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Abstract. Mobile phone service providers collect large volumes of data
all over the globe. Taking into account that significant information is
recorded in these datasets, there is a great potential for knowledge discov-
ery. Since the processing pipeline contains several important steps, like
data preparation, transformation, knowledge discovery, a holistic app-
roach is required in order to avoid costly ETL operations across different
heterogeneous systems. In this work, we present a design and implemen-
tation of knowledge discovery from CDR mobile phone data, using the
Apache Spark distributed engine. We focus on the community detec-
tion problem which is extremely challenging and it has many practical
applications. We have used Apache Spark with the Louvain community
detection algorithm using a cluster of machines, to study the scalability
and efficiency of the proposed methodology. The experimental evaluation
is based on real-world mobile phone data.

Keywords: Data mining · Big data analytics · Community detection

1 Introduction

Mobile phone service providers collect large amount of data to monitor user
interactions. Each time a user is using a mobile device (for sending an SMS or
performing a call), a Call Detail Record (CDR) is created in the database of
the service provider. Graphs have a central role in the analysis of mobile phone
data collected by service providers. Due to their mathematical formalism and
the variety of existing graph-based algorithmic techniques, they can be used
efficiently and effectively in social networks, to solve specific problems.
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Graph mining is a heavily active research direction with numerous appli-
cations [1]. One of the core research directions in the area is the discovery of
meaningful communities in a large network [11]. In the majority of real-life
applications, graphs are extremely sparse usually following power-law degree
distribution. However, the original graph may contain groups of vertices, called
communities, where vertices in the same community are more well-connected
than vertices across communities.

The efficiency of community detection algorithms is heavily dependent on the
size of the input graph, i.e., the number of vertices and/or the number of edges,
and also on its structural complexity. In addition to the main processing task that
must be performed, preprocessing is also a significant step that in many cases
is computationally intensive. To handle both preprocessing and main processing
efficiently, a potential solution is to use multiple resources and apply parallel
or distributed computing techniques, aiming at reducing the overall processing
time.

In this work, we focus on the analysis of real world CDR data, and more
specifically on scalable community detection. CDRs are in general large in vol-
ume, and therefore scalable algorithmic techniques are required. In particular,
we demonstrate the use of Apache Hadoop [26], Apache YARN [30], Apache
Spark [15], and Apache Hive [28] in the mining process as a proof of concept.

In our previous work [20], we had used a conventional DBMS and Python
to extract knowledge from raw telecom data. The experiments were very time
consuming and we could analyze only a subset of the data in due time. The results
that we obtained have motivated us to apply different processing techniques in
order to speed up the experimental evaluation and to be able to analyze the
complete dataset.

Our approach for analyzing the data is based on Apache Spark. The proposed
implementation considers the complete pipeline, from preprocessing the raw data
to knowledge discovery. All necessary tasks are executed within Spark and results
are stored in Hive. Based on our performance evaluation results, we show that by
applying graph sparsification through filtering, communities are discovered more
efficiently, since runtime depends heavily on the number of edges in the graph.
On the other hand, by comparing the communities generated with and without
filtering we observe that communities remain relatively stable in comparison to
the ground truth (unfiltered graph). The discovered communities reflect dynamic
social interactions that are along with other components of the city, transport
and land use, essential for the understanding of such a complex system [10,13].

The rest of the paper is organized as follows. In the next section we describe
briefly related work in the area. The proposed methodology is described in detail
in Sect. 3. Section 4 presents the implementation of our pipeline. Section 5 offers
performance evaluation results using real-world networks. Finally, Sect. 6 con-
cludes the work and presents briefly some interesting future research directions.



Community Detection in Who-calls-Whom Social Networks 21

2 Related Work

During the last few years, there is a tremendous growth of new applications
that are based on the analysis of mobile phone data [6]. Among them there are
many applications with significant societal impact such as, urban sensing and
planning [5,10], traffic engineering [2,14], predicting energy consumption [8], dis-
aster management [18,22,33], epidemiology [9,17,32], deriving socio-economical
indicators [21,27].

