
FedS: Towards Traversing Federated
RDF Graphs

Qaiser Mehmood(B), Alokkumar Jha, Dietrich Rebholz-Schuhmann,
and Ratnesh Sahay

Insight Centre for Data Analytics, National University of Ireland, Galway, Ireland
{qaiser.mehmood,alok.kumar,rebholz,ratnesh.sahay}@insight-centre.org

Abstract. Traversing paths within a graph is a well-studied problem
and highly intractable especially with large-scale graphs. In case of mul-
tiple graphs, the standard practice is to merge distinct graphs in a cen-
tralised way to evaluate the existence of paths between given entities (or
nodes). In the biomedical domain counting and retrieving the number of
paths (or edges) that connect two biological entities is a highly desirable
feature expected from graph databases. Therefore, non-standard solu-
tions exist that count and retrieve paths from a single graph database.
From the standard perspective, SPARQL 1.1 provides the navigational
feature called Property Paths (PP) which is limited only to a single RDF
graph where path existence can be evaluated between pair of nodes.
In this paper, we propose a federated approach – called FedS – that
retrieves paths from multiple RDF triple stores. Our key idea is to par-
tially delegate computational load to a set of federated RDF triple stores
in a peer-to-peer manner thus reducing the computational burden on a
centralised query processing server. In our preliminary investigation, we
evaluate FedS against the state-of-the-art approaches that provide the
path counting feature over single RDF graph. We compare FedS against
these approaches in terms of performance (overall path retrieval time)
and result completeness, i.e., number of paths retrieved.

1 Introduction

It is very common in the biomedical domain that two biological entities (gene,
protein, pathway, drug, etc.) are associated via several properties and therefore,
discovery of such connecting properties (or paths) between two given biologi-
cal entities is often a fundamental requirement behind novel biological innova-
tions [5,12]. The recent expansion of “Web of Data”, particularly the life sciences
portion of the Link Open Data (LOD) Cloud1, has thrown entirely new dimen-
sions of challenges for the graph-based knowledge and data integration com-
munities. The life-sciences community has been very active within the Linked
Open Data (LOD) movement: 41 datasets on the LOD cloud are classified as
specialising in the “Life Sciences” domain and 70 SPARQL endpoints have been

1 http://lod-cloud.net/.

c© Springer Nature Switzerland AG 2018
C. Ordonez and L. Bellatreche (Eds.): DaWaK 2018, LNCS 11031, pp. 34–45, 2018.
https://doi.org/10.1007/978-3-319-98539-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98539-8_3&domain=pdf
http://lod-cloud.net/

FedS: Towards Traversing Federated RDF Graphs 35

made available by these publishers, most prominently by the Bio2RDF2 [1,2]
and Linked Life Data3 initiatives. Other general-knowledge datasets, such as
DBpedia and corresponding triple stores, also contain rich information about
the life sciences. Although, the underlying SPARQL endpoints behind the LOD
Cloud has created a mashup of linked data connected through various link-
ing properties (e.g., xRef, owl:sameAs, x-relation) [9]. Unfortunately, there is
no mechanism available – at the time of writing this article – that can traverse
across multiple RDF triple stores in a federated manner to retrieve properties (or
paths) that connect two given nodes. Manually identifying which of the LOD
datasets contain the connecting properties is impractical, cumbersome, and a
time-consuming process. For instance, in the current scenario, a SPARQL 1.1
property path query (shown in the Listing 1.1)

