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Preface

OpenMP is a widely accepted, standard application programming interface (API) for
high-level shared-memory parallel programming in Fortran, C, and C++. Since its
introduction in 1997, OpenMP has gained support from most high-performance
compiler and hardware vendors. Under the direction of the OpenMP Architecture
Review Board (ARB), the OpenMP specification has evolved up to and beyond version
4.5. The 4.5 version includes several refinements to existing support for heterogeneous
hardware environments, many enhancements to its tasking model including the task-
loop construct, and support for doacross loops. As indicated in TR7, OpenMP 5.0, will
include significant new features, such as mechanisms for memory affinity and the
standardization of tool APIs, and improvements in existing ones, such as the device and
tasking constructs.

The evolution of the standard would be impossible without active research in
OpenMP compilers, runtime systems, tools, and environments. OpenMP is important
both as a standalone parallel programming model and as part of a hybrid programming
model for massively parallel, distributed memory systems built from multicore,
manycore, and heterogeneous node architectures. Overall, OpenMP offers important
features that can improve the scalability of applications on expected exascale
architectures.

The community of OpenMP researchers and developers is united under the cOM-
Punity organization. This organization has held workshops on OpenMP around the
world since 1999: the European Workshop on OpenMP (EWOMP), the North
American Workshop on OpenMP Applications and Tools (WOM-PAT), and the Asian
Workshop on OpenMP Experiences and Implementation (WOMPEI), which attracted
annual audiences from academia and industry. The International Workshop on
OpenMP (IWOMP) consolidated these three workshop series into a single annual
international event that rotates across Europe, Asia-Pacific, and the Americas. The first
IWOMP workshop was organized under the auspices of cOMPunity. Since that
workshop, the IWOMP Steering Committee has organized these events and guided the
development of the series. The first IWOMP meeting was held in 2005, in Eugene,
Oregon, USA. Since then, meetings have been held each year, in: Reims, France;
Beijing, China; West Lafayette, USA; Dresden, Germany; Tsukuba, Japan; Chicago,
USA; Rome, Italy; Canberra, Australia; Salvador, Brazil; Aachen, Germany; Nara,
Japan; and Stony Brook, USA. Each workshop has drawn participants from research
and industry throughout the world. IWOMP 2018 continued the series with technical
papers and tutorials. The IWOMP meetings have been successful in large part due to
generous support from numerous sponsors.

The IWOMP website (www.iwomp.org) provides information on the latest event, as
well as links to websites from previous years’ events. This book contains the pro-
ceedings of IWOMP 2018. The workshop program included 16 technical papers, two
keynote talks, and a tutorial on OpenMP. The paper “The Impact of Taskyield on the

http://www.iwomp.org/


Design of Tasks Communicating Through MPI” by Joseph Schuchart, Keisuke
Tsugane, Jose Gracia, and Mitsuhisa Sato was selected for the Best Paper Award. All
technical papers were peer reviewed by at least three different members of the Program
Committee.

September 2018 Bronis R. de Supinski
Sergi Mateo Bellido
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The Impact of Taskyield on the Design
of Tasks Communicating Through MPI

Joseph Schuchart1(B), Keisuke Tsugane2, José Gracia1, and Mitsuhisa Sato2

1 High-Performance Computing Center Stuttgart (HLRS),
University of Stuttgart, Stuttgart, Germany

{schuchart,gracia}@hlrs.de
2 University of Tsukuba, Tsukuba, Japan

tsugane@hpcs.cs.tsukuba.ac.jp, msato@cs.tsukuba.ac.jp

Abstract. The OpenMP tasking directives promise to help expose a
higher degree of concurrency to the runtime than traditional worksharing
constructs, which is especially useful for irregular applications. In com-
bination with process-based parallelization such as MPI, the taskyield

construct in OpenMP can become a crucial aspect as it helps to hide
communication latencies by allowing a thread to execute other tasks
while completion of the communication operation is pending. Unfor-
tunately, the OpenMP standard only provides little guarantees on the
characteristics of the taskyield operation. In this paper, we explore dif-
ferent potential implementations of taskyield and present a portable
black-box tool for detecting the actual implementation used in exist-
ing OpenMP compilers/runtimes. Furthermore, we discuss the impact
of the different taskyield implementations on the task design of the
communication-heavy Blocked Cholesky Factorization and the difference
in performance that can be observed, which we found to be over 20 %.

Keywords: OpenMP tasks · Task-yield
Blocked Cholesky Factorization · Hybrid MPI/OpenMP · OmpSs

1 Motivation

Task-based programming in OpenMP is gaining traction among developers of
parallel applications, both for pure OpenMP and hybrid MPI + OpenMP appli-
cations, as it allows the user to expose a higher degree of concurrency to the
scheduler than is possible using traditional work-sharing constructs such as par-
allel loops. By specifying data dependencies between tasks, the user can build a
task-graph that is used by the scheduler to determine partial execution ordering
of tasks. At the same time, OpenMP seems to become an interesting choice for
higher-level abstractions to provide an easy transition path [9,10].

The OpenMP standard specifies the taskyield pragma that signals to the
scheduler that the execution of the current task may be suspended and the
thread may execute another task before returning to the current task (in case of
c© Springer Nature Switzerland AG 2018
B. R. de Supinski et al. (Eds.): IWOMP 2018, LNCS 11128, pp. 3–17, 2018.
https://doi.org/10.1007/978-3-319-98521-3_1
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4 J. Schuchart et al.

untied tasks, the execution of the latter may be resumed by a different thread
as well) [6]. This feature has the potential to hide latencies that may occur
during the execution of a task, e.g., waiting for an external event or operation
to complete. Among the sources for such latencies are I/O operations and (more
specifically) inter-process communication such as MPI operations.

Traditionally, the combination of MPI + OpenMP using work-sharing con-
structs requires a fork-join model where thread-parallel processing interchanges
with sequential parts that perform data exchange with other MPI ranks. Using
OpenMP tasks, the user may structure the application in a way that communica-
tion can be performed concurrently with other tasks, e.g., perform computation
that is independent of the communication operations [1,4]. In that case, com-
munication may be split into multiple tasks to (i) parallelize the communication
and (ii) reduce synchronization slack by achieving a fine-grained synchronization
scheme across process boundaries, e.g., start the computation of a of subset of
boundary cells as soon as all required halo cells from a specific neighbor have been
received. The MPI standard supports thread-parallel communication for appli-
cations requesting the support for MPI THREAD MULTIPLE during initialization [5],
which is supported by all major implementations by now.

Fine-grained synchronization is especially useful for communication-heavy
hybrid applications such as the distributed Blocked Cholesky Factorization,
which decomposes a real-valued, positive-definite matrix A into its lower tri-
angular matrix L and its transpose, i.e., A = LLT . The computation of a block
can naturally be modeled as a task that may start executing as soon as the
blocks required as input are available, either coming from previous local tasks
or received from another MPI rank. Figure 1 depicts two different approaches
towards decomposing the computation and communication of blocks with a
cyclic distribution across two processes (Fig. 1a) into tasks: Fig. 1b shows the
use of coarse communication tasks, i.e., all send and receive operations are fun-
neled through a single task. In Fig. 1c the communication is further divided
into individual tasks for send and receive operations, which has the potential of
exposing a higher degree of concurrency as tasks requiring remote blocks, e.g.,
some of the tasks at the bottom of the depicted graph, may start executing as
soon as the respective receive operation has been completed. In particular, the
synchronization stemming from the communication of blocks between tasks on
different processes only involves a single producing task and a set of consuming
tasks instead of including all producing and consuming tasks. While this may
seem trivial for the depicted dual-process scenario, the difference can be expected
to be more significant with increasing numbers of processes.

With MPI two-sided communication, a receive operation can only complete
once a matching send operation has been posted on the sending side, and vice
versa. At the same time, a portable OpenMP application should neither rely on
the execution order of runnable tasks nor on the number of threads available
to execute these tasks [6, Sect. 2.9.5]. Thus, it should not rely on a sufficient
number of threads to be available to execute all available communication tasks,
e.g., to make sure all send and receive operations are posted. In order to perform
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(a) Cyclic block distri-
bution

(b) Coarse-grain communication tasks

potrf (0, 0)

trsm (0, 1)trsm (0, 4)trsm (0, 2)

syrk (2,2)

gemm (2, 3)

syrk (4,4)

gemm (1, 3) gemm (1,2)syrk (1,1)

trsm (0, 3)

syrk (3,3) gemm (1, 4)

gemm (2, 4)

gemm (3, 4)

recv (0, 1) recv (0, 4)recv (0, 2)recv (0, 3)

send (0, 2) send (0, 4) send (0, 1) send (0, 3)

send(0,0) recv(0,0)

potrf (1, 1)

send(1,1) recv(1,1)

(c) Fine-grain communication tasks

Fig. 1. Task graph of the first iteration of the Blocked Cholesky Factorization on a
matrix with cyclic distribution of 5× 5 blocks across 2 processes with coarse- and fine-
grain communication tasks. Local dependencies are depicted as strong dashed lines and
communication as fine-dashed lines.

fine-grained synchronization using MPI two-sided communication, the user may
be tempted to rely on taskyield to force the task scheduler to start the execution
of all available tasks. Otherwise, the communication in Fig. 1c may deadlock as
only either send or recv may be posted concurrently on both processes.

Unfortunately, the OpenMP standard is rather vague on the expected behav-
ior of taskyield as it only specifies that the execution of the current task may be
interrupted and replaced by another task. The standard does not guarantee that
the current thread starts the execution of another runnable task (if available)
upon encountering a taskyield directive. An implementation may safely ignore
this directive and continue the execution of the currently active task. At the
same time, OpenMP does not offer a way to query the underlying implementa-
tion for the characteristics of taskyield, making it hard for users to judge the
extent to which fine-grained communication tasks may be possible.
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In this paper, we discuss possible implementations of taskyield in Sect. 2. We
further present a simple and portable black-box test to query the characteristics
of taskyield and summarize the results on different OpenMP implementations
in Sect. 3. Section 4 provides a performance comparison of different implemen-
tations of the distributed Blocked Cholesky Factorization that are adapted to
the previously found characteristics. We draw our conclusions and outline future
work in Sect. 5.

2 Potential Implementations of Taskyield

As mentioned above, the OpenMP standard leaves a high degree of freedom
to implementations as to whether and how taskyield is supported. While this
provides enough flexibility for implementations, it decreases the portability of
application relying on specific properties of taskyield. In this section, we present
a classification of possible implementations and outline some of their potential
benefits and drawbacks.

