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Abstract. When a vehicle passes over a bridge, the bridge distorts in
response to the vehicle’s load. The response characteristics may change
over time if the bridge suffers damage. We consider the detection of such
anomalous responses, using data from both traffic-surveillance cameras
and strain sensors. The camera data are utilized to treat each vehicle’s
identified properties as explanatory variables in the response model. The
video and strain data are transformed into a common feature space, to
enable direct comparisons. This space is obtained via our proposed spiral
learning method, which is based on a deep convolutional neural network.
We treat the distance between the video and strain data in the space as
the anomaly score. We also propose an adversarial unsupervised learning
technique for removing the influence of the weather. In our experiments,
we found anomalous strain responses from a real bridge, and were able
to classify them into three major patterns. The results demonstrate the
effectiveness of our approach to bridge damage analysis.

Keywords: Structural health monitoring - Deep learning
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1 Introduction

Many road bridges built in Japan in the 1960s have deteriorated and now require
substantial inspection. We approach the health monitoring problem by installing
a number of inexpensive sensors on a bridge as shown in Fig. 1. We aim to iden-
tify small signs of bridge deterioration by developing a fully data-driven inspection
technique. Our research started from a simple question. Could the bridge strain
response caused by a vehicle be predicted from the surveillance video, using an
encoder—decoder [1] approach? If we set up such a predictor during the bridge’s con-
struction, we could capture small signs of deterioration later by monitoring the fre-
quency of anomalous vehicles. Unfortunately, we encountered a difficulty, namely
that the video data could not supply information about a vehicle’s axle weights.
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In general, the strain response will depend on the moving axle loads, so measuring
axle weights directly seems an obvious approach. To obtain the axle weights, the
options are to install a pavement sensor or use a bridge weighing in motion (BWIM)
technology [2]. The former is fragile, hard to retrofit to existing bridges, and lim-
its the traveling speeds. The latter requires that strain response characteristics be
obtained in advance, which is not applicable to the anomaly detection problem.
We, therefore, abandoned the axle weight approach.

Instead, we developed a new sensor fusion approach that directly compares
the vehicle image and strain response in a common feature space. This approach
is somewhat similar to the Siamese network [3], except that our approach utilizes
two different neural networks for the video and strain data. Moreover, unlike the
Siamese network, the two networks are trained to predict vehicle speeds and loci
individually. As we reported in a previous paper [4], vehicle speeds and loci may
be predictable from both video and strain data, and they affect the shape of the
strain response significantly. By learning these two tasks, the two networks can
acquire feature spaces that seem to comprise common factors of the video and
strain data. Finally, the bases of the two spaces can be matched by minimizing
the distance between two related elements in the respective spaces. We call this
approach spiral learning. Some video-response pairs caused by the same vehicle
may be inconsistent in the common space. We treat such an event as an anomaly,
making the assumption that such a response may be caused by bridge structural
damage. It should be noted that bad weather, e.g., a snowstorm or heavy rain,
may disrupt the video signal. In such a situation, an event may be misidentified
as an anomaly, even if the strain response was normal. Therefore, we proposed
adding an adversarial learning mechanism as a countermeasure.

We evaluated our proposed approach using real observations recorded over a
six-month period. We then classified the observed anomalies into some patterns
to demonstrate the weather resistance. The results show the effectiveness of our
approach to bridge damage analysis.

2 Bridge Analysis: The Influence Line

Studies of bridge damage detection can be classified into two approaches, namely
steady-state analysis [5] and transient-response analysis [6,7]. The former detects
damage by detecting changes in natural frequencies and time constants, whereas
the latter aims to detect damage by focusing on temporary events such as passing
vehicles. These approaches require the vehicle speed, locus (traveling position in
the lane), and axle positions, as explanatory variables in the response model.

