
The Impact of Taskyield on the Design
of Tasks Communicating Through MPI

Joseph Schuchart1(B), Keisuke Tsugane2, José Gracia1, and Mitsuhisa Sato2

1 High-Performance Computing Center Stuttgart (HLRS),
University of Stuttgart, Stuttgart, Germany

{schuchart,gracia}@hlrs.de
2 University of Tsukuba, Tsukuba, Japan

tsugane@hpcs.cs.tsukuba.ac.jp, msato@cs.tsukuba.ac.jp

Abstract. The OpenMP tasking directives promise to help expose a
higher degree of concurrency to the runtime than traditional worksharing
constructs, which is especially useful for irregular applications. In com-
bination with process-based parallelization such as MPI, the taskyield

construct in OpenMP can become a crucial aspect as it helps to hide
communication latencies by allowing a thread to execute other tasks
while completion of the communication operation is pending. Unfor-
tunately, the OpenMP standard only provides little guarantees on the
characteristics of the taskyield operation. In this paper, we explore dif-
ferent potential implementations of taskyield and present a portable
black-box tool for detecting the actual implementation used in exist-
ing OpenMP compilers/runtimes. Furthermore, we discuss the impact
of the different taskyield implementations on the task design of the
communication-heavy Blocked Cholesky Factorization and the difference
in performance that can be observed, which we found to be over 20 %.

Keywords: OpenMP tasks · Task-yield
Blocked Cholesky Factorization · Hybrid MPI/OpenMP · OmpSs

1 Motivation

Task-based programming in OpenMP is gaining traction among developers of
parallel applications, both for pure OpenMP and hybrid MPI + OpenMP appli-
cations, as it allows the user to expose a higher degree of concurrency to the
scheduler than is possible using traditional work-sharing constructs such as par-
allel loops. By specifying data dependencies between tasks, the user can build a
task-graph that is used by the scheduler to determine partial execution ordering
of tasks. At the same time, OpenMP seems to become an interesting choice for
higher-level abstractions to provide an easy transition path [9,10].

The OpenMP standard specifies the taskyield pragma that signals to the
scheduler that the execution of the current task may be suspended and the
thread may execute another task before returning to the current task (in case of
c© Springer Nature Switzerland AG 2018
B. R. de Supinski et al. (Eds.): IWOMP 2018, LNCS 11128, pp. 3–17, 2018.
https://doi.org/10.1007/978-3-319-98521-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98521-3_1&domain=pdf

4 J. Schuchart et al.

untied tasks, the execution of the latter may be resumed by a different thread
as well) [6]. This feature has the potential to hide latencies that may occur
during the execution of a task, e.g., waiting for an external event or operation
to complete. Among the sources for such latencies are I/O operations and (more
specifically) inter-process communication such as MPI operations.

Traditionally, the combination of MPI + OpenMP using work-sharing con-
structs requires a fork-join model where thread-parallel processing interchanges
with sequential parts that perform data exchange with other MPI ranks. Using
OpenMP tasks, the user may structure the application in a way that communica-
tion can be performed concurrently with other tasks, e.g., perform computation
that is independent of the communication operations [1,4]. In that case, com-
munication may be split into multiple tasks to (i) parallelize the communication
and (ii) reduce synchronization slack by achieving a fine-grained synchronization
scheme across process boundaries, e.g., start the computation of a of subset of
boundary cells as soon as all required halo cells from a specific neighbor have been
received. The MPI standard supports thread-parallel communication for appli-
cations requesting the support for MPI THREAD MULTIPLE during initialization [5],
which is supported by all major implementations by now.

Fine-grained synchronization is especially useful for communication-heavy
hybrid applications such as the distributed Blocked Cholesky Factorization,
which decomposes a real-valued, positive-definite matrix A into its lower tri-
angular matrix L and its transpose, i.e., A = LLT . The computation of a block
can naturally be modeled as a task that may start executing as soon as the
blocks required as input are available, either coming from previous local tasks
or received from another MPI rank. Figure 1 depicts two different approaches
towards decomposing the computation and communication of blocks with a
cyclic distribution across two processes (Fig. 1a) into tasks: Fig. 1b shows the
use of coarse communication tasks, i.e., all send and receive operations are fun-
neled through a single task. In Fig. 1c the communication is further divided
into individual tasks for send and receive operations, which has the potential of
exposing a higher degree of concurrency as tasks requiring remote blocks, e.g.,
some of the tasks at the bottom of the depicted graph, may start executing as
soon as the respective receive operation has been completed. In particular, the
synchronization stemming from the communication of blocks between tasks on
different processes only involves a single producing task and a set of consuming
tasks instead of including all producing and consuming tasks. While this may
seem trivial for the depicted dual-process scenario, the difference can be expected
to be more significant with increasing numbers of processes.