To enable development and run of applications and services on such data,
current efforts are directed toward providing access to these large scale human
behavioral data in a privacy-preserving manner. Recent initiative of Open Algo-
rithms (OPAL) has suggested approach of moving the algorithm to the data [16].
In this model, raw data are never exposed to outside parties, only vetted algo-
rithms run on telecom companies’ servers. This poses huge challenge on efficient
processing of data, especially when array of parties is interested in extracting
information and getting insights from data.

A significant graph mining task with important applications is the discovery
of meaningful communities [11]. In many cases, community detection is solved
by using graph clustering algorithms. However, a major limitation of graph clus-
tering algorithms is that they are computationally intensive, and therefore their
performance deteriorate rapidly, as we increase the size of the data.

An algorithm that has been used for community detection in large networks
is the Louvain algorithm, proposed in [7]. This algorithm has many practical
applications and it scales well with the size of the data. Moreover, it has been
used in several studies related to static or evolving community detection [3].

In this work, we combine the efficiency of the Louvain algorithm with the
power of the Apache Spark distributed engine, to demonstrate that we can sup-
port the full pipeline of community detection in a efficient manner.

3 Proposed Methodology

In this section, we describe our approach in detail, explaining the algorithms for
community detection and filtering as well as the evaluation methods used.

3.1 Graph Mining and Community Detection

Among the different existing graph mining problems, we center our focus on
community detection. The graph, in our case, corresponds to user interactions
aggregated to Radio Base Station (RBS) level. Therefore, communities corre-
spond to groups of RBSs with strong pair-wise activity within each group. To
enable efficient community detection in potentially massive amounts of data, we
need to attack the following problems: (i) the algorithmic techniques applied
must scale well with respect to the size of the data, which means that the algo-
rithmic complexity should stay below O(n2) (where n is the number of graph
nodes), and (ii) since we do not know the number of communities in advance,
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the algorithms used must be flexible enough to be able to infer the number of
communities during the course of the algorithm.

To meet the aforementioned requirements, we have chosen to apply a
modularity-based algorithm proposed in [7]. The concept of modularity [19] pre-
sented by Eq. (1), is used to estimate the quality of the partitions, where Aij

is the weight of the edge connecting the i-th and the j-th node of the graph,∑
j Aij is the sum of the weights of the edges attached to the i-th node, ci is the

community where the i-th node is assigned to, m = (1/2)
∑

i,j Aij , and δ(x, y)
is zero if nodes x and y are assigned to the same community and 1 otherwise.

Q =
1

2m

∑

i,j

[

Ai,j −
∑

j Aij · ∑
i Aji

2m

]

δ(ci, cj) (1)

Unfortunately, computing communities based on the maximization of the
modularity, is an NP-hard problem. To provide an efficient solution, the algo-
rithm proposed in [7] uses an iterative process that involves shrinking the graph,
every time modularity converges. In each phase, each node is assigned to a
neighboring community that maximizes the modularity of the graph. As long
as nodes are moving around communities and modularity grows, we keep on
executing this process. When there are no more changes, a shrinking process
is executed. Upon shrinking the graph, each community produced during the
previous phase is assigned to the same super node of the new graph. Then, the
same technique is applied to the new graph. The algorithm terminates when the
modularity detected in the new graph is less than the modularity detected in
the previous graph. The set of communities that maximize the modularity is
returned as an answer. The outline of the technique is depicted in Algorithm1.