No-op. Figure 2a depicts the simplest possible implementation: ignoring the
taskyield statement simplifies the scheduling of tasks as a thread is only exe-
cuting one task at a time without having to handle different task contexts (the
context of a task is implicitely provided by the thread’s private stack). For the
purpose of hiding latencies, this implementation does not provide any benefit
as tasks trying to hide latencies will simply block waiting for the operation to
complete without any further useful work being performed in the meantime.
Consequently, the <slack> of task T1 cannot be hidden and the runnable tasks
T2 and T3 are only scheduled once T1 has finished its execution ( 1 and 2 ).
This may lead to deadlocks in two-sided MPI communication if not enough tasks
are executed to post a sufficient number of communication operations.

Stack-Based. In Fig. 2b, a stack-based implementation of taskyield is depicted.
Upon encountering a taskyield directive in task T1, the current thread retrieves
the next runnable task T2 from the Queue (if any) and starts its execution
on top of T1 ( 1 ). The execution of T1 resumes only after the execution of
T2 finished. T1 may test the state of the operations it waits on and yield the
thread to another task, e.g., T3 ( 2 ). This scheme provides a simple way for
hiding latencies: tasks are not required to maintain their own execution context
as again the stack of the current thread hosts the execution context and tasks are
not enqueued into a queue upon encountering a taskyield directive. However,
thread-private stacks are typically limited in size (albeit user-configurable) and
thus implementations may have to limit the task-yield stack depth. Another
drawback is the potential serialization of tasks: if all tasks that are being stacked
upon each other happen to call taskyield, the re-entrance of the lower tasks is
delayed until all tasks on top of them have finished their execution. Deadlocks
in MPI two-sided communication may still occur if the number of operations is
greater than the accumulated task-yield stack limit of the available threads.
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(a) No-op (b) Stack-based

(c) Cyclic (d) N-Cyclic (N=1)

Fig. 2. Possible implementations of task-yield (single thread, three tasks).

Cyclic. An implementation supporting cyclic taskyield has the ability to
reschedule tasks into the ready-queue for later execution by the same or another
thread (in case the task is marked as untied). As depicted in Fig. 2c, upon
encountering a taskyield ( 1 ) the thread moves the current task with its con-
text to the end of the ready-queue and starts executing the next available task
( 2 ). Since the task T1 has been inserted at the end of the queue, its execution
will only resume after the execution of T3 has completed or suspended through
a call to taskyield ( 3 and 4 ). Provided that a sufficient number of runnable
tasks is available, the latency of the operation started by T1 can be completely
hidden behind the execution of T2 and T3. However, cyclic taskyield requires
each task to maintain its own execution context as tasks are swapped in and out
and thus cannot rely on the thread’s stack to host their context. Even in the
presence of a large number of communication tasks, cyclic taskyield guarantees
the execution of all communicating tasks, thus avoiding deadlocks with MPI
two-sided communication.

N-cyclic. The N-cyclic taskyield depicted in Fig. 2d is a generalization of the
cyclic taskyield in that it inserts the yielding task at position N into the queue.
This may be desireable by the user for two reasons: (1) a large number of tasks
have been created and are runnable but the yielding task should resume its
execution only after a few other tasks have been executed and before all of the
runnable tasks executed, or (2) the available memory is scarce and may not
be sufficient for all remaining tasks to allocate contexts and yield the thread,
which would require a large number of contexts to be allocated at the same time.
However, a hard-coded (small) limit N would introduce a similar potential for
deadlocks in communication-heavy applications as the stack-based yield with
limited stack-depth.
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3 Existing Taskyield Implementations

We attempted to determine the actual variant of taskyield implemented by dif-
ferent OpenMP implementations. While some implementations are open source
(GCC, Clang, OmpSs [3]), other implementations have to be treated as a black-
box (Cray, PGI, Intel). Thus, we created a black-box test that tries to determine
the characteristics of the underlying implementation.1

The test is presented in Listing 1.1. The main logic consists of a set of untied
tasks with each task containing two taskyield regions (lines 15 and 34). The test
logic relies on the constraint that only one thread is involved in its execution.
Thus, all but the master thread are trapped (lines 9 through 11) in order to
avoid restricting the enclosing parallel region to a single thread, which would
otherwise skew the result.

It is important that the tasks are marked as untied as otherwise threads
may not start the execution of sibling tasks, as mandated by the OpenMP task
scheduling constraints [6, p. 94].

Before issuing the first task-yield, each task increments a shared variable
and stores its value locally to determine the execution order (line 13). After
returning from the first yield, the first task checks whether any other task has
been executed in the meantime (line 19). If that is not the case, it is easy to
determine that the taskyield was a no-op (line 20). Otherwise, the task continues
to first check whether all or a subset of the remaining tasks have already executed
the second task-yield and thus completed their execution, in which case the
task-yield implementation is an unlimited (line 24) or depth-limited (line 26)
stack-based implementation, respectively. If this is not the case, the task checks
whether all tasks or a subset of tasks have at least reached the first task-yield,
in which case we infer either a cyclic (line 28) or N-cyclic (line 30) task-yield.

Table 1 lists the implementations we detected using the black-box test dis-
cussed above. The result for GCC matches the expectations we had after exam-
ining the available source code of libgomp. In the case of both Clang and Intel,
we found that more than one thread has to be requested to enable a stack-based
yield with a depth limit of 257 tasks. Upon further investigation, it appears that
this limit is imposed by the task creation throttling, i.e., the number of tasks
the master thread creates before it starts participating in the task processing.
We have not found a way to control the throttling behavior.

The Cray compiler behaves similarly with a stack-based yield limited by task
creation throttling, although the imposed limit appears to be 97 tasks. For the
PGI compiler, we determined a no-op task-yield.

The OmpSs compiler uses a task throttling mechanism by default, which
imposes a configurable upper limit with a default of T × 500 on the number of
tasks active, with T being the number of threads [2]. Consequently, the task-yield
should be considered N-cyclic with N = T ×500. The throttling mechanism can
be disabled, which leads to a full-cyclic task-yield.

1 The full code is available at https://github.com/devreal/omp-taskyield.

https://github.com/devreal/omp-taskyield
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Listing 1.1. Black-box test for taskyield implementations.
1 volatile int flag_one_cntr = 0;

2 volatile int flag_two_cntr = 0;

3

4 #pragma omp parallel

5 #pragma omp master

6 for (int i = 0; i < NUM_TASKS+omp_get_num_threads()-1; ++i) {

7 #pragma omp task firstprivate(i) untied

8 {

9 if (omp_get_thread_num() > 0) {

10 // trap all but thread 0

11 while(flag_one_cntr != NUM_TASKS) { }

12 } else {

13 int task_id = ++flag_one_cntr;

14

15 #pragma omp taskyield

16

17 // when come back we only care about the first task

18 if (task_id == 1) {

19 if (flag_one_cntr == 1) {

20 printf("NOOP\n");

21 }

22 // some other tasks were running in between

23 else if (flag_two_cntr == (NUM_TASKS - 1)) {

24 printf("STACK (unlimited)\n");

25 } else if (flag_two_cntr == flag_one_cntr-1) {

26 printf("STACK (depth=%d)\n", flag_one_cntr);

27 } else if (flag_one_cntr == NUM_TASKS) {

28 printf("CYCLIC\n");

29 } else if (flag_one_cntr > 0) {

30 printf("N-CYCLIC (N=%d)\n", flag_one_cntr-1);

31 }

32 }

33

34 #pragma omp taskyield

35

36 ++flag_two_cntr;

37 } // thread-trap

38 } // pragma omp task

39 } // for()

Table 1. Detected taskyield implementations using the black-box test depicted in
Listing 1.1. T represents the number of threads.

Runtime Version tested Task-yield

GCC 7.1.0 No-op

Clang, Intel Clang 5.0.1, Intel 18.0.1 No-op

OMP NUM THREADS > 1 Stack (257)

Cray CCE 8.6.5 No-op

OMP NUM THREADS > 1 Stack (97)

PGI 17.7 No-op

OmpSs 17.06, 18.04 Cyclic (T × 500)

NX ARGS="--throttle=dummy" Cyclic
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Overall, our black-box test successfully detects the yield characteristics of
existing OpenMP implementations. We hope that this test helps users experi-
menting with the OpenMP taskyield directive to choose the right task design
depending on the OpenMP implementation at hand.

4 Evaluation Using Blocked Cholesky Factorization

To evaluate the impact of the different taskyield implementations on the per-
formance of a communication-heavy hybrid application, we implemented several
variants of the Blocked Cholesky Factorization.2 The benchmark employs BLAS
level 3 routines inside OpenMP tasks with defined input and output dependen-
cies to create task graphs similar to the ones depicted in Fig. 1.

4.1 Implementations of Blocked Cholesky Factorization

Funneled Communication. We start from a version that funnels communica-
tion through a single task to exchange the blocks computed by the trsm tasks, as
depicted in Fig. 1b. This version of the benchmark is guaranteed to work with all
available OpenMP implementations and any number of threads, as no deadlock
in the MPI communication may occur.

The single-task implementation comes in two flavors: in the funneled variant
the communication task calls taskyield while waiting for the communication to
finish whereas with funneled-noyield task-yield is not used. The latter serves as
the baseline as it mimics the no-op task-yield on all OpenMP implementations.

Fine-Grained Communication Tasks. In contrast to funneled, the fine

version of the benchmark creates a task per communication operation, leading
to fine-grained task dependencies as depicted in Fig. 1c and a potentially higher
degree of concurrency exposed to the scheduler. For this version, it is essential
that a sufficient number of communication tasks can initiate block transfers to
avoid starvation, e.g., N + 1 with N being either the number of receiving or
sending tasks. Creating this version for cyclic task-yield only requires declaring
input and output dependencies between the tasks, leaving it to the scheduler to
properly execute them. As mentioned above, it is important that communication
tasks are marked as untied as otherwise threads will not switch between tasks.

