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Abstract. Tasks are a good support for composition. During the devel-
opment of a high-level component model for HPC, we have experimented
to manage parallelism from components using OpenMP tasks. Since
version 4-0, the standard proposes a model with dependent tasks that
seems very attractive because it enables the description of dependen-
cies between tasks generated by different components without breaking
maintainability constraints such as separation of concerns. The paper
presents our feedback on using OpenMP in our context. We discover that
our main issues are a too coarse task granularity for our expected per-
formance on classical OpenMP runtimes, and a harmful task throttling
heuristic counter-productive for our applications. We present a comple-
tion time breakdown of task management in the Intel OpenMP runtime
and propose extensions evaluated on a testbed application coming from
the Gysela application in plasma physics.
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1 Introduction

Tasks have been incorporated in OpenMP-3.0 in November 2008. This ini-
tial model only considers independent tasks, such as provided by the famous
Cilk [13] parallel programming environment. In July 2013, OpenMP-4.0 inte-
grates a dependent-task model. This model enable computing complex schedules
that favor, for instance, data reuse among tasks.

One of our main testbed application extracted from the Gysela applica-
tion [17] has been parallelized using dependent tasks. Preliminary experiments
have shown that a hand-coded version of the code can greatly improve perfor-
mances due to a better use of caches, but at the expense of code maintainability
and, also with a loss of performance portability caused by hard-coded schedul-
ing decisions. This paper reports our mitigated experience on delegating all task
scheduling concerns to the OpenMP runtime. Our issues mainly come from the
required fine-grain task granularity since reusing in-cache data is expected in
our application.
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The algorithmic structure of the testbed application is the following: the
working set is decomposed by planes, each plane is sub-divided in regions (such
as line groups) where a chain of k tasks operate on it. The k−1 first tasks of each
chain are independent, while the last task of each performs a per-plane stencil
computation. Thus, tasks working on different planes are independent. Figure 4
illustrates it. At the end of each iteration, a final task operates on all regions of
the same plane. Because the graph structure is quite simple, at the beginning of
this work we were very confident to delegate the all task scheduling concerns to
an OpenMP runtime.

Depending on the size of the working set and the hardware, only some regions
or few planes could be fit into the shared cache. Two problems occur. First, the
task creation iterates over all the first tasks of all chains, then over all the second
tasks and so forth, which sequentially iterates several times over all the working
set with causing O(k) evictions. Second, the scheduling heuristics of the tested
OpenMP runtimes (an Intel-based, LLVM and a GNU runtime) are not designed
for constructive cache sharing. For instance, the Intel runtime relies on a work-
stealing scheduler where working threads tend to have disjoint working sets.
Constructive cache-sharing schedules have been studied since long time [7,10].

These two problems are strongly connected. The order of the task creation
could not be easily chosen due to software engineering constraints. In our appli-
cation, a high-level assembly of components [5] enforces the order and we do
not want to violate the separation of concern by analyzing1 memory access pat-
terns arising from tasks submitted by different components. Moreover, even if
we reschedule tasks in order to provide an efficient sequential execution, there
is no guarantee that the OpenMP task scheduler will exploit it for constructive
cache sharing.

Considering the scheduling performance guarantee as the most prominent
issue, preliminary experiments of our application using OpenMP tasks enable us
to locate four performance critical issues:

overhead: The task implementation has a significant overhead that limits scal-
ability. In our case, it cannot be easily amortized by computation because of
the fine granularity.

concurrency: The task creation is slowed down as the number of threads
increases.

harmful heuristic: The task throttling [12] may improve performance. But a
naive static heuristic is implemented on several OpenMP runtimes and it has
been proved highly counter-productive. When present, the scheduler could
not be clairvoyant on the future of the computation because almost all tasks
are serialized.

task scheduling: Even if the task throttling is disabled, the default scheduling
strategy between thread sharing cache favor, as discussed above, breadth-first
execution where cores tend to have disjoint working sets.

