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Abstract. Labeled Latent Dirichlet Allocation (LLDA) is an extension
of the standard unsupervised Latent Dirichlet Allocation (LDA) algo-
rithm, to address multi-label learning tasks. Previous work has shown
it to perform en par with other state-of-the-art multi-label methods.
Nonetheless, with increasing number of labels LLDA encounters scala-
bility issues. In this work, we introduce Subset LLDA, a topic model that
extends the standard LLDA algorithm, that not only can efficiently scale
up to problems with hundreds of thousands of labels but also improves
over the LLDA state-of-the-art in terms of prediction accuracy. We con-
duct experiments on eight data sets, with labels ranging from hundreds to
hundreds of thousands, comparing our proposed algorithm with the other
LLDA algorithms (Prior–LDA, Dep–LDA), as well as the state-of-the-art
in extreme multi-label classification. The results show a steady advan-
tage of our method over the other LLDA algorithms and competitive
results compared to the extreme multi-label classification algorithms.
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1 Introduction

Multi-label learning addresses supervised learning problems, where each training
example is associated with more than one labels at the same time [12]. Examples
include tasks such as image annotation or assigning concepts to documents.
Although a great body of prior work has dealt with developing methods for
multi-label tasks (e.g. [16]), the majority of these algorithms struggle to scale
to data sets having more than a few thousand labels. The ever increasing flow
and volumes of data in modern-day applications call for multi-label learning
algorithms that can scale up effectively and efficiently.

Extreme multi-label classification (XMLC) is an emerging field that attempts
to address the above challenge, by proposing algorithms that can tackle problems
with extremely large label sets (> 104 labels).

We modify an already existing algorithm, Labeled Latent Dirichlet Allocation
(LLDA) [8] to successfully deal with such tasks. LLDA was introduced as an
extension of standard, unsupervised Latent Dirichlet Allocation (LDA) [2], to
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deal with multi-label learning tasks. Apart from delivering results competitive
with state-of-the-art multi-label algorithms, LLDA’s training is by design fit for
large-scale and extreme learning problems, since its training time complexity
is not dependent of the label set size L, but on the average number of labels
assigned per instance. During testing though, LLDA reduces to LDA and the
algorithm is linearly dependent of L, which makes it unfit for XMLC.

In order to make LLDA appropriate for such tasks, we propose an extension
to LLDA, Subset LLDA. Our algorithm is different only during prediction. It
first determines a set of relevant labels for each new instance, through its nearest
neighbors in the training space, and then constrains the LLDA’s inference on this
particular subset of labels. By doing so, we manage to decrease the algorithm’s
testing time complexity and improve LLDA’s quality of predictions, since by
constraining the algorithm to search in a subset of the entire label space, we
alleviate LLDA’s tendency to converge to local optima (we describe this more
in detail in Sect. 3).

We conduct experiments on four small scale data sets and four large scale
data sets, with L ranging from 101 to 670,000 comparing our approach to Prior–
LDA and Dep–LDA as well as two of the top performing extreme classification
algorithms, Fast XML and PfastreXML. The results show a consistent advantage
of our method compared to the other LLDA algorithms and competitive results
with the extreme classification methods. Our motivation by introducing Subset
LLDA, is to contribute one more method to the extreme classification inventory,
that may be more apt than other methods for specific experimental scenarios.

2 Background and Related Work

We present here the main methods in the literature to tackle XMLC tasks and
then present LDA, LLDA, and the other two LLDA extensions, Prior–LDA and
Dep–LDA.Throughout the paper we assume that the Collapsed Gibbs Sampling
(CGS) algorithm [4] is employed for all LLDA methods.

2.1 Extreme Classification Methods

Algorithms aiming to tackle extreme classification tasks mainly take one of the
following approaches:

– learn a hierarchy out of the training set, either over the labels or the fea-
tures, and solve the training and prediction procedures locally at each node.
Examples in this category include Label Partitioning by Sublinear Ranking
(LPSR) [13], FastXML [7] and PfastreXML [5].

– construct an embedding of the output space in a lower dimension. Embedding-
based methods render training and prediction tractable by assuming that the
training label matrix is low-rank, reducing the label set size by projecting the
high dimensional label vectors onto a low dimensional linear subspace. Most
characteristic methods in this category are LEML [15] and SLEEC [1].



154 Y. Papanikolaou and G. Tsoumakas

2.2 LDA and LLDA

Let us denote as L the number of labels, l being a label and V the number of
features, v being a feature type and wi being a feature token at position i of the
instance. M is the number of instances (MTRAIN and MTEST will represent the
training and testing set sizes respectively), m being an instance. Also, Lm will
denote the number of m’s labels and Nm the number of its non-zero features.