With MPI two-sided communication, a receive operation can only complete
once a matching send operation has been posted on the sending side, and vice
versa. At the same time, a portable OpenMP application should neither rely on
the execution order of runnable tasks nor on the number of threads available
to execute these tasks [6, Sect. 2.9.5]. Thus, it should not rely on a sufficient
number of threads to be available to execute all available communication tasks,
e.g., to make sure all send and receive operations are posted. In order to perform

The Impact of Taskyield on the Design of Communicating Tasks 5

(a) Cyclic block distri-
bution

(b) Coarse-grain communication tasks

potrf (0, 0)

trsm (0, 1)trsm (0, 4)trsm (0, 2)

syrk (2,2)

gemm (2, 3)

syrk (4,4)

gemm (1, 3) gemm (1,2)syrk (1,1)

trsm (0, 3)

syrk (3,3) gemm (1, 4)

gemm (2, 4)

gemm (3, 4)

recv (0, 1) recv (0, 4)recv (0, 2)recv (0, 3)

send (0, 2) send (0, 4) send (0, 1) send (0, 3)

send(0,0) recv(0,0)

potrf (1, 1)

send(1,1) recv(1,1)

(c) Fine-grain communication tasks

Fig. 1. Task graph of the first iteration of the Blocked Cholesky Factorization on a
matrix with cyclic distribution of 5× 5 blocks across 2 processes with coarse- and fine-
grain communication tasks. Local dependencies are depicted as strong dashed lines and
communication as fine-dashed lines.

fine-grained synchronization using MPI two-sided communication, the user may
be tempted to rely on taskyield to force the task scheduler to start the execution
of all available tasks. Otherwise, the communication in Fig. 1c may deadlock as
only either send or recv may be posted concurrently on both processes.

Unfortunately, the OpenMP standard is rather vague on the expected behav-
ior of taskyield as it only specifies that the execution of the current task may be
interrupted and replaced by another task. The standard does not guarantee that
the current thread starts the execution of another runnable task (if available)
upon encountering a taskyield directive. An implementation may safely ignore
this directive and continue the execution of the currently active task. At the
same time, OpenMP does not offer a way to query the underlying implementa-
tion for the characteristics of taskyield, making it hard for users to judge the
extent to which fine-grained communication tasks may be possible.

6 J. Schuchart et al.

In this paper, we discuss possible implementations of taskyield in Sect. 2. We
further present a simple and portable black-box test to query the characteristics
of taskyield and summarize the results on different OpenMP implementations
in Sect. 3. Section 4 provides a performance comparison of different implemen-
tations of the distributed Blocked Cholesky Factorization that are adapted to
the previously found characteristics. We draw our conclusions and outline future
work in Sect. 5.

2 Potential Implementations of Taskyield

As mentioned above, the OpenMP standard leaves a high degree of freedom
to implementations as to whether and how taskyield is supported. While this
provides enough flexibility for implementations, it decreases the portability of
application relying on specific properties of taskyield. In this section, we present
a classification of possible implementations and outline some of their potential
benefits and drawbacks.

No-op. Figure 2a depicts the simplest possible implementation: ignoring the
taskyield statement simplifies the scheduling of tasks as a thread is only exe-
cuting one task at a time without having to handle different task contexts (the
context of a task is implicitely provided by the thread’s private stack). For the
purpose of hiding latencies, this implementation does not provide any benefit
as tasks trying to hide latencies will simply block waiting for the operation to
complete without any further useful work being performed in the meantime.
Consequently, the <slack> of task T1 cannot be hidden and the runnable tasks
T2 and T3 are only scheduled once T1 has finished its execution (1 and 2).
This may lead to deadlocks in two-sided MPI communication if not enough tasks
are executed to post a sufficient number of communication operations.