In the case of coarse grain applications, the task creation overhead and con-
currency issues are amortized by the computation [6]. The first three issues may
1 Such analysis may be complex if made statically.
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be overcome at the expense of a dedicated and optimized implementation: our
experimental results with libKOMP, an extended version of the LLVM OpenMP
runtime, illustrates the gains in term of performances. Nevertheless, the last
issue is about scheduling where the best solution often relies on the applica-
tion pattern. In this paper, we propose a two steps solution where submitted
tasks are reordered cooperatively with the scheduler. This also points out one of
the missing feature in OpenMP standard: the capability to specify specialized
scheduling strategies for a set of tasks.

2 Background: OpenMP Tasks Management

This section deals with the LLVM OpenMP runtime [2] tag release 5.0 as cur-
rently developed by LLVM team2. It also compares some of the key design choices
with those implemented in the GNU OpenMP libGOMP [1] coming with GCC
6 series.

2.1 Implementation of the OpenMP Task Model

The OpenMP task model enables the creation of tasks with dependencies in a
simple way as sketched in the next listing.

The encountering thread of the OpenMP task directive creates a task that
could be performed asynchronously to the caller. A task execution corresponds
to an execution of <code>. Data sharing attributes describe how the task data
environment is built from the environment of the encountering thread.

The compiler and the runtime are responsible for the management of task
internal data structures. For instance, the Intel and Clang compilers generate
a pair of runtime calls [2] to kmpc omp task alloc and kmpc omp task, for
independent tasks, or kmpc omp task with deps if the task directive includes
depend clauses. The previous listing is translated to the following pattern (miss-
ing parameters are not important here) where two main function calls are marked
in bold:

The GNU compiler and libGOMP runtime merge these two calls [1] at the
expense of recopying parts of the task data generated by the compiler on the C
stack:
2 https://openmp.llvm.org, http://llvm.org/git/openmp.git. The LLVM runtime has

been forked from Intel public source and it is fully compatible with GCC, ICC and
Clang compilers.

https://openmp.llvm.org
http://llvm.org/git/openmp.git
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Many other OpenMP runtimes follow the same approach: the compiler gen-
erates the code of the outlined function with correct copies or data sharing
(according to the specified data sharing rules). Then, the runtime allocates an
internal task descriptor, copies the fields, computes the dependencies and then
pushes the task to various scheduling queue(s). The next section focuses on this
internal data structure and algorithms used to build correct dependencies. Their
choices explain the observed overhead or limitations.

Table 1. Main characteristics of libGOMP and libOMP. The sizes are in bytes and
the task descriptors take into account structures for managing dependencies.

Size of task
descriptors

Dependencies Task
throttling
threshold

Queues Scheduler

libGOMP Hash table + lock
per team

64× number
of threads

Per task
(children),
task group
and teams

Multiple
lists
scheduling

libOMP 424 Hash table + lock
per dependencies

256 tasks
per queue

One per
thread

Work
stealing

2.2 Internal Data Structures and Algorithms to Manage
Dependencies

GNU libGOMP and LLVM/Intel libOMP runtimes have made very different
implementation choices as summed up in Table 1. The main difference between
libGOMP and libOMP comes from the locking strategy to ensure coherent com-
putation of dependencies: in libGOMP, exclusive accesses are guaranteed by a
lock associated to the team data structure, while in libOMP, there is one lock
per task. This explains scalability issues of libGOMP when the task granularity
is too small [21,27].

The OpenMP dependent-task model is based on defining dependence-type of
a list of memory references in the clause depend. The runtime should keep track
of the previous accesses made on memory regions described by the array sections
of the depend clause. Up to now, the standard restricts the usage to avoid the
overlap of two array sections. This make the computation of dependencies much
simpler in a sequence of tasks by identifying an array section to its base array.
Indeed, runtimes can only store the last dependency into an associative table to
retrieve it from a pointer. The task creation consists in the following steps:
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Allocation of the internal task descriptor. libGOMP relies on the malloc func-
tion of the C library. The LLVM and Intel runtimes implement a thread-local
heap allocator.

Initialization of the task descriptor fields. Once allocated, the runtime ini-
tializes a data structure, copy the ICVs, and update a counter to detect
termination.

Checking dependencies. This step consists in adding the newly created task
into the list of successors from all its predecessor. In the two runtimes, the
scheme is almost the same: for each pointer identifying the array section, the
runtime looks into a hash table to retrieve the last dependencies of the array
section.

