
Evidence for Programming Strategies
in University Coding Exercises

Kshitij Sharma(B), Katerina Mangaroska, Halvard Trætteberg,
Serena Lee-Cultura, and Michail Giannakos

Norwegian University of Science and Technology, Trondheim, Norway
{kshitij.sharma,katerina.mangaroska,hal,serena.leecultura,

michailg}@ntnu.no

Abstract. Success in coding exercises is deeply related to the strategy
employed by the students to solve coding tasks. In this contribution,
we analyze the programming assignments of 600 students from an intro-
ductory university course in object-oriented programming. The students
were provided unit tests for the assessment of their code, and their editing
and testing actions were recorded using an Eclipse plug-in. The primary
motivation for this study is to discover the programming strategies used
by students for coding exercises with different difficulty levels, and find
out if any relation exists between these strategies and the success in
solving the coding tasks. More insights into this process will enable edu-
cators to provide future students timely, appropriate and constructive
feedback on their coding process. Thus, to predict success in the coding
exercises, we used indicators from students’ testing behaviour reflecting
the time and effort differences between two successive unit test runs.
The results show a clear difference in the strategies employed by stu-
dents within different success levels. The results also highlight ways of
providing actionable feedback to the students in a timely and appropriate
manner.

Keywords: Programming strategies · Personalized feedback
Computer science education

1 Introduction

Programming involves the process of generating a solution to a problem, thus
one of the main learning outcomes of a programming course is to develop a stu-
dent’s ability to solve problems [31]. Therefore, it is important for educators to
be responsive to “the problem-solving skills students bring to programming, and
to those required by programming” because students are influenced by the facili-
tated strategies [33]. Soloway et al. managed to show that students’ sensitivity to
strategies while learning to program has significant effect on their performance
[33]. However, first year students have a small skill set and the ability to read code
[22]. Therefore, besides choosing the most appropriate programming approach,
c© Springer Nature Switzerland AG 2018
V. Pammer-Schindler et al. (Eds.): EC-TEL 2018, LNCS 11082, pp. 326–339, 2018.
https://doi.org/10.1007/978-3-319-98572-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98572-5_25&domain=pdf


Evidence for Programming Strategies 327

programming environment and tools, the educators should consider conveying
and teaching problem-solving strategies (e.g. hill climbing, trial and error, divide
and conquer, top down, and bottom up) that students could exploit and apply
while learning coding [2]. In addition, Felder says, that students “should be given
the freedom to devise their own methods of solving problems rather than being
forced to adopt the teacher’s strategy” (p. 679) [16]. But all strategies are not
equally good, thus students need feedback from educators in order to learn and
improve. Moreover, the strategies that students employ to solve coding problems
cannot be observed directly and must be inferred. Therefore, this study aims to
analyze the program assignments of 600 students from an introductory Java uni-
versity course. Consequently, we aim to investigate the programming behavior
of freshmen while learning how to program, by utilizing data generated when
solving their programming assignments. This allows us to ascertain the strate-
gies students employ during coding activities and understand the efficiency of
these different strategies, so educators can offer actionable feedback to nurture
good programming habits and strategies [4]. Enhancing the learning experience
of students with carefully designed coding exercises and support in assessing the
required knowledge, should assist freshmen when faced with the difficulties of
syntax and semantics, as well as understand error messages and control flow.

To capture students’ programming behavior and identify their strategies,
the authors extended the Eclipse programming tool with a plug-in for data
collection. The goal of this study is to identify successful students’ programming
strategies. This will allow educators to provide meaningful personalized feedback
promoting reflection and support, allowing students to improve the way they
program. Consequently, the study addresses the following research questions:

RQ1: What programming strategies do freshmen employ to succeed in their
assignments?

RQ2: Which actions can predict students’ programming behavior and support
educators in early detection of difficulties and misconceptions?

2 Related Work

Previous research has shown a multitude of individual factors influencing aca-
demic achievement at various educational levels (e.g. primary, secondary, univer-
sity). Some of these factors include self-efficacy [14,35], personality traits (e.g.
conscientiousness) [3,28], cognitive ability [6], prior knowledge and experience
[14,35], and motivational and strategic (e.g. learning strategies) aspects [30].