Stack-Based. In Fig. 2b, a stack-based implementation of taskyield is depicted.
Upon encountering a taskyield directive in task T1, the current thread retrieves
the next runnable task T2 from the Queue (if any) and starts its execution
on top of T1 (1). The execution of T1 resumes only after the execution of
T2 finished. T1 may test the state of the operations it waits on and yield the
thread to another task, e.g., T3 (2). This scheme provides a simple way for
hiding latencies: tasks are not required to maintain their own execution context
as again the stack of the current thread hosts the execution context and tasks are
not enqueued into a queue upon encountering a taskyield directive. However,
thread-private stacks are typically limited in size (albeit user-configurable) and
thus implementations may have to limit the task-yield stack depth. Another
drawback is the potential serialization of tasks: if all tasks that are being stacked
upon each other happen to call taskyield, the re-entrance of the lower tasks is
delayed until all tasks on top of them have finished their execution. Deadlocks
in MPI two-sided communication may still occur if the number of operations is
greater than the accumulated task-yield stack limit of the available threads.

The Impact of Taskyield on the Design of Communicating Tasks 7

(a) No-op (b) Stack-based

(c) Cyclic (d) N-Cyclic (N=1)

Fig. 2. Possible implementations of task-yield (single thread, three tasks).

Cyclic. An implementation supporting cyclic taskyield has the ability to
reschedule tasks into the ready-queue for later execution by the same or another
thread (in case the task is marked as untied). As depicted in Fig. 2c, upon
encountering a taskyield (1) the thread moves the current task with its con-
text to the end of the ready-queue and starts executing the next available task
(2). Since the task T1 has been inserted at the end of the queue, its execution
will only resume after the execution of T3 has completed or suspended through
a call to taskyield (3 and 4). Provided that a sufficient number of runnable
tasks is available, the latency of the operation started by T1 can be completely
hidden behind the execution of T2 and T3. However, cyclic taskyield requires
each task to maintain its own execution context as tasks are swapped in and out
and thus cannot rely on the thread’s stack to host their context. Even in the
presence of a large number of communication tasks, cyclic taskyield guarantees
the execution of all communicating tasks, thus avoiding deadlocks with MPI
two-sided communication.

N-cyclic. The N-cyclic taskyield depicted in Fig. 2d is a generalization of the
cyclic taskyield in that it inserts the yielding task at position N into the queue.
This may be desireable by the user for two reasons: (1) a large number of tasks
have been created and are runnable but the yielding task should resume its
execution only after a few other tasks have been executed and before all of the
runnable tasks executed, or (2) the available memory is scarce and may not
be sufficient for all remaining tasks to allocate contexts and yield the thread,
which would require a large number of contexts to be allocated at the same time.
However, a hard-coded (small) limit N would introduce a similar potential for
deadlocks in communication-heavy applications as the stack-based yield with
limited stack-depth.

8 J. Schuchart et al.

3 Existing Taskyield Implementations

We attempted to determine the actual variant of taskyield implemented by dif-
ferent OpenMP implementations. While some implementations are open source
(GCC, Clang, OmpSs [3]), other implementations have to be treated as a black-
box (Cray, PGI, Intel). Thus, we created a black-box test that tries to determine
the characteristics of the underlying implementation.1

The test is presented in Listing 1.1. The main logic consists of a set of untied
tasks with each task containing two taskyield regions (lines 15 and 34). The test
logic relies on the constraint that only one thread is involved in its execution.
Thus, all but the master thread are trapped (lines 9 through 11) in order to
avoid restricting the enclosing parallel region to a single thread, which would
otherwise skew the result.

It is important that the tasks are marked as untied as otherwise threads
may not start the execution of sibling tasks, as mandated by the OpenMP task
scheduling constraints [6, p. 94].

Before issuing the first task-yield, each task increments a shared variable
and stores its value locally to determine the execution order (line 13). After
returning from the first yield, the first task checks whether any other task has
been executed in the meantime (line 19). If that is not the case, it is easy to
determine that the taskyield was a no-op (line 20). Otherwise, the task continues
to first check whether all or a subset of the remaining tasks have already executed
the second task-yield and thus completed their execution, in which case the
task-yield implementation is an unlimited (line 24) or depth-limited (line 26)
stack-based implementation, respectively. If this is not the case, the task checks
whether all tasks or a subset of tasks have at least reached the first task-yield,
in which case we infer either a cyclic (line 28) or N-cyclic (line 30) task-yield.