Enqueue. If a task is detected as ready for execution, then it is enqueued into
runtime queues. The LLVM and Intel runtimes push a task into a queue
owned by the running thread. GNU libGOMP enqueues the task into several
queues: the child queue of its parent, the queue of the task group if it exists,
and the queue of the team that stores all the ready tasks.

This high-level view masks the way the Intel, LLVM and GNU runtimes man-
age concurrency. The steps ‘Allocation’ and ‘Initialization’ are mostly involving
local updates of data structures. They do not require locking mechanisms for
exclusive accesses. Checking dependencies is the most complex operation of the
task creation since predecessors of a task may finish while the task is being
checked. The design of GNU libGOMP is such that all modifications related
to dependencies are mutually exclusive by using a global lock associated with
the team. This is the main scalability problem of libGOMP. The LLVM and
Intel runtimes enable more concurrency between insertions and suppressions of
dependencies. To manage the modification of data structures, they use a lock per
dependency node attached to each task. Because concurrent accesses are more
frequent, the thread generating tasks is slowed down: new tasks are created and
enqueued at a low throughput compared to a sequential task creation.

2.3 Task Throttling

The term ‘task throttling’ refers to all kind of heuristics [4,12]. It enables the
runtime to serialize tasks in order to reduce the inherent overhead of task cre-
ation. Sophisticated strategies have been designed and experimented [12] which
dynamically profiles the application tasks to produce good decisions. In the
LLVM and Intel libOMP or GNU libGOMP threads throttle task creations are
based on static thresholds: when there is more than 256 tasks per queue in LLVM
libOMP; and when there is more than 64 * omp get num threads() pending
tasks in libGOMP.

These heuristics can efficiently reduce the overhead of task creation (see next
section). However, these heuristics are not well suited, and even harmful, for
some classes of applications [18], such as our. There is a huge gap between these
research results and heuristics found in those OpenMP runtimes. Moreover, the
scheduling decision could not be adapted during runtime.
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3 Performance Evaluation and Extension of the LLVM
Runtime

Experiments have been made on a quad-socket server with 4 NUMA nodes.
Each NUMA node holds a 24-core Intel Xeon E7-8890v4 CPU for a total of 96
cores. The goal of the experimentations is to evaluate the capacity of fine-grained
OpenMP tasks to be a building block to improve reuse of data in shared caches.
We restrict all our experimentation on one NUMA node with up to 24 cores.

We make use of the LLVM libOMP version from http://llvm.org/git/
openmp.git, branch release 50. The source code of the LLVM runtime has been
instrumented to precisely measure the clock cycles for basic operations for the
OpenMP task management in libOMP. We use the time stamp counter (rdtsc)
that is incremented at constant rate on the platform.

3.1 Completion Time Breakdown of OpenMP Tasks Management

The LLVM OpenMP runtime libOMP has been instrumented to measure the
delay for each the different steps in the task creation as presented in Sect. 2.2.
In order to limit the overhead, we insert calls to get the real time stamp counter
a the begin and the end of each of these steps. Delays are cumulated per thread
and a final summation is computed at the end of the program to avoid overhead
due to concurrent update. It impacts six functions, including the initialization
of finalization of the library to dump the values.

Figure 1 reports results for the BOTS [11] benchmarks with only independent
tasks. Figure 2 reports results on the Jacobi and SparseLU benchmarks of the
KASTORS suite [27]. They compare two versions of the same code: one with
independent tasks and the second with dependent tasks.

Each measure is the average cycles per operation over 30 runs. In all figures,
we present the number of cycles for the following internal operations: alloc is
the allocation and initialization of the data fields for the internal task descriptor;
atomic is extracted from alloc and refer to a piece of code that update concur-
rent object by atomic instruction; finally, enqueue is the operation of inserting
the descriptor into a scheduler queue. On the benchmark with dependent tasks,
check deps is the operation of checking and adding the dependencies between
tasks and release deps is the operation of releasing successors of the ended
tasks. The sum of all these operations captures the code between a task submis-
sion and its insertion in scheduler queues.

