l‘)

Check for
updates

Supporting Function Variants in OpenMP

S. John Pennycook!®) Jason D. Sewall', and Alejandro Duran?
! Intel Corporation, Santa Clara, USA
john.pennycook@intel.com
2 Intel Corporation Iberia, Madrid, Spain

Abstract. Although the OpenMP API is supported across a wide and
diverse set of architectures, different models of programming — and
in extreme cases, different programs altogether — may be required to
achieve high levels of performance on different platforms. We reduce
the complexity of maintaining multiple implementations through a pro-
posed extension to the OpenMP API that enables developers to specify
that different code paths should be executed under certain compile-time
conditions, including properties of: active OpenMP constructs; the tar-
geted device; and available OpenMP runtime extensions. Our proposal
directly addresses the complexities of modern applications, allowing for
OpenMP contextual information to be passed across function call bound-
aries, translation units and library interfaces. This can greatly simplify
the task of developing and maintaining a code with specializations that
address performance for distinct platforms and environments.

1 Introduction

As the OpenMP* programming model has evolved to keep pace with evolving
architectures, it has introduced many new features (e.g. task-based parallelism,
offloading to accelerators and explicit SIMD programming). These features are
both sufficient to ensure that OpenMP is portable to a wide range of devices, and
also expressive enough that developers are able to write codes that are capable
of extracting a high level of performance from their targeted device.

However, writing a code that is able to run well on all of the devices that
OpenMP supports — a code that exhibits high levels of “performance porta-
bility” [12,13] — remains a challenge; different devices and/or OpenMP imple-
mentations may prefer different ways of expressing parallelism, and some may
prefer different algorithms altogether. Several frameworks have been developed
on top of OpenMP in an attempt to simplify development when targeting mul-
tiple architectures [4,7]; our interpretation of this is that many find the current
tools in OpenMP lacking in expressibility.

The proposed concurrent directive from OpenMP TR6 [11] addresses part
of this problem, effectively providing a mechanism for developers to request that
the decision of which OpenMP construct(s) should be used on a given loop nest
be made by the implementation, based on analysis of the loop nest and the
implementation’s knowledge of the targeted device. Such a descriptive approach

© Springer Nature Switzerland AG 2018
B. R. de Supinski et al. (Eds.): IWOMP 2018, LNCS 11128, pp. 128-142, 2018.
https://doi.org/10.1007/978-3-319-98521-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98521-3_9&domain=pdf

Supporting Function Variants in OpenMP 129

covers simple cases well, but we believe it is insufficient for the needs of expert
programmers: the implementation’s decisions cannot be overridden when the
developer has additional information (or simply believes that they know better),
and a general-purpose OpenMP implementation will likely not be able to identify
and replace algorithms (although this may be possible for common idioms). In
this paper, we focus on providing a prescriptive complement to the functionality
of concurrent, enabling users to assert direct control over which code is executed
and under which conditions.

It should be noted that our proposal is primarily focused on furnishing
expressibility rather than providing new functionality to developers; our intent
is to make existing functionality more accessible, and to present a simple mech-
anism with common syntax that can be employed across all base languages
supported by OpenMP. There are already myriad options for maintaining differ-
ent code paths for different devices and compilation contexts: preprocessors and
#ifdef guards; template functions (in C++); and the aforementioned “perfor-
mance portability” frameworks to name but a few. In our own attempts to use
such approaches, we have found them wanting: standardized preprocessors are
not available for all languages, and handling multiple conditions through nested
#ifdef clauses can quickly lead to unreadable code; templates may be too com-
plex for average users to reason about, and are not available in C or Fortran;
the use of non-standard interfaces may lead to interoperability or composabil-
ity challenges; and developing bespoke solutions to this problem for all codes
(or even all domains) is not productive.

