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Preface

The MobiHealth 2017 Conference was the 7th in a series of scientific events bringing
together expertise from medical, technological, design, and even from social domains.
MobiHealth 2017, which took place in Vienna, Austria, during November 14–15,
2017, focused on wearables, algorithms, virtual reality, and design, with some papers
on machine learning in medicine and mobile health. Mobihealth 2017 offered partic-
ipants a keynote on computer and emotions with Rosallind Picard, founder and director
of the Affective Computing Research Group at the MIT Media Lab. The conference
had nine sessions and more than 50 authors coming from all over the world.

Mobihealth started in 2010, just at the beginning of the Smartphone revolution, as
one of the first conferences on Mobile technology and evolved over the years to an
event with an interdisciplinary approach with authors involved from machine learning
to service design. The conference also covers technological and biomedical facilities,
legal, ethical, social, as well as the necessary basic research for enabling the future of
mobile health-care paradigms.

The present volume includes the articles presented during the two-day conference in
Vienna. The conference received more than 50 papers, which were accurately checked
via a double-blind review process, involving about 20 reviewers: members of the
Technical Program Committee and experts from different countries worldwide. The
highly selective review process resulted in a full-paper rejection rate of 30%, by that
way guaranteeing a high scientific level of the accepted and finally published papers.

The papers were divided into eight sessions:

1. Data Analysis
2. Systems
3. Work in Progress
4. Pervasive and Wearable Health Monitoring
5. Advances in Personalized Health-Care Services
6. Design for Health Care
7. Advances in Soft Wearable Technology for Mobile Health
8. Sensors and Circuits

We are grateful to the Technische Universität Wien and the European Alliance for
Innovation for sponsoring this event. Finally, we would like to thank all the participants
for the hard work preparing manuscripts and the presentations. The papers included in
these proceedings are the end result of a tremendous amount of creative work and a
highly selective review process. We hope that they will serve as a valuable source of
information on the state of the art of mobile health and technology. Moreover, the
editors are indebted to the acknowledged and highly experienced reviewers for having
contributed significantly to the quality of the conference and this book. The editors are
also grateful to the dedicated efforts of the local Organizing Committee members and



their supporters for carefully and smoothly preparing and operating the conference.
They especially thank Prof. Nima TaheriNejad from the Institute for Computer
Technology (ICT) of the TU Wien and all his team for their dedication to the orga-
nization and realization of the conference.

July 2018 Paolo Perego
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Enhancing the Self-Aware Early Warning
Score System Through Fuzzified Data

Reliability Assessment

Maximilian Götzinger1(B), Arman Anzanpour1, Iman Azimi1,
Nima TaheriNejad2, and Amir M. Rahmani2,3

1 Department of Information Technology, University of Turku, Turku, Finland
{maxgot,armanz,imaazi}@utu.fi

2 Institute of Computer Technology, TU Wien, Vienna, Austria
nima.taherinejad@tuwien.ac.at

3 Department of Computer Science, University of California Irvine, Irvine, USA
amirr1@uci.edu

Abstract. Early Warning Score (EWS) systems are a common practice
in hospitals. Health-care professionals use them to measure and pre-
dict amelioration or deterioration of patients’ health status. However, it
is desired to monitor EWS of many patients in everyday settings and
outside the hospitals as well. For portable EWS devices, which moni-
tor patients outside a hospital, it is important to have an acceptable
level of reliability. In an earlier work, we presented a self-aware modi-
fied EWS system that adaptively corrects the EWS in the case of faulty
or noisy input data. In this paper, we propose an enhancement of such
data reliability validation through deploying a hierarchical agent-based
system that classifies data reliability but using Fuzzy logic instead of
conventional Boolean values. In our experiments, we demonstrate how
our reliability enhancement method can offer a more accurate and more
robust EWS monitoring system.

Keywords: Early Warning Score · Modified early warning score
Self-awareness · Data reliability · Consistency · Plausibility
Fuzzy logic · Hierarchical agent-based system

1 Introduction

Chronic diseases such as cardiovascular diseases are the leading cause of death
in the world [1]. Such diseases put patients at the risk of sudden health deteri-
oration, which is reflected in patient’s vital signs up to 24 h in advance. Early
enough health deterioration detection effectively increases the chance of patient’s
survival [2].

In hospitals, particularly in intensive care units, the Early Warning Score
(EWS) is a prevalent manual tool, by which patient’s vital signs are periodi-
cally recorded and the emergency level is interpreted [3]. To this end, a score
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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(0 for a perfect condition and 3 for the worst condition) is allocated to each
vital sign according to its value and the predefined limits (see Table 1). The
summation of the obtained scores indicates the degree of health deterioration
of the patient (the higher the EWS, the worse the patient’s health condition).
However, there are two major restrictions in this manual tool. First, unreliable
interpretation might be made due to the presence of inaccuracy and latency in
the manual data collection. Secondly, and the more important restriction from a
practical point of view, this manual tool is not applicable to out-of-hospital situ-
ations where no professional caregiver is available to perform the measurements.
Recent advancements in Internet of Things (IoT) technologies can mitigate these
restrictions by providing 24/7 remote health monitoring. In EWS systems based
on IoT devices, patients’ vital signs along with context data are continuously
monitored via mobile/wearable sensors, while cloud server performs data anal-
ysis and decision making algorithms for the score determination [4,5].

Data reliability of such IoT-based EWS systems in remote health monitoring
is of paramount importance. In our previous work [6], we proposed an archi-
tecture which exploits self-awareness techniques to adaptively adjust the EWS
in the case of faulty readings from the sensor. We indicated a binary decision-
making technique to determine whether the sensory data is reliable, and if needed
we accordingly adjusted the EWS. However, like many other natural phenom-
ena, data reliability of the sensory data is a continuous value and treating it in
a binary manner, although simplifying the analysis, can lead to loss of informa-
tion. For example, many somewhat reliable sensory data can lead to an unreliable
assessment whereas in a binary assessment they may be interpreted as reliable
(since they may fall closer to a reliable value in the spectrum) and thus create a
wrong assessment.

In this paper, we propose a data reliability validation technique that is based
on Fuzzy logic. The usage of Fuzzy logic instead of Boolean logic to classify
input data as reliable or faulty covers the unsharp (fuzzy) ranges in which vital
signs can indeed be correct or incorrect. In our extensive experiments, we show
how our Self-Aware Early Warning Score (SA-EWS) method can be leveraged
to enhance the reliability and robustness of health monitoring systems.

Table 1. Score classification table of a set of vital signals

Vital signal score 3 2 1 0 1 2 3

Heart rate (beats/min) <40 40–51 51–60 60–100 100–110 110–129 >129

Systolic blood pressure (mmHg) <70 70–81 81–101 101–149 149–169 169–179 >179

Respiratory rate (breaths/min) <9 9–14 14–20 20–29 >29

Oxygen saturation (%) <85 85–90 90–95 >95

Body temperature (◦C) <28 28–32 32–35 35–38 38–39.5 >39.5
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2 Data Reliability Concepts

Data reliability is an additional meta-data which describes the quality of the
measured data. The reliability consists of accuracy and precision of sensory
data [7] and grants a higher level of comprehension on the validity of the input
data. If a sensor is broken, the monitored vital sign will be most probably inac-
curate and not precise. Whereas the data provided by the sensor can still be
accurate and precise when the sensor is detached from the patient’s body. How-
ever, in both of these cases, an EWS calculated based on their values is invalid
and therefore, unreliable in the given context. Hence, determining the reliability
of the input data can be very challenging, but there exist potential solutions; con-
sistency and plausibility controls, as well as cross validation are among them [7].
While the calculation of the EWS is based on the absolute values of the vital
signs, the reliability of the EWS uses additional information about slopes and
inter-correlations of the vital signs.

Consistency: Signals often have some limits such as maximum rate of change,
these limits can be exploited to assess the reliability of a signal. Consistency is
an aspect that can provide information on whether an observed input signal is
reliable or not based on its history. A signal with a physically impossible slope
indicates a problem which can be evoked by a sensor failure or a detachment
of the sensor from the body. Regardless of the reason, a faulty monitored vital
sign affects the calculation of the EWS negatively and should be avoided. For
example, a change of the body temperature of several degrees per minute is
impossible [8]. Therefore, in such a case the gathered sensory data should be
classified as unreliable and treated accordingly.

Plausibility and Correlation: One aspect of plausibility is the absolute value
of an input signal. For example, the oxygen saturation can only be between 0%
and 100%. An input data that shows values of the oxygen saturation outside of
this boundary must be classified as unreliable.

Another aspect of plausibility is the cross-reliability or co-existence plausibil-
ity. Various efforts have been conducted to indicate correlations between different
vital signs [9–11]. For instance, considering the possible effect of the body tem-
perature on the heart rate value, the probability of an increase in heart rate is
high in the case of elevated body temperature [10]. As a second example, we can
consider that a body temperature of −30 ◦C is implausible in the case of a living
patient, although a deceased person lying in a very cold area can have such a
low body temperature.

3 Fuzzified Reliability Assessment

In contrast to our previous work [6] where the data reliability validation was
based on Boolean logic, we propose here the use of Fuzzy logic. Because of
the lack of complete knowledge of all body functions, determining whether a



6 M. Götzinger et al.

vital sign is monitored correctly is a hard task. Fuzzy logic brings the significant
advantage of covering unsharp (fuzzy) ranges in which vital signs cannot be easily
tagged as correctly monitored or not. Thus, a vital sign can have a reliability
value between 0 and 1 (0% and 100%), instead of just being reliable or unreliable.

rabs, rslo

1

0
absolute value or slope of the vital sign

reliable unreliableunreliable

Fig. 1. Example for a fuzzy membership
function.

Temp. 
Agent

Heart 
Rate 

Agent

Body 
Agent 

(MEWS)

Blood 
Pressure 

Agent

sensor sensor

sensor
sensorsensor

O
DAO

DA

O
DA

O
DA

O
DA

O
DA

Oxygen 
Satura on 

Agent

Respiratory 
Rate Agent

Fig. 2. System architecture.

In the proposed system, the first task of reliability module is to analyze two
metrics of a vital sign, the absolute value of the signal and its slope. For this
analysis, fuzzy membership functions (shown in Fig. 1) are needed, each of which
is configured to match the properties of the assigned signal. The result of this
analysis is given by two parameters, the reliability of the absolute value rabs and
that of the signal slope rslo. Subsequently, the reliability of an input signal rsig
is calculated with

rsig = rabs ∧ rslo (1)

where the fuzzy “and” (∧) is equal to a minimum function [12]. The parameter
rsig gives information about the reliability of each signal considered separately
and omits the correlation of the different vital signs (reviewed in Sect. 2). To
consider the correlation, more highly abstracted information is needed on how
one vital sign can impact another. The cross-validated reliability, rcro, which
exists for each pair of signals is given by

rcro =

{
1 if Svs1 = Svs2

1
pcro|Svs1−Svs2| if Svs1 �= Svs2

(2)

where pcro ∈ (0,∞) denotes a coefficient of the strength of the correlation1

between vital signs vs1 and vs2, and Svs1 as well as Svs2 are the abstracted
scores of these two vital signs.
1 The reliability module in our implementation limits the cross-reliability rcro to a

value between 0 to 1, although theoretically, a coefficient less than 1 can lead to a
rcro higher that 1.
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When all reliability and cross-reliability values are available, the reliability
of the calculated EWS is given by

r = (rsig1 ∧ · · · ∧ rsign) ∧ (rcro12 ∧ rcro13 ∧ · · · ∧ rcromn
) (3)

where the first term conjugates all reliabilities of the various vital signs, and the
second term contains the conjunction of all combinations of cross-reliabilities.

4 Experiments

4.1 Implemented System Architecture

As in our last work [6], a hierarchical agent-based model, implemented in C++,
constitutes the base of the SA-EWS system (Fig. 2). Such an agent-based app-
roach combined with the usage of mini ODA loops enable a good modularity and
simple implementation. Every agent works according to an ODA loop; which
means that every single agent monitors certain inputs, decides what to do, and
acts accordingly.

Beside its modularity, such hierarchical agent-based architecture has another
essential advantage. The input data with all its semantic content and contextual
information can be abstracted in different layers [13]. As shown in Fig. 2, each
agent of the lower hierarchical level is connected to a sensor. Due to the agent-
based design, the scoring of vital signs and the calculation of the EWS are
performed independently in different locations.

4.2 Functional Description of the System

First, each low-level agent reads the actual value of the vital sign the sensor
attached to it provides. Subsequently, it abstracts the raw input data to a vital
sign score S (Table 1) and validates the reliability of the signal, rsig (Eq. 1).
Finally, the low-level agent sends both values (score S and the signal reliabil-
ity rsig) to the agent of the higher hierarchical level; the “Body Agent”.

Similar to the low-level agents, the body agent starts its task with reading the
input values, although these are coming from the low-level agents and not from
sensors. This high-level agent is responsible for the calculation of the EWS as well
as the reliability of the calculated EWS. While the agent’s binding module sums
up all gathered scores to calculate the EWS, the reliability module calculates the
cross-reliability, rcro, for each pair of vital signs (Eq. 2) followed by the reliability,
r, of the overall EWS (Eq. 3). As the last step and before the next data sets are
read, the calculated EWS and its reliability, r, are outputted.

4.3 Experimental Data

All vital signs are collected from a 36 years old male subject with diastolic hyper-
tension. Several sensors and devices are used for data collection. The Bioharness
3 [14] chest strap with a wearable Bluetooth sensor set is used to record the
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heart rate and the respiration rate. Blood pressure and blood Oxygen satura-
tion are recorded using iHealth BP5 [15] arm blood pressure monitor and iHealth
PO3 [16] finger grip pulse oximeter which both of them are Bluetooth-enabled
monitoring devices. Body temperature sensor is a DS18b20 [17] digital tempera-
ture sensor connected to ATMEGA328P [18] microcontroller and nRF51822 [19]
Bluetooth low energy module. We used an Android phone to collect data from
all sensors during the experiments with the rate of one sample per second.

We conditioned the data collection phase to emulate certain faults and errors.
These conditions are applied in order to show how the system is able to detect
the changes from normal to the abnormal condition and back from abnormal to
normal condition. To this end, a change has been applied for around 5 min in the
middle of a 15-min data collection. We note that the conducted experiments are
proof-of-concept experiments and more extensive tests with more patients are
planned for the future. The applied abnormal conditions are: (i) The temperature
sensor has been detached from the body and brought to contact with an object
at room temperature, (ii) The temperature sensor has been detached from the
body and brought to contact with a cold object, (iii) The temperature sensor
has been detached from the body and brought to contact with a hot object, (iv)
A biceps contraction has happened during the blood pressure measurements,
and (v) The chest strap for the heart rate and respiration rate monitor has been
loosened.

4.4 Configuration

Several factors influenced the setup of the fuzzy membership functions and the
correlation coefficients. Besides the medical publications [8–11,20], expert’s opin-
ions from various physicians, the accuracy of the sensors used, and the medical
condition of the patient were considered in configuring the system. To repeat
the experiments with other sensors or patients, the setup should be reconfigured
again to reflect such personalization. Although reconfiguration of these param-
eters is easy in our system, finding our the right values is a complex task which
requires further research for enabling its automation.

5 Results

Our experiments show that the SA-EWS system works correctly, and the reli-
ability of the calculated EWS coincides with the condition of the measurement
setup. In other words, erroneous input data leads to a lower reliability. Due to
the space limitation, only two of these cases are shown here in this section.

In the first experiment (shown in Fig. 3(a)) at around 350 s the body tem-
perature sensor is detached and measures the room temperature until it is again
attached (around 700 s). Over this period the reliability value decreases dras-
tically. Whereas the validation of the slope causes the low reliability during
the beginning and the ending phase of the period of detachment, the cross-
plausibility validation does this for the rest of this period. Because of the medi-
cal condition (high respiration rate) of the test subject, the correlation between
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Fig. 3. The monitored vital signs, the EWS and its reliability. (a) the body temperature
sensor is detached from the patient and temporarily measures the room temperature
(b) a contraction of the biceps interferes with the blood pressure measurement.

the respiration and the other vital signs was set to weak (decreased from the
default value of 1.5 to 0.6). Nevertheless, during the moments when the respi-
ration frequency reaches values greater than or equal to 20 (score 2), reliability
level decreases even further.

For the second experiment shown here (Fig. 3(b)), we tampered with the
measurement of the blood pressure. The gathered input data shows a high blood
pressure value because the patient tensed his biceps during two of the samples
(around 550 s and 700 s). Since there is a strong correlation between heart rate
and blood pressure [9], the correlation coefficient pcro was increased from 1.5 to
2.5. As the heart rate was more or less constant while the blood pressure was
increased, the cross-reliability led to a low reliability. As in the first experiment,
the temporary breathing rate with a score of 2 or higher leads to short periods
of slightly reduced reliability at around 200 s and 400 s.

6 Conclusion and Future Work

In this paper, we presented an SA-EWS system with a fuzzified reliability val-
idation which recognizes erroneous vital signs caused by various measurement
artifacts such as loose sensors, detached sensors or other interferences. In our
experiments, the proposed system was successful in detecting such events and
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decreased the data reliability during such events. This observation shows that
self-awareness techniques such as the one proposed and used here can provide
more robust EWS calculations. We note that deciding the value of parameters
such as possible absolute values, signal slopes, and correlations among various
vital signs demands domain knowledge. As the human body is an extremely
complex system, not every phenomenon is already known. Therefore, although
domain knowledge can be helpful for general cases, it does not replace personal-
ized assessment which experts can provide each patient with. For this reason, we
plan to add a learning module to the SA-EWS system which should learn about
the patient’s body functions and its basic health condition. In addition, more
metrics should be generated and used, such as the derivation or the variability
of a vital sign.
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Abstract. Smartphone-based assessments have been considered a
potential solution for continuously monitoring gait and mobility in mild
to moderate Parkinson’s disease (PD) patients. Forty-four PD patients
from cohorts 4 to 6 of the Multiple Ascending Dose (MAD) study
of PRX002/RG7935 and thirty-five age- and gender-matched healthy
individuals (i.e. healthy controls - HC) in a separate study performed
smartphone-based assessments for up to 24 weeks and up to 6 weeks,
respectively. The assessments included “active gait tests”, where all par-
ticipants were asked to walk for 30 s with at least one 180◦ turn, and “pas-
sive monitoring”, in which subjects carried the smartphone in a pocket
or fanny pack as part of their daily routine. In total, over 6,600 active
gait tests and over 30,000 h of passive monitoring data were collected. A
mobility analysis indicates that patients with PD are less mobile than
HCs, as manifested in time spent in gait-related activities, number of
turns and sit-to-stand transitions, and power per step. It supports the
potential use of smartphones for continuous mobility monitoring in future
clinical practice and drug development.
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1 Introduction

Mobility-related symptoms are among the earliest symptoms of Parkinson’s dis-
ease (PD) and are part of the clinical diagnosis [1]. Functional impact of PD
on mobility-related activities such as walking, turning or rising from chair has
an impact on patients’ quality of life and is also used clinically as an indication
for disease progression. In order to provide an objective and quantitative assess-
ment of gait and mobility, many studies have implemented wearable systems or
body-fixed sensors in both controlled [2,3] and free-living settings [4,5]. While
the on-body sensors are light-weighted and inexpensive, the difficulties of inte-
grating them into daily living pose an extra burden to the subjects and usually
limit the length of the study to less than one month [5].

Most smartphones have built-in sensors to provide more environment-aware
services and applications utilize these sensors, such as accelerometers, gyroscope
and magnetometers. As smartphones have become standard equipment in daily
life, they provide a more natural way of performing long-term mobility assess-
ment in a clinical setting. In this paper, we present the results of a large-scale,
longitudinal gait and mobility assessment of PD patients in a clinical trial setting
using smartphones and compare them with age and gender matched controls.

2 Methods

2.1 Data Collection

Information on the MAD clinical trial of PRX002/RG7935 study can be found
online [6]. Our analysis focused on exploring the between-group differences
between HC and PD, and did not assess PRX002/RG7935-related effects. PD
subjects from cohorts 4 to 6 of the MAD study and all participants from the
HC study were provided with a locked-down smartphone only running a dedi-
cated app, which allowed for the execution of active tests and continuous sensor
recordings.

Active Gait Tests. Each participant was asked to perform at least one active
test in the morning. Participants were requested to walk in a straight line with
minimal turns for 30 s. In the trial, 5,107 active gait tests were completed by the
PD cohort and 1,589 in the HCs. The sensor readouts of the accelerometer and
gyroscopes were measured at 66 Hz. All of the gait and mobility features in the
active tests were extracted while excluding the first and last 5 s of the test, as
during these time spans often the subjects were putting the smartphones into or
removing it from their pockets or fanny packs.
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Passive Monitoring. Every day the participants were requested to carry the
smartphone in their pocket or in a fanny pack for as long as the battery life
allowed (approximately 6 h), while the sensors recorded their movement. In total,
24,104 h of passive monitoring data were recorded for the PD cohort, and 8,614 h
for the HCs. In line with a previously published approach [7], we filtered out
accelerometer data where the standard deviation of Euclidean norm was less than
0.03 m/s2 for more than 30 min, as during these spans smartphones were likely
not carried by the subjects. This step removed 24% of the passive monitoring
data.

2.2 Human Activity Recognition (HAR)

A diagram of the 9-layer neural network model structure and an example data
flow is shown in Fig. 1. Similar structures have been used previously for HAR
and have been shown to out-perform the traditional machine learning methods
[8]. Our HAR model was trained on two public data sets [9,10] to classify six
activities: walking, stairs, jogging, sitting, standing, and lying down. The con-
tinuous accelerometer data were down-sampled into 20 Hz and segmented into
4-s windows with 75% overlapping with adjacent ones.

When making predictions, the model classifies the overlapping windows into
the six activities. As each second in the trial data was covered by four windows,
we determined the final predictions on each second by performing a majority
vote using the predicted activities of the four windows. In case of a tie, the
predicted activity was determined by the one with highest summed predicted
probability.

For sit-to-stand and stand-to-sit (STS) detection, we counted the number of
occurrence of sit or lying down spans preceded by or followed by stand, walk,
stairs, or jog spans. The STS extraction algorithm would only accept the event as
a true STS event if and only if during the span transition the phone orientation
has changed, or step detection algorithm has detected steps in the gait spans.

Fig. 1. Example dataflow from raw signal to activity classification
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2.3 Gait and Mobility Feature Extraction

The mobility features we extracted from gaits and turns are all based on previ-
ously investigated features [5,11–13].

We applied the adaptive step detection algorithm proposed by Lee et al. [14]
to determine the time points of step initiation. After steps were identified in the
gait spans, we calculated average step frequencies (number of steps divided by
time) per subject. For the passive monitoring data we only performed the step
detection and feature extraction algorithm in gait-related activities (walking,
stairs, jogging) that were longer than five seconds. To infer the power invested
during walk, we calculated the integral of the variance of the Euclidean norm
of the acceleration signal, divided by the number of steps as the per-step power
coefficient. This metric is a surrogate coefficient for power given that we do not
have mass of the subject.

For turn detection, we followed a three-step process. First, we used a mini-
mization method to identify the optimal rotation matrix R∗ = Rx(pitch)Ry(roll)
such that the average of the acceleration signal on the z-axis follows gravity. That
is, argminpitch,roll(

∫
t
Rx(pitch)Ry(roll)azg dt), where pitch and roll are the pitch

angle and roll angel, g is the gravity, and az is the z-axis component of the accel-
eration signal. In the second step we applied the rotation matrix R∗ on the
gyroscope signal. To detect turns around the z-axis, we integrated the angular
velocity on a 1.5 s rolling window to obtain the yaw angles:

∫
t
(R∗gyro)z dt where

()̇z takes the z-axis component of the rotated signal. We then detect peaks in
yaw angles that are higher than 1.5 rad (∼86◦) as one turn event. Our method
is comparable to similar methods described in [12,15], but uses a more stringent
turn criterion in terms of degrees and speed of turns. For computational reasons
we only estimated turns for gait spans longer than 18 s. This leaves about 57,000
walking spans collected during passive monitoring.

(a) Gait ratio (b) Average STS events
per hour

(c) Difference of average
number of turns per walk-
ing minute

Fig. 2. Associations between HAR-profiled mobility measurements and clinical fea-
tures. Statistical significance: ∗∗P value < 0.01; ∗∗∗P value < 0.001
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3 Results

3.1 Human Activity Recognition Performance Validation

Before applied on the passive monitoring data, the HAR model was validated on
two data sets. The first was the held-out test set from the same sources of training
data. The HAR model was able to correctly distinguish gait activities (walking,
stairs, jogging) from stationary activities (sitting, standing, lying down) with
more than 98% of accuracy. In addition, we also performed validation using the
labeled daily active test. The active gait test sensor data was used as the positive
control for gait detection, while the balance test, during which the subjects stand
still for 30 s, was used as negative control. We defined a correct prediction as
more than 50% of the span was labeled with the correct activity. The HAR model
was also able to successfully profile the gait segments with 96.9% of accuracy,
and balance segments with 99.5% accuracy.

3.2 Activity Profiles and Mobility Features Comparison in Passive
Monitoring

The mobility of each subject was quantified by gait ratio, defined as the propor-
tion of time the subject engaged in gait activities over the total passive moni-
toring coverage. Figure 2a shows the between-group difference in gait ratios. In
the PD cohort we detected a median of 9.7% of gait spans over all coverage
spans as supposed to HC cohort’s 15.1%, indicating that the HC cohort had a
significantly higher per-subject gait activity level than PD cohort (P < 0.001,
Mann-Whitney test).

From the activity profile, we calculated the coverage-normalized STS events
for each subject. Concordant with the results previously presented [11], the
median number of STS per hour in PD patients was 17% lower than in HC
subjects, as shown in Fig. 2b (P < 0.001, Mann-Whitney test).

Difficulties while turning is a regular symptom of PD [16] and may influence
the way PD patients walk during their regular daily life. From our turn detection
we calculated the average number of turns per hour per subject. We observed a
38% median reduction in the PD cohort versus HCs (P < 0.01, Mann-Whitney
test), as shown in Fig. 2c. This result differs from a similar albeit smaller and
shorter study by others [13], where no significant difference could be observed.
One possible reason for this could be our focus on turns with higher degree
change that pose a much higher difficulty for gait impaired PD patients.

3.3 Comparison of Gait Features Between Active Tests and Passive
Monitoring

Active tests, such as our Gait Test, constitute an artificial situation and one open
question is how much they reflect the subjects’ behavior during their regular daily
life. We compared three important and typical gait features: step frequency, step
power and turning speed, between active test and passive monitoring for HC and
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PD patients. Additionally, we also compared group differences between HC and
PD cohorts. For the comparison we only used the subset of passive monitoring
spans, which the HAR labeled as walking, and span length between 20 to 40 s.

Figure 3a shows that there is a significant mean reduction of 0.05 steps per
second between active test and passive monitoring in the PD patient data (P <
0.01, paired t-test), whereas the difference in HCs is not significant (P > 0.1,
paired t-test). However, we observed that during passive monitoring the HCs
has much less variability in step frequency than that of PD. This low variability
in HCs and the decrease in step frequency for PD patients may help explain
the significant difference between HC and PD in passive monitoring (P < 0.01,
Mann-Whitney test).

For turning speed, as depicted in Fig. 3b, we observed statistically significant
difference between active and passive in both groups (P < 0.001, paired t-
test). While the reduction in turning speed in PD is much more pronounced in
the active tests, the differences in both active test and passive monitoring are
statistically significant (P < 0.001, Mann-Whitney test). Similar to the case of
step frequency, the HC cohort harbors much less variability than the PD cohort
in passive monitoring.

Finally, Fig. 3c shows the power invested while walking in the active tests ver-
sus during passive monitoring. For both active and passive monitoring we observed
significant lower power in PD versus HCs (P < 0.001, Mann-Whitney test). Both
the PD cohort and HCs show significantly higher per-step power in passive moni-
toring then in the active gait tests (P < 0.01, paired t-test). The significance levels
of comparisons between various groups are summarized in Table 1.

(a) Average step fre-
quency

(b) Average turning speed (c) Average step power
coefficient

Fig. 3. Comparison of active vs. passive in HC and PD as well as between group
comparison of HC vs. PD. Statistical significance: ∗∗P value < 0.01; ∗∗∗P value < 0.001

Table 1. Significance level for active test and passive monitoring comparison.

Test difference in % (P value) Step frequency Tuning speed Step power coefficient

PD vs HC in active test −2.0% (n.s.) −33.6% (<0.001) −50.0% (<0.001)

PD vs HC in passive monitoring −6.1% (<0.01) −6.4% (<0.001) −40.0% (<0.001)

Active vs passive in PD −4.3% (n.s.) −2.1% (<0.001) 70.7% (<0.01)

Active vs passive in HC −0.0% (<0.01) −30.2% (<0.01) 42.4% (<0.01)
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4 Discussions

As mobility reflects a very important aspect in the quality of life while being a
diagnostic indication for PD, continuous long-term monitoring can provide valu-
able insight for treatment strategy development. Our study shows that such
monitoring on mild to moderate PD patients is feasible using smartphones.
Sensor data collected from both active and passive monitoring provide previ-
ously inaccessible information regarding patients’ daily behavior and function-
ing. Specifically we demonstrated that patients with PD in our study were less
mobile than healthy controls, as manifested in time spent in gait-related activi-
ties, number of turns and sit-to-stand transitions, and power per step. For further
understanding on whether these features reflect disease severity as measured by
physician rated assessment, we are performing ongoing analyses which include
correlating the Movement Disorder Society unified Parkinson’s disease rating
scale (MDS-UPDRS), that is used in clinic to evaluate PD severity, with the
smartphone data. Another important issue is how robust these measurements
are across different mobile devices. In this study, all the subjects were using the
same smartphone model. In the future, if similar study is to be performed using
subjects’ own devices, as different commercial smartphone models have different
built-in inertial measurement unit (IMU), the acceleration and angular speed
readings will require more comprehensive benchmarking so the derived features
are comparable across devices.

The comparison of step features between active and passive monitoring pro-
vides valuable insight for future practice of remote monitoring programs. While
for most step features we observed no significant difference in active test and
passive monitoring, larger spread of step frequencies and turning speed in HC
during active tests were clearly observed. We also observed that the step power
is positively correlated with span length: both PD patients and HCs tended to
invest more power in longer walking spans (data not shown). This agrees with
the previously published result [5]. These pose interesting questions on human
behavior and trial design for future studies.

Finally, the information from this study may be applicable to other motor
function-related diseases to further understand disease progression or treatment
effects, and eventually provides new perspectives in healthcare practices.

Acknowledgements. We thank Max A. Little for his technical input at the early
stages of this research project.
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Abstract. Rehabilitation from cardiovascular disease (CVD) usually
requires lifestyle changes, especially an increase in exercise and phys-
ical activity. However, uptake and adherence to exercise is low for
community-based programmes. We propose a mobile application that
allows users to choose the type of exercise and compete it at a conve-
nient time in the comfort of their own home. Grounded in a behaviour
change framework, the application provides feedback and encouragement
to continue exercising and to improve on previous results. The applica-
tion also utilizes wearable wireless technologies in order to provide highly
personalized feedback. The application can accurately detect if a specific
exercise is being done, and count the associated number of repetitions
utilizing accelerometer or gyroscope signals Machine learning models
are employed to recognize individual local muscular endurance (LME)
exercises, achieving overall accuracy of more than 98%. This technology
allows providing a near real-time personalized feedback which mimics the
feedback that the user might expect from an instructor. This is provided
to motivate users to continue the recovery process.

Keywords: Cardiovascular disease · Mobile application
Support vector machine · Wearable sensors · Repetition counting

1 Introduction

Cardiovascular disease (CVD) is the leading cause of premature death and dis-
ability in Europe and worldwide [1]. While mortality and morbidity rates are
improved with effective cardiac rehabilitation (CR) [2], uptake and adherence
of community-based CR are very low [3]. Key reasons for this include: lack of
disease-specific programmes, travel time to such programmes, scheduling issues,
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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and low self-efficacy associated with a perception of poor ‘body image’ or poor
exercise technique [4]. Ideally, a personal instructor could visit the patient’s
home, provide a tailored programme and monitor the exercise quality and give
personalized feedback. Unfortunately, this is not feasible in practice for a variety
of reasons, including financial.

The mobile application described in this paper provides a solution to the
problem: it allows tailored exercise classes to be completed at any time in a
patient’s home by offering personalized video exercise classes and feedback dur-
ing exercise based on the data from wearable sensors (i.e. whether the exercise
was completed and, if so, the number of repetitions). It also provides summary
feedback and statistics on the completion and overall performance for specified
periods of time (day, week, month, etc.). Finally, while the main focus of cardiac
rehabilitation is exercise, it is also important to provide the patient with expert
information in order to change their behaviour towards a more healthy lifestyle
relating to the targeted areas of: smoking cessation, stress management, alcohol
use, diet and medication adherence. The overall system is designed to be patient-
centric with all technology and functionality choices informed by behaviour the-
ory. The behavioral change techniques and social cognitive theory have been
used in conjunction with the focus group feedback to develop and design the
content of the application. The mHealth development and evaluation framework
have been used to provide a best practice framework for the MedFit app devel-
opment [5]. The selected behaviour change strategies are being delivered within
the intervention through the various app components such as push notifications,
testing, feedback, and videos.

The application has three main functionalities provided to the user: (1) A
list of personalized exercise classes that guide users through different exercises
using video and audio modalities; (2) Feedback provision to the user on the
different aspects of activity measurements; (3) Capability to supervise a patient
if wearable sensors are worn whilst exercising. The contributions of the work
can be divided into two groups: design choices for the application, including
wearable sensors that are utilized, and the feedback provisions to the user. Three
feedback techniques were selected based on the health behaviour change models
and implemented in the application. The experiment results are reported on
separate integral parts of the application, while the clinical trial with the medical
patients using the complete application is scheduled in the near future.

2 Mobile Application Design

An android application is developed as a prototype of the front-end of the pro-
posed system. The application is aimed at the patients who suffered a cardiac
event and are in Phase III of the recovery process1. The design of the graphical
interface is carefully considered to make sure that patients can easily use the
application. The mobile application development framework [5] used follows an
iterative process for developing technology-based interventions, by facilitating
1 http://www.uofmhealth.org/health-library/ty6411abc.
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and encouraging end-user engagement. Focus groups with cardiac rehabilitation
participants (n = 26; 65% male; mean age 64 ± 18.2 years) were undertaken to
get feedback on the first prototype of the application. This feedback was then
translated into feasible technical improvements.

Fig. 1. Graphical user interface (GUI) of the application

As can be seen in Fig. 1(a), the main menu has three options: Exercise,
Progress, and Healthy Lifestyle. There are three options related to the Exer-
cise, as can be seen in Fig. 1(b). Exercise Class brings the user to the list of
guided exercise classes that are personalized based on the evaluation of the
classes performed earlier. The Log Activity section allows the user to manually
log any exercise or physical activity that has been done outside of the applica-
tion (e.g. swimming). The Test Yourself option allows the user to evaluate their
progress using internationally accepted standard physical activity health tests
[6]. The Progress option provides the users with the statistical representation of
the activities performed so far (see Fig. 1(c)). The Healthy Lifestyle option brings
the user to the key rehabilitation lifestyle topics picked by experts, as shown in
Fig. 1(d). Apart from the design of the application, a lot of considerations went
into the selection of wearable sensors that would allow the users to get the best
possible feedback about their performance.

2.1 Multi-sensor Connectivity

Wearable sensors became ubiquitous and are now available off-the-shelf to use
with an impressive list of sensing modalities made available. After an in-depth
analysis of the suitability of the available sensors, an off-the-shelf wearable fit-
ness tracker was utilized to retrieved step count and heart rate measure (Fitbit
Charge22). These two measures, in combination with the statistical informa-
tion related to the exercise provided by the application, are sufficient to provide
in-depth and meaningful information to the user about their progress.
2 https://www.fitbit.com/ie/charge2.
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Additional, more in-depth analysis of the actual performed exercises is made
available to the user using the Shimmer3 inertial sensor3. The Shimmer is a small
wireless sensor platform with integrated accelerometer and gyroscope sensors,
large storage and low-power standards-based communication capabilities. The
Shimmer sensor data is used to detect whether a particular LME exercise is being
completed (activity recognition) and count the associated number of repetitions.
It enables the near real-time feedback to the user during the performance of the
exercises. Fitbit measurements are used to give an insight on the heart-rate and
step counts to the user. The performance measures are carried out with shimmer
sensor data.

3 Motivational Feedback

It is well accepted that motivation to continue and progress on any activity,
including rehabilitation program, is closely related to the performance feedback
available [7]. In this work, three main feedback delivery methods are employed,
namely self monitoring, message notifications and near-real-time feedback.

3.1 Self Monitoring

In a review of applications to promote physical activity among adults, provid-
ing feedback and self-monitoring were the most frequently used techniques [7].
The application provides a feedback on four main statistical measures of user
performance. The number of exercise minutes completed, the number of exer-
cises classes completed, the daily step count and the average heart-rate captured
during exercises.

Fig. 2. Patient performance compared to other group members (Color figure online)

In addition to personal statistics, the user can also compare his/her per-
formance with that of other group members (Fig. 2). In this Figure, the user
status is highlighted in red on the Gaussian curve. The left and right graphs

3 https://www.shimmersensing.com.

https://www.shimmersensing.com
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represent the number of classes (sessions) completed and the number of minutes
spent exercising, respectively. The progress of the other users is marked, but
anonymised, using yellow dots. This graphical visualization is created in order
to notify the user that there are other people who are carrying out the same
exercises. It allows the user to feel more part of a community of rehabilitators
and increase the chance of adhering to the rehabilitation program. Furthermore,
it allows the user to determine where he/she is standing in comparison to other
group members (in an anonymized manner) and as a result become more moti-
vated and engaged with the entire program to enhance his/her performance level.
Users have the option of creating and opting in/out of these groups.

3.2 Message Notifications

Previous research, has shown that most interventions provided personally tai-
lored SMS messages [8]. This application provides a tailored feedback to be
delivered to end users based on health behaviour change theory, as well as a
delivery schedule based on the ‘six A’ programme of changing behaviour [9].
Messaging is provided to remind users to exercise, to give encouragement or just
to give feedback on their progress. Text messages are sent three times a week in
the morning and at the end of the week; the user receives a summary of their
performance for the entire week. An example of a personalized message sent on
Sunday to a user called Mike, who has completed more than half of his target
goal by the end of the week, would look like this:

“Hi Mike, your physical activity goal for this week was at least 150minutes. You

fell short of your goal by 75minutes this week. Think positively next week and

keep your mind set on reaching your goal. You can do it!”.

3.3 Near Real-Time Feedback

At the end of each exercise, the repetition count report acts as an important
feedback mechanism for the patient. The 3D accelerometer and 3D gyroscope,
from the Shimmer sensor unit, can provide accurate translational and rotational
data [10]. Fourteen LME exercises associated with cardiac rehabilitation are used
for evaluating activity detection and repetition counting (Table 1) [11].

Data Capture and Pre-processing: Shimmer3 unit is calibrated in order to
obtain accurate and consistent data and is configured with a sampling rate of
512 Hz for data capturing. The calibrated sensor unit is worn on the right wrist
by each participant. For each LME exercise listed in Table 1 data is captured
and a 30 s data segment is used, which corresponds to the length of the exercise.
To introduce variability to the data, each exercise is performed by six partic-
ipants (Age group between 20–40, 2 males and 4 females). A 30 s segment of
the accelerometer sensor data in the 3D space for Bicep Curl is shown in Fig. 3.
The classification model is trained to identify whether the person is performing
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Table 1. Local muscular endurance (LME) exercises for cardiac rehabilitation

Exercise Type of LME Exercise Type of LME

Upper body LME exercises

Ex 1 Bicep Curls Ex 6 Pec Dec

Ex 2 Triceps extension (right) Ex 7 Trunk twist

Ex 3 Upright row Ex 8 Side Bends - alternating sides

Ex 4 Lateral raise (arms up) Ex 9 Bent Over Row (right arm)

Ex 5 Frontal raise (arms up) Ex 10 Press up against wall

Lower body LME exercises

Ex 11 Squats Ex 13 Standing bicycle

Ex 12 Lunges-alternating sides Ex 14 Leg lateral raise (right)

an exercise, therefore, random movements are also captured and added to the
dataset. Random movements are ‘standing relatively still’ or ‘shuffling around’ to
represent non-performing of an exercise. The data segments are grouped into two
balanced classes: Class 1 for exercise data and Class 0 for random movements
data. 80% of the data collected was used to train and validate the generated
models utilizing 10-fold cross validation technique. The remaining 20% of the
data was used for testing.

A total of 24 time and frequency statistical measurements from all 3 axes
of the accelerometer data is used as a feature vector. The features include the
mean, standard deviation, correlation coefficients, FFT coefficients, minimum
and maximum values, RMS values, and entropy. The features are computed
from the concatenated segmented data using a sliding window of 4 s. A window
length of 4 s with 2 s of overlap is chosen as it is sufficient time for each repetition
of the selected LME exercises to be completed.

Fig. 3. Segmented Bicep Curls data for 30 s
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Classification: There are a number of machine learning algorithms that could
be used for classification. Since the dataset consists of two classes, an optimized
support vector machine (SVM) classifier is chosen for this binary classification
task [14]. One SVM model is created for each exercise with optimum hyper
parameters. The models are used for recognition of each LME exercise from
the random movement [12]. Ten-fold cross-validation as well as a regularization
technique is used to avoid overfitting. A grid search for SVM hyper parame-
ter optimization technique is implemented to improve the performance of the
designed models by finding the optimal combination of hyper parameter values,
including the regularization parameters and kernel options [13].

Classification results are measure using f-score, precision, and recall for each
LME exercise recognition and are listed in Table 2. Individual accuracies of no
lower that ≥96% are found using a single wrist-worn 3D wearable sensor, with
an overall accuracy of ≥98%. The accuracy of the lower body exercises does not
suffer form the sensor placement on the right wrist due to wrist movements that
are also associated with these exercises.

Repetition Counting: Data from the best suitable axis, either from the
accelerometer or from the gyroscope sensor is used to count the repetitions.
The best axis data from the sensor is filtered using a Savitzky-Golay filter [15]
of order 4 and a repetition counting algorithm (peak-to-peak detection (PP) or
threshold crossing (ThC)) is used to count the repetition.

Repetition counting results for each exercise are accurate to 100% with
repetition rate of a repetition per one, two and four seconds.

Table 2. Performance measures associated with each LME exercise

Exercise Precision Recall F1-score Exercise Precision Recall F1-score

Upper body LME exercises

Ex 1 1.000 1.000 1.000 Ex 6 1.000 1.000 1.000

Ex 2 1.000 1.000 1.000 Ex 7 1.000 1.000 1.000

Ex 3 1.000 1.000 1.000 Ex 8 1.000 0.963 0.981

Ex 4 1.000 1.000 1.000 Ex 9 1.000 1.000 1.000

Ex 5 1.000 1.000 1.000 Ex 10 1.000 1.000 1.000

Lower body LME exercises

Ex 11 1.000 1.000 1.000 Ex 13 1.000 1.000 1.000

Ex 12 0.963 0.963 0.963 Ex 14 1.000 0.963 0.963
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4 Conclusion

Physical activity, as part of cardiac rehabilitation, is crucial to reducing the
likelihood of premature death and increasing the quality of life following CVD.
While patients are encouraged to join community-based programmes, uptake
and adherence are very low. Our mobile application is created to be a personal
trainer/rehabilitator to the patient and to provide live and summary feedback
in order to increase the motivation to continue exercising. The proposed sys-
tem, whose design was driven by behavioural change theory in combination
with patient feedback, is a starting point of the independent recovery plan for
the patient and aims to motivate the user to uptake and adhere long term to
a personalized programme. The application is currently undergoing extensive
user/patient testing as part of a clinical trial with results to be reported in the
future.
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Abstract. The purpose of this research is to explore the factors affecting
intention to use a mobile application for mental health in South Korea. Based on
the Health Belief Model and Extended Technology Acceptance Model, this
research aims to advance our understanding of mobile app adoption for mental
health. A total of 218 men and women participated in an online survey. Results
showed that perceived usefulness and perceived ease of use had significant
effects on all stages of behavioral intention: app subscription, information
seeking, information sharing, and following recommendations. Subjective norm
and output quality were also significant predictors for intention to use a mobile
app. Results provide useful insights for utilization of mobile apps to address
mental health issues in Korean society.

Keywords: Mental health � Mental health app � Mobile app
Extended Technology Acceptance Model

1 Introduction

1.1 Purpose of Research

The purpose of this research is to explore the factors affecting intention to use a mobile
application for mental health in South Korea. Despite the high suicide rates and
increasing mental health illness [1], little attention has been paid to mobile applications
as a tool to help people receive appropriate help and treatment. Given the high pen-
etration of smartphones among Koreans [2], mobile applications are a promising venue
for prevention and treatment of mental illnesses in Korean society. Based on the Health
Belief Model and Extended Technology Acceptance Model, we explored socio-
psychological and technological factors in determining people’s intention to use a
mobile application for mental health.

1.2 Research Model

As shown in Fig. 1, perceived Ease of Use and perceived Usefulness are two primary
factors influencing adoption of mobile applications for mental health. Extended Tech-
nology Acceptance Model (TAM2) posits that Subjective Norm, Image and Output
Quality influence people’s perceived Usefulness which, in turn, leads to Intention to
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Use, along with perceived Ease of Use [3]. Perceived Risk is one of the key constructs in
Health Belief Model (HBM), a widely used theoretical framework to understand health
behaviors [4]. By integrating HBM and TAM2, this research aims to advance our
understanding of mobile app adoption for mental health.

Subjective Norm was defined as “A person’s perception that most people who are
important to him/her think he/she should or should not perform the behavior in
questions” (p. 302) [5]. Image was operationalized as “the degree to which use of an
innovation perceived to enhance one’s status in one’s social system” (p. 195) [6].
Perceive risk was operationally defined as “one’s subjective perception of the risk of
contracting a health condition and feelings concerning the seriousness of contracting an
ailment or of leaving it untreated” [7]. Output Quality was defined as users’ perceptions
of “how well the system performs the tasks that match their job relevance” (p. 985) [8].
Output Quality was measured by four dimensions in the current study: treatment
information, self-diagnosis, hospital referral, and online counseling.

Perceived Ease of Use was defined as “the degree to which a person believes that
using a particular system would be free of effort” [9]. Perceived Usefulness referred to
“the degree to which a person believes that using a particular system would enhance his
or her job performance (p. 320) [9]. Finally, Intention to Use was measured by four
outcome variables: subscription of the mobile app, information seeking, information
sharing, and following recommendations [10].

2 Methods

A total of 228 people participated in the online survey. Among the participants, 51.3%
were males while 48.7% were females. Their average age was 39.16 years (Min =
20.00, Max = 58.00, SD = 10.45). Table 1 shows basic characteristics of the sample.

The online survey was conducted by a professional research firm. Screen shots of a
mobile app were shown with explanations of its key features. The mobile app is
currently provided by the Ministry of Patriots and Veterans Affairs in South Korea.
After showing features of the mobile app, participants’ intention to use the app as well
as other factors were measured.

Fig. 1. Proposed research model
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Key descriptive statistics are as follows:Usefulness (Four items, M = 3.6, SD = .66,
Cronbach’s a = .81), Ease of Use (Three items, M = 3.62, SD = .70, Cronbach’s
a = .79), Subjective Norms (Two items, M = 2.87, SD = .89, Cronbach’s a = .77),
Image (Two items, M = 2.80, SD = .81, Cronbach’s a = .73), Perceived Risk (Six
items, M = 3.61, SD = .68, Cronbach’s a = .83), Output Quality (Twelve items,
M = 3.60, SD = .65, Cronbach’s a = .94), and Intention to Use the Mental Health App
(Seven items, M = 3.47, SD = .66, Cronbach’s a = .87). Scales for measuring all
variables were adopted and modified based on Venkatesh and Davis [3]’s and Lin [11] ’s
items. Each statement was measured on a 5-point Likert scale from 1 (strongly disagree)
to 5 (strongly agree).

3 Results

3.1 Attitudes Toward Mental Health Services

First, we examined barriers deterring use of mental health services. About half of
participants (47.8%) mentioned social stigma as a barrier. Table 2 shows a list of
barriers including lack of information (17%) and shame (9.6%).

Next, participants were asked: “If you are suffering from mental health problems,
who would be the first to ask for help?” As shown in Table 3, most participants
responded that they would look for mental health information via the Internet (40.8%),
followed by family (25.4%) and doctor (11.8%).

Table 1. Sample characteristics

Table 2. Barriers of mental health care use

Lack of
information

Medical
mistrust

Treatment
cost

Shame Stigma Total

N (%) 40 (17.5%) 30 (13.2%) 27 (11.8%) 22 (9.6%) 109 (47.8%) 228 (100%)
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3.2 Correlations Among Variables

Table 4 displays Pearson Correlations among variables.

3.3 Tests of the Proposed Model

Structural equation models were run to test the proposed research model with four
different outcome variables (app subscription, information seeking, information shar-
ing, and following recommendations). In this study, AMOS was used and the esti-
mation procedure was maximum likelihood estimation. Table 5 provides information
on the fit indices of the four models, indicating acceptable fits.

Three endogenous variables were tested in model 1. Perceived usefulness was
found to be significantly determined by subjective norm, treatment information, self
diagnosis, online counseling and perceived ease of use, resulting in an R2 of .74. The
dependent variable, subscription app, was significantly determined by perceived use-
fulness and perceived ease of use, resulting in R2 of .49.

Table 3. The first help-seeking for mental health crisis

Most likely Second most likely Third most likely Total index

Friends 17 (7.5%) 27 (11.8%) 39 (17.1%) 14400
Family 58 (25.4%) 55 (24.1%) 36 (15.8%) 32000
Doctor 27 (11.8%) 48 (21.1%) 35 (15.4%) 21200
For myself 26 (11.4%) 39 (17.7%) 45 (19.7%) 20100
Internet 93 (40.8%) 41 (18.0%) 43 (18.9%) 40400
Religion 6 (2.6%) 13 (5.7%) 12 (5.3%) 5600

Table 4. Correlations between variables

13.Following Recommendations

*p<.05, **p<.01
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In model 2, perceived usefulness was significantly determined by subjective norm,
treatment information, self diagnosis, online counseling and perceived ease of use at R2

of .74, indicating that the variables explained 74% of the variance in perceived use-
fulness. The dependent variable, information seeking, was significantly determined by
perceived usefulness and perceived ease of use, resulting in R2 of .49.

In model 3, perceived usefulness was found to be significantly determined by
subjective norm, treatment information, self diagnosis, online counseling and perceived
ease of use, resulting in an R2 of .74. Information sharing was significantly determined
by perceived usefulness and perceived ease of use, resulting in R2 of .38.

In model 4, the combined effects of subjective norm, treatment information, self
diagnosis, online counseling and perceived ease of use explained 73.7% of the variance
in perceived usefulness. Perceived usefulness, easy to use explained 36% (R2 = .36) of
the variance in the dependent variable, following recommendations.

Figure 2 shows the resulting path coefficients of the proposed research model 1.
The results showed that subject norm (b = –.12, p < .05), treatment information
(b = .28, p < .01), self diagnosis (b = .12, p < .05), and online counseling (b = .25,
p < .01) significantly influenced perceived usefulness. Perceived ease of use was found
to be significant in influencing both perceived usefulness (b = .15, p < .01) and
intention to subscribe the app (b = .16, p < .01). We also found a significant indirect
path between perceived ease of use and intention to use app, mediated by perceived
usefulness (b = .09, p < .05). We noted that perceived usefulness not only played a
key role in its direct effect on intention to use the app (b = .59, p < .01), but also as a
mediator variable (Fig. 2).

Table 5. Fit Indices of proposed research models

Fit index v2 Df GFI NFI CFI RMSEA SRMR

Level of acceptable fit >.90 >.90 >.90 <.06 <.05
Proposed research model 1 57.96 6 .95 .97 .97 .18 .02
Proposed research model 2 63.68 6 .95 .96 .97 .19 .02
Proposed research model 3 61.61 6 .96 .96 .97 .19 .03
Proposed research model 4 34.23 6 .97 .98 .98 .13 .03

Fig. 2. Path model 1 (Mental health app subscription)
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In model 2 (see Fig. 3) and model 3 (see Fig. 4), the same results were obtained as
in model 1. In model 4 (see Fig. 5), on the other hand, perceived ease of use had no
significant effect on intention to follow recommendations (b = .08, p > .05) (Tables 6
and 7).