Table 1 lists the implementations we detected using the black-box test dis-
cussed above. The result for GCC matches the expectations we had after exam-
ining the available source code of libgomp. In the case of both Clang and Intel,
we found that more than one thread has to be requested to enable a stack-based
yield with a depth limit of 257 tasks. Upon further investigation, it appears that
this limit is imposed by the task creation throttling, i.e., the number of tasks
the master thread creates before it starts participating in the task processing.
We have not found a way to control the throttling behavior.

The Cray compiler behaves similarly with a stack-based yield limited by task
creation throttling, although the imposed limit appears to be 97 tasks. For the
PGI compiler, we determined a no-op task-yield.

The OmpSs compiler uses a task throttling mechanism by default, which
imposes a configurable upper limit with a default of T × 500 on the number of
tasks active, with T being the number of threads [2]. Consequently, the task-yield
should be considered N-cyclic with N = T ×500. The throttling mechanism can
be disabled, which leads to a full-cyclic task-yield.

1 The full code is available at https://github.com/devreal/omp-taskyield.

https://github.com/devreal/omp-taskyield

The Impact of Taskyield on the Design of Communicating Tasks 9

Listing 1.1. Black-box test for taskyield implementations.
1 volatile int flag_one_cntr = 0;

2 volatile int flag_two_cntr = 0;

3

4 #pragma omp parallel

5 #pragma omp master

6 for (int i = 0; i < NUM_TASKS+omp_get_num_threads()-1; ++i) {

7 #pragma omp task firstprivate(i) untied

8 {

9 if (omp_get_thread_num() > 0) {

10 // trap all but thread 0

11 while(flag_one_cntr != NUM_TASKS) { }

12 } else {

13 int task_id = ++flag_one_cntr;

14

15 #pragma omp taskyield

16

17 // when come back we only care about the first task

18 if (task_id == 1) {

19 if (flag_one_cntr == 1) {

20 printf("NOOP\n");

21 }

22 // some other tasks were running in between

23 else if (flag_two_cntr == (NUM_TASKS - 1)) {

24 printf("STACK (unlimited)\n");

25 } else if (flag_two_cntr == flag_one_cntr-1) {

26 printf("STACK (depth=%d)\n", flag_one_cntr);

27 } else if (flag_one_cntr == NUM_TASKS) {

28 printf("CYCLIC\n");

29 } else if (flag_one_cntr > 0) {

30 printf("N-CYCLIC (N=%d)\n", flag_one_cntr-1);

31 }

32 }

33

34 #pragma omp taskyield

35

36 ++flag_two_cntr;

37 } // thread-trap

38 } // pragma omp task

39 } // for()

Table 1. Detected taskyield implementations using the black-box test depicted in
Listing 1.1. T represents the number of threads.

Runtime Version tested Task-yield

GCC 7.1.0 No-op

Clang, Intel Clang 5.0.1, Intel 18.0.1 No-op

OMP NUM THREADS > 1 Stack (257)

Cray CCE 8.6.5 No-op

OMP NUM THREADS > 1 Stack (97)

PGI 17.7 No-op

OmpSs 17.06, 18.04 Cyclic (T × 500)

NX ARGS="--throttle=dummy" Cyclic

10 J. Schuchart et al.

Overall, our black-box test successfully detects the yield characteristics of
existing OpenMP implementations. We hope that this test helps users experi-
menting with the OpenMP taskyield directive to choose the right task design
depending on the OpenMP implementation at hand.

4 Evaluation Using Blocked Cholesky Factorization

To evaluate the impact of the different taskyield implementations on the per-
formance of a communication-heavy hybrid application, we implemented several
variants of the Blocked Cholesky Factorization.2 The benchmark employs BLAS
level 3 routines inside OpenMP tasks with defined input and output dependen-
cies to create task graphs similar to the ones depicted in Fig. 1.