The network we are studying is undirected and weighted, but elimination
of some edges by simple thresholding the weight values is not going to reveal
the core backbone of the network. Moreover, we needed a method for graph
filtering that will consider local properties of the nodes, such as weight over
all edges linked to specific node. To meet the aforementioned requirements we
have chosen to apply the disparity filter [25]. The disparity filter uses the null
model to define significant links, where the null hypothesis states that weighted
connections of the observed node are produced by a random assignment from
a uniform distribution. The disparity filter proceeds by identifying strong and
weak links for each node. The discrimination is done by calculating for each
edge the probability αij that its normalized weight pij is compatible with the null
hypothesis. All the links with αij < α reject the null hypothesis. The statistically
relevant edges will be those whose weights satisfy the Eq. (2).

αij = 1 − (n − 1)
∫ pij

0

(1 − x)n−2dx < α (2)

We note that smaller values of αij denote more significant edges. Therefore,
filtering is applied by keeping all edges where αij ≤ α and thus removing all edges
where αij > α. By changing the alpha threshold value we can filter out the links
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Algorithm 1. Louvain (G(V,E))

Input: the graph G
Result: the communities of G

1 n ← |V | /* number of graph nodes */
2 done ← false
3 while not done do
4 assign each u ∈ V to a different community
5 while there is a change do
6 for every node u ∈ V do
7 C ← a community that maximizes modularity /* C is a

neighboring community or u’s community */

8 if newModularity > oldModularity then
9 G ← shrink graph based on communities /* each community

becomes a super node in the new graph */

10 else
11 return communities

with small significance focusing on more relevant edges. The αij represent the
statistical probability, so it’s value is in range [0, 1]. The threshold alpha value is
set in regards to the significance level with which we want to apply the filtering.
In our experiments, we applied three different filtering levels with probability
95%, 99% and 99.9%, where corresponding α values are 0.05, 0.01 and 0.001
respectively.

3.2 Clustering Evaluation Methods

To evaluate the community detection, we will use classical cluster evaluation
methods, i.e. Purity, Entropy, Rand Index and Adjusted Rand Index.

The Purity (Definition 1) of a cluster measures the extent to which each
cluster contains elements from primarily one class [34].

Definition 1 (Purity). Given a set S of size n and a set of cluster C of size

k, then, for a cluster ci ∈ C of size ki, the purity is p(ci) = maxi(n
i
j)

ki
, where ni

j is
the number of elements of the j-th class assigned to the i-th cluster. The overall
purity is defined as P (C) =

∑k
i=1

ki

n · p(ci).

Entropy (Definition 2) is an evaluation method that assumes that all elements
of a set have the same probability of being picked and, by choosing an element at
random, the probability of this element to be in a cluster can be computed [31].

Definition 2 (Entropy). Given a set S of size n and a set of clusters C of
size k, then, by assuming that all elements in S have the same probability of
being picked, the probability of an element s ∈ S chosen at random to belong to
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cluster ci ∈ C of size ki is p(ci) = ki

n . Then, the overall entropy associated with
C is H(C) = −∑k

i=1 p(ci) · log2(p(ci)).

The Rand Index (RI) (Definition 3) is a measure used to determine the sim-
ilarity between two data clusterings [23].

Definition 3 (Rand Index). Given a set S = {s1, s2, ..., sn} of n elements
and two groupings X = {X1,X2, ...,Xr} and Y = {Y1, Y2, ..., Yt} then the Rand
Index is RI = a+b

(n
2)
, where a = |S′| with S′ = {(si, sj)|si, sj ∈ Xk, si, sj ∈ Yl}

and b = |S′′| with S′′ = {(si, sj)|si ∈ Xk1 , sj ∈ Xk2 , si ∈ Yl1 , sj ∈ Yl2} for some
1 ≤ i, j ≤ n, i �= j, 1 ≤ k, k1, k2 ≤ r, k1 �= k2, 1 ≤ l, l1, l2 ≤ t, l1 �= l2.

Adjusted Rand Index (ARI) (Definition 4) is a cluster evaluation method that
calculates the fraction of correctly classified (respectively misclassified) elements
to all elements by assuming a generalized hypergeometric distribution as null
hypothesis [31]. ARI is the normalized difference of the Rand Index and its
expected value under the null hypothesis [29]. ARI uses the contingency table.