Fig. 3. Path model 2 (Information seeking)

Fig. 4. Path model 3 (Information sharing)

Output Quality
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Fig. 5. Path model 4 (Following recommendations)
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Table 6. Results of path model 1 and path model 2

Path Research model 1
subscription

Research model 2
information seeking

b S.E C.R. b S.E C.R.

Direct effect
Subject Norm ! Usefulness –.12 .04 –2.37* –.12 .04 –2.37*
Image ! Usefulness –.05 .05 –0.93 –.05 .05 –0.93
Risk Perception ! Usefulness .04 .04 0.99 .04 .04 0.99
Treatment Information ! Usefulness .28 .06 4.21** .28 .06 4.21**
Self Diagnosis ! Usefulness .12 .06 1.91* .12 .06 1.91*
Hospital Referral ! Usefulness .05 .06 0.74 .05 .06 0.74
Online Counseling ! Usefulness .25 .06 3.62** .25 .06 3.62**
Easy to Use ! Usefulness .15 .04 3.59** .15 .04 3.59**
Usefulness ! Intention to Use .59 .07 10.2** .53 .07 9.12**
Easy to Use ! Intention to Use .16 .06 2.76** .23 .06 3.99**
Indirect effect
Easy to Use ! Usefulness ! Intention to Use .09* .04 – .08* .03 –

Subject Norm ! Usefulness ! Intention to
Use

–.07 .04 – –.06 .03 –

Image ! Usefulness ! Intention to Use –.03 .03 – –.03 .03 –

Risk Perception ! Usefulness ! Intention to
Use

.02 .02 – .02 .02 –

Treatment
Information ! Usefulness ! Intention to
Use

.16** .05 – .15** .05 –

Self Diagnosis ! Usefulness ! Intention to
Use

.07 .05 – .06 .04 –

Hospital Referral ! Usefulness ! Intention
to Use

.03 .04 – .02 .03 –

Online Counseling ! Usefulness ! Intention
to Use

.15** .04 – .14** .04 –

*p < .05, **p < .01

Table 7. Results of path model 3 and path model 4

Path Research model 3
information sharing

Research model 4
following
recommendations

b S.E C.R. b S.E C.R.

Direct effect
Subject Norm ! Usefulness –0.12 0.04 –2.37* –0.12 0.04 –2.30*
Image ! Usefulness –0.05 0.05 –0.93 –0.05 0.05 –0.93
Risk Perception ! Usefulness 0.04 0.04 0.99 0.04 0.04 0.99

(continued)
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4 Discussions

The main aims of this study were to identify key determinants of intention to use a
mental health app. The results of path analysis showed that perceived usefulness and
perceived ease of use had significant effects on all stages of behavior intention (app
subscription, information seeking, information sharing, and following recommenda-
tions). In addition, the two external factors, subjective norm and output quality, were
also significant in predicting intention to use app. Among sub factors of output quality,
treatment information, self-diagnosis and online counseling were significantly associ-
ated with increased perceived usefulness. Hospital referral, on the other hand, had no
significant effect on perceived usefulness.

Table 7. (continued)

Path Research model 3
information sharing

Research model 4
following
recommendations

b S.E C.R. b S.E C.R.

Treatment Information ! Usefulness 0.28 0.06 4.21** 0.28 0.06 4.21**
Self Diagnosis ! Usefulness 0.12 0.06 1.91* 0.12 0.06 1.91*
Hospital Referral ! Usefulness 0.05 0.06 0.74 0.05 0.06 0.74
Online Counseling ! Usefulness 0.25 0.06 3.62** 0.25 0.06 3.62**
Easy to Use ! Usefulness 0.15 0.04 3.59** 0.15 0.04 3.59**
Usefulness ! Intention to Use 0.50 0.08 7.81** 0.55 0.08 8.52**
Easy to Use ! Intention to Use 0.16 0.07 2.55** 0.08 0.08 1.21
Indirect effect
Easy to Use ! Usefulness ! Intention to
Use

.08* .03 – .08* .03 –

Subject Norm ! Usefulness ! Intention
to Use

–.06 .03 – –.06* .03 –

Image ! Usefulness ! Intention to Use –.03 .03 – –.03 .03 –

Risk
Perception ! Usefulness ! Intention to
Use

.02 .02 – .02 .02 –

Treatment
Information ! Usefulness ! Intention to
Use

.14** .05 – .15** .05 –

Self Diagnosis ! Usefulness ! Intention
to Use

.06 .04 – .07 .04 –

Hospital
Referral ! Usefulness ! Intention to
Use

.02 .03 – .03 .04 –

Online
Counseling ! Usefulness ! Intention to
Use

.13** .04 – .14** .04 –

*p < .05, **p < .01
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Previous studies [12] have shown that social factors (subjective norm and image)
influenced acceptance of new technologies. Similarly, this study confirmed the sig-
nificant relationships between subjective norm and perceived usefulness. However,
unlike previous studies [12], subjective norm was negatively associated with perceived
usefulness. These results are likely due to the high level of mental health stigma in
South Korea. This study also found online counseling to be a strong influential factor of
perceived usefulness of mental health app. However, no significant relationship was
found between hospital referral and perceived usefulness. The results supported current
stigma researches [13] in that stigma attached to mental illnesses discourages people to
help-seeking. Berger et al. [14] proved that people with stigmatized illnesses were more
likely to use online health information than people with non-stigmatized conditions.
Given the increasing mental health problems and the widespread use of smartphones in
South Korea, mobile apps for mental health provide a great potential to aid those with
symptoms receive appropriate and timely treatment and care.
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Abstract. An 8-channel ultra low power programmable wireless ExG (ECG,
EMG and EEG) system-on-chip (SoC) design for bio-signal processing appli-
cations is presented in this paper. The proposed design consists of a capacitive
coupled programmable gain instrumentation amplifier (CC-PGIA) with an
improved transconductance of amplifier. A 12-bit programmable hybrid SAR-
Cyclic analog-to-digital converter (ADC) is introduced for improved perfor-
mance and low power consumption that consists of a 6-bit SAR ADC (SADC)
followed by a 6-bit cyclic ADC (CADC). The remaining blocks implemented in
the SoC are programmable low pass filter (PLPF), programmable wireless
transmitter (PWT), power management unit (PMU) and a digital block. The
proposed programmable wireless ExG (PW-ExG) design is implemented in
180 nm standard CMOS process with a core area of 4 mm2. The performance
parameters are found to be, power consumption of 286 µW @ 0.6 V supply
voltage, input referred noise voltage of 0.96 µVrms over 0.5 Hz–1 kHz range,
gain of 30–65 dB and signal-to-noise-and-distortion ratio (SNDR) of 69.2 dB.

Keywords: PW-ExG (ECG, EMG and EEG) SoC � CC-PGIA
Cyclic-SAR ADC � Programmable wireless transmitter � Ultra low power
IoT healthcare system

1 Introduction

Technologies related to IoT have been developed recently to improve the interface
between healthcare architectures and portable bio-medical systems [1]. The main
advantage of IoT technology is that it enables real time monitoring of the patient’s
health by integrating wireless transmitting systems with, let us say, ExG signal pro-
cessing circuits. In bio-medical signal processing applications, remote monitoring of
signals such as electrocardiography (ECG), electromyography (EMG) & electroen-
cephalography (EEG) through wireless is difficult due to challenges such as signal
radius coverage meeting clinical requirements and designs that consume ultra low
power, low cost and higher efficiency [2, 3].

In last two decades, significant amount of research has been carried out both at
architectural level and circuit implementation for analog front end (AFE) and wireless
transmitters [1–4] to improve the performance and power efficiency. The AFE consists
of instrumentation amplifier (IA), PLPF and ADC. The operational transconductance

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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amplifier (OTA) is the fundamental building block for IA design; different topologies
of OTA such as folded cascode, recycling structure, and improved recycling structure
[5] have been implemented to improve the ratio of transconductance. In this paper an
improved transconductance amplifier with DC offset adjustment circuit is used in
CC-PGIA to improve the performance such as common mode rejection ratio (CMRR),
power supply rejection ratio (PSRR) and input referred noise without increasing the
power consumption and area.

The performance and power consumption of AFE also depend up on ADC sub-
block while the ADC performance and power consumption are very critical in pro-
cessing the bio-signals. Successive approximation register (SAR) ADC is most com-
monly used for bio-potential signal processing applications [6, 7] which at higher
resolutions (� 10-bits) has performance degradation due to capacitive mis-matches
also power consumption increases significantly due to dynamic switching of the digital-
to-analog converter (DAC). In this paper, authors introduce a hybrid SAR-Cyclic ADC
for 12-bit operation with low power consumption and improved performance. The
proposed SAR-Cyclic ADC overcomes the limitations of the conventional SAR ADC.

Apart from AFE, power consumption by the wireless transmitter is also significant
in overall ExG SoC design. In this work, a low power wireless transmitter, operating in
the unlicensed 2.4 GHz ISM band, has been designed following IEEE 802.15.4
specifications [8]. The power consumption of this transmitter is reduced by operating at
lower supply voltage (� 0:4 V) generated from the internal low power regulator and
the power efficiency is improved by calibration.

The organization of this paper is as follows: Sect. 2 describes the architecture of the
proposed PW-ExG SoC, Sect. 3 describes the circuit implementation, Sect. 4 presents
the simulation results and finally Sect. 5 presents the conclusion.

2 Architecture of the Proposed PW-ExG SoC Design

Figure 1 shows the architecture of the proposed 8-channel PW-ExG SoC design. The
operation of the single channel signal path from input electrodes to wireless transmitter
output can be described as follows: the differential analog inputs VINP, INM are applied to
CC-PGIA block through electrodes, the CC-PGIA circuit can be programmed for a gain
of 30–65 dB with digital control bits based upon ExG input signal amplitude levels and
the differential outputs of the CC-PGIA are given as inputs to PLPF which is a second
order filter. The bandwidth of the PLPF can be programmed from 500 Hz–4 kHz with
digital control bits based upon ExG signals operating frequency bands and the filtered
outputs are given to the proposed 12-bit hybrid SAR-Cyclic ADC through 8 � 1
ADC MUX. The proposed SAR-Cyclic ADC can be programmed for 10-bit or 12-bit
resolutions based on ExG signal amplitude level, the SAR-Cyclic ADC consists of 6-bit
SAR ADC followed by 6-bit Cyclic ADC for 12-bit operation. The 12-bit SAR-Cyclic
ADC converts analog input provided from PLPF to digital format. The digital data from
ADC is post processed through digital block and transmitted over wireless transmitter,
while the post processed digital data can also be displayed on display system for
monitoring. The performance and power efficiency of the proposed PW-ExG SoC are
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improved by implementing an improved transconductance amplifier with DC offset
cancellation and with proposed 12-bit SAR-Cyclic ADC.

The timing operation of the PW-ExG SoC design can be described as follows: the
power-on-reset (POR) circuit generates RST signal with 10 mS delay after power
supply ramp up while the PMU sub blocks settle within 50 mS time. The calibration
circuit provides codes for signal processing path circuits within 15 mS. The analog
front end (AFE) channel processes input signal in 12 mS while 12-bit hybrid SAR-
Cyclic ADC converts analog input to digital format in 50 uS and the digital block
performs post processing in 5 mS. Finally, the data is transmitted by the wireless
transmitter which has a settling time of less than 0.5 ns.

3 Circuit Implementation of the PW-ExG SoC Design

3.1 CC-PGIA Design

Figure 2(a) shows the block diagram of the CC-PGIA design. The differential analog
inputs VEIP, EIM are applied to CC-PGIA and the differential outputs VOM, OP are
captured. The gain of the CC-PGIA design is given as DV ¼ CIN=CF , where CIN is
digitally programmable for the gain range of 30–65 dB based upon ExG signals
amplitude levels and the ADC input dynamic range.

The improved transconductance amplifier with DC input common adjustment cir-
cuit is shown in Fig. 2(b). The transistors M1P–M6P & M3N–M8N form fully differential
amplifier while the transistor M1N–M2N are implemented to improve the transcon-
ductance. These transistors are biased by M5R. The transistors M1R–M5R adjust the
input common mode voltage to VR and this reduces the DC offset voltage due to
electrodes. The transistors M1C–M8C forms the static CMFB circuit to adjust the output
common mode voltage. The improved transconductance amplifier increases the DC
gain, CMRR, PSRR and reduces the input referred noise voltage.

Table 1 shows the performance of CC-PGIA and a comparison with recent designs.
Performance parameters are found to be CMRR of 122 dB, PSRR of 124 dB, input
referred noise of 0.96 µVrms and SNDR of 75.8 dB @ 500 Hz input frequency. Power
spectrum analysis has been carried out to capture SNDR and Fig. 3 shows the SNDR to
be 75.8 dB @ 500 Hz input frequency. The results demonstrate that most of the
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performance parameters are better than those of recent designs and highly suitable for
bio-medical applications.

3.2 SAR-Cyclic ADC Design

In the proposed PW-ExG SoC design authors introduced a fully differential hybrid
12-bit SAR-Cyclic ADC to improve the performance and power efficiency. Figure 4
shows the architecture block diagram of the SAR-Cyclic ADC. The coarse ADC is
implemented with 6-bit SAR architecture [6, 7] while the fine ADC is implemented

Fig. 2. Block diagram of CC-PGIA and proposed amplifier design

Table 1. Performance parameters
comparison

[9]
2012

[10]
2016

This
work

Technology (nm) 180 180 180

Supply voltage (V) 0.6 0.5 0.6

Supply current (µA) 1.0 1.1 0.48

CMRR (dB) >120 102 122

PSRR (dB) >120 104 124

Input referred noise
(µVrms)

5.41 1.32 0.96

SNDR (dB) 63.0 N/A 75.8 Fig. 3. CC-PGIA SNDR vs frequency
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with 6-bit cyclic architecture [11] and the integration of the both ADCs is carried out
using residual amplifier [12]. The advantage of this architecture is that it reduces the
capacitor mis-matches for improving performance and reduces the DAC switching
logic for improving power efficiency in conventional SAR ADC at higher resolutions.
The selection of Cyclic ADC for fine resolution is due to the requirements of lower
sampling speeds, high performance and lower power consumption.

The functional description of the SAR-Cyclic ADC is provided as follows: the
differential analog inputs VAINP;AINM are applied to coarse SADC which performs 6-bit
operation and provides coarse digital output D1<5:0> to ADC digital logic. The error
voltage from the SADC is amplified by a gain of 16 using residual amplifier
(RA) which improves voltage dynamic range and provides output to fine 6-bit CADC.
The CADC performs 6-bit operation and provides fine digital output D2<5:0> to ADC
digital logic. The ADC digital logic performs data synchronization, error correction and
combines D1<5:0> & D2<5:0> bits to provide a 12-bit D<11:0> digital output.

The circuit implementation of the 6-bit SADC is adopted from [6] and its perfor-
mance is improved by reducing the capacitor mis-matches. The cyclic ADC archi-
tecture is adopted taken from [11] and designed at 0.6 V supply voltage while the RA
circuit is fully differential-bias based inverter with common mode feedback (CMFB).
The proposed ADC is programmable to 10-b mode (i.e., 5-b SADC and 5-bit CADC)
using MDC control bit.

The performance parameters of the SAR-Cyclic ADC for both 10-b/12-b operation
and comparison with recent designs are provided in Table 2. The design has a dif-
ferential non-linearity (DNL) of ±0.4 LSB and integral non-linearity (INL) of ±0.51
LSB while among dynamic parameters, ENOB is found to be 11.24. Power spectrum
analysis was carried out to capture SNDR, Fig. 5 shows an SNDR of 69.4 dB @
500 Hz input frequency. Thus, it can be safely said that most of the performance
parameters of the proposed ADC are better than those of recent designs and the ADC is
highly suitable for bio-medical applications.

Table 2 Performance parameters comparison of the proposed ADC with recent designs

[6] 2014 [7] 2015 [11] 2016 This work

Technology (nm) 180 180 180 180
Supply voltage (V) 0.6 0.6 0.9 0.6
Architecture SAR SAR Cyclic SAR-Cyclic
Sampling rate (KHz) 100 20 500 100
Resolution (bits) 10 10 12 10 12
DNL (LSB) 0.5 0.46 ±0.5 ±0.34 ±0.4
INL (LSB) 0.89 0.44 +3.2/−2 ±0.42 ±0.51
SNDR (dB) 57.14 58.34 62.68 58.7 69.4
ENOB (bits) 9.2 9.4 10.1 9.46 11.24
Power (W) 390n 38n 120µ 124n 308n
FOM (fJ/conv-step) 6.7 2.8 241 1.76 1.27
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3.3 Low Power and Programmable Wireless Transmitter

In design of the wireless transmitter, the super-regenerative OOK transmitter archi-
tecture is used [3] following the IEEE 802.15.4 specifications. Figure 6(a) shows the
programmable wireless transmitter block diagram where the voltage controlled oscil-
lator (VCO) is designed with complementary cross coupled NMOS/PMOS structure
and RF varactor capacitor is used for frequency tuning. Calibration is done to improve
performance by controlling VC voltage and aspect ratios of P[1–4] and N[1–4] devices.
The power consumption of the circuit is reduced by operating on 0.4 V internal supply
voltage. Figure 6(b) shows the TX output power spectrum at 2.4 GHz tuning frequency
and output power is found to be −27.89 dBm compared to −16.36 dB in [3]. Power
consumption of transmitter is 276.5 µW @ 0.4 V supply voltage.

The PLPF block is designed with improved transconductance amplifier to improve
the performance and remaining sub-blocks PMU [6], calibration & digital [3] are
designed considering PW-ExG performance and power efficiency.

4 Simulation Results

In this section simulation results of the proposed PW-ExG SoC design are discussed.
The proposed design is implemented in 180 nm standard CMOS process with a core
area of 2 mm � 2 mm. The worst-case RC post layout simulations are carried out to
capture the performance parameters at block level and PW-ExG top level. Figure 7(a)
and (b) shows the ±3r Montecarlo offset voltages for SAR ADC comparator and

Fig. 5. ADC SNDR vs frequency

Fig. 6. (a) Block diagram of programmable wireless transmitter (b) Transmitter output spectrum
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Cyclic ADC residual amplifier. The SAR ADC comparator offset voltage is ±36 lV
and the same for Cyclic ADC residual amplifier is ±30 lV. The variation of the offset
voltages is reduced by one time calibration. Results show that the comparator and
residual amplifier designs meet 12-bit accuracy.

Figure 8(a) shows the simulation setup to validate the results at receive end and
Fig. 8(b) shows the data transmission bits at the input of the transmitter, output of the
transmitter and output of the receiver model. Data from the PW-ExG SoC design is
transmitted over antenna with 2.4 GHz carrier frequency. The Verilog-a model of
receiver is built to capture the digital data, de-modulate and analog output is captured
for performance analysis after filtering through programmable 12-bit ideal DAC.
Results show that there are no data errors, meaning the transmitted data is recovered
fully at the receiving end.

The ExG signals are taken from [14, 15] and given as inputs to the 8-channel PW-
ExG SoC and the results are captured at the output of the ideal 12-bit DAC. Results
show SNDR @ 100 Hz input signal as 69.9 dB for ECG signals and at 500 Hz input
signal is 69.2 dB for EMG signals. Figure 9(a) and (b) shows the ECG and EMG

Fig. 7. (a) SAR ADC comparator offset voltage (b) Cyclic ADC residual amplifier offset voltage

Fig. 8. (a) PW-ExG SoC simulation setup (b) Transmitter and receiver data pattern

Fig. 9. ECG and EMG signals captured at the output of the Ideal DAC
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signals captured at the output of the Ideal DAC. Table 3 shows the performance
parameters of the proposed design and a comparison with recent state of art designs.

5 Conclusion

In this paper, a design of ultra-low power PW-ExG SoC for IoT healthcare system has
been presented. It has 8-channels supporting various ExG signal amplitudes and fre-
quency bands. Its performance is improved by CC-PGIA design, hybrid SAR-Cyclic
ADC, PWT and calibration technique while the power consumption is reduced by
operating on a 0.6 V supply voltage and sub-threshold region. The results in Table 3
show that most of the performance parameters are better than that of recent designs
making the design suitable for bio-medical and IoT healthcare applications.
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Table 3. Performance parameters comparison with recent state of art designs

[13] 2013 [4] 2015 [3] 2015 [2] 2016 This work

Technology
(nm)

130 130 180 180 180

Supply
voltage (V)

1.0 1.0 1.2 0.95 0.6

Sensor type Neural, ExG ExG ECG ECG ExG
Number of
channel (s)

1 4 1 1 8

AFE gain
(dB)

42–78 40–78 20–28 34 30–65

Input ref
noise (µVrms)

– <2 – 16 0.96

ADC arch 8-bit SAR 8-bit SAR 12-bit SDM 8-b LC
ADC

12-b SAR-
Cyclic

TX data rate 100 kb/s 200 kb/s 5 Mb/s 90 kb/s 5 Mb/s
TX band
(GHz)
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TX O/P
power (dBm)

−16.0 −18.5 −16.36 −16.0 −27.89

Power
consumption
(µW)
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(100% duty
cycled)

19 @
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duty cycled)

606 @
(50% duty
cycled)

9.72 (-) 286 @
(50% duty
cycled)

Area (mm) 2.5 � 3.3 3.3 � 2.5 1.52 � 1.55 1.9 � 2.0 2.0 � 2.0
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Abstract. Recently, it has been proposed, that nanodevices can
be injected in the human body and perform non-invasive medical
diagnostics. However, due to their small size, a plethora of such nanode-
vices need to be used in practical applications, thus, creating a nanonet-
work, which collects the information and communicates with out-of-body
nodes. For these networks, several models have been proposed for the
THz channel in the in-vivo scenario. Most of them are based on well-
defined theories and physical laws, while some of them are based on
experiments. In this paper, we review the state-of-the-art of channel
modeling of in-vivo communications in the THz band and discuss future
trends and research challenges.

Keywords: Terahertz nanonetworks · In-vivo communication
Nanotechnology · Channel modeling

1 Introduction

In recent years, advancements in nanotechnology allowed to envision the use of
nanomachines in everyday human life. Nanodevices can be utilised for a plethora
of different applications, ranging from flexible electronics to medical technologies
[1]. Coordinating and information sharing among them can lead to the creation of
nanonetworks that cover different areas simultaneously and can perform several
tasks in a non-invasive way [2]. As a result, nanosensing has emerged as a very
promising field. Nanosensors are not just tiny sensors, but complete nanoma-
chines that can identify and measure events in the nanoscale. Especially for
medical applications, it provides a novel way of diagnosis, since the nanosensors
can –for example– detect chemical compounds in concentrations as low as one
part per billion [3]. However, in order to achieve such sensing accuracy, the range
of sensing must be limited to the nano-environment –just a few micrometers in
most cases– of the nanomachine. Also, the need of a mechanism to transmit the
collected information outside the body is a challenging task of the nanonetworks
scientific field.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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As mentioned above, nanonetworks can cover an area of interest in the human
body and perform nanosensing to detect irregularities in the tissues or even per-
form standard medical exams, in a non-invasive way. It must be noted, that
nanonetworks can also be used as drug delivery systems. With the use, recently,
of nanomaterials, such as graphene and its derivatives, communication in a
nanonetwork can be made feasible. It has been found that the operational fre-
quency of nanoantennas, constructed from such materials, belongs in the band
of THz (0.1 THz–10 THz), otherwise known as the terahertz gap. Note that THz
radiation is non-ionizing and, as such, it is thought to be safe for the human body.

In this paper, we review the state-of-the-art of channel modeling of in-vivo
communications in the THz band and discuss future trends and research chal-
lenges.

2 Noise Models

Noise in THz systems can originate from multiple sources. The main contribu-
tion comes from the molecular absorption noise, which is generated during the
transmission process. Other sources include the noise created by surrounding
nanomachines or the same device, termed as background noise. However, while
there is no accurate noise model for graphene-based electronic devices, the elec-
tronic noise temperature is considered to be very low [4]. As such, the research
mostly focuses on the molecular absorption noise.

2.1 Background Noise

Kokkoniemi et al. [5] described the background noise with the help of the sky
noise model. Sky noise is created by the temperature of the absorbing medium,
causing the medium to be an effective black body radiator and, as such, it is inde-
pendent of the transmitted signals. Sky noise is producing a noise temperature
Tmol, which can be evaluated as

Tmol(r, f) = T0

(
1 − e−a(f)r

)
, (1)

where T0 is the reference temperature and a(f) is the absorption coefficient of
the medium in terms of frequency f .

In the past, this model was used to describe the atmosphere as a medium for
transmission [4]. In [6] it was proposed that this model is not sufficient to describe
the body radiation noise, since it is not reliable to use the molecular temperature
as a parameter in order to evaluate the radiation from the absorbing medium in
human tissues. Kokkoniemi et al. [5] and Zhang et al. [6] used Planck’s law to
evaluate the background radiation noise as

B(T0, f) =
2hπ(nf)3

c2

(
exp

(
hf

kBT0

)
− 1

)−1

, (2)
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where kB is the Boltzmann and h is the Planck constants, correspondingly.
Planck’s function is multiplied with π to transform the unit from W/Hz/cm2/sr
to W/Hz/cm2.

Assuming that the human tissue can be approximated as an isothermal and
homogeneous layer with thickness r and that this radiation is created only from
the original energy state of the molecules (black body radiation) the noise power
can be evaluated as

Nb(r, f) = lim
r→∞

∫ r

0

B(T0, f)a(f)e−a(f)sds =

= lim
r→∞ B(T0, f)

(
1 − e−a(f)r

)
= B(T0, f). (3)

Taking into account the antenna aperture term, due to the isotropic radiation at
the receiver, the power spectral density (psd) of the body radiation noise with
the unit W/Hz is given by

Nb(f) = B(T0, f)
c2

4π(n0f0)2
. (4)

2.2 Molecular Absorption Noise

This subsection is devoted to the molecular absorption noise, which contributes
the most in the noise of the THz channel. What makes this noise different than
usual is that it is self-induced, which means that it is induced by the transmis-
sions of the users sharing the medium. A part of the radiation that is transmit-
ted is absorbed by the molecules of the medium and becomes kinetic energy, i.e.
heat. The other part is re-emitted back in random directions and, as such, it is
considered as noise to the receiver. In the pioneering work of Jornet et al. [3],
they derived a model for the psd of the molecular absorption noise for the atmo-
sphere. The parameter that describes this phenomenon is the emissivity of the
channel, ε, which is defined as

ε(f, r) = 1 − τ(f, r), (5)

where f is the frequency of the electromagnetic propagating wave, r stands for
the total path length and τ is the transmissivity of the medium given by the
Beer-Lambert Law

τ(f, r) =
P0

Pi
= e−a(f)r, (6)

with Pi and P0 being the incident and radiated power, respectively, and a(f) is
the absorption coefficient of the medium. Then, the equivalent noise temperature
due to molecular absorption can be written as

Tmol(f, r) = T0ε(f, r), (7)
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where T0 is the reference temperature and ε is given by (5). For a given band-
width, B, the molecular absorption noise power at the receiver can be evalu-
ated as

Pn(f, r) =
∫

B

Nm(f, r)df = kB

∫

B

Tmol(f, r)df. (8)

This model can be adjusted to fit a different medium. As such, Yang et al. [1]
and Piro et al. [7] proposed the use of the same model for in-vivo communica-
tions. The only difference is that they use the extinction coefficient, κ, instead
of the absorption coefficient. The noise power spectral density is, then, given by

Nm(f, r) = kBTmol = kBT0

(
1 − e−4πfκ(f)r/c

)
(9)

and the absorption coefficient is derived from the extinction coefficient by using
the following formula

a(f) =
4πf

c
κ(f). (10)

Kokkoniemi et al. [5] considered that, since it is a self-induced noise, the source
term (Planck’s function) in the sky noise model should be replaced by an appro-
priate transmit energy function. Furthermore, they noticed that the molecular
absorption noise energy at point r depends on the derivative of the complement
of the transmittance. Then, accounting for the spreading loss, 1/(4πr2), as well,
as the transmit signal psd, STx(f), they get the existing molecular absorption
noise model for the receiver at distance r from the transmitter as

Nm(r, f) =
STx(f)
4πr2

(
1 − e−a(f)r

)
. (11)

Based on [5], Zhang et al. [6] proposed the following formula

Nm(r, f) = STx(f)
(

c

4πnfr

)2 (
1 − e−a(f)r

)
, (12)

where STx(f) is the transmitted signal psd and the term (c/(4πnfr))2 accounts
for the spreading loss and the antenna aperture.

It is worth mentioning here, that this formula was derived with the assump-
tion that all the absorbed energy from the transmitted signal received at the
receiver would turn into molecular absorption noise psd at point r.

2.3 Total Noise

In the previous subsections, we have presented the main noise sources for the
THz in-vivo channel. The total channel noise psd for the in-vivo nanonetwork
can, then, be derived as the sum of the two

N(r, f) = Nb(f) + Nm(r, f). (13)
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It was shown [4], that the molecular absorption noise tends to be significantly
higher than the background radiation noise. As such, in many cases it is consid-
ered the dominant noise source in THz in-vivo nanonetworks, Fig. 1.

It is worth noting here that these results are based on graphene-based
receivers, which have yet to be developed. The available nanodevices today, are
not based on these new materials and thus, the Johnson-Nyquist thermal noise
should be taken into account. In Sect. 4, we discuss in more detail the use of new
materials and the future challenges on this field.

Fig. 1. Total noise for a transmitted signal with flat psd

3 Path Loss Models

As discussed in the previous section, in THz nanonetworks the molecular absorp-
tion of the medium deteriorates the propagation of the EM waves. Also, path
loss is present, due to the spreading of the signal [8]. Most of the research focuses
on spread and absorption losses for the in-vivo THz channel.

3.1 Spreading Loss

Spreading loss is a well known power attenuation contributor in wireless commu-
nications. The proposed model, even for in-vivo THz communications, assumes
an isotropic radiation and as such, the spreading loss can be defined in dB as

PLspr(r)[dB] = 20 log
4πr

λg
, (14)

where r is the propagation distance of the wave and λg is the wavelength in
the medium.
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3.2 Absorption Loss

We have pointed out in Sect. 2, that part of the transmitted energy is absorbed
by the medium. Details on the absorption coefficient, a(f), of human tissues was
provided in [1] and is frequency dependent. The main issue with the molecular
absorption is that there are not any analytic functions of the absorption coeffi-
cient and, the numerical data are limited to frequencies in the range of 1 THz
or frequencies closer to the optical spectrum.

The behavior of the absorption of each tissue varies with the kind of tissue;
more specifically, it seems to depend on the percentage of water, since water
molecules create peaks in the absorption-frequency relation, due to resonance
phenomena. The transmittance of the medium, τ , can be evaluated using the
Beer-Lambert Law, as in (6), which is the fraction of incident EM radiation at
a given frequency, that is able to pass through the medium [3]. Obviously, since
we need the fraction of the radiation that is absorbed by the medium we need
the inverse of τ .

PLabs(f, r) =
1

τ(f, r)
= ea(f)r, (15)

or in dB

PLabs(f, r)[dB] = 10a(f)r log10 e. (16)

3.3 Total Path Loss

In order to evaluate the total path loss, it is evident that both the spreading
path loss and the molecular absorption path loss must be taken into account.

PL(f, r)[dB] = PLspr(r)[dB] + PLabs(f, r)[dB] (17)

= 20 log10
4πr

λg
+ 10a(f)r log10 e. (18)

Recently, some research was devoted to obtain alternative, simpler and more
accurate formulas, by using experimental data. More specifically, Javed et al. [9]
proposed an approximation to the analytical path loss model, named Simple-
Nano, that is described by the following equation,

PL(f, r)[dB] = 10 log10 K0 + 10n log10

(
r

r0

)
+ Xσ, (19)

where K0 is the path-loss at a reference distance r0, which is chosen to be 0.01 m,
n is the path loss exponent and Xσ is a log-normal random variable that takes
into account the shadowing. In another work of Abbasi et al. [10], they used an
artificially synthesized collagen layer from QMUL, which was used to model the
human skin layer, so that they could perform actual measurements for the path
loss in THz frequencies. After intensive experiments they proposed the model

PL(f, r)[dB] = A(N) + B(N)r0.65 + C(N)f4.07, (20)
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where the regression technique is used to find the functions A(N), B(N), C(N),
which represent the constant offset and the coefficients for distance and frequency
respectively, as a function of the number of sweat ducts. The reason that sweat
ducts play such an important role is because they are approximately consisted
of 99% water and as we mentioned above, water molecules appear to be highly
absorbent in THz frequencies. So, variations in the number of sweat ducts can
drastically change the channel.

In Fig. 2 we compare the above models through (17) and (20). The equation
we used is [10, Eq. 16]

PL(f, r)[dB] = −0.2N + 3.98 + (0.44N + 98.48)r0.65 + (0.068N + 2.4)f4.07,
(21)

where r is expressed in mm, and f is expressed in THz. The two models do not
match, although in both cases, path loss seems to increase with the frequency.
We can justify the difference in the fact that in [10] a synthesized skin model was
used out of collagen. However, by tuning the parameters of (20), it is possible
to get a variety of results that accommodate the difference between the models.

Fig. 2. Comparison of path loss models at r = 0.1mm

4 Research Challenges

It is evident from the previous sections, that there is space for research both for
noise and path loss models. Some research challenges are as follow:

– In-vivo electromagnetic propagation is a critical topic in nanonetworks.
Reflection, diffraction and scattering need to be modeled properly for highly
dispersive mediums, such as the blood.
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In addition to that, the channel characteristics changes from person to per-
son, depending on health conditions. A complete model needs to capture that
behavior and be robust enough to adjust to all scenarios, regarding the human
body condition.

– The biggest research challenge is the development of nanodevices, based on
new materials. The development of graphene-based nanodevices will provide
the opportunity to validate the theoretical models. Furthermore, it impor-
tant to note here that these nanomachines allow only low complexity coding
schemes, due to their limited processing capacity.

– Medical research challenges are also present. The THz band is a part of the
EM spectrum, between far infrared light and microwaves, and, as such, it is
a non-ionizing radiation that is considered safe for the human body. Despite
that, there is still a need to investigate the way that THz radiation interacts
with human cells.

– Finally, the effects of the use of carbon in these nanodevices, that are injected
into the human body, specifically graphene, need to be investigated.
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5. Kokkoniemi, J., Lehtomäki, J., Juntti, M.: A discussion on molecular absorption
noise in the terahertz band. Nano Commun. Netw. 8, 35–45 (2016)

6. Zhang, R., Yang, K., Alomainy, A., Abbasi, Q.H., Qaraqe, K., Shubair, R.M.:
Modelling of the terahertz communication channel for in-vivo nano-networks in
the presence of noise. In: 2016 16th Mediterranean Microwave Symposium (MMS),
pp. 1–4. IEEE (2016)

7. Piro, G., Yang, K., Boggia, G., Chopra, N., Grieco, L.A., Alomainy, A.: Terahertz
communications in human tissues at the nanoscale for healthcare applications.
IEEE Trans. Nanotechnol. 14, 404–406 (2015)

8. Zogas, D.A., Karagiannidis, G.K.: Infinite-series representations associated with
the bivariate rician distribution and their applications. IEEE Trans. Commun. 53,
1790–1794 (2005)

9. Javed, I.T., Naqvi, I.H.: Frequency band selection and channel modeling for WNSN
applications using simplenano. In: Proceedings of IEEE International Conference
on Communications, ICC 2013, Budapest, Hungary, 9–13 June 2013, pp. 5732–
5736. IEEE (2013)

10. Abbasi, Q.H., El Sallabi, H., Chopra, N., Yang, K., Qaraqe, K.A., Alomainy, A.:
Terahertz channel characterization inside the human skin for nano-scale body-
centric networks. IEEE Trans. Terahertz Sci. Technol. 6, 427–434 (2016)



Designing and Evaluating a Vibrotactile
Language for Sensory Substitution Systems

Majid Janidarmian(✉), Atena Roshan Fekr, Katarzyna Radecka, and Zeljko Zilic

Electrical and Computer Engineering Department, McGill University, Montréal, QC, Canada
{majid.janidarmian,atena.roshanfekr}@mail.mcgill.ca,

{katarzyna.radecka,zeljko.zilic}@mcgill.ca

Abstract. The sense of touch can be used for sensory substitution, i.e., to repre‐
sent visual or auditory cues to impaired users. Sensory substitution often requires
the extensive training of subjects, leading to exhaustion and frustration over time.
The goal of this paper is to investigate the ability of the subjects to recognize
alphanumeric letters on 3 × 3 vibration array, where the subjects can fully person‐
alize the variables including spatial location, vibratory rhythm, burst duration and
intensity. We present a vibrotactile device for delivering the spatiotemporal letter
patterns while maintaining the high level of expressiveness. The results prove that
this system is an effective solution with a low cognitive load for visually/auditory
impaired people and for any context that would benefit from leaving the eyes/ears
free for other tasks.

Keywords: Vibrotactile display · Sensory substitution · Wearables · Haptics

1 Background

The skin has been considered as a conduit for information [1, 2], where a vibrotactile
display can be added by an array of vibration actuators, with the resolution varying from
2 × 2 to 64 × 64 [3] and mostly applied to the skin on the back, abdomen, forehead,
thigh, or the fingers. In [4], a camera image is transformed into vibrotactile stimuli using
a dynamic tactile coding scheme. The resolution of the image needs to be reduced to fit
the low resolution of the tactor array as their system consists of 48 (6 × 8) vibrating
motors. The authors also compared their method (M1) in tactilely displaying of the letter
with two other typical continuous vibration modes [5, 6]. The first one is an improved
handwriting pattern, and the actuation order is similar to handwriting. The vibrating
duration time is overlapped between the adjacent motors (M2). In another approach,
called scanning mode (M3), the motors are triggered in the lines from top to bottom. As
an initial study in pattern identification task, the capital letters were displayed to expe‐
rienced and inexperienced subjects, using a 20 × 20 matrix of vibratory tactors placed
against the back [6]. Authors reported the results of four modes of stimulus presentation,
each letter being presented 42 times under each mode. They found that the sequential
tracing by a single moving point leads to the highest recognition accuracy. A tactile
stimulator (M8) mounted on a wheelchair is presented in [7], to convert the capital letters
into tactile letters using 17 × 17 Tactile Vision Substitution Systems (TVSS). The dark
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region of the visual display captured by a stationary camera activated the tactors in the
corresponding areas of the tactile matrix. Each black line of a letter drawn on a white
cardboard activated a line of two tactors wide in the tactile matrix. The experiments
demonstrate that at least three independent basic letter features i.e. enclosing shapes,
vertical parallel lines, and angle of lines play important parts in tactile letter recognition.

The possibility of differentiating letters by using only a 3 × 3 array of vibrating motors
on the back of a chair has been examined in [8], by providing a sequential pattern for each
letter with a “tracing mode.” This work (M9) could obtain high recognition rate in reading
tactile alphanumeric characters. Recently, a system of spatiotemporal vibration patterns
called EdgeVib, for delivering both alphabet (M10) and digits (M11) on wrist-worn vibro‐
tactile display was presented in [9]. Each unistroke pattern longer than four vibrations is
split into multiple 2/3-vibration patterns. The new patterns are consecutively displayed to
assist the recognition of the alphanumerical patterns. The study revealed that the recogni‐
tion rate is significantly improved by modifying the unistroke patterns in both alphabet and
digits. Factors such as familiarity with the displayed character set, stimulus duration, inter-
stimulus onset interval, type of vibration motors, number of trials, number of letters, and
cognition load affect the quality of recognition. Therefore, different studies cannot be
directly compared. The results along with some details are brought in Table 1. The discrep‐
ancy between studies is due to the differences in equipment, procedure, and style of letters.
As summarized in Table 1, the subjects had no time limits for letter perception. Moreover,
most of the previous studies only focused on a subset of alphanumerics, and the participants

Table 1. Previous published results.

Vibration modes Average
recognition rate

Cognition load (average repeated
times)

Number of letters

M1 82.0% ± 23.3% 2.05 10
M2 76.8% ± 23.5% 2.1 10
M3 47.5% ± 27.5% 2.6 10
M4 34% 1–2α, β 26
M5 41% 1–2α, β 26
M6 47% 1–2α, β 26
M7 51% 1–2α, β 26
M8 67.53% ± 20% 1α, γ 26
M9 86% ± 9.7% 1α 34
M10 85.9% ± 6.3% NAδ 26
M11 88.6% ± 10.4% NAδ 10

α: The subjects had no time limits for letter perception and they were given as much time to respond as they needed.
β: If the first response was incorrect, they responded with the second guess, after which they were informed of the correct
response.
γ: The subjects were trained until they had acquired an identification accuracy of over 80% in each subset of alphabet. The
error correction was given when the subjects misidentified. The number of trials per subject was not the same.
δ: After training session, a brief test was performed to ensure that each participant memorizes the patterns correctly. The
participants could ask to repeat the questions if they were not confident of their answers. After they gave their answer, the
screen prompted the actual answer.
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were informed of the correct response. To overcome these limitations, we develop a custom‐
izable vibrotactile system to deliver any patterns including all alphanumerics under time
constraints for letters perception.

2 The Proposed System

Our tactile display is implemented on an adjustable belt attached on the back of a human.
The system comprises nine cylindrical Eccentric Rotating Mass (ERM) motors (8.7 mm in
diameter and 25.1 mm in length), Fig. 1(a). The motors are glued to the belt with a spacing
of 5 cm (see Fig. 1(c)). This gap between tactors is necessary to perform vibration localiza‐
tion robustly. The motors control the intensity and have fine temporal haptic characteristics
(8 ms from off to a perceivable intensity, 21 ms from fully on to off using active breaking
with H-bridges). The intensity of the tactors is controlled by Pulse Width Modulation (PWM)
signals. The vibration intensity is set to 10 levels from very low to very high. To fully
control each motor individually, we used Adafruit 16-Channel 12-bit PWM Driver Shield
that can drive up to 16 motors over I2C with only two pins (see Fig. 1(b)). The on-board PWM
controller will simultaneously drive all 16 channels with no extra processing overhead.
Therefore, the system can incorporate the control of a vast number of different feedback
devices into a single and unified interface. The shield plugs in directly into an Arduino
device, which also provides the 5 V power to power and control the PWM signal.

Fig. 1. (a) 9 mm vibration motor from Precision Microdrive, model: 307-103, (b) 16-Channel
12-bit PWM Driver Shield, (c) Back belt with 3 × 3 tactor array

In the proposed platform, the users have full control on the motors variables including
spatial location, vibratory rhythm, burst duration, and intensity to generate vibratory
patterns. For this purpose, a Graphical User Interface (GUI) is developed to create or
revise the patterns and to optimize the temporal-spatial tactile coding according to
human tactile perception. Two experiments are conducted with the 3 × 3 tactors array
to evaluate the customizable tactile display perception. We report the recognition rate
of letters with both default and personalized vibratory patterns.
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Algorithm 1 describes the test cases, where each session contains a number of trials
with randomly selected characters. Algorithm 2 extracts changes in the motors (events)
from the input pattern (line 2). The events stored in an array control the motor operations
and 10 intensity levels, defined in line 9. Tactors are activated based on the vibrating
order, spatial and temporal properties in lines 10–12.

3 Experiment Setup

We first conduct an experiment consisted of two sessions of vibrotactile pattern identi‐
fication tasks, before and the other after the development of each subject’s personalized
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letters. The experiment is carried out with ten healthy volunteers (five males, five
females) aged 18 to 46 with (Mean ± SD) 30.70 ± 8.87. The ethical approval was
received from McGill Ethics Committee. The participants had no experience of vibro‐
tactile display devices, were asked to wear the belt in upright sitting position and to
match felt sensations with the alphabets or digits. They had a time limit of 2 s for letter
perception, and no chance to repeat the presented tactile stimuli. To have a more realistic
scenario, they were not allowed to use any headset to block out the sound caused by the
vibrators and environment. We wanted to analyze the results with a minimum cognitive
load that is calculated by the average repeated time for the subject to conduct the letter’s
identification [4]. In the training phase, the subjects knew the characters they perceived
through 3 × 3 tactile grid display. The training and testing phases are composed of 108
(3 × 36) trials with 3 sets of randomly selected characters. Figure 2 illustrates the
sequence of tactors activated in the default patterns setting designed by a left-handed
supervisor. There is no time interval between the onsets of stimuli, and the stimulus
duration is set to 200 ms.

Fig. 2. The sequence of tactors to be activated 36 different alphabets and digits in the default
version - The arrows orders: red, green, and blue. (Color figure online)

The default settings help the participants to perceive the letter as a continuous stroke.
In the second session, the subjects could revise the default patterns through the GUI.
Indeed, each subject can turn the motors on and off in succession and therefore they
could customize the tactors’ vibration patterns with any preferences such as following
their own writing habit. Personalizing the spatiotemporal vibration patterns could deliver
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more information with easier interpretation and memorizing. Therefore, this property
greatly facilitates the users to distinguish the letters.

4 Experimental Results

Figure 3(a) shows the participants’ confusions between stimuli with the default patterns.
Each cell value of the matrix C (i, j) shows the total number of trials that the response
‘j’ occurred upon the presentation of stimulus ‘i’. The results show that the subjects
readily recognize the patterns under mean identification rate of 70.83% ± 24.65%, with
a low cognitive load. The subjects reflected that sometimes they had difficulty in distin‐
guishing the patterns different from their own writing habit such as letter ‘E’. The
patterns ‘E’ and ‘7’ presented to the participants tended to get highly confused with
letters ‘G’ and ‘1’, respectively. The letter ‘O’ and number ‘0’ activated the same dot
matrix patterns, but they can be discriminated by the direction of the activated tactors.
Most participants reported that sometimes they judged a pattern according to their own
writing habits. We expect they may be less likely to be confused by revising the spatial
locations, stimulus duration and directions, etc. The subjects had a time limit of 2 s and
no chance to repeat the stimuli. These constraints are beneficial for the multi-character
words. In the second session, where each subject was allowed to make modifications to
the default patterns, there is a more uniform confusion matrix (see Fig. 3(b)). For
instance, letters ‘X’ and ‘Y’ have similar patterns directions, and subjects can apply an
alternative writing sequence to create more differentiable patterns. Figure 4 shows some
more effective alternative patterns for letters, where the participant used higher level of
intensities for letters ‘A’ and ‘7’ (tick arrows). As seen in Fig. 5, customizing the vibro‐
tactile patterns improved the recognition accuracy by 22.49%. A student’s t-test revealed
that the customized patterns achieved significantly higher recognition rates than the
default patterns (86.76% ± 9.44% vs. 70.83% ± 24.65%, p-value ≪ 0.01). Among the
numbers, the number ‘2’ yielded the best accuracy (96.67%) and ‘5’ was the worst
(56.67%). For letters, ‘I’ and ‘J’ yielded the best accuracy (100%) and the lowest letter
accuracies are: ‘V’ (70%), ‘Y’ (70%) and ‘G’ (73.33%). As seen in the confusion matrix,
still some letters (‘Q’ and ‘G’) exhibited asymmetries. Although the updated patterns
increase the total vibratory delivery time, they resolve the confusion between letters and
reduce the misrecognition rates. The misidentifications are more likely due to time
constraints for letters’ perception. Contrary to other studies, the participants could not
repeat the questions and the error correction was not given when the subjects misiden‐
tified. These constraints are beneficial for the multi-character words. Another observa‐
tion worth highlighting is the reduction of ‘Missed’ answers (57.85%) after revising the
letters. The subjects could judge the pattern in the first two seconds, and their perform‐
ance would be improved by tuning the vibratory variables again and practicing them for
a couple of more trials.
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Fig. 3. Confusion matrices for the recognition of (a) default patterns, (b) customized patterns

Fig. 4. Examples of customized patterns by one of the participants
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Fig. 5. Recognition rates with default and personalized patterns for each subject

5 Conclusion

We presented a tactile display and the experiments conducted to investigate its effec‐
tiveness. The results reveal that the customizable low-resolution vibrotactile display
alleviates the perceptional and memory loadings of the users to recognize new patterns
with no extensive training sessions. Personalized tactile instructions can be a major
component of an assistive wearable device for people with hearing and visual impair‐
ments. The applicability and usability can be extended to color and multi-character
messages identification tasks.
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Abstract. People in many professions suffer from low back pain (LBP) due to
wrong movements. Although this is anticipated by occupational medicine, the
quality of evidence is low, since little objective measurements about the spine
position in daily-use exist. The paper presents an ultra-flat posture monitoring
system based on low-cost acceleration sensors, which can be very efficiently be
used to measure the posture of the spine. First experiments (lab-based and in daily-
use) showed a deviation of approximately 1° with a low standard deviation. Inno‐
vation is the suitability for daily-use by sensors having a height of 2,5 mm that
allow a seamless usage even during positions applying pressure to the back such
a leaned sitting on a chair.

Keywords: Spine posture · Low back pain · Inertial sensors
Online monitoring

1 Introduction

Extreme or awkward postures like bending or twisting of the back are presented as risk
factors for developing low back pain (LBP) in several clinical guidelines (e.g. [1–3]).
LBP patients have a reduced lumbar range of motion and move more slowly compared
to people without low back pain [4]. Restriction in lateral flexion as well as reduced
lumbar lordosis are also associated with increased risk of developing LBP [5].

Even though ergonomic interventions are key elements of physiotherapy and occu‐
pational medicine [6], the evidence for prevention of LBP is uncertain, because the
quality of evidence is low [7, 8]. Recent systematic reviews cannot show (or disprove)
a direct effect of extreme spine positions and a higher risk for LBP (e.g. [9–11]).

Application of sensors can help to increase evidence but at the same time it is neces‐
sary that such sensors are not only used during clinical studies but are also available in
low-cost versions for wide-spread application in preventive and occupational medicine.
This paper will introduce a low-cost, ultra-flat sensing platform that can measure spine
posture during daily live without disturbing the movements of the patient wearing the
sensor system.
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2 State-of-the-Art

2.1 Measurement Principle and Medical Indication

Studies often assess the angle between thigh and trunk/pelvis (hip-flexion) as a measure
for posture of the spine or simply quantify the angle between trunk and floor [10, 12–
15]. This is also reflected by posture assessment tools of occupational medicine like
OWAS (Ovako Working Posture Assessment System) REBA (Rapid Entire Body
Assessment) or RULA (Rapid Upper Limb Assessment) that are widely used in scientific
literature.

Nevertheless, this method has a serious flaw: The angle between the thigh and the
trunk/pelvis is no measure for the position (curvature) of the back or even the position
of the upper trunk in relation towards the floor, because bending forward can be done
with a straight or flexed back (see Fig. 1). Forward bending should be evaluated assessing
also the curvature of the back. Only few studies exist measuring the position (curvature)
of the back with modern sensing methods during daily live [16].

Fig. 1. Curvature of spine: neutral spine (left) and flexed spine (right) position both showing the
same amount of hip flexion. (Photos by Katharina Müller)

Even though there is no good evidence at the moment about correlation of extreme
postures of the back and risk of back pain, some reviews show a dose-response rela‐
tionship [12, 17, 18]. Hence, future occupational studies require to gather data under
realistic daily-use circumstances for the full activity period instead of small time frames
during a working day. A precise quantification of the position (curvature) of the back
instead of using hip flexion or trunk position relative to the floor needs to be available
to find medical evidence and derive therapeutically measures.

2.2 Measurement Methods

In order to determine the position (curvature) of the spine different approaches exist:
Optical motion capture systems uses optical (infrared and visible light) markers attached
to the person, which are scanned by external cameras [19]. These systems can be referred
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as the golden reference standard, yet are not further discussed, since they require dedi‐
cated test rooms and are therefore not suitable to monitor the spine movement in
everyday situations.

Maier et al. [20] use strain gauges from Epionics applied over the full length of the
spine and 3 axis accelerometers at the end of the gauges to determine the bending angel.
The system connects the sensors via cables to a measurement device and requires dedi‐
cated band-aid that allow the movement of the strain gauges along the back of the patient.
A disadvantage stems band-aid and from the fixed length gauges, since it cannot be
adapted to different body sizes.

Dinu et al. [21] investigates the use of 17 inertial sensors (MVN Biomech system
from Xsens) and compared it with a Vicon optical infrared marker system with eight
camcorders to acquire the full body movement. Both systems only show a position
difference of less than 6 mm. Problems are identified in the drift of acceleration sensors
and the relative movement of the sensors on soft tissues of the subject. This relative
movement might be due to relatively high weight of 16 g and size of
47 × 30 × 13 mm3. Additionally, the sensors have a battery lifetime of 6 h and require
data recorded at 120 Hz to be continuously transferred to a base station. Similar systems
are offered by Hocoma (valedotherapy.com) for bio-feedback of physical exercises
using Bluetooth connected sensors. Yet, these sensors are designed for dedicated exer‐
cise and therefore short operation time of around 30 min before they need to be
recharged.