Consciousness has been shown to be the personality trait that is most influ-
ential on academic achievement according to past studies [3,8,13,28]. Moreover
it is the dimension most closely linked to the will to achieve [13]. Another key
predictor of student learning and academic performance is self-regulated learning
(SRL) [11,12,23,27]. SRL leads to deep cognitive engagement with the learning
resources [11] which in turn transitions the extrinsic motivational behavior to
behavior that is driven by intrinsic motivation [12]. This path from deep cogni-
tive engagement to high levels of intrinsic motivation was found to be correlated



328 K. Sharma et al.

with student learning and academic achievement [40]. Another behavioral fac-
tor correlated with student learning (e.g. mastering the content) and academic
achievement is performance approach [14] or deep strategy [30]. Deep learning
strategies (when the student’s focus is to attain understanding of the content and
not merely obtaining a higher grade) result in mastering the content [14] which
may lead to higher examination success [30]. In past studies, researchers show the
difference between strategies (deep vs. surface) and their relation to academic
achievement, and concluded that deep and surface strategies were positively and
negatively correlated with academic achievement [7], respectively. Finally, pre-
vious research has shown that intellectual (cognitive/mental) ability influences
academic performance. Intellectual abilities can be measured in different ways
such as IQ [1], general mental ability (American College Test scores) [35] and
logical reasoning [9]. Although several different factors can influence student
academic achievement, when it comes to programming, problem solving ability
demonstrates the most significant correlation with student performance in solv-
ing coding tasks [21]. In this contribution we will focus on the behaviour of the
students rather than the above mentioned constructs. These previous contribu-
tion are to give reader a brief summary of which factors affect the academic
achievement.

In computer science education, student assessment still abides by traditional
outcome-based assessment [10]. However, programming is more than just the
capability to generate code. It is a problem solving skill. Past research has shown
that this assumption has been neglected, leading to a gap in students’ ability to
apply core programming concepts to real-world problems [32,37]. To address this
issue, educators must be able to guide students in determining correct strategy,
and identifying the appropriate time to abandon an inefficient approach [17].
Thus, researchers need to collect more authentic data and explore the processes
by which students arrive at their final solutions [34]. This idea has become real-
ity with the increase in popularity and usage of automated code testing and
assessment in computer science education. Existent systems aid educators in
assessing various features of coding assignments and scale the assessment up for
large courses [15]. For instance, Jadud introduced the idea of researching stu-
dents’ compilation behaviour (i.e. “the programming behaviour students engage
in while repeatedly editing and compiling their programs”), to better under-
stand how students progress through a programming task, so that appropriate
interventions can be applied [19]. Following this idea, Blikstein et al. utilized
code snapshots to uncover differences between novices and experts’ program-
ming strategies [4]. Expanding on these past research studies, we extended the
Eclipse tool to collect data portraying students’ programming behaviour; with a
goal to explore students strategies when solving coding tasks and their success
in doing so.

Feedback is one of the most powerful variables influencing learning [18]. How-
ever, feedback is of little use if it only conveys a message of right or wrong.
Feedback must be meaningful and actionable in order to help the learning pro-
cess. Traditionally, in computer science education, students receive basic level



Evidence for Programming Strategies 329

of feedback presented by the compiler [29]. Compiler messages are not always
helpful, as they do not allow students to understand why they fail in solving
the coding task. In most cases, coding tasks have multiple ways of achieving
multiple solutions. To complete programming tasks, students apply strategies
that build on their previous knowledge [20]. This led researchers to categorize
students based on their programming behavior and employed strategies. Perkins
et al. classify novice programmers as “stoppers” and “movers” based on the
strategy they choose when facing a problem [25]. Turkle and Papers proposed
two categories, “tinkerers” and “planners” [36], while Bruce et al. identified
five: “followers”, “coders”, “understanders”, “problem solvers”, and “partici-
pators” [5]. Turkle and Papert’s idea was not only related to categorizing the
novice programmers, but also conveying epistemological pluralism. Epistemolog-
ical pluralism highlights that students can have separate approaches to the same
problem and communicate different behavior (e.g. “tinkerer” or “planner”) while
achieving similar results. Consequently, educators recognized the importance of
the students learning process when learning how to program, and developed
tools and systems to support this progress [24,29,39]. This study contributes to
a data-driven development of personalized feedback in programming by using
the writing and testing behavioral indicators of the students as they attempt
to solve coding exercises. Our aim for this contribution is to keep the behav-
ioral indicators as semantic-less as possible to attain greater generalizability and
reproducibility of results.