A bridge bends as vehicles pass over it. If we assume a linear-response model,
the strain is proportional to the vehicle weight and closeness between the sensor
and the vehicle. The bending moment m(t) at time ¢ will vary depending on the
vehicle position, z. m(t) can be estimated by the influence line i(x) and strain
measurements s(z,t) given in Eq. (1):

1 l
f(t) = /O w(a, )i(z)dz ~ /O ES(x)s(x, t)dz, (1)
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Fig. 1. Sensor positions.

where m(t) is the predicted moment and w(z,t) is the axle weight at z. E is the
elasticity modulus and S(z) is the section modulus.

The influence line characterizes an individual bridge but may change its shape
over time owing to structural damage to the bridge. A number of researchers [6,7]
evaluated a damage detection technique using influence lines. To obtain an ideal
influence line, we should run a test vehicle with known axle weights, speed, and
locus, excluding the influence of other vehicles. However, that can prove difficult,
particularly for bridges carrying heavy traffic.

Zaurin and Catbas [8] proposed a novel sensor fusion approach for monitoring
bridges in service. They installed a traffic-surveillance camera and strain sensors
on a miniature bridge. The camera was used for axle detection. The axle positions
were obtained by tracking axles and were used for calculating the surface load
w(x,t). The authors [8] assumed that axle weights could be measured via BWIM.
The influence line was estimated for every vehicle. By clustering the estimated
influence lines, the potential damage was identified. Their approach has a serious
weakness in that BWIM requires obtaining the influence line in advance. Once
the bridge becomes degraded, the influence line may change, which means that
the BWIM system may be unreliable for their purpose.

3 The Spiral Learning Approach

Spiral learning is a technique whereby a pair of samples from two data sources
are fed into two separate networks. The networks are independent of each other,
except for a final linear layer that shares the same weight matrix. Each network
learns from its respective dataset and acquires a feature mapping that contains
information about vehicle properties such as speed and locus. The samples refer
to the same vehicle as a latent variable.

Table 1 shows the neural network architectures. [k: /d, c} denotes a c-channel
convolution layer with a kernel width of k, which downsizes the sample to 1/d-th
of the original. Each stacked matrix denotes a plain residual block [9]. CamNet
receives 50 grayscale video frames (taken over two seconds), which are resized to
224 x 224 pixels, and outputs the estimated speed and locus of the target vehicle.
SigNet receives four-second batches of raw strain data sampled at 200 Hz. Each
strain sample was rescaled so that its maximum and minimum were normalized to
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Table 1. Network architectures for video and strain data.

Layers | CamNet |SigNet
3/2,50
Conv 1 /2 [25/4, 64]
3/2,50
1 1,64
Conv 2 3/1,50 7/1,6
3/1,50 7/1,64
2 4,64
Conv 3 3/2,50 7/4,6
3/2,50 7/4,64
Conv 4 3/1,50 3/1,64
3/1,50| | |3/1,64
3
Cony 5 /2,501 | [3/1,64
3/2,50 3/1,64
1 4,64
Conv 6 3/1,50 3/4,6
3/1,50 3/4,64
2 1,64
Conv 7 3/2,501 113/1,6
3/2,50 3/1,64
Conv 8.9 3/1,50 3/1,64
3/1,50| | |3/1,64
Linear 1 | Output: 100 x 1
Linear 2 | Output: Speed and locus

1 and 0, respectively for effective learning. We used ReLU [10] for the activation
functions in each layer of the two networks, except for the output layers.

We selected speed and locus as the outputs because these two properties have
the next strongest effect on the signal shape of the strain response, after the axle
loads. We can expect the two networks to generate the same feature vector as a
common factor, through learning the two prediction tasks and sharing the same
output layer. The loss function for CamNet is defined in Eq. (2):

N _ 2 2
ﬁMSEl(f,h):]i[{Z[hs(f(\ﬂ;anlr +Z [(f Var l]}’ (2)

n=1

where x,, is the n-th video sample. f and h denote the feature extraction through
CamNet and the Linear 2 layer, respectively. s and [ are ground truth annotations
for the speed and locus prediction tasks. The Linear 2 layer is shared by the two
models, enabling the outputs of the Linear 1 layer to be treated as feature vectors
in a common feature space. Both networks learn the correlation between the two
sources by drawing their feature vectors together. The attracting mechanism can
be described as the anomaly loss Lysps defined in Eq. (3).