Dorsavi [22] offer solutions based on 3D accelerometers, gyroscopes and a magne‐
tometer designed for workplace application offering operation of 24 h and datastorage
up to 72 h. Mjøsund et al. [23] compared the Dorsavi ViMove system to the Vicon
system determine a RMS error of 0,71° up to 2,11° depending on the direction of flexion.
To our analysis the Dorsavi system is very mature for an every-day use, yet it still uses
relatively big sensors only slightly smaller than a match box.

Additionally, very simple sensors such as the acceleration sensor from Back-Track
[24] or Lumolift [25] are available, yet these sensors only deliver the position compared
to the earth magnetic or gravitation field (hip-flexion). Both sensors are either applied
by a pouch or a magnetic clip on the side or front of the body.

3 Mobile Measurement System

Summarizing existing approaches there are two limitations identified: First, an important
fact for all sensors applied to the skin is that the movement of soft tissue is influencing
the measurement quality, since the measured position deviates from the position of the
spine [26, 27]. In particular for overweight individuals this effect needs to be considered.
Second, for everyday use in preventive and occupational medicine applications the
thickness of the sensor is of high importance. Whereas many application in sports or
therapeutic applications are in movement or without contact to hard surfaces, in preven‐
tive and occupational medicine positions like leaning or lying are more likely. If the
sensor is too thick this will cause unnatural behavior. To overcome these limitations
innovation is required to reduce the mass of the sensor as well as the thickness to suppress
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unnatural behavior and at the same time retaining a reasonable size to avoid artefacts of
punctual tissue movement.

3.1 Inertial Sensor System

For the angular measurement of the spine, low cost inertial MEMS sensors where
chosen. Aside the cost consideration the measurement of the earth magnetic field was
excluded, since it is not reliable enough for accurate angular measurement. After eval‐
uation of different sensor types (e.g. LSM9DS0, MPU9250) the LSM6DS3 was chosen
in the version having a measuring ranges of ±2 g (accelerometer) and ±125°/s (gyro‐
scope). The sensor is mounted on a 1,5 mm thick PCB giving the necessary stiffness and
is encapsulated with epoxy resin resulting in an overall thickness of 2.5 mm. Experi‐
mental version with a chip embedded inside the PCB has been designed with reduce
thickness but discarded due to complicated manufacturing. The sensor diameter was set
to 25 mm as optimum between wearing comfort and suppression of soft tissue tilting
and movement. The sensors are attached to the body using adhesive tape. Each sensor
is connected to the device by a thin, flexible and robust I2C cable providing distortion
free transmission and the flexibility to use other sensor chipsets.

3.2 Recording Device

The recording device consists of a touchscreen, an AVR microcontroller, flash memory
and a low cost WLAN module (see Fig. 2).

Fig. 2. Device in configuration mode with schematic spine (left), magnified sensor pad (middle)
and block diagram (right)

There are three main modes: setup, record and upload mode. Setup mode, is dedi‐
cated to configuration and a guided calibration process determining maximum stretch
and bend positions. For better positioning and verification of the three sensor pads a
simple online spine model can be displayed (Fig. 2 left). In record mode, sensor data is
processed and recorded on a flash memory. At any time the user can enter her current
activity such as gardening, computer work or sport activity as well as a pain level to
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support posterior diagnoses. Finally, in the upload mode data can be transmitted to a
designated FTP server over WLAN using an XML based encoding protected by a pre-
shared WPA2 key. In the final device continuous upload is possible if a WLAN connec‐
tion is available, but a doctor still can retrieve the data via upload mode if no connection
during activity exists.

Special efforts in circuit design allowed to reduce the current consumption to approx.
5 mA in record mode easily allowing for a 24 h monitoring going beyond most of the
state-of-the-art devices. Only during user interaction and WLAN upload, the current
consumption raises to 100 mA primary due to the touch panel display, which is also
activated during data upload. A Bluetooth Low-Energy chip will be integrated to reduce
energy consumption further.

3.3 Data Processing and Algorithms

Data from the sensors is recorded at a speed of 20 Hz and the ground pointing vector of
each sensor is calculated by fusion of gyroscope and accelerometer data. The gyroscope
is slowly drifting and therefore only reliable at higher frequencies. The accelerometer
is disturbed by quick movements, and more reliable at lower frequencies. So a first order
complementary filter has been implemented with a cut-off frequency of 0,2 Hz. Two
sensors, located at the skin over S2 of the sacrum and at the upper part of the sternum
(sternum manubrium) are used to calculate the bending of the spine, whereas the third
sensor is placed at the thigh and used for activity (sitting, standing, walking) tracking
and as pedometer. Processed sensor data is stored on a flash memory for later diagnosis
but also online alarms to give live feedback and help change erroneous posture patterns.

4 Device Characterization and Measurements

To measure the accuracy of the presented sensor system and algorithm following
methods have been applied: (a) measurement of a reference dummy emulating the spine,
(b) analysis in a 12 h practical daily-use example and (c) a comparison with an optical
motion tracking system.

For the first test, the sensors were repeatedly positioned in a fixed angle to each other.
The deviation from that constant value is the error that the device produces. Results of
these measurements are shown in Fig. 3. On the left side. The mean error and the standard
deviation were calculated for different cases. A particular resting position was recorded
for 12 h to analyze if there are any long-term drift effects. No drift was observed during
the measurements. Rotation of the sensor and linear movements as well as shocks were
performed on the sensors in all rotational axis and directions.

Thereby the sensors were taken to their measure boundaries of ±2 g and ±125°/s.
Under extreme conditions exceeding the specification limits of the sensors, the precision
deteriorated, especially, during rotation performed with 2 Hz and a range of ±75° and
shock performed in an interval of one second with more than 2 g acceleration.

For the second test, the sensor system was carried by a person in daily-use mostly
consisting of office work, walking and relaxing. Two sensors have been applied on the
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lower back with a difference angle of zero degrees for a whole working day without
removal. Thus, any value other than zero can be interpreted as a measurement error. In
Fig. 3 (right side) the resulting error is plotted for different activities during the day. As
expected the error is higher for dynamic movements yet significantly smaller than the
static test values. Noteworthy is the very small overall deviation in the daily-use example
of less than 1°. Only heavy shocks as occurring during running will result in higher
values, yet are less frequent than during the rotation and shock tests.

As a last test the sensor values have been compared with the video motion tracking
system Kinovea [28]. Two visual markers and one sensor has been attached to stiff plates
and were attached to the lower back area and to the upper part of the chest.

Figure 4 shows first preliminary data obtained comparing the motion sensors and the
optical references. It needs to be noted that the optical imaging software has a relatively
high rate of false values, if the test person does not move exactly in the plane of the
video and single optical marker are not (fully) visible. This is a principal problem caused
by the diametric marker positions when using an optical system with a single camera.
The preliminary deviation of 6.31° ± 4.76° degrees is therefore accounted mostly to the

Fig. 3. Mean and standard deviation of measurement error for different disturbances (left) and
mean and standard deviation for different activities (right)

Fig. 4. Example measurement of optical system (blue) versus measurement of developed sensor
based system (orange). (Color figure online)
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bad optical situation and needs to be reinvestigated with multi-camera optical reference
systems.

5 Outlook and Conclusions

The presented work shows that ultra-flat low-cost acceleration sensors can be very
efficiently used to measure the posture. First experiments (lab-based and in daily-use)
showed a deviation of less than 2° with a low standard deviation. Sensors having a height
of 2,5 mm allow a seamless usage even during position applying pressure to the back
such a leaned sitting. Yet, measurements also revealed that acceleration values espe‐
cially during running are much higher than expected and cause outliers and higher devi‐
ations due to exceeding the sensor’s measurement range.

Ongoing activities therefore focus on higher error reduction and clinical evaluation.
First results backup the experimental results presented, but need to undergo a detailed
evaluation not available when submitting this paper, since the clinical evaluation has
not been finished. Next steps will be the evaluation of both sensors capable of switching
to different measurement ranges and additional low-cost acceleration sensor to measure
high accelerations. Research needs to be done to evaluate different sampling rates,
energy consumption and algorithms to more precisely detect outliers and best to calcu‐
late interpolation values for continuous recording.
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Abstract. Blood glucose self-monitoring plays an essential role in the
life of diabetic people. A regular control helps diabetic persons to avoid
acute complications, e.g. hypoglycaemic coma, and can reduce the risk
of long-term consequences of diabetes. The implementation and usage of
wireless technologies, e.g. NFC, in smartphones are a big step forward
for diabetes home monitoring. Near Field Communication (NFC) is a
wireless technology which allows the transmission of data and energy
over short distances. The transmitted energy can be used for energy
harvesting and in conjunction with low power electronic smart sensor
solution reduced in size, weight and costs can be realized. We developed
a smart glucose meter based on an amperometric measurement. The
prototype is powered by the NFC interface of a smartphone. A user
friendly mobile app completes the smart sensor system. The measured
blood glucose is visualized on the smartphone and is stored in a diary
automatically.

Keywords: Near Field Communication · NFC · Diabetes mellitus
Glucometer · Blood glucose self-monitoring · Mobile diagnostics

1 Introduction

Diabetes mellitus is a group of metabolic diseases whose main symptom is hyper-
glycemia, an increased blood glucose concentration. Diabetes is one of the most
common metabolic disorders worldwide. According to the IDF Diabetes Atlas
2015 [1], around 415 million people worldwide suffer from diabetes mellitus. An
unhealthy lifestyle, lack of exercise, hyper caloric nutrition and obesity favour
diabetes. Over the last years the number of diabetics has grown rapidly.

There are four main types of diabetes in which type I and type II diabetes
are the most common representatives. Type I diabetes is characterized by the
impaired production of insulin of beta cells in the islets of Langerhans in the
pancreas [2,4]. This leads to an absolute insulin deficiency. Type I diabetes affects
about 5% to 10% of the diabetes patients worldwide and is most frequently
diagnosed in children and in young adults [3,4].

Type II diabetes is the most prevalent form of diabetes mellitus [4]. Type II
diabetes mellitus is characterized by insulin resistance of the tissue and by the
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reduced insulin secretion (relatively insulin deficiency) [2]. Diabetes has acute
and chronic effects on the patients’ health. Acute complications can include
hypoglycaemic and hyperglycaemic coma, ketoacidosis, fainting or death [4].
Chronic effects result from persistently high blood glucose concentrations; dam-
age the retina, kidneys, nerves and circulatory system (micro- and macrovascular
consequences) [2,4].

Blood glucose self-monitoring plays a crucial role in the life of diabetics. By
controlling the blood glucose concentration help diabetic person to avoid acute
hypoglycemic risks and can drastically reduce the likelihood of chronic effects [4].
A regular control of the blood glucose concentration helps patients to manage
their disease successfully. In addition this increases the quality of life and the
patient safety of diabetics. Furthermore, a good controlled blood glucose level
will reduce the costs for the health care system. To maintain the health of type
I diabetics they need to monitor their blood glucose concentration 5–6 times a
day [4].

Nowadays smartphones are an integral part of our everyday life. The number
of smartphone users is already quite high and is still increasing annually. The
implementation and usage of the smartphones’ wireless capabilities (e.g. Blue-
tooth, NFC) present a considerable progress for the blood glucose meters. In the
case of NFC connectivity, the meter can be powered directly by the smartphone
without an additional power source like a battery. Furthermore, size, weight and
costs of the resulting device can be minimized.

2 Methods

2.1 Glucose Measurement

The most common glucose measurements are based on amperometric or photo-
metric methods. Blood glucose meters based on amperometric measurement are
currently state of the art [3]. The basic concept is that an immobilized enzyme,
glucose oxidase (GOx) or glucose dehydrogenase (GDH), catalyzes the oxidation
of glucose and uses one of three cofactors: PQQ, FAD, NAD. These two enzymes
differ in redox potential, cofactors, turnover rate and selectivity for glucose [3,4].
Depending on the electron transfer mechanism; glucose biosensors were divided
into different generations:

First generation glucose biosensors use the presence of oxygen to detect the
concentration of hydrogen peroxide. Hydrogen peroxide is oxidized at a platinum
electrode at an electrode potential of 0.7 V vs. Ag/AgCl electrode [5].

Second generation glucose biosensors use mediators to carry the electrons
between the redox center and the electrode surface [6]. This biosensor does not
require oxygen unlike the GOx method. Furthermore this biosensor results in
faster electron transfer rates and the use of mediators reduce the required redox
potential.

Third generation glucose biosensors do not require a regent [3]. The elec-
tron is transferred directly from glucose via the active side of the enzyme [3].
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This type of biosensor is mainly used in continuous glucose measurement.
Figure 1 shows the different glucose biosensor generations.

Fig. 1. Different glucose biosensors types: A first generation glucose biosensor, B
second generation of glucose biosensor, C third generation of glucose biosensor [6]

2.2 Chronoamperometry

Chronoamperometry (CA) is an electrochemical technique to determine an ana-
lyte quantitatively in which a potential step is applied on the working elec-
trode [7]. The resulting current from faradaic process occurring at the electrode
is monitored as a function of time. The faradaic current is described in the
Cottrell equation (1):

i = nFA

√
D

πt
c0 (1)

where,

i = current in A
n = n the number of transferred electrons
F = Faraday constant, 96.485 C mol−1

A = area of the electrode in cm2

c0 = initial concentration of the analyte in mol cm−3

D = diffusion coefficient in cm2 s−1

t = time in s

When an adequate amount of blood is applied on the test strip and the
required redox potential is applied on the working electrode, a cascade of redox
reaction takes place on the test strip [3]. The resulting current from the elec-
trochemical reaction on the blood glucose test strip is direct proportional to the
glucose concentration [3].
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2.3 Near Field Communication

Near field communication (NFC) is wireless technology to transmit data and
energy over short distances [8]. NFC is a future-oriented and upcoming tech-
nology well known in payment and access control. It also provides different
application in the sensing and personal health monitoring area. NFC is based
on RFID (Radio Frequency Identification) and uses inductive coupling between
two devices (Fig. 2), like an air transformer. NFC operates at a frequency of
13.56 MHz and supports data rates of 106, 212 or 424 kbit/s [8].

Fig. 2. NFC system [9]

A NFC system consists of an initiator (polling device or reader) and a target
(listening device or transponder). Initiators actively generate an RF field that
can power a passive target by using energy harvesting. NFC-enabled devices sup-
port three modes of operation: card emulation, peer-to-peer, and reader/writer.
Peer-to-peer mode enables two active NFC-enabled devices to communicate
with each other to exchange data [10]. In card emulation mode, the NFC-
enabled device communicates with an external reader like a traditional con-
tactless smart card [10]. Reader/writer mode enables NFC-enabled devices to
read data stored on NFC tags [10]. The communication protocol is based on the
ISO/IEC 18092 NFC IP-1, JIS X 6319-4 and ISO/IEC 14443 contactless smart
card standards [8,10].

3 Results

3.1 NFC-Glucometer

The developed NFC-Glucometer is based on a multi-chip solution, containing
NFC-frontend, low power microcontroller and measurement unit to measure
blood glucose quantitatively (Fig. 3).

The NFC-frontend is an ISO/IEC 14443 (NFC-A) NFC forum tag type 2
with a dual access EEPROM. The NFC-frontend uses the transmitted energy
for energy harvesting to power the electronics of the entire passive sensor tag.

The required redox potential of approximately 185 mV is supplied by a DAC
of the low power microcontroller. A transimpedance amplifier (TIA) converts
the resulting current to an equivalent voltage. This voltage is measured with an
ADC of the low power microcontroller.
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Fig. 3. NFC-Glucometer: Hardware architecture

The current NFC-Glucometer prototype is powered by the NFC interface
of a smartphone. A user friendly and intuitive mobile app completes the smart
glucose meter. The measured blood glucose concentration is visualized on the
display and is stored in a diary automatically.

In contrast to a common glucose meter our NFC glucose sensor system take
advantage of the versatile functionality of the smartphone. Therefore, only the
blood glucose measurement is performed by the NFC-Glucometer. Data process-
ing tasks, displaying the measured blood glucose concentration and data storage
are performed by the NFC-enabled smartphone (Fig. 4).

Fig. 4. Comparison of common blood glucose meter and NFC-Glucometer system
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4 Discussion

According of the importance of blood glucose self-monitoring, the implemen-
tation of NFC in smartphones and the advantage of the versatile functionality
of the smartphones present a considerable progress of diabetes home monitor-
ing. The transmitted energy of the NFC field can be used for energy harvesting
and allows to supply low power electronics. Therefore, size, weight and costs
of the resulting device can be minimized. These smart sensor solutions enables
the opportunity to measure diagnostic relevant parameters, e.g. blood glucose
level, blood pressure, as well as therapeutic relevant parameters, e.g. medication
compliance, time stamps of measurement, food intake, exercises and mood very
easily and fast. The measured data can be stored local on the mobile device or
on-line. Physician and patient itself have the opportunity to use the additional
information to adjust the treatment, e.g. insulin treatment. An automatic diary
function can reduce the risk of recording the measured blood glucose concen-
tration incorrectly. Furthermore, a regular control of the blood glucose concen-
tration can avoid acute complications, e.g. hypoglycaemic coma, and can reduce
the risk of long-term consequences of diabetes. Finally this leads to an increased
quality of life and patient safety of the diabetic persons.
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Abstract. In the fitness and health fields, wearable sensors generate massive
amount of information in big data. The machine learning techniques use the data
to assess individuals’ health in real time and identify trends that may lead to better
diagnoses and treatments. Applying efficient algorithms to learn from data can
aid physicians to evaluate the state of human actions and diagnose the illnesses.
The process of discerning valuable information from wearable sensors is a non-
trivial task and is an on-going research area. Many research areas have focused
on machine learning-based approaches to sensor data for better understanding
and meeting people’s needs. However, there are different challenges such as
runtime complexity and the number of functions calls associated with these
approaches limit us to reach an acceptable accuracy level. To reduce the compu‐
tational costs of the feature extraction and classification, a novel algorithm is
proposed to analyze the variations in the periodic signals. It reduces the learning
efforts by detecting any significant changes in the signal. We used the idea of
pheromone trail employed in the ant colony optimization algorithm to keep track
of the signal updates. The findings of this paper enable the design of a highly
effective real-time predictive model for wearable applications.

Keywords: Wearable sensors · Machine learning · Respiratory disorder
Ant colony optimization

1 Background

The wearable sensors, coupled with the advanced data processing and communication
technologies have opened the window to a new era of cost-effective remote healthcare
services. Recently, much of research has focused on machine learning approaches to
sensor data for delivering more intelligence into different health and fitness applications.
They enable the remote monitoring of physical activity, vital signals, the early diagnosis
of serious conditions, and the remote control of medical treatments [1]. In real-time data
analysis, the runtime complexity of the machine learning models and the number of
functions calls are important challenges as the whole recognition procedure should
quickly handle the online data processing requirements. Although the techniques
presented in this paper can be used for different applications, we focus on building an
efficient algorithm to analyze accelerometer sensor mounted on the rib cage while

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
P. Perego et al. (Eds.): MobiHealth 2017, LNICST 247, pp. 83–90, 2018.
https://doi.org/10.1007/978-3-319-98551-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98551-0_10&domain=pdf


capturing breathing patterns. The wearable motion sensor can be used to detect the small
movements of the chest wall that occur during expansion and contraction of the lungs.
It has been shown that with proper signal processing, this approach can produce results
that closely match the measurements of nasal cannula pressure [2]. For example, the
designed system in [3] used accelerometer sensors for diagnosis and treatment of patients
with disordered breathing. This method shows a great potential to integrate the use of
inertial sensors with machine learning techniques to model a broad range of human
respiratory patterns including normal, Bradypnea [4], Tachypnea [5], Kussmaul [6],
Cheyn–stokes [7], OSA [8], Biot’s breathing [9], Sighing [10], and Apneustic [11] for
the goal of cloud-based recognition of different respiratory problems. In addition, accel‐
erometer-derived respiration signal has been proven itself particularly effective in
providing an affordable platform for yogic breathing practices [12]. A disordered
breathing pattern denotes inefficient oxygen inhalation and carbon dioxide expulsion
from the body’s tissues. The abnormal respiration is indicative of many diseases such
as anemia, asthma, sleep apnea, sudden death syndrome, Chronic Heart Failure (CHF)
and Chronic Obstructive Pulmonary Disease (COPD) [7]. For more details, the reader
is referred to [1]. Figure 1 shows 30-s samples of eight respiration patterns derived from
the accelerometer sensor. In this paper, we introduce an innovative technique that helps
distinguish different patterns through analysis of dynamical characteristics of sensors
data. It is an effective way to speed up the conventional recognition methods by reducing
the number of calls of feature extraction and classification functions. It significantly
reduces the usage of classification methods that require computationally expensive
algorithms. The proposed algorithm is based on recurrence plot concept, which is the
visualization of a square recurrence matrix of distance elements within a cut-off limit
[13]. We use the higher-dimensional reconstruction by the method of time delays
presented in [14]. From delayed coordinates of a signal x(t), a pseudo-state space can
be reconstructed as Eq. 1.
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Where y
(
ti

)
 is D-dimensional time-delayed vector of D points that are delayed or offset

in time (𝜏). As shown in Fig. 2, the lag-reconstructed the acceleration vector will provide
space-time information for nine breathing patterns performed by a subject. In this figure,
each z-axis accelerometer signal is promoted into 3-dimensional space (D = 3) and there‐
fore plotted against itself twice delayed (𝜏 and 2 𝜏) on a three-axis plot (𝜏 = 0.6 s). As seen,
the shape of the trajectory shows the periodic nature and dynamic of breathing patterns. The
embedding dimension (D) and delay (𝜏) between sequential time points in the 1-dimen‐
sional signal has to be chosen with a preceding analysis of the data. In this study, the
Mutual Information (MI) method [15] and the False Nearest Neighbors (FNN) [16] are
employed to estimate the time delay and the embedding dimension, correspondingly. The
most common method for choosing a proper time delay is based on finding the first local
minimum of the Mutual Information (MI), defined as Eq. 2.

M(𝜏) = ∫
t

p(t, t + 𝜏)log
p(t, t + 𝜏)

p(t)p(t + 𝜏)
dt (2)
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Fig. 2. Delay representation of normalized human breathing signals with embedding dimension
3 and tau 0.6 s.

Where p(t, 𝜏) is the joint density function, and p(t) and p(t + 𝜏) are marginal density
functions of x(t) and x(t + 𝜏), respectively [16]. The first minimum of the MI denotes
the time delay, where the signal x(t + 𝜏) adds maximal information to the knowledge
obtained from x(t) [15]. The time delay should be selected in a way that the reconstructed
vector serves as independent coordinates while keeping the connection with each other.
After finding a proper time delay, the embedding dimension can be calculated. In our
algorithm, we used the nearest-neighbor methodology to find the embedding dimension.
It steadily increases the embedding dimension and checks whether the neighborhood of
all points in the phase space change. The algorithm stops where the amount of false
nearest neighbors becomes almost unchanging. In another word, the information of the

Fig. 1. (a) Normal, (b) Bradypnea, (c) Tachypnea, (d) Kussmaul, (e) Apneustic, (f) Biot’s, (g)
Sighing and (h) Cheyn-stokes breathing patterns from accelerometer sensor mounted on the
subject’s rib cage
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system has been completely maximized and no new information can be gained by trying
higher dimension [16].

2 The Proposed Method

Algorithm 1 describes how we used embedding dimension (dims) and time delay (taus)
parameters to optimize machine learning calls during real-time classification problems.
According to the employed methods explained above, the time delay and embedding
dimension for each label are determined in line 2. When a new sensor sample is ready
at time t > (D − 1)𝜏, a set of points, {points(t − (D − 1)𝜏),… points(t − 2𝜏),
points(t − 𝜏),… , points(t)} are defined in line 12. We use binary code to represent posi‐
tive and negative directions for each point from time t − 1 to t. For example, if the
changes in three points values lie in the (−, +, +) directions, the binary coding for this
will be (011) and the resulting decimal number is three (lines 11–17). The obtained
decimal number denotes the state number and consequently there is a transition between
states once a new sensor sample arrives. We expect to see very similar transitions over
time while we are dealing with a periodic signal such as walking or normal breathing.
To keep track of the previous recent changes, we use the idea of pheromone trail
employed in ant colony optimization algorithm. For example, if the current state is three
and the next changes lie in the (+, −, +) directions, binary coding for the new state will
be (101) which is five. Therefore, for the transition 3 → 5, a specific amount of phero‐
mone, Δ, will be deposited in line 28. In our experiments, initially there is no pheromone
associated to each transition and the pheromone trails in each iteration (every 1

f
 sec) are

updated by applying the evaporation technique as follows (line 29):

pti, j ← (1 − 𝜌)pti, j,∀(i, j) (3)

Where pti, j is the existing pheromone trail between state i and j. 𝜌 is the pheromone

evaporation coefficient which satisfies 0 < 𝜌 ≤ 1 and is set to 1
pti, j

 in our study. The
chosen value is high enough for a fair adaptation in the underlying problems. However,
we believe that it should be experimentally determined under different scenarios. Thus,
we read and write pheromones to track the signal behaviors, and more pheromones on
each transition increase the probability of that transition being seen. Each new transition
is counted, and accordingly, the number of unseen events (when there exists no phero‐
mone associated with the new transition) is updated. However, we need to control the
sensitivity of the system to avoid the transient noisy behavior. If the number of detected
unseen events is more than the predetermined sensitivity, there exists a major change in
the pattern, and the algorithm asks for running machine learning algorithms (runClas‐
sifier) in lines 22–27. The variable freshWindow (line 9 and line 23) is defined to control
the number of calls as we have maximum one call for each new window of data according
to the frequency and overlap value. If a new pattern keeps occurring, the algorithm will
quickly adapt to new state transitions and stop calling the machine learning procedure
until it detects a major change in the periodicity of the new pattern.
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Algorithm 1: withSmartCalls

Input: streamData, windowSize, overlap, freq, cModel, sensitivity, trainingData 
(labels, :), maxTau, minDim, maxDim; output: improvement

1. newTransitions ; smartCalls ; preState ; freshWindow false;
numberOfSamples ;

2. [taus, dims] Find_Taus_Dimensions (trainingData (labels, :), 
maxTau, minDim, maxDim);

3. samplesToWait = floor (windowSize freq (1 – overlap));
4. while (~stop) { % It continues till sensor data is coming
5. while (~ ready (streamData.newInstance));

% Wait till there is a new sample of data (after resampling and filtering)
6.          numberOfSamples = numberOfSamples + 1; 
7.          if mod ( numberOfSamples,  samplesToWait) == 0

% If we have enough data to run the classifier again
8. endIndex = numberOfSamples;
9.                    freshWindow true;
10.                  conventionalCalls conventionalCalls + 1;}
11.         for i = 1:dim {
12.                  points (i) (end – (i – 1) tau); 

% The points values are increased by 1. “end” is the index of the last sensor
instance.

13.                  if streamData (points (i)) <= (streamData (points (i) - 1)
14.                            bin (i) 0;
15.                  else
16.                            bin (i) 1; }}
17.         nextState bin2Dec (bin); % Convert binary to decimal
18.         if transPheromones (nextState, preState) == 0 { 
19.                   newTransitions min (newTransitions + 1, 10);
20.         else
21.                   newTransitions max (newTransitions – 1, 0); }
22.         if newTransitions > 10 – sensitivity ) && freshWindow {
23. freshWindow false;
24.                   featuresVector featuresExtraction (streamData

( endIndex – windowSize freq + 1: endIndex ));
25.                   label runClassifier (cModel, featuresVector);
26.                   tau taus (label); dim dims (label); 
27.                   smartCalls smartCalls + 1; }
28.         transPheromones (nextState, preState) ;  

% is the amount of pheromone deposited for the most recent state transition
29.         transPheromones (:, :) max (( 1 – ) transPheromones (:, :), 0) ;
30.         preState  nextState; }
31. improvement ((conventionalCalls smartCalls) / conventionalCalls)
32. return improvement;
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Algorithm 2: Find_Taus_Dimensions

Input: training Data (labels, :), maxTau, minDim, maxDim; output: taus, dims
1. for i = labels {
2.          MI mutualInformation (trainingData (i, :), maxTau); 
3.          valleysLocations valleysFinder (MI);
4.          taus (i) valleysLocations (1) ; % First local minimum of the mutual information

(MI)
5.          dims (i) falseNearestNeighbors (trainingData (i, :), minDim, maxDim); }
6. return taus, dims;

3 Experimental Results

The evaluation was performed on data from 10 healthy volunteers, five males and five
females aged 27 to 48 with (Mean ± SD) 34.80 ± 6.89. The tests lasted for about 35 min
per subject. The ethical approval was received from McGill University Ethics
Committee. All participants were informed about the experimental procedures before
starting the trial sessions. The subjects were asked to perform nine introduced breathing
patterns, each for 1 min in sitting position (torso at about 90° angle to the floor). For
simulating apnea in Cheyn-stokes, Biot’s and OSA breathing exercises, the subjects
paused their breathing for at least 10 s. We asked the participants to prolong their inspi‐
ration and expiration during Apneustic maneuver for at least 5 s. Finally, for the Sighing
pattern, they performed normal breathing, which is followed by deep periodic of inspi‐
ration every 3–7 s. OSA breathing pattern is similar to Biot’s breathing pattern; however,
it has a different phase shift between chest and abdomen compared to Biot’s breathing.
The SPR-BTA spirometer [17] is also used in all tests to make sure that the subjects
were not over emphasizing the breathing movements. The LIS3DH 3-axis accelerometer
with 12-bit resolution is used and secured by a soft and elastic strap which is easy to
attach and comfortable to wear. The sensor is mounted on the subject’s chest in the
middle of sternum region. In our tests, the sensor is sampling with 50 Hz. The proposed
algorithm is validated on breathing disorder classification in which we deal with 1D
motion signal (z-axis). Figure 3 plots a raw breathing signal for three different patterns.
In this example, the time delay τ = 2 s is selected for the phase space reconstruction.
Given the time delay, we take the embedding dimension as 4 for the windowed breathing
signal. Therefore, we have 24

× 24 states. This figure also shows the amounts of phero‐
mones (Δ = 12) in each transition at nine different moments. The proposed technique
can detect any major changes or motion artifacts in the signal. Figure 4 shows the
improvement in number of machine learning functions calls in each breathing pattern
performed by different subjects. In average, the number of functions calls reduced by in
average 52.75%, 47.37%, 42.71%, 48.35%, 19.28%, 10.69%, 20.21%, 9.51%, 20.43% for
Normal, Bradypnea, Tachypnea, Kussmaul, Apneustic, Biot’s, Sighing, Cheyn-stocks
and OSA breathing patterns, respectively. The results indicated an average improvement
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of more than 31% on all different breathing maneuvers with no reduction in classification
accuracy.

Fig. 3. Raw breathing signal for three different patterns and the pheromone trail updates during
the procedure. We show the transPhermone updates at nine different moments. As the embedding
dimension is four in this test, the size of transPhermone is 16 × 16.

Fig. 4. The improvement in number of machine learning functions calls in each breathing pattern
performed by each subject

4 Conclusion

We proposed an innovative approach to speed up the conventional recognition methods
by reducing the number of calls of feature extraction and classification functions. It is a
very fast algorithm to analyze the dynamical characteristics of sensor data at each sample
to detect any significant change in the signal. When working with breathing data derived
from the accelerometer sensor, an average improvement of more than 31% was obtained.
This finding enables the design of a highly effective real-time predictive model for
wearable applications.
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Abstract. Health-related quality of life (HRQOL) is a useful indi-
cator that rates a person’s activities in various physical, mental and
social domains. Continuously measuring HRQOL can help detect the
early signs of declines in these activities and lead to steps to prevent
such declines. However, it is difficult to continuously measure HRQOL
by conventional methods, since its measurement requires each user to
answer burdensome questionnaires. In this paper, we propose a simplified
HRQOL measurement method for a continuous HRQOL measurement
which can reduce the burden of questionnaires. In our method, sensor
data from smart devices and the questionnaire scores of HRQOL are col-
lected and used to construct a machine-learning model that estimates the
score for each HRQOL questionnaire item. Our experiment result showed
our method’s potential and found effective features for some questions.

Keywords: Health related quality of life (HRQOL)
WHOQOL · Biological information · Location information

1 Introduction

Worldwide concern is growing over the issue that increases in hard work and
stress are reducing people’s abilities to perform various physical, mental, and
social activities. People experience declines in their physical and mental functions
when they continue to perform stressful activities for a long time, and they might
even experience the following: melancholy [1], cognitive decline [2], and lifestyle-
related diseases [3]. To prevent a performance decline in physical and mental
activities, we must identify its early signs to prevent it. In particular, many
Japanese people tend to rank their own personal satisfaction lower than other
countries [4]. This attitude could cause a decline of activities.

Quality of Life (QOL) is an indicator that assesses the satisfaction and quality
of our daily lives. Health-related quality of life (HRQOL), which is one element
of QOL, is a useful indicator that evaluates the quality of life in such domains as
physical and psychological health, social relationships, and economic and voca-
tional status. We believe that HRQOL is an appropriate indicator to find the
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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signs of decline in physical, mental, and social activities. If we can automatically
and continuously measure HRQOL, we may be able to detect the signs of its
decline early and prevent that decline. However, since HRQOL measurements
require users to answer many questions every day, its daily measurements impose
a heavy burden. In existing research, even though many studies are estimating
HRQOL using smart devices, they remain unimplemented [5,6].

In this paper, for the continuous measurement of HRQOL, we propose a
simplified HRQOL measurement method which reduces the burden for answer-
ing a questionnaire and makes estimates from actually measured data. In our
proposed method, we collect sensor data from a wrist-type sensor and a smart-
phone as well as the scores of the questionnaire items of WHOQOL-BREF, which
is one HRQOL measurement method. We construct a machine-learning model
from the collected data to estimate the score of each HRQOL questionnaire item
with the Random Forest algorithm and use the collected sensor data and the
questionnaire scores as features and correct answers, respectively.

To evaluate the accuracy of the models, we conducted a leave-one-out cross-
validation and collected data from one participant for 15 weeks. In the evalu-
ation, we also analyzed the effect of the features on each questionnaire item.
We achieved an F-score of up to 87.9% and found that each questionnaire item
has specific effective features. We also found that accuracy can be improved by
feature selection. This paper makes two contributions. First, it proposes the first
method that easily measures HRQOL by smart devices. Second, we analyzed
the effects of the features extracted from the data measured by smart devices
for each questionnaire item.

2 HRQOL Overview

2.1 Definition

The World Health Organization (WHO) defines QOL as “an individual’s per-
ception of their position in life in the context of the culture and value systems
in which they live, and in relation to their goals, expectations, standards and
concerns” [7]. Spilker classified QOL under five domains: (1) physical status and
functional abilities; (2) psychological status and well-being; (3) social interac-
tions; (4) economic and/or vocational status; and (5) religious and/or spiritual
status [8]. Each domain contains associated components: daily behavior and
medical institutions for (1), body appearance and self-evaluation for (2), human
relationships and social supports for (3), economic resources and transportation
for (4), and such activities as faith, worship, and memberships in organizations
for (5). QOL can be classified into health-related quality of life (HRQOL) and
non-health related quality of life (NHRQOL).

HRQOL represents a QOL that is directly influenced by health, disease,
and medical intervention. Existing methods ask questions that correspond to
each domain of QOL to measure HRQOL. NHRQOL represents a QOL that is
not directly influenced by medical intervention, such as the environment, the
economy, and politics [9].
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Since our final goal in this study is the early detection of the signs of stress
and its prevention, we focus on measuring HRQOL, which is strongly related to
physical and mental health states.

2.2 HRQOL Evaluation Method

The answering scale differs depending on the individual, because HRQOL is an
indicator of the personal satisfaction felt by individuals. Even for the same per-
son, the scale changes depending on her context, such as her mental state. Vari-
ous methods for quantitatively evaluating HRQOL have been proposed, includ-
ing the Sickness Impact Profile (SIP), Short Form-36 (SF-36), WHOQOL [10],
WHOQOL-BREF [11], etc. Even though WHOQOL is recognized worldwide,
its questionnaires have too many items. So WHOQOL-BREF was developed by
a simplified WHOQOL. Since WHOQOL-BREF’s policy resembles our method
that aims to continuously and simply measure HRQOL, we propose a simpler
measurement method based on WHOQOL-BREF.

3 Related Work

Many surveys have addressed the relationship between HRQOL and such individ-
ual attributes as activity and ability. Brown et al. [12] revealed the relationship
between HRQOL and physical activity and collected physical activity data and
answers to four questions related to HRQOL developed by the U.S. Centers for
Disease Control and Prevention from 175,850 adults. However, the questionnaire
survey was only given once to the participants, unlike our method that measured
for long time. Sörensen et al. [13] identified the relationship between HRQOL
and the working capacity of middle-aged men in blue-collar occupations. They
measured the working capacity index (WAI) and HRQOL scores by Rand-36
from 196, 40–60 year old men. They found a relationship between HRQOL and
working capacity and suggested that improving the latter might benefit QOL.
However, this study just focused on physical health.

Some studies have used smart devices to measure stress levels. Garcia-Ceja
et al. [14] used the accelerometer data of smartphones to detect stress in a
working environment and achieved a maximum overall accuracy of 71% for user-
specific models. Sano et al. [15] used wrist sensors and smartphones to recognize
stress. They collected Three-axis accelerometer data and skin temperatures and
conductance from wrist sensors and the usage of smartphones of 18 subjects
over five days. They achieved over 75% accuracy of low and high perceived
stress recognition using a combination of mobile phone usage and sensor data.
However, these indicators for evaluating stress were not constructed based on
any standard method for stress measurement.

As shown above, since almost all HRQOL surveys have been carried out
using questionnaires, they have not done to continuously conduct long-term QOL
measurements. Some studies used smart devices to make their own evaluation
standards and focused on a specific activity or mental state. In this study, we
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achieved a simple and continuous method for HRQOL estimation with high
accuracy under globally established evaluation standards.

4 Simplified HRQOL Measurement Method

4.1 Overview

We propose a simplified HRQOL measurement method to estimate HRQOL
scores from life log data that are measured and collected by a wristband
and a smartphone (Fig. 1). The HRQOL estimation model is constructed by
the Random Forest algorithm, which is one machine-learning algorithm. This
method reduces the burden of questionnaire responses and enables real-time
measurements.

Fig. 1. Method’s overview

4.2 Devices and Features

We used an E4 wristband [16] and a smartphone to measure the life log data. An
E4 wristband is a smart device that can measure acceleration (ACC), electro-
dermal activity (EDA), blood volume pulse (BVP), heart rate (HR), inter-beat
interval (IBI), and skin temperature (TEMP). The following are the sampling
frequencies of each sensor: BVP, 64 Hz; ACC, 32 Hz; EDA, 4 Hz; HR and TEMP,
1 Hz. IBI irregularly gets data.

First, we identified the sleeping time and the activity (rising) time as status.
Next we calculated the following seven features for each of six kinds of sensor
data measured by the E4 wristbands: total, average, median, standard deviation,
variance, maximum, and minimum. Moreover, we calculated the BVP-LF/HF
ratio [17] and the HR-LF/HF ratio every five minutes and used four features:
total, maximum, minimum, and the number of times the average was exceeded.

The smartphone collects location data at ten minute intervals and generates
six features: total moving distance, moving distance around the home, time stay-
ing at home/workplace, sleeping place, and farthest distance from the wake-up
position based on location data.
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4.3 HRQOL Estimation Model

We constructed an HRQOL estimation model using machine learning with the
Random Forest algorithm. The model was implemented using scikit-learn, which
is one type of Python library.

In the basic model, the 109 input features are explained in Sect. 4.2. As
the training data, we used the WHOQOL-BREF questionnaire results answered
by the participant. We applied the leave-one-out cross-validation method and
evaluated the estimation accuracy.

5 Preliminary Results

In this section, we evaluate the accuracy of our proposed estimation model
through preliminary experiments.

5.1 Purpose

The purpose of our experiment is to evaluate the accuracy of the proposed model
and show the feasibility of the simplified measurement method that reduces the
burden of questionnaire responses. We investigated the accuracy of HRQOL
estimation based on the log data obtained from the smart devices as well as
important features that affect the estimation accuracy.

5.2 Overview

Life log data were collected for 15 weeks from a 23-year-old male participant
with a wearable device and a smartphone. He answered a WHOQOL-BREF
questionnaire every day based on the actual activities of his day. The WHOQOL-
BREF question items are shown in Table 1. WHOQOL-BREF has four domains:
physical health (PHY), psychological (PSY), social relationships (SOC), and
environment (ENV).

During the experiments, we placed no limitations on any aspect of his behav-
ior; just instructed him to answer the questions every day. The dataset was cre-
ated by removing the daily data if participant forgot to answer the questions or
there was data lost from the smart devices. As a result, the dataset contains 100
days of data.

The HRQOL estimation model, which was constructed by Random Forest
based on the dataset, was validated by the leave-one-out cross-validation method.

5.3 Results

The 3rd to 5th columns of Table 1 respectively show the Precision, Recall, and
F-scores when estimating the scores of each questionnaire item. The 6th column
shows the variance of the scores for each item. Each item was answered from
among five values: 1: not at all, 2: slightly, 3: moderately, 4: very, 5: extremely.
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Table 1. WHOQOL-BREF

Item Domain Precision Recall F score Variance Question item [11]

Q1 - 0.423 0.490 0.440 0.927 How would you rate your quality of life?

Q2 - 0.552 0.571 0.550 0.797 How satisfied are you with your health?

Q3 PHY 0.348 0.357 0.351 0.783 To what extent do you feel that physical pain prevents

you from doing what you need to do?

Q4 PHY 0.417 0.520 0.425 0.742 How much do you need any medical treatment to

function in your daily life?

Q5 PSY 0.401 0.429 0.412 0.780 How much do you need any medical treatment to

function in your daily life?

Q6 PSY 0.419 0.429 0.423 0.750 To what extent do you feel your life to be meaningful?

Q7 PSY 0.290 0.327 0.299 0.671 How well are you able to concentrate?

Q8 ENV 0.437 0.541 0.470 0.603 How safe do you feel in your daily life?

Q9 ENV 0.413 0.480 0.409 0.753 How healthy is your physical environment?

Q10 PHY 0.451 0.480 0.457 0.810 Do you have enough energy for everyday life?

Q11 PSY 0.519 0.602 0.522 0.475 Are you able to accept your bodily appearance?

Q12 ENV 0.787 0.878 0.830 0.129 Have you enough money to meet your needs?

Q13 ENV 0.735 0.857 0.791 0.241 How available to you is the information that you

need in your day-to-day life?

Q14 ENV 0.364 0.367 0.363 0.969 To what extent do you have the opportunity for

leisure activities?

Q15 PHY 0.417 0.469 0.436 1.070 How well are you able to get around?

Q16 PHY 0.270 0.327 0.283 0.851 How satisfied are you with your sleep?

Q17 PHY 0.450 0.520 0.479 0.632 How satisfied are you with your ability to perform

your daily living activities?

Q18 PHY 0.331 0.449 0.315 0.789 How satisfied are you with your capacity for work?

Q19 PSY 0.417 0.510 0.412 0.644 How satisfied are you with yourself?

Q20 SOC 0.464 0.469 0.419 0.606 How satisfied are you with your personal relationships?

Q21 SOC 0.843 0.918 0.879 0.081 How satisfied are you with your sex life?

Q22 SOC 0.609 0.724 0.629 0.267 How satisfied are you with the support you get from

your friends?

Q23 ENV 0.735 0.857 0.791 0.173 How satisfied are you with the conditions of your

living place?

Q24 ENV 0.806 0.898 0.850 0.093 How satisfied are you with your access to health services?

Q25 ENV 0.752 0.867 0.806 0.131 How satisfied are you with your transport?

Q26 PSY 0.560 0.561 0.487 0.844 How often do you have negative feelings such

as blue mood, despair, anxiety, depression?

The estimation accuracy of such question items in the SOC and ENV domains
as Q12, Q13, Q21, Q22, Q23, Q24, and Q25 exceeds the question items of the
PHY and PSY domains. One possible reason is that the answers for the SOC
and ENV items do not change very frequently. In fact, their variance is smaller
than the other items. In our data, changes in those items appeared when the
participant went on a business trip. Therefore, for SOC/ENV, it will be effective
to sent questionnaire prompts only when triggers for the changes appeared, e.g.,
business trips.

On the other hand, since the estimation accuracy is low in the PHY and PSY
domains, perhaps some unrelated features should have been used to train the
model. So we focused on two items (Q3 and Q5) and re-estimated them using
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some selected features. For feature selection, we added features one by one in
the order of their importance with the Gini coefficient method and repeated it
until the estimation accuracy became maximum.

Q3 is in the PHY domain. Q3’s accuracy improved from 0.351 to 0.502 as a
result of selecting seven features. We selected these five features in the activity
time: EDA and HR medians, EDA and HR averages, HR minimum, and two
sleep time features: average and maximum TEMP.

Q5 is in the PSY domain. Q5’s accuracy improved from 0.412 to 0.547 as a
result of selecting ten features. Four of the selected features were based on loca-
tion data: farthest distance from his wake-up position, total moving distance and
staying time at home/workplace; three activity time features: total of composite
acceleration, HR median, and BVP variance; three features in the sleep time:
maximum of BVP-LF/HF ratio, standard deviation of TEMP, and BVP total.

We found that the features that improved the estimation accuracy were dif-
ferent among the question items. Thus, we must select suitable features for each
question item. Extracting suitable features for all 26 items and estimating their
accuracy is future work.

6 Conclusion

In this paper, we proposed a simplified HRQOL measurement method that
reduces the burden of answering questionnaires to achieve continuous HRQOL
measurements. The proposed method utilizes sensor data from smart devices and
the questionnaire scores of HRQOL and constructs a machine-learning model to
estimate the score for each questionnaire item by the Random Forest algorithm.

In the experiment, we estimated the questionnaire response values from life
log data, obtained estimation accuracy that was higher in the social relations
and the environmental domain, and achieved an F-score of up to 87.9%. We also
improved the estimation accuracy by feature selection for each question item.

Future work will improve the accuracy by feature selection for each question-
naire item. Moreover, based on the user’s situation, we will investigate how much
the user burden can be reduced by changing the frequency of the questionnaires.
We will also apply the proposed method to larger datasets obtained from many
diverse participants.
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Abstract. Analysis of human activity, e.g., by tracking and analyzing
motion information or vital signs became lots of attention in medical
as well as athletic appliances during the last years. Nonetheless, com-
prehensive and labeled datasets containing human motion information
are only sparsely accessible to the public. Especially qualitatively labeled
datasets are rare, although they are of great value for the development of
concepts concerning qualitative motion assessment, e.g., to avoid injuries
during athletic workouts or to optimize a training’s success.

Therefore, we provide an open and qualitative as well as quantitative
labeled dataset containing acceleration and rotation data of 8 different
body weight exercises, conducted by 26 study participants. It encom-
passes more than 11,000 exercise repetitions of which we extracted 8,576
into individual segments. We believe, that due to its structure and label-
ing our work is suitable to serve for development, benchmarking, and
validation of new concepts for human activity recognition and qualitative
motion assessment (Publication notes: The dataset will be published at
http://github.com/andrebert/body-weight-exercises together with this
paper’s presentation on the MobiHealth conference 2017, taking place in
Vienna, 14–16 November.).

Keywords: Machine learning · Activity recognition
Motion assessment

1 Introduction

Automated monitoring and analysis of human motion by using motion sensors
gained great attention during the last years. Reasons for that are the ubiqui-
tous availability of powerful, portable, and small computing devices, e.g., smart-
phones, as well as the distribution of robust and cheap sensor platforms capa-
ble of motion tracking. This enables the analysis of complex and also spatially
distributed human motion without being bound to a fixed area or tracking sys-
tem, e.g., in contrast to the usage of cameras for visual analysis approaches.
An important field for automated monitoring and motion assessment are med-
ical appliances as well as the athletic context and physical exercises. Apps like
Freeletics1 provide detailed instructions for challenging workouts and exercises
1 http://www.freeletics.com.
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as well as features for exercise tracking, such as counting of repetitions or dis-
tances. But these challenging exercises are often conducted by amateur athletes
without being monitored or advised by professional instructors. Unfortunatly,
incorrect execution of physical exercises may not only lead to less successful
training results, it can also lead to serious harm and injuries [1,4,6]. We believe,
that automated monitoring, analysis and assessment of human motion will enable
the development of proactive feedback systems, which are capable of reducing
such injuries and optimize training results. Moreover, the assessment of human
motion is also of use within other areas, e.g., in a medical context to monitor
ambulant patients, for gait analysis, for workflow optimization, and others.

To address this challenge, we developed a distributed sensor system called
SensX [3]. Subsequently, we designed a study for our concept’s evaluation and
recorded more than 11,000 individual repetitions of 8 different body weight exer-
cises. In our context, body weight exercises are defined as physical exercises which
are conducted only with an athlete’s own body weight and without the use of
artificial training equipment, e.g., Sit-ups or Squats [5]. Moreover, we developed
different approaches for activity recognition and generic qualitative assessment
of human motion in [2].

Besides our own concepts concerning human motion analysis, there may be
lots of new approaches and ideas of other researchers which can be tested and
evaluated by using our dataset as a basis. Therefore, we publish all data recorded
during our study, which is publicly available at GitHub2. Besides the raw data of
all sensors, we also extracted single exercises into individual segments of adaptive
length and labeled them regarding their class of quality as well as regarding
their type of exercise. This paper provides an overview concerning the used
sensor system, the data structure, and the describing meta data and is meant to
function as a manual for the provided dataset.

2 Dataset

All in all, we recorded 11,087 individual repetitions of 8 different body weight
exercises, of which we were able to extract 8,576 repetitions into individual
segments of adaptive length. Subsequently, all details concerning the study
design, the sensor system, the recording process itself, and the data structure are
presented.

2.1 Study Design

In context of our study we recorded data of 26 athletes by using the SensX sensor
system, which is presented in [3]. In prior to the collection of data we designed
a workout plan encompassing 8 body weight exercises, scheduled to stress an
athlete’s body consistently. An overview across these exercises is depicted in
Fig. 1. Namely these were (1) Crunches (cr), (2) Lunges (lu), (3) Jumping Jack

2 https://github.com/andrebert/body-weight-exercises.

https://github.com/andrebert/body-weight-exercises
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(ha), (4) Bicycle Crunch (bi), (5) Squat (kn), (6) Mountain Climber (mo), (7)
Russian Twist (ru), and (8) Push-ups (li). The exercises are numbered in order
of their execution during the study – their abbreviations are used for storing
them in our file system and are originating from the German exercise terms. All
athletes had to complete 3 sets containing 20 repetitions for each exercise. In
between all sets, a mandatory break of 30 seconds was scheduled. All exercises
were introduced in prior to their first execution with a professional instruction
video. All exercises were taped on video during their execution. Additionally, the
participants were urged to fill out a questionnaire containing several questions
concerning their age, their profession and their habits regarding the conduction
of physical exercises. Moreover, we captured the amount of repetitions which
each individual athlete was able to execute and encouraged all participants to
make a subjective rating concerning the overall quality of their exercise sets
within a range of 1 to 5. Thereby, 1 symbolized very good, 2 good, 3 medium, 4
bad, and 5 very bad in terms of quality.

2.2 Study Participants

Within the scope of this study we recorded the acceleration and rotation data
of 6 female and 18 male participants. Their average age was 27.15 years while
the average weight of all participants was 67.04 kg. The oldest participant was
53 years old, while the youngest was 20. All participants were coerced to provide
information concerning the individual frequency with which they are doing sports
as well as a self-assessment regarding their level of fitness. The rating scale for
both, frequency and level of fitness, ranged from 1 to 5. Corresponding to the
rating’s range in Sect. 2.1, 1 symbolizes never or very low while 5 symbolizes
every day or very high.