Definition 4 (Adjusted Rand Index). Given a set S of n elements and two
groupings X = {X1,X2, ...,Xr} and Y = {Y1, Y2, ..., Ys}, the overlap between X
and Y , can be summarized in a contingency table [nij ], where nij = |Xi ∩ Yj |,
ai =

∑s
j=1 nij and bj =

∑r
i=1 nij. Using the contingency table, the Adjusted

Rand Index is defined in Eq. (3).

ARI =

∑
i,j

(
nij

2

) −
∑

i (ai
2 )·∑j (bj

2 )
(n
2)

1
2 (

∑
i

(
ai

2

)
+

∑
j

(
bj

2

)
) −

∑
i (ai

2 )·∑j (bj
2 )

(n
2)

(3)

4 Implementation Methodology

4.1 Dataset

Telecommunication interaction between mobile phone users is managed by Radio
Base Stations (RBS) that are assigned by the operator. Every RBS has a unique
id, a location and a coverage map that provides approximate user’s geographical
location. CDRs contain the time of the interaction and the RBS which han-
dled it. In available data collection CDRs are spatially aggregated on the grid
containing 10,000 cells and temporally aggregated on time slots of ten minutes.
Evidently, the final network is composed of 10,000 nodes. However, if we change
the granularity and the level of the detail as well as the geographical area that
we are interested in, the number of nodes can grow easily to millions.

Community detection is done using the Louvain algorithm. Filtering is used
to minimize the graph and keep only the important nodes without losing the
communities. In our case, the number of nodes is 10,000. The value of the param-
eter αij (Eq. (2)) defines the level of filtering. By changing the filtering level we
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obtain graphs with fewer edges. We are using these graphs to demonstrate the
performance of community detection as we grow the number of edges in the
input graph.

The dataset (C) provides real world information regarding the directional
interaction strength (DIS) based on call exchanged between different areas of
the city of Milan [4] and it’s publicly available online1. The DIS between two
areas (SID1 and SID2) is proportional to the number of calls issued from area
SID1 to area SID2. The temporal values, given as a timestamp, are aggregated
in time slots which represent the beginning of the interval. The dataset represents
a directed graph. For our experiments, two transformations are applied on the
original corpus: (i) the directed graph is transformed into an undirected graph,
i.e. the edges (SIDi, SIDj) and (SIDj , SIDi) are going to be represented as a
single edge (SIDi, SIDj) with the edge Costij = DISij + DISji for the same
timestamp, and (ii) the timestamp is aggregated to a calendar date (Date), i.e.
for an edge (SIDi, SIDj) for each Date the cost is Cost =

∑
DISij . Using

this information we compute for each edge the parameter αij using Eq. (2).
Moreover, an Edge Cost Factor (ECF) is used to normalize the values for the
edges’ Cost ∈ [9 ·10−13, 466] when applying Louvain. This information is stored
in a Hive database installed on top of Hadoop’s HDFS and MapReduce. Figure 1
presents the database diagram where the information about edges is stored in
the Edges (E) table, while the information about communities is stored in the
Louvain (L) table, where Level is the algorithm’s iterations.

Fig. 1. The Hive database schema.

4.2 System Architecture

Apache Spark is a unified distributed engine with a rich and powerful APIs for
different programming languages [15], i.e. Scala, Python, Java and R. One of its
main characteristics is that (in contrast to Hadoop MapReduce) it exploits main
memory as much as possible, being able to persist data across rounds to avoid
unnecessary I/O operations. Spark jobs are executed based on a master-slave
model in cooperation with the cluster manager YARN.
1 Dataset http://theodi.fbk.eu/openbigdata/.

http://theodi.fbk.eu/openbigdata/
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The proposed architecture is based on the Apache Spark engine using the
Scala programming language together with the Spark Dataframes, HiveContext
and GraphX libraries. The information is stored in an Apache Hive database
which is installed on top of HDFS. The cluster resource manager used is YARN.
Our methodology utilizes the following pipeline (Fig. 2):

1. CDRs are aggregated in such a way that each graph node corresponds to
a spatial area. This task has been performed by the mobile operator before
releasing the data.

