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Abstract. The increasing amount of digital data in urban research has drawn
attention in urban data mining. In urban research (e.g., travel studies in urban
areas), researchers who conduct paper-based or telephone-based travel surveys
often collect biased and inaccurate data about movements of their participants.
Although the use of global positioning system (GPS) trackers in travel studies
improves the accuracy of exact participant trip tracking, the challenge of
labelling trip purpose and transportation mode still persists. The automation of
such a task would be beneficial to travel studies and other applications that rely
on contextual knowledge (e.g., current travel mode of a person). In this paper,
we focus on transportation mode classification. In particular, we develop a
system that improves classification accuracy of ground transportation modes
(e.g., bus, car, bike, or walk). When compared with related works, our system
increases the classification accuracy by uniquely using GPS and accelerometer
data together with a window history queue (which uses previously encountered
data). Evaluation results show that our system achieves a high classification
accuracy.
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1 Introduction

In the current era of big data, huge volumes of a wide variety of data of different
veracity (e.g., uncertain and imprecise data [1–3]) can be easily collected or generated
at a high velocity in many real-life applications. Embedded in these big data are
valuable information or knowledge. This calls for data mining [4–6], which aims to
extract implicit, previously unknown, and potentially useful information from a large
amount of data [7]. With the increasing amount of digital data in urban research, the
field of urban data mining [8–12]—which aims to discover knowledge from data
related to urban problems for solving urban issues—has also developed and been given
more attention.

In urban research (specifically, travel studies in urban areas), researchers often have
been using paper-based and telephone-based travel surveys [13]. Those travel surveys
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can often be biased and contain inaccurate data about movements of their participants.
Participants tend to under-report short trips and irregular trips. Additionally, car trips
are often reported to be shorter than they are, and public transit trips are reported to be
longer than they are [14, 15].

Commute diaries [16, 17] are another approach of collecting data about people’s
daily commutes, but they also have been shown to be prone to errors. When people are
asked to use a diary to keep track of their commutes, they often forget to record their
commutes throughout the day. When trips are recorded at the end of the day, diary
studies can then inherit the same problems as paper-based and telephone-based travel
surveys. Moreover, commute diary studies can also be a mental burden to study par-
ticipants and cannot be used long term [18]. As people’s willingness to record trips
accurately throughout the day declines with each day of participation, the accuracy of
the commute diaries also drops accordingly [19].

To avoid data collection problems associated with the paper-based travel survey
and commute diaries, there is now a shift towards the use of global positioning system
(GPS) trackers to collect more objective commute data from participants. Studies show
that GPS-based travel surveys [20, 21] are more accurate than the aforementioned
surveys and diaries.

Although the use of GPS trackers in travel studies improve the accuracy of exact
participant trip tracking, the challenge of labelling trip purpose and classifying
transportation mode still persists. Nowadays, with the use of electronic trackers,
researchers are often dealing with a large amount of movement trajectories that are
collected by participants of a study who use GPS trackers or other sensors (e.g.,
Bluetooth, Wi-Fi, accelerometers, barometers, etc.). Manual segmentation of trajecto-
ries based on transportation mode is a labor-intensive task, and most likely infeasible
when performed on big data [22]. The automation of such a task would obviously be
beneficial to travel studies and other applications that rely on contextual knowledge
(e.g., current travel mode of a person). As an example for a contextual use for trans-
portation, when the person is driving, a device like a smartphone could recognize that
the person is driving in a car and give a notification about the current estimated time of
arrival—assuming that the phone knows the destination based on previous user
interaction or saved frequently visited locations. Another application for transportation
mode classification is the automatic trip transportation mode labeling for trip history.
This is similar to timeline in Google Maps (which keeps track of a user’s location
history and attempts to automatically classify trips with the major transportation mode).
However, the resulting classifications are observed to be not very accurate and need a
lot of corrections by the user. Moreover, it does not track when transportation modes
were changed. Hence, a more accurate algorithm or system is needed.