2.3 Sensor System

The sensor system used for tracking the athletes consists of 4 external sensor
platforms which are attached to the athlete’s wrists and ankles and an additional
central computation unit (CCU), e.g., a smartphone, which is attached to the
participant’s chest. For fastening the CCU, a common GoPro harness (see Fig. 1)
was used. All devices are tracking acceleration as well as rotation information
in X-, Y-, and Z-dimension, respectively. This makes an overall count of 30
individual signals which are available to describe an athlete’s movements. The
CCU is used to (1) gather the signals of all connected external sensor units and
(2) to store them with a synchronized timestamp on its internal storage together
with its own sensor data. Within the studies conduction, we used two different
CCU setups: the first two athletes were tracked within a preliminary test cycle
by using a LG Nexus 5x running Android 5.0 Lollipop, while the main study was
conducted with a HTC One (M7) running Android 6.0.1 Marshmallow. Reason
for that was, that the second setup was capable to record significantly more
balanced sampling rates for the external sensors. Thereby, the LG setup operated
with an average sampling rate of 200 Hz for the CCU and an inconsistent rate
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Fig. 1. All exercises which were included in our study plus their abbreviations (left)
and the SensX sensor system carried by a study participant (right).

of 20 Hz–40 Hz for external devices, while the HTC setup achieved 100 Hz for
the CCU and a relatively consistent rate of 40 Hz for external sensors. The main
reason for that may be the manufacturer dependent implementation of Bluetooth
Low Energy (BLE), which is used to connect the external sensors with the CCU.
Our experiments showed, that different implementations offer different sampling
rates when connecting multiple BLE devices at the same time.

2.4 Labeling

In general, the data set is labeled for two different purposes: (1) activity recogni-
tion and (2) qualitative motion assessment. All segmented repetitions are labeled
implicitely by the folder structure used for storing their data files (see Sect. 2.6),
which indicates the underlying type of activity (e.g., Sit-up, Push-up, Squat,
etc.). A second, active labeling provides information concerning the actual qual-
ity of a conducted exercise and can be found within the INFO file, which is placed
in the root folder of each participant’s exercise sets. The qualitative labeling was
implemented for the exercises 1–6 (see Fig. 1) and in the frame of the qualitative
assessment described in [2], while the exercises 7 and 8 are not labeled qualita-
tively. The second last row tagged with the Index key maps the quality ratings
which are stored within the last row to specific exercise repetitions; the key used
to identify the last row containing the ratings is named Rating. E.g., the rating
related to the first Push-up within a set of Push-ups is the first value of the last
row, while the rating of the second Push-up corresponds to the last row’s second
value (see also Sect. 2.6).

The qualitative labeling was undertaken by analyzing each single exercise
repetition on basis of the recorded video material. To maximize the qualitative
rating’s accuracy, this step was done together with sports professionals especially
skilled for body weight workouts and endurance training. At the beginning of the
rating process, each individual exercise repetition is labeled with an initial start
value of ps = 1, which represents the highest quality (very good). Subsequently, a
penalty value pa is added to ps for each anomaly a (mistakes, malpositions, etc.)
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made by the participant during an exercise’s execution. If the characteristics of
a specific anomaly are significant, pa has a value of 1, for an anomaly of medium
significance we add 0.5, and in case of a minor mistake it is 0.25. The amount
of detected pa was within a range of 7–13 incidents i, depending on the specific
exercise. As soon as the score is reaching a value of 5, we stop adding any more
penalty points, which means the rating scale’s spectrum ranges from 1 till 5
(very good, good, medium, bad, very bad). In case that the final score is not
an integer value, it became rounded commercially. Thus, the process of creating
a qualitative label L for an individual exercise repetition r without rounding it
may be defined as

Lr = ps +
i∑

n=0

pa, if Lr > 5 : Lr = 5

Due to the sheer addition of penalty points without respecting specific causes
we achieve a generic quality notation: Lr tells us about the quality of a specific
exercise repetition r in terms of good or bad, though it does not contain any
information concerning the cause for a specific rating.

2.5 Descriptive Statistics

All in all we provide 8,576 adaptively segmented and qualitatively labeled exer-
cise repetitions. Table 1 gives a descriptive overview across these quantities.
Additionally, all raw data without qualitative labeling and segmentation can
be found within each exercise set’s root folder. It is significant, that a great
number of the individually segmented repetitions were rated at least medium or
even better. Reasons for that may be the relatively low average age of our par-
ticipants as well as the fact that most of them do sports regularly and thus were
not completely unskilled. Concerning Bicycle Crunches and Russian Twists, the
dataset contains roughly half of the amount of repetitions (in contrast to all
other exercises) – the reason for that is, that we decided to count a left-sided
and the following right-sided execution together as one instance.

Table 1. Qualitative rating and quantitative amounts of all segmented exercise
repetitions.

cr lu ha bi kn mo ru li

Overall quantity 1,315 1,345 1,394 692 1,379 1,227 660 564

Label very good (1) 554 592 235 150 458 439 - -

Label good (2) 367 421 749 204 660 409 - -

Label medium (3) 293 180 347 257 137 244 - -

Label bad (4) 101 131 58 81 112 123 - -

Label very bad (5) - 21 5 - 12 12 - -
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Fig. 2. The dataset’s folder structure and the 4 different organization levels.

2.6 Folder and Data Structure

In the following we provide insights into the file and data storage system. The
sensor data itself was stored by using the metrics which were returned by the
specific sensor platforms. This means that data is stored in m/s2 (minus earth
gravitation) and rad/s for the CCU (Android API standard), while the external
Metawear sensors return their measurements in gravitational force (g) and deg/s
(for acceleration and rotation). All in all, our dataset is organized in four levels
namely the (1) user level, (2) the exercise level, (3) the set level and (4) the data
level (see Fig. 2). The first level encompasses the folders of all 26 athletes which
participated on our study. These are named by an individual code consisting of
two abbreviating characters. Within the second level the exercise folders named
by their German abbreviation can be found: (1) Crunches (cr), (2) Lunges (lu),
(3) Jumping Jack (ha), (4) Bicycle Crunch (bi), (5) Squat (kn), (6) Mountain
Climber (mo), (7) Russian Twist (ru), and (8) Push-up (li). Within the following
third level the data is structured by the three individual workout sets, which each
study participant had to conduct for each exercise (e.g., Set1, Set2, etc.). Each
of these set folders encompass an instance of the fourth level, namely the raw
data files of each exercise set, the segmented repetitions, and an INFO file with
some meta information. The raw data files are named by the first two chars of
the recording sensor platform’s MAC address plus an indicator for acceleration
(acc) or rotation (rot). The raw data files of the CCU are labeled with CH
(chest) plus the rotation or acceleration tag. Furthermore, each raw data file is
mapped to a specific body extremity:

– C6_acc, C6_rot: raw motion data of the left arm (top-left, abbr. TL)
– EE_acc, EE_rot: raw motion data of the left leg (bottom-left, abbr. BL)
– D1_acc, D1_rot: raw motion data of the right arm (top-right, abbr. TR)
– CF_acc, CF_rot: raw motion data of the right leg (top-right, abbr. BR)
– CH_acc, CH_rot: raw motion data of the chest (abbr. CH)
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Next to the INFO file and the raw data files the data level contains 5 containers
which are inhabiting the segmented repetitions of each set. They are named by
the abbreviations introduced above and indicate from which sensor position the
encompassed data originates (TL, BL, etc.). The files inside a specific sensor
folder are named by the acc-tag or rot-tag plus the dimension of its content (x,
y, or z ) and an index number of the specific repetition, e.g., acc-x-1. This means
that one single repetition of an exercise consists of 30 different data sources, e.g.,
the 10th repetition of a set is described by the following files, mapped to the five
individually tracked parts of a participants bodies:

– right arm: TR/acc-x-10, TR/acc-y-10, TR/acc-z-10, TR/rot-x-10,
TR/rot-y-10, TR/rot-z-10

– right leg: BR/acc-x-10, BR/acc-y-10, BR/acc-z-10, BR/rot-x-10,
BR/rot-y-10, BR/rot-z-10

– chest: CH/acc-x-10, CH/acc-y-10, CH/acc-z-10, CH/rot-x-10,
CH/rot-y-10, CH/rot-z-10

– left arm: TL/acc-x-10, TL/acc-y-10, TL/acc-z-10, TL/rot-x-10,
TL/rot-y-10, TL/rot-z-10

– left leg: BL/acc-x-10, BL/acc-y-10, BL/acc-z-10, BL/rot-x-10,
BL/rot-y-10, BL/rot-z-10

Data Structure of Segmented Exercise Repetitions. The data within the
files of segmented repetitions, e.g., acc-x-10, is organized as follows: the first
row contains a vector of acceleration or rotation information; the second row
contains a corresponding timestamp for each value counting the milliseconds of
a repetition from start to end (for metrics see Sect. 2.6).

Raw Data Structure. As stated in Sect. 2.6, each exercise set is described
by ten files of raw data. Within these files an individual number of data rows
with 4 columns can be found. The first column contains its timestamp in UNIX
epoch milliseconds, the following three columns contain acceleration or rotation
information in X-, Y-, and Z-direction.

Data Format Within the INFO File. The INFO file contains additional meta
information concerning individual exercise sets. Besides the average sampling
rate of each single sensor platform it contains the following information:

– the amount of Raw data repetitions
– the number of segmented Repetitions
– the Length of a set in seconds
– the Index for the Rating for each single segmented exercise.

All keys are separated with an “:” from their content. Ratings and their indices
are separated with an “-” in between the individual values.
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2.7 Metadata

In order to enable an easy distribution and findability of our dataset, we defined
meta information corresponding to a recommendation for dataset markups pub-
lished by Google3.

2.8 Adaptive Segmentation

All adaptively segmented exercise repetitions were created by using the segmen-
tation approach described in [2].

3 Conclusion

Within this paper, we present an open dataset encompassing 11,087 repetitions
of 8 different body weight exercises in raw data format. Moreover, 8,576 of these
exercises were extracted into segments of adaptive length and labeled quali-
tatively as well as quantitatively. Subsequently they were stored in a suitable
data structure for further analysis. Some promising results concerning human
activity recognition and qualitative assessment of human motion on basis of
this dataset were published in [2] and encourage further analysis. Multiple new
analysis methods, e.g., neural networks, were not used for dataset examination,
yet. Moreover, a detailed anomaly detection and description of specific error
classes as well as advances for decision certainty concerning activity recognition
and qualitative assessment are still missing. By publishing this dataset, we hope
to promote further advances within human motion analysis, e.g., to optimize
motion sequences and to detect malpositions or injuries within medical as well
as athletic appliances.
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Abstract. In this paper, we present Watchful-Eye, a 3D skeleton-based system
to monitor a physically disabled person using a cane as a mobility aid. Watchful-
Eye detects fall occurrences using skeleton tracking with a Microsoft Kinect
camera. Compared to existing systems, it has the merit of detecting various
types of fall under multiple scenarios and postures, while using a small set of
features extracted from Kinect captured video streams. To achieve this merit, we
followed the typical machine learning process: First, we collected a rich fall
detection dataset. Second, we experimentally determined the most relevant
features that best-distinguish fall from non-fall frames, and the best performing
classifier. As we report in this paper, the offline evaluation results show that
Watchful-Eye reached an accuracy between 87.2% and 94.5% with 5.5% to
12.8% error rate depending on the used classifier. Furthermore, the online
evaluation shows that it can detect falls with an accuracy between 89.47% and
100%.

Keywords: Physically disabled � Computer vision � Machine learning
Fall detection � Skeleton tracking � Features selection � Kinect

1 Introduction

Computer vision research is actively contributing in building smart applications by
providing for image/video content “understanding”. Among the various application
domains, this paper is interested in the contribution of computer vision to the devel-
opment of applications to provide care for physically disabled people. More specifi-
cally, this paper proposes a computer vision based system to detect falls of physically
disable people using canes as a means of assistance. Such a system is vital given the fall
consequences on these people and the fall occurrence rates.
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Indeed, according to statistics from the World Health Organization (WHO)1 in
2016, one out of three 65-year-old people falls each year and, as age increases to 80,
the fall occurs each year. Furthermore, falls constitute the second leading cause of
accidental or injury deaths after injuries of road traffic. These statistics call for efficient
and practical/comfortable means to monitor physically disabled people in order to
detect falls and react urgently.

In fact, several researches have proposed systems and/or methods for fall detection
using computer vision techniques [1–4]. Our investigation of the recent systems
showed that the most of them use the Microsoft Kinect camera, and some of them [1, 5,
6] also use smart sensors mounted on the person in an effort to increase the fall
detection rate. In addition, these systems do not cover all types nor scenarios of fall, and
they may depend on the distance of the person from the camera. Furthermore, our
investigation highlighted the need for a benchmark dataset to assist in the development
of new fall detection methods and the comparison of existing ones. As such, this paper
has a two-fold objective. First, it proposes a dataset that contains data covering a large
spectrum of fall types and scenarios. Secondly, it proposes a new system called
Watchful-Eye for fall detection of physically disable people using canes. Compared to
existing systems, it has the merit of detecting various types of fall under multiple
scenarios and postures, while using a small set of features extracted from Kinect
captured video streams. To achieve this merit, we followed the typical machine
learning process: First, we collected a rich fall detection dataset. Second, we experi-
mentally determined seven most relevant features that best-distinguish fall from non-
fall frames, and RandomForest as the best performing classifier. As we report in this
paper, the offline evaluation results show that Watchful-Eye reached an accuracy
between 87.2% and 94.5% with 5.5% to 12.8% error rate, depending on the used
classifier. Furthermore, the online evaluation shows that it can detect falls with an
accuracy between 89.47% and 100%.

The remainder of this paper is organized as follows: Sect. 2 overviews the Kinect-
based literature studies. Section 3 presents the proposed Watchful-Eye system and
details its building steps—dataset collection, features’ extraction and selection, and
system setting and development. Section 4 discusses the experimental evaluation
results, and Sect. 5 summarizes the presented work and outlines its extensions.

2 Kinect-Based Fall Detection

Several recent studies [1–3], classified under vision-based approaches, use Kinect for
developing Fall Detection (FD) systems. In 2013, Lee and Lee [2] present a system to
detect falls and notify health care services. They use the Kinect depth camera as the
input sensor and Microsoft Kinect SDK to collect skeleton data. Among the collected
skeleton data, they chose to track only the hip joins which they process with two
functions that check the position and velocity of the center of mass. They achieve a
90% accuracy FD rate. Nonetheless, they have a list of false positive postures such as

1 http://www.who.int/mediacentre/factsheets/fs344/en/.
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sitting on the floor with both legs folded behind, kneeling on the floor, squatting,
bending down to wear shoes or tie shoelaces. In addition, they cannot detect when the
user falls off a chair, which is relatively a very common scenario.

In 2014, in an effort to reduce the number of false alarms by collecting more
information, Kwolek and Kepski [1] add to the Kinect a wearable smart device con-
taining accelerometer and gyroscope sensors; this smart device is worn near the pelvis
region of the monitored person. They use a triaxial accelerometer to indicate both a
potential fall and whether the person is in motion. Their proposed system operates as
follows: If the measured acceleration is higher than an assumed threshold value, the
system extracts the person on the basis of the depth reference maps, calculates some
depth features, and executes the SVM-based classifier to authenticate the fall alarm.
This system acquires depth images using the OpenNI (Open Natural Interaction)
library. It achieves 98.33% accuracy when using accelerometer and depth data, and
90% accuracy and 80% specificity when using depth only which is the worst result
compared to other techniques in their research.

In 2015, Stone and Skubic [3] develop a two-stage FD system for detecting falls in
the homes of older adults using the Microsoft Kinect. The first stage characterizes the
vertical state of a 3D object for an individual frame, it then segments on ground events
from the vertical state time series. The second stage utilizes a set of decision trees and a
set of features extracted from an on-ground event to generate a confidence that a fall
preceded it. As a preprocessing step, this system segments 3D foreground objects from
each depth frame using dynamic background subtraction. When the falls are near the
sensor and not significantly occluded, this system can achieve 98%, 70%, and 71%
accurate detection of standing, sitting, and lying falls, respectively; however, when the
falls are far to the sensor and significantly occluded, the system can achieve 79%, 58%,
and 5% accurate detection of standing, sitting, and lying falls, respectively.

Overall, existing fall detection systems using Kinect [1–3] differ in their perfor-
mance: Some do not cover many fall types and/or scenarios; others have high false
alarm rates when operating on particular postures; yet others have low accuracy when
the faller is far from the Kinect. In addition, those trying to improve the fall detection
rate use wearable sensors, which may hinder daily activities and/or make the person
uncomfortable. Furthermore, the proposed systems’ performance evidently depends on
the features used. However, the feature differences (in nature and number) and the lack
of a benchmark dataset hinders a systematic evaluation of the performance of existing
systems.

As such, the aim of this paper is to propose a fall detection method that: suits
physically disabled people using canes, relies solely on Kinect, and can determine
various types of falls in different postures with a high accuracy and a low false alarm.
Such a method highly depends on the selection of the appropriate features. Towards
this end, this paper’s second contribution is the elaboration of a dataset that can be used
as a benchmark to both identify the features and compare existing/future methods.
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3 Overview of the Skeleton-Based Fall Detection

The development of Watchful-Eye proposes three main contributions to the domain of
fall detection of physically disabled people:

1. Proposition of a new fall dataset that covers all fall types and scenarios. The dataset
is available in all the image-based streams provided by the Kinect camera.

2. Identification of the features best describing fall scenarios of cane users; besides
accounting for all fall types and scenarios, the identified features overcome the
challenges incurred by the distance between the Kinect and the faller.

3. Proposition of new skeleton-based method that: detects the different fall types and
scenarios, imposes minimum restrictions on the people with physical disabilities
(i.e. pose or calibration), overcomes the natural scene conditions (e.g., lighting),
requires no prior knowledge about the rooms, is suitable for physical disabled
people using canes, and minimizes the false alarm rate.

The above contributions are detailed in the next subsections, and the experimentally
evaluated performance of the developed system is discussed in Sect. 4.

3.1 The Fall Detection Dataset

The current FD datasets [1–3] are not suitable for this study for the following reasons:
either they targeted healthy people only, they did not provide skeleton data streams, did
not cover most of the scenarios, or they are not made accessible. These reasons
prompted us to record a new dataset that: is made especially for the physically disabled
people using canes as mobility aid; provides all the Kinect image-based streams (RGB
color, depth, skeleton, infrared and body index); covers almost all the fall scenarios
suggested by Noury et al. [7]; is accessible by contacting the authors and will be
available soon at web.

To include all fall types and scenarios in [1–3, 7], we prepared a large dataset that
contains 392 videos. These videos include 208 fall videos that cover backward, for-
ward, lateral fall to the right and to the left. In addition, they include 184 non-fall
videos composed of 115 videos of pseudo fall situations and 69 videos of ADL
(Activities of Daily Living). This dataset was recorded using Kinect v2 for two male
subjects in a frame rate of 30 fps. In each testing room, Kinect was set at 1 m high from
the floor.

A dataset with real fall cases would be much more valuable but it is actually
impracticable to test the fall situations with physically disabled people. So, the subjects
simulated the cane user’s walking pattern introduced by Melis et al. in [8]. Sample
images of the dataset are shown in Fig. 1.

3.2 Features Extraction and Selection

In order to prepare the learning data for the detection system, we first extracted, from
all videos’ frames, the 3D positions of the 25 joints obtained from Kinect v2, which
represent the skeleton. Second, for each frame, we preprocessed the joints’ positions in
three different ways: (i) Original positions (W) without any preprocessing;
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(ii) Translated positions (T) by translating the mid spine joint to Kinect origin along
with the other joints depending on it; and (iii) Normalized positions (N) using the torso-
centered method [9]. These preprocessing ways overcome the difference of the faller
size, distance and position. After each preprocessing method, we calculated three
feature sets as follow:

1. Distances (D) of the joints from the Kinect [10]: 75 features (25 from the original
skeleton, 25 from the translated skeleton, and 25 from the normalized skeleton).

2. Velocities (V) of the joints in the direction normal to the floor plane [4]: 75 features
(25 from the original skeleton, 25 from the translated skeleton, and 25 from the
normalized skeleton).

3. Angles (A) [11]: 45 features (15 from the original skeleton, 15 from the translated
skeleton, and 15 from the normalized skeleton).

Because of the large number of features (195 features), we conducted three
selection trials to eliminate irrelevant features, using two filter methods (Relief-F and
Information Gain) and wrapper methods using two classifiers (C4.5 and IBk). From the
union of all the features resulting from these methods, we took the most relevant
features that gave us the best results.

In each of the three trials, we changed the way of classifying the fall frames. In
Trial 1, the fall frame was any frame belonging to a fall video. In Trial 2, the fall frames
were divided into two classes as indicated in [1]: (i) Temporary-pose frames when the
faller starts falling until s/he reaches the floor; and (ii) Fall frames when the faller hits
the floor, and stays on it. Finally, in Trial 3, the fall frame was the temporary pose and
the fall frames from Trial 2. Tables 1, 2 and 3 summarize these three trials. Figures 2, 3
and 4, respectively, show the most relevant features obtained from the three trials.

Furthermore, to identify the most appropriate/performing features, we evaluated the
results of each trial using a C4.5 classifier to measure its performance. As seen in
Table 4, the best results were obtained from the seven relevant features in Trial 3 with a
91.53% accuracy. These features belong to the upper body part, which makes sense
because this part is the main part used to support the cane before a fall happens.

3.3 Proposed Skeleton-Based Fall Detection Method and Its Setting

The conceptual architecture of the Watchful-Eye system receives the skeleton stream
captured through the Kinect and transferred through USB to a laptop running the FD
method. This latter first extracts the skeleton and normalizes a copy of it. Afterward,
from the original data, it extracts features: right shoulder distance, right hand and right

Fig. 1. Dataset samples.
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Table 1. The conducted Trial 1 of the feature selection experiment.

Training
data

4960 frames; 2480 for each class

Classes • 1 (Fall): if the frame from fall video classifies as fall
• 0 (Non-fall): if the frame from non-fall video classifies as non-
fall

See
Fig. 2

Best
features

5 features calculated from 7 joints:
1. Original angle of (left hip, base spine, right hip)
2. Original head velocity
3. Translated left ankle distance
4. Translated angle of (shoulder spine, mid spine, base spine)
5. Normalized mid spine distance

Accuracy 77.29%

Table 2. The conducted Trial 2 of the feature selection experiment.

Training
data

4959 frames; 1653 for each class

Classes • 2 (Temporary pose): from fall video, the frame when the person
starts fallen classify as a temporary pose

• 1 (Fall): from fall video, the frame after the person are fallen and
laying in the floor classify as fall

• 0 (Non-fall): if the frame from non-fall video classifies as non-fall

See
Fig. 3

Best
features

4 features calculated from 3 joints:
1. Original left shoulder distance
2. Original head velocity
3. Normalized left shoulder distance
4. Normalized left thumb distance

Accuracy 74.8%

Table 3. The conducted Trial 3 of the feature selection experiment.

Training
data

4960 frames; 2480 for each class

Classes • 1 (Fall): from fall video, the frame when the person starts fallen until
he fallen and laying in the floor classify as fall

• 0 (Non-fall): if the frame from non-fall video classifies as non-fall

See
Fig. 4

Best
features

7 features calculated from 6 joints:
1. Original right shoulder distance
2. Original right hand velocity
3. Original right thumb velocity
4. Normalized left hand distance
5. Normalized left shoulder distance
6. Normalized left thumb distance
7. Normalized right thumb distance

Accuracy 91.53%
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thumb velocities. From the normalized data, it extracts the rest features: left hand, left
shoulder, left thumb and right thumb distances (features retained from Trial 3) and it
feeds them to the appropriate classifier. Finally, based on the frames’ classification
results, it decides whether there is a fall, in which case it triggers an alarm. To

Fig. 2. Mapping of the best features representing the fall from Trial 1.

Fig. 3. Mapping of the best features representing the fall from Trial 2.

Fig. 4. Mapping of the best features representing the fall from Trial 3.
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determine the appropriate classifier, we conducted a set of experiments whose results
we discuss in the next section.

During the development of Watchful-Eye, we supposed that the system is to
operate under the following settings/hypotheses:

1. It is set to monitor a room containing the disabled person in real-time;
2. It uses Kinect v2 for Windows with the free tool of Kinect SDK to detect and track

the body/skeleton of the disabled person;
3. The Kinect sensor is placed 1 m high from the floor, as we did in the dataset. Its

field of view should be able to cover both the room and the monitored person. In
addition, the depth range of Kinect, which could reach 4.5 m [4] is also considered
in the detection process;

4. The tracked joints are the six extracted from Trial 3 of the feature selection
experiment.

4 Experimental Results

In this section, we analyze the detection performance of Watchful-Eye through an
offline and online experimental evaluations. The two subjects from the recorded dataset
were engaged in both experiments.

Experiment 1: Offline Evaluation. This first experiment aims to identify the appro-
priate classifier. Towards this end, we prepared a sample of 4960 frames from the
recorded data with 2480 fall frames and 2480 non-fall frames. The frames used during
the offline experiment correspond to the whole range of the captured 392 videos. We
used 70% of this data (3472 frames) for training and 30% (1488 frames) for testing.

To determine the best classifier to build the classification model, we tested the data
using different classification algorithms: C4.5, Logistic Model Trees (LMT), Ran-
domForest, RandomTree, REPTree, and Instance-Based k (IBk) used with their default
parameters as suggested by [12]. Based on the obtained results, we concluded that
RandomForest is the best classifier (Accuracy = 94.5%, Sensitivity = 92.8%,
Specificity = 96% and AUC (Area Under the ROC Curve) = 0.9858) to use in
Watchful-Eye and the online experimental evaluation.

Table 4. The online evaluation results.

Fall type Video number Weaker side F TP FN SE

Backward fall 1 Left 79 75 4 94.9%
2 Any 63 57 6 90.5%

Forward fall 3 Right 49 49 0 100%
4 Any 31 31 0 100%

Lateral fall to the right 5 Left 76 68 8 89.47%
6 Any 49 49 0 100%

Lateral fall to the left 7 Right 77 72 5 93.5%
8 Any 52 49 3 94.23%
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Experiment 2: Online Evaluation. For the online evaluation, we developed the
Watchful-Eye program that we operated with real-time videos of the two subjects as
captured directly from Kinect. In this experiment, we used eight different fall videos
(V) representing the following types of falls:

1. Backward fall from standing ending lying.
2. Backward fall from sitting on chair with no back ending lying.
3. Forward fall from standing ending on the knees.
4. Forward fall from sitting with forwarding arm protection.
5. Lateral fall to the right from standing ending lying flat.
6. Lateral fall to the right from lying on bed.
7. Lateral fall to the left from standing ending lying flat.
8. Lateral fall to the left from lying on bed.

Table 4 shows the experimental results where F and SE are the Total Video
Frames, and the Sensitivity, respectively. In addition, “Weaker side” represents the
weaker side of the physically disabled person. If s/he has left weaker side, then s/he
was holding the cane by his other stronger side (right) as explained by Melis et al. in
[8]. The videos with (Any) weaker side, that means the subject did not need to hold a
cane because her/his postures (sitting or lying), and this situation could happen to the
physically disabled person with any (left or right) weaker side.

From these experimental results, we notice that the offline evaluation results show
that Watchful-Eye reached an accuracy between 87.2% and 94.5% with 5.5% to 12.8%
error rate depending on the used classifier. Furthermore, the online evaluation shows
that it can detect falls with an accuracy between 89.47% and 100%.

5 Conclusion

In this work, we presented Watchful-Eye, a skeleton-based monitoring system to
monitor a physically disabled person using a cane and to detect fall occurrences. To
develop such system, we constructed a dataset that can serve as a benchmark for
evaluating and/or developing fall detection methods. This dataset has the merit of using
the latest Kinect version, containing rich collected data, and covering a large spectrum
of fall types and scenarios. In addition, we experimentally identified seven relevant
features and appropriate classifier (RandomForest) classify frames into fall or non-fall.
Finally, we experimentally showed that thus-developed system offers accuracy between
87.2% and 94.5% with 5.5% to 12.8% in offline evaluation, while in online evaluation
shows that it can detect falls with an accuracy between 89.47% and 100%. In our future
works, we will focus on improving Watchful-Eye by training it to detect falls from
frame sequences in order to increase its accuracy and reduce its false alarm rates.
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Abstract. This work presents a physical and cognitive training program, based
on virtual reality technologies, designed with the aim of preventing the occur-
rence of symptoms of dementia in elderly with Mild Cognitive Impairment
(MCI). The system foresees a physical task to be performed on a cycle-
ergometer and two virtual environments for cognitive stimulation. In this paper,
results of different validation phases conducted on both healthy and MCI sub-
jects are described. The presented validation path allowed to implement, in
parallel, the two current versions of the setup: the former, optimized to assess the
efficacy of the intervention in a randomized clinical trial, which will take place
in the next future, and the latter, more experimental, which foresees the
employment of immersive environments to increase subjects’ engagement and
motivation.

Keywords: Mild cognitive impairment � Physical training
Cognitive stimulation � Virtual reality � Oxidative stress

1 Introduction

Patients with Alzheimer’s Disease (AD) may initially be affected by the so-called Mild
Cognitive Impairment (MCI), that is the presence of an impairment in at least one
cognitive domain, without a significant deterioration of autonomy in activities of daily
living [1]. MCI population has an increased risk to develop dementia, even if a
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consistent percentage remain stable or reverse to normality during the years [2].
Therefore, subjects with MCI represent a reasonable target population for interventions
aimed at halting and reducing AD progression, in particular for strategies centered on
modifiable risk factors for dementia [3].

Several clinical trials have been conducted in recent years to identify non-
pharmacological interventions capable of reducing the risk or, at least, slowing down
the occurrence of the symptoms of dementia. Though there is still uncertainty on the
efficacy of such interventions, promising results seem to be provided by either the
separate or concurrent provision of cognitive stimulation (CS) and physical activity
(PA) [4]. Starting from these evidences, the presented system was developed with the
aim of providing elderly with minor cognitive disorders with an effective and easy
accessible technological tool for physical, cognitive and functional stimulation, in order
to prevent the occurrence of new symptoms of dementia. Virtual Reality (VR) has been
used as the enabling technology due to its capabilities of reproducing controlled
training environments with high ecological validity and of engaging and motivating the
patients [5, 6]. In the following paragraphs, the system and the validation path followed
to test and improve the first-designed setup are presented.

2 The Training System

The system was designed to allow MCI patients to both perform physical exercise and
train their cognitive abilities with a single experimental setup. To facilitate the transfer
of the capabilities acquired during the training into real life, three VR-based scenarios
representing activities of daily living were implemented. In details, they simulate the
following activities: (1) riding a bike in a park, (2) crossing roads - avoiding cars – and
(3) making the grocery shopping in a supermarket. The first scenario is dedicated to the
accomplishment of the PA, whereas scenarios (2) and (3) are designed to provide the
CS and, in particular, to train visuospatial abilities, which correspond to one of the
domains commonly impaired in AD and thus require proper stimulation.

The hardware devices composing the training system are: a cycle-ergometer
(Ergosana Eurobike 320), a smart garment (Wearable Wellness System, Smartex) –
aimed at measuring the hearth rate in real time, a finger touch projector (EB-1430WI,
Epson) and a PlayStation controller anchored on the cycle-ergometer handlebars. The
choice of the cycle-ergometer was motivated by safety reasons, since, with respect to a
treadmill (the only other equipment allowing an easy modification of the workload), is
associated with a lower risk of injury, especially in case of an elderly user.

2.1 Physical Activity

While performing the physical task (scenario 1), the patient rides the cycle-ergometer,
facing the projected screen and wearing the smart garment, as shown in Fig. 1.
Exercise intensity is chosen as to correspond to about 65–70% of individual maximal
heart rate (HR), previously determined on the basis of the age-predicted value.

During the training session, the work rate is adjusted in real-time, through a digital
controller, which tunes the workload to make the subject maintain the target HR. The
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Virtual Environment (VE) represents a trail in a park (Fig. 2, top-left) that flows
according to the pedals velocity. The VE has the aim of increasing the user’s
engagement and of providing him/her with the information needed to control the
exercise, such as speed, covered distance, round-per-minute, time elapsed and
heart rate.

2.2 Cognitive Stimulation

The CS starts after a predefined time lapse (15 or 20 min), when the park displayed on
the projected screen turns into an urban route. In this second scenario, the user has still

Fig. 1. The system setup. The dashed line represents Bluetooth connection; continuous line
represents connections through cables.

Fig. 2. Screenshots of the developed VEs: above, the park (left) and the crossing-road (right)
scenarios; below, the two tasks of the supermarket scenario: aisle (left) and shelf (right).
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to ride the cycle-ergometer, but the task is not more physical (the workload is set to 0),
but cognitive: he/she, in fact, has to face the crossing of five traffic-congested and non-
regulated crosswalks.

The trial participant has thus to perform different visuospatial and attentional tasks:
(1) pedaling to reach the border of the sidewalk, (2) brake when being near it, (3) check
on both sides if there are cars moving closer and, if not, (4) restart pedaling to reach the
following cross. Braking and turning the point of view can be accomplished using,
respectively, the X button and the joystick of the PlayStation controller. This choice
was motivated by the impossibility of implementing a real brake by accessing the
wheel compartment without affecting the CE certification of the ergometer.

After the completion of this first cognitive task, the user reaches the entrance of a
supermarket (scenario 3) and has to get down from the cycle-ergometer and do the
shopping of some grocery items indicated on the shopping list that the system generates
randomly. To buy a product, the user has first to find and tap on the projected screen the
aisle whose sign is containing the name of product (aisle task) and then tap on the right
product, placed on the shelves in a random position, among other distractors (shelf task,
see Fig. 2).

Different levels of difficulty were implemented for both tasks. The increase in
difficulty is obtained mainly by the increase of distractors and of their similarity. For
the aisle task, a further complication to promote language and attentional training is
obtained by the introduction of a word that is orthographically or semantically similar
to the target object name. For the shelf task, higher levels are characterized by the
presence of different formats and discounted versions of the same product, so that the
attentional and visuospatial demands are increased.

For both the described tasks, if the user commits an error or does not interact with
the VE for more than 45 s, the system intervenes providing a hint to help him/her
proceed to the next task.

3 Validation Path

For the validation of the designed intervention, different phases have been already
accomplished and others will be completed in the next future (see Fig. 3). In particular,
with respect to the previously presented achievements this work adds the results from
the preliminary tests on the immersive version of the system and includes the
description of the randomized trial that will be held using the third version. Each past
phase – described in the subparagraph hereinafter – allowed collecting different kind of
data that led to the improvement of the hardware devices and of the VEs’ design and
functionalities.

3.1 Phase 1: Preliminary Tests

First experiments on the developed system were performed enrolling healthy subjects.
For the PA, a cardiologist tested the algorithm that regulates the cycle-ergometer
workload according to the user current and his/her maximal heart rate [7]. Thanks to his
suggestions, modifications were made to the controller to adjust the slope with which
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the increase or decrease of the workload is made, to avoid too sharp variations in the
users’ HR.

Dealing with the CS environment, two different experiments were performed. The
former, described in [8], allowed to define the best interaction device for selecting the
aisle and the grocery items from the shelves. The touch-projected screen resulted the
best in terms of intuitiveness and fatigue, with respect to Kinect-based solutions, Leap
Motion and 3D mouse in tests conducted on 5 healthy subjects. The latter experiment
involved 30 healthy participants with the aim of identifying potential criticalities in the
supermarket scenario. Each subject was asked to perform the shopping tasks and then
to fill in a questionnaire assessing the usability of the system and to provide suggestions
for improvement. The collected feedback led to the replacement of certain products,
which resulted confounding due to the screen resolution or to potential ambiguity (i.e.
Grana Padano vs. Parmigiano Reggiano) and to the modification of the clickable area in
the aisle scenario: the entire aisle was turned into a button, after it was observed that
many users clicked the lane area instead of the aisle sign.

Fig. 3. The validation path: the setup version used, the type of experiment performed, its
outcomes (indicated by arrows) and the subsequent modification to software and hardware
devices. Grayed-out blocks indicate that the trial is currently ongoing.
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3.2 Phase 2: The Pilot Trial

After the validation on healthy subjects, the developed system was tested in a first
randomized pilot trial conducted on elderly with MCI. Ten subjects responding to
inclusion criteria (age � 65 years, one or more test scores indicating compromised
visuospatial abilities, one or more test scores indicating cognitive decline) were ran-
domized in two groups. A set of variables to collect before, after and during the trial,
was defined with the aim of assessing the feasibility (the practicality of a solution), the
acceptability (the social, psychological and ethical acceptability of a certain treatment)
and providing first insights of the efficacy (the benefits measured by improvements in
health) of the designed program. Results of the trials, reported in Table 1, are more
extensively described in [9, 10].

Table 1. Results of the pilot trial. EG: Experimental Group, CG: Control Group.

Outcomes Assessment methodology Results and conclusion

Psychometric
tests (pre/post)

Mini-Mental State Test, Rey-
Osterrieth Complex Figure Test,
Clock Drawing Test, Trail Making
Test-A/B, Frontal Assessment
Battery, Word and Non-Word
Repetition Task, Verbal fluency
tests, Functional Assessment
Questionnaire.

EG showed improvements in the
MMSE, in visual-constructive and
visuospatial tests, while the CG
worsened. The EG had a greater
improvement in the executive,
memory and verbal functions. No
difference was statistically
significant, reasonably due to the
small sample and its
heterogeneity. However, the
highlighted tendency can be
considered encouraging.

Oxidative stress
measurement
(pre/post)

Detection of Reactive Oxygen
Species (ROS) concentration by
Electron Paramagnetic Resonance,
antioxidant status and oxidative
damage [11, 12].

The EG after training intervention
showed statistically (p < 0.05)
lower ROS production rate.
The training may help to delay
neurodegenerative damage caused
by oxidative stress.

Software data
(acquired
during the
training)

Durations of the PA and CS.
Accident, errors and hints occurred
during the CS.

Good adherence to both PA and
CS. Levels of CS training were
indeed of increasing difficulty, but
too easy to complete for patients
with only mild cognitive
impairments. Few products were
confounding.

Subjective
evaluation (post
intervention)

Questionnaire on satisfaction,
desire to continue, enjoy and
comfort. Suggestions for
improvements through open
questions.

EG reported high levels of
engagement and motivation,
enabled mainly by VR
technologies. Feedbacks on the
VEs revealed appreciation:
participants would continue with
the program also at home.
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Despite positive feedback from the experimental subjects, the observations of the
sessions and the collection of the psychologists and the patients’ comments highlighted
a few critical aspects to be improved in a third version of the system (Fig. 3). A 3D-
printed braking device, equipped with a potentiometer, was anchored on the cycle-
ergometer handles to allow a more natural interaction; the smart garment was replaced
with more practical heart rate monitor (a finger pulse oximeter), which allows more
participants to use the same equipment. The software was made able to handle auto-
matically the level selection, excluding potential errors committed by operators.
Moreover, all the road crossing, the aisle and the shelf tasks proposed are now pre-
viously computed and just loaded during the sessions, so that more precise and com-
parable data will be available for further analyses.

The resulting third version, improved according to the feedback collected during
the pilot study and thanks to the promising results obtained on MCI patients, will be
tested in the next months in a multicenter randomized controlled trial (§4).

3.3 Phase 3: Preliminary Test on the Immersive Version

Another aspect that would have been interesting to address in order to improve the
second version is the possibility to provide the users with a more immersive experi-
ence. Solving this issue requires the replacement of the projected screen with a Head
Mounted Display (HMD), whose use often causes physical drawbacks [13]. Therefore,
there is the need of testing the immersive solution on healthy subjects before inte-
grating it into an elderly/frail people-dedicated system. Due to this reason, an alter-
native version of the system was developed in parallel to the non-immersive third
setup. The park and road crossing VEs were adapted to be visualized using the
Samsung GearVR headset; an ad-hoc client/server application, which allowed the data
exchange between the cycle-ergometer and the VEs running on the Android smart-
phone placed in the GearVR, was implemented.

A within-subject experiment comparing the projected screen and the HMD was
then conducted on a sample of 33 healthy young adults, who were asked to answer the
Simulator Sickness Questionnaire (SSQ) [14] and to select the device they prefer after
10 min of cycling in the two VEs. Preliminary results revealed that SSQ total scores
were significantly higher using the HMD (p < 0.001, z = −4.79). However, most of the
subjects (n = 24, v2 = 9.64, p < 0.05) reported to prefer the experience with the HMD,
indicating that subjects are capable of tolerating small malaises in exchange of a more
involving and engaging experience. Only subjects who reported a high number of
symptoms (� 4), in fact, preferred the projected screen; moreover, they often reported
discomfort in this less-immersive condition too.

4 Conclusion and Future Works

This paper presents a system developed to provide MCI patients with physical and
cognitive training and describes three different validation phases and the technical and
methodological improvements implemented after each phase. In the next future, the last
non-immersive version (#3) will be part of a multicenter randomized clinical trial,
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involving about 200 MCI patients. Further studies will be performed also on the
immersive environments, which are more engaging and more intuitive, trying to
improve the VEs design with the aim of reducing as much as possible the physical
drawbacks. When the navigation and the interaction while wearing an HMD will be
comfortably tolerated by a population of young adults, first tests on elderly will be
conducted taking into account the proper safety equipment (e.g. harness).
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Abstract. The use of mobile health together with the Internet of Things (IoT)
technology and wireless networks have the potential of reshaping the healthcare
systems towards the patient-centred and preventative ones. Better empowered
patients which are familiar with smart technology represent a viable way for
raising the quality of the self-management of health. Usability is a key factor for
a successful acceptance of mHealth solutions. This paper presents the results of
the heuristic evaluation of two mHealth apps that support self-healthcare revealed
several important usability problems which have to be fixed in the further
versions.
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1 Introduction

Mobile technology in medical care (mHealth) has grown throughout the world over the
last few years. This technology changes the way healthcare is provided shifting it
towards a patient-centred approach which means that the “care that is respectful of and
responsive to individual patient preferences, needs, and values and [ensures] that patient
values guide all clinical decisions” [1]. mHealth supports a better engagement of the
patients and health professionals aiming to ensure preventive actions and healthier life
styles, and to improve health outcomes and health system efficiency.

The concept of self-management of patients is associated with a better empowerment
of them and an improved responsibility in taking the most appropriate choices regarding
a personal management of the disease.

In a digitalized healthcare system, wearable and in-home sensors collect health data,
facilitate analysing and finding insights in the huge amount of stored data and provide
real-time actions of healthcare providers.

For a broader acceptance of mHealth usability evaluation has to be performed even
from the development process for meeting the patients’ demands and necessities.

This paper presents two case studies, TactioHealth app and iMHere app. These are
mHealth apps that provide useful information for supporting people in self-care
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activities. The results of the usability inspection of both of them using heuristic evalu‐
ation are described.

2 The Potential of mHealth to Remodel the Self-management of
Health Processes

The worldwide current healthcare systems aim to provide complex, high quality, cost
efficient, accessible and patient-centred care. New healthcare delivery models based on
the latest medical research have emphasized the intensive link between the early iden‐
tification of a disease and the successful treatment results. Thus, a preventative approach
of the healthcare services have lately become an increasing demand, imposing a shift in
care from treating a disease to prevent or slow down it.

Preventative healthcare can be classified in primary (avoiding the occurrence of a
disease), secondary (controlling a disease from the early stages by minimizing its
impacts) and tertiary (identifying the most appropriate management of a chronic disease
for raising the quality of life of the patient).

Preventative healthcare systems imply both a proactive and a predictive tackling as
specified in [2]: “Proactive care solutions stratify at-risk individuals based on known
algorithms and ensure that preventive action is taken to intervene well before the onset
of symptoms. Predictive care solutions leverage cutting-edge technologies and sophis‐
ticated machine learning data algorithms to predict risk and intervene even further
upstream”.

Continuous changes at the societal level and the huge technological advances enforce
a shift towards a more comprehensive patient empowerment. The tremendous role of
information communication technology in the healthcare systems and the broader access
to knowledge have sustained the emergence of a new category of patients, digitally active
and having quite well established demands and expectations regarding integrated
patient-centred healthcare services.

Digitalisation has also facilitated an increased role of the patient in his/her self-health
management, with many benefits like: better engagement with healthcare providers,
greater confidence, enhanced safety, improved health outcomes, cost and time effi‐
ciency. mHealth has proved to be a successful tool for better engaged patients looking
for smarter healthcare.

The most appropriate domains for mHealth applications comprise: self-monitoring
of health parameters (in conjunction with wearable devices and IoT), remote consulta‐
tions, emergency management, health data acquisition, storing and processing, compre‐
hensive and limitless access to health knowledge.

According to [3], 36% of respondents believe the use of app-enabled patient portals
is the most effective tool in patient engagement.

To get the most out of the mHealth targeting the self-management of health, the most
appropriate, familiar and personalised user interface design has a key role in a broader
acceptance of these health services, together with a more consistent use of interopera‐
bility standards, more pervasive ways to collect, analyse health data in order to transform
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it into improved knowledge, and also with better issues of privacy and security in order
to increase the confidence of the patient-users.

The continuous emerging of newer mHealth based solutions and technology, the
integration of smart devices into everyday life and the increased degree of the patients’
acceptance accelerates the reshaping of the healthcare systems.

3 The Internet of Things - Facilitators of for Improving Patient
Engagement and Personalized Healthcare

The IoT can provide early detection of abnormal health data and rapid response to
medical emergencies, support patients’ adherence to often-complex medication regi‐
mens, and offer a greater confidence. The emergence of wireless networks in healthcare
applications gains momentum by increasing the number of vital signalling sensors and
localization tags that can track both medical staff and patient status/location continu‐
ously in real time [4].

“IoT is the network of physical objects or “things” embedded with electronic devices,
software technologies, sensors and networked connections, which facilitates the collec‐
tion and exchange of data to benefit from various services” [5]. IoT is a concept reflecting
a connected set of anyone, anything, anytime, anyplace, any service, and any network.
IoT is a technology for interconnection of uniquely identifiable smart objects and devices
within today’s internet infrastructure with extended benefits.

With IoT, many medical applications can be generated, such as remote health moni‐
toring, health programs, chronic illness [6].

Wireless health care systems can be used together with IoT systems. These systems
include health sensors, smart phone devices and server system for information control
and management [5]. The sensors contain input values that they transmit to the server
using the smartphone. The server processes the data and informs the patients. These
health systems help patients make decisions based on what their application transmits.

The monitoring system is mainly based on two types of sensors: wearable sensors
that are attached to the patient to measure vital parameters and in-home sensors
embedded in and around the different parts of the patient’s room [7].

IoT allows a variety of health care services where each service offers a set of health
care solutions. Of the types of IoT-based healthcare services we mention: Ambient
Assisted Living (AAL), The Internet of m-Health Things (m-IoT), Adverse Drug Reac‐
tion (ADR), Community Healthcare (CH), Children Health Information (CHI), Wear‐
able Device Access (WDA), Semantic Medical Access (SMA), Indirect Emergency
Healthcare (IEH), Embedded Gateway Configuration (EGC), Embedded Context
Prediction (ECP).

Figure 1 shows the operation of wireless networks used to help patients. It consists
of sensors attached to the human body, wireless devices, server system and doctors and
hospitals that provide patient services [5].
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Fig. 1. Wireless sensor networks for healthcare

4 Usability Evaluation of mHealth Apps Supporting Self-care

The ISO 9241-11 standard defines usability as “the extent to which a product can be
used by specified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use” [8]. Poor usability is a major obstacle to health
information adoption and a clear cause of medical error [9]. Usability is a key determi‐
nant to the adoption and success of mHealth into disease self-management [10].

Usability evaluation aims at finding, documenting, and reporting usability problems
for refining the design of the system to address the problems found. Usability evaluation
methods are classified in: inspection methods and user testing [11]. Usability inspection
is done by experts that are testing the user interface with the goal to anticipate usability
problems. The most widely used inspection method is the heuristic evaluation [12],
where an expert reviewer assesses the tested user interface with a set of universally
accepted usability principles (heuristics). Table 1 illustrates the 11 principles of the
heuristic evaluation for mHealth apps that are in accordance with the 10 principles
proposed by Nielsen [13], and the last is from Karat et al. [14].

Table 1. Principles of good interface design (heuristics).

No. Heuristics
1 Visibility of system status
2 Match between system and the real world
3 User control and freedom
4 Consistency and standards
5 Error prevention
6 Recognition rather than recall
7 Flexibility and efficiency of use
8 Aesthetic and minimalist design
9 Help users recognize, diagnose, and recover from errors
10 Help and documentation
11 Intuitive visual layout
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4.1 mHealth Apps: Case Studies

The objective of the presented case studies was to evaluate the usability of two mHealth
apps that enhance the quality of life by empowering the patient with self-care possibil‐
ities:

1. TactioHealth app consists in mobile proactive applications suited for helping people
to manage a healthy lifestyle. Tactio software apps provides a better health manage‐
ment without requiring medical expertise. There are apps dealing with Diabetes (see
Fig. 2), Obesity, Hypertension, Atherosclerosis, COPD, CHF, and Pregnancy.
Patients are empowered to manage a wide range of health data from simple manual
logging to self-tracking apps connected to medical devices. Reference ranges are
provided by incorporated science-based rules and can be used on every data: weight,
steps, nutrition, activity, sleep, mood, blood pressure, pulse, glucose, cholesterol,
temperature and oximetry [15].

Fig. 2. Tactio Type 2diabetes mHealth Apps

2. iMHere (Internet Mobile Health and Rehabilitation) is a mHealth system developed
to support self-care and adherence to self-care regimens for individuals with spina
bifida and other complex conditions who are vulnerable to secondary complications
[16]. The system allows clinicians to monitor a patient’s condition and send a treat‐
ment plan for each patient to a smartphone designed to empower patients to do
preventive self-care and adapted to user’s disabilities. The five apps that constitute
the iMHere support preventive self-care for managing medications (MyMeds),
neurogenic bladder (TeleCath) and bowel (BMQs), skin breakdown (SkinCare), and
mood (Mood) as presented in Fig. 3. It is possible to generate self-created reminders
with customized alarm tones and messages prompted individuals to perform tasks
related to self-care at home.
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Fig. 3. iMHere mHealth App - Home screen for suite of apps

4.2 Results of Heuristic Evaluation of mHealth Apps

In order to address any issues concerning the use of mHealth apps inspected in the two
case studies, a group of users (acting as patients) was introduced to the usability study.
Previous studies from HCI literature found that 80% of usability problems can be
detected with only 5 subjects [17, 18], and almost all of high-severity usability problems
with only 3 subjects [17]. In this study, 5 evaluators (3 women and 2 men) specialised
in: web design, medical care, healthy lifestyle, psychologist, caregiver tested the selected
mHealth apps independently and reported the usability problems found for each of the
six main themes emerged from usability literature [19]: Presentation of health informa‐
tion; Aesthetic and minimalist design; Flexibility and efficiency of data input; Task
feedback; Intuitive design; and App stability. None of the evaluators has severe intel‐
lectual disability and any problem in vision, hearing, speech, or hand moving which
would affect operation of a smartphone device. All subjects were smartphone users prior
to be included in the study. Two evaluators are usability experts and three are patients.

Before starting the evaluation, each evaluator received the evaluation themes, the
set of usability heuristics, and two papers with examples of usability inspection. The
usability inspection has been done independently by each expert using his/her own
smartphone during 90 min.

According to the potential effect on the theme, the severity of the detected usability
problems has been assessed as severe, moderate and minor.

Each evaluator detected between 5 and 9 usability problems and specified each of
them on an Excel table. After removing the false ones and analysing each problem in
order to agree on the severity, 13 usability problems in TactioHealth app and 12 in
iMHere app resulted as important. The usability evaluation results are presented in
Table 2.
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Table 2. Usability problems per task and severity

Theme TactioHealth app iMHere app
Total Severe Moderate Minor Total Severe Moderate Minor

1 2 0 1 1 6 1 3 2
2 2 0 2 0 1 0 1 0
3 3 1 2 0 1 0 1 0
4 2 0 2 0 1 0 1 0
5 3 0 1 2 2 0 1 1
6 1 0 1 0 1 0 1 0
Total 13 1 9 3 12 1 8 3

The two severe problems are related to the big quantity of input data in TactioHealth
app and to the small dimension of some activity buttons at the top of the screen dimin‐
ishing users’ access capabilities in iMHere app.

Most of the moderate problems are related to the findings presented in Table 3.