For the independent task benchmarks, the serialization of all submitted tasks
on the case of 1-core execution shows that a task throttling heuristic can reduce
the overhead of task management. The task initialization cost increases slowly
as the number of cores grows: parts of the initialization make use of atomic
operations for which the cost depends on the number of concurrent data accesses.
The enqueue operation is stable mostly when the number of cores is greater
than 1, except for Uts [18] which is a search algorithm working on very large
unbalanced trees: the concurrency on each queue of libOMP is exacerbated.

http://llvm.org/git/openmp.git
http://llvm.org/git/openmp.git
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Fig. 1. Completion time breakdown of OpenMP independent tasks in libOMP on
BOTS.

Fig. 2. Comparison of the completion time breakdown between OpenMP-3.0 tasks
and OpenMP-4.0 dependent tasks on the Jacobi and SparseLU benchmark from the
KASTORS. The suffix ‘D’ denotes the dependent task version of the code.

For the KASTORS benchmark, except for Jacobi, the global behavior is
similar to SparseLU in Fig. 2. On average, the cost of task creation is about 10
times bigger than for independent task. Most of the cost comes from checking
dependencies. Next comes the release of dependencies to activate successors when
tasks are finished.

Jacobi is a 2D stencil. The grid size is either 8192 or 16384 and the block
size is 128 or 256. The application is memory bound and the tasks are very
fine-grained (about 5 × 105 clock ticks). Concurrent data structures are under
pressure because workers end their tasks quickly. It explains the big increase in
task creation cost (Fig. 2 jacobi taskdep for all the inputs) wherein the generating
thread run in quasi-concurrence with one of the P − 1 other threads.
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Fig. 3. Completion time breakdown of the jacobi taskdep benchmark for different hash-
table sizes (x axis). The standard hash-table size in libOMP is 997. The groups refer
to the number of cores used.

3.2 Impact of the Task Serialization

In the LLVM libOMP, the task queues are bounded to 256. When the queue is
full, the task throttling forces the serialization of the newly created tasks. Such a
situation arises when the generating thread creates tasks faster than the worker
threads can consume them. Increasing the queue size may impact the scheduling
order of the tasks. For instance, in jacobi taskdep [27], the generating thread
creates first a set of independent tasks to copy an old data version in the new
data version, then it creates tasks making stencil computation from an old data
version to produce a new version. Tasks of the second set depend on tasks of the
first set. In this case, the task throttling may block generation of tasks of the
second set: the worker thread may not activate the successor tasks because they
are not yet submitted!

On jacobi taskdep and on the smallest grid (8192, blocksize = 128), we
observe between 15% to 25% of gains for a range of a number of cores with-
out task serialization (a queue of size 216 is large enough). For a grid of size of
16384 and with the same block size (generating 4 times more tasks), the gain
ranges from 2% on 24 cores to 19% on 2 cores (15% on 8 cores) with a small
standard deviation.

3.3 Impact of the Hash Table Capacity

The hash table converts memory addresses to meta data in the libOMP pro-
cedure to compute dependencies ( kmp process deps). libOMP implements a
hash table with separate chaining when keys are hashed to the same slot. When
the load factor of the hash table increases, the cost of insertions becomes linear
in the number of chained keys. If the number n of dependencies is high, the cost
of finding a key is on average O(n/s) where s is the number of slots.

By default, the number of slots in libOMP is 997 for each implicit task
(which generally creates more dependent tasks). With this condition, the load
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factor of the hash table is near to 1: almost all insertions cause hash collisions.
We experiment jacobi taskdep on a grid size of 16384 with a small block size
of 128 and with different sizes of the hash table. The number of dependencies to
resolve is 2883584. For sizes bigger than 49999, the gain is small. The completion
time on 24 cores is 3.16 s with the default value and 2.21 s with a hash-table
size of 49999: the gain on the completion time reach 30%. Figure 3 reports the
completion time breakdown of the internal task management. As expected, the
cost of checking dependencies is reduced as the hash table is getting bigger.