By using a standalone tracking and logging device, participants of travel surveys
would be able to log sensor data reliably and consistently because developers and
engineers have full control over the device and the hardware. Moreover, software
platforms are the same on every device. Such loggers can be used to log data to local
device storage, and then collect the logged data for data retrieval. Some devices could
also connect to a smartphone application on a participant’s phone via Bluetooth and
collect data on regular intervals. The collected data could be further processed, and the
users could be prompted with surveys. In such a case, transportation mode

84 C. K. Leung et al.



classification could happen on a smartphone. By doing so, computational burden on the
logger device is reduced, a cheaper architecture that requires weaker processing units is
possible, power consumption is potentially decreased, and thus the battery life is
increased.

As a preview, the system proposed in this paper works well for all scenarios
described above—smartphone logging (with online and online classification) and
standalone logging devices. Moreover, in this paper, our system focuses on the
following:

• offline learning (with which the classification model is usually trained on the
server);

• offline classification/prediction (with which the classification model classifies the
ground transportation modes on the server), and

• online classification/prediction (with which the classification model classifies the
ground transportation modes on the mobile device).

In order to increase classification accuracy, our transportation mode classification
system not only uses the basis of an online classification approach, but also uses
multiple windows of previously encountered data. Online classification focuses on one
window at a time during processing and classification. To the best of our knowledge,
existing academic works in this area have yet not taken advantage of previously
encountered data windows in order to increase the classification accuracy of the cur-
rently processed window of data. Hence, a natural question to ask is: Is it possible to
compute features based on previously seen data for a single trip and use it to signifi-
cantly improve real-time window based ground transportation mode classification?

In this paper, we design new classification features based on a window history
queue (WHQ), which focuses on summarizing data from previously encountered data
windows. Our goal is to improve accuracy of transportation mode classification when
compared with existing systems. Our key contribution is our classification system for
ground transportation modes. To the best of our knowledge, uniquely using new fea-
tures based on a WHQ, together with accelerometer data and GPS data, in a single
system during the classification process improves the classification accuracy.

The remainder of this paper is organized as follows. The next section discusses
related works. Section 3 presents our proposed transportation mode classification
system. Evaluation results and conclusions are given in Sects. 4 and 5, respectively.

2 Related Works

Most research works [23–25] related to transportation mode classification require at a
minimum GPS or accelerometer data for creating a classification model. Much research
exists [26], where researchers used some combination of data from different sensors
(e.g., GPS, accelerometers) and other modern smartphone sensors (e.g., barometer,
magnetometer, etc.). Some researchers [27] also augmented geographic information
system (GIS) data to their sensor datasets. However, none of them uniquely combined
GPS, accelerometer and GIS data in a single system. In contrast, our system combines
GPS, accelerometer and GIS data.
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To elaborate, Zheng et al. [23] used supervised decision trees and graph based post-
processing after classification to classify transportation modes from GPS data only.

In contrast, Hemminki et al. [24] focused on classifying transportation modes
(“stationary”, “walk”, “bus”, “train”, “metro”, “tram”) with the use of only
accelerometer data. To classify transportation modes, three different classifiers were
trained with a combination of AdaBoost and Hidden Markov Model for three different
classes of modes. Shafique and Hato [25] also used accelerometer data only. They
applied multiple machine learning algorithms to perform transportation mode classi-
fication, and found that Random Forest [28] gave accurate classification.

Instead of using only GPS data or only accelerometer data, Ellis et al. [26] applied
the Random Forest to both GPS data and accelerometer data in order to successfully
perform transportation mode classification with a relatively high accuracy.

Other than using both GPS data and accelerometer data, Chung and Shalaby [27]
developed a system that uses both GPS and GIS data instead. Their system classified
four transportation modes—“walk”, “bike”, “bus” and “car”—for GPS-based travel
surveys by using a rule-based algorithm and a map-matching algorithm [29] to detect
the exact roads people moved on. However, the accuracy of the system is dependent on
the corresponding GIS data. Similarly, Stenneth et al. [30] also used both GPS and GIS
data when building their real-time transportation mode classification system. To per-
form the classification, they used the Random Forest as the supervised machine
learning algorithm to identify a person’s current transportation mode.