4.1 Implementations of Blocked Cholesky Factorization

Funneled Communication. We start from a version that funnels communica-
tion through a single task to exchange the blocks computed by the trsm tasks, as
depicted in Fig. 1b. This version of the benchmark is guaranteed to work with all
available OpenMP implementations and any number of threads, as no deadlock
in the MPI communication may occur.

The single-task implementation comes in two flavors: in the funneled variant
the communication task calls taskyield while waiting for the communication to
finish whereas with funneled-noyield task-yield is not used. The latter serves as
the baseline as it mimics the no-op task-yield on all OpenMP implementations.

Fine-Grained Communication Tasks. In contrast to funneled, the fine

version of the benchmark creates a task per communication operation, leading
to fine-grained task dependencies as depicted in Fig. 1c and a potentially higher
degree of concurrency exposed to the scheduler. For this version, it is essential
that a sufficient number of communication tasks can initiate block transfers to
avoid starvation, e.g., N + 1 with N being either the number of receiving or
sending tasks. Creating this version for cyclic task-yield only requires declaring
input and output dependencies between the tasks, leaving it to the scheduler to
properly execute them. As mentioned above, it is important that communication
tasks are marked as untied as otherwise threads will not switch between tasks.

Unfortunately, employing fine-grained communication tasks with implemen-
tations offering stack-based task-yield requires more effort and has been an
tedious process. Specifically, we were required to introduce dummy tasks to avoid
communication tasks from different communication phases, i.e., tasks commu-
nicating the results of potrf and trsm, to overlap. This partial serialization of
tasks is necessary as otherwise recv tasks (which naturally do not have local
input dependencies) from a later communication phase may be scheduled on top
of earlier recv tasks. The later recv tasks might then stall and never return to

2 All code is available at https://github.com/devreal/cholesky omptasks.

https://github.com/devreal/cholesky_omptasks

The Impact of Taskyield on the Design of Communicating Tasks 11

the earlier tasks due to implicit transitive dependencies through MPI between
them. As an example, consider the recv(1,1) task depicted on the right in
Fig. 1c being scheduled on top of recv(0,0), which has the transitive implicit
dependency recv(0,0) → trsm(0,1) → send(0,1) → recv(0,1) → syrk(1,1) →
potrf(1,1) → send(1,1) → recv(1,1). As a consequence, the user has to identify
and expose these implicit dependencies stemming from two-sided communica-
tion, which OpenMP is otherwise not aware of.

Per-Rank Communication Tasks. We also made an attempt to reduce the
number of communication tasks by combining all send and recv operations for
a specific rank into a single task. This variant is called perrank and requires
support for dependency iterators (as proposed in [7, p. 62]) to map dependencies
from the block domain to the process domain, e.g., to collect dependencies on all
blocks that have to be sent to a specific process. At the time of this writing, only
OmpSs offered support for dependency iterators (called multi-dependencies).

Even with support for dependency iterators, the perrank version is not guar-
anteed to run successfully on no-op task-yield implementations as there are no
formal guarantees on the execution order of tasks. Given a guaranteed similar
relative execution order of the communication tasks on all processes, e.g., in the
(reverse) order in which they were created, perrank will run successfully even on
a single thread. However, if the execution order is random across processes, e.g.,
with a reverse order on some processes as a worst case, a minimum number of
communication operations has to be in flight to avoid a deadlock. While we have
not established a formal definition of this lower bound, we expect it to be below
(p−1)

2 , with p being the number of processes participating in the (potentially
all-to-all) block exchange. However, the scalability in terms of processes may be
limited by the number of threads available.

4.2 Test Environment

We ran our tests on two systems: Oakforest PACS , a KNL 7250-based system
installed at the University of Tsukuba in Japan with 68-core nodes running at
1.4 GHz, and Hazel Hen, a Cray XC40 system installed at HLRS in Germany,
which is equipped with dual-socket Intel Xeon CPU E5-2680 v3 nodes running
at 2.5 GHz. On Oakforest PACS, we employed the Intel 18.0.1 compiler and Intel
MPI 2018.1.163. On Hazel Hen, we used the Intel 18.0.1, GNU 7.2.0, and Cray
CCE 8.6.5 compilers as well as Cray MPICH 7.7.0. On both systems, we used
the OmpSs compiler and runtime libraries in version 17.06 in ompss mode.