2. The original directed graph is aggregated to obtain an undirected one, as the
orientation of edges is ignored in our case.

3. Filtering is applied in order to sparsify the network.
4. Community detection is applied using the Louvain algorithm.
5. Visualization is applied.

Fig. 2. Architecture

4.3 Queries

The Table of Edges. To create the edges (E), the DIS for attributes DATE,
SID1 and SID2, which represent a compound primary key that uniquely iden-
tify each record, is aggregated. The aggregation constructs an undirected graph
using the union between the records where SID1 ≤ SID2 and SID1 > SID2.
The resulting graph is stored in the Hive database. The following query,
expressed in relational algebra, is used to populate the Edges table:

E = ρCost
F0

(πDate,SID1,SID2,F0(γL0(πDate,SID1,SID2,DIS(σSID1≤SID2(C))
⊎

πDate,SID2,SID1,DIS(σSID1>SID2(C)))))

where C is the corpus and γL0 is the aggregation operator with L0 = (F0, G0),
F0 = sum(DIS) = Cost, the sum is the aggregation function that sums the
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DIS for all the pairs (Date, SID1, SID2) and G0 = (Date, SID1, SID2) is the
list of attributes in the GROUP BY clause.

Strong and Weak Ties. To determine the strong and weak ties for filtering, αij

from Eq. (2) is computed for each unique key (Date, SID1, SID2). Therefore,
the integral must be solved in order to use directly the information stored in the
database and to improve the time performance: α = 1−(k−1)·∫ pij

0
(1−x)k−2dx =

1−(1−pij)k−1, where pij = Costij∑
j,i�=j Costij

= Cost∑
c

= Alpha and k = N the number
of nodes.

To compute the sum of costs for each Date and SID1 (
∑

c), the following
query, given in relational algebra, is used:

R1 = ρΣc
F1

(πDate,SID1,F1(γL1(σSID1 �=SID2(E))))

where γL1 is the aggregation operator with L1 = (F1, G1), F1 = sum(Cost) =∑
c, the sum is the aggregation function that sums the Cost for all the pairs

(Date, SID1), and G1 = (Date, SID1) is the list of attributes in the GROUP
BY clause.

The following query is used to compute the number of distinct nodes for each
Date:

R2 = ρ N
F2

(πDate,SID1,F2(γL2(E)))

where γL2 is the aggregation operator with L2 = (F2, G2), F2 =
count(DISTINCT SID1)=N, the count is the aggregation function that counts
the distinct number of nodes for a Date and G2 = (Date) is the list of attributes
in the GROUP BY clause.

To compute αij , R1 must be joined with R2. The result is stored in the
database either as a separate table or by updating the Edges’s table column
Alpha. The query expressed in relational algebra is:

A = πDate,SID1,SID2,Cost,Alpha(σSID1 �=SID2(E) �	θ R1 �	E.Date=R2.Date R2)

The θ condition in the first join operator is defined as: E.Date = R1.Date ∧
E.SID1 = R1.SID1.