3 Our Proposed Classification System

In this section, we describe our ground transportation mode classification system that
uses GPS data, accelerometer data, GIS data, and/or window history queue. The system
consists of the following five modules:

1. Dataset collection module,
2. Trip segmentation module,
3. Feature extraction module,
4. Model construction module, and
5. Data classification module.

The end result of the system are segmented trips (or trip windows), where each
segment is labelled with the ground transportation mode the person used for the period
of the segment. See Fig. 1 for the system layout. Figure 2 shows a zoom-in view of the
dataset collection module (in which the MongoDB data store is highlighted in yellow)
and the analysis component (highlighted in green), which consists of the last four
modules (i.e., the trip segmentation, features extraction, model construction, and data
classification modules) listed above. This data analysis component interacts with the
dataset collection module.
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3.1 Dataset Collection Module

First, the dataset collection module collects trip traces (GPS locations) and trip
accelerometer data, and stores them in a database (e.g., MongoDB). In addition, the
module also collects the bus stop locations in a city—via its transit application pro-
gramming interface (API)—when “bus” is one of the ground transportation modes for
classification.

Figure 3 shows the main screens of an iOS application for data collection. Figure 3
(a) shows the “current trip” screen of the application, with which users can see their

Fig. 1. Layout of our transportation mode classification system.

Fig. 2. Layout of the transportation data analysis component of our transportation mode
classification system.
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current trip information (e.g., speed, alerts, map). To start a new trip or trip leg, the
users simply end a trip. Then, a new trip will automatically start. After a new trip or trip
leg starts, the users will be presented with a pop-up list of transportation modes, as
shown in Fig. 3(b). Figure 3(c) shows the screen that lists users’ saved trip log, where
they can review trip information.

The application also keeps track of users’ movement. Figure 4(a) shows the start
screen of the application for movement tracking, with which users can manage their
recorded trips, start new trip recordings and upload existing trips. Figure 4(b) shows

Fig. 3. Application for data collection.

Fig. 4. Application for movement tracking.
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the transportation mode selection pop-up that would appear when the users start a new
trip. They could also open the popup anytime from the current trip screen when they
are switching transportation modes. Figure 4(c) shows the screen for current trip
information after the users started a new trip. Here, the GPS sampling rate was set to
1 Hz and the accelerometer sampling was at 22 Hz.

Recall that some related works use GIS data together with GPS location. Knowing
the difficulty in obtaining a complete set of GIS information in some real-life situations,
the only GIS information required by our data collection module is the bus stop
location, which can be easily accessible. For example, in evaluation, we obtained the
bus stop locations from Winnipeg Transit Open Data Web Service API.

3.2 Trip Segmentation Module

After collecting raw trip data by the data collection module, our trip segmentation
module segments every trip (which is simply a collection of data points collected
during a person’s entire commute from origin to destination—say, from home to work)
based on the transportation mode used in each segment. For example, for a trip from
home to work can be divided into the following three segments, as shown in Fig. 5:

1. Walk from home to the departure bus stop,
2. Bus from departure bus stop to destination bus stop, and
3. Walk from destination bus stop to office.

Our trip segmentation module is designed in such a way that it automatically
achieves the trip segmentation by simply classifying the transportation mode of each
window of data. To elaborate, data of a trip are divided into many small windows of
equal time interval. Moreover, when a transportation mode change occurs, data are
assigned to different windows so that no two transportation modes are mixed within the
same window. Segmenting the data into small windows led to a benefit that classifi-
cation can be performed in real-time. For instance, as soon as sufficient amount of data

Fig. 5. Segmented trip.
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has been collected to fill a new window, the window can be classified with a trans-
portation mode. Once every window is classified with a transportation mode, the user
simply concatenates the windows/trip segments (each of which is labelled with a
transportation mode) and presents each label on a map with a color-scheme for different
transportation modes. Once the trip is rendered on a map, the user can easily identify
different legs of the trip by simply looking at the different colors of the trip.