Listing 1.1. Property Path query in SPARQL1.1

Prefix : <urn:exe:>
SELECT ?s ?p ?o
{ :cnv (:|!:)* ?s. ?s ?p ?o. ?o (:|!:)* :gene }
Group By ?s ?p ?o

would return all the genes which :cnv (copy number variation) connects to via
any property in a single RDF graph. Although the SPARQL 1.1 version supports
federation (via the SERVICE operator) and property path features, it is surpris-
ing that existing approaches and open source triple stores like Virtuoso and Jena
does not provide any solution to federate path queries over distributed graphs.
Similarly, there is numerous research already carried out in traversing and/or
finding shortest paths in a graph [6,13]. In the context of Linked Data, the
European Semantic Web Conference (ESWC) in 2016 hosted a challenge [15] to
find “Top-K Shortest Path in Large Typed RDF Graphs” where the main focus
of all the competing participants has been on the extending or optimising the
state-of-the-arts graph traversal algorithm over single RDF graph; none were
aimed to navigate across federated graphs. Therefore, to find the path between
source and target, the centralised approaches adopted by current systems pose
some challenges such as; (i) user must know the priori knowledge of underlying
schema of data to query on, (ii) requires to merge whole data into a single graph,
which is a cumbersome task, (iii) copied data needs to be synchronized, and (iv)
it lacks the opportunity to query the up-to-date and fresh data. while on the
other-side federation provides the opportunity to tackle these challenges. Hence,
to address these challenges we propose FedS that takes as input source (subject),
target (object) nodes, and a list of triple stores to federate upon; and returns a
list of paths that connect the source and target nodes across the federated triple
stores.

In our previous work [17], we proposed an extension of SPARQL which allows
finding the top-k shortest paths on a single compressed RDF graph – in the

2 http://bio2rdf.org/.
3 http://linkedlifedata.com/.

http://bio2rdf.org/
http://linkedlifedata.com/

36 Q. Mehmood et al.

HDT [3] format – using the property path expression. In this paper, we propose
FedS that federates across multiple triple stores by (i) selecting prospective triple
stores where source and target nodes are available; (ii) retrieving paths from
different triple stores; and finally (iii) merging all the retrieved paths that connect
source and target nodes hosted in different triple stores. We start the paper by
presenting a motivation scenario that aims to retrieve paths between source
and target nodes hosted in different triple stores. We then discuss the related
works of traversing and retrieving paths in graph databases. We then present the
FedS architecture and description of its four core components. We provide an
evaluation of FedS compared to the state-of-art approaches. Finally, we present
our conclusion and various routes to optimise the navigation across federated
RDF graphs.

2 Motivation Scenario - Cancer Genomics

In order to understand the cancer progression, it is often the case that several
genetic features, diseases, medical history, etc. are studied together, therefore,
one of the key challenge in cancer genomics – a cornerstone of precision medicine
– is to discover gene-disease-drug associations. Such novel associations provide
insight into the drug development process tailored specifically for an individual
patient (or a group of patients) targeting prevention, diagnosis and treatment of
the diseases [18].

For instance, consider a scenario where a biomedical expert is trying to dis-
cover the paths between a drug (drugbank : DB00222) and a drug compound
(kegg : C07669). The Fig. 1 shows a group of datasets (DrugBank, KEGG,
Hgnc, OMIM, and Pharmgkb) hosted at five different SPARQL endpoints. The
source drug (drugbank : DB00222) is located in the SPARQL endpoint for
DrugBank, whereas the target drug compound (kegg : C07669) exists in the
SPARQL endpoints 1 (DrugBank), 2 (KEGG), and 5 (Pharmgkb). The source
(drugbank : DB00222) – Glimepiride – is an antidiabetic drug whereas the tar-
get (kegg : C07669) represents a drug compound associated with Glimepiride.

If the biomedical expert needs to establish associations between the drug and
its compound, he/she can find the direct correlation by querying the SPARQL
endpoint for DrugBank. However, for further analysis to understand the mecha-
nism of a drug compound and affected biological pathways, the expert needs to
explore and discover associations in various others biomedical datasets. Figure 1
shows three paths starting from the drugbank : DB00222 (SPARQL endpoint
1) where the target (kegg : C07669) is available in (i) the DrugBank end-
point itself via the :x-kegg property; (ii) the Kegg endpoint via the :x-kegg and
:sameAs properties; and (iii) the Pharmgkb endpoint via the :x-pharmgkb and
:x-kegg properties. The fourth path at the HGNC endpoint contains a node
(hgnc : 2623) via the :enzyme and :x-hgnc properties, however, the target node
(kegg : C07669) doesn’t exist in this endpoint.