2 Related Work

Since OpenMP 4.0 [10], developers have been able to request that a compiler
create alternative versions of a function specialized for execution in SIMD or
on accelerator devices via the declare simd and declare target directives
respectively. Developers are able to influence the code generation inside such
functions using clauses to these directives (e.g. specifying uniform or linear
will lead to different optimizations for simd functions), but are unable to exert
any direct control using standard OpenMP functionality. Furthermore, since
both directives only alter the way in which a single implementation of a function
is compiled, the optimizations that can be employed are limited to those that
compilers can identify and (safely) implement automatically after static analysis
of the function, with no further input from the developer.

To address these issues, there have been several previous efforts to extend
OpenMP to enable developers to provide drop-in replacements for the functions
generated by declare simd and declare target. OmpSs supports an exten-
sion to target — the implements clause [3] — which specifies that one function
is an alternative implementation of another, specialized for particular devices;
this idea has been adopted, with the same syntax and semantics, in OpenMP
TR6 [11]. The Intel® C/C++ compiler provides similar functionality for func-
tions specialized for particular SIMD widths and instruction sets — so-called

130 S. J. Pennycook et al.

“vector variants” [8] — via function attributes; RIKEN and Arm explored the
same concept via an OpenMP extension — alias simd [9] — with different syn-
tax but similar semantics. None of these proposals address situations in which
a developer wishes to specialize a function for SIMD and a particular device
simultaneously, nor considers the utility of extending function implementation/-
variant/alias support to other situations. We proposed yet another version of
this functionality — declare version — for memory allocators [14] in previous
work. In this paper, we attempt to unify all of the directives discussed above into
a single directive, which permits the specialization of functions based on multiple
criteria and which is designed to be extensible to future OpenMP constructs.

It should also be noted that similar functionality has already been adopted
outside of OpenMP. Thrust [2] and the parallel extensions to the C++ Standard
Template Library (STL) [6] allow an execution policy (encapsulating the pro-
gramming model, device, etc) to be passed to a function call, enabling different
implementations to be selected by the library; the Kokkos [4] framework provides
a similar facility through the use of tags passed to functors. The PetaBricks [1]
language takes a different approach, providing a mechanism to declare a func-
tion in terms of multiple candidate algorithms from which the compiler and an
autotuning framework can construct an optimized application.

3 Specialization

Specialization is a valuable concept to deploy in software development, opti-
mization, and maintenance. At its core, it is simply a programming construct — a
function, a type declaration or even a snippet of code — paired with a mechanism
for expressing when that construct should be used. The most common forms of
specialization in real code are highly manual in nature: the programmer decides
that a particular function (for example) needs to be used in a particular context
and makes it happen by forking the codebase, or by employing a conspicuous
branch in the code to perform the discrimination.

Consider a parallel histogram computation, where many inputs are divided
among threads and reduced into a relatively small array. A developer has a
common implementation in a portable language that runs on many of their
platforms of interest, and which uses atomic additions found in the language; this
implementation provides correct results in all cases. The developer may discover
that the atomics primitives on some platforms are very slow, and that giving
each thread its own copy of the accumulation array (i.e. privatizing the array)
runs with much greater efficiency on those platforms. This could be described as
specialization for performance’s sake, but it is also easy to imagine a platform
with no support for atomics at all, in which case the privatized implementation
would be necessary for compatibility.

That specialization is useful and even necessary in real code bases is evident;
the challenge — which our proposal aims to address — is to make the mechanism
for deploying the appropriate specialization as easy-to-use and expressive as
possible.

Supporting Function Variants in OpenMP 131

4 Enabling Specialization in OpenMP

We propose an extension that uses functions and function calls as the language-
level granularity of specialization; developers are able to use a new directive,
declare variant, to indicate that a given function variant is intended to be a
specialization of another base function with a compatible type signature. The
specialization mechanism is then used to decide which function calls to the base
function are replaced with function calls to specialized variants (if any). Our
proposal allows the user to annotate function variants with selector information
that guides the specialization mechanism; these selectors generally interact with
the context around function calls to select meaningful specializations.