3 Methodology

3.1 Research Objectives

The context of this research is a compulsory course in object-oriented program-
ming (OOP). This course is offered to second semester CS-majors (600 students)
in Java. As an introductory to OOP, there is a substantial variation in motivation
and skills. This course is the basis for later software development courses, thus,
it is important to identify struggling students early, provide appropriate feed-
back and help them develop good strategies for solving programming problems.
Hence, the goal of the research is twofold: (1) identify programming strategies
that lead to success in solving coding exercises; and (2) find ways to quickly
detect student difficulties and misconceptions.

3.2 Assignment Structure

The course has 10 assignments with a reward of 100 points for completing each
successfully. A student needs 750 points to qualify for the exam. Seven of the
assignments (1-3, 5-6 and 8-9) are composed of smaller coding exercises with
specific requirements indicating what to code. This allows us to use unit tests
for automatic grading, as well as collect rich data regarding student progression.
Students are encouraged to test by writing and launching their own testing



330 K. Sharma et al.

code. Due to the open nature of the remaining assignments (4, 7, 10), they have
been excluded from this part of the study. The size (number of Java classes and
methods) and difficulty level of exercises vary; thus, the students are granted a
certain degree of freedom in selecting exercises based on their (self-assessed) skill
level. Statistics indicate that exercise choice is evenly spread. As well, exercises
use approximately the same amount of time each week.

3.3 Data Collection

We focus our data collection to the last 4 assignments, as the first three assign-
ments were relatively basic for students to develop concrete strategy. For each
of these exercises we provided Eclipse with detailed instructions about which
files and activities to track. In particular, we collected the following data: (1)
snapshots of files when they are saved, with compiler errors and warnings (2)
student programs that are launched, typically for testing their own code (3) unit
tests that are run, with information as to whether they pass or fail, and (4) the
use of certain commands and panels, typically those used for debugging

All data is time-stamped and most are limited to the relevant files of a specific
exercise, for both practical and privacy reasons. A special “Exercise panel” shows
the details of which data has been collected, allowing the students to track their
progress and review their process. The data is anonymized, but with identifiers
corresponding to exam result, prior to its use in our research such that it can be
correlated at a later stage.

3.4 Measurements

To analyze the behavior and predict the outcome of each assignment, we cap-
tured the following measures:

1. Number of test runs: is the total number of times a student ran the unit
tests to check their code. This is counted for each exercise in every assignment.

2. Improvement in unit test success: each time a student ran the unit
tests, they passed and/or failed a specific number of tests. The score they
obtained is the number of passed tests divided by the total number of tests.
As a result, the authors computed the improvement (or lack thereof) in this
score between two consecutive test runs.

To predict and analyze a student’s programming behavior in terms of the above
mentioned measures, the authors also computed the following variables from the
student’s unit test running time series:

1. Time difference launch: is the average time difference between two con-
secutive launches of their own test code, before the students runs another
unit test.

2. Time difference edit: is the average time difference between two consecu-
tive logs of saving the file(s).



Evidence for Programming Strategies 331

3. Size difference: is the difference in the number of lines of code between two
consecutive unit test runs, i.e. code growth.

4. Improvement in errors: is the reduction in number of errors and warnings
between two consecutive unit test runs.

5. First test run score: is the unit test success score of the first time a student
ran a unit test for each exercise in every assignment.

4 Results

In this section, we present the prediction results followed by the behavioral
analysis based on student categorization using an explanatory model.

Prediction Results. To predict the dependent variables: (1) improvement in
unit test success and (2) the number of test runs, we used four different inde-
pendent (also termed predictor) variables: (1) time difference launch, (2) time
difference edit, (3) size difference, and (4) improvement in errors fitting a Gen-
eralized Additive Model (GAM). We divided the data set into 80% training and
20% testing set. We performed 5-fold cross-validation for both the training and
testing. On one side, considering the improvements in the unit test success, in
Table 1 we can see that the overall prediction error using the combined data of
the four assignments is 0.11; and the average prediction error using data from
each assignment separately is 0.18 (SD = 0.03). On the other side, in the same
table, considering the number of test runs, we can see that the overall prediction
error is 0.18 and the average prediction is 0.24 (SD = 0.04). Table 2 show the
coefficients of the explanatory variables.