LDA assumes that, given a set of instances, there exist two sets of distri-
butions, the label-features distributions named φ and the instances-labels dis-
tributions named θ1. CGS LDA marginalizes out φ and θ, and uses only the
latent variable assignments z. The algorithm employs two count matrices during
sampling, the number of times that v is assigned to l across the data set, repre-
sented by nlv and the number of feature tokens in m that have been assigned to
l, represented by nml. During sampling, CGS updates the hard assignment zi of
wi to one of l ∈ {1...L}. This update is performed sequentially for all tokens in
the data set, for a fixed number of iterations. The update equation giving the
probability of setting zi to label l, conditional on wi, m, the hyperparameters α
and β, and the current label assignments of all other feature tokens (represented
by ·) is:

p(zi = l|wi = v, m, α, β, ·) ∝ nlv¬i + β
V∑

v′=1

(nlv′¬i + β)
· nml¬i + αl

Nm +
L∑

l′=1

αl′

.
(1)

Upon completion of the above procedure, point estimates can be calculated
for φ and θ parameters. Instead of the standard CGS estimators [4], we employ
the CGSp equations [6], that employ the full distribution over feature tokens.
These methods calculate the expected values of the standard CGS estimators and
are therefore especially suited for the large-scale setting that we are addressing
in this work, since they allow us to achieve better performance by drawing fewer
samples than with the standard estimators.

LLDA modifies LDA by constraining the possible assignments for a token to
a label to the instance’s observed labels. Inference on test instances is performed
similarly to unsupervised CGS - LDA: the label–features distributions, φ, are
fixed to those previously learned on the training data, and the test instances’ θ
distributions are estimated.

LLDA employs a symmetric α hyperparameter over labels, giving equal
weight on them. Nevertheless, in most real-world tasks labels tend to have skewed
distributions. Moreover, modeling label dependencies can improve performance
[9], especially as the number of labels increases. To address these issues, the
authors of [10] have proposed Prior–LDA and Dep–LDA respectively. Prior–LDA
incorporates the label frequencies observed in the training set via an asymmetric

1 Specifically, LDA is defining φ and θ in terms of topics since it is unsupervised,
but to ease understanding we consider through the paper that topics and labels are
equivalent.
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α hyperparameter: a frequent label will have a larger α′
l value than a rare one.

Specifically, it is set to

α′
l = η · fl + α (2)

with η, α being user defined parameters and fl representing the frequency of l
in the training corpus, fl ∈ [0, 1].

Dep–LDA is a two-stage algorithm: first, an unsupervised LDA model is
trained with T topics and using as training data, each instance’s label set2. The
estimated LDA model will incorporate information about the label dependen-
cies, since relevant labels will tend to be described by the same topic(s). Second,
an LLDA model is trained. During prediction, the previously estimated θ′,φ′

parameters of the unsupervised LDA model are used to calculate an asymmet-
rical α′

ml. Specifically, the αm
′ vector will be

α′
m = η(θ′

m · φ′) + α (3)

3 Subset LLDA

When dealing with tasks with very large L (> 104), LLDA and its extensions can
not scale in a satisfying manner since they are linearly dependent on L during
prediction. To alleviate this, we propose a simple extension to standard LLDA
during prediction, by constraining the label space in which the algorithm can
search for solutions. Specifically, our method proceeds in two stages:
– First, for each test instance, a set of candidate labels, denoted as LmRel

,
is determined. A number of approaches can be followed to determine this
candidate list, for simplicity we retrieve the n-nearest instances from the
training set, denoted as MmRel

, and set the candidate list as the union of the
retrieved instances tags.

– Second, we predict with LLDA, but constrain the possible labels to LmRel
.

Similarly to Prior–LDA, we modify the prior on the instance-topics distri-
butions to reflect the frequencies of the labels among the n-most similar
instances. For instance, if n = 10 and a given label lA has appeared in three
of the similar instances, while a label lB has appeared in five of the similar
instances, we set α′

lA
= η + 0.3 · α, α′

lB
= η + 0.5 · α.

Formally, our topic model makes the following assumptions: First, given an
instance m and given a set of already tagged instances MTrain, m’s label set
Lm will be included in the union of the n most similar instances from MTrain.
Clearly, that assumption holds always as n → MTrain but in any other case
it will represent an approximation and we expect that Lm ⊆ LmRel

. A second
assumption relates to each label’s weight during Gibbs sampling: we hypothesize
that for a given instance m, its labels have been generated by sampling from a
multinomial distribution φ′

m. This assumption is very similar to the one employed
in [10], when introducing Prior–LDA, except that we constrain the set from which
the instance’s labels are generated to LmRel

, instead of L. Figure 1 illustrates our
proposed model in graphical model notation.
2 i.e., the feature tokens of each instance are its labels.
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Fig. 1. Subset LLDA in graphical model notation. Our model assumes that, given an
instance m, its labels have been generated by sampling from a multinomial distribution
over m’s similar instances.