9(yn)
lg(ya)ll2

Lyises(f, 9) (3)

)
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where A is a weight of Lysgs and is set as 10. g denotes the feature extraction
through SigNet and y,, is the n-th strain sample. Consequently, the optimization
problem for the combined network, named SpiNet, can be described in terms of
multitasking [11], as given in Eq. (4).

Lrvse(f, g, h) = Lyvser (f, h) + Lyvse2(g, b) + Lyvses(f, 9)- (4)

Equation (4) minimizes five individual losses, namely speed and locus prediction
from the video data, speed and locus prediction from the strain data, and the
L? norm between the feature vectors in CamNet and SigNet. Because these
two networks share the output layer, Eq. (3) plays the role of matching the
correlative elements from the two feature spaces. As a result, the video and
strain feature spaces will coalesce after a long training period, as two cannibal
black holes forming a spiral trajectory. The video and strain data may differ
from each other, even though they cover the same target vehicle. This can be
identified by monitoring the L? norm of the subtraction between f(x) and g(y).
We, therefore, define Lysgs as an anomaly score, setting A as 1. The outliers of
the distribution will be identified as anomalous vehicles.

The anomalous vehicle detection based on spiral learning depends on features
extracted from the surveillance video recordings. The video can be disturbed by
environmental conditions such as weather, traffic jams, pedestrians, and vehicles
in the opposite lane. Such disturbances may cause mistaken anomaly detections.
The adversarial spiral learning can reduce these errors, particularly those caused
by bad weather. It may enable video features to correlate less with the weather
conditions, including heavy rain, snowstorms, deep snow, and morning haze.

We, therefore, combined the adversarial learning concept [12] with our spiral
learning proposal for this purpose. Adversarial learning has been introduced for
image generation, utilizing a discriminator and a generator implemented by two
separate neural networks. The discriminator finds fake images from a given image
set that includes real and generated images. The generator creates images that
are exactly like the real ones, which the discriminator may then misjudge as real
images. The training mechanism can be described as a discriminator aiming to
minimize the discrimination error whereas the generator aims to maximize it.

One of the simplest methods to achieve weather resistance is to use a weather
discriminator. The discriminator tries to find videos recorded under bad weather
conditions by examining video features carefully and in detail. To implement this
function, we need to append weather tags to the traffic dataset. The loss function
for SpiNet can be described as in Eq. (5), using the mean cross entropy Lyick:

Espin(f, g, h) - LTMSE(f? 9, h) - ‘CMCE (pa Q)7 (5)

where p and ¢ denote the discriminator and the weather tag, respectively. After
a long training period, the discriminator can no longer find faults in the obtained
video features.

Initially, we tried to tag each vehicle by consulting the historical climate data
archived by the government, but we encountered a major difficulty. The weather
conditions at the bridge did not always correspond with the historical data.
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This was because weather conditions were recorded at the nearest observation
station, a few kilometers away from the target bridge. We then tried to tag
the vehicles manually by watching the video, but encountered another difficulty.
Because of the complicated weather situations, it was hard to formulate a robust
policy for weather annotation. For example, should there be a cloudy tag in
addition to a sunny tag, and is there a boundary between cloudy and light-rain
conditions, or between snowfall and snow accumulation? Sometimes, the video
lost focus owing to morning haze, twilight, or a fogged lens. Additionally, not
only precipitation but also the intensity of solar radiation, which also has a
strong impact on the video quality, should be noted.