We believe that a technology that can enable querying paths/associations
among two or more biological entities across distributed repositories would be a

FedS: Towards Traversing Federated RDF Graphs 37

Fig. 1. Navigation Across Federated SPARQL endpoints

great help to biologist and practitioners working in the cancer genomics as well
as in the larger healthcare and life sciences area.

3 Preliminaries

Consider a network of distributed datasets where each dataset loaded with
G = (V, P) directed graph. V is the set of vertices and P is the set of paths
(edges). The vertices (vi, vj) are associated through a set of paths (edges) pij. If
there exists a path between (vi, vj) then vj is the successor of vi and vi is the
predecessor of vj . For RDF graph, we define as follows:

Definition 1 (RDF Triple & Graph). The set of RDF terminologies consists
of the set of IRIs I, the set of blank-nodes B and the set of literals L. An RDF
Triple T := (s; p; o) is an element of the set G := (I ∪ B) × I × (I ∪ L ∪ B).
The set G is a finite set of triples called RDF graph. A RDF graph Gi of a single
triple Ti represents a vertex (subject) si associated with another vertex (object)
oi via a path (property) pi.

In a federated environment, if a path between source and target vertices
does not exist within a local single graph, other remote graphs are scanned and
queried to find the path existence between given vertices over the network.

Definition 2 (FedS Source Selection). In a federated query environment,
given a triple pattern T with subject si and object oi vertices in a bgp in a query
Q executed against data sources D, the set of relevant sources for T in D is
the set Rt ⊆ D of data sources that can provide answers when queried with T .

38 Q. Mehmood et al.

We use the notation RT to denote the set of revelent data sources for source
(subject) and target (object) nodes and use R when the context does not require
specifying the triple patterns.

FedS performs a source selection process where a set of relevant data sources
for a given query are discovered by scanning all the given data sets D and input
triple pattern T .

Definition 3 (FedS Reachability). In case of a labeled directed RDF graph
G, the reachability relation is the transitive closure of RDF properties p(s,o) such
that for the set of all ordered paired of subjects (s) and objects (o) there exists
a sequence of subjects and objects s = vo, vi,, k = o where the property
p(vi−i, vi) is in p(s,o) for all 1 ≤ i ≤ k.

For a given query to find the path between (s,o), if these two are connected
through any number of paths pi,, n we say that path exists and source(s)
and target(o) are reachable. While if there is no path between (s,o) it means
that (s,o) is not reachable.

4 Related Work

Numerous amount of work has been done on the graph navigation and pathfind-
ing problems [13] and variety of algorithms have been proposed to compute
the shortest path within the given networks. Similarly, there is an extensive
set of works [4,6,7,14] related to the performance of pathfinding algorithms in
very large graphs. They employ different techniques to get the optimised per-
formance, for instance, in case of [4,7], the algorithms only work on compressed
datasets stored in customised databases (e.g., HDT, RDF-3X), while others have
worked on the graph partitioning problem. Our previous work [17] along with
others [8,10,11,16] proposed extensions for SPARQL 1.1 property paths, but
none of them consider multiple triple stores during the graph navigation pro-
cess. Therefore, we have no work to compare that does graph traversal over
federated triple stores. Thus the motivation for our research is to investigate,
how to enable path evaluation over federated triple stores. To the best of our
knowledge, FedS is the first attempt to retrieve (evaluate) paths across the graphs
hosted in federated triple stores.