Unfortunately, employing fine-grained communication tasks with implemen-
tations offering stack-based task-yield requires more effort and has been an
tedious process. Specifically, we were required to introduce dummy tasks to avoid
communication tasks from different communication phases, i.e., tasks commu-
nicating the results of potrf and trsm, to overlap. This partial serialization of
tasks is necessary as otherwise recv tasks (which naturally do not have local
input dependencies) from a later communication phase may be scheduled on top
of earlier recv tasks. The later recv tasks might then stall and never return to

2 All code is available at https://github.com/devreal/cholesky omptasks.

https://github.com/devreal/cholesky_omptasks
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the earlier tasks due to implicit transitive dependencies through MPI between
them. As an example, consider the recv(1,1) task depicted on the right in
Fig. 1c being scheduled on top of recv(0,0), which has the transitive implicit
dependency recv(0,0) → trsm(0,1) → send(0,1) → recv(0,1) → syrk(1,1) →
potrf(1,1) → send(1,1) → recv(1,1). As a consequence, the user has to identify
and expose these implicit dependencies stemming from two-sided communica-
tion, which OpenMP is otherwise not aware of.

Per-Rank Communication Tasks. We also made an attempt to reduce the
number of communication tasks by combining all send and recv operations for
a specific rank into a single task. This variant is called perrank and requires
support for dependency iterators (as proposed in [7, p. 62]) to map dependencies
from the block domain to the process domain, e.g., to collect dependencies on all
blocks that have to be sent to a specific process. At the time of this writing, only
OmpSs offered support for dependency iterators (called multi-dependencies).

Even with support for dependency iterators, the perrank version is not guar-
anteed to run successfully on no-op task-yield implementations as there are no
formal guarantees on the execution order of tasks. Given a guaranteed similar
relative execution order of the communication tasks on all processes, e.g., in the
(reverse) order in which they were created, perrank will run successfully even on
a single thread. However, if the execution order is random across processes, e.g.,
with a reverse order on some processes as a worst case, a minimum number of
communication operations has to be in flight to avoid a deadlock. While we have
not established a formal definition of this lower bound, we expect it to be below
(p−1)

2 , with p being the number of processes participating in the (potentially
all-to-all) block exchange. However, the scalability in terms of processes may be
limited by the number of threads available.

4.2 Test Environment

We ran our tests on two systems: Oakforest PACS , a KNL 7250-based system
installed at the University of Tsukuba in Japan with 68-core nodes running at
1.4 GHz, and Hazel Hen, a Cray XC40 system installed at HLRS in Germany,
which is equipped with dual-socket Intel Xeon CPU E5-2680 v3 nodes running
at 2.5 GHz. On Oakforest PACS, we employed the Intel 18.0.1 compiler and Intel
MPI 2018.1.163. On Hazel Hen, we used the Intel 18.0.1, GNU 7.2.0, and Cray
CCE 8.6.5 compilers as well as Cray MPICH 7.7.0. On both systems, we used
the OmpSs compiler and runtime libraries in version 17.06 in ompss mode.

On Oakforest PACS, we relied on the runtime system implementation
to ensure proper thread pinning, i.e., using KMP AFFINITY=granularity=fine,

balanced for Intel. The OmpSs runtime performs thread pinning by default,
which we had to explicitely disable on the Cray system as it would otherwise
interfere with the thread pinning performed by aprun.
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4.3 Results

Using the information from the black-box test presented in Sect. 3, we executed
the different benchmark implementations discussed above with any suitable
OpenMP compiler. We first ran the Cholesky factorization on matrices of size
64k2 double precision floating point elements with a block size of 5122 elements.

Fig. 3. Strong scaling performance and speedup relative to noyield of Blocked
Cholesky Factorization on a 64k2 matrix with block size 5122 using different OpenMP
compilers.

The measured performance of the benchmark on the Cray system is presented
in Fig. 3a. The most important observation is that the implementations using
fine-grained communication tasks (solid line) by far outperform the variant using
funneled communication (dashed lines). The speedup of fine-grained communi-
cation tasks (depicted in Fig. 3b) range up to 42 % for OmpSs and up to 24 %
for both Intel and Cray. For fine-grained dependencies, the OmpSs implementa-
tion outperforms the fine-grained implementations of the stack-based taskyield

present in the Cray and Intel implementations. It is notable that OmpSs appears
to saturate performance earlier – at 32 nodes – than the latter two implementa-
tions, which approach the saturation point at 64 nodes. It can also be observed
that the difference between the noyield and the funneled version using taskyield



The Impact of Taskyield on the Design of Communicating Tasks 13

is marginal, which can be attributed to the fact that yielding a single thread does
not constitute a significant increase in resource availability given that a single
thread occupies less than 5 % of the node’s overall performance.

On Oakforest PACS, except for 64 nodes the different benchmark vari-
ants perform slightly better when using the Intel OpenMP implementation as
compared to running under OmpSs, as depicted in Fig. 3c and d. This may
be attributed to the generally higher overhead of task dependency handling
observed in OmpSs [8]. However, relative to noyield, the versions using fine-
grained communication tasks exhibit up to 34 % speedup with OmpSs and 25 %
with Intel, with the main improvements seen in mid-range node numbers.

An interesting observation can be made on both systems regarding fine-
grained communication tasks on the Intel runtime: for two nodes fine-grained
communication tasks can have a negative impact on the performance, which
diminishes and turns into performance improvements with increasing node num-
bers. This effect shrinks again for the highest node numbers.

We also note that perrank communication tasks do not seem to provide sig-
nificant benefits over funneled communication.

Breakdown of CPU Time. Figure 4 presents a breakdown of the accumulated
time spent by the threads on the four BLAS operations and MPI communica-
tion as well as idle state and overhead. The latter contains task creation, task
instantiation, task switching, and idle times as we have not found a way to
further break down these numbers accurately. In all cases, the gemm kernel is
the dominating factor but it is interesting to note that the overhead/idle times
significantly increase with increasing node numbers for the funneled versions,
indicating a lack of concurrency due to the coarse-grain synchronization. With
the fine-grained synchronization, the idle times seem to be lower. However, at
least for the Intel compiler the time spent waiting on MPI communication rises
with increasing node numbers while this effect is less pronounced in OmpSs. We
attribute this to the limiting effect on the available concurrency of stack-based
task-yield: tasks below the currently executing task are blocked until the tasks
above (and potentially the communication handled by them) have finished. In
contrast to this, communication tasks in the cyclic task-yield in OmpSs fin-
ish as soon as the respective communication operations have finished and their
execution has resumed once, allowing idle threads to poll for completion.

Scaling the Problem Size. Figure 5 depicts the strong scaling results of
the Blocked Cholesky Factorization on a matrix with 128k2 elements. Due to
the computational complexity of O(n3), the total number of computation tasks
increases by a factor of eight compared to a matrix size of 64k2, leading to a
total number of computation tasks of 2.8 million and putting significantly higher
pressure on the task scheduler. On the Cray XC40 (Fig. 5a), OmpSs using fine-
grained dependencies again outperforms all other implementations as it benefits
from the larger number of available computational tasks, followed by the Intel
compiler with fine-grained dependencies. All funneled runs show only limited
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Fig. 4. Breakdown of CPU time of different implementations of the Blocked Cholesky
Factorization for a 64k2 matrix with block size 5122.

Fig. 5. Strong scaling Performance of Blocked Cholesky Factorization on a 128k2

double precision floating point matrix with block size 5122 using different OpenMP
compilers.

scaling as they cannot exploit the full degree of concurrency present due to the
coarse-grained synchronization. We should note that we were unable to gather
reliable data for fine-grained communication tasks with the Cray compiler as we
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saw frequent deadlocks in the MPI communication, presumably due to the lower
limit on the task-yield stack depth.

On Oakforest PACS (Fig. 5b), the scaling of OmpSs is rather limited com-
pared to the Intel OpenMP implementation. We attribute these limitations to
a relatively higher overhead involved in the OmpSs task management, which
becomes more significant with the larger number of tasks and the low serial
performance of a single KNL core. Again with both OmpSs and the Intel com-
piler, however, fine-grained communication tasks outperform the version using
funneled communication on the same compiler. The perrank version appears
perform slightly better, albeit with a far smaller benefit than the fine-grained
communication tasks.

4.4 Discussion

The results presented above demonstrate that the available implementation of
taskyield in OpenMP can have a significant impact on hybrid applications
attempting to hide communication latencies, both in terms of task design, incl.
correctness, and in terms of performance. While users can rely on a deadlock-
free execution of communication tasks with cyclic task-yield, more care has to
be given to the synchronization of tasks when using a stack-based or N-cyclic

yield with fine-grained communication tasks. With both no-op yield and – less
significant – stack-based yield the user has to ensure that a sufficient number of
communication operations can be in-flight, e.g., by ensuring a sufficient number
of OpenMP threads being available.

The variations of task-yield across OpenMP implementations make the tran-
sition from a correct, i.e., deadlock-free, sequential MPI application to a cor-
rect task-parallel MPI program tedious. In many cases, it might not be suf-
ficient to simply encapsulate data exchange between individual computation
tasks into communication tasks to achieve fine-grained synchronization and rely
on OpenMP taskyield to ensure scheduling of all necessary communication
tasks. Instead, users will have to work around the peculiarities of the different
implementations and will thus likely fall back to funneling MPI communication
through a single task to guarantee correct execution on all OpenMP implemen-
tations, potentially losing performance due to higher thread idle times.

However, our results strongly indicate that fine-grained communication tasks
outperform more restricted synchronization schemes such as funneled and
perrank as the former has the potential to significantly increase the concurrency
exposed to the runtime. Unfortunately, an application has no way to query the
current OpenMP implementation for information on the properties of taskyield

to adapt the communication task pattern dynamically. Introducing a way to
query these properties in OpenMP would allow users to adapt the behavior of
their application to best exploit the hardware potential under any given OpenMP
implementation. Similarly, providing a way to control the limits of task-yield
in all implementations would help (i) raise awareness of the potential pitfalls,
and (ii) provide the user with a way to adapt the runtime to the application’s
needs. Such configuration options could include the task creation throttling limit
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(as already offered by OmpSs) and any further limitation affecting the effective-
ness of task-yield in the context of distributed-memory applications relying on
two-sided communication.

5 Conclusion and Future Work

In this paper, we have presented a classification and evaluation of poten-
tial implementations of the taskyield construct in OpenMP. We discussed
advantages and disadvantages of the different implementations and how a
communication-heavy application may have to be adapted to successfully employ
task-yield for communication latency hiding. Using a black-box test we were
able to determine the characteristics of task-yield in different OpenMP imple-
mentations. We have shown that fine-grained communication tasks may outper-
form more coarse-grained approaches while requiring additional reasoning about
implicit transitive dependencies from two-sided communication in stack-based
task-yield implementations to avoid deadlocks.