Community Detection. To apply the Louvain algorithm and detect com-
munities for a given date (pDate) and alpha threshold (pAlpha), the following
query is used to extract the information from the database:

LM = πSID1,SID2,Cost(σDate=pDate∧Alpha≤pAlpha(A))

The Louvain algorithm is implemented in the Spark engine using the Scala
programming language and the GraphX, Dataframes and HiveContext library.
Our implementation extends an existing implementation2 so that it works with
our architecture. In order to apply Louvain, a graph should be given in the
input, i.e., using the query LM . The result of the algorithm is stored in the Hive
database in table Louvain.
2 Louvain https://github.com/Sotera/spark-distributed-louvain-modularity.

https://github.com/Sotera/spark-distributed-louvain-modularity
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5 Performance Evaluation

The goal of the evaluation is to demonstrate the performance of community
detection with and without filtering, using Apache Spark. Two diverse systems
have been used: (i) a multi core server machine running CentOS with 16 Intel
Xeon E5-2623 CPUs with 4 cores at 2.60 GHz, 126 GB RAM and 1 TB HDD,
and (ii) a cluster with 6 nodes running Ubuntu 16.04× 64, each with 1 Intel
Core i7-4790S CPU with 8 cores at 3.20 GHz, 16 GB RAM and 500 GB HDD.
The Hadoop ecosystem is running on Ambari and has the following configuration
for the 6 nodes: 1 node acts as HDFS NameNode and SecondaryName Node,
YARN ResourceManager, and Hive Metastore and 5 nodes, each acting as HDFS
DataNodes, YARN NodeManagers, Spark Client, and Hive Client.

For the experiments we fix the number of Spark executors to 16 with one
vnode and 3 GB memory each. The same settings have been used in both the
Single Machine and Cluster Mode. The complete pipeline has been implemented
in Scala, whereas the code is publicly available on GitHub3.

5.1 Runtime Evaluation

The first experiment measures the performance of edge generation from raw
data. The second experiment measures the performance of computing α values
(see Eq. (2)). The third experiment is related to the performance of Louvain
algorithm over a filtered graph where α = 0.05 and ECF = 1, 000, 000.

For each experiment we measure the average runtime over a series of 10
runs. For the first task (creating edges), the cluster environment showed 42%
better runtime than the single mode case, whereas the standard deviation is
relatively small in both cases. For the task related to computing α values, the
cluster showed again better performance, since the computation is 63% faster.
In this case, the standard deviation is higher for both environments in compari-
son to the previous task. Finally, the performance of community detection using
Louvain differ for each graph, but in most cases the cluster showed the best
performance. In most of the cases the mean values of runtime for Louvain are
higher in the case of single machine, whereas the standard deviation is higher
in the cluster environment. We hypothesize that these results are a direct con-
sequence of how YARN’s ResourceManager schedules the ApplicationManager
and NodeManager and Spark’s directed acyclic graph (DAG) execution engine
optimizes the graph construction for the GraphX library. Figure 3 shows some
representative comparative results.

5.2 Community Detection and Evaluation

For community visualization, the QGIS software has been used. We have cho-
sen to present the set of communities generated by using the 8th of November,
because the network for this particular day contains the highest number of edges.

3 GitHub repository https://github.com/cipriantruica/MBD CommunityDetection.

https://github.com/cipriantruica/MBD_CommunityDetection
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Fig. 3. Runtime results.

Experiments are performed on the cluster for three different threshold values,
i.e., α = {0.001, 0.01, 0.05}, and ECF = 1012. We used the results of commu-
nity detection performed over unfiltered graph as the ground truth result, and
compare it with the results when the filtering was applied. After filtering is per-
formed, the Louvain community detection algorithm is executed on Spark. The
first level of filtering eliminates more then 50% of edges, while the runtime for
Louvain clustering algorithm improves with a factor of 2.46. When α = 0.01
almost 70% of edges are eliminated, and the algorithm runtime improves with a
factor of 3.7. Filtering with α = 0.001 eliminates almost 80% of the edges, the
algorithm’s runtime improves by a factor of 6.88.

Table 1. Number of nodes and edges after applying different filtering levels, number
of communities and runtime community detection.

α # nodes # edges # communities Time (sec.)