Table 1. Prediction results for the final score in a given assignment and the total
number of test runs using data from individual assignments and the complete data
sets.

Assignement ID 5 6 8 9 Overall

RMSE improvement in score 0.13 0.20 0.20 0.18 0.11

RMSE number of attempts 0.21 0.26 0.21 0.28 0.18

Relative to the number of test runs per individual assignment, we explore the
question how early can we predict? Figure 1 demonstrates Root Mean Square
Error (RMSE) of 0.10 from as early as the fourth test run. We can see that
most of RMSE values are between 0.12 and 0.16, however the lowest value is
observed at the 4th test run. This facts can be seen as a “proof of concept” for
the hypothesis regarding early prediction of the total number of test runs.

Explanatory Models. Table 2 shows the linear model fitted over the complete
data set for the improvement of unit test success. We observe that the time differ-
ence launch and the difference in size are positively correlated with the improve-
ment in unit tests success. These results support the assumption that students



332 K. Sharma et al.

Fig. 1. RMSE values for predicting the total number of test runs using the data up to
a given test runs ID.

Table 2. Linear model for score improvement and total number of tests run, all the
exercises combined in one data set, bold t-values are significant (p < 0.01). Unbiased
risk estimation for score improvement = 0.01 and for number of attempts = 0.03

Improvement in score Number of test runs

Estimate Std. err. t-val Estimate Std. err. t-val

Intercept 1.78e-01 1.520e-02 11.75 4.764e+01 4.279e-01 11.33

Time diff launch 1.737e-06 2.958e-07 5.82 −2.945e-05 8.320e-06 −3.54

Time diff edit 1.928e-04 1.797e-07 0.13 −4.511e-05 5.063e-06 −8.91

Diff size 5.300e-02 1.415e-03 2.95 −2.975e-01 3.990e-02 −7.45

Diff error −3.740e-02 2.089e-02 −1.79 13.694e-01 5.890e-01 0.62

Diff warning −4.743e-02 5.008e-02 −0.94 1.491e+00 1.413e+00 1.05

who made larger and less frequent changes in their code showed greater improve-
ment in unit test success. Furthermore, Table 2 also shows the linear model fitted
over the complete data set for the number of tests run. Here we observe that the
time difference launch and the difference in code size are negatively correlated
to the number of test run. These results support the assumption that students
who made larger and less frequent changes in code had fewer number of test
runs. The average marginal effects are shown in Table 3.

Table 3. Average marginal effects for the models shown in Table 2

Dependent variable Time diff
launch

Time diff
edit

Diff size Diff error Diff
warning

Score improvement 1.701e-06 5.3e-06 0.0009 −0.03 −0.04

Number of test runs −2.945e-05 −4.511e-05 −0.29 0.36 1.49

4.1 Categorization

In order to explain the coding behavior of the students in more details, we
categorized the student population into three categories (i.e. intellects, thinkers,



Evidence for Programming Strategies 333

and probers) based on the total number of unit test runs by each student. Table 4
presents the number of students belonging to each category for every assignment
and Fig. 3 shows the change in category between two consecutive assignments.
Assumptions for the suggested three categories of students, we would like to
point out here that the pragmatic sense of the category labels might be different
from our interpretation in the paper:

1. Intellects: run tests less frequently, as they are skilled and confident.
2. Thinkers: run tests more frequently, to receive early feedback regarding

progress.
3. Probers: run tests most frequently, as they experience difficulty.

We would like to point out here that the categories are for each assignment and
could change student to student and even for one student from one assignment
to other.

Table 4. Number of students in the different categories for the separate assignments.

Data used Thresholds Intellects Thinkers Probers

Assignment 5 5, 14 163 131 160

Assignment 6 5, 10 173 140 141

Assignment 8 8, 19 138 132 126

Assignment 9 7, 13 88 85 62

The Difference from the Perspective of the Three Categories. We
present the differences between the three categories with respect to the explana-
tory and dependent variables (Table 6). These results hold for individual assign-
ments as well (barring a few exceptions) as shown in Table 5.

1. Significant difference on time between two student program launches (F
[2,383] = 70.27, p = .00001): post-hoc pairwise comparisons show that intel-
lects have higher time difference than thinkers; and thinkers have higher time
difference than probers.