Looking ahead, we plan to investigate other types of applications beyond
Blocked Cholesky Factorization. While we do not expect the performance impact
to be that pronounced on traditional stencil applications, applications from areas
such as graph processing may benefit from taskified communication while poten-
tially suffering from similar correctness problems with non-cyclic task-yield as
presented in this paper. To help users tackle the issue of implicit transitive
dependencies, it might be worth investigating ways to signal their existence to
the OpenMP scheduler or provide users means to query or even control some
scheduler characteristics, e.g., the relative task execution order and the prop-
erties of task-yield. From a user’s (idealistic) perspective, the standard would
eventually mandate a cyclic task-yield to avoid the issues described in this
paper.
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Abstract. In light of continued advances in loop scheduling, this work
revisits the OpenMP loop scheduling by outlining the current state of the
art in loop scheduling and presenting evidence that the existing OpenMP
schedules are insufficient for all combinations of applications, systems,
and their characteristics. A review of the state of the art shows that
due to the specifics of the parallel applications, the variety of computing
platforms, and the numerous performance degradation factors, no single
loop scheduling technique can be a ‘one-fits-all’ solution to effectively
optimize the performance of all parallel applications in all situations.
The impact of irregularity in computational workloads and hardware sys-
tems, including operating system noise, on the performance of parallel
applications results in performance loss and has often been neglected in
loop scheduling research, in particular the context of OpenMP schedules.
Existing dynamic loop self-scheduling techniques, such as trapezoid self-
scheduling, factoring and weighted factoring, offer an unexplored poten-
tial to alleviate this degradation in OpenMP due to the fact that they
explicitly target the minimization of load imbalance and scheduling over-
head. Through theoretical and experimental evaluation, this work shows
that these loop self-scheduling methods provide a benefit in the context of
OpenMP. In conclusion, OpenMP must include more schedules to offer a
broader performance coverage of applications executing on an increasing
variety of heterogeneous shared memory computing platforms.

Keywords: Dynamic loop self-scheduling · Shared memory · OpenMP

1 Introduction

Loop-level parallelism is a very important part of many OpenMP programs.
OpenMP [3] is the decades-old industry standard for parallel programming on
shared memory platforms. Due to wide support from industry and academia, a
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broad variety of applications from science, engineering, and industry are paral-
lelized and programmed using OpenMP [26].

Applications in science, engineering, and industry are complex, large, and
often exhibit irregular and non-deterministic behavior. Moreover, they are fre-
quently computationally-intensive and consist of large data parallel loops. High
performance computing platforms are increasingly complex, large, heteroge-
neous, and exhibit massive and diverse parallelism. The optimal execution of
parallel applications on parallel computing platforms is NP-hard [22]. This is
mainly due to the fact that the individual processing times of application tasks1

cannot, in general, be predicted, in particular on machines with complex memory
hierarchies (e.g., non-uniform memory access) [18].

The performance of applications can be degraded due to various “overheads”,
which are synchronization, management of parallelism, communication, and load
imbalance [6]. Indeed, these overheads cannot be ignored by any effort to improve
the performance of applications, such as the loop scheduling schemes [9].

Load imbalance is the major performance degradation overhead in
computationally-intensive applications [15,19]. It can result from the uneven
assignment of computation to units of work (e.g., threads) or the uneven assign-
ment of units of work to processors. The former can be mitigated via a fine-
grained decomposition of computation into units of work. The latter is typically
minimized via the use of a central (ready) work queue from which idle processors
remove units of work. This approach is called self-scheduling. The use of a cen-
tral work queue facilitates a dynamic and even distribution of load among the
processors and ensures that no processor remains idle while there is work do be
conducted. The dynamic nature of the self-scheduling schedules combined with
their centralized work queue characteristic makes them ideal for use in OpenMP.
Self-scheduling is already supported in OpenMP by the scheduling mechanisms
of parallelizing work constructs, namely the parallel for loop constructs. The
scheduling responsibility falls onto the OpenMP runtime system, rather than
on the operating system or the (potentially scheduling non-expert) programmer.
The OpenMP runtime system can be precisely optimized for scheduling and
shared memory programming, while the operating system must be generic to
accommodate a variety of programming models and languages.

No single loop scheduling technique can address all sources of load imbalance
to effectively optimize the performance of all parallel applications executing on
all types of computing platforms. Indeed, the characteristics of the loop iterations
compounded with the characteristics of the underlying computing systems deter-
mine, typically during execution, whether a certain scheduling scheme outper-
forms another. The impact of system-induced variability (e.g., operating system
noise, power capping, and others) on the performance of parallel applications
results in additional irregularity and has often been neglected in loop scheduling
research, particularly in the context of OpenMP schedules [23,34].

1 Tasks and loop iterations denote independent units of computation and are used
interchangeably in this work.
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There exists a great body of work on loop scheduling and a taxonomy of
scheduling methods is included in Sect. 3. In essence, the present work makes
the case that the existing OpenMP schedules (static, dynamic, and guided)
are insufficient to cover all combinations of applications, systems, and variability
in their characteristics [23,37].

The present work revisits the loop schedules in the OpenMP specification [3],
namely static, dynamic, and guided [31], and challenges the assumption that
these are sufficient to efficiently schedule all types of applications with parallel
loops on all types of shared memory computing systems. Moreover, this work
makes the case that OpenMP must include more schedules, and proposes the
loop self-scheduling class, to offer a broader performance coverage of OpenMP
applications executing on an increasing variety of shared memory computing
platforms. The additional loop scheduling techniques considered herein are trape-
zoid self-scheduling [35], factoring [21], weighted factoring [20], and random. The
four dynamic loop self-scheduling (DLS) techniques have been implemented in
the LaPeSD libGOMP [1] based on the GNU OpenMP library and evaluated
using well-known benchmarks. The experimental results indicate the feasibility
of adding the four loop self-scheduling techniques to the existing OpenMP sched-
ules. The results also indicate that the existing OpenMP schedules only partially
covered the achievable performance spectrum for the benchmarks, system, and
pinnings considered. The experiments confirm the original hypothesis and that
certain DLS outperform others without a single DLS outperforming all others
in all cases. Thus, the results strongly support the case of ample available room
for improving applications performance using more OpenMP schedules.

The remainder of this work is organized as follows. Section 2 reviews the
work related to implementing various loop schedules into compilers and run-
time systems. Loop scheduling is revisited in Sect. 3, with a focus on the class
of dynamic loop self-scheduling techniques and the existing OpenMP schedules.
Section 4 describes the implementation of the dynamic loop self-scheduling tech-
niques considered in this work, the selection of the benchmarks used to evaluate
their performance, as well as offering details of the measurement setup and the
experiments. This work concludes in Sect. 5 with a discussion and highlights of
future work aspects.

2 Related Work

The motivation behind the present work is reinforced by the plethora and diver-
sity of the existing related work, indicating that scheduling of loops in OpenMP
is a long-standing and active area of research with diverse opportunities for
improvement. The most recent and relevant efforts of implementing additional
scheduling methods into parallelizing compilers and runtime systems are briefly
discussed next.

A preliminary version of this work [12] contains the first prototype implemen-
tation, in LaPeSD libGOMP [1], of three self-scheduling techniques considered
herein, trapezoid self-scheduling [35], factoring [21], and weighted factoring [20],
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while random is a newly added schedule in the present work. The major focus
therein was the feasibility of implementing new loop self-scheduling techniques
in libGOMP. An exploratory evaluation of the self-scheduling techniques for
a broad range of OpenMP benchmarks from various suites confirmed that
static scheduling is beneficial only for loops with uniformly distributed itera-
tions; it also confirmed the need for dynamic scheduling of loops with irreg-
ularly distributed iterations. Most of the loop schedules proposed over time
in OpenMP employ affinity-based principles [4], while the remaining employ
work stealing [17,25] or other variations of static scheduling [25,29,30]. A num-
ber of approaches rely on profiling information about the application on a
given architecture [13,34,38]. Only very little work has considered additional
loop self-scheduling methods [23,37], while the present work is the first to con-
sider weighted factoring [20] and random self-scheduling. The impact of system-
induced variations has only been considered in limited instances [34], whereas the
present work considers the cumulative impact of variabilities in problem, algo-
rithm, and system. Most related work considers benchmarks from well-known
suites. The present work provides targeted experiments for a particular class of
real-world applications, namely molecular dynamics. Existing efforts also imple-
mented their scheduling prototypes in libGOMP [12,13,29,30,34], similar to this
work. No studies explore various pinning strategies, which are used in this work
to highlight the benefit of dynamic loop self-scheduling. Moreover, in this work
experiments are conducted with 20 threads on a state-of-the-art 10×2-way cores
Intel Broadwell architecture.

3 Revisiting Loop Scheduling

Parallelization is the process of identifying units of computations that can be
performed in parallel on their associated data, as well as the ordering of compu-
tations and data, in space and time, with the goal of decreasing the execution
time of applications. The process of parallelization consists of three steps: parti-
tioning (or decomposition), assignment (or allocation), and scheduling (or order-
ing). Partitioning refers to the decomposition of the computational domain and
of the corresponding computations and data into parallel subparts, called units
of computation (see Fig. 1a). Through programming, the units of computation
are mapped to software units of processing, such as processes, threads, or tasks2

(see Fig. 1a). Assignment refers to the allocation of the units of processing to
units of execution in space, such as cores or processors. The allocation can be
performed statically, during compilation or before the start of the application
execution, or dynamically, during application execution (see Fig. 1b). Scheduling
refers to the ordering and timing of the units of computations to achieve a load
balanced execution. The ordering can be static, determined at compilation time,
dynamic, performed during application execution, or adaptive, which changes
either the static or the dynamic ordering during execution (see Fig. 1b).

2 Task denotes, in this context, the form of concurrency at the level of a programming
paradigm, e.g., OpenMP 3.0 tasks.
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Fig. 1. Loop scheduling and its relation to load balancing, overhead, and locality.