On Oakforest PACS, we relied on the runtime system implementation
to ensure proper thread pinning, i.e., using KMP AFFINITY=granularity=fine,

balanced for Intel. The OmpSs runtime performs thread pinning by default,
which we had to explicitely disable on the Cray system as it would otherwise
interfere with the thread pinning performed by aprun.

12 J. Schuchart et al.

4.3 Results

Using the information from the black-box test presented in Sect. 3, we executed
the different benchmark implementations discussed above with any suitable
OpenMP compiler. We first ran the Cholesky factorization on matrices of size
64k2 double precision floating point elements with a block size of 5122 elements.

Fig. 3. Strong scaling performance and speedup relative to noyield of Blocked
Cholesky Factorization on a 64k2 matrix with block size 5122 using different OpenMP
compilers.

The measured performance of the benchmark on the Cray system is presented
in Fig. 3a. The most important observation is that the implementations using
fine-grained communication tasks (solid line) by far outperform the variant using
funneled communication (dashed lines). The speedup of fine-grained communi-
cation tasks (depicted in Fig. 3b) range up to 42 % for OmpSs and up to 24 %
for both Intel and Cray. For fine-grained dependencies, the OmpSs implementa-
tion outperforms the fine-grained implementations of the stack-based taskyield

present in the Cray and Intel implementations. It is notable that OmpSs appears
to saturate performance earlier – at 32 nodes – than the latter two implementa-
tions, which approach the saturation point at 64 nodes. It can also be observed
that the difference between the noyield and the funneled version using taskyield

The Impact of Taskyield on the Design of Communicating Tasks 13

is marginal, which can be attributed to the fact that yielding a single thread does
not constitute a significant increase in resource availability given that a single
thread occupies less than 5 % of the node’s overall performance.

On Oakforest PACS, except for 64 nodes the different benchmark vari-
ants perform slightly better when using the Intel OpenMP implementation as
compared to running under OmpSs, as depicted in Fig. 3c and d. This may
be attributed to the generally higher overhead of task dependency handling
observed in OmpSs [8]. However, relative to noyield, the versions using fine-
grained communication tasks exhibit up to 34 % speedup with OmpSs and 25 %
with Intel, with the main improvements seen in mid-range node numbers.

An interesting observation can be made on both systems regarding fine-
grained communication tasks on the Intel runtime: for two nodes fine-grained
communication tasks can have a negative impact on the performance, which
diminishes and turns into performance improvements with increasing node num-
bers. This effect shrinks again for the highest node numbers.

We also note that perrank communication tasks do not seem to provide sig-
nificant benefits over funneled communication.

Breakdown of CPU Time. Figure 4 presents a breakdown of the accumulated
time spent by the threads on the four BLAS operations and MPI communica-
tion as well as idle state and overhead. The latter contains task creation, task
instantiation, task switching, and idle times as we have not found a way to
further break down these numbers accurately. In all cases, the gemm kernel is
the dominating factor but it is interesting to note that the overhead/idle times
significantly increase with increasing node numbers for the funneled versions,
indicating a lack of concurrency due to the coarse-grain synchronization. With
the fine-grained synchronization, the idle times seem to be lower. However, at
least for the Intel compiler the time spent waiting on MPI communication rises
with increasing node numbers while this effect is less pronounced in OmpSs. We
attribute this to the limiting effect on the available concurrency of stack-based
task-yield: tasks below the currently executing task are blocked until the tasks
above (and potentially the communication handled by them) have finished. In
contrast to this, communication tasks in the cyclic task-yield in OmpSs fin-
ish as soon as the respective communication operations have finished and their
execution has resumed once, allowing idle threads to poll for completion.

Scaling the Problem Size. Figure 5 depicts the strong scaling results of
the Blocked Cholesky Factorization on a matrix with 128k2 elements. Due to
the computational complexity of O(n3), the total number of computation tasks
increases by a factor of eight compared to a matrix size of 64k2, leading to a
total number of computation tasks of 2.8 million and putting significantly higher
pressure on the task scheduler. On the Cray XC40 (Fig. 5a), OmpSs using fine-
grained dependencies again outperforms all other implementations as it benefits
from the larger number of available computational tasks, followed by the Intel
compiler with fine-grained dependencies. All funneled runs show only limited

14 J. Schuchart et al.

Fig. 4. Breakdown of CPU time of different implementations of the Blocked Cholesky
Factorization for a 64k2 matrix with block size 5122.