Specialization of function calls enables composability (e.g. across translation
units and library interfaces) via a mechanism that is simple to understand, famil-
iar due to its similarity to other approaches (e.g. template specialization) and in
keeping with good software engineering practices (i.e. modular design). A simple
example of a function variant family is given in Fig. 1.

// Default behavior (i.e. the base function)
float my_rsqrt(float x)

{
return 1.0f / sqrt(x);
¥

// Variant that uses an approximation
float my_rsqrt_approx(float x)
{

// e.g. result after several Newton-Raphson iterations

}

// Variant vectorized with AVX-512
__m512 my_rsqrt_avx512(__m512 x)
{

return _mm512_rsqrt_ps(x);

}
// Variant which forwards to library implementation (where it exists)

float my_rqsrt_native(float x)
{

return rsqrt(x);

}

Fig. 1. An example of a function variant family for computing reciprocal square roots.

4.1 declare Variant Syntax

The C/C++ syntax® of our proposed declare variant directive is as follows:

#pragma omp declare variant(base-function) [match(context-selector)]
<specialized-function-definition-or-declaration>

where base-function is the name of the function that the programmer wishes to
specialize. The function the directive is applied to is a specialized variant that is

! Analogous syntax is proposed for Fortran but we omit it for brevity.

132 S. J. Pennycook et al.

defined as a suitable replacement of base-function. The scope of this directive
is the translation unit where it appears; therefore, we expect the directive to
be applied to the specialized function declaration in headers and also to the
specialized function definition itself.

If no match clause is provided, then all calls to the base-function
will become calls to the specialized function. Figure2 shows how the
declare variant directive is used to provide an OpenMP specialization,
my_rsqrt_omp_approx, of the function my_rsqrt. All calls to my_rsqrt will be
replaced by calls to my_rsqrt_omp_approx. As the variant directive is only
recognized by OpenMP-enabled compilers, this provides a mechanism for users
to have different code used when compiling for OpenMP (which could also be
achieved by means of #ifdef _OPENMP with preprocessors).

#pragma omp declare variant(my_rsqrt)
float my_rsqrt_omp_approx(float x) { ... }

void foo (float x)
{

. = my_sqrt(x); // will call my_rsqrt_omp_approx
}

Fig. 2. Example of the declare variant directive.

The match clause allows the developer to specify a context-selector that spec-
ifies the context in which calls to base-function should be substituted with calls
to the specialized function. The syntax of a context-selector is as follows:

match(trait-class-name={trait [(trait-properties)][,...1[,...1})

We propose a number of traits for specialization, organized into four trait
classes that can specified in the match clause: OpenMP construct traits, for spe-
cialization based on OpenMP constructs; device traits, for specialization based
on the target device; implementation traits, for specialization based on charac-
teristics of the underlying OpenMP implementation; and user-specified traits.
Section 4.2 details the traits of each class and their properties (if any).

Multiple specializations of the same base function can be specified using a
declare variant directive on each specialization. Figure 3 shows an example
where two variants have been defined: my_rsqrt_omp_approx, to be called when
the base function appears in the context of a simd directive; and rsqrt (possibly
provided by a library), to be called when the base function appears in the context
of a target directive.

In the previous example, it was unambiguous which specialization should be
used in each call to my_rsqrt, but that is not always the case. For example, if the
call were to happen inside a target parallel for simd directive, it would be
unclear which specialization should be called. We handle such cases by assigning
different priorities to each variant, and selecting the variant with the highest
priority at a callsite; this algorithm is described in detail in Sect. 4.3.

Supporting Function Variants in OpenMP 133

#pragma omp declare variant(my_rsqrt) match(construct={simd})
float my_rsqrt_omp_approx(float x) { ... }

#pragma omp declare variant(my_rsqrt) match(construct={target})
float rsqrt(float x); // library provided

void foo (float x)
{
#pragma omp simd
for (...) { ... = my_rsqrt(x); } // will call my_rgsrt_omp_approx

#pragma omp target

. = my_rsqrt(x); // will call rsqrt

Fig. 3. Example of declare variant directives with match clauses.