Load imbalance is the major performance degradation factor in computa-
tionally-intensive applications [15]. Applications suffer from load imbalance when
certain processors are idle and yet there is work ready to be performed that no
processor has started. Load imbalance can result from the uneven assignment of
computation to units of work (e.g., threads) or the uneven assignment of units of
work to processors (see Fig. 1a). The causes of both types of uneven assignment
can be due to the problem (e.g., non-uniform data distribution), algorithm (bound-
ary phenomena, convergence, conditions and branches), or induced by the system
(memory access interference, operating system noise, or use of shared resources).
The uneven assignment of computation to units of work can be mitigated via a fine-
grained decomposition of computation into units of work. The uneven assignment
of units of work to processors is typically minimized via the use of a central (ready)
work queue from which idle and available processors remove units of work. This
approach is called self-scheduling. Self-scheduling facilitates a dynamic and even
distribution of load among the processors and ensures that no processor remains
idle while there is work to be conducted.

Loop scheduling refers to the third parallelization step, described above,
applied to the iterations of a loop. As illustrated in Fig. 1b, depending
on the assignment, the ordering and timing of the scheduling decisions,
as well as the target optimization goals, existing loop scheduling solutions
can be classified into: fully static or pre-scheduling, work sharing, affin-
ity and work stealing, and fully dynamic or self-scheduling. In the absence
of load imbalance, approaches that employ pre-scheduling or static alloca-
tion are highly effective as they favor data locality and have virtually no
scheduling overhead [27]. Affinity-based scheduling strategies [17,24,28,32]
also deliver high data locality. In the presence of load imbalance, which
is the major application performance degradation factor in computationally-
intensive applications, strategies based on work stealing only mitigate
load imbalance caused by problem and algorithmic characteristics [11,17].
Both affinity and work stealing incur non-negligible scheduling overhead.
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Scheduling that employs affinity and work stealing only partially addresses
load imbalance and trades it off with data locality. None of the aforemen-
tioned scheduling approaches explicitly minimize load imbalance and schedul-
ing overhead. Fully dynamic self-scheduling techniques, such as those consid-
ered in this work, explicitly address all sources of load imbalance (caused by
problem, algorithmic, and systemic characteristics) and attempt to minimize
the scheduling overhead, while implicitly addressing allocation delays and data
locality [8,10,36].

This work considers dynamic loop self-scheduling in the context of OpenMP
scheduling, to explicitly address load imbalance and scheduling overhead for the
purpose of minimizing their impact on application performance. The OpenMP
specification [3] provides three types of loop schedules: static, dynamic, and
guided, which can be directly selected as arguments to the OpenMP parallel
for schedule() clause. The loop schedules can also automatically be selected
by the OpenMP runtime via the auto argument to schedule() or their selection
can be deferred to execution time via the runtime argument to schedule().

The use of schedule(static,chunk) employs straightforward parallelization
or static block scheduling [27] (STATIC) wherein N loop iterations are divided
into P chunks of size �N/P �; P being the number of processing units. Each
chunk of consecutive iterations is assigned to a processor, in a round-robin fash-
ion. This is only suitable for uniformly distributed loop iterations and in the
absence of load imbalance. The use of schedule(static,1) implements static
cyclic scheduling [27] wherein single iterations are statically assigned consecu-
tively to different processors in a cyclic fashion, i.e., iteration i is assigned to
processor i mod P . For certain non-uniformly distributed parallel loop iterations,
cyclic produces a more balanced schedule than block scheduling. Both versions
achieve high locality with virtually no scheduling overhead, at the expense of
poor load balancing if applied to loops with irregular loop iterations or in systems
with high variability. The dynamic version of schedule(static,chunk) which
employs dynamic block scheduling is schedule(dynamic,chunk). The only dif-
ference is that the assignment of chunks to processors is performed during exe-
cution. The dynamic version of schedule(static,1) is schedule(dynamic,1)
which employs pure self-scheduling (PSS), the easiest and most straightforward
dynamic loop self-scheduling algorithm [33]. Whenever a processor is idle, it
retrieves an iteration from a central work queue. PSS3 achieves good load bal-
ancing yet may introduce excessive scheduling overhead. Guided self-scheduling
(GSS) [31] is implemented by schedule(guided), one of the early self-scheduling
techniques that trades off load imbalance and scheduling overhead.

The above OpenMP loop schedules are insufficient to cover the needs for
efficient scheduling of all types of applications with parallel loops on all types of
shared memory computing systems. This is mainly due to overheads, such as syn-
chronization, management of parallelism, communication, and load imbalance,
that cannot be ignored [9].

3 For simplicity and consistency with prior work, PSS is herein denoted SS.
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This work proposes the use of self-scheduling methods in OpenMP to offer a
broader performance coverage of OpenMP applications executing on an increas-
ing variety of shared memory computing platforms. Specifically, the loop self-
scheduling techniques to consider are trapezoid self-scheduling (TSS) [35], fac-
toring “2” (FAC2) [21], weighted factoring “2” (WF2) [20], and random. It is
important to note that the FAC2 and WF2 methods evolved from the prob-
abilistic analysis that gave birth to FAC and WF, respectively, while TSS is
a deterministic self-scheduling method. Moreover, WF2 can employ workload
balancing information specified by the user, such as the capabilities of a hetero-
geneous hardware configuration.

Based on their underlying models and assumptions, these self-scheduling
techniques are expected to trade load imbalance and scheduling overhead as
illustrated in Fig. 2.

Fig. 2. Load imbalance vs. scheduling
overhead trade-off for various dynamic
loop self-scheduling schemes.

Random is a self-scheduling-based
method that employs the uniform dis-
tribution between a lower and an upper
bound to arrive at a randomly calcu-
lated chunk size between these bounds.

A comparison of the prior existing
and newly added OpenMP loop sched-
ules is illustrated in Fig. 3 for schedul-
ing 100 (uniformly distributed) tasks
on 4 homogeneous processors. STATIC
denotes schedule(static,chunk), GSS
denotes schedule(guided), and SS
denotes schedule(dynamic,1). The
ordering of work requests made by the
threads as illustrated in Fig. 3a is only an instantiation of a dynamic process,
and may change with every experiment repetition. Even though the scheduling
overheads and allocation delays are not accounted for in this example (Fig. 3),
one can easily identify the differences between the chunk sizes, the total number
of chunks, their assignment order, and the impact of all these factors on the total
execution time. STATIC and SS represent the two extremes of the load balance
vs. scheduling overhead trade-off (see Fig. 2). The remaining DLS techniques are
ordered by their efficiency in minimizing scheduling overhead and load imbal-
ance. The schedule(guided,chunk)4 and schedule(dynamic,chunk)5 versions
of the respective OpenMP schedules are not considered here due to the fact that
they are simple variations of GSS and SS and fall between the two extremes of
the trade-off illustrated in Fig. 2, which, for reasons of clarity, only illustrates
the schedules considered in this work.

4 Here chunk denotes the smallest chunk size to be scheduled.
5 Here chunk denotes a fixed chunk size to be scheduled.
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(a) Chunk sizes (b) Chunk execution

Fig. 3. The use of different DLS techniques for (a) calculation of chunk sizes (num-
bers within colored rectangles) for 100 tasks and (b) their execution over time using
4 threads (T0,..,T3) assigned to 4 processing units (P0,..,P3). While certain DLS
achieve comparable “absolute” execution times, the incurred scheduling overhead,
directly proportional with the number of self-scheduled chunks, may prohibitively
degrade performance. (Color figure online)

4 Evaluation of Selected DLS Techniques

In its current state, the OpenMP standard contains the two extremes of the
scheduling spectrum and one self-scheduling example (see Fig. 2). While the
state of the art has produced important additional scheduling methods over the
last decades, the OpenMP standard has not yet adopted these advances.

To evaluate the benefit of more advanced loop schedules, four additional
schedules were added to an OpenMP runtime library for the GNU compiler
called LaPeSD-libGOMP [1] and tested on molecular dynamics (MD) benchmarks,
which are known use non-uniformly distributed parallel for loops resulting
in imbalanced workloads (problem and algorithmic imbalance) [7]. CPU binding
and pinning was used to inject additional load imbalance (system imbalance) in
those applications. The four added loop scheduling techniques were compared
against the schedules available in current OpenMP using this libGOMP version,
the MD benchmarks and special measurement setup.

Benchmarks and Schedule Selection: This work considers applications sim-
ulating MD, which typically consist of large loops over complex molecular struc-
tures with variable degree of interactivity between different molecules. While
full MD applications are highly complex and challenging to be used for com-
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parison in a performance testing environment, the comparatively short runtimes
allowed an efficient exploration of the intended parameter space. The choice of
MD benchmarks is made from various well-established suites and includes: c md
from the OpenMP Source Code Repository (SCR) suite [16], lava.md from the
RODINIA suite [14], NAS MG from the NAS OpenMP suite [5], and 350.md from
the SPEC OpenMP 2012 suite [2].

An additional test application considered in this work is an in-house imple-
mentation of a linear algebra kernel, adjoint convolution with decreasing task
size, called ac6. This benchmark provides an ideal input to self-scheduling due
to its high imbalance caused by the decreasing task size towards the end of the
kernel. Overall, the added benefit of using benchmarks is the avoidance of issues
typically present in full production-ready codes, such as variations and influences
of the MPI parallelization and I/O activities.

The four additional dynamic loop self-scheduling (DLS) techniques con-
sidered herein are trapezoid self-scheduling (TSS) [35], factoring (FAC2)[21],
weighted factoring (WF2) [20], and random (RAND). While the literature offers
more advanced DLS, this work considers DLS that require no additional run-
time measurement during their execution, i.e., all used DLS are dynamic and
non-adaptive7. Recall that the FAC2 and WF2 methods evolved from the prob-
abilistic analysis behind FAC and WF, respectively. Moreover, recall that WF2
can employ workload balancing information specified by the user, such as the
capabilities of a heterogeneous hardware configuration.

Prototype Implementation: The development of a dedicated OpenMP com-
piler and runtime implementation is beyond the scope of this work. Therefore,
the GNU implementation of OpenMP is used, as the scheduling mechanisms are
independent from the actual compilation of OpenMP constructs and of their
separate implementation in a separate runtime library. For the implementation3

of the additional loop schedules the LaPeSD-libGOMP is used as basis.

Measurement Setup and Evaluation Policy: The experiments for this work
were conducted on a single node of the miniHPC system at the University of
Basel, a fully-controlled research system with a dual-socket 10-core Intel Xeon
E5-2640 v4, with both hyper-threading and TurboBoost enabled. In all experi-
ments the hyper-threaded cores with ID 20–39 were left idle.