1 10,000 29,099,392 175 2,229.73 ± 340.14

0.05 10,000 12,942,551 174 906.43 ± 279.79

0.01 10,000 9,003,404 176 603.20 ± 174.28

0.001 10,000 6,043,769 186 324.21 ± 127.73

The number of communities changes when filtering is applied. The results for
10 tests are presented in Table 1. The Louvain community detection algorithm
converges to the same result for the same input graph. The number of commu-
nities is higher for the graphs where the filtering is stricter. That is expected,



30 C.-O. Truică et al.

because the higher level of filtering gets the graph containing the strongest links.
Moreover, as the number of nodes stays constant, the removal of edges tends to
create more communities. In Fig. 4 we observe the centrality pattern of the clus-
tering for each graph. The structure of communities is denser in the city center
area, while in the peripheral parts communities are more spatially spread. That
is due to overall higher traffic of people in city center, which reflects to tele-
com network. We observe also that the number of communities produced from
graphs where the filtering with α = 0.01 and α = 0.05 is applied does not dif-
fer much from the number of communities produced from the unfiltered graph.
On the other hand, the runtime for filtered and unfiltered graphs differs signif-
icantly. Even with the less strict filtering applied, we get a major improvement
in processing time, which justifies the use of filtering.

Fig. 4. Communities formed for different filtering thresholds.

Community evaluation is performed using Purity, Entropy, Rand Index and
Adjusted Rand Index measures. The results are given in Table 2 and they are

Table 2. Clustering evaluation for different threshold values.

Evaluation measure α = 0.001 α = 0.01 α = 0.05

Purity 0.055 0.052 0.048

Entropy 0.902 0.909 0.912

Rand Index 0.981 0.985 0.987

Adjusted Rand Index 0.662 0.745 0.781
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obtained by using Louvain without filtering as the ground truth. Purity mea-
sures how many elements from the communities determined by Louvain, when
filtering is applied belong, to the ground truth communities. This measure is low
because the number of communities differ between the ground truth and each
different α threshold. The Entropy measures the probability of a node chosen at
random to belong to a community. The high results of this measure describes
how much we can, on the average, reduce the uncertainty about the cluster of
a random element when knowing its cluster, the ground truth, in another clus-
tering of the same set of elements. The Rand Index provides information on
how a new clustering is compared to a correct one, the ground truth, and it is
highly dependent on the number of clusters. This measure is high for all the
tests because the Rand Index converges to 1 as the number of clusters increases
which is undesirable for a similarity measure [12]. To address this problem we
also computed the Adjusted Rand Index which shows a clearer classification for
the filtering technique. For the threshold α = 0.05, as well as for α = 0.01,
the number of communities remain stable and closer to the ones detected in the
ground truth, although the number of edges decreases significantly (see Table 1).

6 Conclusions

Mobile phone records offer many potentials for knowledge discovery with signifi-
cant impact. In particular, community detection is a task related to networks and
aims at the discovery of groups of nodes that are densely connected. In general,
community detection is solved by executing graph clustering algorithms, which
is a computationally intensive task, and therefore scalable algorithms should be
applied to guarantee efficiency for large networks.

This work focuses on community detection in a distributed environment,
based on real-world mobile phone data. The first results has shown that par-
allelism is an important tool to attack scalability issues, since we can analyze
larger graphs by using a cluster of machines. Moreover, we have shown that by
applying sparsification through filtering, we may boost performance even further
without penalizing the quality of the community detection result.

There are several interesting directions for future work, such as: (i) the mod-
ification of the modularity definition to reflect the association between CDR
records and spatial information, (ii) the implementation and comparison of dif-
ferent community detection algorithms (e.g., Infomap [24]) and filtering tech-
niques, (iii) the impact of filtering on other community detection algorithms,
and (iv) the design of distributed community detection techniques for evolving
networks, combining the mobile data information with the spatial location and
tracking changes in communities as the network evolves. In addition, we are
planning to test the proposed methodology for massive real-world networks, to
be able to study scalability more thoroughly.
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