4.2 Context Selection Traits

We have identified several concepts that give rise to a need for specialization,
and for the purposes of their use and description, we have organized them into
classes of traits. This taxonomy aids the user in clearly expressing their intents
for when a particular variant takes precedent over another for a given context.
This proposal identifies four distinct classes of traits that help distinguish the
conditions for specialization.

OpenMP Construct Traits. The traits in the construct class are related to
existing OpenMP constructs that might impact a developer’s choices for special-
ization. Table 1 describes the traits in the construct class. Each trait specified
for this class restricts the associated variant to calls to the base function that
appear in the context of the directive of the same name.

Table 1. Traits in the construct trait class

Trait name | Example uses

target Code paths that track host/target allocations and perform transfers

parallel |Code paths that choose between serial & parallel algorithms; code
paths that discriminate based on memory model (e.g. atomics, critical,
etc)

teams Code paths that choose algorithms or implementations based on
synchronization behavior; code paths that perform differently when
synchronization is expected to be fast within a team

simd Code paths that deploy horizontal vector operations (e.g. conflict
detection); code paths that override default auto-vectorization behavior

For the simd trait, we also propose to allow different trait properties that
represent clauses available in the declare simd directive. These properties fur-
ther restrict the context in which a variant can be selected. In Fig. 4 two variants

134 S. J. Pennycook et al.

are defined to be used in the context of a simd construct. The first variant can
be used in any simd context but the second one can only be used when the
simd context also determines that the argument of the function is 1inear. Con-
sequently, the first invocation of foo in Fig.4 will be substituted with the first
variant as the compiler cannot determine that the argument is linear, whereas
the second call to foo will be substituted with the second variant as the compiler
can determine that ¢ is 1inear.

float foo(float *x);

#pragma omp declare variant(foo) match(construct={simd})
__mm512 foo_simd_gather (__mb12 *x); // needs to use gather instructions

#pragma omp declare variant(foo) match(construct={simd(linear(x))}
__mm512 foo_simd_linear (__mm512 *x); // can avoid gather instructions

#pragma omp parallel for simd linear (i)

for (i = 0; i < N; i++) {
= foo(x[rand()1); // will call foo_simd_gather
= foo(x[il); // will call foo_simd_linear
¥

Fig. 4. Example of simd trait properties.

Device Traits. The traits in the device class are based on properties of the
hardware that the code is being compiled for. Therefore, they restrict the con-
texts where a variant can be selected to only those where the specified device
traits are true. Table2 describes the traits in the device class. Multiple isa
traits can be specified for a single variant: all of them must be supported by the
target device for a variant to be selected. We propose that implementations not
be required to be able to compile the function body for variants with device
traits that are not supported (e.g. an unknown ISA), thereby simplifying the
use of device-specific intrinsics by programmers. However, we still require that
extensions used in the context of a variant function should at least allow other
implementations to properly parse (and ignore) the function (i.e. by allowing to
find the closing bracket of the variant function).

Table 2. Traits in the device trait class.

Trait name Example uses

uarch(uarch-name) | Code paths that use different optimizations for different
microarchitectures; code paths that care about particular
implementations of instruction sets or compute capabilities

isa(isa-name) Code paths that use specific instruction sets

OpenMP Implementation Traits. Traits in this class are concerned with
properties of the particular OpenMP implementation that will be used to run

Supporting Function Variants in OpenMP 135

the generated code. Only implementations that support the traits specified in
a selector can select that variant as a replacement of the base function. Table 3
describes the traits in the implementation class.

Table 3. Traits in the implementation trait class.