3.3 Feature Extraction Module

With (i) the bus stop location data (i.e., GIS information) collected by the dataset
collection module and (ii) the GPS and accelerometer data associated with the trip
segmented returned by the trip segmentation module, our feature extraction module
extracts appropriate features for transportation mode classification. Specifically, the
module extract the following three key types of features:

• GIS-based features, which capture the following GIS information related to bus
stop locations:

a. Stopped at a bus stop, which is a Boolean feature that indicates whether or not a
person stopped at any of the nearby bus stops within the window;

b. The number of bus stops, which captures the number of unique bus stops within
the window;

c. The number of stops at bus stops, which captures the number of stops near all
the bus stops within the window; and

d. Distance to closest bus stop (in meters), which captures the distance to the bus
stop that is closest to the person within the entire window.

• GPS-based features, which capture the following geo-location and time infor-
mation provided by GPS sensors:

a. Maximum speed (in km/h);
b. Average speed (in km/h);
c. Average altitude (in meters);
d. Average location accuracy (in meters);
e. Travel distance (in meters), which computes the geodesic distance (i.e., shortest

possible line between two points p1 and p2 on a sphere) in terms of Haversine
distance. Such a distance d between p1 and p2 can be calculated by:

d ¼ 2r sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where (i) r is the radius of the sphere, (ii) long1 and lat1 are respectively the
longitude and latitude of p1, and (iii) long2 and lat2 are respectively the
longitude and latitude of p2; and

f. GPS signal loss, which is a Boolean feature that indicates whether there is GPS
signal or no signal.
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• Accelerometer-based features, which capture the following measurement on
acceleration of different transportation modes (e.g., automobile):

a. Maximum magnitude;
b. Minimum magnitude;
c. Average magnitude;
d. 25th percentile magnitude, which captures the average of all magnitude in the

25th percentile;
e. 75th percentile magnitude, which captures the average of all magnitude in the

75th percentile;
f. Magnitude standard deviation;
g. Lag-1 autocorrelation;
h. Correlation between x- and y-axes;
i. Correlation between x- and z-axes;
j. Correlation between y- and z-axes;
k. Average roll, which captures the average “bank angle” about rotations along the

x-axis;
l. Average pitch, which captures the average “elevation” about rotations along the

y-axis; and
m. Average yaw, which captures the average “bearing” about rotations along the z-

axis.

Recall from Sect. 2 that some existing classifiers use only GPS based data (say, the
aforementioned 6 GPS-based features), some use only accelerometer-based data (say,
the aforementioned 13 accelerometer based features), some use both GPS and
accelerometer based data (say, the aforementioned 6 + 13 = 19 GPS- and
accelerometer- based features), and some use both GPS and GIS based data (say, the
aforementioned 6 + 4 = 10 GPS- and GIS-based features). However, to the best of our
knowledge, no classifier—except our proposed system—uses all three types of
4 + 6 + 13 = 23 features from these GIS-, GPS- and accelerometer-based data.

To a further extent, with an aim to enhance the classification accuracy, we propose
a novel concept of window history queue (WHQ). The idea behind a WHQ is that
previous data windows could help to classify the current data window. For instance, if
the current data are similar to the previous one (e.g., similar average speed), then the
current data are more likely to have the same classification as the previous data.
Conversely, if the current data are quite different from the previous one, then there is a
chance that transportation modes have changed. Our classifier is able to determine the
subtle data differences during the training phase. For example, the random forest model
can learn that a previous high average speed followed by a very low (current) average
speed would mean that the current data represent the transportation mode of “walk”.

To support this concept of window history queue (WHQ), our feature extraction
module extracts 6 + 4 = 10 additional GPS- and accelerometer-based features for
WHQ. These 10 additional features are listed as follows:

• Additional GPS-based features for WHQ include:

a. Previous maximum speed (in km/h), which is the maximum speed for all pre-
vious windows in the WHQ;
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b. Previous average speed (in km/h), which is the average speed for all previous
windows in the WHQ;

c. Previous maximum average speed (in km/h), which is the maximum average
speed for all previous windows in the WHQ;

d. Delta maximum speed (in km/h), which is the difference between the maximum
speed of the current window and that of the previous windows;

e. Delta average speed (in km/h), which is the difference between the average
speed of the current window and that of the previous windows; and

f. Delta maximum average speed (in km/h), which is the difference between the
maximum average speed of the current window and that of the previous
windows.