5 FedS

FedS approach works as peer-to-peer network of triple stores where every triple
store has FedS running on it. FedS extends previous work [17] to federate path
traversal across the network. The FedS architecture is summarised in Fig. 2,
which shows its four core components: (i) Source Selection: performs source selec-
tion based on the availability of a source node within triple stores; (ii) Path Com-
putation: once a subset of triple stores are identified that host the source node,

FedS: Towards Traversing Federated RDF Graphs 39

path traversal starts from one of the selected triple srtores; (iii) Path Federation:
when the path traversal starts at host triple store, the FedS probes other RDF
stores – during the iteration – wherever the target node is available; and finally
(iv) Path Merger: it aggregates all the path retrieved from different triple stores
and prepare a list of paths between the source and target nodes.

Fig. 2. FedS architecture

Source Selection: FedS performs a partially index free source selection of rel-
evant triple stores (see Definition 2), where only the address IRIs are stored.
The source selection is performed by using the SPARQL ASK query that returns
the availability of a source and target in different triple stores. For example,
given the list of five RDF stores (DrugBank, HGNC, PharmGKB, OMIM, and
KEGG) (see Fig. 1), the source selection process identifies three triple stores
(DrugBank, KEGG, Pharmgkb) where the source (drugbank : DB00222) and
target (keg : C07669) nodes exist. Then, one of the identified triple store – where
the source node is found – is randomly selected to initialize the path traversal
process.

Path Computation: The traversal starts from the identified triple store that
contains the source node and navigates along all the paths (successors) and check
the reachability between source and target nodes (see Definition 3). If the target
node is found in the hosted triple store, it feeds (reports) the retrieved path to
the “Path Merger” component. However, if path from source to target node is
not reachable – within the hosted triple store – we defined it as a partial path.
The partial paths are created from the source to all its successors up to the leaf
(last) nodes in the current triple store. For instance, two simple partial paths;

40 Q. Mehmood et al.

kegg:D00593 and pharmgkb: PA449761 are one hop away from source DB00222,
therefore are the leaf nodes. However, there always be complex partial paths
where many nodes exist from root to last node (source) to its last node. Feds
considers all the nodes of partial paths to check their availability in other datasets
and how this happens is explained in “Path Federation” component. Further,
there may also exist indirect paths between source and target. For instance,
in Fig. 1 enspoint 1 is linked with endpoint 3 through DB00222→ :anzyme →
BE0002793 → x:hgnc → hgnc:2623. Endpoint 3 does not contain the target node
C07669, however, hgnc:2623 is connected to endpoint 2 where actual target node
C07669 does exist. To compute the indirect paths, FedS performs the following
steps; (i) partial path is created DB00222 → :anzyme → BE0002793 → x:hgnc
→ hgnc:2623, (ii) hgnc:2623 is not target node therefore FedS ASK this node and
finds that endpoints 2 has hgnc:2623. From endpoint 2 partial path – hgnc:2623
→ :xhgnc → D00593 → :sameAs → C07669 – is returned and is reported to the
component “Path Merger”.

Path Federation: This component iterates over the list of partial paths where
each element (node) involved in partial path along with actual target node
is checked (using the SPARQL ASK construct) for their availability in the
already identified triple stores. Upon receiving the federated request, the traver-
sal process starts in all those triple stores which contain the corresponding
nodes and returns the retrieved paths towards the endpoint from where the
request was dispatched. For example, the two dashed lines between DrugBank-
Kegg and DrugBank-Pharmgkb endpoints shows the availability of nodes
(kegg : D00593 and pharmgkb : PA449761) in these two endpoints.