All experiments were conducted exclusively, each experiment being repeated
20 times. For the results shown in this work, the median and the standard devi-
ation of the execution times were gathered for all repetitions. As discussed in
Sect. 3, load imbalance has three potential causes: either the workload of the
iteration space is imbalanced, the work assignment is imbalanced, or the hard-
ware is imbalanced, e.g., as in a heterogeneous system. Since the work assignment

6 In-house codes available at https://bitbucket.org/PatrickABuder/libgomp/src.
7 In non-adaptive dynamic scheduling, the schedule does not adapt to runtime perfor-

mance observations other than to the dynamic consumption of tasks.

https://bitbucket.org/PatrickABuder/libgomp/src
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(scheduling) is defined by the used schedule clause, any load imbalance originates
in either or in both, variability in the benchmark itself or from performance vari-
ability in the hardware.

For this work, the principal load imbalance originates in the workloads in
OpenMP codes of the MD benchmarks. However, as the benchmarks, in their
original form, are rather limited in loop sizes and input data, the inherent imbal-
ance is not extreme. To highlight the impact of the loop scheduling choice, addi-
tional artificial hardware irregularity is added by omitting specific CPU cores for
use in the experiments and by binding the 20 OpenMP threads to the remain-
ing cores, reducing the achieved performance of those threads in the process.
Figure 4a provides an overview of the five pinning and oversubscription config-
urations used. In the experiments, PIN1 to PIN5 were used as the pinning and
binding schemes. PIN1 uses all the cores of the system and binds each thread
to a single core. PIN2 considers cores 9 and 18 as not present in the system and
binds two additional threads to cores 1 and 11 (respectively), reducing the perfor-
mance of threads 1, 10, 18, and 19. PIN3 increases the hardware load imbalance
by removing cores 7, 8, 16, 17 and 18 from the set of available CPU cores, hence,
reducing the performance of threads 1, 2, 3, 4, 8, 9, 10, 13, 14, 15, 16, and 18. PIN4
adds further inhomogeneity into the system; cores 12 to 19 remain idle, while the
twenty threads are bound to cores 1, 2, 5, 7, and 10. This creates four classes of
overloaded CPUs: with 4 threads, with 3 threads, and with 2 threads. The last
setup, PIN5, uses only one (out of two) socket. Note that pinnings PIN3–PIN5
explicitly avoid a symmetric configuration to increase the level of imbalance in
the system. This decreases the efficiency of threads being executed on those
cores, hence, implicitly generating a substantial compound load imbalance for
the application. An efficient load balancing scheme is expected to mitigate such
performance variations due to compound load imbalance such as results from
the PIN3–PIN5 setups.

Experimental Evaluation: The results of all selected benchmarks are shown
in Fig. 4b to f. For this work, a specific schedule is considered to be advantageous
if it provides a performance benefit directly to the parallel loops or if it provides
a performance benefit in coping with the hardware heterogeneity. The ac has
approximately 10e6 iterations to schedule, having a coefficient of variation of the
iterations execution times (CV) of 57% and is, as such, a suitable example for
self-scheduling. As expected, the STATIC and GSS schedules struggle to cope
with the highly irregular workload, other schedules with a less strict scheduling
regiment perform well, with FAC2 performing the best. The STATIC exhibits the
least sensitivity to the different PIN -regiments with WF2 exhibiting the highest
sensitivity. For ac, FAC2 offers the overall best performance in all configurations
with SS offering comparable performance for PIN4 and PIN5 as it can offset its
high overhead by achieving the best load balancing effect.

For c md with its roughly 16e3 iterations and CV of 57%, the FAC2 offers the
best performance in the regular setup (PIN1 ) with STATIC, GSS and WF2 com-
ing very close; TSS and RAND provide a slightly lower performance while the



OpenMP Loop Scheduling Revisited 31

(a) Pinning patterns (b) ac

(c) c md (d) lava.md

(e) 350.md (f) NAS MG

Fig. 4. Pinning Patterns and Measurements. (a) Pinning patterns: T0–T19 represent
OpenMP threads, C0–C19 represent physical cores. Core weights depict fraction of
the performance of a single core available for a given thread. (b)–(f) The existing
OpenMP schedules, STATIC, GSS, and SS, as well as the additional TSS, FAC2, WF2,
and RAND schedules from the present own implementation were evaluated for each
benchmark. Minimum and maximum runtimes are marked by horizontal blue lines.
(Color figure online)
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SS exhibits a 5 times lower performance – likely due to the small iteration space
and high scheduling overhead. For the imbalanced PIN configurations all sched-
ules, except WF2 and SS, fare well, offering comparable performance. WF2 is
substantially affected by the hardware-induced load imbalance – likely due to its
initial calibration with the attempt to account for the hardware imbalance and,
subsequently, to the lack of iterations to benefit form the high setup-overhead.
The SS exhibits an interesting behavior for this benchmark: while it suffers un-
proportionally for PIN3, it performs better for PIN4, even against its PIN1
configuration.

The lava.md benchmark has a comparable low peak CV of 14% in its 13e4
iterations. For this reason, it is not surprising that all but the RAND schedule
offer comparable performance; RAND even induces a load imbalance into the
benchmark. For the PIN2–PIN5 configurations there is little difference between
the schedules, again with the exception of RAND.

For the 350.md the iteration count is about 27e3 with a high CV of 8700%.
Again FAC2 has the best performance advantage, making use of the high vari-
ations in the loop iterations. The STATIC, GSS, TSS, and RAND schedules
also perform well and reach about 10% of the peak performance. SS and WF2
provide the lowest performance, failing to exploit the high CV in the workload
due to the overhead of scheduling a much larger number of chunks.

The NAS MG benchmark has a very low loop iteration space, between 2 and 1k,
with a very strongly variable CV between 0, i.e., no variation, and 1. However,
many such loops are instantiated in this benchmark which results in approxi-
mately 5k instantiations. Here the STATIC schedule offers the best performance
for the PIN1 configuration as its overhead is minimal and the iteration space
and, thus, the aggregated load imbalance is low. For this reason, the SS offers the
best performance in the hardware imbalanced PIN2–PIN5 configurations, as it
has few iterations to schedule and a high hardware-based imbalance to mitigate.
For the same reason, the WF2 also performs much better, even though the cost
to calculate a chunk is higher – it is amortized by the well balanced scheduling.

Discussion: In this work an outline of a prototype implementation of addi-
tional schedules in OpenMP has been provided together with an evaluation
thereof using various benchmarks and hardware setups. While it is clear that
the additional schedules do not provide a one-fits-all solution, the greater variety
of choice offers an opportunity for improvement in many instances. The precise
circumstances of such a benefit must be taken into account when deciding which
scheduling choice is the best. The number of iterations to be scheduled, the chunk
sizes, and the overheads associated with each approach factor heavily into the
decision of which schedule to use. The experience from the prototype implemen-
tation and the subsequent test on benchmarks, support the original hypothesis
that indeed, additional schedules provide benefit. While a single schedule was
applied for all work-sharing loops in a code, a more diverse use of the schedul-
ing clause will further increase the benefit. This can, for example, be achieved
by leveraging domain expert knowledge, not considered in this work. A critical
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observation is that many loops from the considered benchmarks did not use any
scheduling clause in the various work-sharing loops. It is well known that explic-
itly using the OpenMP schedule is critical for improving performance. This
can bee seen in c md, ac, 350.md and NAS MG, where the performance difference
between the fastest and slowest schedule exceeded a factor of two.

5 Summary

This work revisits the scheduling of OpenMP work-sharing loops and offers an
overview of the current state-of-the-art self-scheduling techniques. Scheduling
is a performance critical aspect of loops that is currently receiving insufficient
attention. This work investigates alternative state-of-the-art loop self-scheduling
schemes from the literature and reflects on their use in OpenMP loop schedul-
ing. In Sect. 3, it was shown that the existing OpenMP schemes STATIC and SS
are only the extremes of a broad spectrum of state-of-the-art loop self-scheduling
methods, and that GSS represents a well-known, yet obsolete variant within that
spectrum, with many newer more efficient schedules being available. Using a
selection of more recent loop-scheduling techniques, prototype implementations
were developed for the GNU OpenMP runtime library and used in viability
experiments. Section 4 provides an overview of this effort as well as measure-
ments results. These results show that more recent loop self-scheduling tech-
niques exhibit, in three out of five test cases, an improved performance than the
schedules already available in OpenMP. With the theoretical underpinnings of
loop self-scheduling and the results presented, it is clear that OpenMP should
include a greater variety of loop schedules.

Fueled by the increasing heterogeneity of hardware, i.e., classic CPUs in com-
bination with accelerators and future heterogeneous CPUs, a fixed set of sched-
ules will not suffice, even if it were to outperform all currently available schedul-
ing techniques (in the absence of load imbalance). Therefore, the OpenMP com-
munity is invited to address this issue, especially with the addition of tasking
that brings additional challenges in the area of scheduling in OpenMP. From this
perspective, an interface for user-defined schedules, comparable to [25], would be
preferable, as it allows users and library developers to add scheduling techniques
without having to update the OpenMP standard every time a new approach
is developed. In addition, the interface should enable developers to provide the
runtime system with more expert knowledge and information regarding the vari-
ability of the iteration space of the loops in their applications.

Future work will explore more schedules with more complex underlying mod-
els, such as the adaptive self-schedules, which employ feedback loops and require
performance measurements. The applicability of self-scheduling is also of high
interest, as for example the global load balancing of task scheduling in task-
loops remains unaddressed. Further research in the domain of heterogeneity and
NUMA and its impact on scheduling is also planned.
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Abstract. Pragmas for loop transformations, such as unrolling, are
implemented in most mainstream compilers. They are used by applica-
tion programmers because of their ease of use compared to directly mod-
ifying the source code of the relevant loops. We propose additional prag-
mas for common loop transformations that go far beyond the transforma-
tions today’s compilers provide and should make most source rewriting
for the sake of loop optimization unnecessary. To encourage compilers
to implement these pragmas, and to avoid a diversity of incompatible
syntaxes, we would like to spark a discussion about an inclusion to the
OpenMP standard.
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1 Motivation

Almost all processor time is spent in some kind of loop, and as a result,
loops are a primary targets for program-optimization efforts. One method
for optimizing loops is annotating them with OpenMP pragmas, such as
#pragma omp parallel for, which executes the loop iterations in multiple
threads, or #pragma omp simd which instructs the compiler to generate vector
instructions.