4 Evaluation of the Gysela Testbed Application

The evaluated testbed application is a prototype of semi-Lagrangian 2D advec-
tion extracted from Gysela, an iterative gyro-kinetic simulation of magnetic
fusion plasmas [17]. The extracted part is the most computationally intensive of
the whole application and improving its performance is a major concern. The
prototype makes the uses of task-based scheduling since it offers a promising
approach to improve the performance of the existing code (based on OpenMP
fork-join directives) through a better data locality and a finer-grained paral-
lelism.

4.1 Overview

Being able to maintain the application is crucial since several algorithmic vari-
ants are provided and new algorithms are regularly devised. While studying this
aspect is beyond the scope of this paper, it deeply impacts the evaluated code.
Indeed, the prototype is split into independent computational parts called soft-
ware components [23] in such a way parts can be easily replaced. Components are
then assembled during a compilation process [5] that produces an OpenMP code.

Fig. 4. Sketches of dependencies between OpenMP tasks in our testbed application.
It represents tasks working on three planes. Each application level component spawns
tasks for all the planes. (Color figure online)
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The prototype iterates several times over 2D slices (plane) of 3D and 4D
arrays. An iteration is defined by a sequence of 5 components. Each component
generates a bag of independent tasks (following an SPMD approach) working
on sub-parts of the planes (usually few lines). Assembling components results in
adding dependencies between the generated bags of tasks. Figure 4 displays the
structure of the task graph submitted to the runtime per plane of the working set.
Tasks that work on different planes are totally independent. Because the graph
structure is quite simple, at the beginning of this work we were very confident
to delegate the all task scheduling concerns to an OpenMP runtime. However,
performance issues have been identified on current OpenMP runtimes.

4.2 Task Submission

A carefully hand-written OpenMP-native implementation has been designed
to study how fast it can be to use OpenMP tasks when all maintainability
constraints are skipped. This implementation submits tasks by following a depth-
first strategy, making use of recursive tasks (enabling parallel submission of
independent tasks) and synchronization steps (enforcing runtimes to work on a
sliding window of tasks). This implementation is 38% faster thanks to a better
tasks scheduling and data-reuse in caches.

Although the hand-written implementation has demonstrated the feasibility
in term of performance, important concerns such as code readability and sep-
aration of concerns are totally ignored. By using a HPC component model [5],
the whole task graph is submitted sequentially all at once using a breadth-first
strategy, as for the jacobi taskdep benchmark. In practice, Component 1 submits
a bag of many tasks, then Component 2 do the same and so forth.

It is worth noting that such a design comes from maintainability constraints.
Indeed, the separation of concerns that helps to maintain components also hin-
ders the use of a depth-first submission strategy. Moreover, it also prevents
components to make assumptions on the implementation of other components,
such as the dependency of submitted tasks. Since OpenMP 4.5 provides no way
to submit dependent tasks in parallel, submission is doomed to stay sequen-
tial. Nevertheless, this design suffers from several sources of slowdown with both
GNU libGOMP and LLVM libOMP and shared common conclusions with pre-
vious sections.

4.3 Characteristics of the Performances Drop

As for jacobi taskdep, task submission becomes slower than the actual execu-
tion of tasks before they can be fine enough for the computation to fit better
in caches resulting in starvation of worker threads and higher completion times.
This high overhead comes from a combination of many technical factors: a small
fixed-size hash table not well-suited for so many tasks, a contention of shared
data structures in runtimes as tasks are being submitted while others are run-
ning.
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Fig. 5. Reordering strategy principle. (a) State of the ready list with the original work
stealing after the task submission from components 1 (blue), 2 (hidden because tasks
are dependent of the component 1) and 3 (red). See Fig. 4. (b) State of the ready list
using the reordering strategy. (Color figure online)

The task throttling prevents the execution of tasks using a depth-first strat-
egy as shown in Sect. 2.3: the submission is halted and current tasks executed
before dependent tasks can be submitted. Without clairvoyance on all the com-
putation, the execution order is close to the sequential order of task creation: this
breadth-first strategy causes tasks to work simultaneously on a bigger amount
of data (all the planes) resulting in poor utilization of caches.