Trait name Example uses

unified_shared memory | Code paths that require runtime support for unified

unified_address shared memory/address spaces across devices. The
behavior of these traits is documented in OpenMP
TR6 [11]

vendor (vendor-name Code paths that require vendor-specific and/or

[,extensions]) prototype concepts

User Traits. In addition to the above trait classes associated with OpenMP
contexts, hardware, and runtime capabilities, there is a user class that accepts
logical expressions as traits. These logical expressions, expressed in the base
language, must be able to be evaluated at compile-time, and they can be used to
add arbitrary user-specified conditions that can inform variant selection. Figure 5
shows an example of a user trait in use; the logical test for the value of the
static constant variable layout may enable or disable each of the variants in the
example.

void foo(float *x);
typedef enum {AoS=0, SoA} layout_t;

#pragma omp declare variant(foo) match(user={condition(layout==A0S)})
void foo_AoS(float *x);

#pragma omp declare variant (foo) match(user={condition(layout==So0A)})
void foo_SoA(float *x);

static const layout_t layout = AoS;

foo(z); // will call foo_AoS

Fig. 5. Example of a user trait; the value of the compile-time variable layout deter-
mines the logical value of the user selector in each variant.

These classes and their traits are those that we have chosen as the most
important and tractable in this initial proposal; they are all static notions that
allow contextual information to be tracked or inferred during compile-time. Many
other concepts — for example, the values of certain variables or certain arguments
at runtime, system conditions, and other language constructs — would be inter-
esting to explore in future work.

136 S. J. Pennycook et al.

4.3 Caller Context and Variant Selection

Our proposed selection mechanism is not explicit; instead, the choice of which
variant to call is performed through the interaction of the various selectors and
the context around the function call. This is necessary to correctly handle cases in
which the arguments to a function may be generated or modified by the compiler
(e.g. during auto-vectorization); to leverage contextual information not exposed
to the developer (e.g. during auto-parallelization); and to enable selection to
be employed transparently for functions maintained by other developers (e.g.
library functions). Such an implicit mechanism does not remove any control
from the user; they remain free to call specific variants explicitly by name.

In the remainder of this section, we discuss how such contextual information
can be established and tracked by way of: lexical scope; compiler configuration
for a given translation unit; and a function variant’s selector information.

Lexical Scope. The OpenMP construct trait class described in Sect. 4.2 con-
tains traits related to a number of OpenMP directives that establish lexical
blocks with specific behavior. Conceptually, as each such directive is encoun-
tered in lexical order, the corresponding trait is added to the context. As the
block for each directive closes, the corresponding trait is eliminated from the
context. See Fig.6 for an example of how contexts vary with the presence of
OpenMP directives.

void main ()

{
// construct context = {} (i.e. empty)
#pragma omp target

// construct context = {target}
#pragma omp parallel

// construct context = {target,parallel}
#pragma omp simd

// construct context = {target,parallel,simd}
i/ construct context = {target,parallel}
i/ construct context = {target}
i/ construct context = {} (i.e. empty)
}

Fig. 6. Example of how the construct context is changed upon entering and exiting
lexically scoped OpenMP regions.

Traits in the OpenMP construct context may also be set implicitly, as
the result of certain optimizations: regions that are automatically parallelized
and/or vectorized without use of the corresponding OpenMP directives may add
parallel and/or simd to the context; similarly, implementations may alter the
context to reflect decisions taken as a result of certain descriptive constructs

Supporting Function Variants in OpenMP 137

(e.g. concurrent). Such transformations still imply a lexical scope, albeit one
that is usually not exposed to the developer.

Translation Units. Many traits are not established by explicit directives that
annotate lexical structures; the traits found in the device and OpenMP run-
time trait classes (see Sect.4.2) are generally established for a translation unit
implicitly, by the compiler itself. The exact behavior of these traits will vary
from compiler to compiler, but tracking them as part of the context is necessary
for matching variants effectively.