Compared to manually parallelizing the relevant code (e.g. using the pthreads
library) or manually vectorizing the relevant code (e.g. using SIMD-intrinsics or
assembly), annotating a loop yields much higher programmer productivity. In
conjunction with keeping the known-to-work statements themselves unchanged,
we can expect less time spent on optimizing code and fewer bugs. Moreover, the
same code can be used for multiple architectures that require different optimiza-
tion parameters, and the impact of adding an annotation can be evaluated easily.
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Directly applied transformations also make the source code harder to understand
since most of the source lines will be for the sake of performance instead of the
semantics.

Pragmas allow separating the semantics-defining code and the performance-
relevant directives. Using Pragma("..."), the directives do not necessarily
need appear adjacent to the loops in the source code, but can, for instance,
be #included from another file.

Most compilers implement additional, but compiler-specific pragmas. Often
these have been implemented to give the programmer more control over its
optimization passes, but without a systematic approach for loop transformations.
Table 1 shows a selection of pragmas supported by popular compilers.

Table 1. Loop pragmas and the compilers which support them

Transformation Syntax example Compiler

Threading #pragma omp parallel for OpenMP [25]

#pragma loop(hint parallel(0) msvc [22]

#pragma parallel icc [18]

Unrolling #pragma unroll icc [18], xlc [16],
clang [2]

#pragma clang loop unroll(enable) clang [4]

#pragma GCC unroll n gcc [11]

Unroll and jam #pragma unroll and jam icc [18]

#pragma unrollandfuse xlc [16]

#pragma stream unroll xlc [16]

Loop fusion #pragma nofusion icc [18]

Loop distribution #pragma distribute point icc [18]

#pragma clang loop distribute(enable) clang [4]

Loop blocking #pragma block loop(n,loopname) xlc [16]

Vectorization #pragma omp simd OpenMP [25]

#pragma simd icc [18]

#pragma vector icc [18]

#pragma loop(no vector) msvc [22]

#pragma clang loop vectorize(enable) clang [3,4]

Interleaving #pragma clang loop interleave(enable) clang [3,4]

Software pipelining #pragma swp icc [18]

Offloading #pragma omp target OpenMP [25]

#pragma acc kernels OpenACC [24]

#pragma offload icc [18]

Assume iteration
independence

#pragma pragma ivdep icc [18]

#pragma GCC ivdep gcc [11]

#pragma loop(ivdep) msvc [22]

Iteration count #pragma loop count(n) icc [18]

Loop naming #pragma loopid(loopname) xlc [16]
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Our vision is to enable optimizations such as in Listing 1.1, which sepa-
rates the algorithm from its optimization thus keeping the code readable and
maintainable. It also illustrates how different transformations can be applied for
different compilation targets. Many BLAS implementations of dgemm use this
pattern [21], but pre-transformed in the source. As demonstrated in Sect. 4, the
performance is comparable to that of optimized BLAS libraries.

Many existing loop annotation schemes, including OpenMP, require the user
to guarantee some “safety” conditions (i.e., that the loop is safe to parallelize as
specified) for the use of the annotations to be valid. Making the user responsi-
bility for the validity of a loop transformation may not always be practical, for
instance if the code base is large or the loop is complex. Compiler assistance,
e.g. providing warnings that a transformation might not be safe, can be a great
help. Our use case is an autotuning optimizer, which by itself has only a mini-
mal understanding of the code semantics. Thus, we propose a scheme whereby
the compiler can ensure that the semantics of the program remains the same
(by ignoring the directive or exiting with an error) when automatically-derived
validity conditions are unsatisfied.

2 Proposal

In this publication, we would like to suggest and discuss the following ideas as
extensions to OpenMP:

1. The possibility to assign identifiers to loops and code sections, and to refer
to them in loop transformations
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2. A set of new loop transformations
3. A common syntax for loop transformation directives

In the following, we discuss these elements of the proposal and a proof-of-
concept implementation in Clang. We do not discuss syntax or semantics specific
to Fortran, but the proposal should be straightforward to adapt to cover Fortran.

2.1 Composition of Transformations

As loop transformations become more complex, one may want to apply more
than one transformation on a loop, including applying the same transforma-
tion multiple times. For transformations that result in a single loop this can
be accomplished by “stacking up” transformations. Like a regular pragma that
applies to the loop that follows, such a transformation directive can also be
defined to apply to the output of the following transformation pragma.

The order of transformations is significant as shown in Listing 1.2. In the
former the order of execution will be the exact reversal of the original loop,
while in the latter, groups of two statements keep their original order.

2.2 Loop/Section Naming

In case a transformation has more than one input- or output-loop, transforma-
tions or its follow-up transformations require a means to identify which loop to
apply to.

As a solution, we allow assigning names to loops and refer to them in other
transformations. An existing loop can be given a name using

and loops from transformations get their identifier as defined by the transforma-
tion, for instance as an option. As an example, Listing 1.3 shows a loop that is
strip-mined. The inner loop is vectorized while the outer is parallelized.
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In some cases, it may be necessary to not only assign an identifier to the
whole loop, but also to individual parts of the loop body. An example is loop
distribution: The content of the new loops must be defined and named. Like
for (canonical) for-loops, OpenMP also has a notion of sequential code pieces:
sections and tasks. We reuse this idea to also assign names to parts of a loop,
as shown in Listing 1.4. The transformation results in two loops, named loopA
and loopB, containing a call to StatementA, respectively StatementB.

Loop and section names form a common namespace, i.e. it is invalid to have
a section and a loop with the same name. When being used in a loop transfor-
mation, a section name stands for the loop that forms when distributed from
the remainder of the loop body.

To avoid boilerplate pragmas to assign loop names, loops are assigned implicit
names. Every loop is assigned the name of its loop counter variable, unless:

– it has a #pragma loop id(..) annotation,
– some other loop has an annotation with that name,
– or there is another loop counter variable with the same name.

For instance, fusing the loops in Listings 1.5a is legal, but the compiler should
report an ambiguity in Listings 1.5b.

2.3 Transformations

In addition to the loop transformations mentioned in Table 1, there are many
more transformations compilers could implement. Tables 2 and 3 contain some
pragmas that could be supported.

Table 2 contains the directives that apply to loops, many of which change
the order of execution. Transformations such as unrolling and unswitching do
not affect the code semantics and therefore can always be applied. The addi-
tional assume- and expect-directives do not transform code, but give hints to
the compiler about intended semantic properties.
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Table 2. Directives on loops

Directive Short description

parallel for OpenMP thread-parallelism

simd Vectorization

unroll Loop unrolling

split Index set splitting

peel Loop peeling (special kind of index set splitting)

specialize Loop versioning

unswitch Loop unswitching (special kind of loop versioning)

shift Add offset to loop counter

scale Multiply loop counter by constant

coalesce Combine nested loops into one

concatenate Combine sequential loops into one

interchange Permute order of nested loops

stripmine Strip-mining

block Like strip-mining, but with constant sized outer loop

tile Tiling (combination of strip-mining and interchange)

reverse Inverse iteration order

distribute Split loop body into multiple loops

fuse Loop Fusion/Merge: Inverse of loop distribution

wavefront Loop skewing

unrollandjam Unroll-and-jam/register tiling

interleave Loop interleaving

scatter Polyhedral scheduling

curve Space-filling curve (Hilbert-, Z-curve or similar)

assume coincident Assume no loop-carried dependencies

assume parallel Assume parallelism

assume min depdist Assume minimum dependence distance

assume unrelated Assume statements access only disjoint memory

assume termination Assume that a loop will eventually terminate

expect count Expect an average number of loop iterations

Most clauses are specific to a transformation (e.g. tile sizes), but some clauses
apply to all transformations, such as:

(no)assert. Control whether the compiler has to abort with an error if, for any
reason, a transformation can not be applied. The default is noassert, but
the compiler may still warn about not applied transformations.

noversioning. Disable code versioning. If versioning is required to preserve the
loop’s semantics, do not apply the transformation unless assume safety is
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used as well. The combination assert noversioning can be used to ensure
that the transformed code always runs instead of a some fallback version.

assume safety. Assume that the transformation is semantically correct in all
well-defined cases. This shifts the responsibility of correctness to the pro-
grammer. If the compiler was able to apply the transformation using code
versioning, in general, this will remove the runtime checks.

suggest only. By default, a transformation pragma overrides any profitabil-
ity heuristic the compiler might use to apply a transformation. This clause
can be used together with assume safety to only imply that the transforma-
tion is semantically correct, but leave it to the profitability heuristic to decide
whether to actually apply it, with only a bump in favor of applying the trans-
formation and/or its parameters. The compiler might also apply a different
transformation. For instance, parallel for assume safety suggest only
implies that a loop is parallelizable, but the compiler might choose to vectorize
it instead.

Directives with assume -prefix inform the compiler that a property is always
true. It is the programmer’s responsibility to ensure that this the case and exe-
cutions that violate the assumption have undefined behavior. Directives with an
expect -prefix suggest that compiler optimize the code assuming that the prop-
erty likely applies. Executions that violate the expectation may run slower, but
the behavior remains the same.

Directives in Table 3 apply to sections of code, which might be in, or include,
loops. For instance, assume associative and assume commutative inform the
compiler that a section behaves like a reduction, so reduction detection can apply
to more than a fixed set of operators.

In the following we present a selected subset of these transformation in more
detail.

Loop Strip-Mining/Blocking/Collapse/Interchange are vertical loop
transformations, i.e., transformations on or to perfectly nested loops.

Strip-mining is the decomposition of a loop into an inner loop of constant
size (called the strip) and an outer loop (which we call the pit) executing that
inner loop until all loop bodies have been executed. For instance, the result of
Listing 1.6a is the loop in Listing 1.6b.

The difference of loop blocking is that the pit’s size is specified in a clause.
However, the case if the iteration count is not known to be a multiple of the
strip/block size requires a different handling.
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Table 3. Directives on code, including loops

Directive Short description

id Assign an unique name

parallel sections OpenMP multi-threaded section

target Accelerator offloading

ifconvert If-conversion

reorder Execute code somewhere else

pack Use copy of array slice in scope

assume associative Assume a calculation is associative

assume commutative Assume a calculation is commutative

assume disjoint access Memory accesses do not alias

assume nooverflow Assume (unsigned) integer overflow does not occur

assume noalias Assume pointer ranges do not alias

assume dereferenceable Assume that a pointer range is dereferenceable

expect dead Expect that code in a branch is not executed

Collapsing is the reverse operation: Combine two or more vertical loops into
a single loop. Only the case where the number of iterations does not depend on
anything in the outer loop needs to be supported. The transformation is already
available in OpenMP’s collapse-clause of the for-pragma.