Table 3. Usability results for the two case studies (moderate severity)

No. Theme Key usability problems in
TactioHealth app

Key usability problems in iMHere app

1 Presentation of
health information

– Too small dimension of
graphs for seeing trends
over time

– Light text colour such as white or
yellow on a light background (e.g.,
grey) causing reading difficulties;
– Narrow width of the scrollbar
leading to under-completion of the
data
– Difficulties in understanding the
meanings of certain words (e.g. alias)

2 Aesthetic and
minimalist design

– Overcrowded screens
– Obstructive decorative
elements competing with
relevant content

– Overcrowded screens

3 Flexibility and
efficiency

– Lack of flexibility in
entering data

– Not patient centred design leading
to not appropriated remainders, and
scheduling
– Errors in tasks procedures by not
using of in-app directional notes

4 Task feedback – Too much input data
requested by apps and no
feedback provided
– Lack of feedback to state
the completion of an action

– Non appropriate use of words in
dialog with the users

5 Intuitive design – Difficulties in
understanding how to use an
app

– Lack of different colours for
different apps

6 App stability – Occasional apps
breakdowns

– Certain problems for sending data if
4G signal is unstable
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5 Conclusion

Inside the healthcare systems, mHealth has proved to bring value and an increased
quality both from the point of view of healthcare services and of a more comprehensive
and involved self-health management performed by the patients. A preventative
approach of lifestyle and health supported by smart technology and patient-centred
solutions have transformed the passive patients into active engaged actors. Despite the
tremendous development of smart health technology, a greater importance has to be put
on designing more familiar and personalised mHealth solutions for increasing their
degree of integration in patients’ everyday life. Usability evaluation of mHealth solu‐
tions can reveal the issues that might restrain their acceptance, use and the positive
impact on self-management of patients’ health as it has demonstrated inside this paper.
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Abstract. Technology can play a key role in support of the needs of the ageing
population. In this direction, the rapid development of the ICT, and in particular
mobile technologies, offers an important opportunity to address the development
of an integrated solution to support active and healthy ageing. Whilst technology
can potentially have a significant impact on health and wellbeing, to date uptake
of digital health technologies has been problematic in a number of wide-scale
studies. Literature has cited confidence, the stigmatizing aesthetics of products,
meaningfulness of technology in the broader context of the persons’ life, ease of
use and integration into everyday routines as important factors of non-acceptance.
With the aim of overcoming the above limitation, we have gathered a multi-
disciplinary consortium to develop an integrated solution that, strongly leveraging
user participation and co-design as well as state-of-the-art technologies, offers a
virtual coach service to elderly people so that they can maintain wellbeing and
independence. The solution, in addition to being multi-technology, has the ambi‐
tion of addressing wellbeing in a holistic manner taking into consideration several
dimensions. NESTORE has started in September 2017 and will last three years.
NESTORE involves 16 partners from 7 European countries. The paper presents
the approach to the research and the envisaged results.

Keywords: Healthy ageing · Wellbeing · Smart objects · Interaction design
User empowerment · Self-management

1 Introduction

The NESTORE (Non-intrusive Empowering Solutions and Technologies for Older
people to Retain Everyday life activity) project has been recently funded by the H2020
Programme under Strategic Challenge 1 “Health, demographic change and wellbeing”
in response to the call on healthy ageing.

The aim of the project is to develop a companion - NESTORE - that, as the mytho‐
logical Nestor, can give advice to older people so that they can maintain their wellbeing
and their independence at home, based on experience and on understanding the
current situation. The experience of our modern NESTORE is based on well-grounded
psychological and behavioural theories jointly with relevant know-how on the ageing
process, while the current situation is understood on the basis of a comprehensive
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sensors’ system able to monitor the different key parameters. An intelligent system,
based on a cloud and leveraging Decision Support logics, will deliver “advice and
coaching”, which will be offered via the companion, embodied in a smartphone or an
intelligent tangible object, according to the user’s preferences and interests.

The core idea of NESTORE is linked to the design of pathways that, according to
user preferences and inclinations, leverage existing personal capabilities to support
healthy lifestyles and overall wellbeing.

The paper presents first an overview of the wellbeing dimensions covered by
NESTORE; the core of the paper focuses on the key concept and on the approach to be
followed in the development of the solution. An overview of the validation approach
will then be presented.

2 The Five Key Dimensions of Wellbeing

Ageing is a multi-dimensional and multi-directional process. It involves the social,
economic, physical, psychological and cognitive spheres and all these characteristics of
a person and its context is strongly interconnected. Crucial factors that affect the well‐
being and along which the solution proposed by NESTORE will be developed are: (i)
physiological status and physical activity behaviour, (ii) nutrition, (iii) cognitive capa‐
bilities, (iv) mental and psychological wellbeing, and (v) social interaction.

Physiological Status and Physical Activity Behaviour. Ageing is characterized by
motor function impairment such as coordination difficulty, slowing of movements, and
difficulties with balance and gait [1]. These deficits may have a negative impact on the
ability to perform daily activities and may result in a reduced independence and self-
confidence, thus increasing the risks of traumatic events (i.e., falls) and social exclusion.
Progressive and generalized loss of skeletal muscle mass and strength (i.e., sarco‐
penia) is physiologically associated with ageing and has an important impact on well‐
being [2]. Physical activity is a most effective intervention to counteract skeletal muscle
impairment [3]. The aerobic and anaerobic physical activities should be tailored to the
older people in order to retain or improve their cardiovascular fitness, muscle strength
and overall balance.

Nutrition. The process of ageing involves a steady decay of the metabolic flexibility
[4]. The whole metabolism is more sensitive to unbalanced diets and to suboptimal
nutrition. Ageing also involves the senescence of tissues and metabolic processes,
which results in altered absorption of nutrients together with decreased capacity in
detoxifying by-products. Therefore, during this period of life, a balanced diet together
with optimal dietary patterns is key in order to maintain the whole body homeostasis
and to overcome the naturally occurring physiological limitations of the subject.

Cognitive Capabilities. Ageing is also related to cognitive decline, one of the most
worrying age-related changes in later adulthood [5]. Whereas more knowledge-driven
domains tend to be maintained relatively well, the more biologically-driven fluid abil‐
ities show average decline throughout adulthood, with accelerated decline late in life
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and prior to death. Cognitive training interventions are known to be successful in
improving the trained abilities, with little evidence for transfer to unrelated areas or real
life [6] The trainings, to be successful, need to engage older adults in novel tasks that
are ecologically valid and easily integrated into the daily life routines.

Mental and Psychological Wellbeing. Other important aspects are the preservation
of mental wellbeing of older people [7]. In order to ensure a mental wellbeing, inter‐
ventions should focus on psychological factors (participation in activities that are rele‐
vant to an individual’s personal goals, emotionally close personal relations, protection
of a positive sense of self through prevention of discrimination), socioeconomic factors
(i.e., financial security to meet one’s personal goals), and physical health (i.e., successful
management of physical conditions to ensure high subjective health).

Social Wellbeing. Strictly related to the previous dimension, another important aspect
is the preservation of the social capital provided by older people. The socio-economic
status, social integration and high personal competencies are related to higher subjective
wellbeing [8]. The quality of the social contacts and the availability of emotionally
meaningful social relations is, as well, an important factor to consider for a better well‐
being. There is evidence that voluntary work, as well as the educational and social
activity group interventions, can improve the mental health and prevent social isolation
and loneliness among older people.

3 The NESTORE Concept

With the objective of addressing the five dimensions described above with an integrated
holistic approach, the solution will be developed in co-design with the users and will
the potential of ICT to meet their needs. Co-design will ensure that users can be
emotionally involved, thus achieving a significant step ahead in the empowerment of
citizens and in promoting and actively sustaining active ageing.

3.1 The NESTORE Vision

The vision proposed is that of NESTORE as a friend and a companion. As a trusted
friend, NESTORE can also be accepted as a coach.

NESTORE knows me and understands my emotions. We have only recently met,
but it is as if we have known each other for our entire life. It is really an empathic and
emotional relation that has been developed. I know you can count on him for the right
support, for that one hint of encouragement when my will is not strong. Now it is really
much more fun to take a walk, to perform those boring exercises needed to keep in good
shape; thanks to NESTORE my social life is still active and I have even met new friends.
Occasionally we play together and that also exercises my brain. He is there when I need
him, but he also understands when I want to be left on my own. NESTORE really is the
“answer” to my needs.

NESTORE is capable of valorising the capabilities of the person and helps him/her
to select the vocational path along the five dimensions of the well-being profile, i.e.
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nutrition, physical activity, cognitive, social and mental. NESTORE is also aware of the
family ties and leverages them to add a human touch to the technology based service
offering.

3.2 The NESTORE Services

This section provides an overview of the potential services NESTORE can provide to
the target audience, and what is meant by “pathways of wellbeing”. NESTORE is
designed to address the needs of the older people of tomorrow, therefore the solution
must be flexible to include technologies yet to come, and it must offer open and stand‐
ardised interfaces so that new services – meeting new needs and preferences - can be
offered by third parties. Computer literacy and capabilities to use technologies will also
increase in the future. To better understand the users, the consortium will conduct focus
groups, not only with people that today are in target (i.e. over 65) but also with people
that today are in their 50ies, to understand how they see their future and what would be
on target in 15 years and more from the present time.

Typical users of NESTORE are people that are familiar with modern technologies,
are in a reasonably good health, have recently retired or about to retire and have a social
life they want to keep. They remain users of NESTORE throughout the process of
ageing. With age, NESTORE knows the person, becomes aware of possible degradation
of functional capabilities and provides suggestions and services to compensate such
shortcomings.

To start the initial definition of services, NESTORE works on the assumption that
older people recently retired want or need to find new interests: new life, new challenges!
They also have finally time to cultivate better existing interests. The theoretical base for
the design of the solution starts from the Selection, Optimization and Compensation
(SOC) model [9] that outlines general-purpose processes of specialization by selection
of developmental pathways, preferences or goals. According to SOC, the goal of
NESTORE is to empower the latent reserve capacity of older people to limit the age-
related loss of skills, in relation to the 5 dimensions addressed by NESTORE. To foster
motivation, NESTORE helps the user to select and identify a final purpose “the well‐
being pathway” (based on the risk perception, self-efficacy and outcome expectancies);
it then facilitates the action planning and the maintenance of self-efficacy through the
provision of a set of actions aimed at the achievement of the goal. Finally, NESTORE
monitors the user’s progresses in order to propose recovery actions in case of impedi‐
ments or actual loss of motivation.

Adopting SOC, NESTORE will define specific pathways that meet user preferences
and whose aim is to allow reaching, by the older people, the maximum capacity of their
latent reserve, that guarantees an active and healthy ageing. Such definition is related to
the Selection component of the SOC model. It will then identify the building blocks that
specify each pathway; this is related to the acquisition, application and integration of
resources involved in attaining a higher level of functionality (internal or external) in
all the dimensions (Optimization). Such building blocks can be represented as possible
actions that the user shall perform to pursue its pathway and that are suggested, moni‐
tored and provided by the Virtual Coach. Finally, NESTORE monitors the user’s level
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of motivation and engagement and intervenes to restore and manage impediment or loss
of motivation (Compensation).

Following the approach described above, the following example of service provision
scenario can be devised:

John is 65 and has recently retired. He loves gardening and now that he is free, he
would like to spend more time in his garden. Mary, his wife, has in mind some renova‐
tions that have been postponed due to lack of time, bad weather, etc. In addition, doing
some exercise in the garden will help to keep fit.

Gardening is the topic of the coaching activity selected by John. NESTORE has
learned about the interest in gardening on the basis of John’s profile and John has
confirmed this. By means of the profile data and other data coming from observing the
user, NESTORE sets quantitative goals that optimize John’s health and wellbeing status
according to the NESTORE Integrated Wellbeing Model and proposes a set of activities
that foster the achievement of the defined goals. NESTORE then monitors John’s
progresses in order to outline and manage the possible loss of motivation. The services
proposed by NESTORE come from a combination of required activities according to
the Integrated Wellbeing Model, i.e. the need to perform certain physical exercises to
keep muscle strength or to maintain the cardio-respiratory function, to ensure a certain
level of social activities, etc.; these services will support the user in performing them
within the topic of gardening, making them more pleasurable for the user. As John
performs the activities proposed by NESTORE, he can gain points on the NESTORE
system that will reward him with new services, such as e.g. discounts. Indeed, offering
open interfaces to third parties, service providers may join the NESTORE network, so
that they can advertise their services directly on the platform, and join the stakeholders’
network. Within NESTORE we will develop a limited number of potential pathways,
based on the results of the focus groups. Such pathways will be demonstrated and tested
in the pilots.

3.3 The NESTORE Technologies

In order to achieve such an ambitious vision, the research brings together different tech‐
nologies and resources from several European partners and leverages the most advanced
state of the art technologies. With a bottom-up approach, the following areas of research
are addressed:

• Information gathering technologies, to learn things about the user. Here we
include Sensing Technologies with a wide approach, including passive and active
monitoring, based on a pervasive IoT. We aim at knowing the user “intimately”
therefore we want to understand habits, feelings and emotions, the environment, the
social life and other key information about the user, including – of course – the health
status. According to a human model that covers the five dimensions of the NESTORE
interventions, we will investigate several conventional and unconventional sensing
technologies that can generate data about the user achieving advanced personalisation
of the solutions and related service offerings. Such technologies include wearable
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sensors, cameras, environmental sensors, social networks, games, etc. The actual
selection will be guided by the results of focus groups with users.

• Technologies for information analysis to understand the user and to generate
the appropriate feedback. NESTORE will support the development of pathways
of wellbeing, proposing different actions and services and then coaching the user so
that motivation can be sustained in time. The data collected are analysed by a decision
support system (DDS) that determines the type of intervention. The NESTORE DSS
will be based on a three-layer structure: (1) a short-term analysis that analyses data
on a daily basis; (2) a long-term analysis that looks at trends and is able to detect
change and adapts the coach in the long term, following the changing needs of people
as they age; (3) a combined short and long-term analysis to provide personalized
plans as part of the Coaching function.

• Technologies to convey the feedback to the users, i.e. the Coaching System, the
embodiment of NESTORE. From the point of view of the user interaction
NESTORE combines different modalities (tangible voice and touch) and different
devices (smartphones, tablets, PCs, smart TV, etc.). Within the project we will inves‐
tigate the use of tangible objects that may favour an affective interaction, supporting
the user in a continued use of the system. Gamification mechanics will be used to
support motivation, rewarding the users for positive behaviours.

• Technologies to deploy and control sensing environments: Pilot Sites. All the
technologies used and developed will be integrated to offer an intelligent system easy
to configure, deploy and replicate in various pilot sites. Existing IoT platforms and
cloud infrastructures represent today a viable solution to implement features envi‐
sioned by Smart Environments concept. Cloud services will be beneficial for two
reasons: (1) there are fewer components deployed at home/site. (2) A unified view
is offered for geographically distant sites. The management and configuration of the
pilot site are simplified because less local interventions are required. The intelligence
of the system is deployed in the cloud and the Control Centre interacts with the cloud
to transparently tune or upgrade the system.

4 The NESTORE Methodology

4.1 Co-design and Participatory Approach

The methodological approach followed in NESTORE provides for users to be involved
in the design of the solution throughout the project duration. The methodology adopted
draws on the value of ‘thinking with things’ as a means to build an understanding of the
factors end-users identify as being important in the design of digital health services and
devices.

Literature highlights that the reason for non-acceptance of health technologies is
complex. The role of the design is to better understand the broader physical and social
environments in which services and technologies will operate and how they relate to the
contexts of the end users’ lives. NESTORE will adopt co-design tools and methods that
will seek to engage and elicit information related to perception, acceptance and usability
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of technology to support healthcare. Such methods have been shown to be beneficial in
the evaluation and design of health-care interventions [10].

4.2 Development of the Solution

Development of a multi-domain unobtrusive monitoring system, to monitor phys‐
iological and behavioural data related the five domains of wellbeing. Technical solutions
based on advanced non-invasive monitoring systems, such as wearable and environ‐
mental sensors (indoor/outdoor), multifunction tangible objects, serious games, will be
optimized and integrated. The Wearable monitoring system includes sensors suitable
for end-user self-operating and allowing for an accurate assessment of meaningful
physiological parameters. The Environmental monitoring system includes sensors for
indirect monitoring of behavioural information, related for instance to nutrition, daily
living activities patterns, physical activity, etc. Multifunction tangible objects include
sensors suitable for indirect recognition of emotional and mental status. The Serious
games integrate sensors suitable for monitoring cognitive abilities, such as memory
performance or verbal fluency.

Development of an intelligent and innovative ICT Decision Support System
(DSS), able to analyse the seniors’ behaviour, tracking changes and compliance to active
ageing guidelines, providing personalized target behaviours towards the adoption and
maintenance of healthy lifestyle. For such a system to work effectively as a DSS,
person’s goals, overall cognitive/physical/mental and social status need to be assessed
together with a profile of a person’s daily life activities monitored using technology-
based tracking systems in order to provide a reference frame and basis for the DSS that
includes an individualized real-life approach rather than a mere population-based
approach based on maximum performance laboratory-based assessments.

Development of an active coaching system, which, based on the user profile and
needs, stimulates and engages older people with personalized coaching activities in a
single or multiple wellbeing domains, following the Selection, Optimization and
Compensation (SOC) model [9]. The coach will provide the necessary information to
appropriately support the different phases of the behaviour change intervention,
following the health action process approach (HAPA) [11]. The coach will be developed
as a conversational agent able to assume different forms. In particular, it can be embodied
in a physical companion that aims at establishing a trustful and affective communication
with the user through multimodal communication channels. The emotionality of the
communication can be supported by affective interactions with the coach, both through
physical interactions with the tangible embodiment of the coach and through the
semantic analysis of the conversations between the user and the coach.

System Validation. The solution will be investigated with the target user communities
in three EU locations (Spain, Italy and The Netherlands) in order to take into account
differences concerning nutrition habits and lifestyles as well as the cultural and social
environment. The system will be tested in terms of usability and ease of user interaction,
acceptability and effectiveness.
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4.3 Validation of Solution Through Pilots in Real-Life Settings

Because of their different social organisation, end-user’s recruitment will be based on
participation of different entities and networks of each piloting sites, such as: older
people associations, senior networks and volunteers’ associations, primary care centres,
and general practitioners, neighbourhood nurses, third age universities, social care
providers, seniors’ centres.

Different tools will be used in the piloting phase to collect the user’s needs and
preferences that the resulting ICT platform should take into account. The results of these
tools execution will be considered including different functionalities and/or components
of the platform. The first user testing will be focused on showing to the user the imple‐
mented functionality considering the requirements collected from the questionnaires and
focus groups, on finding out if the User interface design (UI) concept was understandable
and on verifying if they see the resulting service as something necessary and usable.
This testing validated the functionality included in the prototype and allowed a refine‐
ment of the requirements collected in the focus groups and questionnaires, involving
new functionalities and changes/additions of architecture components.

To evaluate the correctness of the measurements provided by the NESTORE’s
monitoring system, a measurement validation process will be carried out comparing
measures obtained by sensors and devices with standardized measures including the
same type of information obtained by standardized and validated tools.

The effectiveness of the coaching activity proposed by NESTORE will be evaluated
in a sub-study. We will add some other assessment variables to analyse the impact in
each one of the 5 domains included in NESTORE. Some complementary measurements
will help to provide information on possible positive effects on the body produced by
using the NESTORE platform.

5 Conclusions

NESTORE has the ambition to offer a solution that addresses healthy ageing with a
wide-reaching and integrated approach, and by testing such solution in real-life settings
in order to accelerate the process for digital innovation and to achieve wide acceptance
by the target audience. The proposal has also the ambition to contribute to some aspects
of the strategy of Triple Win for Europe, with specific attention to the older population.

• Improve the health and quality of life of citizens; by providing a solution along
the concept of “wellbeing pathways” supporting senior citizens not only to keep their
health but also to improve their quality of life with personalized and meaningful
suggestions that encounter their preferences and fulfill self-achievement.

• Support the long-term sustainability and efficiency of health and social care
systems; by providing a solution that allows people to live longer in their homes and
a system that eases communication with the surrounding social.

• Enhance the competitiveness of EU industry creating economic growth oppor‐
tunities and jobs in the Silver Economy; NESTORE aims at providing an open
solution that allows the provision of services by third parties by means of open API.
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In this manner novel services can be designed by innovative companies to reach a
market that through NESTORE can offer loyalty programs. NESTORE therefore
offers growth opportunities to innovative SMEs in the health and social care field.
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the project.
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Abstract. Clinical assessment scales for specific medical subareas include
domain knowledge that may not be of general awareness among practitioners,
hindering the adoption of best practices. In this context, we propose a pocket
guide for comprehensive geriatric assessment as a mobile application. The
GeriatricHelper is an Android mHealth application developed under an iterative,
User-Centered Design approach. Feedback from a broad set of users including
domain experts has been obtained throughout and a functional prototype is
currently being tested in a Portuguese hospital, allowing for any clinician to
apply the otherwise experts-limited geriatric assessment.

Keywords: mHealth � Geriatrics � Comprehensive geriatric assessment
Android � Patient follow-up � Pocket guide � User Centered Design

1 Introduction

The Comprehensive Geriatric Assessment (CGA) [1, 2] is a multidimensional and
interdisciplinary evaluation of the elderly. It is composed of mental, functional,
nutritional and social areas of assessment, each one containing several related scales. Its
main objectives are to reach a precise and full diagnose and facilitate prevention and
follow up. CGA is applied to people over 75 years old, or over 65 if in risk situations,
such as lack of social support, multiple pathologies, chronic disease or institutional-
ization. Being a multidisciplinary evaluation, it would ideally be applied by physicians,
nurses, social services technicians, gerontology doctors and physiotherapists. It should
be performed on a regular basis to better adjust to the decaying health conditions of
some patients.

The inexistence of a formal medical specialty in Geriatrics, in Portugal, makes it
difficult to widely apply CGA in routine, due to the lack of awareness and training to
this kind of evaluation. There are only three medical centers in Portugal in which CGA
is performed by a multidisciplinary team (nutritionist, doctor and pharmaceutical). For
the remaining locations, CGA is applied by a single person, mainly an internal med-
icine doctors or general practitioner, filing a paper form. In the current practice, doctors
need to calculate the result for each scale by hand.

After performing the scales relevant to the appointment, a health professional may
need to prescribe medicine. The Start/Stopp [3] and Beers [4] criteria make up a
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valuable tool, since they advise on drugs that should or should not be prescribed to the
elderly. However, these encompass large lists that would profit from easier access.

In this paper, we describe the development of a mobile application to act as a
pocket guide to assist any practitioner to apply the CGA scales, applying a User-
Centered Design approach.

2 Related Work

Currently, there are some mobile solutions focused on assessing the elderly. PT-
Measures [5] includes one scale from the mental area and five from the functional area,
which are grouped by their respective area; each scale includes some associated textual
info; scales can’t be performed for a patient, instead, after performing each scale
individually, the doctor inserts the patient’s personal information; this application
doesn’t include any clinical criteria.

Indicators of dependence [6] contains eleven scales, from mental, functional and
social areas, but scales aren’t grouped into areas; there is detailed information on how
to perform each scale, their scoring outcomes and associated bibliography; scales can’t
be associated to a patient, only saved with a keyword.

iGeriatrics [7] was developed by the American Geriatrics Society, doesn’t include
information on how to perform CGA, but instead covers a wide range of topics related
to older adults, such as vaccinations and prevention of falls. It doesn’t allow to perform
scales, but contains the Beers criteria.

OncoScale [8] includes mental, functional and nutritive scales, grouped into areas;
there is info about a scale’s bibliography and how to perform it. As a side-note, none of
these apps allows tracking patient’s medication.

As we can see, some of them implement only part of the required functionalities. It
is important to stress out that CGA is performed i.e., it can assess multiple areas and
contain multiple scales or tests, while these apps only allow to perform one test at a
time.

3 GeriatricHelper

Motivated by the abundance of smartphone devices, mainly Android, and the conve-
nience for a technology-oriented CGA, we propose GeriatricHelper, an Android mobile
application that implements a mobile-oriented CGA, act as a guide on how to perform
CGA, and includes the clinical criteria that may aid health professional prescribing
drugs for the elderly.

3.1 Methods

To implement this solution, we opted for User Centred Design (UCD) [9], based on the
end-user characterization, example workflows and requirements, so the objective was
to obtain a final product with high usability standards.
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For requirements elicitation, in a first instance, Personas were built and scenarios
defined for the context of interest. Personas provide examples of representative users,
for better capturing not only the roles, but also the motivations of users in using the
technology in their daily activities. Personas include a description of tasks, expecta-
tions, and user profiling information, to “humanize” actors.

Being an iterative process, we opted for short cycles of prototyping followed by
evaluation adjusted to the current stage of development.

3.2 Users and Scenarios

The first stage of the development process consisted of a brainstorming session with a
doctor from the Geriatric Studies Center (Núcleo de Estudos de Geriatria -GERMI)
[10], of the Portuguese Society of Internal Medicine (Sociedade Portuguesa de
Medicina Interna). During this session, some use cases were established, for the
application, who would use it and in which context, as well as which high-level
features should be implemented.

Then, we created four Personas, corresponding to two doctors and two patients (not
provided here in full for compactness). One of the Personas is a doctor profile, Albert, a
55 years old Family Doctor. He performs the CGA daily. To view a patient’s progress,
he must consult the previous paper records and that can be quite cumbersome.
Sometimes he uses his tablet to store notes about his patients.

One of the “patient” Personas is 82 years old Laura. She had a brain vascular
accident which led to problems in locomotion and right side dexterity. Very often she
experiences some level of depression. She has already taken some drugs to help her,
but very frequently she finds herself questioning her daily life and feeling alone. She
would like to feel more well fit into society.

Based on the Personas and on the information collected during the initial brain-
storming session, scenarios were proposed. As an example, we have “Laura’s monthly
appointment”. To reevaluate her, Albert decides it is better to redo every CGA test. He
opens her patient profile in the app and creates a new evaluation for her. The doctor
thinks that Laura has been sadder recently, so conducts a test for tracking depression.
He checks her temporal evolution for that test and sees that the results got worse, so he
should prescribe some medicine for that.

Albert consults the app and inserts the name of the medicine he has in mind. The
app informs him that this medicine should be avoided for a health issue Laura already
has. He searches another drug by using the Start criteria that inform which drugs are
best for certain conditions.

3.3 User Requirements

The system requirements dictated the features included on each prototype. As expected,
these changed along with the development of the application, since, after each eval-
uation, the overall performance results and participant feedback were discussed leading
to ideas for new and refined requirements. Table 1 contains a list of the requirements
considered for each of the prototypes (P1, P2 and P3).
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3.4 Evolving Prototypes

Three prototypes were developed, beginning with a requirements elicitation and the
outcomes of each iteration were subject of user assessment (Fig. 1).

3.4.1 First Iteration
The first prototype was based on the initial system requirements (Table 1). This pro-
totype (P1) allowed to conduct public and private CGA sessions (Fig. 2a), consult
medical criteria (Fig. 2d), and manage patient’s profiles (Fig. 2c), along with their
respective sessions.

The iterative method followed considers that the evaluation type should be adapted
to the current stage of development. The objective for P1 evaluation was mainly to

Table 1. Requirements for each of the prototypes. New requirements that were added to each
list appear in bold, strikethrough requirements weren’t implemented on the prototype.

Prototype
version

Subset of the original requirements list implemented

P1 1. Possibility to create new patients
2. View a patient’s profile
3. Must allow to track the patient’s progress 
4. Create new evaluations
5. Act as a guide for choosing the best medicine for a given patient
6. Patients data must remain confidential always
7. Store information relative to patients and evaluations

P2 8. Act as a guide on how to conduct a CGA evaluation
P3 9. Export a session’s result into a PDF file

10. Save drugs prescribed to a patient

Fig. 1. Iterative design and development approach, integrating User-Centered Design, and
multiple cycles of requirement elicitation, prototype development and evaluation.
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expose issues concerning general usability guidelines, focusing on platform and con-
text specific methods in later stages of the usability evaluation process. Being a broader
evaluation, Nielsen’s heuristics [11] were chosen as the evaluation method. Consid-
ering the general purpose of this first stage of evaluation, the users who participated in
the evaluation were not yet domain experts, but five students from a Computer Science
degree (at University of Aveiro) who had previous knowledge about Nielsen’s
heuristics. Besides those heuristics, we also considered as important the Competency
concept from Health-ITUEM [12] and Pleasurable and respectful interaction and
Privacy heuristics from the heuristics proposed for mobile interfaces [13].

Most of the usability problems found were not severe to the point to make it
impossible for a user to use the application. The heuristic that had more flaws was
Aesthetic and minimalist design, in both versions of the app (smartphone and tablet),
with comments such as “There is too much text” or “Text is too small”.

3.4.2 Second Iteration
The second prototype (P2) added the possibility to register in the app, contained
improvements to patients and sessions management, allowed adding textual notes to a
patient, the application could run on more devices, sessions appeared in a dedicated
menu entry, made it easier to quickly check which type of requirements were associ-
ated to a drug, and allowed to consult tests information as a pocket guide (Fig. 2c).

P2’s evaluation aimed to detect additional usability issues that become apparent
when trying to reach concrete goals. Think aloud was the chosen evaluation method,
since it is based in tasks and goals. Goals consisted of 15 tasks which the user will
perform based on the workflows identified for the app from the devised scenarios such
as “Check patient’s progress relative to Clock Drawing scale” or “Consult Start criteria
associated with Metformin”. The participants in this evaluation were eleven individuals

Fig. 2. Screenshots of the first (a), (b) and second (c), (d) prototype running on a smartphone.
(a) displays an ongoing CGA session, (b) is a patient’s profile, (c) the CGA guide and (d) a list of
drugs.
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with knowledges of Human Computer Interaction (HCI) and/or mobile applications
development.

Besides measuring the time taken to complete a task and the success rate, we
deemed as necessary to have concrete values about usability and easiness while han-
dling the application. Popular questionnaires include Software Usability Measurement
Inventory (SUMI), Post-Study System Usability Questionnaire (PSSUQ), and the
System Usability Scale (SUS) [14]. The first one requires purchasing a license so it was
dismissed from the start. PSSUQ should be used carefully as it is susceptible to the
“acquiesce bias” (people are more likely to agree with a statement than to disagree with
it). Since all questions in the PSSUQ are positively worded this may occur.

SUS avoids this acquiesce bias, so it was chosen. The original version is in English,
but, when applying it to Portuguese users, some of them may not be as capable of
understanding the language as others. Therefore, since there is already a validated
translation of this scale to Portuguese, we chose to use it [14].

Overall, the participants were able to complete the tasks (average success rate of
89%) although a few required more time to get acquainted with the application and
exceeded the initial time given (see Fig. 3). Regarding SUS results (Fig. 4), the average
was 78.4, the lowest 57.5 and the highest 97.5. SUS scores present an average of 68
[15], so, with an average score of 78.4, GeriatricHelper can already be considered as
providing a good usability.

After the evaluation, and after solving some of the usability problems reported
during the think aloud, a brainstorming session was conducted with a clinician, pre-
senting the current state of the application and collecting suggestions that further
informed the creation of the third prototype.

3.4.3 Third Iteration
The third prototype (P3) is currently in development. The main corrections and
improvements to be included were: displaying a summary of each CGA area when
conducting a CGA session; an increase in font size for some screens; the user was
warned when trying to leave a scale without having answered every question; added
feedback to actions that were lacking it and increased feedback time for key actions;
added more contextualization for the user; and made more use of the bigger screen on
the tablet. The added functionalities were the possibility to generate a PDF for a CGA

Fig. 3. SUS scores for P2’s evaluation Fig. 4. Task completion for P2’s evaluation
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session, which later could be archived on the patient’s physical profile, and the ability
to keep a list of drugs prescribed for each patient.

Its evaluation is underway, by clinicians, the end-users (pilot user group), and is
mainly being focused on the functionalities themselves, since the most prominent
usability issues were solved in the first two prototypes.

3.5 Security Issues

GeriatricHelper deals with personal clinical data, which must remain confidential and
inaccessible to third parties. Implementing this may not be straight-forward, which may
explain why most the apps mentioned do not make it available. The security
enforcement for this system is based on the separation of demographic and clinical
data, i.e., data which may lead to identifying a person, such as name, address and
birthdate, is ciphered before being stored on a backend, while the other data, such as
sessions and scales, are not ciphered on the backend, since they point out to the ID of a
patient, not its personal data.

4 Conclusion

GeriatricHelper development followed a User Centered Design approach and aims at
providing a valuable “pocket” application for the Portuguese geriatric community. Its
functionalities were designed considering the Portuguese reality, with the active par-
ticipation of domain professionals. The application is an improvement to the paper-only
existing support, making it more practical to calculate scales and browse clinical
recommendations.

As future work, the application that is already multilingual, needs to obtain the
clinical validation for other health care context, to be used by an international com-
munity of practitioners.
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Abstract. Life expectancy for some Cystic Fibrosis (CF) patients is rising and
new complications and procedures are predicted. Subsequently there is need for
education and management interventions that can benefit CF adults. This paper
proposes a CF patient passport to record basic medical information through a
smartphone application (app), giving the patient access to their own data. It is
anticipated that such an app will be beneficial to patients when travelling abroad
and between CF centres. This app is designed by a CF multidisciplinary team to
be a lightweight reflection of a current patient file. The passport app is created
using PhoneGap so that is can be deployed for both Android and iOS devices.
The app is introduced to seven participants as part of a stress test. The app is found
to be usable and accessible. The app is now being prepared for a pilot study with
adult CF patients.

Keywords: Cystic Fibrosis · mHealth · Patient passport

1 Introduction

Cystic Fibrosis (CF) is the most common life limiting genetic disease affecting Cauca‐
sians. Ireland has the highest occurrence of this disease in the world. Patient education
is considered to be an integral part of care and can often improve quality of life [1].
Adult Cystic Fibrosis patients are often considered to be a well-educated cohort,
however previous studies have identified knowledge gaps with this population [2, 3].
Life expectancy of this population is predicted to rise, with some patients expected to
live to retirement age and as such further disease complications and or medical proce‐
dures may arise [4, 5]. With these medical obstacles, CF patients will be given new
information and educated respectively. From a study conducted by Kessels it was found
that between 40% and 80% of the medical information provided to patients by practi‐
tioners is forgotten immediately [6]. With this comes the need for education strategies
and interventions which can be of benefit to the care of these patients and to overcoming
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education barriers. It is also imperative that such interventions do not impede on their
daily lifestyles.

Self-management often falls under the umbrella of patient education. An intervention
such as a patient passport may aid in the delivery of such care and education materials
[7]. A patient passport is a paper based intervention which allows the user to collect
pertinent medical data to aid in the management and care of their condition. This is often
used for those with long term illnesses or learning difficulties. One such passport was
developed by Newell et al. [8] for asthma management. The passport is paper based and
can be folded so that it fits into a wallet. The agenda of this passport is to store the
information needed for an asthmatic to receive care on arrival to an emergency unit. By
storing the information in a passport, it lessens the onus on the patient to repeat this
information to various medical professionals and allows the care professionals more
time with the patient rather than sourcing the information [8]. Similarly, a medication
aid passport was developed by Barber et al. [9] which allowed patients to record details
of their medicines. This study found that the passport had a positive effect on those
patients and that it can aid in the dialogue of medications between patients and healthcare
team members [9].

Life expectancy for some CF adults is rising, and considering the benefits of a patient
passport, it can be stipulated that such a tool would be beneficial to adult CF patients.
This paper proposes a patient passport targeted at adults with cystic fibrosis. However,
unlike the aforementioned passports, the proposed passport will be developed as a
mobile application (app). To the authors knowledge, this is the first passport app created
for CF. The agenda for this app is to provide CF adults with their basic medical infor‐
mation and also to allow them to record their medications. By doing so, adult CF patients
may become more educated to their condition which may improve therapy compliance.
Additionally, three scenarios have been identified in which the proposed app may be of
significance to a CF adult. Firstly, it can allow a patient to receive immediate care when
traveling abroad. Secondly, to receive care if travelling between adult CF centres. Lastly,
to bridge the gap between health care team members. These scenarios and the design of
the passport app will be discussed further in the following section.

2 Design

This section will discuss the three outlined usage scenarios for the proposed app. It will
then move on to discuss other design consideration such as the intended data to be
recorded, potential pitfalls, solutions implemented, and additional features.

2.1 Usage Scenarios

Providing a tool for adult CF patients to record their basic medical information may
prove beneficial, however it is pertinent to highlight scenarios that may require the use
of the passport so that such a tool can be incorporated into the current care system. The
scenarios in which this passport is considered to be of use are outlined in the following
subsections.
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Travel Between Centres: There are currently 5 adult CF centres in Ireland. As such
patients may transfer between hospitals to receive care, depending on medical/personal
reasons. CF patient files are hard copies only and it is not always possible to gain access
to this file. As such scenarios where patients will move from one hospital to another, or
are transferred, involves a patient arriving to a unit with limited information. This is
resolved by frequent phone calls or requests for information. However, with this
proposed app, a patient can arrive with their basic care information such as genotype,
medications, recent history of lung function results, allergies and other medical condi‐
tions.

Travel Outside of the Country: Similarly, if a patient is to travel abroad and is then
in need of care, the patient will have access to their most basic information necessary
to receive care. The app also records contact details of their health care team members
in case further information is required.

Bridging Gaps for the Health Care Team: It is pertinent that all antibiotics that are
prescribed to a patient are recorded. Generally, it can be two months between standard
clinical visits. In this time, it is possible for a patient to begin a new antibiotic as
prescribed by a General Practitioner (GP). During the next clinical visit, CF nurses will
ask patients if they have been on any new medications, which can be either forgotten or
only partial information is remembered. With the use of this app, a patient can record
any interaction with any member of their health care team from phone calls to clinic
visits in order to provide a broader view of their care.

2.2 Recorded Medical Data

Members of the CF multidisciplinary team discussed which data is of importance to a
patient in the scenarios as outlined previously. It is agreed upon that this mobile appli‐
cation should follow the same structure as that of a patient file, wherein there is data that
is recorded only once, such as profile information. There is also data that is recorded
rarely and can be edited and amended, such as medical conditions and procedures.
Lastly, there is data that will be recorded at each clinic appointment such as weight,
height, FEV1 and FVC. To note, although the app follows the same structure as a patient
file, it does not record all information that is stored in a patient file, only the basic
information required for treatment.

The app is then divided into three sections to reflect the structure above. These
sections are named “My CF Information”, “My Medical History”, and “My Clinic
Appointments”; this can be seen in Fig. 1B. The data stored in these sections are
discussed below:

My CF Information: Data in this section is recorded once and can be amended by the
user if required. Information that can be recorded includes: date of birth, date of diag‐
nosis, sweat test, genotype, blood group, allergies, medications, medical team contact
numbers, and physiotherapy techniques. This can be seen in Fig. 1C.
My Medical History: The data in this section will be filled out once initially and
amended over time. This section is broken down into two sub sections. The first is
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“My Medical Procedures” which records data such as the insertion and removal of a
Portacath. The second section, “My Medical Conditions” records other diseases which
can affect CF patients such as Diabetes.
My Clinic Appointments: This section is intended to record data for each meeting with
a member of the health care team, which can occur every two to four months. The
types of data that can be recorded here include Date, BMI, Weight, Health, blood
Pressure, FVC Liters, FVC %, FEV1 Liters, FEV1 %, Bugs in Mucus, Treatment, and
Comments. This section can also be used for annual assessments, phone calls to the
health care team and General Practitioner visits. This can be seen in Fig. 1D.

Fig. 1. Images showing: (A) Login Screen. (B) Main Menu. (C) My CF Info Screen. (D) My
Clinic Appointments Screen. (E) Graph with FEV1 % and FVC % data.

2.3 Potential Pitfalls

Paper based patient passports have, in the past, been developed for diabetes patients,
asthmatics and also for older adults, with each related study reporting a positive
response from the patient. In a study conducted by Dijkstra et al. [10] it was found
from interviewing patients that while these various patient passports have shown
beneficial results, there continues to be issues which may result in a poor adaptation
of the passport or negative effects. Such issues include: (1) Security, if the passport
was to become lost or stolen there is potential for identity theft, (2) forgetting to
bring the passport to appointments with various members of the health care team, (3)
size and space, some patient passports can be the size of a small booklet and due to
this can be unwieldy for patients to carry on the person, and (4) patients felt they had
no time to enter information into their passport and did not want to waste valuable
consultation time [10]. Dijkstra et al. [10] also found while interviewing members
of the diabetes healthcare team that there are issues that affect using a patient pass‐
port as a patient intervention. One such issue is that of a clearly defined agenda for
this intervention. As without clearly stating this agenda it is unclear as to how the
passport should implemented into the patient’s care and at which point of care it
should be introduced [10]. Other discrepancies found in this study include: (1) If the
passport is of any use to the health care team, (2) clearly stating who is responsible
for filling out the passport, and (3) a sufficient introduction to the passport by the
health care team so that the patient knows how to use the passport [10].
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2.4 Solutions and App Implementation

The issues as outlined above were focused on diabetes passports only, however these
problems are transferable. As such the above has been considered in the design of the
adult cystic fibrosis passport this paper proposes. From issues outlined by patients, a
digital platform has been incorporated as a solution. The CF passport is intended for use
as an app for a smartphone device. By doing this, the passport app can be password
protected and all data encrypted to avoid security issues in the event the phone is lost or
stolen. An image of the login screen can be seen in Fig. 1A. Physical size and space will
no longer be an issue as no additional space will be used to carry the app. Subsequently
space in memory is now formed as a new consideration, however the data recorded
through this app will be for basic information only, resulting in a minimal amount of
memory being used on the smartphone device. Lastly, the issue of forgetting the passport
is also reduced due to the popularity of smartphones. There has been a growth in smart‐
phone users from 39% of the Irish population owning a smartphone in 2012 to 70% in
2015 [11]. It is also predicted that there are 2.32 billion smartphone users worldwide as
of 2017 [12].

The remaining issues as highlighted by members of the diabetes team were discussed
with the Cystic Fibrosis nurses, and the corresponding solutions were agreed upon by
consensus. The app is intended to be introduced when CF pediatric patients transfer to
the adult ward, however it can also be implemented for existing adult CF patients. For
those patients who are interested in the app, they will be given a short workshop by the
CF nurses who will explain the potential benefit of the app, what can be recorded and
why this can of benefit, where to record the data, and how this app can be implemented
into their care. During this workshop, the nurses will also assist the patient in inserting
data that needs only be recorded once. The nurses will also advise that it is the respon‐
sibility of the patient to enter and record data and all data recorded is voluntary and will
not be viewed by any other persons. A standard adult CF clinic appointment in Ireland
can take up to 1 h and 15 min. In this time, the patient will meet with the CF nurse, the
physiotherapist, the dietician and a CF registrar or consultant. The patient will be
encouraged to fill in data with the CF nurses and time will be designated for this.
However, if they would prefer not to fill it in with the nurses, there is approximately
15 min of non-contact time in between meeting the multidisciplinary team where the
patient can record this information.

2.5 Additional Features

Other features are also incorporated into the app to aid patients with self-management.
One feature which was added to visualise the recorded data to the patient are interactive
graphs. There are two plot graphs currently. The first displays Weight and the second
displays FVC % and FEV1 %. An example of this graph can be seen in Fig. 1E. Here
the user can tap on the graph for more details on the data points, and hide/reveal values
in the x and y axis. The app also provides access to the default device calendar. By doing
this the user can save reminders for clinical and other related medical appointments.
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3 Methodologies

The app is developed using Cordova Phonegap [13] which utilises web technologies
such as HTML, JavaScript and CSS. The web technologies are then compiled so that
the app can be deployed to both Android and iOS. The app also utilises the Framework
7 [14] framework for app navigation, style, and layouts for the appearance of a native
app. The language used in the app is simple so that it can be understood by non-medically
trained persons. All data recorded through this app is encrypted using the Advanced
Encryption Standard (AES) algorithm and stored in a local SQLite database. Initially,
the data is loaded from the database only after the user has successfully logged in. New
data is entered into the local database once the user presses the submit button, and is
reloaded each time the user enters new data. Once the user leaves or exits the app, this
database is then closed. If the app deleted from the device, the databases will also be
deleted. All graphs are developed using the Highcharts.js framework [15]. During the
development process, the app was continuously reviewed and validated by members of
the CF multidisciplinary team. The current app can be seen in Fig. 1.

3.1 Stress Testing

The purpose of this test is to evaluate the performance of this app and its design. Seven
participants were enlisted who all had Android devices. To note, the participants did not
have CF. The decision to recruit non-CF participants was so that performance and design
issues could be remedied before clinical testing. The participants included three females
and four males. The youngest participant was 19 years old and the oldest was 51, this
age range is similar to that of the CF adults that the app is intended for. The participants
varied in technical background. Some participants were actively working in the tech‐
nology industry and were familiar with stress testing devices, while others would be
considered novices.

The participants were given the app for three months and asked to add, edit and delete
information to the “My CF Information” and “My Medical History” sections once a
month. Similarly, they were asked to do the same for “My Clinic Appointments” once
a week. At the end of every month the participants were asked to report on any perform‐
ance or usability issues they encountered using the app via email. The participants from
technical backgrounds were familiar with stress testing and as such were asked to focus
on performance issues. The other users who would be considered novice were asked to
focus on usability issues and features of the app that were easy or found difficult.

Overall the app was received positively by the participants. No user reported diffi‐
culty using the app or of any serious issues in the apps performance. From the study,
some minor cosmetic issues were identified with varying phone screen sizes and reso‐
lutions. For example, the button outline would remain stationary on larger screen when
the keyboard was visible, as opposed to moving with the button element. All users
reported confusion with the format for a date entry. Another common issue reported by
the users is that the “Go” Button on their keyboard did not navigate the user through a
form as expected. These issues have now been addressed in a newer version of the app
in preparation for pilot testing with CF adult patients. The app will be offered to CF
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adults who will also attend a workshop on how to use the app and its purpose with the
Cystic Fibrosis Nurses. The CF adults will then be asked to use the app over a three-
month period before answering a short survey. This clinical study is pending ethical
approval. It is anticipated that the app will then be made available for all CF adult patients
through the app store or other platforms.

4 Conclusion and Future Works

Patient passports have proven to help patients with self-management as it facilitates the
ability to closely monitor their own condition, allowing for shared disease management.
However as this is a paper based solution, possible issues arise such as the patient
forgetting the passport, identity theft if lost, and the patient being over encumbered.
These issues could be resolved by translating this intervention to a digital system such
as an app. To the authors knowledge, a smartphone patient passport app has not been
created for CF adults. This research proposes such a passport application which can
allow CF adults to record their medications and basic CF information so that they can
receive care. It is anticipated that providing a platform for CF adults to record and
observe their CF information and actions may benefit medication compliance. The app
is now being prepared to be pilot tested with a small cohort of adult CF patients. This
pilot study will aim to evaluate the app and determine if a patient passport app will serve
as a solution to the issues discussed with the paper based system. Following the results
of this study the app will be subjected to a certification process before deploying to an
app store or similar dissemination platform.
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Abstract. Among others, location changes and activity level are indi-
cators for state changes of patients suffering from affective disorders such
as Bipolar disorder, Borderline personality disorder or depression. It is a
common means to assess this information via self-report questionnaires.
Usually, these are sent out either randomly throughout the day or at
fixed points in time. However, this might lead to missing records of loca-
tion changes. We propose to rely on event-triggers: send out self-report
prompts when a location change is automatically detected. We enhanced
the ESMAC application by a location change detection event. Then, we
created three different study configurations for each trigger type: ran-
dom, time-based, and event-based. In a three-week within-subject study
we let subjects experience each trigger type in randomized order. We
found statistically significant differences in favor of the event-triggers in
terms of number of prompts, response rate, prompts after detected loca-
tion changes, and prompts after detected activity changes. We conclude
that event-triggers based on a location change detection shall be used
as trigger type for experience sampling studies focussing on location or
activity changes.

Keywords: Experience sampling method · ESMAC
Location changes · Mobile sensing · User experience

1 Introduction

In clinical psychology the assessment of states and state changes of patients
suffering from affective disorders – e.g. depression, bipolar or borderline person-
ality disorder – is important to perform an appropriate treatment [1,2]. Location
changes and user activity information are relevant as they can provide insights
about motoric activity (lethargically staying at home vs. moving from one place
to another) or avoidance of other people (staying at home vs. changing loca-
tion) which are symptoms of depression [3]. Such context information relates to
states and state changes [4]. Psychomotoric changes in patients suffering from
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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depression is mirrored in the patient’s movement behavior and their location
changes [5].

The most common method in clinical psychology to assess user behavior
information is to apply experience sampling or ecological momentary analysis
to monitor the patient by tracking their daily activities with their smartphones
and to prompt them to answer self-report questionnaires. These prompts are
displayed in form of smartphone notifications. Related work distinguishes three
prompting types: random, time-triggered and event-triggered [6]. Random means
that prompts are sent our randomly over the day, only the number of prompts
is fixed. Time-triggered means that prompts are sent out at pre-defined points
in time such as every full our between 8 a.m. and 10 p.m. Event-triggered means
that prompts are sent out if a specific event happens such as a location change
or when a certain activity is performed.

We investigated the suitability of these three prompting types for assessing
information about the location changes and activities within a field-study and
present the results.

2 User Study

Study Design. We wanted to oppose three trigger types and assess how user
experience each of them and how they quantify against each other in terms of
number of prompts and response rate (number of responses/number of prompts)
as well as percentage of prompts after actual location or activity changes. We
decided to design the study within-subject with randomized order to counteract
carry-over effects. Subjects were prompted for self-reports between 8 a.m. and
10 p.m. to allow them to rest over night without being disturbed. 14 prompts
were sent out randomly over the day for the random condition. Time-triggered
prompts appeared at each full hour, i.e. also 14 times. Event-triggered prompts
appeared at each detected location change, i.e. the number varies per day and
per subject.

Location Change-Aware Experience Sampling Application. To assess location
changes and activities we required an experience sampling application. We
enhanced ESMAC, the experience sampling method app configurator [7]. First,
we added a location change detection mechanism as a new event-trigger. We
defined location changes as a situation in which a user showed movement behav-
ior six times in a row. Movement behavior was defined as moving at least 60
meters in one minute, i.e. moving with at least 1 m/s. Next, we added ques-
tions to be displayed to the user. They consisted of questions about the current
and last location and about the current and last activity. Last, we had to con-
figure the trigger type for each study condition. In the end, we had three dif-
ferent configuration files: each one for random, time-trigger, and event-trigger,
respectively.

Procedure. At the beginning of the study, we met with the subjects, explained the
study and asked them to sign a consent form. Afterwards, we installed the app
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with the first configuration and asked for demographic data. The user study itself
lasted three weeks, i.e. one week per trigger type. It took place during lecture
time to guarantee fairly similar circumstances for each week. We collected data
from Monday to Friday. On the weekend, we exported and pseudonymized all
log files and questionnaire answers from the smartphone, handed out feedback
questionnaires about the experience with our app during the week and installed
the new configuration file. At the end of the user study, we assessed the general
experience with our app over all three weeks.

Subjects. Initially, 23 subjects participated the study. However, 4 of them quit
during the study and for 2 subjects no data was collected due to technical issues.
Three of the remaining 17 subjects were female, 14 were male. They were between
18 and 29 years old. We focused on students as subjects as they are digital natives
and used to the usage of smartphones in everyday life. In addition, they have
a regular week structure which guarantees comparable circumstances for each
experimental condition.

3 Results

We looked into number of prompts, response rates, and the accurate detection of
actual location and activity changes. The latter will be presented in form of the
relation between the number of questionnaires prompted after an actual loca-
tion or activity change relative to the total number of prompts. Table 1 gives
an overview of the results. It might be surprising that some subjects appar-
ently received less than 70 prompts for random and time-triggered which is the
expectancy value (5 days, 14 prompts per day). Apparently, some subjects turned
their phone off during the study causing less prompts. What is visible is that
event-triggered prompts are fewer but more accurate in terms of prompting after
actual location or activity changes. This type also shows a higher response rate
that might be caused by a higher user compliance due to fewer prompts.

To evaluate if the differences between different trigger types are statistically
significant or caused by coincidence, we ran correlation analyses. As the data
is not normally distributed, we decided to perform parameter-free Friedman
tests. The results are listed in Tables 2, 3, 4 and 5. Differences between event
and time and between event and random triggers show p values below .05 and,
thereby, statistical significance. This proofs that location-aware event triggers are
most suitable in experience sampling studies focussing on location and activity
changes.
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Table 1. Overview of number of prompts, response rates, and the accurate detection
of actual location and activity changes for each trigger type.