From the above, the generative process for Subset LLDA will be:

– For each l ∈ L, sample a distribution φl ∼ Dirichlet(β) over V
– for each instance m

• Sample n instances from MTrain

• Set LmRel
=

⋃ Lmi
with mi ∈ MmRel

and i ∈ {1..n}
• Sample a multinomial distribution φ′

m ∼ Dirichlet(β′)
• Calculate α′ according to Eq. 2.
• Sample a distribution θm ∼ Dirichlet(α′) over LmRel

• For each feature position i ∈ {1..Nm}
∗ Sample a label zi ∼Multinomial(θm)
∗ Sample a feature type vi ∼Multinomial(φl) with l = zi.

Constraining the label set during prediction can also be useful for an addi-
tional reason. In that phase, LLDA needs to search the entire label space to
recommend labels for a given test instance. Since this is a probabilistic method,
the algorithm may converge to local optima, especially as L is increasing. To con-
cretize, let us consider a trained LLDA model for which a specific feature v has
a high probability φlv for several labels. Also, let us consider a test instance m
that contains v, for which only one of the aforementioned labels is semantically
relevant. In that case, it is possible that these noisy labels, coupled with LLDA’s
probabilistic nature, will lead the algorithm to favor one of the irrelevant labels
at the expense of the correct label. This problem can of course be relieved by
averaging over many samples and Markov Chains (MC) [6,10], but in most real
cases this is too expensive time-wise.

Finally, we note that to retrieve the most similar training instances we use the
tf-idf representation for each instance and employ the cosine similarity, setting
n = 10.
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Table 1. Statistics for the data sets used in the experiments.

Data set DTrain DTest L V

Bibtex 4,880 2,515 159 1,836

Delicious 12,910 3,181 983 500

Mediamill 30,993 12,914 101 120

EUR-Lex 15,539 3,809 3,993 5,000

Wiki10 14,146 6,616 30,938 101,938

BioASQ 40,000 10,000 19,218 36,480

Delicious-200k 196,606 100,095 205,443 782,585

Amazon-670k 490,449 153,025 670,091 135,909

3.1 Time Complexity

The CGS algorithm for LDA proceeds as follows: for every feature token of every
instance in the corpus, it calculates probability distribution over all labels and
then samples a label for the token, out of this calculated probability. In this way,
standard LDA is linearly dependent on L. Formally, it will be

TLDA ∝ O(M · Vm · L). (4)

LLDA, introduces supervision during training, by constraining the possible labels
that a feature token can get on the instance’s label set Ld. Formally, during
training LLDA’s complexity will be

TLLDA ∝ O(MTRAIN · Vm · Lm). (5)

As explained, during testing LLDA is equivalent to LDA so its complexity will
be given by Eq. 4. To alleviate this, with our approach we constrain Subset
LLDA during testing, to only consider labels from the n-most similar instances.
The total complexity of Subset LLDA, involves also finding the n-most similar
instances which in our cases will be O(MTEST · MTRAIN ):

TSubsetLLDA ∝ O(MTEST · Vm · ν · Lm + MTEST · MTRAIN ). (6)

4 Empirical Evaluation

We here present the data sets, the setup and the results of the experiments that
we carried out. We compare Subset LLDA with Prior–LDA, Dep–LDA, Fast
XML and PfastreXML.

In our experiments, we employed four small scale and four large scale data
sets, their statistics being illustrated in Table 1. The motivation behind using
the four small scale data sets is to be able to compare our algorithm with the
other LLDA variants, as well as to provide an empirical comparison against
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Table 2. Micro-F and Macro-F results for the LLDA-based and the extreme classifica-
tion methods. A � indicates a statistically significant difference between Subset LLDA
and the best performing method, with a z-test and a significance level of 0.05. The -
sign is used if the algorithm could not deliver predictions after 48 hours.

the other extreme classification methods, in standard multi-label classification
settings. All data sets apart from BioASQ3 [11] were retrieved from the extreme
classification repository, with the respective training/testing splits.