For example, a user may specify options to a compiler instructing it to gen-
erate code for a specific instruction set or to optimize for the characteristics of
a particular microarchitecture; in the presence of such flags, the isa and uarch
traits should be defined appropriately in the context. Specific examples of how
such compiler options can impact the device context are given in Fig. 7.

icpc -xMIC-AVX512:
device context = { uarch(knl), isa(avx512f, avx512er, avx512cd, ...) }

icpc -xCORE-AVX512:
device context = { uarch(skx), isa(avx512f, avx512cd, ...) }

gcc -msse2 -msse3:
device context = { isa(sse2, sse3) }

clang++ --cuda-gpu-arch=sm_70:
device context = { isa(sm_70) }

Fig. 7. Example of how the context is changed by compiler flags. Flags for enabling
and configuring OpenMP are omitted.

Functions. Generally speaking, contexts are established within a function body
without accounting for any surrounding contexts that hypothetical callers may
establish, and the user should not assume that contextual information is passed
across function boundaries. Our proposal makes two exceptions: a function’s
initial context may be modified by its variant selector; and compilers are free
to broaden contexts when inlining. An example with both behaviors is shown in
Fig.8.

Variant Selectors. The context of a variant is defined to contain at least the
traits specified in the variant’s selector; additional traits may be present (defined
for the translation unit) but only if they are compatible with the selector. This
behavior allows for traits derived from lexical scope to be passed explicitly across
translation unit boundaries.

138 S. J. Pennycook et al.

void bar();

#pragma omp declare variant(bar) match(construct={teams})
void baz ()

{
// without inlining: construct context = {teams}
// with inlining: construct context = {parallel, teams}
¥
void foo ()
{
// without inlining: construct context = {}
// with inlining: construct context = {parallell}
#pragma omp teams
// without inlining: construct context {teams}

// with inlining: construct context {parallel, teams}

baz ();
}
}

void main ()
{
#pragma omp parallel

foo();
}
}

Fig. 8. Example of context propagation via variant selectors and/or inlining.

Inlining Behavior. It is common for a compiler to inline function bodies to sat-
isfy user requests and to enable many optimizations. In such cases, the compiler
may be able to supply additional context to the inlined function body based on
where it has been inlined. While we would like to have consistent behavior of
how OpenMP constructs should behave with respect to inlining, the OpenMP
specification is not clear on this point and implementations vary in their interpre-
tation. As such, developers should not depend on particular inlining behavior —
since it is compiler-specific — but it does not introduce problems for our selection
mechanism.

Selecting a Variant Based on Context. Given a calling context C' and a
variant family V, the variant selection algorithm proceeds as follows:

1. Eliminate all variants from V with selectors that are incompatible with C.
2. Compute a specificity score associated with each remaining selector.
3. If the most specific (highest scoring) selector is unique, return its variant.

A selector’s specificity score is computed by assigning a value of 2¢ to each
context trait, where ¢ reflects the trait’s position in the context, and summing
these values. Traits are ordered according to their class — construct, device,
implementation, user — and level of nesting in lexical scope (if appropriate).
If the most specific score is not unique, but the selectors can be ordered by

Supporting Function Variants in OpenMP 139

a strict subset/superset relationship of their properties, the selector with the
largest superset should be chosen; otherwise, the choice between the most specific
selectors is unspecified.

Figure9 shows this algorithm applied to an example calling context and a
family of six variants. First, the variants are compared with the calling context
to assess their compatibility: the first two variants are eliminated in this step,
as neither target nor teams is present in the calling context. Second, the traits

Calling Context Available Variants
construct={parallel, 1: match(construct={target, teams})
simd(aligned(x:64), 2: match(construct={teams, simd})
uniform(x), 3: match(construct={parallel, simd})
linear(y))} 4: match(construct={parallel, simd(aligned(x:64))},
device={isa(avx512f)} device={isa(avx512f)})

5: match(construct={parallel, simd(aligned(x:64),
uniform(x))},

v device={isa(avx512f)})
6: match(construct={parallel, simd(aligned(x:64),
linear(y))},
device={isa(avx512f)})