We, therefore, abandoned the weather-annotation plan and developed a fully
unsupervised approach. Here, the issue was that a vehicle might be mistakenly
judged anomalous because of bad weather, even though the strain response was
normal. This was a situation where an anomalous strain response could be found
without consulting the strain feature, but by consulting the video feature alone
instead. This might be a problematic situation, considering the main purpose of
the strain characteristics analysis. We therefore defined the ground truth tag for
the discriminator as given in Eq. (6):

q(z,y, f,9) =H{|f(x) — g5 — LNERs(f,9)} (6)

where H is the step function and £#8, is the anomaly loss (3) for the training
dataset. The initial value of L0, for the first epoch was 0.1. The adversarial
network, named TwiNet, was defined as a perceptron whose hidden layer has 10
dimensions.

4 Training and Evaluation Data

We conducted our experiments on a 300-m-long prestressed concrete bridge in
Japan. The bridge had four spans and two lanes as shown in Fig.1, and has
suffered damage caused by snowy weather. We have deployed a highly sensitive
strainmeter and a surveillance camera on the bridge. The strain sensor observed
the horizontal strain of its deck slab, sampled at 200 Hz.

To make a traffic dataset for the experiments in Sect. 5, we improved the
traffic-surveillance system (TSS) [13]. After a vehicle enters the bridge, a camera
installed at the entrance captures the vehicle. TSS detects the bounding box for
the vehicle image, by using Faster R-CNN [14]. T'SS outputs data about vehicles
one by one, including properties such as lane, speed and locus. The mechanism
for estimating vehicle speeds and loci was as follows. First, the TSS identifies all
possible pairs of two axles between two consecutive video frames. Next, the T'SS
calculates the amount of movement for all pairs. Finally, the TSS estimates the
traveling speed from the median of the movement amounts, and the locus from
the average bottom position of the frontmost axles. It should be noted that the
coordinates are transformed so that the distance in pixels is proportional to the
distance in meters.
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Fig. 2. Time evolution of training and validation losses.

By using T'SS, we prepared a ground truth dataset named DS601 from videos
recorded daily from 08:00 to 16:00 between November 2016 and April 2017. The
dataset contained information about 1,014,083 vehicles. We prepared the trainval
and evaluation datasets by randomly dividing DS601 in half. 80% of the trainval
vehicles were assigned as training data, with the remaining 20% being validation
data. Each time the validation loss £Y3id . reached a new minimum, the model
was saved. Finally, the evaluation processes were performed, in the same fashion
as the early stopping approach [15].

Each vehicle record was described as a tuple (2, y,t). The video input x was
a sequence of length 50, and the strain input y was a sequence of length 800. ¢
is the ground truth of the vehicle speed and locus. These datasets used only the
left-to-right (LtoR) subset of vehicles. Vehicles with fewer than three axles were
ignored because bridge experts are interested mainly in large vehicles. Vehicles
crossing the target bridge using the opposite lane were ignored, to stabilize the
training process. We also ignored video data from January 6th to 15th because
the sensor data during this period was lost because of a fault in the observation
environment. In the end, the trainval and evaluation datasets contained 17,757
and 17,967 vehicles, respectively.

5 Experimental Results

We implemented the proposed models on Chainer! 4.0, and accelerated them
by using CUDA? 8.0. We used the AMSGrad [16] optimizer. The batch size was
10. Figure2 shows the time evolution of the losses over 200 epochs. Figure3
shows the logarithmic histograms of the anomaly score. As we anticipated, a
small number of responses were identified as anomalous. In this paper, we do
not consider the proper thresholds for anomaly detection, but simply investigate
the anomalous responses in detail and classify them into three classes as follows.

! https://chainer.org.
2 https://developer.nvidia.com/cuda.
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Fig. 3. Histograms for anomaly scores under bad and good weather conditions.

. Some extremely slow vehicles may be misidentified as anomalies, in particular

under snowstorm conditions. In such a situation, a vehicle takes an excessive
amount of time to arrive at the sensor installation position, exceeding the
four seconds allowed. SigNet will, therefore, fail to capture the strain peak
caused by the vehicle. We also found cases where SigNet identified false peaks
caused by other vehicles appearing just before the target vehicle arrived at the
bridge entrance. To deal with such extremely slow vehicles, the input length
of SigNet should be extended to enable capture of the peaks for all targets.
It should be also noted that a vehicle caught in a traffic jam might not be
able to drive at a steady speed, which may also affect the strain response.