Fig. 5. Strong scaling Performance of Blocked Cholesky Factorization on a 128k2

double precision floating point matrix with block size 5122 using different OpenMP
compilers.

scaling as they cannot exploit the full degree of concurrency present due to the
coarse-grained synchronization. We should note that we were unable to gather
reliable data for fine-grained communication tasks with the Cray compiler as we

The Impact of Taskyield on the Design of Communicating Tasks 15

saw frequent deadlocks in the MPI communication, presumably due to the lower
limit on the task-yield stack depth.

On Oakforest PACS (Fig. 5b), the scaling of OmpSs is rather limited com-
pared to the Intel OpenMP implementation. We attribute these limitations to
a relatively higher overhead involved in the OmpSs task management, which
becomes more significant with the larger number of tasks and the low serial
performance of a single KNL core. Again with both OmpSs and the Intel com-
piler, however, fine-grained communication tasks outperform the version using
funneled communication on the same compiler. The perrank version appears
perform slightly better, albeit with a far smaller benefit than the fine-grained
communication tasks.

4.4 Discussion

The results presented above demonstrate that the available implementation of
taskyield in OpenMP can have a significant impact on hybrid applications
attempting to hide communication latencies, both in terms of task design, incl.
correctness, and in terms of performance. While users can rely on a deadlock-
free execution of communication tasks with cyclic task-yield, more care has to
be given to the synchronization of tasks when using a stack-based or N-cyclic

yield with fine-grained communication tasks. With both no-op yield and – less
significant – stack-based yield the user has to ensure that a sufficient number of
communication operations can be in-flight, e.g., by ensuring a sufficient number
of OpenMP threads being available.

The variations of task-yield across OpenMP implementations make the tran-
sition from a correct, i.e., deadlock-free, sequential MPI application to a cor-
rect task-parallel MPI program tedious. In many cases, it might not be suf-
ficient to simply encapsulate data exchange between individual computation
tasks into communication tasks to achieve fine-grained synchronization and rely
on OpenMP taskyield to ensure scheduling of all necessary communication
tasks. Instead, users will have to work around the peculiarities of the different
implementations and will thus likely fall back to funneling MPI communication
through a single task to guarantee correct execution on all OpenMP implemen-
tations, potentially losing performance due to higher thread idle times.

However, our results strongly indicate that fine-grained communication tasks
outperform more restricted synchronization schemes such as funneled and
perrank as the former has the potential to significantly increase the concurrency
exposed to the runtime. Unfortunately, an application has no way to query the
current OpenMP implementation for information on the properties of taskyield

to adapt the communication task pattern dynamically. Introducing a way to
query these properties in OpenMP would allow users to adapt the behavior of
their application to best exploit the hardware potential under any given OpenMP
implementation. Similarly, providing a way to control the limits of task-yield
in all implementations would help (i) raise awareness of the potential pitfalls,
and (ii) provide the user with a way to adapt the runtime to the application’s
needs. Such configuration options could include the task creation throttling limit

16 J. Schuchart et al.

(as already offered by OmpSs) and any further limitation affecting the effective-
ness of task-yield in the context of distributed-memory applications relying on
two-sided communication.

5 Conclusion and Future Work

In this paper, we have presented a classification and evaluation of poten-
tial implementations of the taskyield construct in OpenMP. We discussed
advantages and disadvantages of the different implementations and how a
communication-heavy application may have to be adapted to successfully employ
task-yield for communication latency hiding. Using a black-box test we were
able to determine the characteristics of task-yield in different OpenMP imple-
mentations. We have shown that fine-grained communication tasks may outper-
form more coarse-grained approaches while requiring additional reasoning about
implicit transitive dependencies from two-sided communication in stack-based
task-yield implementations to avoid deadlocks.