Path Merger: This component stores and merge all the partial paths and the
paths retrieved from different SPARQL endpoints. When the paths are received
from different SPARQL endpoints, this component concatenates each retrieved
path to the corresponding node in the partial list such that a complete path is
completed (i.e., partial from local and partial from remote enapoint) paths from
source to target nodes. For example, two direct complete paths are: (i) DB00222
→ :x-pharmgkb → PA449761 → :x-kegg → C07669; and (ii) DB00222 →
:x-kegg → D00593 → :sameAs → C07669]). There also exists an indirect path
which is; [DB00222 → :anzyme → BE0002793 → x:hgnc → hgnc:2623 →
x:hgnc → D00593 → :sameAs → C07669]

The main objective of FedS is to retrieve paths over the federated network of
triple stores and the major advantages are: (i) FedS doesn’t need priori knowl-
edge of underlying schema of RDF graphs hosted in different SPARQL endpoints;
(ii) In order to traverse the paths, FedS does not require to merge the federated
RDF graphs into a single graph; and (iii) finally, FedS is still be able to compete
with state-of-the-art approaches.

FedS: Towards Traversing Federated RDF Graphs 41

6 Results and Discussion

The experimental setup comprises of datasets (i.e., SPARQL endpoints) and six
input queries. we compared Feds against three systems (Virtuoso, Blazegraph,
and HDT-Bidirectional-TopK).

Datasets: We have downloaded the release-4 of Bio2RDF datasets4. The data
cumulatively is around 3.89 GB – DrugBank (size 1.18 GB), KEGG (size
471.9 MB), PharmaGKB (size 29.2 MB), OMIM (size 1.61 GB), and HGNC
(size 592 MB) – with 22,36,32,57 triples, 2,343,770 subjects, 334 predicates and
81,599,44 objects. Table 1 shows the number of triples, subjects, predicates, and
objects in each dataset and the hardware specs of five desktop machines used to
conduct the experiments are shown in Table 2.

Table 1. Datasets statistics

Dataset Size Triples Subject Predicates Objects

Drugbank 1.18GB 5151714 421348 104 2472011

Kegg 479.1MB 3281579 358844 63 1835508

Pharmgkb 29.2MB 191379 19905 32 123336

Omim 1.61GB 9687186 1127394 93 1415364

HGNC 592MB 4051399 416279 42 2313725

Table 2. Specifications of virtual machines used in experiments

OS Data loaded RAM Hard disk Processor

MAC Omim 16GB 500GB 2.6GHz Intel Core i5

Ubuntu Drugbank 32GB 500GB 2.9GHz Intel Core i7

Windows Kegg 8GB 250GB 2.2GHz Intel Core i7

Ubuntu Hgnc 8GB 300GB 2.5GHz Intel Core i5

Windows Pharmgkb 16GB 250GB 2.2GHz Intel Core i5

Queries: The Table 3 shows six evaluation queries. The column two in Table 3,
shows the number of datasets (SPARQL endpoints) selected for each query. For
example, in the case of Q1 DrugBank and Pharmgkb are needed to retrieve
the complete paths. Similarly, Q5 needed 3 SPARQL endpoints (DrugBank,
Kegg, and Pharmgkb) to retrieve all three paths. The “Hops” column denote
the number of properties (named edges) between source and target nodes.

Performance Analysis: In order to compare against the triple stores (Vir-
tuoso, Blazegraph, and HDT-BidirectionalTopK) which support the SPARQL

4 http://download.openbiocloud.org/release/4/.