• Additional accelerometer-based features for WHQ include:

a. Previous average magnitude which captures the average of all average magni-
tudes in the WHQ;

b. Previous 25th percentile magnitude, which captures the average of all magnitude
in the 25th percentile of the WHQ;

c. Previous 75th percentile magnitude, which captures the average of all magnitude
in the 75th percentile of the WHQ; and

d. Previous magnitude standard deviation, which captures the average of all
magnitude standard deviations of the WHQ.

3.4 Model Construction Module

Once features are extracted from GIS information, GPS sensors and accelerometer data,
our model construction module builds, trains and validates a classification model.
Specifically, it builds the random forest model by using the extracted features which are
calculated based on the collected raw data. The extracted features are stored on a per-
trip basis. For each trip, there is a set of feature windows. The trips for each trans-
portation mode are shuffled and then split into two sets: (i) the training set and (ii) the
testing/validation set. As a preview, to evaluate our classification system, we used 70%
of the data for stratified 10-fold cross-validation with a 50-50 partition split between the
training and the testing data for each partition in order to determine the accuracy of the
random forest based classifier.

3.5 Data Classification Module

After constructing the classification model, our data classification module classifies
unseen data and stores the classified trips back to the MongoDB. Specifically, segments
of a trip are classified according to the ground transportation mode (e.g., “walk”,
“bike”, “bus”, “car”) used by the user.
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4 Evaluation

To evaluate our proposed ground transportation mode classification system, we con-
ducted experiments on a computer running Ubuntu 16.04 LTS as the main operating
system. The CPU was an AMD Phenom II X6 1100T with 6 cores clocked at 3.3 GHz
to 3.7 GHz. There are 16 GB of RAM and a solid state drive in the computer.

We collected the GIS information (i.e., bus stop locations) from Winnipeg Transit
Data Server by querying trip data via the Winnipeg Transit API. Users anonymously
and securely uploaded their saved GPS- and accelerometer-based data via the mobile
applications or dashboard. These trip information from users were then stored in a
MongoDB, which supports basic geo-spatial query capabilities. The trip information
was collected throughout a year, which contains trips with different weather and road
conditions from summer to winter times. It captures the ground transportation mode
(e.g., “walk”, “car”, “bus”) used by the user at the time of commute.

Recall from Sect. 3.2 that the trip segmentation module of our proposed ground
transportation mode classification system divides each trip into many small windows of
equal time interval. Our first set of experiments is to determine an appropriate window
size. We varied the window size. The experimental results shown in Fig. 6 reveal that a
window size of 4 s gave the most accurate classification.

Recall from Sect. 3.3 that the feature extraction module of our proposed ground
transportation mode classification system uses a novel concept of window history
queue (WHQ), which captures historical data. With WHQ, comparisons can then be
made between the GPS information or accelerometer data in the current window and
those in the previous windows within the WHQ. So, our second set of experiments is to
determine an appropriate queue length. We varied the queue length. The experimental
results shown in Fig. 7 reveals that a WHQ length of 15 windows (each window of size
4-second interval) gave the most accurate classification.

Fig. 6. Experimental result: Segmented window size.
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To measure the effectiveness of our proposed ground transportation mode classi-
fication system, we use the standard measures of precision and recall. Precision
measures the positive predictive/classified value, i.e., the fraction of true positives
among all positives (i.e., true and false positives):

Precision ¼ True positives
True positives þ False positive

Recall measures the true positive rate or sensitivity, i.e., the fraction of true posi-
tives among true positives and false negatives:

Recall ¼ True positives
True positives þ False negatives

Accuracy measures the fraction of true positives and true negatives among all
predications/classifications (i.e., among all positives and negatives):

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

where TP denotes true positives, TN denotes true negatives, FP denotes false positives,
and FN denotes false negatives. So, our third set of experiments is to compute the
precision, recall, and accuracy of the classification results on unseen data. The
experimental results show that our system accurately classified different segments of
unseen data with highly accurate (e.g., above 95%) ground transportation modes.

