there is no need for
the stimulus support when acknowledging a partner’s dialogue or a requirement
to reflect upon a peer’s own state of understanding.

The key difference between the two causalities “looking at the same place
hence focused” and “focused hence looking at the same place” might explain the
fact whether collaboration is driving the individual gaze or the other way. In the
case of successful pairs the collaboration seems to drive the individual behaviour,
while in the case of unsuccessful pairs the relationship seems reversed. The same
difference is there for the pairs with high and low prior knowledge. That is
“similarity causes focus” for the pairs with high prior knowledge and “focus
causes similarity” for the pairs with low prior knowledge. This difference could
be a guiding factor about “how to provide adaptive feedback to the students?”

Additionally, the different causal relations for pairs with different levels of
prior knowledge and success show that collaborative gaze causing the individual
gaze is indicative of a “top-down” approach while individual gaze causing the
collaborative gaze points to a “bottom-up” approach. Having coordinated gaze
is a result of deeper socio-cognitive mechanisms [26,40,42,43,46] than just look-
ing at a few elements on the screen (high focused gaze, by definition). In this
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way, one can hypothesize that individual focus is similar to gaze reacting to the
stimulus (screen or partner’s dialogue) that is bottom-up behaviour [13]. On the
other hand, the coordinated gaze is similar to cognition-driven gaze (referential
gestures or familiarity with the interface or prior knowledge) that is top-down
behaviour [13]. Our results show that examining the causality between collabo-
rative and individual gaze patterns can unveil intriguing cognitive mechanisms
underlying the collaborative learning with tutoring systems.

By forecasting the focus of the peers, we can take suitable actions for keeping
the focus size for students in check. Using our results, when the focus size is large,
given the similarity of the students, we can provide appropriate gaze-aware cues
to the students, which would increase their similarity. From our results, this
increase in similarity should increase the student focus, which can lead to more
effective collaboration.

Additionally, we can provide feedback to the students based upon their eye
gaze patterns. For example, whenever we detect that the focus is causing similar-
ity, which tells us that they are not talking “PRO” then we can provide prompts
to the students to guide their discussion back to the problem. We can test the
impact of the prompts if we see that the similarity is causing focus, indicating
the students’ dialogue is discussing the problem.

Another opportunity for the personalized and adaptive feedback arises from
the different causal relations based on the prior knowledge of the pairs. We
found that for the pairs with high prior knowledge (high average pretest score)
similarity causes focus, while for the pairs with low prior knowledge (low average
pretest score) this is the focus that causes similarity. For such pairs (low prior)
knowledge, one can start giving feedback about where the partner is looking at,
from the beginning of the session so that the high levels of similarity could be
initiated and maintained throughout the collaboration and hence high levels of
individual focus.

This work contributes to adaptive learning by revealing causality relations
between individual and collaborative eye gaze measures that can be used to
assess the collaboration of a group so that interventions can be applied at the
correct moments. In future work, we would like to both extend our analysis to
account for how features of the tutoring environment impact the findings as well
as apply our findings to an adaptive environment to investigate if an adaptive
system developed using these indicators is effective. A limitation of our work is
that we had a small sample size and this may have impacted the results, which
should be addressed in future work. Overall, our results indicate that student
dialogue can impact the eye gaze relations as well as student prior knowledge.
Understanding these relations allow us to adapt the system to better support
student collaboration.
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1. Adamson, D., Rosé, C.P.: Coordinating multi-dimensional support in collaborative
conversational agents. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia,
K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 346–351. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30950-2 45

2. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom.
control 19(6), 716–723 (1974)

3. Allopenna, P.D., Magnuson, J.S., Tanenhaus, M.K.: Tracking the time course of
spoken word recognition using eye movements: evidence for continuous mapping
models. J. Memory Lang. 38(4), 419–439 (1998)