2. Significant difference on change in code between two tests (F [2,383] =
198.85, p = .00001): post-hoc pairwise comparisons show that intellects have
greater code change than thinkers; and thinkers have greater code change
than probers.

3. Significant difference on the average improvement in success (F [2,383] =
121.51, p = .00001): post-hoc pairwise comparisons show that intellects have
greater success improvements than thinkers; while thinkers have greater suc-
cess improvements than probers.

4. Significant difference on average change in number of errors and warnings
(F [2,383] = 5.79, p = .01): post-hoc pairwise comparisons deptict intellects
reduce more errors than thinkers; while thinkers and probers have no signifi-
cant difference based on reducing the number of errors in the code.



334 K. Sharma et al.

5. Significant difference on average success in first test run (F [2,383] = 16.60,
p = .001): post-hoc pairwise comparisons show that intellects score higher in
the first attempt than thinkers; while thinkers and probers have no significant
difference based on first test run scores.

Table 5. ANOVA results for difference measures for the three categories.

Assignment 5 Assignment 6 Assignment 8 Assignment 9

F p F p F p F p

Time diff launch 37.95 .0001 24.41 .0001 66.28 .0001 2.6 .10

Diff size 17.95 .0001 56.00 .0001 50.01 .0001 45.41 .0001

Diff success 94.87 .0001 39.99 .0001 60.93 .0001 31.00 .0001

Diff error 4.7 .03 2.13 .14 0.61 .43 0.65 .41

Score 1st attempt 2.4 .11 4.65 .03 10.46 .001 5.07 .02

Figure 2 shows the explanatory variables corresponding to the three cate-
gories with progress based on the number of test runs. Upon inspection of Fig. 2,
(left panels) it is evident that there exists a clear difference in the time between
two student program launches and the average improvement between the intel-
lects (shown with red) and the remaining two categories for the test runs 5–10
(i.e. time between main method launches) and 15–25 (i.e. improvement). How-
ever, the other differences are not as pronounced.

From the explanatory models for each category (Table 6), we observe that
the behavior of the students in each category is subtly different than the other
two categories. The intellects have two positively significant coefficients: the
wait between two student program launches and the change in code size. This
indicates that intellects take their time to alter the code and remove errors
and bugs. The thinkers have only one positively significant coefficient: the wait
between two student program launches. That means the thinkers take time to
test, but nothing clearly can be said about the other parameters. The probers
have change in code as a negative and significant coefficient, meaning that they
make smaller code changes between two successive unit tests runs.

Table 6. Linear model for improvement with all the exercises combined in three data
sets, one each for intellects, thinkers, probers, bold t-values are significant (p < 0.01).

Intellects Thinkers Probers

Estimate std. err. t-val Estimate std.err t.val Estimate std.err t-val

Intercept 2.9e-01 2.8e-02 10.29 1.6e-01 2.6e-02 6.36 8.5e-02 2.2e-02 3.70

Time diff

launch

1.7e-06 4.5e-07 3.76 1.4e-06 6.4e-07 2.19 1.5e-06 4.8e-07 3.13

Time diff edit 8.7e-07 2.8e-07 3.07 −7.0e-08 3.3e-07 −0.21 −4.8e-08 3.3e-07 −0.14

Diff size −2.3e-03 2.2e-03 −1.02 −1.2e-03 2.4e-03 −0.52 −6.2e-03 3.0e-03 2.07

Diff error −6.9e-02 3.7e-02 −1.83 −7.6e-04 3.1e-02 −0.02 −5.2e-02 3.9e-02 −1.30

Diff warning −1.1e-02 9.5e-02 −0.12 4.5e-02 8.6e-02 0.52 −1.5e-01 7.5e-02 −2.00



Evidence for Programming Strategies 335

Fig. 2. Different measures for the three categories for each test run ID. (Color figure
online)

Finally, it could be expected that students belong to more than one cate-
gory while attempting to solve programming assignments. Figure 3 shows stu-
dents changing across the categories intellects, thinkers and probers, for differ-
ent assignments. For example, the intellects are a larger group (163) than the

Fig. 3. Students changing their strategies across the different assignments. a51 : 233
shows that in assignment a5, there were 233 students in category 1. Category labels: 1
= intellects; 2 = thinkers; 3 = probers.