Recall from Sects. 2 and 3 that some existing classifiers use only GPS-based data
(say, the 6 GPS-based features), some use only accelerometer-based data (say, the
13 accelerometer-based features), some use both GPS- and accelerometer-based data
(say, the 6 + 13 = 19 GPS- and accelerometer-based features), and some use both
GPS- and GIS-based data (say, the 6 + 4 = 10 GPS- and GIS-based features). In
contrast, our ground transportation mode classification system uses all GPS-, GIS- and

Fig. 7. Experimental result: Window history queue (WHQ) length.
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accelerometer-based features, which is a key contribution of this paper. Hence, our
fourth set of experiments is to compare the accuracy of the classification results of our
classification system with related works. The experimental results shown in Table 1
reveals that our system led to higher classification accuracy.

Recall from Sect. 3 that another key contribution of this paper is our proposal of
the concept of window history queue (WHQ). Hence, our fifth set of experiments is to
measure the benefits (e.g., increase in classification accuracy) of using WHQ. The
experimental results shown in Table 2 reveals that our system (which uses the WHQ)
led to higher classification accuracy.

5 Conclusions

This paper focuses on urban data mining. In particular, we proposed a ground trans-
portation mode classification system. The system consists of five modules. Among
them, the dataset collection module collects the GIS information about bus stop
locations, the geo-location and time information provided by GPS sensors, and
accelerometer-based data capturing the acceleration of different transportation modes.
These data are collected from different sources: GIS information from the city or transit
company, whereas GPS- and accelerometer-based data are collected by users. Then, the
trip segmentation module segments data about a trip into many windows of size 4 s,
and each of these windows captures a single mode of transportation. Afterwards, the
feature extraction module extracts the standard GIS-, GPS- and accelerometer-based
data. Most, if not all, of the existing related works do not use all GIS-, GPS- and
accelerometer-based data. So, we proposed in this paper to use the combined GIS-,
GPS- and accelerometer-based data. Consequently, the model construction module

Table 1. Classification accuracy of our classifier with compared with related works.

Data used Accuracy

Related Works Only GPS data 88.87%
GPS + GIS data 88.96%
Only accelerometer (Acc) data 93.13%

Our proposed classification system GPS + Acc data 95.58%
GPS + GIS + Acc data 96.97%

Table 2. Classification accuracy of not using vs. using the WHQ.

Without WHQ Accuracy With WHQ Accuracy

Only GPS data 88.87% GPS + WHQ 94.70%
GPS + GIS data 88.96% GPS + GIS + WHQ 94.63%
Accelerometer (Acc) data 93.13% Acc + WHQ 94.85%
GPS + Acc data 95.58% GPS + Acc + WHQ 98.08%
GPS + GIS + Acc data 96.97% GPS + GIS + Acc + WHQ 98.09%
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builds and trains a random forest classification model using these combined data. The
data classification module then classifies future unseen data. Experimental results show
that the use of combined GIS-, GPS- and accelerometer-based data led to high clas-
sification accuracy.

Moreover, with an aim to improve classification accuracy, we also proposed in this
paper a novel concept of window history queue (WHQ) so that the model construction
module can compare the data in the current window with data in the previous windows
within the WHQ. To facilitate our proposed concept of WHQ, the feature extraction
module extracts additional GPS- and accelerometer-based data for WHQ. Experimental
results show that the use of WHQ led to higher accuracy than their counterparts that do
not use the WHQ. These results demonstrate the effectiveness of our system in clas-
sifying ground transportation modes for urban data mining in smart cities.

As ongoing and future work, we are examining relationships (e.g., correlations)
among the extracted features to see if the number of features can be reduced. At the
same time, we are also exploring new features that could further enhance the classi-
fication accuracy. Moreover, we are also conducting more exhaustive evaluation (e.g.,
comparisons with fitness trackers).
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