4. Ancona, N., Marinazzo, D., Stramaglia, S.: Radial basis function approach to non-
linear granger causality of time series. Phys. Rev. E 70(5), 056221 (2004)

5. Baker, M., Lund, K.: Promoting reflective interactions in a CSCL environment. J.
Comput. Assist. Learn. 13(3), 175–193 (1997)

6. Belenky, D., Ringenberg, M., Olsen, J., Aleven, V., Rummel, N.: Using dual eye-
tracking to evaluate students’ collaboration with an intelligent tutoring system for
elementary-level fractions. Grantee Submission (2014)

7. Bertolli, C., Buono, D., Mencagli, G., Vanneschi, M.: Expressing adaptivity
and context awareness in the assistant programming model. In: International
Conference on Autonomic Computing and Communications Systems, pp. 32–47
(2009)

8. Challinor, A.: Towards the development of adaptation options using climate and
crop yield forecasting at seasonal to multi-decadal timescales. Environ. Sci. Policy
12(4), 453–465 (2009)

9. Chen, Y., Rangarajan, G., Feng, J., Ding, M.: Analyzing multiple nonlinear time
series with extended granger causality. Phys. Lett. A 324(1), 26–35 (2004)

10. Cheng, C.H., Wei, L.Y., Chen, Y.S.: Fusion anfis models based on multi-stock
volatility causality for taiex forecasting. Neurocomputing 72(16–18), 3462–3468
(2009)

11. Cherubini, M., Nüssli, M.A., Dillenbourg, P.: Deixis and gaze in collaborative work
at a distance (over a shared map): a computational model to detect misunder-
standings. In: Proceedings of the 2008 symposium on Eye tracking research &
applications, pp. 173–180. ACM (2008)

12. Clements, M.P., Hendry, D.F.: An overview of economic forecasting. A companion
to economic forecasting pp. 1–18 (2002)

13. Connor, C.E., Egeth, H.E., Yantis, S.: Visual attention: bottom-up versus top-
down. Curr. Biol. 14(19), R850–R852 (2004)

14. D’Angelo, S., Begel, A.: Improving communication between pair programmers
using shared gaze awareness. In: Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems, pp. 6245–6290. ACM (2017)

15. Ding, M., Bressler, S.L., Yang, W., Liang, H.: Short-window spectral analysis of
cortical event-related potentials by adaptive multivariate autoregressive modeling:
data preprocessing, model validation, and variability assessment. Biol. Cybern.
83(1), 35–45 (2000)

16. Ding, M., Chen, Y., Bressler, S.L.: 17 granger causality: basic theory and appli-
cation to neuroscience. Handbook of Time Series Analysis: Recent Theoretical
Developments and Applications, 437 (2006)

https://doi.org/10.1007/978-3-642-30950-2_45


424 K. Sharma et al.

17. Dowell, N.M., Cade, W.L., Tausczik, Y., Pennebaker, J., Graesser, A.C.: What
works: creating adaptive and intelligent systems for collaborative learning support.
In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014.
LNCS, vol. 8474, pp. 124–133. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07221-0 15

18. Freiwald, W.A., et al.: Testing non-linearity and directedness of interactions
between neural groups in the macaque inferotemporal cortex. J. Neurosci. Methods
94(1), 105–119 (1999)

19. Goebel, R., Roebroeck, A., Kim, D.S., Formisano, E.: Investigating directed cor-
tical interactions in time-resolved fmri data using vector autoregressive modeling
and granger causality mapping. Magn. Reson. Imaging 21(10), 1251–1261 (2003)

20. Granger, C.W.: Investigating causal relations by econometric models and cross-
spectral methods. Econometrica: J. Econom. Soc. 424–438 (1969)

21. Griffin, Z.M., Bock, K.: What the eyes say about speaking. Psychol. Sci. 11(4),
274–279 (2000)

22. Hafner, C.M.: Causality and forecasting in temporally aggregated multivariate
garch processes. Econom. J. 12(1), 127–146 (2009)
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