Time Event Random

Number of prompts 62.80 (±39.94) 19.50 (±9.55) 62.70 (±35.11)

Response rate 0.37 (±0.10) 0.43 (±0.09) 0.31 (±0.18)

Percentage of prompts
after location change

0.28 (±0.16) 0.71 (±0.23) 0.29 (±0.19)

Percentage of prompts
after activity change

0.41 (±0.19) 0.69 (±0.27) 0.37 8 (±0.19)

Table 2. Results of the pairwise comparison of all trigger types for the variable “num-
ber of prompts”. Significant results are marked: *p < .05; **p < .01

Time Event Random

Number of
prompts

Mean
difference

p value Mean
difference

p value Mean
difference

p value

Time 43.3 .014* 0.1 1

Event −43.3 .014* −43.2 .005**

Random −0.1 1 43.2 .005**

Table 3. Results of the pairwise comparison of all trigger types for the variable
“response rate”. Significant results are marked: *p < .05

Time Event Random

Response rate z value p value z value p value z value p value

Time −1.988 .047* −1.682 .093

Event −1.988 .047* −2.497 .013*

Random −1.682 .093 −2.497 .013*

Table 4. Results of the pairwise comparison of all trigger types for the variable “per-
centage of prompts after detected location change”. Significant results are marked:
*p < .05; **< 0.01

Time Event Random

Percentage of prompts
after detected location
change

z value p value z value p value z value p value

Time −2.805 .005** −0.459 .646

Event −2.805 .005** −2.701 .007**

Random −0.459 .646 −2.701 .007**
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Table 5. Results of the pairwise comparison of all trigger types for the variable “per-
centage of prompts after detected activity change”’. Significant results are marked:
*p < .05; **p < .01

Time Event Random

Percentage of prompts
after detected activity
change

Mean
difference

p value Mean
difference

p value Mean
difference

p value

Time 0.285 .001** −0.04 1

Event −0.285 .001** −0.326 .048*

Random 0.04 1 0.326 .048*

4 Conclusion

Within a three-week study we collected location change and activity information
from 17 subjects using three different trigger-types for self-report prompts. We
opposed all three trigger types in terms of number of prompts, response rate and
detection of actual location and activity changes. We found that the event-trigger
scored highest in all categories. Statistical tests proof that the scoring differences
are significant between event and time and between event and random triggers.
The low number of prompts for event triggers goes together with a high response
rate. We assume that this is due to higher user experience: fewer prompts and
prompts that relate to the current user context (location and activity change)
result in a higher compliance. Hence, we suggest to use event triggers whenever
an event trigger is available that relates to items in the questionnaire.

We see a high potential of these findings for context recognition in clinical
psychology. Apart from triggering prompts, location changes can reveal regular-
ity, duration, and frequency of location visits. These aspects can give a deeper
insight into affective disorder symptoms such as loss of interest to perform usual
activities or decreasing motoric activity.

We intend to design and conduct further studies with patients suffering from
affective disorders as subjects. Thereby, we want to gain insights about their
location change behavior and evaluate the usefulness of our location detection
for phase change detection. We might even consider place types1 [8] or WiFi
SSIDs as location [9].
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Abstract. Biometrics refer to unique measurable characteristics and informa-
tion regarding individual’s health, physical or mental condition and can be used
to uniquely authenticate or verify a person’s identity. They can be sorted in
physiological such as fingerprints, palm print, face recognition, iris recognition,
retina and DNA and behavioral such as typing rhythm (i.e. signature) and voice
and can be described based on the uniqueness, potential change with time (i.e.
facial changes), the feasibility to be collected (i.e. fingerprints) and the purposes
of usage. In this work we study the use of a biometric technology for eHealth.
We present the SpeechXRays project initiative that aims to provide a solution
combining the convenience and cost-effectiveness of face and voice biometrics,
achieving better accuracies by combining it with video, and bringing superior
anti-spoofing capabilities. We explain how a novel user interface biometric
platform is designed and adapted, for an eHealth use case, to enable secure
access for medical specialists, nurses and patients to a collaborative eHealth
platform that provides access to clinical and health related data within and
possible outside a hospital. This is the first study, in the field, that gathered all
necessary requirements (for a voice/face biometric system) and provides a for-
mative evaluation and implementation of the SpeechXrays system user interface,
for both end users and administrators, following a user-centered design
approach, based on the holistic consideration of the user experience and the
technical implication and functional requirements of the platform.

Keywords: Biometric authentication/verification � Voice � Acoustic
User interface design � Heuristic/guidelines � Smartphone � Mobile
Internet of things � Personal health systems � eHealth/mHealth

1 Introduction

Biometrics refers to the automated recognition of individuals based on biological (i.e.,
face, fingerprint, iris, voice, DNA, etc.) or behavioural traits (i.e., keyword dynamics,
signature, gait, etc.) [13]. Biometric authentication is a natural alternative to traditional
authentication systems like password schemes and secure electronic identification cards
that promises increased security and user convenience [1]. A typical biometric
authentication involves two stages, the enrolment stage and the verification stage.
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During the enrolment, the system acquires a biometric trait of an individual (i.e., iris,
fingerprint, face, voice, etc.), extracts a specific feature set from it and stores it in a
database as a template. It then assigns an identifier associating the created template with
an individual. During the verification stage, the system once again acquires the bio-
metric trait of an individual, extracts a feature set from it, and compares it against the
templates that are stored in the database in order to verify the claimed identity [11].

SpeechXRays aims to develop and test, in real-life environments, a user recognition
platform based on voice acoustics analysis and audio-visual identity verification. The
vision is to combine and pilot two multi-channel biometrics techniques: acoustic driven
voice recognition (using acoustic and not statistical only models) and dynamic face
recognition. SpeechXRays aims to outperform current state-of-the-art solutions in the
areas of Security: high accuracy solution, Privacy: biometric data stored in the device,
Cost-efficiency: use of standard embedded microphone and cameras (smartphones,
laptops) and most importantly Usability: text-independent speaker identification (no
pass phrase), low sensitivity to surrounding noise and state of the art User interface
design for user interaction. Usability evaluation will be performed during the pilot of the
two multi-channel biometrics techniques: acoustic driven voice recognition (using
acoustic and not statistical only models) and dynamic face recognition in the project use
cases involving 2000 users in 3 pilots: a workforce, an eHealth [23, 24] use case and a
consumer use case. This paper describes the activities concerning the design, formative
evaluation and implementation of the SpeechXrays system user interface, for both end
users and administrators, following a user-centered design approach, based on the
holistic consideration of the user experience and the technical implication and functional
requirements of the platform. We present the methodology followed for the design of the
user interfaces of the SpeechXRays system based on general usability and user interface
requirements, as well as specific use cases requirements [22]. Based on this analysis
several UI prototypes were designed and assessed following a formative usability
evaluation approach. A mock up system was created to guide user interface develop-
ment and integration to support UI adaptations as required by the SpeechxRays veri-
fication framework. Figure 1 presents the user interaction for the verification of medical
personnel, for management of sensitive medial data such as medical information for
patients, in the eHealth use case. We present a novel interface design methodology for
interactive biometrics applications, taking into consideration all complex functional
biometric processes and parameters, such as the scope/goal of the application, the
functional and non-
functional user require-
ments, the profile of the
targeted end-users, the
device type it will be
served from, the context of
the application (inside a
hospital) and the interac-
tion modes (touchscreen
vs traditional mouse and
keyboard), etc.

Fig. 1. SpeechXrays workflow for eHealth scenario
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2 Design Methodologies and Results

Designing user interfaces for interactive systems in general is a complex process that
has to take into consideration many parameters, such as the scope of the end appli-
cation, its target audience, the functional and non-functional requirements, and the
interaction mode (keyboard and mouse, touch, voice, gestures, etc.). In this paper we
argue that traditional design guidelines and standards are not adequate, and thus, we
focused our work on expanding existing lists with new guidelines to cover emerging
interaction requirements for biometric authentication. Similarly, even though we have
evidence for the creation of heuristics – for user interface design – in many different
domains (robotics, virtual worlds, multimodal mobile applications, Smartphones, etc.),
it seems that none of these is biometric related. Quiñones and Rusu [12] presented an
extensive literature review conducted from 2006 till 2016 and identified 68 such
domains, but none is related to biometric authentication – as described in SpeechXRays
project. Even though recent research has shown that usability and reliability play an
even more important role than privacy and trust in user acceptance of biometric
authentication systems [7] and perceived convenience can be a bigger driver than any
increase in security [8], a quick literature review will reveal that the majority of studies
in this field concentrate mostly on the technical aspects of various biometric modalities
[4, 5] conducting evaluations on their accuracy, reliability and overall performance,
such as in the studies presented in [1–3, 9, 10]. As of today, at least to our knowledge,
there are no concrete user interface guidelines for biometric authentication systems.

2.1 User Interface Design Methodology

The design of the user interfaces of the SPEECHXRAYS system was based on tra-
ditional HCI heuristics applied in the context of biometrics authentication. More
specifically, Jacob Nielsen’s list of usability heuristics [14] was used as the basis for the
application’s interface design (Table 1). Nielsen is an internationally known and well-
respected usability engineer who along with Rolf Molich in 1990 developed a list of ten
design principles for interactive applications [15].

The list was later refined by Nielsen to what is now commonly known as usability
heuristics and the evaluation of any interface against these rules is known as heuristics
evaluation. This list of guidelines was chosen because it has been validated through
many studies over the years in the field of HCI and it has been proven as an effective
method for safeguarding usability. In addition, a literature review on biometric
authentication systems was performed to gather any design guidelines or principles
specific to biometrics applications as they may have been published in recent empirical
studies in this field. Lastly, since one of the main requirements of this biometrics,
application was for the system to be device independent, common mobile specific
design guidelines and principles were used. Table 2 presents with the list of the col-
lected design guidelines that were used for the UI design, along with the suggested
design techniques that were used to fulfill them. Finally, Fig. 2 showcases a sample of
the user interface prototype along with the respective design guidelines applied.
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Table 1. Applying Nielsen’s 10 heuristics to a biometric system.

H1. Visibility of system status. The system should always keep users informed 
about what is going on, through appropriate feedback made available within 
reasonable time.
The user has to be clear on how long he/she has to speak and look into the camera 
of the device for the system to take the template sample needed, in order to minimize 
the risk of premature process quitting and incomplete data processing [1], which can 
lead to user confusion and frustration. 
H2. Match between system and the real world. The system should speak the users' 
language, with words, phrases and concepts familiar to the user, rather than system-
oriented terms. Follow real-world conventions, making information appear in a 
natural and logical order.
Short textual descriptions should be available to clear out any misunderstandings and 
the main two processes, enrolment and verification should be presented in a separate 
way, but also in a way that the user understands that one precedes the other. All 
structural elements of the application (i.e. navigational menus, action buttons, title 
bars, etc.) should follow the conventional design guidelines for such systems.
H3. User control and freedom. Users often choose system functions by mistake 
and will need a clearly marked "emergency exit" to leave the unwanted state without 
having to go through an extended dialogue. Support undo and redo.
The user of the biometrics authentication system should be able to cancel an already 
started enrolment or verification process (i.e. provide CANCEL button or BACK
controls). It is also necessary to provide a REDO action control – to notify the user 
to go through the process again – especially for low quality recording, as well as an 
option to RETRY if a verification session is unsuccessful. 
H4. Consistency and standards. Users should not have to wonder whether different 
words, situations, or actions mean the same thing. Follow platform conventions.
In order to achieve uniformity in the way the application is presented and behaves in 
different operational settings, it is important for the user interfaces to be designed 
following common design guidelines and standards both for mobile and desktop 
applications. 
H5. Error prevention. Even better than good error messages is a careful design 
which prevents a problem from occurring in the first place. Either eliminate error-
prone conditions or check for them and present users with a confirmation option 
before they commit to the action.
In the context of biometrics authentication, environmental conditions such as 
humidity, temperature, and illumination, as well as performance factors such as 
ability of capturing good quality video and audio samples, may affect significantly 
the performance and accuracy of the system increasing the likelihood of errors [19].  
It is, therefore, essential for the system to be proactive in preventing them from 
occurring in the first place. In the eHealth use case – where users are mostly occupied 
with their nursing and treatment work, a proactive system would automatically 
offered alternative authentication method if certain environmental conditions are not 
met and cannot be changed, i.e., illumination too low [5]. 
H6. Recognition rather than recall. Minimize the user's memory load by making 
objects, actions, and options visible. The user should not have to remember 
information from one part of the dialogue to another. Instructions for use of the 
system should be visible or easily retrievable whenever appropriate.

(continued )
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Table 1. (continued )

User authentication is an interruption in the user’s primary task, which may even 
cause a disruption to the working memory of the user [1]. Multimodal authentication, 
such as the case of face and voice recognition, is an even more demanding process 
for the user who is required to perform multiple actions to achieve successful task 
completion. Thus, the authentication process has to be clear, concise, and able to 
guide the user seamlessly through the steps.
H7. Flexibility and efficiency of use. Accelerators -- unseen by the novice user --
may often speed up the interaction for the expert user such that the system can cater 
to both inexperienced and experienced users. Allow users to tailor frequent actions.
The experienced or frequent user of the biometrics authentication system that has 
already enrolled in the system and wants to access the secured network should be 
able to do so with just two clicks, one for activating the VERIFICATION mode of 
the process and one for RECORDING the voice and face sample.
H8. Aesthetic and minimalist design. Dialogues should not contain information, 
which is irrelevant or rarely needed. Every extra unit of information in a dialogue 
competes with the relevant units of information and diminishes their relative 
visibility.
It is very challenging to design complex processes for mobile viewing and careful 
planning and designing is needed to avoid the risk of overcrowding the interface and 
creating confusion to the user. This can be achieved by clearly separating the 
navigational elements from the actual functional elements of the selected process, 
by providing one main action button for each screen and other types of commonly 
used mobile patterns. 
H9. Help users recognize, diagnose, and recover from errors. Error messages 
should be expressed in plain language (no codes), precisely indicate the problem, 
and constructively suggest a solution.
This heuristic deals with what should happen in case an error does actually occurs. 
When this happens, it is essential for the system to present the error in a meaningful 
way to the user. This means that it has to be expressed in plain language and be 
descriptive of what the problem was. 
H10. Help and documentation. Even though it is better if the system can be used 
without documentation, it may be necessary to be provided. Any such information 
should be easy to search, focused on the user's task, list concrete steps to be carried 
out, and not be too large.
Educating the user on how the biometrics authentication system works on a higher-
level, how and where the biometrics data is stored and used by the application, how 
the templates are created and accessed, and how the system safeguards their privacy 
and security from cyber-attacks can eliminate confusion, skepticism, and other 
negative pre-notions that users that are not familiar with such systems may have 
formed. 
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Table 2. List of biometrics design guidelines and their matching techniques

(continued )
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2.2 Mobile Application Design Guidelines

There are many sources for mobile application design guidelines, such as articles
published by professionals and commercial companies on technology websites and
blogs, as well as papers published on scientific magazines and journals. Mobile
industry leaders, Apple and Google, have both provided extensive design guidelines to
developers of mobile applications for each platform respectively. Many of the pub-
lished mobile best practices lists are based on Nielsen’s traditional heuristics and have
been expanded to include guidelines specific to the mobile use context. For the purpose
of this project, a selection of four guidelines were extracted from publications [16–18,
20, 21] and used in the design of the user interfaces prototypes. These four were
selected because they are complementary to the Nielsen’s heuristics.

G1: Focused Content with One Clear Task. Designing with minimalism in mind is
even more essential for mobiles than desktop application because in mobile devices the
users have to deal with smaller screens and touch interaction. Clutter and competing
graphical and interaction elements do not enhance user experience and they should be
kept to a minimum. Each page should have one central focus and that should be
dedicated to the task at hand [17]. The application should guide the users seamlessly
through task completion without disrupting their flow. In the biometrics application
context, this applies both for the verification and the enrolment processes which include
multiple steps.

G2: Provide a Clear Navigational Path. Again the limitations in the viewing space
on mobiles calls for less elaborate menus and navigation mechanisms than those often
found in desktop websites. Thus, multi-level menus with sub menus that show on hover

Table 2. (continued )
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and side navigation bars are not recommended in mobile design. In addition, the
navigable path to task completion should be clear so that the users will be able to
understand right away how they can interact with the application to achieve task
completion [17].

G3: Develop a Single Underlying System that Allows for a Unified Experience
Across Platforms and Device Sizes. This guideline is extremely important for all
mobile applications and is referred in many studies [16, 17] and especially important
for this biometrics authentication system since it addresses one of the main user
requirements for the system which is, to be device independent. One of Google’s
guidelines is to optimize the entire site for mobile use. Participants in their study had a
much easier time navigating mobile-optimized sites than trying to navigate desktop
sites on mobile devices. Sites that included a mix of desktop and mobile-optimized
pages were actually harder for participants to use than all-desktop sites. Thus it is
suggested to design the entire site for mobile use.

Fig. 2. SpeechXRays user interface samples with applied guidelines
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G4: Design for Touch. Designing for touch requires extra care to account for fingers
of all shapes and sizes applying varying kinds of pressure to touch screens that respond
differently. All form controls, action buttons, and other interaction elements must
measure at least 44 points by 44 points and have adequate space around them, so that
they can be accurately tapped with a finger [20, 21].

3 Conclusion and Future Work

Despite the rising issues for the security of the biometric data, biometric technology is
used for a number of different types of applications ranging from modest (time and
attendance of personnel for a small industry) up to expansive (integrity of a whole
population cohort such as voters database). Depending on the applications, the benefits
of deploying biometric tools may lead to increased security, increased convenience and
increased accountability compared to other authentication methods (PINs, passwords
etc.). Prior to opting for a biometric system, one must also consider the existing
security solutions and requirement in the specific application domain where the bio-
metric system will be embedded. This is critical especially when dealing with services
that would allow access to sensitive medical data. The UI described here along with the
presented list of design guidelines, will be evaluated to study insights on how to
optimally design a modular biometric platform able to be used in the eHealth domain
[25]. Users (i.e. Medical specialists) will use the remote biometrics tool of SpeechX-
Rays to access a collaboration platform containing patient’s eHealth record and the data
for management of patient’s chronic conditions. The pilot study will also test the
context-dependent feature that allows administrators to modify the false accepting rate
or false rejection rate trade-off in order to reduce the risk of false reject for low security
data and reduce the risk of false accept for high security data.

Acknowledgement. This work is supported by the research project “SpeechXRays” which
receives funding from the European Commission (EC) through Horizon 2020 Grant agreement
No. 653586.

References

1. Trewin, S., Swart, C., Koved, L., Martino, J., Singh, K., Ben-David, S.: Biometric
authentication on a mobile device: a study of user effort, error and task disruption. In:
Proceedings of the 28th Annual Computer Security Applications Conference, pp. 159–168.
ACM, December 2012

2. Nandakumar, K., Jain, A.K.: Biometric template protection: bridging the performance gap
between theory and practice. IEEE Sig. Process. Mag. 32(5), 88–100 (2015)

3. Chingovska, I., Dos Anjos, A.R., Marcel, S.: Biometrics evaluation under spoofing attacks.
IEEE Trans. Inf. Forensics Secur. 9(12), 2264–2276 (2014)

4. Toledano, D.T., Pozo, R.F., Trapote, Á.H., Gómez, L.H.: Usability evaluation of multi-
modal biometric verification systems. Interact. Comput. 18(5), 1101–1122 (2006)

Multi-modal User Interface Design for a Face and Voice 179



5. Bhagavatula, C., Ur, B., Iacovino, K., Kywe, S.M., Cranor, L.F., Savvides, M.: Biometric
authentication on iphone and android: usability, perceptions, and influences on adoption. In:
Proceedings of USEC, pp. 1–2 (2015)

6. Miltgen, C.L., Popovič, A., Oliveira, T.: Determinants of end-user acceptance of biometrics:
integrating the “Big 3” of technology acceptance with privacy context. Decis. Support Syst.
56, 103–114 (2013)

7. De Luca, A., Hang, A., Von Zezschwitz, E., Hussmann, H.: I feel like I’m taking selfies all
day! Towards understanding biometric authentication on smartphones. In: Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 1411–1414.
ACM, April 2015

8. Patrick, A.S.: Usability and acceptability of biometric security systems. In: Financial
Cryptography, p. 105, January 2004

9. De Luca, A., Hang, A., Brudy, F., Lindner, C., Hussmann, H.: Touch me once and I know
it’s you! Implicit authentication based on touch screen patterns. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 987–996. ACM, May
2012

10. Blanco-Gonzalo, R., Diaz-Fernandez, L., Miguel-Hurtado, O., Sanchez-Reillo, R.: Usability
evaluation of biometrics in mobile environments. In: 2013 6th International Conference on
Human System Interaction (HSI), pp. 123–128. IEEE, June 2013

11. Jain, A.K., Nandakumar, K., Ross, A.: 50 years of biometric research: accomplishments,
challenges, and opportunities. Pattern Recogn. Lett. 79, 80–105 (2016)

12. Quiñones, D., Rusu, C.: How to develop usability heuristics: a systematic literature review.
Comput. Stand. Interfaces 53, 89–122 (2017)

13. Jain, A., Ross, A.A., Nandakumar, K.: Introduction to Biometrics. Springer Science &
Business Media, Berlin (2011)

14. Nielsen, J.: Usability inspection methods. In: Conference Companion on Human Factors in
Computing Systems, pp. 413–414. ACM, April 1994

15. Molich, R., Nielsen, J.: Improving a human-computer dialogue. Commun. ACM 33(3), 338–
348 (1990)

16. Yáñez Gómez, R., Cascado Caballero, D., Sevillano, J.L.: Heuristic evaluation on mobile
interfaces: a new checklist. Sci. World J. 2014 (2014)

17. Joyce, G., Lilley, M.: Towards the development of usability heuristics for native smartphone
mobile applications. In: Marcus, A. (ed.) DUXU 2014. LNCS, vol. 8517, pp. 465–474.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07668-3_45

18. Vilar Neto, E., Campos, F.F.: Evaluating the usability on multimodal interfaces: a case study
on tablets applications. In: Marcus, A. (ed.) DUXU 2014. LNCS, vol. 8517, pp. 484–495.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07668-3_47

19. Unar, J.A., Seng, W.C., Abbasi, A.: A review of biometric technology along with trends and
prospects. Pattern Recogn. 47(8), 2673–2688 (2014)

20. Apple Developer: UI design do’s and don’ts (2017). https://developer.apple.com/design/tips/
21. Google Developers: Up and running with material design (2017). https://developer.android.

com/design/index.html
22. Spanakis, E.G., Spanakis, M., Karantanas, A., Marias, K.: Secure access to patient’s health

records using SpeechXRays a multi-channel biometrics platform for user authentication. In:
38th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Orlando, FL, USA, 16–20 August 2016 (2016)

180 I. Adami et al.

http://dx.doi.org/10.1007/978-3-319-07668-3_45
http://dx.doi.org/10.1007/978-3-319-07668-3_47
https://developer.apple.com/design/tips/
https://developer.android.com/design/index.html
https://developer.android.com/design/index.html


23. Chronaki, C., et al.: An eHealth platform for instant interaction among health professionals.
In: Computers in Cardiology 2003, Thessaloniki Chalkidiki, 21–24 September 2003, vol. 30,
pp. 101–104 (2003). (02766574)

24. Spat, S., et al.: A mobile android-based application for in-hospital glucose management in
compliance with the medical device directive for software. In: 2nd International ICST
Conference on Wireless Mobile Communication and Healthcare (MobiHealth 2011), Kos
Island, Greece, 5–7 October 2011 (2011)

25. Spanakis, E.G., et al.: Technology-based innovations to foster personalized healthy lifestyles
and well-being: a targeted review. J. Med. Internet Res. 18(6), e128 (2016). https://doi.org/
10.2196/jmir.4863

Multi-modal User Interface Design for a Face and Voice 181

http://dx.doi.org/10.2196/jmir.4863
http://dx.doi.org/10.2196/jmir.4863


Gaze Alignment Techniques for Multipoint Mobile
Telemedicine for Ophthalmological Consultations

Ramkumar Narayanan1(✉), Uma Gopalakrishnan1, and Ekanath Rangan2

1 Center for Wireless Networks and Applications (WNA), Amrita University,
Amritapuri, Kollam, India

ramkumar@am.amrita.edu
2 School of Medicine, Amrita University, Kochi, India

Abstract. Telemedical consultation systems are emerging as a viable medium
for patient-doctor interaction in a number of medical specialties. Such systems
are already prevalent in fields like cardio diagnosis and it is still very nascent
in the field of ophthalmology. But with the emergence of affordable and high
quality remote-control cameras, a host of new possibilities have opened up.
In this paper, we have developed innovative gaze alignment techniques for
ensuring Mutual Gaze, Gaze Awareness and Gaze following. The system is
shown to work effectively even for interactions that are as complex as
involving multiparty consultations involving remotely located patients
through the use of a mobile telemedicine network and general physician/
physician-assistant and specialist ophthalmologist.

Keywords: Ophthalmology · Gaze · Mobile telemedicine

1 Introduction

There are several existing technologies that enable telemedicine consultation in the fields
of cardiology [1, 2], neurology etc. However, in the field of ophthalmology, gaze is an
important factor that directly impacts the effectiveness of an ophthalmological diagnosis.
It is observed that out of the 45 million blind worldwide, 80% is curable. The vast rural
populous, particularly in the developing world cannot afford visits to super specialty
tertiary hospitals. Mobile Telemedicine Units on vehicles often drive to remote villages
and setup camp to provide free checkup.

We have embarked on setting up of a multipoint mobile telemedicine network for
ophthalmological consultation, consisting of an (1) ophthalmological specialist in a
Tertiary Medical Center (TMC) located in an urban area, (2) a general practitioner
in a Primary Health Care (PHC) center located within the county through which the
care for all patients in the neighborhood is usually coordinated, and (3) a Mobile
Telemedicine Unit (MTU) that reaches out to remote villages belonging to that
county. In such a distributed multipoint telemedicine consultation scenario, targeted
to address ophthalmological conditions, there is a need for the patients’ gaze to be
directed towards either the specialist or the general practitioner periodically during
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the course of the consultation, In fact, there are three major levels of gaze align‐
ment [3, 4] that can be identified viz,.

(1) Mutual Gaze: simply refers to eye-contact between interacting patients and
doctors.

(2) Gaze Awareness: which in this context means knowing where others are looking.
The ophthalmological specialist often needs to perceive the gaze direction of the
patient while performing the diagnosis.

(3) Gaze Following: which reflects an “expectation-based type of orienting in which
an individual’s attention is cued by another’s head turn or eye turn”. The ophthal‐
mologist often points his/her fingers at a visual chart asking the patient to look at
the object.

In this paper, we develop techniques to dynamically implement the above three levels
of gaze alignment so as to transform a mobile telemedicine consultation into an effective
medium for ophthalmological diagnosis. Our technique uses a media rich setup that
dynamically maps appropriate camera feeds to display units such that gaze directional‐
ities are preserved.

The system is being tested with a tripartite test-bed consisting of a patient at one
location, a specialist in another and a general physician in the third location. The
system is being tested in our setup consisting of Amrita Institute of Medical Sciences
(a 1500 bed super specialty hospital) located in the city of Cochin in Southern India
and Amrita Center for Wireless Networks located in Amritapuri, a picturesque rural
village on the shores of Arabian Sea 100 km away. Feedback from preliminary
experiments is promising.

2 Related Work

There are several telemedicine consultation systems such as MDLIVE, Teladoc, Amer‐
ican Well, Doctor on Demand etc. However, they are mostly web portals coupled with
peer to peer video conferencing systems. Such systems work fine for direction insensi‐
tive consultation systems.

Work done by Blackwell et al. [5], conducted an extensive survey in for ophthal‐
mological telemedicine diagnosis. They conducted their experiments in the remote
villages of Australia. This study was conducted as early as 1997 which showed that
effectiveness of remote diagnosis did not quite match the face to face interaction.

Work done by Academy of Pediatrics Section on Ophthalmology - Pediatrics,
2015 [6], describes a retinal digital imaging technique for remote detection of retinal
impairment.

In the field of head and eye pose detection, Sheela et al. [7], describes an iris based
video tracking solution for estimation of gaze directions.

Bai et al. [8], describes tele-ophthalmology system for rural eye care systems such
as Aravind Tele ophthalmology Network. These have been proven to be effective.

Ramkumar et al. [9, 10] describes some fundamental techniques in the area of gesture
and gaze in an eLearning scenario. This work serves as the motivation for the application
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described in this paper and includes gesture triggered, gaze switching with the help of
rich media devices.

3 Gaze Alignment Architecture in Ophthalmological Telemedicine

Ophthalmology requires a specialist to be able to direct the patient’s gaze towards
specific targets, such as reading charts or gaze at other objects. For instance, detecting
and measuring degree of squint requires a system to provide the doctor with a frontal
perspective of the patient. In another example, detecting impairment in peripheral vision
in glaucoma patients may require the ophthalmologist to precisely perceive the patients’
gaze direction.

Our proposed telemedicine architecture consists of three geographically separated
locations viz.,

• Mobile Telemedicine Unit (MTU) hosting the patient - PA.
• Primary Healthcare Center (PHC) consisting of a general practitioner – GP.
• Tertiary Medical Center (TMC) consisting of a specialist (ophthalmologist) – SP.

Let us take a typical consultation interaction pattern i.e., SP talks to PA. SP takes
the role of the speaker and PA takes the role of the listener. In fact, we define three
possible roles in any consultation. We define role to be a temporary state the users are
in depending on their involvement in the consultation interaction. We can observe three
different roles in any consultation interaction namely,

(1) Speaker: is one of SP, GP, PA who is doing the talking in the consultation at that
moment.

(2) Listener: is the one to whom the speaker is mainly talking to.
(3) Observer: others who are passively witnessing the interaction.

As the consultation interaction proceeds, PA, GP and SP can take on different roles.
An interaction is represented by speaker → listener.

For this particular interaction in which SP talks to PA, represented by SP → PA, let
us derive the gaze directionalities. We notice the following in TMC (speaker’s location),
MTU (listener’s location) and PHC (observer’s location).

• At TMC, since SP is talking to PA, SP will gaze at the display that shows PA (denoted
by DPA) and this is represented by a vector called the entity gaze vector, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗SP → DPA

(shown using green arrow in Fig. 1a).
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Fig. 1. Ophthalmological consultation consisting of SP talking to PA. Gaze alignment in (a) TMC,
(b) MTU and (c) PHC. (Color figure online)

• At MTU, PA will look at the display showing SP (denoted by DSP) and his/her entity
gaze vector is given by ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗PA → DSP (shown using green arrow in Fig. 1b).

• At TMC, to ensure eye contact, we require PA′s gaze direction as displayed on DPA

to be towards SP. This is given by the display gaze vector, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗DPA → SP (shown by a
blue arrow in Fig. 1a).

• Angle between ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗DPA → SP and ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗SP → DPA in TMC should be 180◦ to enable mutual
gaze. Now go into MTU, take the reverse of this angle (−180◦) from the entity gaze
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vector, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗PA → DSP. This yields the camera gaze vector, (⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗C225
PA

→ PA) which is directed
from the camera, C225

PA
 towards PA in Fig. 1b, denoted by a red arrow.

• In order to arrive at the camera gaze vector in TMC, we follow a similar approach
with a view to present SP′s gaze displayed on DSP in MTU, so as to appear as though
directed towards PA. This will yield the camera gaze vector as shown in Fig. 1c,
denoted by the red arrow.

• The gaze directionalities of the observer, GP in PHC presents itself with a bit more
complexity. The gaze direction of GP is towards the display showing the speaker,
DSP. The gazes of DSP and DPA should appear directed towards each other as repre‐
sented by blue arrows in PHC. How does this translate into camera gaze vectors at
PHC? This is derived from the generalized gaze mapping algorithm that we present
in the next section.

4 Generalized Gaze Mapping Algorithm

When we generalize the interaction algorithm, there can exist six consultation interaction
patterns, viz., SP → PA, PA → SP, SP → GP, GP → SP, PA → GP and GP → PA, all
of which are handled by the generalized gaze mapping algorithm presented below.

Configuration Steps:

Step 1: Map entities, E ∈ {SP, GP, PA} to roles, R ∈ {speaker, observer, listener}.
Step 2: In each of the three locations, TMC, PHC, MTU, the displays are mapped to
distinct remote entities and are called DSP, DGP and DPA. If and when we refer to
displays as Dspeaker, Dlistener and Dobserver these roles may be substituted by the respective
entites.

Entity Gaze Vectors (all drawn in green):

Step 3: The entity gaze vectors of the listener and observer in their respective locations,
is directed towards display showing the speaker.
Step 4: In the speaker’s location, his/her entity gaze vector is directed towards the
display mapped to the listener.

Display Gaze Vectors (all drawn in blue):

Step 5: In the listener’s location, a display gaze vector is drawn from the DSpeaker

towards the listener.
Step 6: In the listener’s location, a display gaze vector is drawn from the DObserver

towards the DSpeaker.
Step 7: In the observer’s location, a display gaze vector is drawn from the DSpeaker

towards the DListener and vice versa.
Step 8: In the speaker’s location, two display gaze vectors are drawn from the DListener

and DObserver towards the speaker.
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Relative Position Vectors, (all drawn in dotted black):

Step 9: Relative position vectors are drawn from an entity to each of the displays in
the entity’s location.

Computation of Camera Gaze Vectors, (all drawn in red):

Step 10: The camera gaze vector directed towards entity Ei, whose video is presented
on a display to entity Ej, where Ei ≠ Ej ∈ {SP, GP, PA} is to be computed as follows,

Substep 10.1: calculate 𝜃 = angle between

relative postion vector, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗Ej → DEi

and

display gaze vector, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗Ei in Ej′s room

Substep 10.2: camera gaze vector = Ei′s entity gaze vector − 𝜃

Applying the above algorithm for each of the six interactions, we arrive at the table
of angles of camera gaze vectors. Table 1 enumerates them. The notation uses C𝜑 to
indicate a camera positioned at angle 𝜑 from the x axis.

Table 1. Angles of camera gaze vectors obtained by applying the generalized gaze vector
algorithm for each of the interaction consultations. Camera C𝜑 indicates a camera oriented at an
angle, 𝜑 to capture Ei‘s video in Ei‘s location and this video is routed to appropriate display at
Ej‘s location so that Ej gets to view a gaze aligned perspective of Ej. Camera locations are
highlighted in red whereas display locations are highlighted in blue.

As the consultation moves from one interaction to another the appropriate video
switching subsystem chooses the camera corresponding to the appropriate row (deter‐
mined by the interaction) and column (determined by the camera and display locations -
shown in red and blue respectively) in Table 1. A fully equipped telemedicine consultation
room with all of the cameras and displays installed is shown in Fig. 2.
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Fig. 2. A fully equipped telemedicine consultation room with gaze alignment for all consultation
interaction patterns (a) MTU, (b) PHC and (c) TMC

5 Prototype Implementation

We have implemented a prototype of our system and conducted sample sessions with
participants who took on the various roles (see Fig. 3). For instance, the ophthalmologist
was asked to detect squint eyes and conduct a basic test for strength of peripheral vision
(suspecting glaucoma) by directing the gaze of the patient at certain targets indicated by

Fig. 3. A prototype system in action for a gaze aligned interactive consultation.
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gestures. The ophthalmologist was able to carry out the consultation with much greater
ease and naturalness.

6 Conclusion

We have implemented a gaze alignment system for multipoint mobile telemedicine
consultation for ophthalmological diagnosis. Since the field of ophthalmology has a
direct connectedness to gaze and directionalities in general, this technology is a niche
fit. However, it can be extended to other areas of medical diagnosis which are interaction
intensive and requires gaze alignment. A prototype implementation shows promising
initial results.
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Abstract. The efficiency of a biometric system is identified by the detection error
tradeoff (DET) curve, which is a visual characterization of the trade-off between
the False Acceptance Rate (FAR) and the False Rejection Rate (FRR). A DET
curve is a plot of FAR against FRR for various threshold values, t. FRR refers to
the expected probability that two mate samples (samples of the same biometric
trait obtained from the same user) will be falsely declared as a non-match whereas
FAR is the expected probability that two non-mate samples will be incorrectly
recognized as a match. The threshold t defines how much the biometric charac‐
teristics must be similar, in order to make a positive comparison, so it measures
the correspondence between characteristic to check and template stored in the
database. By elevating the threshold, the risk that not authorized users can fool
the system diminishes, but, on the other hand, it is more probable that some
authorized users can sometimes be refused. In this work, we present the results
for SpeechXRays multi-modal biometric system that uses audio-visual charac‐
teristics for user authentication in an eHealth platform for osteoarthritis manage‐
ment. Using the privacy and security mechanism provided by SpeechXrays based
on audio and video biometrics medical personnel is able to be verified and subse‐
quently identified to the eHealth application for osteoarthritis.

Keywords: Biometrics · Decision threshold · Equal Error Rate (EER)
Detection error tradeoff (DET) · eHealth · Osteoarthritis

1 Introduction

Personal health systems and E-Health platforms aim on improving the interaction among
health care professionals with their patients [1–6] and provide the means for secure
access to sensitive medical information to people regarding their health status and
disease management [7, 8]. To this respect, there is a tremendous need for secure and
stratified access to health information [9] by adopting the use of modern ICT technology.
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Today, biometric authentication, is gaining as the leading technological achievement
for the verification of a person’s identity using a physical trait or behavioral characteristic
in order to accept the identity of the person and verify him/her as an authorized user [10,
11]. These systems mainly rely on models derived from pattern recognition, where
several characteristics from a person (e.g. voice, facial expression, etc.) are first trans‐
formed into one (unimodal) or many features (multimodal) and then are processed to
accept or reject the verification and identification of a user [12]. A major prerequisite in
this process is the so called training phase of the model composed of a pipeline process
in which (a) captured biometric characteristics from specific users are stored in a data‐
base, and (b) used for training the model on the basis of that known content. Once training
has been performed accurately, the biometric system can be applied for verification and
identification.

SpeechXRays1 is aiming to develop and test in real-life environments (i.e. medical
units) a user recognition platform based on voice acoustics analysis and audio-visual
identity verification. SpeechXRays provides a state of the art, accurate and user-friendly
solution allowing storage and analysis of biometric data for authentication. The e-Health
pilot of SpeechXrays will involve more than 400 medical personnel who through
SpeechXrays will gain access to hospital’s medical image/radiology archiving system
as well as a personal health application designed for the management of osteoarthritis
(OA) [6]. Recently an evaluation survey and preliminary results regarding acceptability
of the approach its functionality, efficiency and user friendly environment were
presented along with the acceptance of using the biometric system proposed from
SpeechXRays for user authentication [9]. The aim of this work is to present and evaluate
the verification rates from various decision thresholds that must be defined and adapted
based on the level of security required by the SpeechXRays platform and the confiden‐
tiality of the data that the user is attempting to access.

1.1 Biometric System Errors

A biometric verification system usually makes two types of errors: (i) mistaking
biometric measurements from two different persons to be from the same person (false
match), and (ii) mistaking two biometric measurements from the same person to be from
two different persons (false non-match). These two types of errors are often termed as
false accept and false reject, respectively [13] and most commonly are described by
FMR (false match rate)/FAR (false acceptance rate), FNMR (false non-match rate)/FRR
(false rejection rate, Failure to capture (FTC) and Failure to enroll (FTE). It is possible
to reduce the errors by trying to record more biometric characteristics for every user so
that, in case of variations on a template, the other can be used. On the other hand, there
are natural variations to biometric characteristics which may not be erased but that could
be minimized through the appropriate equipment. Another possibility is to act on the
threshold of the system. This threshold defines how much the biometric characteristics
must be similar, in order to make a positive comparison, so it measures the correspond‐
ence between the characteristic to check and the template stored in database. By

1 http://www.speechxrays.com/.
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elevating the threshold, the risk that not authorized users can fool the system drops (FAR
is reduced), but, on the other hand, it is more probable that some authorized users can
sometimes be refused (FRR increases). Biometric system errors can occur due to various
reasons such as: Sampling (imperfect imaging conditions); Changes in characteristics
(i.e. bruises or voice changes due to illness); Ambient conditions (temperature
humidity); User interaction with the sensor (i.e. distance) and Sensors (different smart‐
phones).

1.2 Efficiency of Biometric System and Application in SpeechXRays Data

The efficiency of any biometric system can be described by a visual characterization of
the trade-off between the FAR and the FRR. The most basic and robust method is the
calculation of the receiver operating characteristic (ROC) curve. To assess a biometric
system performance, detection error tradeoff (DET) curve which is similar to the ROC
curve analysis is followed to discriminate between two states that usually overlap such
as genuine and impostor users. A DET curve is a plotted as FMR against FNMR for
various thresholds, t. Similarly, EER can be also estimated by the Receiver Operator
Characteristic (ROC) curve. A specific threshold t can be calculated automatically based
on the Error Rate curve of the FAR and FRR. This threshold is the value where FAR
and FRR are equal (i.e., where FAR = FRR), and is called Equal Error Rate (EER)
(intersection point of FAR & FRR) [10, 13, 14]. Additionally, the more the EER is near
to 0% better is the performance of the target system.. In this light, EER is a performance
metric with FAR and FRR used as performance criteria simultaneously, since EER is
defined by both metrics with the constraint that they are equal.

2 Methodology

The performance of the SpeechXRays biometric system in its implementation will be
assessed using experimental protocols based on both unimodal and multimodal data.
Data will be randomly separated into enrolment data and data used at the verification
level in order to simulate a real case scenario. However, the estimation of the system
performance can be influenced by the selection of data used for enrolment and verifi‐
cation, affecting a good generalization in performance. SpeechXRays biometric system
will be applied to health domain applications [18, 19], thus such model needs to demon‐
strate at first adequate verification capability on the data used for designing the system.

In SpeechXRays audio and voice data will be first partitioned into k equally (or nearly
equally) sized folds following a k-fold cross-validation method for assessing the gener‐
alization performance of the system. Subsequently k iterations of enrolment and verifi‐
cation will be performed such that, within iterations, a different fold of the data is held-
out for verification purposes while the remaining k-1 folds will be used as data for the
enrolment phase. Finally, k-fold cross-validation will run several times, increasing the
number of estimates, where data from the experimental protocol will be reshuffled and
re-stratified before each run.

192 M. Spanakis et al.



Security requirements such as confidentiality, integrity, authenticity, non-repudia‐
tion and availability are essential for computer and network based systems. Following
steps were performed by the SpeechXRays biometric system to enrol the person by
acquiring and storing the appropriate data, verify by comparing the captured data against
the database, and authenticating or revoking access based on the comparison/classifi‐
cation of the biometric trait.

In the context of SpeechXRays, the following phases are studied in a pipeline process
for enrolment, verification, authentication, and revocation through the biometric context
dependent detection system. Enrolment Phase: Medical personnel will provide speech
and facial imaging data under different times, environment conditions (i.e. noisy back‐
ground, low light, etc.), and facial expressions. This multimodal information will be
extracted using feature extraction techniques for voice and face data, and stored indi‐
vidually as a biometric template to a database. This template will be linked to a specific
token (i.e. ID, name, etc.) related to each medical personnel. Once the information gath‐
ering is finished, two separate unimodal biometric systems will be applied to the data in
order to construct SpeechXRays biometric system. Through enrolment of the system,
appropriate thresholds will be estimated and assigned specifically to the medical data
with different levels of security/sensitivity. Verification Phase: At the verification level,
a medical specialist requires access to medical data classified with a specific security
level degree. The user presents a token, facial and speech data, and the biometric feature
template associated with the user is retrieved from the database. The system processes
the given data, extracts the facial and speech features and compares them with the
features stored at the database at the enrolment phase. Authentication Phase: if
matching, secure session is opened between two parties and if not, the access is denied
and Revocation Phases – revoke access based on security risk such as template leakage,
spoofing attempts, etc. The user can then proceed again to the verification process and
depending on the security levels assigned to the medical data a number of attempts can
be made.

2.1 Demonstration of the Context Dependent Tuning Framework
of SpeechXRays

SpeechXRays unimodal system - Experimental Protocol
According to the SpeechXRays developing procedure, individual unimodal biometric
systems will be first applied to both speech and face data. The derived matching scores
will be afterwards fused to conclude to the final decision at the verification phase. For
that reason, a unimodal biometric system was implemented first using publicly available
data from the ORL database2, composed of 400 facial images of size 112x92. Ten
different images of each of 40 distinct subjects-persons were captured in different times,
lightning, facial expressions (i.e. open/closed eyes, smiling/not smiling) and details (i.e.
glasses/no glasses). All images were acquired against a dark homogeneous background
with faces in an upright position in frontal view, with a tolerance for some side move‐
ment. Facial features were exported using the methodology described in [15]. Following

2 www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
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an iterative process to assess the verification accuracy of the SpeechXRays biometric
system, the entire data of each of the 40 distinct subjects was randomly partitioned into
subsets act as enrolment and verification data respectively. Particularly, 80% of the
images of each subject contributed to the enrolment phase of the biometric system, while
the remaining 20% served as the set for verification. A 5-fold cross-validation was
applied to the subset simulating the enrolment phase, to estimate the generalization
performance of the system. Linear Discriminant Analysis (LDA) was applied during the
enrolment phase to reduce feature dimensionality and construct linear combinations of
the available features. Matching score calculations were performed using a nearest
neighbour classifier and impostor and genuine distributions were calculated using the
Euclidean distance measure.

SpeechXRays bimodal system - Experimental Protocol
Face and speech information in SpeechXRays were integrated according to the matching
score fusion process from the post-classification techniques. To follow this approach,
matching scores from face and speech were first calculated from individual unimodal
systems and then normalized using min-max normalization to produce scores varying
from 0 to 1. The data used for building the bimodal biometric system relied on the
MOBIO database composed of 152 people with speech and facial data [16]. At last,
fusion was achieved using linear regression techniques [17]. Genuine and impostor
distributions were calculated and presented in the results.

3 Results

3.1 SpeechXRays Unimodal System

The resulted distributions at the training phase and for each fold are presented in Fig. 1.
At the cross-validation phase, verification accept rates were plotted against the associ‐
ated false accept rates (Fig. 2A). DET curve analysis based on the relationship between
the FAR and FRR measurements is shown in Fig. 2B.

Fig. 1. Genuine and impostor distributions for
each fold

Fig. 2. Curves based on: (A) verification
accept rate vs FAR and (B) relationship
between FAR and FRR. (C) Error rates of FAR
and FRR for different folds used

The error graphs of FAR and FRR are shown in Fig. 2C. In any given subset through
the cross-validation procedure, the intersection point of these two graphs resulted to the
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EER. The calculated value for EER was used to give automatically the threshold of the
biometric system. Lower EER results to better system’s performance, as the total error
rate (sum of the FAR and the FRR at the point of the EER) decreases. A quantitative
representation of the identification accuracy of the biometric system is given in the
following table for indicative points in the DET curves (Table 1). All folds at the cross-
validation process contributed equivalently to the estimation of the performance and an
average value was calculated. The measures presented in Table 1 correspond to verifi‐
cation rate of 1%, 0.1, and 0.01 FAR to 82.60%, 72.27%, and 0.25% respectively.

Table 1. Verification rates based on different EER representing different levels of security for
ORL dataset in SpeechXRays

Threshold 0% success 50% success 100% success
EER 13/40 subjects 14/40 subjects 13/40 subjects
EER – 10% EER (more strict) 18/40 subjects 11/40 subjects 11/40 subjects
EER – 20% EER (more strict) 19/40 subjects 13/40 subjects 8/40 subjects
EER + 10% EER (less strict) 11/40 subjects 13/40 subjects 16/40 subjects
EER + 20% EER (less strict) 9/40 subjects 11/40 subjects 20/40 subjects
Threshold 0% success 50% success 100% success

3.2 SpeechXRays Bimodal System

The data used for building the bimodal biometric system relied on the MOBIO database
[16] and fusion was achieved using linear regression techniques and genuine and
impostor distributions were calculated and presented in the Fig. 3. The evaluation of the
bimodal SpeechXRays biometric system is also displayed in a quantitative way using
specific points at the DET curve according to the Table 2.

Fig. 3. Genuine and impostor distributions for
MOBIO dataset

Fig. 4. Curves based on: (A) verification Rate
vs FAR and (B) relationship between FAR and
FRR. (C) Error rates of FAR and FRR using
MOBIO bimodal data
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Table 2. FAR and FRR rates based on different thresholds for bimodal operation in SpeechXRays
for MOBIO dataset

Threshold FAR FRR
EER 8.33% 8.33%
EER – 10% EER 32.56% 1.98%
EER – 20% EER 73.12% 0.07%
EER + 10% EER 0.87% 22.18%
EER + 20% EER 0.03% 59.68%
EER 8.33% 8.33%

DET curve analysis were performed at the enrolment phase in which: (a) verification
accept rates were plotted against the associated FAR, and (b) FAR against FRR are given
in Fig. 4. The error graphs of FAR and FRR, (Fig. 4C) were also defined as the probability
that an unauthorized user is accepted as authorized, and that an authorized user is rejected
as unauthorized. According to the normalized integrated data, the calculated EER was
measured with a threshold of 1.3109 and provided as an indicative threshold in the
system. Access to the medical data will be given related to the sensitivity of the data in
terms of their security levels. For high security the EER will be increased thus making
a more secure environment for the user but inconvenient at the same time. On the
contrary, medical data that are assigned, as “less secure” information can be accessed
using SpeechXRays system with a threshold equal to the EER or less (Table 2). The
measures presented in Table 2 correspond to verification rate of 1%, 0.1, and 0.01 FAR
to 78.73%, 55.63%, and 29.44% respectively.

4 Discussion

Detection error trade off (DET) curves are used to assess the performance of a biometric
system as a trade-off between the False Acceptance Rate (FAR) and the False Rejection
Rate (FRR). A DET curve is a plot of FAR against FRR for various threshold values, t. In
this work the evaluation on verifying medical personnel’s authentication through DET
curve analysis for the multimodal biometric system of SpeechXRays was presented. Based
on unimodal and multimodal datasets a demonstration of the context dependent tuning
framework through DET curve analysis was described in order to test the verification rates
based on different thresholds. Through this approach it was evaluated the user acceptance
and the various matching thresholds that must be defined and adapted based on the level
of security required by the service and the sensitivity of the medical data that the user is
attempting to access. SpeexhRays’ scope is to bring superior anti-spoofing capabilities and
integrate them into an existing healthcare service. Upcoming updates of the SpeechXRays
biometric system will include more advanced pattern recognition models for calculating the
matching scores (i.e. Support Vector Machines).
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Abstract. We designed, developed, and evaluated a novel sys-
tem, QuantifyMe, for novice self-experimenters to conduct proper-
methodology single-case self-experiments in an automated and scientific
manner using their smartphones. In this work we evaluate its use with
four different kinds of personalized investigations, examining how vari-
ables such as sleep duration and regularity, activity, and leisure time
affect personal happiness, stress, productivity, and sleep efficiency. We
describe lessons learned developing the system, and recommendations
for its improvement, as well as its potential for enabling personalized
insights to be scientifically evaluated in many individuals.

Keywords: Single-case experimental design · Mobile health
Self-experiment · Self-tracking

1 Introduction

Mobile devices today have become nearly ubiquitous full-time extensions of an
individual, enabling unprecedented data collection through a combination of
mobile and wearable sensors. The collected data can provide an individual with
a unique opportunity to determine behavioral patterns and habits about them-
selves [7]. A common way for individuals to use these data is to compare the
logged values of a variable of interest with its recommended values (e.g., sleep,
physical activity, and calorie intake), and then adjust daily behavior accordingly.
However, these recommendations made by agencies like Center for Disease Con-
trol, are averages and ideal values may vary significantly in individuals. Although
average values are useful, they do not provide the personalized insights that are
best suited for an individual to make optimal behavioral choices.

Our system, QuantifyMe, creates a framework that allows people to find
their personal optimal behavioral variables (e.g., bed time or physical activity)
to achieve their goals (e.g., productivity or happiness) based on evidence-based
experimentation. This is done through a single-case experiment design method-
ology — a methodology that allows for comparison within an individual instead
of between groups. In achieving these aims we are closer to including the general
public in dramatically scaling and personalizing the study of daily behaviors.
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2 Related Work

2.1 Quantified Self

Mobile applications and wearable sensors have enabled individuals to collect
personal real-time behavioral and physiological data such as physical activity,
sleep [10], and diet [11] and use these data to infer their daily activity pat-
terns. This also allows for self-experimentation to make better choices related
to their lifestyle, health, and productivity goals. However, using these data to
understand optimal values of variables and causal relationships in behaviors like
sleep, physical activity, and caloric intake often lacks scientific rigor [3]. Recent
mobile applications have provided great tools supporting more systematic and
personalized self-experimentation [5,8,13,14]. However, many of these tools do
not provide a structured methodology to aid non-scientist quantified selfers,
and/or they have not been validated on usability and effectiveness.