Assign values
to traits

parallel =1
simd = 2
device

Compatible Variants

3: match(construct={parallel, simd})
4: match(construct={parallel, simd(aligned(x:64))},
device={isa(avx512f)})
5: match(construct={parallel, simd(aligned(x:64),
uniform(x))},

device={isa(avx512f)})
6: match(construct={parallel, simd(aligned(x:64),
linear(y))},
device={isa(avx512f)})

A 4

Variant Score
3: match(construct={parallel, simd}) 3
4: match(construct={parallel, simd(aligned(x:64))}, 7
device={isa(avx512f)})
R Select highest scoring
5: match(construct={parallel, simd(aligned(x:64), Remove subsets
uniform(x))}, 7
device={isa(avx512f)})
6: match(construct={parallel, simd(aligned(x:64),
linear(y))}, 7

device={isa(avx512f)})

Selected Variants v

5: match(construct={parallel, simd(aligned(x:64),
uniform(x))},
device={isa(avx512f)})
6: match(construct={parallel, simd(aligned(x:64),
linear(y))},

device={isa(avx512f)})

Fig. 9. Example of the variant selection algorithm.

140 S. J. Pennycook et al.

are assigned a value according to their position in the calling context, and these
values are used to assign specificity scores to the variants: the variants receive
scores of 3, 7, 7 and 7 based on the values assigned to the parallel, simd and
device traits. The last step selects the variants with the highest score and, from
those, removes variants that are a subset of other variants: the variant with
just simd(aligned(x:64)) is eliminated, since it is included in the other two
variants. The algorithm selects two variants: the simd properties for the selected
variants contain aligned(x:64) as a common subset, but since uniform(x) and
linear(y) cannot be ordered an implementation is free to choose either.

4.4 Relation to Existing Directives

The behavior of declare variant as defined in our proposal is orthogonal to
the behavior of the declare simd and declare target directives: it provides
a mechanism for associating user-provided variants to base functions, but does
not provide a mechanism for requesting compiler-generated variants of base func-
tions. At the time of writing, it is unclear whether or not consolidating these
functionalities into a single directive is desirable. By design, extending declare
variant to support more contextual information is easier than extending the
existing directives, but deprecating existing functionality may break existing
user code. Should it be decided that deprecating declare simd and declare
target is desirable, then modifying our proposed syntax to support this could
be as straightforward as making the base-function part of an optional clause
(as shown in Fig.10), or introducing a separate create variant directive
(as shown in Fig.11).

// Request compiler-generated variant of foo, specialized for simd context
// Base-function omitted; equivalent to "declare simd"

#pragma omp declare variant match(construct={simd})

void foo();

// Associate user -provided variant of foo, specialized for simd context
// Uses "implements" clause; equivalent to current syntax

#pragma omp declare variant match(construct={simd}) implements(foo)
void bar();

Fig. 10. Example of using a modified declare variant directive to replace declare
simd and declare target.

// Request compiler-generated variant of foo, specialized for simd context

// Equivalent to "declare simd", but user provides name for generated function
#pragma omp create variant(foo_simd) match(construct={simd})

void foo();

Fig. 11. Example of using a new create variant directive to replace declare simd
and declare target.

Supporting Function Variants in OpenMP 141

5 Summary

Application developers hoping to achieve high levels of performance on multiple
platforms require a mechanism for selecting and executing different code paths
based on properties of the current execution context. This paper proposes a set of
extensions to the OpenMP API that provide such a mechanism, introducing the
ability to perform function dispatch based on contextual information known to
OpenMP at compile-time. The specific contributions of this work are as follows:

1. We review the complex interaction between modern OpenMP constructs and
representative OpenMP devices, thus motivating the introduction of powerful
and expressive developer tools for specializing code for different execution
environments.

2. We propose a new directive, declare variant, for declaring variants of func-
tions that should be preferentially selected under certain conditions. Our pro-
posal unifies several previous proposals, and is designed to be easily extended
to cover future additional functionality.