4.4 Improving Locality Through Tasks Rescheduling

Even when the task throttling threshold is increased, the available scheduling
algorithms are not able to group the execution of tasks working on the same plane
although they are dependent and share data. The execution order mainly follows
the submission order which turns out to be inefficient in our case. Figure 5(a)
represents the submission order in the scheduler’s ready list of the generating
thread and the way the owner thread and thieves operate on the list during a
steal operation. In work stealing, the owner (victim) and the thieves operate at
the two extremities of the list to avoid any contention.

However, here, we want the cores to share data in caches. It is preferable
that all threads operate on the same side of the list to favor data sharing. Thus,
the LLVM libOMP function kmp steal task has been modified to work in
cooperation with functions that enqueue and dequeue tasks for the owner thread
of the queue. Now, a thread enqueues new ready tasks at the same side of the
list, where all other threads are working.

Keeping lists ordered as in case (a) is not enough, the ready tasks (red tasks
of Fig. 4) have to be enqueued close to those working on the same plane. Thus,
we have developed a fast reordering strategy of the ready list which computes
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Fig. 6. Comparison of completion times for the Gysela application with different con-
figurations.

on-line position where to insert ready tasks. This helps to favor the case (b) of
Fig. 5. The heuristic is simple and well-suited for such a dependency task graph.
It adds O(1) instructions per dependencies.

Each task keeps the range of tasks in the ready list on which it depends. A
task having no predecessor task is enqueued in the ready list and it initializes
the range on itself. The algorithm which computes dependencies visits, for each
newly created task, all its predecessors. During this step, the union of the range
of all predecessors is incrementally computed, and the last inserted tasks in the
ready list to the oldest in the union range is reordered. Due to dependencies, the
ranges tend to include all the tasks. The reordering is currently stopped when
the ranges become too wide.

Figure 6 reports the completion time on 8, 12 and 24 cores of the Gysela
testbed application. A bigger hash-table size (132069 in place of 997) improves
the performance by at least 17%. On 24 cores, the reordering achieves a perfor-
mance gain of 41% over the original LLVM libOMP library.

5 Discussion

The OpenMP standard becomes predominant in the HPC runtime community.
The recent integration of tasks into the standard has completely changed the way
applications can describe parallel algorithms, enabling the description of more
complex and finer-grained parallel computations. However, we are facing issues
where OpenMP specification does not help us to guarantee performance porta-
bility. Indeed, in our case based on the decision to delegate the task management
to OpenMP, the task granularity is enforced to reach high performance, while
the task submission order is a consequence of the need for separation of concerns
in the code. These two factors are the main sources of the issues explained in
this paper: the task implementation of experimented runtime exhibits a high
overhead and the submission order is not well-suited for reusing cached data. It
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seems a better long-term solution to improve OpenMP rather than handcrafting
the generated OpenMP code.

What solutions are offered by OpenMP? Let us consider several opportunities
to solve our issues.

5.1 Optimizing OpenMP Runtime Implementation

There are technical solutions for some issues presented above. The first one con-
cerns the task throttling heuristic which is too basic in LLVM and GCC runtimes.
One way is to integrate a more robust heuristic, for instance, such as in [12].
Another possible direction would be to claim that such heuristic will potentially
always takes wrong decisions, as in our case, with a strong performance loss.
Note that in our past work [9], thanks to a very low overhead in task creation,
our implementation, without any throttling heuristic, was very competitive with
the GCC or Intel implementations. We think that the task granularity is an
algorithmic parameter and that OpenMP provides an explicit way to control it
using the clause if of the task directive. Thus, in our point of view, it is better
to disable any throttling heuristic in the runtime that may impact performance,
even if it is in few cases such as ours.

Another important parameter which impacts performances is the cost of
finding dependencies using the hash table. Preliminary results for GCC exhibits
a similar behavior. The LLVM runtime has a too small hash-table that, indeed,
generate a lot of hash collision. This problem should be studied and we currently
integrate in the LLVM runtime a resizable hash table (the size depends on the
load factor).

5.2 Parallelization of Task Submission

As described in Sect. 4.3, if the task submission is slow compared to the execu-
tion, the scheduler may never be able to activate the dependent tasks because
they are not yet created: the scheduler is not clairvoyant. A straightforward idea
is to make the task submission parallel. As for Gysela, a simple way would be
to take into account the independence of tasks that belong to different planes.
However, the component model used need to be extended to take into account
the hierarchical structure of some applications such as Gysela and the high-level
component assembly compiler back-end need to be changed too.