http://download.openbiocloud.org/release/4/

42 Q. Mehmood et al.

Table 3. Six Input Queries and Results

Query Dataset selected Source Target Paths Hops

Q1 Drugbank — Pharmgkb drugbank:DB00072 clinicaltrials:NCT01959490 1 2

Q2 Drugbank—HGNC drugbank:DB01268 hgnc.symbol:FLT3 1 3

Q3 Drugbank drugbank:DB00134 kegg:D04983 1 2

Drugbank—Kegg drugbank:DB00134 kegg:D04983 1 1

Q4 Drugbank drugbank:BE0002362 hgnc.symbol:CYP3A5 1 1

Q5 Drugbank drugbank:DB00222 kegg:C07669 1 1

Drugbank—Kegg drugbank:DB00222 kegg:C07669 1 2

Drugbank—Pharmgkb drugbank:DB00222 kegg:C07669 1 2

Drugbank—HGNC—Kegg drugbank:DB00222 kegg:C07669 1 4

Q6 Drugbank omim:147470 hgnc.symbol:IGF2 3 3x1

1.1 Property Path specification. We performed following steps: (i) merged all
the data within five SPARQL endpoints into a single graph and loaded it into
each triple store (i.e., Virtuoso, Blazegraph, HDT-BidirectionalTopK); and (ii)
executed SPARQL 1.1 property path query without specifying any predicate in
path expression (e.g., (: |! :)∗) on each triple store. As shown in the Fig. 3, HDT-
Bidirectional-TopK outperforms all other systems simply because it works only
on HDT-based compressed RDF data rather than raw RDF data.

Fig. 3. Comparing total query execution time

FedS: Towards Traversing Federated RDF Graphs 43

FedS, Virtuoso, and Blazegraphs work only on raw RDF data and therefore
results are comparable. The key point to be noted here is: FedS has to cope with
additional messaging over the network (e.g. network cost due to SPARQL ASK
queries, machines with different specs, source selection, federation request, etc.).
We also noticed that Virtuoso and Blazegraph were not able to return the results
for Q6. In case of Virtuoso, all queries were showing time-out if the queries were
executed without specifying the named graphs5.

Path Analysis: Table 4 shows the comparison of total number of paths retrieved
and their corresponding path length (i.e., Hops). In terms of result completeness –
as triple stores are designed to retrieve complete sets of path in a single graph –
for all the six queries, FedS retrieved the equal number of paths in a federated
environment.

Table 4. Comparison of the Total Paths #TP and Path Hops #PH

FedS HDT-BiDirectionalTopK Virtuoso Blazegraph

Query #TP #PH #TP #PH #TP #PH #TP #PH

Q1 1 2 1 2 1 2 1 2

Q2 1 3 1 3 1 3 1 3

Q3 1 2 2 1 2 1 2

1 1 1 1 1 1 1 1

Q4 1 2 1 2 1 2 1 2

Q5 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 1 1 1 1 1 1 1

1 4 1 4 1 4 1 4

Q6 3 3x1 3 3x1 - - - -

7 Conclusion and Future Work

In this paper we propose FedS, a path traversal approach that federates across
multiple SPARQL endpoints. This work is motivated by the needs of biomedi-
cal domain to find associations (paths) across different biological entities. The
current SPARQL 1.1 Property Path specification and the standard traversal
algorithms (BFS, DFS, A*, etc.) assume (or require) a single graph – or many
graphs merged into a centralised graph – for graph traversal. FedS proposes a
four step process that enables graph traversal in a federated environment. Our
initial evaluation results are encouraging where FedS retrieves all the paths in a
competing query processing time when compared to state-of-the-art triple stores
approaches. In terms of future work, there are a number of possible routes to
5 https://www.w3.org/TR/rdf-sparql-query/#namedGraphs.

https://www.w3.org/TR/rdf-sparql-query/#namedGraphs

44 Q. Mehmood et al.

optimise the current four step process (i) we plan to implement a ranking mech-
anism in the source selection process to select the top-k SPARQL endpoints
to initialise the path navigation process; (ii) next obvious step is to devise a
method that ranks (top-k) the retrieved paths between source and target nodes;
(iii) we plan to include larger data sets with significant number of paths (i.e.,
10+) between source and target nodes; and finally, (iv) the current implemen-
tation navigates only in the forward direction, to further optimise, we plan to
implement navigation in both the directions.

Acknowledgements. The work presented in this research paper has been funded by
Science Foundation Ireland under Grant No. SFI/12/RC/2289.