336 K. Sharma et al.

thinkers (131) for assignment 5 (a5); for the next assignment (i.e., a6) we see
that similar to a5, the largest category is intellects followed by similar numbers
of thinkers and probers. Also, a large majority of intellects did not change cat-
egory, while most thinkers and probers either stayed the same or interchanged
categories.

5 Conclusion and Discussion

In this study we analyzed the programming patterns of 600 students from an
introductory university course in object-oriented programming using an Eclipse
plug-in to collect data. Results from the analyses supported our two assump-
tions: (1) there are different programming strategies that lead students to suc-
cess when attempting to solve coding exercises, and (2) we can early identify low
performers. Using semantic-less measures from students’ coding and debugging
behavior (e.g. time difference launch, time difference edit) and one code-base
measure (i.e. growth in size), we managed very early (fourth attempt) to predict
improvement in unit test success at a low granularity level of one student with
one assignment. Our focus on semantic-less-ness lead to better reproducibility
and generalizability of the results, because we can not, at least with current
state-of-art, know without explicitly asking students if they are experiencing
difficulty with the coding constructs (e.g. loops, recursion) or in the domain
(e.g. Fibonacci numbers). Moreover, our study also adds to the growing body of
research utilizing low granularity data compared to previous studies that have
successfully provided predictive models that either looked at the students’ level
as a whole class, or focused only on code-based variables [4,26,38]. In addition,
none of the previous studies attempted early prediction.

Furthermore, we also presented behavioral analysis of students practicing
different programming strategies. Thus, we can say that intellects as a group are
characterized by having the highest first test run score; the highest improvement
in unit test success; the lowest total number of test runs among the three cate-
gories; the longest wait time between two student program launches; and finally,
the most changes in the code between two unit tests. Thinkers are characterized
as follows: a low first unit test score; a short wait time between two successive
student program launches; a lower change in code size than the intellects but
higher than the probers; and unit test success that is higher than the probers but
lower than the intellects. Finally, probers are characterized by having low first
unit test score; the shortest wait time between two successive student program
launches; the least code size change between two successive tests; and finally, the
least improvement in unit test success. The key difference between thinkers and
probers is the modifications they make to the code in a similar duration of time.
The thinkers appear to have a strategy to fix errors and bugs in the code, while
the probers appear to employ a trial and error approach. This is also evident
from Fig. 2 (bottom-left), where we can see that for a large number of attempts,
the probers have slow growth (close to 0.25, that is, 4 unit test runs for passing
one unit test); where as, after certain test runs students from the remaining two



Evidence for Programming Strategies 337

categories require one or two test runs to pass one unit test. This exponential
improvement is demonstrated earlier by the intellects than the thinkers, indicat-
ing that intellects initially make fewer mistakes and hence require fewer test runs
to pass the complete set of unit tests. However, thinkers show more regulated
and informed behaviour of testing the code than probers, and this might be a
plausible explanation for why probers require more tests run to pass all of the
unit tests. Consequently, from past studies we know that the weaker students
have less understanding of what is tested by each test, and that makes them
more likely to use a trial and error approach [25].

Finally, the prediction results presented in this study could support educators
in providing motivational feedback to act as incentive to students to test their
code a few more times before giving up. For example, we can predict the number
of tests run a student would carryout at an early stage and we can also predict
their projected improvement in unit test success at each test run. Given the
current TestRunID and unit test score of the student, we could provide him/her
with a target number of test runs at his/her given pace of improvement which
might motivate the student to change their strategy (from probing to thinking)
or to continue testing the code (if he/she is relatively close to the target number
of tests run).

Limitations and Future Work. Our approach carries a few limitations that we
plan to overcome in the next studies. First, this is a “black box” approach
because we do not examine the code, instead we look into behavioral patterns
when coding. In future work, we plan to analyze the mistakes made by the
students and observe the corresponding strategic category. Next, we also did
not consider any semantic features computed from the code; incorporating code
metrics into the analysis could improve the prediction results. Finally, we do
not gather or utilize data about students (e.g. consciousness, SRL, exam per-
formance) or their motivation during the course, which hinders us in providing
personalized feedback at this stage. Thus, we plan to incorporate this informa-
tion in future studies in order to provide feedback that is not only timely and
actionable, but personalized and adaptive as well.