Moreover, according to the current OpenMP standard, the parallel submis-
sion is restricted to independent tasks only. The enforced constraint on the
depend clause [8] is that it “establishes dependences only between sibling tasks”,
i.e. between tasks that are child tasks of the same task region.

Past projects have deals with a way to parallelize task submission in presence
of dependencies. For instance, Athapascan-1 [14] was able to successfully par-
allelize the task graph submission of a stencil [22] on distributed architectures
using a postponed access mode in order to delegate real access to data to sub
tasks. More recently, a similar solution proposed for OpenMP with the use weak
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dependencies [20] seems very interesting if implementation scale enough with
the number of submitted tasks.

5.3 Specialization of Task Scheduler

It is generally accepted that task scheduling depends on the targeted applica-
tion. How to specialize a task scheduler for an OpenMP program? In addition
to its original implementation, Cilk [13] provides guarantees on the expected
performances in term of work and depth or critical path. What could be such a
performance model for OpenMP task schedulers, even in presence of restrictions?

We propose a two steps organization of the way applications may influence
the task scheduler of an OpenMP runtime. First, hints should be pass to the
runtime in order to schedule a group of tasks according to a specific heuristic.
Similarly to the clause schedule available for work-sharing loops, we expect
a clause task schedule for task groups and parallel directives. Such a clause
enable the application to pick a specific task scheduler (among those provided)
that should be preferred by the runtime, and may be defined by some expert
users.

Secondly, in the same way OMPT has been defined to capture (in a portable
manner) the state and the events generated by OpenMP runtimes, we expect to
have access to an API (for experts) to enforce actions made by the runtime in
order to have a better control over the scheduler or to redefined it.

6 Related Work

Optimizing task submission has been the subject of numerous works. In lazy
approaches, the task creation is delayed until an idle resource requires tasks [16,
24]. Compilation strategies can reduce the overhead by exploiting the structure
of the scheduler: for instance, the Cilk compiler generates two variants of each
task (fast and slow clones) [13] in a way that move overheads out of the work and
onto the critical path. However, this method, defined in Cilk as the work-first
principle, may come at the expense of an impaired scalability. In [4], the authors
have similar considerations about the generation of fast/slow clones. Orthogonal
optimizations concern the optimization of the data-structure representation. The
size of internal descriptors of the dependent tasks in LLVM libOMP is at most
of 424 bytes per dependency, while in libKOMP, a native task descriptor is less
than 64 bytes explaining most of the speedup [9].

Swann [25] compared different methods of dependency analysis. Tur-
boBLYSK [21] has proposed a way to cache dependencies of task graphs in
order to reuse them without any overhead during the resolution. Following the
work-first principle, in [15], the computations of dependencies have been moved
from the work to steal operations.

A fast task creation can reduce the inactivity of worker threads. The schedul-
ing algorithm may have a strong impact on the overall performance, such as the
reorder method proposed in Sect. 4.4. A lot of scheduling heuristics in runtime
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systems has been proposed to improve the task locality [3,7,10] and to control
the task affinity [19,26], but few of them are dealing with task reordering as
presented above.

7 Conclusion

This paper has presented preliminary reports of using fine-grained tasks in
OpenMP. Most of the measures and developments have been made with the
LLVM OpenMP runtime supported by the LLVM group. Due to the fine gran-
ularity and preliminary experiments, we assumed that GNU libGOMP would
behave the same way with at least similar overheads. The completion time
breakdown analysis has focused on the task submission, especially costs related
to checking dependencies and in the way to make the scheduler clairvoyant in
order to reorder the on-line queue of ready tasks.

Further investigations on a wider range of applications are needed for the
reordering method.

Several extensions of the Intel libOMP have been proposed and implemented.
Results obtained on the Gysela prototype are satisfactory. Future works will
focus on optimizing an OpenMP runtime for issues identified by such an appli-
cation: support for fine-grained task. Finally, if the overhead cannot be avoided,
then parallelizing the submission may be a solution.
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