References

1. Bio2RDF Release 3: A larger, more connected network of Linked Data for the Life
Sciences, vol. 1272. CEUR Workshop Proceedings, Riva del Garda, Italy. CEUR-
WS.org (2014)

2. Belleau, F., et al.: Bio2rdf: towards a mashup to build bioinformatics knowledge
systems. J. Biomed. Inf. 41(5), 706–716 (2008)

3. Fernández, J.D., Mart́ınez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.:
Binary RDF representation for publication and exchange (HDT). J. Web Sem. 19,
22–41 (2013)

4. Filtz, E., Savenkov, V., Umbrich, J.: On finding the k shortest paths in RDF data.
In: 5th International Workshop (IESD 2016) co-located with the (ISWC 2016), vol.
18 (2016)

5. Gao, J., et al.: Integrative analysis of complex cancer genomics and clinical profiles
using the cbioportal. Sci. Signal. 6(269), pl1 (2013)

6. Goldberg, A.V.: Point-to-point shortest path algorithms with preprocessing. In:
van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F.
(eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 88–102. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69507-3 6

7. Gubichev, A., et al.: Fast and accurate estimation of shortest paths in large graphs.
In: Proceedings of the 19th ACM CIKM. ACM (2010)

8. Gubichev, A., Neumann, T.: Path query processing on very large RDF graphs. In:
WebDB, Citeseer (2011)

9. Hu, W., Qiu, H., Dumontier, M.: Link analysis of life science linked data. In:
Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 446–462. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25010-6 29

10. Kochut, K.J., Janik, M.: SPARQLeR: extended SPARQL for semantic association
discovery. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol.
4519, pp. 145–159. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72667-8 12

11. Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: SPARQL with property
paths. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 3–18. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25007-6 1

12. Lacroix, Z., Murthy, H., Naumann, F., Raschid, L.: Links and paths through life
sciences data sources. In: Rahm, E. (ed.) DILS 2004. LNCS, vol. 2994, pp. 203–211.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24745-6 14

https://doi.org/10.1007/978-3-540-69507-3_6
https://doi.org/10.1007/978-3-319-25010-6_29
https://doi.org/10.1007/978-3-540-72667-8_12
https://doi.org/10.1007/978-3-540-72667-8_12
https://doi.org/10.1007/978-3-319-25007-6_1
https://doi.org/10.1007/978-3-540-24745-6_14

FedS: Towards Traversing Federated RDF Graphs 45

13. Madkour, A., Aref, W.G., Ur Rehman, F., Rahman, M.A., Basalamah, S.: A survey
of shortest-path algorithms. arXiv preprint arXiv:1705.02044 (2017)

14. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning
graphs to speedup dijkstra’s algorithm. J. Exp. Algorithmics (JEA) 11, 2–8 (2007)

15. Papadakis, I., Stefanidakis, M., Mylonas, P., Niggemeyer, B.E., Kazanas, S.: Top-
K shortest paths in large typed RDF datasets challenge. In: Sack, H., Dietze,
S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 191–199.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46565-4 15

16. Przyjaciel-Zablocki, M., Schätzle, A., Hornung, T., Lausen, G.: RDFPath: path
query processing on large RDF graphs with MapReduce. In: Garćıa-Castro, R.,
Fensel, D., Antoniou, G. (eds.) ESWC 2011. LNCS, vol. 7117, pp. 50–64. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-25953-1 5

17. Savenkov, V., Mehmood, Q., Umbrich, J., Polleres, A.: Counting to k, or how
sparql1.1 property paths can be extended to top-k path queries. In: SEMANTICS
2017 (2017)

18. Simon, R., Roychowdhury, S.: Implementing personalized cancer genomics in clin-
ical trials. Nat. Rev. Drug Dis. 12(5), 358–369 (2013)

http://arxiv.org/abs/1705.02044
https://doi.org/10.1007/978-3-319-46565-4_15
https://doi.org/10.1007/978-3-642-25953-1_5

	FedS: Towards Traversing Federated RDF Graphs
	1 Introduction
	2 Motivation Scenario - Cancer Genomics
	3 Preliminaries
	4 Related Work
	5 FedS
	6 Results and Discussion
	7 Conclusion and Future Work
	References