References

1. Alloway, T.P., Alloway, R.G.: Investigating the predictive roles of working memory
and IQ in academic attainment. J. Exp. Child Psychol. 106(1), 20–29 (2010)

2. Barnes, D.J., Fincher, S., Thompson, S.: Introductory problem solving in computer
science. In: 5th Annual Conference on the Teaching of Computing, pp. 36–39 (1997)

3. Barrick, M.R., Mount, M.K., Strauss, J.P.: Conscientiousness and performance of
sales representatives: test of the mediating effects of goal setting. J. Appl. Psychol.
78(5), 715 (1993)

4. Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., Koller, D.: Pro-
gramming pluralism: using learning analytics to detect patterns in the learning of
computer programming. J. Learn. Sci. 23(4), 561–599 (2014)



338 K. Sharma et al.

5. Bruce, C., Buckingham, L., Hynd, J., McMahon, C., Roggenkamp, M., Stoodley, I.:
Ways of experiencing the act of learning to program: a phenomenographic study of
introductory programming students at university. In: Transforming IT Education:
Promoting a Culture of Excellence, pp. 301–325 (2006)

6. Busato, V.V., Prins, F.J., Elshout, J.J., Hamaker, C.: Intellectual ability, learn-
ing style, personality, achievement motivation and academic success of psychology
students in higher education. Pers. Individ. Differ. 29(6), 1057–1068 (2000)

7. Cano, F.: Epistemological beliefs and approaches to learning: their change through
secondary school and their influence on academic performance. Br. J. Educ. Psy-
chol. 75(2), 203–221 (2005)

8. Chamorro-Premuzic, T., Furnham, A.: Personality traits and academic examina-
tion performance. Eur. J. Pers. 17(3), 237–250 (2003)

9. Chamorro-Premuzic, T., Furnham, A.: Personality, intelligence and approaches to
learning as predictors of academic performance. Pers. Individ. Differ. 44(7), 1596–
1603 (2008)

10. Cooper, S., Cassel, L., Moskal, B., Cunningham, S.: Outcomes-based computer
science education. In: ACM SIGCSE Bulletin, vol. 37, pp. 260–261. ACM (2005)

11. Corno, L., Mandinach, E.B.: The role of cognitive engagement in classroom learning
and motivation. Educ. Psychol. 18(2), 88–108 (1983)

12. Corno, L., Rohrkemper, M.: The intrinsic motivation to learn in classrooms. Res.
Motiv. Educ. 2, 53–90 (1985)

13. Digman, J.M.: Five robust trait dimensions: development, stability, and utility. J.
Pers. 57(2), 195–214 (1989)

14. Diseth, Å.: Self-efficacy, goal orientations and learning strategies as mediators
between preceding and subsequent academic achievement. Learn. Individ. Differ.
21(2), 191–195 (2011)

15. Edwards, S.H., Perez-Quinones, M.A.: Web-CAT: automatically grading program-
ming assignments. In: ACM SIGCSE Bulletin, vol. 40, pp. 328–328. ACM (2008)

16. Felder, R.M., Silverman, L.K., et al.: Learning and teaching styles in engineering
education. Eng. Educ. 78(7), 674–681 (1988)

17. Fitzgerald, S., McCauley, R., Hanks, B., Murphy, L., Simon, B., Zander, C.: Debug-
ging from the student perspective. IEEE Trans. Educ. 53(3), 390–396 (2010)

18. Hattie, J., Timperley, H.: The power of feedback. Rev. Educ. Res. 77(1), 81–112
(2007)

19. Jadud, M.C.: Methods and tools for exploring novice compilation behaviour.
In: Proceedings of the Second International Workshop on Computing Education
Research, pp. 73–84. ACM (2006)

20. Kiesmüller, U.: Diagnosing learners problem-solving strategies using learning envi-
ronments with algorithmic problems in secondary education. ACM Trans. Comput.
Educ. 9(3), 17 (2009)

21. Lishinski, A., Yadav, A., Enbody, R., Good, J.: The influence of problem solving
abilities on students’ performance on different assessment tasks in CS1. In: Pro-
ceedings of the 47th ACM Technical Symposium on Computing Science Education,
pp. 329–334. ACM (2016)

22. Lister, R., et al.: A multi-national study of reading and tracing skills in novice
programmers. In: ACM SIGCSE Bulletin, vol. 36, pp. 119–150. ACM (2004)