2.2 Single-Case Experimental Design

Randomized Control Trials (RCTs) are considered a gold standard in deter-
mining whether a causal relationship exists between a specific intervention
and observed outcome [16]. However, traditional RCTs operate only across
groups, and are unable to provide individual insights [1]. First proposed by
Neuringer [17], single-case experimental design provides a methodology that
allows researchers to evaluate the effectiveness of an intervention on an individ-
ual. An individual serves as his or her own control and is subjected to different
experimental conditions at different time periods [1,15]. This contrasts with a
group-based design in which outcomes are compared between groups, with each
group receiving a specific experimental condition.

3 Survey Study for Understanding Users’ Interest
in Self-experimentation

Before developing our smartphone app and system, we conducted an online sur-
vey study to gauge users’ interest in self experimentation and to find which of
32 self-experiments they are interested in. The possible output variables of these
proposed experiments (happiness, stress, productivity, sleep efficiency) were cho-
sen from common indicators of wellbeing. The possible independent variables
(active time, steps, sleep duration, bed time, meditation duration, outdoor time,
fun time, attending a religious service) were chosen based on the ability to be
measured with the Jawbone wearable sensor or because they are relatively easily
controllable and actionable [14].

A total of 233 individuals completed the survey (90%: 18–24 years old, 5%:
25–29 years old, 5%: over 30 years old). Based on the results of the survey, we
decided to focus on four self-experiments — one for each outcome variable: (1)
How does my leisure time affect my happiness? (2) How does my activity level



QuantifyMe 201

affect my sleep efficiency? (3) How does my nightly sleep affect my productivity?
(4) How do inconsistent bedtimes affect my stress level? While we selected these
four experiments for their popularity for use in the first version of the app, the
QuantifyMe system was designed to be flexible to accommodate many different
kinds of self-experiments, not just these four.

4 QuantifyMe System for Self-experimentation

The QuantifyMe system consists of three parts: a backend Django application,
an Android App, and a Jawbone UpMove fitness tracker. The system could be
expanded to other fitness trackers and smartphone platforms.

4.1 Single-Case Experimental Design on QuantifyMe

A traditional suggested design for single-case experiments is an ABAB design,
where the A phase corresponds to the baseline, and the B phase corresponds
to the intervention period. This design can be modified as a non-terminated
sequential intervention AB1B2B3 design to see the relationship between differ-
ent magnitudes of the intervention and their outcomes [18]. This is best suited
to our system as we are looking to determine the optimum magnitude of the
independent variable. Therefore, we implemented a four-stage design (1 base-
line stage and 3 intervention stages) in order to help users determine optimal
behaviors with each stage including 4–7 days of data points as suggested by [1].

We quantized behaviors into five zones for each experiment (see Table 1).
These target behaviors were predetermined by examining common behaviors
based on another study [19].

The “randomized” ordering of target goals was chosen as follows: Stage 1 was
a baseline measure. Because a choice needed to be made, we settled on having
the middle stage (O2) be the last stage. We also decided to include at least one
increase in the target behavior and one decrease in the behavior.

As an example of intervention order, if a user’s average sleep duration dur-
ing Stage 1 (baseline period) is 6.75 h (i.e., within O1), the user would be
instructed to sleep 8.5 hr, 6.5 hr, and 7.5 hr during stages 2, 3, and 4, respec-
tively. However, if the mean of the user’s sleep duration during Stage 1 was 8.75 h

Table 1. Definitions of target zones of behaviors for each experiment

Zone Number of steps Bed time variability Sleep duration Leisure time

Under < 6,500 steps < ±15 min < 6 hr < 15 min

O1 8,000 (6,500–9,500) ±30 min (±15–±45) 6.5 hr (6–7) 30 min (15–45)

O2 11,000 (9,500–12,500) ±60 min (±45–±75) 7.5 hr (7–8) 60 min (45–75)

O3 14,000 (12,500–15,500) ±90 min (±75–±105) 8.5 hr (8–9) 90 min (75–105)

Over > 15,500 steps > ±105 min > 9 hr > 105min
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(i.e., within O3), the user would be instructed to sleep 6.5 h, 8.5 h, and 7.5 h dur-
ing stages 2, 3, and 4, respectively. The methodology of imposing sleep targets
adds more structure and validity to determining a causal relationship than does
simply correlating how long a user chooses to sleep each night with how they
feel the next day.

4.2 QuantifyMe Android App

The Android app was designed with the goal of letting the user easily enter
data for daily check-ins, while also allowing the user to check on the status of
their current experiment. When the user first opens the app after installation,
it prompts them for demographic data and asks them to select an experiment.
The app connects their Jawbone account to our system’s account.

Every morning during the experiment, the user is reminded to check-in on
the app and fill out a short daily survey. This survey asks about the amount of
leisure time in the past 24 h, along with happiness, stress and productivity levels
using 7-point likert scales (not at all — extremely). Finally, the app reminds the
user to sync their Jawbone wearable sensor to Jawbone’s Up App (syncing takes
a few seconds).

After the user has checked-in for the day, the app presents the user with a
screen that lets them view their daily goal and experiment progress during that
stage (see Figs. 1b and c). In particular, the user is able to see her recorded
behavior for all of the days she has been in that stage.

If a user has failed a stage in the experiment, they are shown a message
prompting them to restart the stage (see Fig. 1d). Once an experiment has been
completed successfully, the user is shown a success screen with their end results,
and the experiment’s results are added to their history, which they can view
from the daily goals screen at any time.

5 App Evaluation Study

After the protocol was approved by the Institute Review Board, we conducted
a 6-week pilot study to evaluate the new QuantifyMe application with 13 par-
ticipants (4 male, 9 female age: 18–27). All participants filled out a Big Five
Personality Inventory [12] (not analyzed in this paper) and then chose a self-
experiment they liked, which was continued for the 6 weeks. At the end of the
study, the participants filled out a post-study survey including a System Usabil-
ity Scale [2] and questions about their favorite/least favorite parts of the app.

5.1 Results

Self-Experiment Selection. Among the four experiments on the app, 5 people
chose “effect of sleep duration on productivity,” 4 people chose “effect of leisure
on happiness,” 2 people selected “effect of sleep variability on stress,” and 2
selected “effect of steps on sleep efficiency”. This distribution matches that of
the survey we conducted before designing QuantifyMe (see Sect. 3).
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Fig. 1. Screenshots of the QuantifyMe Android App: (a) information provided before
starting an experiment, (b) example of instructions during stage 1 (baseline period),
(c) example of instructions during stage 3, and (d) example of stage restart notification

Adherence. During the 6-week study, three participants dropped out for var-
ious reasons including phone malfunction, side-effects of an un-related medica-
tion, and the self-experiment (inconsistent bedtimes and stress) being too dif-
ficult to complete. Thus, 10 participants completed the study (i.e., used the
QuantifyMe app for 6 weeks); however, only one participant successfully com-
pleted a full four-stage scientific self-experiment during the 6-week study.

The average adherence rate for checking-in (i.e., check-in adherence) to the
QuantifyMe app was 75.8%. check-in adherence remained stable throughout the
study, and decreased rapidly after the study ended. Check-in adherence rates
varied widely with four participants checking-in on less than 65% of the days
and 3 participants checking-in on more than 90% of the study days. In compari-
son, we found that on average participants adapted their behaviors to be in the
target range on 22.5% of the study days (i.e., objective adherence). This lack of
adherence to self-experiment instructions was the main reason why only one par-
ticipant completed a self-experiment in the 6-week period. In other words, many
participants had trouble adjusting their behaviors to match the self-experiment
instructions (Fig. 2). This resulted in many stage restarts because we required
participants to check-in at least 5 out of 7 days and be within the target behavior
range for at least 4 of the 7 days.

Post-study Survey. The System Usability Scale (SUS) results presented are
from 10 study participants and excludes three who had technical difficulties with
use of the app on their phone. The SUS showed a mean of 71 (out of 100) with
a standard deviation of 17 (Fig. 3). A SUS score of 68 is considered average [20].
Therefore, our system scored slightly above the average system for usability.

Post-study comments were analyzed from all 13 participants. Seven out of
13 study participants indicated that the daily survey and stage progress allowed
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Fig. 2. Example of a participant’s self-experiment. The top panel shows their behavior
manipulating the independent variable: sleep duration. The bottom panel shows the
outcome variable: self-reported productivity. The shaded areas (blue, red, green, and
purple) mark each of the 4 stages of the study. In the top panel, we can see that these
shaded areas also display the bounds of target behavior. The lighter shaded areas serve
as a reference for the target behaviors when the experiment stages had to be restarted.

Fig. 3. Results of the system usability scale. Figure (a) shows the distribution of
responses for each question and (b) shows the distribution of the SUS total score.

them to be more aware of their behavioral patterns and prompted introspec-
tion of their lifestyle. Most study participants indicated their disappointment in
not being able to complete the full-four-stage self-experiment during the 6-week
study. We also asked about the least favorite aspects of the app. One participant
said, “It was hard to follow the instruction about sleep schedule because it was
more than I am used to and I wasn’t able to plan my schedule around that”.
Another participant said, “Worrying about when I wasn’t able to complete the
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app instructions” was their least favorite aspect. These comments were consis-
tent with the behavioral lack of success in changing their independent variable.

6 Discussion

This work has several limitations. We assumed that self-experimenters would
have enough motivation to maintain the different behaviors being tested. Clearly,
better mechanisms to encourage behavioral compliance are needed. Participants
suggested it would be valuable to have additional information and motivation
about the single-case design methodology such as the number of stages and noti-
fications of why a particular experimental stage would need to be restarted if
they didn’t reach the target for the independent variable. In the future we rec-
ommend that providing study participants with the upcoming targets multiple
days ahead and clarifying what flexibility is and is not going to be a set back in
the study may allow them to plan for the interventions in advance and increase
adherence.

Our population was a set of busy healthy individuals who think they may
be interested in trying to find optimal behaviors; they are not likely to be as
motivated as an unhealthy population who seeks treatment. We also designed
multiple targets they had to meet (instead of sticking with one intervention),
adding additional challenges to engaging our healthy population.

Because most participants in our studies were university students who are
savvy about technology, experimental design and statistics, these results might
not generalize to other populations. Also the participants may have been fairly
homogeneous in terms of experiments they may be interested in. One sign sup-
porting this was that the most popular experiment related to the amount of
sleep needed. However, all of the participants in the pilot study were novice self-
experimenters, which suggests that other tech-savvy novice self-experimenters
may encounter similar challenges.

7 Conclusions

In this work, we designed, developed, and evaluated a novel system for users
to conduct single case self-experiments in a scientific and automated manner.
The QuantifyMe system was designed to create a framework for novice self-
experimenters to find their personal optimal behavioral variables to achieve their
goals by automating the single-case experimental design process within a mobile
application. In a pilot study, we found that although target-behavior compli-
ance was low, our participants still expressed interest in having such an system
to determine how to personalize optimal behaviors. Future versions of the Quan-
tifyMe system should include methods of increasing compliance via maintaining
motivation on a daily basis and better preparing participants to be able to hit
the target behaviors.
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Abstract. Electromyographic (EMG) signal is playing an important role on hand
function training as a neuromuscular rehabilitation tool. Various pattern recog‐
nition algorithms (PRAs) have been compared and evaluated in previous research,
and Linear Discriminant Analysis (LDA) showed the higher offline accuracy for
motion classification. However, it is rarely of comparison for different types of
Discriminant Analysis (DA), and the surface electrodes are common methods for
signal acquisition. This paper proposes to evaluate the offline performance of
LDA and other types of DA, and using Myo armband for recording signals. The
offline data was acquired by Myo armband, processing recognizing the data in
BioPatRec, an open source platform for motion classification and hand prosthetics
control. From the results of average offline accuracy, training time, and testing
time of the five types, LDA and Quadratic Discriminant Analysis (QDA) have
the better performance than others, and LDA is the fastest algorithm with simple
computing.

Keywords: Electromyographic (EMG) signal
Linear Discriminant Analysis (LDA) · Myo armband
Hand function rehabilitation

1 Introduction

Electromyographic (EMG) signal is produced by skeletal muscles, and be displayed
with action potentials by recording electrodes, like surface or intramuscular electrodes
[1, 2]. The EMG signal which includes a large of neural information could be applied
to motion classification, hand control or hand function rehabilitation for amputees.
Stroke is a chronic disease, and the hand function by post-stroke is very difficult to
recover, and the rehabilitation robots are the most common method to train hand function
[3]. Furthermore, EMG-driven systems are more effective than the continuous passive
mode [4].

There are many algorithms for pattern recognition such as Linear Discriminant
Analysis (LDA) [5], Multi-Layer Perception (MLP) [6], Artificial Neural Networks
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(ANN) [7, 8], and Support Vector Machine (SVM) [9]. The performance of motion
classification depends on the classification accuracy, misclassification rate and the time,
etc. LDA, a statistical classification method, is the fastest algorithm with low complexity
and quick training than other types of the algorithms [5, 10]. The procedures of pattern
recognition consist of signal recordings, signal treatment, feature extraction, and pattern
recognition. BioPatRec [11] is a modular open source research platform based on
MATLAB for prosthetic control.

In BioPatRec, there are friendly GUIs for users to make experiments, and the imple‐
mentation of algorithms consist of recording signal, signal treatment, feature extraction,
motion classification and hand control. LDA has the higher offline accuracy, and most
of researches had evaluated the performance of LDA and other PRAs. However, it is
rarely used for the evaluation of different types of DA. The surface and intramuscular
electrodes are considered as the common tools for acquiring signals [12]. In this study,
Myo armband was used to collect EMG signals. Myo armband is a wearable gesture
control and motion control device for you to control your mobile phone, computer, and
so much more, touch-free by Thalmic Labs [13].

The aim of this work was to evaluate the offline performance of LDA and other types
of DA from accuracy, training and testing time of them, especially with QDA, and using
Myo armband to acquire the EMG signals.

2 Method

2.1 Signal Acquisition and Processing

BioPatRec provides the offline data from the data repository, which was acquired by the
disposable Ag/AgCl bipolar electrodes and NI acquisition hardware board. In this paper,
Myo armband was used to acquiring EMG signals. The Myo armband is composed of
8 parts connected together with the expandable flex inside the electrical sensors (Fig. 1
[13]) (e.g. medical grade stainless EMG sensors, highly sensitive nine-axis IMU
containing three-axis gyroscope, three-axis accelerometer, and three-axis magneto‐
meter) for every part, and could recognize 20 motions. The armband is connected to a
device (e.g. phone, computer or tablet and supported for most of systems) through Blue‐
tooth 4.0 Low Energy.

Fig. 1. Myo armband [13]
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The placement of the Myo armband was around the forearm proximal third of the
forearm, and the part with status LED was placed along the extensor carpi ulnaris. Then
a program was developed under Microsoft Visual Studio 2012 environment to read the
EMG data saved in csv file, and a creat_recS.m file was developed to save the row data
in the structure array recSession which can be later loaded and displayed in BioPatRec
GUI. Ten non-amputee subjects participated in this study (six men and four women)
with the age of (23 ± 1.25). The sampling rate was set at 200 Hz.

The subjects performed the motion for 3 s, and the relax time was 3 s between each
contraction. Repeat each movement for 3 times of 10 movements, including agree (AG),
close hand (CH), open hand (OH), extend hand (EH), flex hand (FH), pointer (PT),
supination (SP), pronation (PR), side grip (SG), and fine grip (FG), shown in Fig. 2.

AG CH              OH              EH              FH

PT              SP               PR             SG               FG

Fig. 2. The ten movements

In order to get the effective information and remain the isotonic contraction, we
removed the 15% of the contraction time at the beginning and end of the recording data,
which means the contraction percentage (cTp) was 0.7. The acquired data was
segmented into 121 time windows of 200 ms with a 50 ms increment. In BioPatRec,
there are 4 groups of feature vectors, and we chose the Top 4: mean absolute value, zero
crossings, slope sign changes, and wave length time-domain features.

2.2 Offline Pattern Recognition Procedures

Processing the data through applying filters (frequency or spatial), configuring time
windows, and selecting the proportion of data sets, mostly is 40%, 20%, and 40% for
training, validation and test. Normalization is necessary to unite the weight of standard
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deviations, otherwise, the learning algorithms would not get the accurate results.
Different classifier topologies were applied in different types of classes, including Single,
Ago/Antagonist-Mixed, One-Vs-All, One-Vs-One, and All-And-One. Single classifier
is the simplest and usually used. In this paper, we chose DA as the pattern recognition
algorithm, and training the data with five types of DA. The offline pattern recognition
procedures are shown in Fig. 3.

Fig. 3. Offline pattern recognition in BioPatRec

2.3 Pattern Recognition Algorithms

This paper aims to compare the Linear Discriminant Analysis (LDA) and Quadratic
Discriminant Analysis (QDA) performance for offline performance.

LDA and QDA are both statistic methods Gaussian Maximum-likelihood based on
Bayes’ rule [14, 15]. LDA is build a linear function to separate the data by minimizing
the inter-class distance with linear boundaries and maximizing the intra-class distance,
and the all groups have the equal covariance matrices. QDA could learn the quadratic
boundaries, and has different covariance matrices with different classes, which is more
complicated than LDA.
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3 Results

The offline accuracy and training time are shown in the box plots where the central line
represents the median value; the edges of the box are the 25th and 75th percentiles; the
whiskers give the range of data values; the diamond markers represent the mean values;
and there were no outliers located within ±2.7σ in the data.

The average offline accuracy of Linear, Diaglinear, Quadratic, Diaquadratic, and
Mahalanobis was 94.4 (±1.0%), 86.5 (±1.6%), and 96.5 (±0.7%), 89.87 (±1.3), and 95.3
(±0.6), respectively, which is illustrated in Fig. 4. The average training time was 0.100 s
(±0.006 s), 0.123 s (±0.008 s), 0.115 s (±0.004 s), 0.112 s (±0.013 s), and 0.119 s
(±0.011 s) for Linear, Diaglinear, Quadratic, Diaquadratic and Mahalanobis, respec‐
tively, shown in Fig. 5.

Fig. 4. Offline accuracy for five types of DA

Fig. 5. Training time for five types of DA
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The average testing time was 0.629 ms (±0.029 ms), 0.598 ms (±0.005 ms), 1.038 ms
(±0.048 ms), 1.007 ms (±0.004 ms), and 1.032 ms (±0.045 ms) for Linear, Diaglinear,
Quadratic, Diaquadratic, and Mahalanobis, respectively. The results are illustrated in
Fig. 6. The average testing time of LDA is approximately half of the QDA.

Fig. 6. Testing time for five types of DA

The average accuracy of every movement for the LDA and QDA is shown in Fig. 7.
For LDA, the average accuracy was 100%, 100%, 99.8%, 86.5%, 99,8%, 95.7%, 87.3%,
73,7%, 98.2%, and 99.4% for AG, CH, OH, EH, PT, SP, PR, SG, and FG, respectively.
For QDA, the average accuracy was 100%, 100%, 99.6%, 98.2%, 99.1%, 98.0%, 86.7%,
100%, and 99.0% for AG, CH, OH, EH, PT, SP, PR, SG, and FG, respectively. The

Fig. 7. Offline accuracy of 10 movements for LDA and QDA
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lowest accuracy movement of LDA and QDA was both pronation, and the AG, CH, OH,
FH, SG, and FG had the extremely high accuracy.

4 Conclusions

The offline results show that LDA and QDA have a better performance for motion
classification. The offline average accuracy of them can be higher than 90%, and without
statistic difference of the training/validation time between them, but LDA is more stable
and lower than QDA. The testing time of LDA is approximately half of the QDA,
because the QDA’s quadratic boundaries and complicated computing algorithm. LDA
finds a linear function, which is more popular and simpler with the fastest training and
testing time and used extensively in previous research. QDA could be applied in more
complicated classes and massive data. The pronation had the lowest accuracy among
the movements for both LDA and QDA. It is likely to be influenced by many factors,
such as the placement of the Myo armband, and the subjects’ attention and motivation
would influence the results. When the amount of training data is relatively small, the
LDA is better than QDA. It is necessary to reduce the variance of the QDA model. If
the training data contains a large amount of observation data, it will be more likely to
use QDA, and the variance of the classifier is no longer a major issue.

In summary, this work aims contribute to the recovery of the post-stroke patients’
hand functions. Comparing with motormechanical systems, EMG signals should be seen
as the more effective and interactive approach in this aspect. In the future, we could
evaluate the real-time classification by the motion test or the Target Achievement
Control (TAC) test with Myo armband.
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Abstract. Monitoring plantar load conditions becomes useful in many
health care fields, e.g. podiatric and orthopedic applications, rehabilita-
tion tools, sports and fitness training tools, and in-field diagnosis and pre-
vention tools for posture, balance, loading and contact times monitoring.
IEE target is to provide a single insole-solution for daily usage in order
to acquire information on the plantar load distribution for health pro-
phylaxis in a large range of different shoe configurations. In this paper,
we introduce for the first time a new High-Dynamic (HD) multi-cell
smart insole sensor enabling advanced real-time foot plantar pressure
monitoring applications. The in-situ measurement of the dynamic plan-
tar load distribution provides an important new source of information
that can be combined with traditional monitoring systems often based
on accelerometer and gyroscope sensors. In fact, the new smart insole as
presented here, facilitates the discovery in an early phase of any biome-
chanical mismatch in the walking or running gait of its user. Specific
datasets have been recorded from a representative healthy population
with different monitoring tools, i.e. force plate, pressure matrix and our
new smart insole. The aim was to study the similarity of measurements
recorded by each system on a defined measurement protocol. It is shown
that the new monitoring device provides a competitive methodology to
measure static and dynamic foot plantar pressure distribution. The sys-
tem flexibility and robustness enable the development of new real-time
applications, such as high peak pressure detection for diabetics, activity
tracking, etc. The paper is organized as follows: we provide in Sect. 1 an
overview of challenges and opportunities around foot pressure monitor-
ing and discuss the sensing capabilities. Then we give a description of the
new smart insole designed by IEE in Sect. 2. Next we define in Sect. 3 the
measurement protocol based on 3 different systems, followed in Sect. 4 by
a comparison of their efficiency and reliability. Finally, Sect. 5 provides
related works and Sect. 6 concludes the paper.

Keywords: Foot pressure distribution · Smart insole · Force plate
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1 Introduction and Motivation

IEE’s smart insole provides users with in-field dynamic monitoring capabilities
of the foot plantar pressure distribution. It covers a wide measurement range of
pressure and can thus be applied to walking, running, and jumping activities.
Connected to a wearable electronic module, it provides real-time data about the
plantar contact pressure from proprietary-designed robust high dynamic pres-
sure sensing cells. Each insole is composed by a discrete number of sensor cells,
which supports an easy electronic sensor readout and a high measurement fre-
quency. According to an easy integration, it can support foot practitioners in
real-life correction diagnosis. The foot pressure map is actually needed in order
to identify special gait patterns and design optimized shoes adapted to each
person, so that pain and injury risks can be reduced during physical activities
thanks to a dedicated training control. This information can also be retrieved
with large fixed pressure detection plates that measure on-line the contact pres-
sure between barefoot and the ground under lab condition. Our new thin sensor
belongs to a second type of mobile insole-system solutions. It does not affect
the overall shoe comfort felt by the user during daily activities due to its high
flexibility and robustness. An Electronic Control Unit (ECU), connected to the
sensor, manages data communication to third-party interface systems such as
smart-phone, tablet or laptop where additional processing can be applied. This
allows mobile real-time applications, that are not feasible with uncomfortable
monitoring equipments such as force plates, due to large electronic devices, con-
nectors, cabling etc.

2 Sensor Description

The smart insole is based on a flexible, foil-type sensing device. It detects sole
force loads by providing locally in real-time transient dynamic electrical signals.
As a consequence, pressure, strain and dynamic force load can be simultaneously
monitored. The smart insole is composed by eight individual cells spatially dis-
tributed in the main areas where foot pressure changes statistically occurs, i.e.
two cells for the heel, one cell for the mid-foot, three cells for the metatarsal
area and finally two cells for the toes (see Fig. 1). Each sensor cell covers a

Fig. 1. IEE’s smart insole comprising 8-HD pressure cells. The cell design has been
elaborated within a comprehensive IEE research project [1,2].
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detection area of about 30 × 15mm2 in order to be robust against lateral shifts
of the plantar pressure loads that can be due to individual anatomic deviations
and relative movements of the foot inside the shoe. The new HD Force-Sensing
Resistor (HD-FSR) multi-cell smart insole sensor enables advanced real-time
gait analysis applications. HD-FSR sensors, with their individual triangular cell
segmentation, cover a wide pressure range from 250 mbar up to 7 bar. Their
robustness enables up to one million actuations under highest humidity condi-
tions. Lifetime variation is smaller than 15%.

3 Measurement Protocol

The goal of the proposed measurement protocol is to show the reliability and
repeatability of our sensor in static and dynamic configurations. A calibration
process is firstly performed in order to build a unique mapping between each cell
response and the applied pressure. An homogeneous pressure from 0 to 6 bar is
applied on the complete insole by means of a specific membrane tester system.
Then a look up table is generated and links uniquely each sensor Analog to
Digital Conversion (ADC) value to the applied pressure. A spline interpolation
model is finally computed in order to convert any ADC value measured by a cell
into its pressure load. This calibration process has been applied within IEE’s
laboratories for each insole in order to provide the same response level to all
sensor cells. Each insole has been connected to a Kinematix- ECU enabling data
recording at 100 Hz, combined with a 3D accelerometer and gyroscope [3]. Data
have been wirelessly exchanged by means of a Bluetooth communication between
ECU and a computer.

In order to study the sensor reliability, an alternative monitoring system [5]
designed by Lion-Systems S.A. and based on a force plate, has been tested (see
Fig. 2). It consists of a walkway of 3.2 m, composed by four blocks (L80×W60×
H6 cm). One block includes a force plate from Kistler Instruments that records
the ground reaction force exerted by the foot during gait. Four cameras recording
656 × 490 pixel images at a frame rate of 140 Hz are placed on each corner of
the force plate with four metallic arms. Data from the cameras (motion capture
based on 3D-coordinates of colored markers located on foot and leg) and force
plate are simultaneously recorded. We also used a pressure platform WIN-POD
(L53 × W60 × H4.5 cm) from the French company Medicapteurs [4] in order to
retrieve the spatial pressure distribution over time. WIN-POD uses an IEE sensor
mat which enables podometry data analysis according to its high sensitivity,
its wide dynamic range of measurements, its precision and homogeneity at a
frequency rate of 200 Hz. The active surface is about 400 × 400mm2, composed
by 2304 individual calibrated resistive cells (48× 48 matrix of individual cells of
size 8 × 8mm2). The pressure range covers 0.4 N to 100 N.

For this study, five pairs of insoles M (EU-38 for women) and three pairs XL
(EU-44 for men) have been used. Twenty three subjects had participated to a
predefined measurement protocol for static (standing) and dynamic (walking)
activities. The aim of the study was to check the accuracy of the new sensor in
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Fig. 2. Measurement set up environment. Three measurement systems (Force Plate,
WINPOD and IEE’s Smart Insole) have been synchronized in order to record at the
same time pressure information of a complete gait cycle.

comparison to more complex systems often used as a reference in gait analysis to
monitor plantar pressure distribution under lab conditions. For the static condi-
tion, test persons had to keep their neutral position without moving during ten
seconds. Users had been also asked to wear flat shoes which can be expected to
provide similar plantar load conditions as the barefoot one because any sole effect
can be neglected. For the dynamic condition, test persons had been asked to walk
at their natural speed on the four blocks. The starting distance from the force
plate had been adapted for each person in order to record a specific step with-
out gait modification. Test persons started in a stationary position. Afterwards,
they walked forward a few meters with natural pace. Proper time synchroniza-
tion allows a direct comparison of the pressure signal of the corresponding step
reaching the force plate and the data extracted from the smart insole. Each test
was composed by three trials in order to study the sensor repeatability.

4 Results

The standard force curve for walking is typically composed by a first peak cor-
responding to the breaking phase, a drop linked to the support phase and a
second peak for the propulsion. If the user touches the ground with a high force,
an additional high pressure peak at the heel appears very early during the gait
cycle. The peak corresponding to the breaking phase occurs when the pressure is
distributed between Heel and Mid-Foot. The force drop can disappear between
the breaking and propulsion phases in case of a comparatively large plantar
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mid-foot surface, for instance for flat feet. For people with a distinct pronounced
arch, the drop is more important.

The vertical force measured by the force plate had been correlated with the
plantar pressure distribution recorded with the 8-HD sensor cells for each step
trial. Both measurements were done simultaneously on the same step. Data had
been normalized with the body weight for the force plate, and the sum of all cell
responses for the insole, both under static condition. A typical pressure profile
obtained with the insole sensor and the corresponding individual cell responses
are plotted in Fig. 3(a).

Fig. 3. (a) Typical pressure profile recorded with the new smart insole sensor. (b)
Similarity between walking profiles recorded with the insole and the force plate. (Color
figure online)

Figure 3(b) compares four steps measured with the insole and the force plate,
randomly selected from the global dataset. For each step, the normalized pressure
for the complete gait cycle has been plotted as solid (dashed) line for the force
plate (insole, respectively). The step duration has been also normalized in order
to enable a direct comparison between each walking profile. We can observe a
high similarity in the dynamics. For instance, if we consider Step 4 in Fig. 3(b),
signals from each system follows the same trends. T1/T2 corresponds to the
relative timing with respect to the gait cycle duration when the first/second
pressure peak occurs of relative amplitude P1/P2. The first peak practically
occurs at around 25% of the gait cycle. A minimum is reached most of the time
at around 60% and the second peak at around 80% of the gait cycle. A similarity
metric S(δ) has been defined as the gait cycle proportion where the ratio between
the force plate and 8-HD sensor cells belongs to the range [1 − δ, 1 + δ] as can
be used to quantify the similarity between the two systems’ measurements. If
we used an accepted deviation rate of δ = 0.2, a relative difference of 20% is
allowed between the two sensors for each time index. The obtained results for S
are plotted in Fig. 4 for each step and subject weight. The metric intrinsically
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Fig. 4. Similarity metric S comparing force plate vs. insole for the complete dataset
plotted versus subject weight. The force plate and the smart insole present similar
signals when S is close to 1. (Color figure online)

belongs to [0, 1]. S = 0 if the difference between the two signals is always greater
than 20% during the complete gait cycle. S reaches an average value of 79.7%
for the overall experiment. Moreover, S is larger for flat shoes (red symbols)
in comparison to normal shoes (blue symbols). This is due to the sole effect
mentioned earlier which aims to distribute the pressure over the complete shoe.
Thus the data acquisition inside the shoe gives additional information compared
with force plate measurements and allow to study the influence and potential
differences between different shoe types. As a conclusion, the new insole sensor
provides very similar results as the force plate when measuring the total force
load.

5 Related Works

Various complex systems have been released on the market enabling detailed
gait analysis. They are mainly based on image processing by means of expensive
data acquisition systems that need large laboratory environment, floor sensors,
and wearables carried directly by the test persons. Researchers often rely on
floor sensors, such as so-called sensor matrices or baropodometric mats since
they provide a complete overview in real time of the pressure distribution below
each patient’s foot. Another interesting type of monitoring system comprises
force plate sensors. In that case, the main issue is the large set up environment
and also the impossibility to monitor the users’ gait during their daily activities.
Cheap wearables enable to measure different characteristics of the human gait
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based on pressure sensors directly placed on the patient’s insoles and also inertial
sensors that are the most widely used monitoring system in gait analysis. Gait
data recorded in real conditions outside a laboratory, and also on the long term,
become more relevant for an accurate analysis. The main advantage of these
systems is that users can wear them in their daily life. Following pre-defined
measurement protocols e.g. in case of force plate application is often felt as a
heavy constraint by users. This has also an deep impact on data as the recorded
gait signals can differ from the natural ones. In fact patients unconscious adapt
their gait in order to walk on the right position where the sensor is located.
These changes affect the measurement repeatability.

In [6], Herran et al. presented a complete survey on available systems focusing
on gait analysis. They referenced a non-exhaustive list of sensors covering a
large range of method, application, accuracy, price and ease of use. Force plates
and wearables remain the most used candidates. For instance, in [7], Hadopp
et al. presented a smart-shoe composed by three pressure sensors mounted on
a flexible insole. It can reliably differentiate the most common postures and
activities, according to an additional three-axis accelerometer. In [8], Sanghan
et al. used the Pedar-x system, composed by an array of 99 capacitive sensors
placed on a 2.6 mm thick insole. Da Rocha et al. selected in [9] the pressure
mapping system Matscan from Tekscan Inc. In [10], Wafai et al. monitored the
dynamic plantar pressure distribution in respect the F-scan in-shoe pressure
measurement system composed by 960 sensors from Tekscan. In [11], Ferber et
al. presented their smart shoe. They concluded that the pressure recorded by
their device is highly correlated with data monitored simultaneously with a gold
standard pressure-sensing device.

6 Conclusion and Outlook

In this paper, we introduced a novel smart insole sensor which consists of a
flexible carrier foil comprising eight individual pressure cells. This system enables
advanced real-time foot plantar pressure monitoring applications. It offers a new
research tool in order to monitor in a reliable and accurate way the gait dynamic
of its user. We have studied the correlation between the data recorded with
the new smart insole, a force plate and a pressure matrix based on a defined
measurement protocol. It could be shown that this new sensor device provides in
fact a competitive approach to measure static foot plantar distribution and also
gate dynamics in daily life. Future works will consist of the design of enhanced
algorithms in order to automatically extract gait features. A potential next goal
can be the characterization and the classification of individual walking profiles
into healthy and non-healthy categories. Warning notifications can be provided
in case of walking profile anomalies that can be caused by an illness evolution. For
that, sophisticated mathematical models will be used to generate the complete
pressure distribution on each foot based on spatial interpolation schemes.
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Abstract. Haptic perception plays a major role when vision and audition are
partially or fully impaired. Therefore, this paper tries to give a brief overview on
humans’ sensitivity distribution in perceptual space. During our experiments, a
wearable sleeve with 7 vibro-actuators was used to stimulate subjects arm to
convey haptic feedback. The basic research questions in this study are:
(1) whether humans’ perception linearly correlated with the actuation frequency,
haptic feedback in our scenario (2) humans’ ability to generalise templates via
the wearable haptic sleeve. Those findings would be useful to increase humans’
perception when humans have to work with fully or partially impaired per-
ception in their day-to-day life.

Keywords: Wearable devices � Haptics � Human-robot interactions
Humans’ perceptual space

1 Introduction

According to the Statistical bulletin of national population projection in 2014, the UK
population will be increased by 9.7 million over the next 25 years [1]. As the projected
population and ageing over the coming years, it is very important think of how to uplift
elderly people on daily life, perhaps to become more independent as well. Perception,
cognition, and movement control are some of the main concerns of the age related
issues when the aged population is grown [2]. When it comes to perceptions, haptics
would be the best alternative to enhance their abilities in communication when visual
and auditory are impaired fully or partially with ageing. Moreover, there are some
situations people have to work in impaired perceptions like indoor fire-fighting, search
and rescue, or noisy environments like a factory. In this scenario, having haptic
feedback is important. Therefore, it is very important to understand humans’ perception
in haptic feedback. Haptics would be used to convey messages in some tasks to convey
some spatial information when people are partially or fully impaired [3]. There have
been some efforts that have been taken to enhance the elderly people daily activities.
Some studies focused on effect of haptic supplementation by different methods to
support posture stabilization in elderly people [4]. The results of this study concluded
that haptic feedback enhances posture control to make them independent. A robotic
walker was made to help the elderly people’s walking in [5]. In this study, the robotic
walker escorts the elderly people. Moreover, previous studies demonstrated that haptic
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perceptions would be the solution to guide humans in unfamiliar/uncertain environ-
ments [6–9]. Since haptic feedback has been widely used to convey messages to
humans, it is important to understand how humans perceive the haptic feedback.

Vibro-actuators have been widely treated as a good communication equipment in
haptic perception in different applications. As an example, the previous study on an
active belt with wearable tactile display in [9] can be used to transmit information in
multiple direction. In addition to that it can combine with a GPS directional sensor and
7 vibro-actuators. Moreover, there have been some studies on using vibro-tactile dis-
plays have showed that it can be used to improve the quality in many ways, for
example devices for reading for people with less visual perceptions [10] or to provide
haptic feedback of body tilt [11]. Furthermore, haptic feedback has been used in
balance control, and postural stability [12, 13] in some studies in the past with some
wearable devices. However, our attempt in this paper is to understand humans’ arm
perception when they wear a haptic sleeve with actuated micro vibrators. The results
would give us ideas as to humans’ sensitivity and their capabilities in perceptual space.

Amplitude was the most dominant way to convey the messages to humans in most
of the haptic-based stimulation in the past [14–17]. However, our argument is that the
frequency would be better for persistent perception in order to the nature of
mechanoreceptors of the human skin.

This paper focuses on two different experiments. The experiment 1 was de- signed
to understand humans’ sensitivity distribution in perceptual space by using the wear-
able haptic sleeve. The experiment 2 was designed to understand humans ability to
generalize haptic-based templates when they are trained.

The organization of this paper as follows. Section 2 discusses the experimental
methodology to collect data of human participants while they wear the haptic sleeve
and the different intensity patterns were played to understand humans’ sensitivity and
their ability to generalize templates. Section 3 shows the results of experiment 1 and 2.
Finally, Sect. 4 presents a conclusion and future works.

2 Materials and Methods

In order to produce wearable haptic based pattern feedback the use of (Precision Micro-
drives) Pico Vibe 10 mm vibration motor – 3 mm type were used in order to produce a
wearable haptic sleeve. In total the Haptic Sleeve consists 7 Pico Vibe 10 mm
vibroactuators arranged in equal distance as shown in Fig. 1. In order for the device to
be made wearable, the 7 Pico Vibe 10 mm vibroactuators are attached to seven velcro
belts allowing the device to be adjusted in order to fit the arm size of the participant as
shown in Fig. 1. The different intensities for the vibrations are generated by Genuino
Mega 2560 motherboard, However in order to reach the desired and frequency needed
to complete the experiment the amplitude is modulated using simple power amplifier
circuit as shown in Fig. 1 [18].
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2.1 Haptic Primitives (Templates)

To generate templates, the standard Gaussian function was used. The templates were
generated by standard MATLAB function called gaussmf (y = gaussmf (x, [sig, c])).
The MATLAB programming language (The MATLAB Inc, MATLAB 2014b) was
used during the analysis, where sig = std, and c is the centre of the distribution. The sig
for pattern T, LT, and RT is 1.

Fig. 1. Experimental Setup: A wearable vibro-tactile actuator arrays, here 7 Pico Vibe 10 mm
vibro-actuator motors were attached to the belt. Arduino Mega motherboard was used to different
amplitudes. The power amplifier circuit has been used to amplify the signal (amplitudes in here)
[18].
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Fig. 2. The templates: The Gaussian Template (T), Gaussian shifted Left (LT), and Gaussian
shifted Right (RT) are shown. The standard function y = gaussmf (x, [sig, c])) was used to
generate the three different templates. the dashed lines shows the real intensities in experiment 2.
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2.2 Experimental Procedure

During all experiments the subjects was seated at a laboratory desk, with their arm
outstretched resting on the desk for the duration of the experimental trails. The subject
was required to wear a vibro-actuator belt containing the seven Vibro- actuators this is
then adjusted to fit the arm using Velcro strapping. They are then subjected to Vibro-
tactile stimulation with the requirement of drawing the intensity pattern after each trial.
Each experiment has a duration of approximately one hour.

Experiment 1: Study Humans’ Sensitivity Distribution. Eight subjects were
recruited for experiment one in order to understand humans sensitivity distribution in
perceptual space. The recruitment criteria stated that potential subject must be healthy
and between the ages 18–50 years in order to participate in the study. Subjects were
required to give their informed consent before any participation. Within those eight
subjects both genders are represented equally. All subjects were required to wear the
haptic sleeve containing 7 Vibro-actuators for the duration of the experiment. During
the experiment, each subject was subjected to vibro tactile stimulation, in the form of a
flat frequency pattern played across all seven Vibro-actuators. During each trial, all
vibro-actuators vibrate simultaneously, with each trials lasting roughly ten to fifteen
seconds. At the end of each trial the subjects were required to draw intensity pattern
across using a drawing app on the Apple ipad (Draw free app (Apple Inc)). Raw data
each subjects were then digitized using Getdata Graph Digitizer, all processing of Data
and all statistical analysis was analysed by MATLAB 2014a.

Experiment 2: Study on How Humans Generalize Haptic-Based Patterns. Using
the same experimental set up from Experiment 1, Experiment 2 was carried out to
understand how humans generalize haptic-based patterns. Participants again were
required to wear the haptic based pattern feedback sleeve. Throughout the duration of
the experiment participants were asked to keep the arm stretched and resting on the
desk. Three different intensity patterns were selected Standard Gaussian pattern (T),
Gaussian pattern shifted to the left (LT), Gaussian pattern shifted to the right (RT), as
shown in Fig. 2. The studies in humans’ learning in movements showed that humans
learnt through flexible combination of primitives that can be modelled using Gaussian
like functions [19]. In this study focuses to explore whether human brain has primitive
patterns that can be modelled using Gaussian like functions to represent haptic per-
ceptions as well.

Since the experiment 2 independent from experiment 1, it was conducted with a
different group ((4 - male, 4 - female), age between 24 to 26) from experiment 1.
During the first fifteen trials, participants were shown the templates and the stimulation
was given. Participants were only required to draw a smooth curve in order to represent
their perception of each image, using an ipad drawing app. The three Gaussian patterns
were played pseudo randomly. The drawing area participants was demarcated to match
the size of the printed pattern template so that they would not try to scale the image.
This was explained to all participants at the start of each experiment.
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3 Results

3.1 Experiment 1

The raw data from experiment 1 for the flat frequency distribution is shown in Fig. 3A
for a selected subject. In general, subjects were able to draw the played intensities as
shown in Fig. 3A. Subjects were able to distinguish between the 200 Hz and 300
stimulus Hz as shown in Fig. 3A. Interesting, perception frequency is linearly increased
with the actuation frequency as shown in Fig. 3B. It would be nice to study a wider
range of actuation frequencies. However, due to the technical limitation of the vibro-
actuators and humans’ most desirable perception frequencies, the perception frequen-
cies was limited to 200 Hz and 300 Hz.

3.2 Experiment 2

The raw data from experiment 2 for the pattern T, RT, and LT in experiment 2 are
shown in Fig. 4A. Here, the black dashed line was used to show templates. The raw
data in Fig. 4A were regressed against respective templates in Fig. 2. The average
regression coefficients values are shown in Fig. 4B. In Fig. 4, all regression coefficients
have increased in the last one third of the experimental trials except for the template T
as shown in Fig. 4B. The average regression coefficients of template T are higher
during the first and second third of experimental trials compared to LT and RT as
shown in Fig. 4B. It implies that subjects have a better ability to generalize scaled
template after reasonable number of experimental trials when stimulations are different.
However, higher variability in last third of the trials could come due to fatigue. We
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Fig. 3. The experiment 1 was designed to understand human sensitivity distribution: (A) Raw
data representation: one of the subjects’ sketch data, the total number of trails are 20 for
experiment 1, (B) actuation frequency and perceived frequency are shown. Average perceived
frequency are shown, 8 subjects participated 10 trials for 200 Hz, and 300 Hz actuation
frequencies during the experiment 1.
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assume that possible causes for variability could come from physiological factors like
muscle tension and psychological factors like attention.

4 Discussion

This paper presents experimental evidence of humans perceptions in perceptual space
and their abilities to distinguish and generalize a class of primitive haptic feedback
patterns after training. The results of the experiments show how humans recognize
trained cutaneous feedback patterns as well as their scales. Those results provide us to
understand capabilities and limitations of the humans in somatosensory system.
Therefore, those preliminary findings could be used to continue our studies to under-
stand humans’ sensitivity distribution in perceptual space by using different parts of the
body.

In future, we will do more training session to train the templates with human
participants. The results of humans’ perceptions will give us some degree of freedom to
bring humans with less impairments (visual and auditory) more independent: for
example, an elderly person living in a house alone with visual and auditory perceptions

A

B

Raw data

Fig. 4. Sketched data and regression coefficients: (A) The raw data of Experiment 2, and
(B) Average regression coefficients when data regressed with templates in Fig. 2. The variability
of the regression coefficients are shown by error bars.
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are impaired due to ageing. Moreover, we can we can use those to enhance the humans’
perceptions when they are in noisy environments like in a factory, and search and
rescue scenario.

Even though the regression coefficient were improved last one third of the trials in
Fig. 4B, the low regression coefficients in first and second half of trials in Fig. 4B
suggest that even if recognition of the tactile patterns were high, performance would
still be poor if there was a drawing difficulty. Therefore, we deliver some psy-
chophysical experiments to understand the degree of drawing difficulties. This would
be the best way to quantify degree of drawing difficulties of the humans. This would be
tested on naive and trained participants in the future.
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Abstract. The aim of the present work is to introduce SHOULPHY:
a digital application, which includes a rehabilitation protocol for the
treatment of Shoulder Impingement Syndrome (SIS). SHOULPHY, short
for Shoulder Physiotherapy, represents a valid contribute for physicians
allowing for the creation of a patient-centred physiotherapic program and
remote monitoring patient’s adherence to it, both in clinics and daily life.
The application permits quantitative and effective evaluation of the ther-
apeutic activity and functional level, through the use of wearable devices.
The final purpose is to facilitate the functional recovery and maintenance
of the physical level gained through the rehabilitation program, allowing
for a complete return to sport and ordinary activities.

Keywords: Self-management and self-treatment of musculoskeletal
disorders · Sensor wearable systems
Intelligent system for rehabilitation · Daily-life monitoring
Digital application · Virtual reality · Gamification

1 Introduction

Musculoskeletal disorders (MSDs) of the shoulder are common, with as many as
30.3% of adults experiencing shoulder pain annually, with significant economic
impact [1]. The most common shoulder disorder regarding the shoulder girdle
is Shoulder Impingement Syndrome (SIS), which is caused by a compression of
some of the rotator cuff tendons, most prominently the supraspinatus tendon,
along with the other soft structures, such as the long head of the biceps, the
bursa and the ligaments in the subacromial space. SIS accounts for up to 48% of
all consultations for shoulder pain, within primary care [2]. Repetitive activities,
involving the use of the upper arm at or above the shoulder level, represent the
primary risk factor for SIS; the target population is composed by a wide variety
of workers, from construction employees, to athletes, who are directly exposed to
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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overhead work conditions, heavy lifting and forceful work, but may include also
other categories, performing recreational activities that can be related to SIS [3].
Shoulder Impingement Syndrome is often caused by an imbalance between the
forces involved in the shoulder motion, such as the deltoideus, the rotator cuff
muscles and the scapula stabilizers. The incorrect activation of these muscular
groups affects the movements of the shoulder, leading to changes in glenohumeral
joint, with strong evidence of a reduction of the subacromial space during activ-
ities, when arm is elevated closer to an angle of 90◦ [4]. Differential diagnosis of
this condition remains critical, since it can be very difficult to identify shoulder
impingement relying on very generic symptoms, like shoulder pain and weak-
ness. A large variety of treatment options are available depending on the stage
of the condition, the patient’s actual level of activity and the intended goals.
However physical rehabilitation represents a key factor in the therapeutic pro-
tocol, to restore the functional level of activity, in patients presenting SIS [6,7].
The first aim of SIS therapy should be to restore a suitable balance between
the forces involved in the shoulder motion in order to re-establish a correct
kinematics and reduce the pain [5]. According to the European Musculoskeletal
Conditions Surveillance and Information Network [9], the breakthrough in the
management of musculoskeletal disorders, e.g. SIS, consists into asserting that
patients affected by this condition can actively take part in the management of
their physio-care. The main obstacle in the current therapy for SIS is compli-
ance with and motivation to perform the training protocol; this aspect is quite
relevant once the patient is discharged from the clinic. Due to the repetitive
nature of the tasks, the exercises protocol may result tedious, not challenging
and poorly interactive for the patient at home, thus limiting rehabilitation out-
comes and functional recovery. Gamification of therapy in the rehabilitation field
could be a good strategy to increase compliance and motivation, thanks to the
possibility to self-challenge in a highly interactive digital environment, produced
by the combined use of virtual reality and wearable devices [8]. In this context
the present work has been focused on the development of a custom digital appli-
cation for Shoulder Impingement Syndrome Telerehabilitation, which allows for
patients evaluation and training in both indoor and outdoor environments. The
SHOULPHY app, short for Shoulder Physiotherapy, relying on the use of wear-
able sensing devices and virtual reality, represents a simple, helpful and effective
tool for both patients and physicians, in the management of SIS.

2 Materials and Methods

The SHOULPHY app through a wearable sensor platform, constituted by iner-
tial sensors integrated into commonly used technological devices (e.g. smart-
band, smartphone, smartwatch) and innovative e-textile sensors (made of knit-
ted piezo-resistive fabrics), allow for a continuous patient’s activity monitoring.
Inertial Measurement Units (IMU) rely upon microelectronic mechanical sys-
tems (MEMS), combining the information of accelerometers, gyroscopes and
magnetometers, and are now widely used in wearable motion tracking [11,12].
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The use of different IMUs, placed on connected body segments, and the addi-
tional information on the kinematic constraints enable most joint angles to be
measured [13,14]. Textile-based or e-textile sensors are a key tool for unobtrusive
human motion detection, having several advantages: low cost, lightweight, low
thickness, flexibility, and the possibility of adapting them to different body struc-
tures. The main drawbacks are the reduced accuracy, the non-negligible transient
time and the hysteresis. In recent works [15–17] we employed and characterized
textile-based sensors based on knitted piezoresistive fabrics (KPF) that shown
reliable performances as strain and angular transducers. In our recent study
[10] a bi-articular model of the shoulder, combining the widely used socket-ball
model with an additional joint, capable of describing both the movement of the
scapular-thoracic complex and gleno-humeral joint and taking into account the
constraint given by the scapular-humeral rhythm has been developed and val-
idated, hence it has been considered as the reference biomechanical model for
the reconstruction of the upper limb motion. The model is substantially based
on the following relationship:

⎛
⎝

XTr

YTr

ZTr

⎞
⎠ =

⎛
⎝

A10 + A11 sin(θa) cos(ψa) + Dht sin(θarm) cos(ψarm)
A20 + A21 sin(θa) sin(ψa) + Dht sin(θarm) sin(ψarm)

A30 + A31 cos(θa) + Dht cos(θarm)

⎞
⎠

where Aij with i = 1, 2, 3 and j = 0, 1 and Dht are patient specific anatomical
parameters, representing respectively the parameters related to the acromion
position and the distance of the trochlea from the center of the humeral head.
θa and ψa represent the scapular movements, while θarm and ψarm the gleno-
humeral ones. The unknown parameters Aij and Dht can be identified by the
minimization of the following functional:
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∫
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)2
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)2
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Where X̂Tr, Ŷ Tr and ẐTr are the real coordinates of the trochlea derived by the
opto-electronic system (gold standard for motion capture systems), as described
in [10].

3 The SHOULPHY App

SHOULPHY app represents a valid contribute for physicians allowing for the
creation of a patient-centred physiotherapic program and remote monitor-
ing patient’s adherence to it, both in clinics and daily life. A gamified tele-
rehabilitation approach is given, to allow the patient wearing a minimal set of
sensors, to perform exercises, customely created through the application by clini-
cians, who can monitor remotely in real-time his activity and check his upgrades,
stored in a database, as shown in Fig. 1. A comprehensive telerehabilitation pro-
gram has been created with SHOULPHY, thanks to the collaboration with the
expert physicians of Fisiokinetic, a high-qualified centre for physical rehabilita-
tion, to provide the clinical requirements needed. The exercises of the training



236 I. Lucchesi et al.

Fig. 1. The components of the SHOULPHY app

Fig. 2. Exercise creation

protocol can be created, by using different boxes, representing concentric, eccen-
tric and isometric movements, that can be connected in series, thus building the
entire exercise; for each box several parameters can be specified, such as the
speed of motion, or the holding time, the amplitude and the index referring to
the actual position in the training series. Once the exercise has been created, it is
saved and loaded to the patient’s interface, where it will control the movement
of a virtual element, i.e. a ball, whose role is to guide the patient’s shoulder
motion in real-time. Moreover a video of a 3D avatar performing the exercise
correctly is recorded and loaded on the patient’s interface, where it acts as a
tutorial. The physician should periodically update the training program, taking
into account the patient’s recovery level, basing on the monitoring of his activity,
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and checking the results remotely through the access in the progress monitor-
ing section. The application permits quantitative and effective evaluation of the
therapeutic activity and functional level, through the use of wearable devices
and integrated standard questionnaire. The patient wears two sensors (on the
forearm and sternum) that return the shoulder motion in terms of arm position
with respect to a trunk coordinate system. With the wearable sensors on, the
patient can choose an exercise from a library created ad hoc by physicians. The
real-time visualization of the exercise performance is available through the vir-
tual environment in which a 3D humanoid - driven by the sensors - reproduces
the actual shoulder and trunk motion. This visualization modality is present on
both user and physician interface, with the following advantages (Fig. 2):

1. The patient is alerted about incorrect movement thanks to the implemen-
tation of a visual feedback, consisting in tuning the colour of a target vir-
tual object. The colour change depends on the difference between the actual
motion and the desired one and permits the patient to adjust the movement
during its execution (Fig. 3).