Looking ahead, we plan to investigate other types of applications beyond
Blocked Cholesky Factorization. While we do not expect the performance impact
to be that pronounced on traditional stencil applications, applications from areas
such as graph processing may benefit from taskified communication while poten-
tially suffering from similar correctness problems with non-cyclic task-yield as
presented in this paper. To help users tackle the issue of implicit transitive
dependencies, it might be worth investigating ways to signal their existence to
the OpenMP scheduler or provide users means to query or even control some
scheduler characteristics, e.g., the relative task execution order and the prop-
erties of task-yield. From a user’s (idealistic) perspective, the standard would
eventually mandate a cyclic task-yield to avoid the issues described in this
paper.

Acknowledgements. We gratefully acknowledge funding by the German Research
Foundation (DFG) through the German Priority Programme 1648 Software for Exas-
cale Computing (SPPEXA) in the SmartDASH project. Part of this work has been
supported by the European Community through the project Mont Blanc 3 (H2020
program, grant agreement No 671697). This work was supported by a fellowship within
the FITweltweit program of the German Academic Exchange Service (DAAD).

References

1. Akhmetova, D., Iakymchuk, R., Ekeberg, O., Laure, E.: Performance study of mul-
tithreaded MPI and OpenMP tasking in a large scientific code. In: 2017 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops (IPDPSW),
May 2017. https://doi.org/10.1109/IPDPSW.2017.128

2. BSC Programming Models: OmpSs User Guide, March 2018. https://pm.bsc.es/
ompss-docs/user-guide/OmpSsUserGuide.pdf

3. Duran, A., et al.: OmpSs: a proposal for programming heterogeneous multi-
core architectures. Parallel Process. Lett. (2011). https://doi.org/10.1142/
S0129626411000151

https://doi.org/10.1109/IPDPSW.2017.128
https://pm.bsc.es/ompss-docs/user-guide/OmpSsUserGuide.pdf
https://pm.bsc.es/ompss-docs/user-guide/OmpSsUserGuide.pdf
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1142/S0129626411000151

The Impact of Taskyield on the Design of Communicating Tasks 17

4. Meadows, L., Ishikawa, K.: OpenMP tasking and MPI in a lattice QCD benchmark.
In: de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S.
(eds.) IWOMP 2017. LNCS, vol. 10468, pp. 77–91. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65578-9 6

5. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
(Version 3.1) (2015). http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

6. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face, Version 4.5 (2015). http://www.openmp.org/mp-documents/openmp-4.5.pdf

7. OpenMP Architecture Review Board: OpenMP Technical report 6: Version 5.0 Pre-
view 2 (2017). http://www.openmp.org/wp-content/uploads/openmp-TR6.pdf

8. Schuchart, J., Nachtmann, M., Gracia, J.: Patterns for OpenMP task data depen-
dency overhead measurements. In: de Supinski, B.R., Olivier, S.L., Terboven, C.,
Chapman, B.M., Müller, M.S. (eds.) IWOMP 2017. LNCS, vol. 10468, pp. 156–168.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65578-9 11

9. Tsugane, K., Lee, J., Murai, H., Sato, M.: Multi-tasking execution in PGAS lan-
guage XcalableMP and communication optimization on many-core clusters. In:
Proceedings of the International Conference on High Performance Computing
in Asia-Pacific Region. HPC Asia 2018. ACM (2018). https://doi.org/10.1145/
3149457.3154482

10. YarKhan, A., Kurzak, J., Luszczek, P., Dongarra, J.: Porting the PLASMA numer-
ical library to the OpenMP standard. Int. J. Parallel Program. (2017). https://doi.
org/10.1007/s10766-016-0441-6

https://doi.org/10.1007/978-3-319-65578-9_6
https://doi.org/10.1007/978-3-319-65578-9_6
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-TR6.pdf
https://doi.org/10.1007/978-3-319-65578-9_11
https://doi.org/10.1145/3149457.3154482
https://doi.org/10.1145/3149457.3154482
https://doi.org/10.1007/s10766-016-0441-6
https://doi.org/10.1007/s10766-016-0441-6

	The Impact of Taskyield on the Design of Tasks Communicating Through MPI
	1 Motivation
	2 Potential Implementations of Taskyield
	3 Existing Taskyield Implementations
	4 Evaluation Using Blocked Cholesky Factorization
	4.1 Implementations of Blocked Cholesky Factorization
	4.2 Test Environment
	4.3 Results
	4.4 Discussion

	5 Conclusion and Future Work
	References