Fast XML and PfastreXML were used with default parameters, with the
relevant software packages provided in the extreme classification repository. For
the LLDA models, we provide our Java implementation4. We trained the same
model for all algorithms in order to ensure fairness of comparison, with αl = 50

L .
For Dep–LDA, we additionally need to train an LDA model to calculate the
hyperparameter on θ (ref. to Eq. 3). For its training we use 100 topics and 200
iterations, 50 burn-in iterations and we set α = 0.1, β = 0.01. During prediction,
we set η = 50, α = 30

L , β = 0.01 for all LLDA models. In both training and
prediction and across all data sets, we used one Markov Chain with 200 iterations
and 50 iterations burn-in, averaging across samples to obtain the respective
parameter estimates for each method. All algorithms output rankings of relevant

3 The exact data set used in the experiments is available upon request to the authors.
4 https://www.dropbox.com/s/rypmlt18zk6jxdh/sllda.zip?dl=0.

https://www.dropbox.com/s/rypmlt18zk6jxdh/sllda.zip?dl=0
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Table 3. Precision@1 and Precision@5 results for the LLDA-based and the extreme
classification methods.

labels for each instance, so we used the rcut thresholding strategy [14] to compute
the Micro-F and Macro-F scores.

4.1 Results

In Tables 2, 3 and 4 we report the results of our experiments. For the LLDA
methods, we report the average over five runs.

First, let us consider the differences in prediction accuracy among the LLDA
methods. Subset LLDA steadily outperforms both Prior–LDA and Dep–LDA in
all settings and for all measures. It should be noted here, that Dep–LDA by
design would benefit by averaging over more samples and more than one MC
more than the other methods, since it employs the parameters learned from an
unsupervised LDA model to calculate the hyperparameters for θ, therefore it will
be more prone than the other algorithms to get stuck in local optima. In other
words, the LDA model introduces an additional factor of uncertainty, which
could be alleviated with more samples and chains. We nevertheless restrict our
experiments to only one MC and relatively few samples (thirty) since our main
goal is to address large-scale tasks in which multiple MC averaging and averaging
over many samples is not feasible. One more interesting observation is that for
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tasks with few labels (Bibtex, Mediamill), Dep–LDA performs equally or worse
to Prior LDA which may be explained by the fact that modeling dependencies
does not necessarily help improving performance in small scale tasks.

Comparing Subset LLDA with the extreme classification methods, we observe
that different algorithms fare well in different evaluation measures. By consider-
ing the average rank per evaluation measure (last row of the tables), we observe
that Subset LLDA achieves the first place for two measures, Micro-F and Macro-
F, PfastreXML for precision@5 and FastXML for precision@1. FastXMl and
PfastreXML are better in predicting a few relevant labels per instance, while
our algorithm is better in balancing precision and recall (through the F-measure)
both when treating all labels equally (Macro-F) and when weighting them by
their frequency (Micro-F).

Table 4. Training and prediction duration, in seconds, for the LLDA-based and the
extreme classification methods.

FastXML PfastreXML PriorLDA DepLDA Subset LLDA

Bibtex 3+1 3+1 29+73 32+64 29+22

Delicious 6+3 7+5 133+177 77+183 77+15

Mediamill 54+3 56+3 335+238 306+286 306+101

EUR-Lex 493+62 514+72 941+22,492 900+22,761 900+214

BioASQ 571+428 623+561 - - 1,380+553

Wiki10 1,651+251 1,692+262 - - 1,131+192

Delicious-200k 20,444+5,760 20,578+5,891 - - 36,231+4,080

Amazon 14,931+984 15,044+1,194 - - 38,510+221

Results vary greatly with respect to data sets too. For the small scale data
sets, Subset LLDA achieves the best result in 7 out of 16 cases (four data sets
times four evaluation measures), FastXML in 6 and PfastreXML in 3. For the
large scale data sets, both FastXML and PfastreXML achieves the best result
in 6 out of 16 cases, while Subset LLDA in 4. These small differences among
the methods, suggest that there exists no one-size-fits-all algorithm for extreme
learning tasks and each problem should be treated separately.

In Table 4, we additionally report the training and testing duration for each
of the algorithms and data sets. The results show two clear tendencies, with
Subset LLDA being significantly faster than the two other LLDA variants, while
being slower across the majority of the data sets compared to FastXML and
PfastreXML. We should note though, that our implementation could be further
optimized by using much faster LDA implementations [3] and that both the
extreme classification methods as well as our method can improve substantially
by averaging over more trees or samples so a more detailed analysis should be
conducted to assess the trade-off between duration and performance for each of
the algorithms.
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5 Conclusions and Future Work

In this work we have presented an extension of LLDA, to account for large-
scale and XMLC tasks. Our algorithm Subset LLDA, proceeds in two stages,
by first determining a set of relevant labels for a given test instance, and then
constraining the CGS-LLDA algorithm to search only this label subspace for
a solution. Experiments on eight data sets, with label sets sizes ranging from
hundreds to hundreds of thousands, show a significant improvement over the
best performing LLDA-based algorithms and competitive results with the state-
of-the-art in extreme classification and suggest that Subset LLDA should be
considered as a competitive alternative when dealing with XMLC tasks.
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