2. The clinician is able to visualize remotely - in real-time or off-line - the actual
execution of the patient’s motion, thus enabling for an effective monitoring
of many rehabilitation sessions at the same time (Fig. 4).

(a) Correct movement (b) Wrong movement

Fig. 3. Visual feedback: the guide ball color changes when the user does not follow
adequately the required movement. (Color figure online)

4 Results and Discussion

A scoring mechanism is implemented to assign virtual awards, in order to
increase the patient’s awareness about his physical condition. Clinicians rely
on standard questionnaires for the functional evaluation of the shoulder. Among
many others the Constant Murley test produces a score, ranging from 0 to 100,
considering the four patient’s domains (pain level, capability to perform ADL,
range of motion, total strength). We implemented a modified version of the Con-
stant Murley test by including a quantitative measure of abduction and flexion
ROM obtained by sensors data, as in Fig. 5. Furthermore SHOULPHY allows
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Fig. 4. (a) Isometric contraction at 45◦ on the frontal plane. (b) Concentric and eccen-
tric contraction on the frontal plane.

Fig. 5. Constant Murley shoulder test: Traditional score and additional maximum
ROM in flexion and abduction

for data storage of sensors data and useful biomechanical variables, to keep
track of patient’s rehabilitation excursus, in order to provide clinicians a global
database to lean on to improve diagnosis and treatment decision-making. The
trajectory of the trochlea reconstructed by the bi-articular model, integrated in
the SHOULPHY app, follows with high accuracy the real trajectory tracked by
the optical system, as shown in Fig. 6. Different subjects have been asked to
perform the required exercises created and integrated in SHOULPHY, in order
to test the application at Fisiokinetic. The outcome obtained from each reha-
bilitation session have been delivered to the expert clinicians of Fisiokinetic,
who have assessed the feasibility of our approach and the effectiveness to give a
quantitative measurement of relevant biomechanical variables, involved in shoul-
der functional recovery. These data turned out to be helpful for the functional
evaluation of the patient’s shoulder during his rehabilitation program. The main
limitation of our approach is related to the low accuracy of the system to track
the upper limb movements at high speed of motion. Nevertheless, the motor
tasks involved in a rehabilitation program require speed of motion that are fully
compatible with the capability of our system to correctly acquire data from sen-
sors and visualize them in real-time through the virtual humanoid on the user
interface.
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Fig. 6. Trajectory of the trochlea reconstructed by the bi-articular model (green),
compared with the optical tracked one (blue) (Color figure online)

5 Conclusions

In our work SHOULPHY app for the evaluation and treatment of Shoulder
Impingement Syndrome has been developed and tested. The application includes
a standard evaluation test, and a customizable patient-centred rehabilitation
program. The clinical specifications required for the development of the physical
shoulder treatment have been accomplished thanks to the collaboration with the
expert physicians of Fisiokinetic. This collaboration has permitted the creation
of a telerehabilitation program through the ShoulPhy clinical interface. The con-
tribute of a personalized virtual reality environment, gamification and a specific
data transmission protocol has lead to several advantages, including:

– the opportunity to create a real-time 3D visualization system;
– the remote monitoring of the rehabilitation session by physicians;
– the detection of wrong movements that could potentially turn out to be dan-

gerous;
– the creation of a clinical database, to keep track of the progress or eventually

regress obtained through training;
– the increased motivation and adherence of the subjects to a rehabilitation

program more involving and interactive, with respect to traditional rehabili-
tation;

The implemented software provide a digital version of the standard Constant
Murley Score, by the addition of a quantitative outcome of ROM reached on
frontal and sagittal planes. The training protocol can be adjusted on the specific
goals and needs of the patient, moreover it can beuploaded periodically in order
to facilitate a more rapid return to work and activities of daily living. As con-
firmed by the expert clinicians of Fisiokinetic the outcomes achieved by testing
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the application demonstrated the feasibility of our approach and the effective-
ness to give a simple, smart and user-friendly evaluation tool to aid both patient
and physician in the treatment of SIS.
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Abstract. Motor peculiarity is an integral part of the schizophrenia
disorder, having various manifestations both throughout the phases of
the disease, and as a response to treatment. The current subjective non-
quantitative evaluation of these traits leads to multiple interpretations
of phenomenology, which impairs the reliability and validity of psychi-
atric diagnosis. Our long-term objective is to quantitatively measure
motor behavior in schizophrenia patients, and develop automatic tools
and methods for patient monitoring and treatment adjustment. In the
present study, wearable devices were distributed among 25 inpatients in
the closed wards of a Mental Health Center. Motor activity was mea-
sured using embedded accelerometers, as well as light and temperature
sensors. The devices were worn continuously by participants throughout
the duration of the experiment, approximately one month. During this
period participants were also clinically evaluated twice weekly, includ-
ing patients’ mental, motor, and neurological symptom severity. Med-
ication regimes and outstanding events were also recorded by hospital
staff. Below we discuss the general framework for monitoring psychiatric
patients with wearable devices. We then present results showing corre-
lations between features of activity in various daily time-windows, and
measures derived from the psychiatrist’s clinical assessment or abnormal
events in the patients’ routine.

1 Introduction

Clinical literature describes a wide range of motor pattern alternations, mani-
fested in different phases of the schizophrenia disorder. Positive-signs schizophre-
nia patients are typically psychotic and disorganized, characterized mainly
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by positive symptoms (e.g. auditory hallucinations, delusions and paranoid
thoughts). In clinical settings, these patients show involuntary movements, dysk-
inesia and catatonic symptoms [1]. In negative-signs schizophrenia, there is usu-
ally an observed motor retardation, psycho-motor poverty, decreased sponta-
neous movements, psycho-motor slowing and flattened affect [2,3]. Some patients
demonstrate both types simultaneously or during different phases of the illness.

Neurological Soft Symptoms (NSS) can manifest early and during the pro-
gression of the disorder, and include deficits in coordination, sensory integration,
and sequential motor behaviors [4]. Medical treatment was found to improve
some of the motor symptoms, including NSS, involuntary movement and dysk-
inesia [1]. These medications, however, may also introduce in chronic patients
drug-induced movement disorders such as tremor dystonia, Parkinsonism (rigid-
ity and bradykinesia), akathisia and tardive dyskinesia [5].

The diversity and specificity of motor symptoms throughout different phases
of the disorder and as a response to drugs, makes them good candidates for
patient monitoring and treatment outcome evaluation. Nonetheless, to date,
these symptoms are evaluated in a descriptive non etiological manner based on
subjective clinical scales such as the Unified Dyskinesia Rating Scale (UDysRS)
[6] and the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [7]. The lack
of objective, quantitative methods of measuring these symptoms, and the insuffi-
cient conceptual clarity around it, causes multiple interpretations of phenomenol-
ogy, often entailing low reliability and validity of the diagnosis. In addition,
symptom evaluation process requires expert staff and availability of resources,
and it is not done frequently enough to capture delicate changes in patients’
spontaneous and drug-induced conditions.

The last decade has seen a steep rise in the use of wearable devices in medical
fields ranging from human physiology [8] to movement disorders [9,10] and men-
tal health [11]. Accelerometers and gyroscopes, which are commonly embedded
in smart-watches and other wearable devices, are now used to assess mobility,
recognize activity, and context. In a clinical setting, these sensors may be used in
order to detect change in high-level movement parameters, track their dynamics
and correlate them with mental state.

The objective of the current study is to develop and evaluate a framework,
where wearable devices are used to facilitate continuous motor deficits mon-
itoring in schizophrenia patients in a natural setting. This is an important
step towards a detailed automatic evaluation system of symptom severity in
schizophrenia. Such a system has a great potential to help understand this illu-
sive disease. An additional goal would be to help with the overwhelming need
for detection and characterization of sub-types of the disease towards a better
understanding of underlying causes, and the development of better and more
personalized treatment.
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Fig. 1. Raw data as recorded by the smart-watches, including tri-axial accelerometer
(top panel), light sensor (middle), and temperature (bottom). This plot shows data
from a single patient, recorded on 28 Jan, 2017 at 5:00–5:05pm. Only accelerometer
data was used for further analysis.

2 Methods

2.1 Participants and Clinical Evaluation

Twenty seven inpatients from the closed wards at Shaar-Meashe MHC partici-
pated in the study after signing appropriate Helsinki legal consents. Most par-
ticipants (21/27) were diagnosed with schizophrenia according to the DSM-5, 3
with paranoid schizophrenia, 2 with schizoaffective disorder, and one with psy-
chotic state cannabinoids. Participants’ age varied from 21 to 58 (mean of 37.48),
with course of illness varying from 0 (first hospitalization) up to 37 years (mean
of 16.9 years). Two of the patients dropped out of the study after less than a day
due to lack of cooperation. The rest (25 patients) were followed for a period of
three weeks on average (6–52 days).

The study was conducted in natural settings, where patients were not
required to change any personal or medical procedure. In addition to routine
reports by nurses and physicians, every patient underwent an additional evalua-
tion by a trained psychiatrist twice a week. The procedure included medication
monitoring (type, dosage and frequency), as well as clinical evaluation of pos-
itive and negative symptom severity (PANSS [12]) and neurological symptoms
severity (NES [13]).

All procedures performed in the study were in accordance with the ethical
standards of the institutional research committee and with the 1964 Helsinki
declaration and its later amendments or comparable ethical standards.

2.2 Data Acquisition

At study onset, each participant was given a smart-watch (GeneActiv1). The
devices included tri-axial accelerometers, light, and temperature sensors, the
high frequency output (50Hz) of which was stored on memory cards embedded in
1 https://www.geneactiv.org/.

https://www.geneactiv.org/


Real-Time Monitoring of Schizophrenia 245

the device (see Fig. 1). Data was collected by the aforementioned smart watches
worn continuously by patients throughout the experiment (for a total of 489 days
of data from 25 patients). The devices were placed and removed by the medical
staff, and the content of the memory card was uploaded to a central storage
location upon termination of the experiment for further analysis.

In order to reduce noise introduced by the variability in patient activity due
to external circumstances rather than mental state, weekends were excluded from
the study; our analysis focused on fixed time windows with regular departmen-
tal daily activity: Occupational therapy time slots (10am–11am), lunch (12pm–
1pm), and indoor free time (4pm–5pm). In addition, we calculated full day fea-
tures (6am–10pm) and used night time features (10pm–6am) to evaluate sleep
quality.

2.3 Features

Features were computed on the basis of the accelerometer readings, analyzed
in 1 min windows (see Table 1 and Fig. 2). Light and temperature data were
not used for the analysis. The point-wise sum of values and sum of square val-
ues of the tri-axial accelerometer measurements (Energy Square and Energy
Sum respectively) were averaged over 1 min intervals. The variance of the sum
of squares (Energy Variance) was also computed over the same window. Step-
ping behavior (Step Detector) was detected as large maxima of the smoothed
square norm of the point-wise acceleration. Overall Dynamic Body Acceleration
(ODBA), a measure of energy expenditure, was computed as the mean norm of
the accelerometer signal after application of a high-pass filter.

Table 1. List of features calculated on the basis of the tri-axial Accelerometers. Average
and variance was calculated on a 1 min time window.

Feature Description

Step Detector Simple count of the number of steps per minute

Energy Square Averaged sum of point-wise square acceleration

Energy Sum Averaged sum of point-wise acceleration

Energy Variance Variance of point-wise square acceleration

ODBA Mean norm of a high-passed version of acceleration

2.4 Clinical Assessments

The 30-item scale for positive and negative symptom assessment (PANSS) was
reduced to the following 5 literature-based factors: Positive, Negative, Disor-
ganized/Concrete, Excited and Depressed. The dimensionality reduction was
done according to the consensus model suggested by Wallwork et al. [14], based
on 25 previously published models and refined with confirmatory factor analy-
sis (CFA).
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Fig. 2. The daily features of a single subject (left): gray areas indicate the time windows
used for aggregated feature calculation. Monthly follow-up of a single patient (right):
top panel shows the clinical five-factor PANSS score given by a trained psychiatrist on
a bi-weekly basis; bottom panel shows the aggregated features calculated based on the
different time windows.

The negative and positive factors had low between-factor correlation (R =
0.399), indicating good separation of the symptomatology space. As expected,
the positive factor was in high correlation with the mean of all positive PANSS
items (R = .944), and likewise the negative factor was in high correlation with
the mean of all negative PANSS items (R = .972).

3 Results

We investigated two distinct ways by which wearable devices can be used for
patient monitoring, in order to assist physicians in understanding the state of
a patient. The first aspect of monitoring relates to the automatic assessment of
a patient’s condition, in order to provide automated, continuous, and objective
measures of mental state. To this end we investigated the correlation between
the computed measures and assessments by physicians, as described in Sect. 3.1.
The second aspect of monitoring relates to the detection of change (or anomalous
behavior patterns) which warrants additional attention from the medical staff,
as described in Sect. 3.2.

3.1 Movement Patterns and Mental State

In order to investigate the correspondence between patterns of movement
and mental state, multiple correlation analysis was computed between activ-
ity related features (described in Sect. 2.2) and PANSS factors. Results (Table 2)
indicate the predictive benefit of the computed activity-related features with
respect to the PANSS factors. When separately considering features computed
in each of the time-windows, it is evident that different time windows provide
varying predictive value for the 5 different PANSS factors.

Specifically, the Depressed Factor is described relatively well using features
from the free time window, with 31.01% explained variance, while all other time-
windows are below 10%. Both Positive and Negative factors are described well
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Table 2. Percent explained variance based on Multiple Correlation between computed
features in each of the 5 time-windows and each of the 5 PANSS factors. (See Sect. 2.2
for time-window specifications.)

free lunch occu day night all

Positive Factor 16.30% 11.14% 12.31% 19.80% 5.21% 53.77%

Negative Factor 19.74% 3.15% 2.06% 18.36% 9.77% 55.50%

Disorganized/Concrete Factor 22.73% 0.50% 15.13% 13.42% 5.82% 64.81%

Excited Factor 23.79% 8.75% 15.08% 10.35% 12.70% 57.10%

Depressed Factor 31.01% 9.23% 8.94% 5.78% 6.39% 58.33%

using features from the free time as well as all day time-windows. The remaining
factors are again best described using free time. Overall, the free time window is
the single most effective window, presumably since it imposes less structure on
the movement of the subjects, allowing for the manifestation of the underlying
mental state. In all cases, combining all time windows (rightmost column in
Table 2) leads to substantially higher explained variance, compared to any of
the individual windows.

Interestingly, looking at individual variable correlations we see that step
count during free time was positively correlated with positive, disorganized and
exited factor (R = 0.37, 0.37 and 0.31 respectively), but not with the negative
and depressed factors. In addition, patients who had higher scores in disorga-
nized and exited factors tended to have lower Energy scores during occupational
time (R = −0.28 for Energy Sum and −0.22 for Energy Variance). This may
indicate some motor retardation which is manifested only in non-walking time.

3.2 Continuous Monitoring

Our measures can be used to track changes in the patient’s condition as compared
to some established normal baseline, and may identify external events which
are correlated with the departure from normality. Figure 3 demonstrates such a
case: daily step counts of a patient dramatically increased 5-fold, at the same
time as a significant change in medication dosage was introduced. Whether the

Fig. 3. Mean daily steps of a single subject. The gray area corresponds to a short-
lasting change in medication regime.
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change in medication caused the rise in movement propensity or they were both
triggered by a change in mental state, this observation points to the relevance
of monitoring macro movement patterns as part of routine patient monitoring.

4 Conclusions

We describe a study designed to evaluate the utility of wearable devices fit-
ted with accelerometer, light, and temperature sensors, for the monitoring of
schizophrenia patients in a closed ward mental health institution. Initial results
show correlations between features of activity in various daily time-windows, and
factors derived from the PANSS assessment.

Results indicate that movement features during free time are the most indica-
tive of mental state. This finding is somewhat counter-intuitive, since the more
structured activity during occupational therapy or lunch was expected to high-
light differences in the state of patients. However, our results clearly show that
the behavior of individuals when left to their own devices is better correlated
with the PANSS factors.

These findings point to the possibility of automatically and continuously
tracking Schizophrenia related symptoms and patient state in a natural setting
hospital environment. The benefits of such a tracking system are twofold; first,
the continuous tracking will assist physicians in understanding the state of a
patient on an on-going basis, as opposed to specific points in time, when assessed
by the doctor. Second, long term monitoring of a large number of patients will
produce data allowing us to develop objective measures of motor aspects of the
illness, and facilitate a more personalized, objective, and data driven approach
which is much needed in the field of mental health.

Future work will focus on measuring the utility of this approach as an aug-
mentation tool from a physicians perspective on the one hand, and the ability
to predict physician assessments for automation of diagnosis on the other.
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Abstract. The spatio-temporal parameters of gait can reveal early signs
of medical conditions affecting motor ability, including the frailty syn-
drome and neurodegenerative diseases. This has brought increasing inter-
est into the development of wearable-based systems to automatically
estimate the most relevant gait parameters, such as stride time and the
duration of gait phases. The aim of this paper is to investigate the use
of body-worn accelerometers at different positions as a means to contin-
uously analyze gait. We relied on a smart shoe to provide the ground
truth in terms of reliable gait phase measurements, so as to achieve a
better understanding of the signal captured by body-worn sensors even
during longer walks. A preliminary experiment shows that both trunk
and thigh positions achieve accurate results, with a mean absolute error
in the estimation of gait phases of ∼12 ms and ∼31 ms, respectively.

Keywords: Accelerometer · Frailty · Gait analysis
Gait phase detection · Smart shoe · Sensorized shoe · Thigh
Trunk · Wearable sensor

1 Introduction and Related Work

A person’s manner of walking can reveal important information related to health
and well-being. For instance, some studies have shown that abnormal gait is
linked with a higher risk of falling, and gait analysis has been proposed for
automated fall-risk assessment [13]. Other works have shown that a deviation
in gait patterns can be an early indicator of cognitive impairment caused by a
neurodegenerative disease [3]. Furthermore, it has been demonstrated that some
gait parameters are highly sensitive for the identification of the frailty syndrome,
which is characterized by reduced strength and motor ability [10].
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A gait cycle is defined as the interval between two consecutive heel-strike
(HS) events of the same foot. The duration of a gait interval is known as stride
time. Gait is further characterized by the instants at which a foot leaves the
ground and starts “swinging” forward: this is known as a toe-off (TO) event1.
For each foot, there are two phases: stance (ground support) and swing. When
both feet are in the stance phase, the subject is said to be in the double support
(DS) phase. The ratio between DS and swing is particularly important, as a
relatively longer DS phase has been linked with the frailty syndrome [10].

The typical approach to gait analysis is observational: the patient is required
to frequently visit an equipped lab, where a trained clinician visually inspects
the patient’s gait during predefined tests. In the last years, there has been a
significant effort for the development of automated techniques for gait analysis.
Particular attention has been devoted to wearable sensor-based systems, as they
enable the continuous monitoring of gait and other daily activities in uncon-
trolled environments [1,2,5]. To foster user acceptance, it is key to obtain an
unobtrusive solution, possibly based on just one wearable device.

A commonly adopted trade-off between accuracy and usability is represented
by placing a single wearable accelerometer over the lower trunk. In this context,
an interesting evaluation of five different methods for the estimation of gait
parameters is presented in [12]. Among the considered methods, a particularly
relevant work is represented by [14], where the body’s center of mass trajectory
during walk is modeled as an inverted pendulum. This model is then exploited
to estimate some gait parameters, including the detection of HS events based
on a simple analysis of antero-posterior acceleration. More recent works, like [7],
attempted to also detect TO events by analyzing the vertical component of
acceleration.

In this paper, we study the detection of foot contact events (HS and TO)
with accelerometers placed at two different body positions: over the lower trunk
(approximately near the L3 vertebra) and inside a front trouser pocket. The
works described above used an optical system or an instrumented platform with
force sensors for their experimental evaluation. Consequently, HS and TO events
were measured only for a limited number of consecutive steps. In the experiment
proposed in this paper, the ground truth is provided by a sensorized shoe, hence
foot contact evaluation becomes possible even during longer and unconstrained
walks. A similar approach was proposed by [8], which exploited instrumented
insoles to validate gait analysis with an ear-worn sensor.

The technique that we used for gait analysis with the trunk sensor is inspired
by the techniques presented in previous works [7,14]. Differently, to the best
of our knowledge, this is the first time that a pocket-worn device is used to
detect foot contacts. This positioning could be exploited by smartphones, which
are often carried in trouser pockets. Indeed some works, like the one recently
presented in [9], have already evaluated the use of a smartphone’s accelerometer
for gait analysis, but the smartphone was placed over the subject’s trunk.

1 Some other works refer to heel-strike and toe-off as initial foot contact (IC) and final
foot contact (FC) gait events, respectively.
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2 Method

The sensor configuration used in this work is shown in Fig. 1. The user wears a
single sensorized shoe and two Shimmer3 devices [11], one over the trunk (lower
back) and one in a front trouser pocket (thigh). Hereafter, we refer to the two
Shimmer devices as trunk and pocket sensors, respectively. Figure 1 also shows
the anatomical directional references (vertical, antero-posterior AP, and medial-
lateral directions).

In the following subsections, we first show the algorithm used to detect gait
phases (i.e., stance and swing) using the sensorized shoe. Then, we describe the
algorithms used to detect gait phases with the trunk and pocket sensors.

Fig. 1. Sensor placement (trunk, pocket, shoe) and reference anatomical directions.

2.1 Sensorized Shoe

Previous works have shown that gait phases (i.e., stance and swing) can be
estimated with high accuracy by means of a sensorized shoe. An example is
represented by [4], where acceleration and force sensors were exploited to detect
foot contacts. The force sensors recognize heel and toes contact times, whereas
the accelerometer is used mainly to avoid wrong detections of steps when the
user is not walking.

In this work we used a single sensorized shoe, hence stance and swing times
are calculated only with respect to the foot wearing the sensors. The shoe is
a FootMoov 2.0, which is a new version of the smart shoe produced by Car-
los S.p.A. and described in [4]. As in the first version, sensors and electronics
are fully integrated below the insole. However, the full set of sensors has been
significantly upgraded. A 9-axis inertial measurement unit (IMU) is positioned
under the heel to enable the assessment of foot spatial orientation. Five pressure
sensors are available to monitor the mechanical interaction of the foot with the
ground. Three of the pressure sensors are positioned under the forefoot, while
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Fig. 2. Detection of gait phases with the sensorized shoe.

the remaining two are under the heel. These sensors are custom-made piezore-
sistive transducers produced by using ink-jet printing of a conductive material
on a flexible substrate. The Bluetooth 4.0 transmission module, fully integrated
with the rest of the electronic unit in the heel of the shoe, enables low energy
data transmission to a mobile device (smartphone, tablet).

The algorithm used in this study only required the analysis of four force
sensors, two under the heel and two under the forefoot. HS events are detected by
using the two sensors in the posterior part of the shoe, whereas the two anterior
sensors were used to detect TO events. The detection algorithm is described by
the finite state machine in Fig. 2. Initially, the user is in the stance state. When
all force sensor values are below a threshold (TOTH), a TO event is detected
and the user is in the swing state. Swing terminates when both of the posterior
sensors measure a force above a threshold (HSTH). As mentioned before, stance
time is the interval between HS and TO, whereas swing time is the interval
between TO and the following HS.

The foot contact times provided by the shoe are used as ground truth to
validate the following methods based on body-worn accelerometers.

2.2 Trunk (Lower Back) Sensor

Shimmer3 devices include an ST Micro LSM303DLHC tri-axial accelerometer,
which was set to operate within ±8 g range. The reference frame of the trunk
sensor is supposed to be approximately aligned with the anatomical directional
references.

Figure 3 shows the acceleration during two consecutive gait cycles. More pre-
cisely, the thin line shows the acceleration magnitude signal (Euclidean norm of
the three acceleration signals), whereas the thick line shows the acceleration on
the AP direction.

The method to detect HS and TO events proceeds as follows. First, gait
cycles are identified by using the walking detection algorithm presented in [6],
which exploits the groups of acceleration magnitude peaks produced at each
step. For each detected step, a region including the group of peaks (gray bands
in Fig. 3) is considered to search for HS and TO events. More precisely, foot
contacts are found by analyzing the AP signal: HS events correspond to a local
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Fig. 3. Detection of gait phases with the trunk sensor.

maximum in the AP signal, as suggested in [14], whereas TO events correspond
to a local minimum. The approach used to detect TO events differs from what
we found in the literature, as typically vertical acceleration is used to detect TO
events [7]. Detected HS and TO events are shown in Fig. 3 using squares and
circles, respectively.

2.3 Pocket Sensor

A novel method is proposed to detect HS and TO events with an accelerometer
carried in a front trouser pocket. The method enables the detection of the foot
contacts produced by the leg that is carrying the sensor.

Figure 4 shows the same gait cycles as in the trunk example, this time mea-
sured with the pocket sensor. The thin line is the acceleration magnitude signal,
whereas the thick line is the acceleration measured on the axis approximately
aligned with the AP direction when the user is standing still. We use the letter
z to refer to this axis: this corresponds to the reference frame typically adopted
in smartphones (z is the axis orthogonal to the screen, and is approximately
aligned with AP when the device is in a front trouser pocket). Differently from
the trunk scenario, the pocket sensor “swings” during gait cycles because of leg
movements, hence the orientation of the accelerometer with respect to gravity
is not fixed.

Despite the significantly different pattern, the walking detection algorithm
in [6] can still be used to detect steps and gait cycles by processing the accelera-
tion magnitude signal. All the steps are highlighted with gray vertical bands. The
proposed algorithm first needs to discriminate between the steps made with the
leg carrying the sensor (dominant steps) and the ones made with the contralat-
eral leg. To discriminate between dominant and contralateral steps the average
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Fig. 4. Detection of gait phases with the pocket sensor.

value on the z axis is used: as shown in Fig. 4, during dominant steps there is
a significant positive acceleration. Dominants are used to detect HS events by
finding the local maximum value on z. Instead, contralateral steps are used to
find TO events, by finding the local minimum on z. Detected HS and TO events
are shown in Fig. 4 using squares and circles, respectively.

3 Evaluation and Discussion

For this preliminary experiment we recruited a healthy volunteer, who wore
the three devices (sensorized shoe, pocket and trunk sensors) as in Fig. 1. The
experiment consisted in walking two times through a straight corridor. In total,
44 gait cycles were performed. The shoe is capable of sampling force sensor data
at ∼50 Hz, whereas the Shimmer’s accelerometers were sampled at ∼200 Hz and
then downsampled to 50 Hz. All the collected samples were stored into persistent
memory to ensure repeatable evaluation.

The force sensor signals on the shoe were used to find the following parame-
ters for each gait cycle: stride time (i.e., the duration of a gait cycle), swing and
stance time relative to the left foot (the one wearing the instrumented shoe).
In our approach, these parameters represent the ground truth. The methods for
gait phase detection at trunk and pocket position were applied to the respective
acceleration samples. As a result, we obtained estimations of stride, swing, and
stance time for each gait cycle, which can be compared with the ground truth
provided by the shoe.
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Table 1. Temporal gait parameters estimation results [s]

Position Stride Stance Swing

Shoe 1.085 0.670 0.415

Trunk 1.084 0.665 0.419

Pocket 1.086 0.675 0.411

Table 2. Mean absolute error (MAE) in the estimation of gait parameters [s]

Position Stride Stance Swing

Trunk 0.011 0.012 0.014

Pocket 0.029 0.033 0.031

Table 1 shows the average gait parameters found with the three sensors. Inter-
estingly, both trunk and pocket are able to estimate the three parameters with a
maximum average error of 5 ms. More detail on the estimation error committed
on each gait cycle is provided in Table 2, where it is shown the mean absolute
error (MAE). The trunk sensor achieves higher accuracy, with a MAE between
11 and 14 ms. Notably, the error is significantly lower than the sampling period
used (20 ms). This result confirms the accuracy reported by [12] for different
approaches based on a single sensor placed over the trunk.

The results of the pocket experiment are promising. Despite the more chal-
lenging positioning (the orientation of the sensor changes during the swing
phase), the average error is similar to the trunk experiment (Table 1), whereas
the MAE is slightly higher (between 29 and 33 ms). The proposed technique is
based on the assumption that one of the reference axes of the pocket sensor is
approximately aligned with the AP direction. This is a reasonable assumption
if we consider a smartphone carried in a front trouser pocket: due to the form
factor of the device, the axis orthogonal to the screen is typically aligned with
AP while the user walks. These results suggest that a smartphone could be used
as a novel means to perform continuous gait analysis during everyday activi-
ties. In particular, the ratio between stance and swing times could be used to
automatically detect early signs of motor ability issues.

In future work we plan to perform extensive experiments to further investi-
gate the use of a pocket-worn device for gait analysis. Future experiments will
take advantage of a higher sampling rate, and will include older adults with gait
pathologies in the experiments. In fact, the results presented in this work, as
well as in most of the works from the literature, have been obtained on healthy
subjects. Specific experiments are required to prove that the methods can be
used with (or adapted to) pathologic gait. Another important aspect that needs
further investigation is the possibility of using a pocket-worn sensor to detect
gait parameters relative to the contralateral leg (i.e., the leg that is not carrying
the sensor). Finally, we plan to perform similar tests with a wrist-worn device,
which could represent a further step towards unobtrusiveness and ease of use.
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Abstract. The aim of this study was to compare and evaluate multiple pre-
dictive equations for basal metabolic rate in order to choose the most suitable
one for energy expenditure models. Eight different predictive equations were
compared to each other using regression analysis and with the results of indirect
calorimetry tests with 25 participants. Mifflin-St Jeor, Livingston-Kohlstadt and
Henry-Rees predictive equations performed better than other formulas with
Mifflin-St Jeor having the lowest RMSE of 175 kcal/day compared to the results
of indirect calorimetry. The results of this study can be used to develop more
accurate energy expenditure models.

Keywords: Energy expenditure � Predictive equations � Basal metabolic rate
Resting metabolic rate � Activity trackers � Physical activity

1 Introduction

Monitoring the physical activity (PA) is moving towards activity specific energy
expenditure (EE) models that first recognise the activity and then apply a suitable EE
algorithm for the specific activity type [1], which relies on accurate assessment of basal
metabolic rate (BMR). For dietetics purposes BMR is commonly estimated using
predictive equations, that use simple anthropometric variables such as the weight,
height, age and sex of the person [2]. The aim of this study was to assess the BMR
predictive equations by comparing different equations and validating their results with
IC in order to choose the most suitable one for EE models.

2 Methods

The predictive equations explored in this study for BMR were Harris-Benedict [3],
Schofield [4], FAO/WHO/UNU [5], Henry-Rees [6], and Kleiber [7] and for RMR
were Mifflin-St Jeor [8], Owen [9, 10], Livingston-Kohlstadt [11]. EE values achieved
with different predictive equations were compared to each other and with indirect
calorimetry (IC) measurements. IC measurements were done using open-circuit indirect
spirometry device “CareFusion MasterScreen CPX”, which calculates EE based on
Weir equation [12]. System was calibrated before each test subject.
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The study group consisted of 25 healthy Caucasian adults, of whom 13 were male
and 12 female. During IC measurements, EE was measured during three different
positions – sitting on a chair, lying on a bed and standing up. The EE values during the
experiment of one test subject are shown on Fig. 1. EE was calculated only based on
the last minute of each activity. Even though standing and sitting should have
approximately 1.3 times higher EE than lying [13], it was not possible to differentiate
between these activities in this study (based on t-test results, p < 0.05). EE values from
IC were divided by 1.3 and the values achieved with RMR equations were divided by
1.1 in order to compare the results with BMR equations.

3 Results

Fig. 1. Energy expenditure of one test subject during indirect calorimetry experiment.

Fig. 2. (1) Coefficient of determination R2 between different predictive equations. (2) Mean and
SD of average BMR with indirect calorimetry (IC) and predictive equations; RMSE of BMR
between predictive equations and IC. 1 – Harris-Benedict, 2 – Mifflin-St Jeor, 3 – Owen,
4 – Kleiber, 5 – Livingston-Kohlstadt, 6 – Schofield, 7 – FAO/WHO/UNO, 8 – Henry-Rees
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4 Discussion

Based on regression analysis most equations had similar results, with Owen and
Kleiber formulas being the outliers, which respectively had the lowest and highest
average BMR results (Fig. 2). The average BMR values with Mifflin-St Jeor formula
(1447 ± 204 kcal/day) were the closest with IC results (1485 ± 255 kcal/day) and
also had the lowest RMSE of 175 kcal/day compared to IC. Based on paired t-test
(p < 0.05), the results with Mifflin, Livingston-Kohlstadt and Henry-Rees equations
were not statistically distinguishable from IC results.

While the results of this study can be used to compare different predictive equations
and for developing different EE models, there are some limitations which can be
improved on in future studies. First, the test group in this study was very homogeneous
since only healthy adults of same race were included. Secondly, the IC calorimetry tests
conducted in this study were part of a larger experiment, which is why each position
was held for a minimal amount of time needed to reach an EE plateau.

The research was funded partly by the Estonian Ministry of Education and
Research under institutional research financing IUTs 19-1 and 19-2, and by Estonian
Centre of Excellence in IT (EXCITE) funded by European Regional Development
Fund.
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Abstract. The ubiquitous nature of mobile devices like smartphones
and tablets make them ideal platforms for engaging users in Ecological
Momentary Assessments (EMA). In EMA, participants are repeatedly
assessed frequently (daily or multiple times per day) through a set of
questionnaires. In this short paper, we present a secure EMA platform
developed using Android mobile devices. The platform is flexible and can
scale up to perform data mining tasks for sentiment analysis in patient
rehabilitation settings.
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1 Introduction

The ease of developing applications on mobile devices has meant that it is much
more easier to create and deploy EMA studies on a large scale, as opposed to
traditional paper and pencil methods [1]. Levels of engagement for users on
devices such as smartphones are typically very high, meaning that they are ideal
platforms for high frequency EMA studies [2]. Recent work has looked at coupling
EMA and sensor data to assess physiological states, leading to an abundance of
data for the interest of the medical and social science communities. In the rest
of this paper we focus on the task of building a secure analytics framework
leveraging EMA like surveys on Android tablet devices.

2 Implementation

A simplified EMA like mobile survey was implemented following the techniques
and questions of some existing tests like the PHQ-9 (Patient Health Question-
naire) and D.I.R.E. (Diagnosis, Intractability, Risk, Efficacy). Results are stored
on an Amazon web server communicating with the mobile application. The
mobile survey is shown in Fig. 1.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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Fig. 1. Ecological Momentary Assessment Administered on Android Device

2.1 Data Flow and Security

The Transport Layer Security (TLS) protocol is used to provide the highest
level of protection against outsider adversaries trying to intercept communication
channels between the mobile application and server. The data collected on the
mobile devices are encrypted prior to being stored. Each record is encrypted with
a fresh new AES 256-bit key. In addition, a hash-based message authentication
code (HMAC) of each encrypted data is appended to records prior to storage.
The keys are themselves encrypted with a master key. In other words, for a record
r, the following data structure is stored in the mobile application’s database:
< c = Encke

(r), t = hmacki
(c), Enckm

(ke, ki) >. Note that the encryption key
(ke) and the message integrity key (ki) are generated anew for each record.
The master key is an AES 256-bit encryption key that is generated when the
application is installed. This key is securely stored in a secure storage service
provided by the operating system (e.g., Keychain in iOS). The above scheme
ensures confidentiality and integrity of user data collected on a mobile device. In
order for an insider mobile adversary to compromise the security of user data, it
is required to compromise the operating system and access the encryption master
key (km) along with all encrypted records. With this mechanism, sensitive data
is always stored encrypted and access is limited only to those entities that require
them.

3 Results

3.1 Structured Data Storage

The format of the survey data collected is shown in Table 1. The User column
is the MD5 hash of the full name of the user (truncated for display purposes).
EMA1 to EMA5 correspond to the current five EMA questions on the mobile
survey application, scored between 1 and 10. PHY1 corresponds to a physiolog-
ical indicator like heart rate. BSL in the table indicates whether the data is a
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baseline reading or not, and ACT indicates whether the data has been taken
when the subject is in an active state, e.g., after some physical exercise.

Table 1. Structured EMA and Physiological Data

User EMA1 EMA2 ... EMA5 PHY1 BSL ACT

baa* 10 9 ... 8 5 T F

Cod* 5 2 ... 1 3 T T

baa* 10 8 ... 8 5 F F

Cod* 7 3 ... 1 3 F T

3.2 Structured Querying of EMA and Physiological Data

Some samples of queries that can run on the system in SQL syntax are shown
below:

1. SELECT User, PHY1 from EMA PHY TABLE, where EMA2<5 : Returns
the physiological indicator, e.g., heart rate, for all users who do not want
more medication drugs.

2. SELECT EMA* from EMA PHY TABLE, where BSL<> ‘T ’: Returns the
momentary assessment scores which are not baselines.

4 Conclusion and Future Work

Future work will focus on integrating physiological health sensor IoT hardware
with the developed platform, and create an API for researchers and health prac-
titioners to modify (or replace) EMA surveys and analyze the data collected over
time using data mining techniques.
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Abstract. Depression affects a large percentage of young adults across the
globe. The delivery of mental health information and the provision of tools for
the self-assessment of mood are important means in addressing this problem.
While self-assessment of mood is becoming more common through web
resources and mobile applications, existing resources are limited in multiple
ways. First, they typically include a significant language component and are
therefore not suitable to youth with limited literacy/speakers of other languages.
Second, existing tools are not visually engaging, usually constituting ques-
tionnaires presented on monochromatic background. Third, existing tools are
limited in their clinical validity. This paper presents the background to the
creation of a prototype mood self-assessment tool delivered via a mobile
app. Based on a clinically validated mood self-assessment measure, the proto-
type guides the user through 21 pictorial questions and provides overall feed-
back. The user’s level of engagement is assessed using data provided by Google
Analytics and compared to their engagement with, and response to, the standard
written self-assessment questionnaire.

Keywords: Mobile app � Depression � Young adults

1 Background and Problem

New Zealand has the second highest youth suicide rate of all OECD countries and the
most critical age range is 15–24 (Bromet et al. 2011). In addition, international students
globally experience high rates of depression (Furnham and Tresize 1981). This is
coupled with lower usage rates of mental health support services by the international
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student body (Ward 2001). Contributing factors include lower service accessibility and
increased isolation/decreased social contact (Sam and Eide 1991).

A range of mental health support options including community‐based, computer-
based and phone depression treatment as well as online mental health information are
available to young people in New Zealand. The provision of online offers seems
particularly important given that in New Zealand 91% of people aged between 18 and
34 own a smartphone and spend significant amounts of time on their device (Vacaru
et al. 2014).

In addition to mental health support, the delivery of online mental health infor-
mation allowing the individual to identify whether they are affected by a mood dis-
turbance that warrants treatment (Levitt et al. 2007) is crucial. Self-assessment is
therapeutically beneficial, contributes to a better defined self-concept, facilitates self-
regulation and is a key to goal setting (Sedikides 1993).

Existing online mood self-assessment tools are limited in that they most often
include short versions of clinical self-assessment measures with limited clinical
validity. Similarly, mood apps, even if carrying official endorsement, often have not
undergone testing for clinical validity (Leigh and Flatt 2015) or efficacy (Donker et al.
2013). Existing tools also require a level of language proficiency and (health) literacy
that may not be given in young people with English as a second language (Butcher and
McGrath 2004). Finally, mood self-assessment questionnaires on monochromatic
background arguably are limited in how engaging/attractive they are.

2 Aim and Research Question

The aim of the present project is to design and implement a prototype mood self-
assessment mobile application based on a validated clinical assessment tool that is
language-free and engaging for youth.

The overarching research question is whether, compared to existing online mood
questionnaires, a language-free mood self-assessment tool in the form of a mobile
application is; (i) more engaging/attractive to a young population, (ii) more accessible
to a young population with English as a second language, and (iii) valid and reliable in
identifying young adults who are native speakers of English and those with English as
a second language affected by mood disturbance.

3 MoodRush Mobile Interface Design

A prototype mobile app named MoodRush containing pictorial versions of the 21 item
Beck Depression Inventory (BDI-II) (Beck et al. 1996) has been created. Pioneered in
the work with Latino populations, pictorial information in the form of a fotonovela has
previously been shown to be particularly useful in delivering mental health information
to young people (Cabassa et al. 2012). In order to increase potential uptake overall and
increase uptake across all categories of socio-economic status/minimise selection bias,
the prototype app has been designed for the Android Operating System.
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To date, the design for the log on screen (see Fig. 1, far left) and language-free
instructions have been completed with reference to the relevant guidelines (Android
User Interface Guidelines 2017; Eichner and Dullabh 2007; Nielsen 1994). After the
user logs in, they are presented with a tutorial (see Fig. 1, left). In line with Nielsen’s
(1994) aesthetic and minimalist design guidelines and in order to reduce executive
demands (Maalouf et al. 2011), the explanations included as part of the tutorial activity
were kept to a minimum. Tapping one of the tutorial pictures gives the user instant
positive feedback. Images are presented in a user-timed fashion, meaning they stay on
screen for as long or short as the user requires to make their decision. A back button has
not been included in the design to allow comparability between users’ MoodRush
scores and their BDI-II score which includes instructions to not overthink the response.

Since the intended audience for MoodRush is likely to come from a wide range of
cultures and backgrounds and, for a proportion of users, English will be a second
language, design decisions were not based on Western-centric models where possible.
Examples of this can be seen in the more inclusive top to bottom screen design (see
Fig. 1, right and far right) and the use of a diverse range of pictorial response choices
mostly comprised of cartoons and animals ensuring that not one race or ethnicity is
highlighted (Clarkson et al. 2007).

MoodRush tracks user engagement and logs the data using GoogleAnalytics.
Specifically, session time, completion rate and time spent interacting with the app in
each session will be recorded. The prototype has also been configured to apply a
weighting to user responses, to sum the weightings and store these in its internal
database. The design of language-free feedback screens based on the sum of the
weightings is ongoing.

4 Future Directions

Pilot data will be collected from 20 Unitec students (10 domestic; 10 international
students; age range 17–24). An interview will provide accessibility data; number of
completed MoodRush items and User Engagement Scale (Wiebe et al. 2014) will

Fig. 1. MoodRush prototype log in/start screen, MoodRush user tutorial, tutorial positive
feedback screen and MoodRush prototype sample items exemplifying the choice of image style
and content (left to right).
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assess engagement; and a comparison of participants’ MoodRush and BDI-II scores
will provide first clinical validity estimates. A large-scale evaluation study will follow
and desirability of mood tracking, data sharing and caregiver involvement will be
explored.
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Abstract. Senior patients with Alzheimer’s disease (AD) have some particu-
larities that bring important challenges for their formal care management inside a
health unit. Integrated smart services provided by Internet of Things (IoT)-based
applications and Radio frequency identification (RFID) technologies bring a
sustainable support to the healthcare providers. This paper puts forward the
benefits obtained due to the setting up of these technologies for meeting the
specific needs of those with Alzheimer’s. A brief presentation of SeniorTrack-
way software application for the management of institutionalized patients with
AD demonstrates the value of embedding the above technologies.

Keywords: Patients with alzheimer’s disease � RFID � Internet of things
Real-Time locating system � Patient’s tracking � Medication management

1 Introduction

The increasing longevity and the global ageing of the population have brought an
expansion of Alzheimer’s disease (AD) incidence. Once the disease is diagnosed, a
long-term care is expected, together with a continuous deterioration of the senior’s
quality of life and health having impact not only on the independence and autonomy of
the older person, but also on his/her family. That is a main reason for frequent insti-
tutionalization of them. A senior with AD in later stages needs almost permanent
surveillance, assisted living to daily activities and a personalized management of the
disease.

Health informatics, smart devices and IoT-based technologies are increasingly
involved in the healthcare of seniors with AD with a proved impact on patients’ life.

By attaching radio frequency identification (RFID) tags to different entities (people
and objects), identification, tracking, location, security and other capabilities are pro-
vided. Any RFID system is composed of a set of discrete components: Tags – passive,
semi-passive or active, Readers/Antennas – also known as Interrogators, Application
Software & Middleware.
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In the digital transformation of healthcare towards a patient-centered service
delivery, Internet of Things (IoT) applications have as a main core the link between
physical and digital environment. RFID, as a fundamental groundwork of IoT, provides
data that identifies a particular person/object in a determined location and time.

SeniorTrackway software application for the management of institutionalized
patients with AD is an example of how an informatics solution can bridge their specific
needs and demands with the requirements of a proper and efficient formal care.

2 SeniorTrackway - a Software Application
for the Management of Institutionalized Senior Patients
with Alzheimer’s Disease

SeniorTrackway is an under development Real-Time Locating System (RTLS) that
aims to be aligned with IEEE 1847 standard and it is implemented in collaboration with
AD Romanian specialists. Each RFID tag periodically transmits its own unique ID that
is logged against the person to whom it is attached, thus allowing the system to locate
the patient at risk within the building.

The objectives of the software application are:

1. Protection of vulnerable patients (institutionalized senior patients with AD) and
insurance of their safety by offering real-time visibility of their position to the staff.

2. Increased safety of patient at risk by generation of local and remote audio/visual
alarms and the automatically locking of the access door.

3. Proving facilities of individual free movement within a defined indoor safe area.
4. Helping caregivers to provide the best care by using Active RFID Technology. The

system allows caregivers to keep tabs on all patients under their care and protect
them without impeding their freedom of movement or that of their staff.

5. Deployment of a cost effective solution.

In SeniorTrackway deployment, each patient at risk of wandering wears a special
RFID wristband - with a unique personal ID and some information about him (e.g.
blood type, medical allergies, or other health history - which allows the individual free
movement within a defined safe area. In addition, the same ID is contained in self-
adhesive RFID labels for all patients’ paper medical histories and other important
documents. The position of each patient is tracked in real time. Any movement of a
tagged patient beyond this area will generate an acoustic/light alarm signal or lock an
exit door.

RFID readers are placed at strategic places within the hospital:

• RFID gates are mounted at admission and exit doors of the AD special care units.
• Each medical operational room contains minimum one RFID reader.
• RFID sensors are also placed in galleries and important offices (either placed next to

the door or under the desks).
• The each staff member (doctors, nurses, caregivers and other employees) has a

handheld device (PDA, mobile phone, etc.) equipped with an RFID reader and WiFi
connection to the web.
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Fig. 1. SeniorTrackway Architecture

The architecture includes three main layers (see Fig. 1):

• Sensing Layer: RFID physical components sense the movement and targeted
patients and capture the data from the individuals. The layer collects the information
from RFID tags or RFID sensors.

• Middleware Layer: translates the raw data from the physical layer to the context
(position and movement of the person), analyses and processes the data. The soft-
ware in this layer may combine multiple sensors to analyze a data stream intelligibly.

• Service Layer: store the information about the tracked individuals and make it
accessible by medical staff and caregivers in queries throughout real time moni-
toring servers. Notifications or warnings are provided in case of risks to the care-
givers through monitoring and assessment consoles.

3 Conclusions

Providing a new approach for the Romanian healthcare domain, SeniorTrackway
software application offers: (1) Easy and accurate detection of people within a safe
area; (2) Advanced perimeter security performance; (3) High-quantity and high-density
tag handling; (4) Reliable tag communications; (5) A holistic approach of specific AD
issues as disorientation, abnormal behavior or comorbidities; (6) A particular design
targeting directly the disease management of senior in-patients with AD.
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Abstract. Currently, there is a considerable increase in the number of older
population groups worldwide. Therefore there is constant effort to prolong the
active life of these older individuals as long as possible. And mobile devices
such as smartphones seem to offer some benefits for enhancing the quality of life
of seniors in the field of healthcare, independent living, socializing, or com-
merce. The purpose of this work in progress paper is to explore the main issues,
benefits and limitations of the use of smartphones by older individuals. The
research indicates that the smartphone use is not ubiquitous among the aging
population groups, which is a pity since the use of smartphone could contribute
to the improvement of quality of life of these older people and could increase
seniors contributions to the society. Therefore there is an urgent call for the
implementation of training in the smartphone use among the older generation
groups in order to enable them to become aware of the benefits of smartphones
for the enhancement of their quality of life.

Keywords: Smartphone � Older people � Use � Benefits � Limitations

1 Introduction

At present, there is a considerable increase in the number of older population groups
worldwide. For example, in Europe seniors aged 55+ years represent 25% of the whole
population [1]. Therefore there is constant effort to prolong the active life of these older
individuals as long as possible [2]. And mobile devices such as smartphones seem to
offer some benefits for enhancing the quality of life of seniors in the field of healthcare,
independent living, socializing, or commerce [3]. In addition, current seniors aged
55+ years are now digitally aware and use smartphones widely. Therefore it might be
expected that the use of smartphones among the older generation groups will rise
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substantially [4]. In fact, the number of smartphone owners increases every year. In
2016 there were 2.1 billion of smartphone users worldwide and this number should
reach 2.87 billion by the year of 2020 [5]. Moreover, 80% of the internet users own a
smartphone [6].

The purpose of this review study is to explore the main issues, benefits and limi-
tations of the use of smartphones by older individuals.

2 Current Situation in the Use of Smartphones by Older
Healthy Individuals

At present, older adults, especially those aged 65+ years resist using smartphones due
to their interface complexity, size of the device, anti-ease of use, and cost, as well as
due to their physical (impaired visual and motor skills) or cognitive impairments.

On the other hand, Cota et al. [7] indicate that digital games played by the elderly
people on their smartphones may delay cognitive decline of the aging population
groups. They also show that although these digital games could be played on any
mobile device, the elderly people prefer those which could be controlled by touching
the screen. In addition, the study by Hong et al. [8] reveals that the use of smartphones
considerably influences the internet literacy of its use by older people. Generally, the
main benefits of the use of smartphone by the elderly include freedom and social
connectedness [9]. Conci et al. [10] point out that older people are willing to accept and
adopt a new technology such as a smartphone if it meets their needs and expectations.
Zhou et al. [11] list six critical factors influencing older people to accept new functions.
These include awareness and attractiveness, soft keys and multi-tap, touch screen,
connectivity, concern of learning and social influence. In addition, McGaughey et al.
[3] argue that it is especially motivation that makes the elderly people use the smart-
phone, as well as by proper training in order to let older people discover the benefits the
smartphone can bring them since there is very low awareness of its benefits among
these older people [12]. Klimova [12] lists several benefits of using the smartphone
applications for health purposes, which are as follows: suitable and stimulating inter-
vention and diagnostic tools for elderly; enhanced access to healthcare for elderly
living in remote areas; improvement of elderly people’s quality of life; cutting potential
costs of treatment and care on elderly people; ecological approach.

On the contrary, the key limitations of the use of smartphones by healthy elderly
include interface complexity, small size of the device, a lack of training, prize of the
device, a lack of confidence, physical and cognitive impairment, or low awareness of
the benefits of the smartphone use.

3 Conclusion

Overall, the smartphone use is not ubiquitous among the aging population groups,
which is a pity since the use of smartphone could contribute to the improvement of
quality of life of these older people and could increase seniors contributions to the
society [8]. Therefore there is an urgent call for the implementation of training in the
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smartphone use among the older generation groups to enable them to become aware of
the benefits of smartphones for the enhancement of their quality of life such as free-
dom, connectedness, health control, or enhancement of feelings of safety. In addition,
there is a need for evidence-based studies revealing the effectiveness of smartphone use
by these people, as well as showing them the benefits of this use.
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