. In some vehicles, cargo may be moving about, with the resulting mechanical

shock being captured by the strain sensor. This may cause ripples in the strain
peak, causing the signal to resemble that of a vehicle with additional wheels.
Such a situation may be observed in particular with light-loaded vehicles, but
was hardly detectable from an image with a resolution of 224 x 224. Because
the road surface was flat, a heavily loaded cargo bed was unlikely to vibrate.
Some vehicles may be misidentified as anomalous due to errors in the traffic
dataset. We found that some cars and motorbikes with two axles were included
in the large-vehicle dataset, and were then classified as anomalies. Some cars
would have more than two axles if they were towing trailers or other vehicles.
Such vehicles may be identified as anomalous in this class, not because their
appearance was rare, but because of their small impact on the strain response.

Discussion

The anomalous response detection based on spiral learning depends on features
extracted from the traffic-surveillance video. Video features can be disturbed by
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environmental conditions, including weather, traffic jams, pedestrians, and other
vehicles in the opposite lane. For the target bridge, pedestrians were rare, and
we did not observe cases where a vehicle was mistakenly detected as anomalous
because of pedestrians. Vehicles in the other lane were also not a problem because
the large traffic volume provided SpiNet with sufficient opportunities for learning
such situations. Traffic jams may be caused by construction work, snowstorms,
or traffic signals. For example, the far-side lane was closed on November 9, 2016
due to construction work. Under such conditions, the bridge behaved abnormally
because many vehicles were required to reverse over the bridge. We need not be
concerned with such one-off events. However, traffic signals can be a big problem
in general. This problem will not be addressed in this paper, because there were
no signals near our target bridge.

Figure 3(a) compares the distributions of Lygsgs for two cases, with heavy
snow or haze for several hours and when conditions were fair. We examined
cases that clearly seemed to involve snowy or hazy conditions, paying attention
to the image sharpness. The two graphs show the robustness of the adversarial—
spiral method to changing weather conditions. However, it is not clear whether
this approach is necessary to achieve weatherproof results. The DS601 database
involves both sunny and snowy days, and SpiNet might be able to obtain weath-
erproof results without the adversarial method. Actually, Fig.3(b) shows such
results. On the other hand, Fig. 2 shows that TwiNet failed in learning an iden-
tification function that was generalized sufficiently to detect anomalous vehicles
in both the training and validation datasets. This means that SpiNet might
resist TwiNet to obtain a feature space from which it is difficult to distinguish
anomalous vehicles. The issue of whether adversarial learning is beneficial will
be investigated in future work. Another doubt about our results was the fact
that some anomalies could be detected without consulting the video data. We
are confident that the video feature is necessary as an explanatory variable for
strain analysis. However, there might be some anomalies whose strain response
appears strange at first glance, e.g., a strain response completely buried in white
noise. Failures in sensors may also cause such situations. We need to investigate
in detail what type of anomaly requires the spiral learning approach. This will
be revealed in future experimental work by examining those cases where SigNet
guessed anomalies detected by the spiral learning approach.

7 Conclusion

We have proposed a novel anomaly detection technique for bridge deterioration
analysis. The spiral learning enables a direct comparison of vehicle appearance
and bridge strain responses in a common feature space. The video feature may
play the role of an explanatory variable in the response. The adversarial spiral
learning proposal prevented our anomaly detector from being affected by adverse
weather. We tested our proposals on real observation data and identified outliers
of several identifiable types. In future experimental work, we will investigate the
limits on the anomaly types detectable by our method. We believe our proposals
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will aid bridge damage detection by identifying anomalous strain responses whose
characteristics are different from those observed during the construction period.
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