We have designed declare variant to ensure that the contextual informa-
tion it supports can be extended as the OpenMP API evolves, and there are
many exciting future directions to explore. Incorporating an ability for dynamic
(run-time) dispatch is the most obvious: many performance-impacting variables
in OpenMP can be chosen dynamically (e.g. number of threads, scheduling
policies); users may wish to select different devices or algorithms based on prop-
erties of program input; and just-in-time (JIT) compilation for problem size has
been demonstrated to significantly improve performance in some cases [5]. When
considering this extension, it will be important to consider the cost of run-time
selection and dispatch.

Acknowledgements. Intel and the Intel logo are trademarks of Intel Corporation or
its subsidiaries in the U.S. and/or other countries.
* Other names and brands may be claimed as the property of others.

References

1. Ansel, J., et al.: PetaBricks: a language and compiler for algorithmic choice. In:
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, pp. 38-49. ACM, New York (2009)

2. Bell, N., Hoberock, J.: Thrust: a productivity-oriented library for CUDA. In: GPU
Computing Gems Jade Edition, pp. 359-371. Elsevier (2011)

3. Duran, A.: OmpSs: a proposal for programming heterogeneous multi-core archi-
tectures. Parallel Process. Lett. 21(02), 173-193 (2011)

4. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202-3216 (2014). Domain-Specific Languages and High-
Level Frameworks for High-Performance Computing

142

5.

10.

11.

12.

13.

14.

S. J. Pennycook et al.

Heinecke, A., Henry, G., Hutchinson, M., Pabst, H.: LIBXSMM: accelerating small
matrix multiplications by runtime code generation. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2016, pp. 84:1-84:11. IEEE Press, Piscataway (2016)

Hoberock, J.: Technical specification for C++ extensions for parallelism. Technical
report ISO/IEC TS 19570:2015, ISO/IEC JTC 1/SC 22 (2015)

Hornung, R.D., Keasler, J.A.: The RAJA portability layer: overview and sta-
tus. Technical report LLNL-TR-~661403, Lawrence Livermore National Laboratory
(2014)

Intel Corporation: vector_variant. https://software.intel.com/en-us/node/
523350

Lee, J., Petrogalli, F., Hunter, G., Sato, M.: Extending OpenMP SIMD support for
target specific code and application to ARM SVE. In: de Supinski, B.R., Olivier,
S.L., Terboven, C., Chapman, B.M., Miiller, M.S. (eds.) IWOMP 2017. LNCS,
vol. 10468, pp. 62-74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
65578-9_5

OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face Version 4.0 (2013)

OpenMP Architecture Review Board: OpenMP Technical Report 6: Version 5.0
Preview 2 (2017)

Pennycook, S., Sewall, J., Lee, V.: A metric for performance portability. In: Pro-
ceedings of the 7th International Workshop in Performance Modeling, Benchmark-
ing and Simulation of High Performance Computer Systems (2016)

Pennycook, S., Sewall, J., Lee, V.: Implications of a metric for performance porta-
bility. Future Gen. Comput. Syst. (2017). https://doi.org/10.1016/j.future.2017.
08.007

Sewall, J.D., Pennycook, S.J., Duran, A., Tian, X., Narayanaswamy, R.: A modern
memory management system for OpenMP. In: Proceedings of the Third Interna-
tional Workshop on Accelerator Programming Using Directives, WACCPD 2016,
pp- 25-35. IEEE Press, Piscataway (2016)

https://software.intel.com/en-us/node/523350
https://software.intel.com/en-us/node/523350
https://doi.org/10.1007/978-3-319-65578-9_5
https://doi.org/10.1007/978-3-319-65578-9_5
https://doi.org/10.1016/j.future.2017.08.007
https://doi.org/10.1016/j.future.2017.08.007

	Supporting Function Variants in OpenMP
	1 Introduction
	2 Related Work
	3 Specialization
	4 Enabling Specialization in OpenMP
	4.1 declare Variant Syntax
	4.2 Context Selection Traits
	4.3 Caller Context and Variant Selection
	4.4 Relation to Existing Directives

	5 Summary
	References