23. Maldonado-Mahauad, J., Pérez-Sanagust́ın, M., Kizilcec, R.F., Morales, N.,
Munoz-Gama, J.: Mining theory-based patterns from big data: identifying self-
regulated learning strategies in massive open online courses. Comput. Hum. Behav.
80, 179–196 (2018)



Evidence for Programming Strategies 339

24. Mitchell, C.M., Boyer, K.E., Lester, J.C.: When to intervene: toward a Markov deci-
sion process dialogue policy for computer science tutoring. In: The First Workshop
on AI-supported Education for Computer Science, p. 40 (2013)

25. Perkins, D.N., Hancock, C., Hobbs, R., Martin, F., Simmons, R.: Conditions of
learning in novice programmers. J. Educ. Comput. Res. 2(1), 37–55 (1986)

26. Piech, C., Sahami, M., Koller, D., Cooper, S., Blikstein, P.: Modeling how stu-
dents learn to program. In: Proceedings of the 43rd ACM Technical Symposium
on Computer Science Education, pp. 153–160. ACM (2012)

27. Pintrich, P.R.: A conceptual framework for assessing motivation and self-regulated
learning in college students. Educ. Psychol. Rev. 16(4), 385–407 (2004)

28. Poropat, A.E.: A meta-analysis of the five-factor model of personality and academic
performance. Psychol. Bull. 135(2), 322 (2009)

29. Rivers, K., Koedinger, K.R.: Automatic generation of programming feedback: a
data-driven approach. In: The First Workshop on AI-Supported Education for
Computer Science, vol. 50 (2013)

30. Rodriguez, C.M.: The impact of academic self-concept, expectations and the choice
of learning strategy on academic achievement: the case of business students. High.
Educ. Res. Dev. 28(5), 523–539 (2009)

31. Saeli, M., Perrenet, J., Jochems, W.M., Zwaneveld, B.: Teaching programming
in secondary school: a pedagogical content knowledge perspective. Inform. Educ.
10(1), 73–88 (2011)

32. Simon, B., Chen, T.Y., Lewandowski, G., McCartney, R., Sanders, K.: Common-
sense computing: what students know before we teach (episode 1: sorting). In: Pro-
ceedings of the Second International Workshop on Computing Education Research,
pp. 29–40. ACM (2006)

33. Soloway, E., Bonar, J., Ehrlich, K.: Cognitive strategies and looping constructs: an
empirical study. Commun. ACM 26(11), 853–860 (1983)

34. Soloway, E., Ehrlich, K.: Empirical studies of programming knowledge. In: Read-
ings in Artificial Intelligence and Software Engineering, pp. 507–521. Elsevier
(1986)

35. Stajkovic, A.D., Bandura, A., Locke, E.A., Lee, D., Sergent, K.: Test of three
conceptual models of influence of the big five personality traits and self-efficacy on
academic performance: a meta-analytic path-analysis. Pers. Individ. Differ. 120,
238–245 (2018)

36. Turkle, S., Papert, S.: Epistemological pluralism and the revaluation of the con-
crete. J. Math. Behav. 11(1), 3–33 (1992)

37. VanDeGrift, T., Bouvier, D., Chen, T.Y., Lewandowski, G., McCartney, R., Simon,
B.: Commonsense computing (episode 6): logic is harder than pie. In: Proceed-
ings of the 10th Koli Calling International Conference on Computing Education
Research, pp. 76–85. ACM (2010)

38. Vee, M., Meyer, B., Mannock, K.L.: Understanding novice errors and error paths in
object-oriented programming through log analysis. In: Proceedings of Workshop
on Educational Data Mining at the 8th International Conference on Intelligent
Tutoring Systems, pp. 13–20 (2006)

39. Vihavainen, A., Vikberg, T., Luukkainen, M., Pärtel, M.: Scaffolding students’
learning using test my code. In: Proceedings of the 18th ACM Conference on
Innovation and Technology in Computer Science Education, pp. 117–122. ACM
(2013)

40. Zimmerman, B.J., Schunk, D.H.: Reflections on theories of self-regulated learning
and academic achievement. In: Self-Regulated Learning and Academic Achieve-
ment, pp. 282–301. Routledge (2013)


	Evidence for Programming Strategies in University Coding Exercises
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Research Objectives
	3.2 Assignment Structure
	3.3 Data Collection
	3.4 Measurements

	4 Results
	4.1 Categorization

	5 Conclusion and Discussion
	References