Interchange is permuting the order of perfectly nested (i.e. vertical) loops.
Classically, only two loops are interchange, but we can generalize this to allow any
number of loops as long as they are perfectly nested. In contrast to the previous
transformations, interchange may change the execution order of iterations and
therefore requires a legality check.

Using these transformations, other transformations can be constructed. For
instance, tiling is a combination of strip-mining and interchange:

For convenience, we also propose a tile-transformation which is syntactic
sugar for this composition.

Loop Distribution/Fusion/Reordering are horizontal transformations, i.e.
apply on loops that execute sequentially (and may nest other loops).

Loop distribution splits a loop body into multiple loops that are executed
sequentially. An example was already given in Listing 1.4. The opposite is loop
fusion: Merge two or more loops into a single loop. The reorder-pragma changes
the execution order of loops or statements.
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Loop Counter Shifting/Scaling/Reversal modifies the iteration space that
the compiler associates with a loop. By itself, this does not do anything, but
might be required for other transformations, especially loop fusion. By default,
loop fusion would match iterations that have the same numeric value into the
same iteration of the output loop. If different iterations should be executed
together, then the iteration space must be changed such that the instances exe-
cuted together have the same numeric value.

The scaling transformation only allows positive integer factors. A factor of
negative one would reverse the iteration order which accordingly we call loop
reversal. It may change the code’s semantics and therefore requires a validity
check.

Index Set Splitting/Peeling/Concatenation modify a loop’s iteration
domain. They are horizontal loop transformations. Index set splitting creates
multiple loops, each responsible for a fraction of the original loop’s iteration
domain. For instance, the result of Listing 1.7a is shown in Listing 1.7b.

The difference of loop peeling is that the split loop is specified in number of
iterations at the beginning or end of the original loop. Therefore, it can be seen
as syntactical sugar for index set splitting.

Loop concatenation is the inverse operation and combines the iteration space
of two or more consecutive loops. For instance, the result of Listing 1.8a is
Listing 1.8b.

2.4 Syntax

The generalized loop transformation syntax we propose is as follows:
#pragma omp [loop(loopnames)] transformation option(argument) switch . . .
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The optional loop clause can be used to specify which loop the transformation
applies on. How many loops can be specified depends on the transformation. If
the clause is omitted, the transformation applies on the following horizontal or
vertical loops, depending on the transformation. Alternatively, a number speci-
fied to mean the next n vertical or horizontal loops, like OpenMP’s collapse-
clause.

OpenMP’s current simd and for constructs require canonical for-loops, but
implementations may lift that restriction to support more kinds of transformable
loops, e.g. while-loops.

3 Implementation

To serve as a proof-of-concept, we are working on an implementation in Clang.
Independently from this proposal, we also want to improve Clang/LLVM’s loop
transformations capabilities to make it useful for optimizing scientific high-
performance applications.

3.1 Front-End: Clang

Clang’s current general loop transformation syntax, also shown in Table 1, is
#pragma clang loop transformation(option) transformation(option) . . .

and therefore differs from the proposed OpenMP syntax: the first keywords
(omp vs. clang loop), but also for the transformations themselves. Multiple
options can be given by using different variants of the same transformation at
the same time, which is ambiguous when composing transformations.

Instead, we implement a hybrid of both syntaxes, which is:
#pragma clang loop[(loopnames)] transformation option(argument) switch . . .

The current syntax still needs to be supported for at least the transformations
currently possible with Clang.

Clang’s current architecture has two places where loop transformations occur,
shown in Fig. 1.

1. OpenMP’s parallel for is implemented at the front-end level: The gener-
ated LLVM-IR contains calls to the OpenMP runtime.

2. Compiler-driven optimizations are implemented in the mid-end: A set of
transformation passes that each consume LLVM-IR with loops and output
transformed IR, but metadata attached to loops can influence the passes’
decisions.

This split unfortunately means that OpenMP-parallel loops are opaque to the
LLVM passes further down the pipeline. Also, loops that are the result of other
transformations (e.g. LoopDistribute) cannot be parallelized this way because
it must have happened before. An exception is, #pragma omp simd which just
annotates a loop inside the IR using llvm.loop.vectorize.enable to be pro-
cessed by the LoopVectorizer pass.
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Fig. 1. Clang compiler pipeline

Multiple groups are working on improving the situation by adding parallel
semantics to the IR specification [28,29]. These and other approaches have been
presented on LLVM’s mailing list [5,10] or its conferences [9,27]. Until Clang’s
implementation of OpenMP supports generating parallel IR, we require users to
use a different pragma if they want the mid-end to apply thread-parallelism. In
Clang’s case, this is #pragma clang loop parallelize thread.

3.2 LLVM-IR Metadata

Only existing loops can be annotated using the current metadata, but not loops
that result from other transformations. In addition, there is no transformation
order and at most one instance of a transformation type and can be specified.
Therefore, a new metadata format is required.

Our changes use loop annotations only to assign loop names. The transforma-
tion themselves are instead a sequence of metadata associated with the function
containing the loop. Each transformation has to lookup the loop it applies on
using the result of the previous transformations.

Current passes that consume the current metadata need to be modified to
read the changed format instead. Due to their fixed order in the pass pipeline
however, they can only apply on loops that originate in the source or are the
result of passes that execute earlier in the pipeline.

3.3 Loop Transformer: Polly

Polly [13] takes LLVM-IR code and ‘lifts’ is into another representation – schedule
trees [32] – in which loop transformations are easier to express. To transform
loops, only the schedule tree needs to be changed and Polly takes care for the
remainder of the work.
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We can implement most transformations from Table 2 as follows. First, let
Polly create a schedule tree for a loop nest, then iteratively apply each trans-
formation in the metadata to the schedule tree. For every transformation we
can check whether it violates any dependencies and act according to the chosen
policy. When done, Polly generates LLVM-IR from the schedule tree including
code versioning.

If desired, Polly can also apply its loop nest optimizer which utilizes a linear
program solver before IR generation. We add artificial transformational depen-
dencies to ensure that user-defined transformations are not overridden.

4 Evaluation

Although we intended this to be a proposal for further discussion, and hence
do not have a complete implementation yet, we can measure what the effects of
such pragmas are. Figure 2 shows the execution times of a single thread double
precision matrix-multiplication kernel (M = 2000, N = 2300,K = 2600).

0 10 20 30 40 50 60 70 80 90

Fig. 2. Comparison of matrix-multiplication execution times on an Intel Core i7
7700HQ (Kaby Lake architecture), 2.8 GHz, Turbo Boost off

The näıve version (Listing 1.1 without pragmas) compiled with Clang 6.0
executes in 75 s (gcc’s results are similar); Netlib’s reference CBLAS implemen-
tation in less than half that time. With the pragma transformations manually
applied the execution time shrinks to 3.9 s. The same transformations as auto-
matically applied by Polly runs in 1.14 s, which is 42% of the processor’s theoret-
ical floating-point limit. LLVM’s loop vectorizer currently only supports vector-
izing inner loops, so we applied an additional unroll-and-jam step in the manual
version. Polly instead prepares its output for the SLP-vectorizer, which may
explain the performance difference.

By comparison, OpenBLAS and ATLAS both reach similar results with 4.5
and 5.8 s. Their binaries were obtained from the Ubuntu 16.04 software repos-
itory, therefore are likely not optimized for the platform. Intel’s MKL library
runs in 0.59 s, which is 89% of the theoretical flop-limited peak performance.
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5 Related Work

As already mentioned in Table 1, many compilers already implement pragmas
to influence their optimization passes. The most often implemented transfor-
mation is loop unrolling, for instance in gcc since version 8.1 [11]. The most
advanced transformation we found is xlc’s #pragma block loop. It is the only
transformation that uses loop names which might have been introduced only for
this purpose. The compiler manual mentions special cases where it is allowed
to compose multiple transformations, but in most cases it result in only one
transformation being applied or a compiler error [16].

Multiple research groups already explored the composition of loop transfor-
mations, many of them based on the polyhedral model. The Unifying Reordering
Framework [20] describes loop transformations mathematically, including seman-
tic legality and code generations. The Clint [34] tool is able to visualize multiple
loop transformations.

Many source-to-source compilers can apply the loop transformations them-
selves and generate a new source file with the transformation baked-in. The
instructions of which transformations to apply can be in the source file itself
like in a comment of the input language (Clay [1], Goofi [23], Orio [14]) or like
our proposal as a pragma (X-Language [7], HMPP [6]). Goofi also comes with a
graphical tool with a preview of the loop transformations. The other possibility
is to have the transformations in a separate file, as done by URUK [12] and
CHiLL [30]. POET [33] uses an XML-like description file that only contains the
loop body code in the target language.

Halide [26] and Tensor Comprehensions [31] are both libraries that include a
compiler. In Halide, a syntax tree is created from C++ expression templates. In
Tensor Comprehensions, the source is passed as a string which is parsed by the
library. Both libraries have objects representing the code and calling its methods
transform the represented code.

Similar to the parallel extensions to the C++17 [19] standard library, Intel’s
Threading Building Blocks [17], RAJA [15] and Kokkos [8] are template libraries.
The payload code is written using lambdas and an execution policy specifies how
it should be called.

Our intended use case – autotuning loop transformations – has also been
explored by POET [33] and Orio [14].

6 Conclusion

We propose adding a framework for general loop transformation to the OpenMP
standard. Part of the proposal are a set of new loop transformations in addition
to the already available thread-parallelization (#pragma omp for) and vectoriza-
tion (#pragma omp simd). Some of these have already been implemented using
compiler-specific syntax and semantics. The framework allows arbitrarily com-
posing transformation, i.e. apply transformations on already transformed loops.
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Loops – existing in the source code as well as the loop resulting from transforma-
tions – can be assigned unique identifiers such that the pragmas can be applied
on already transformed loops.

Experiments show speedups comparable to hand-optimized libraries without
the cost in maintainability. We started implementing the framework using a
different syntax in Clang/LLVM using the Polly polyhedral optimizer to carry
out the transformations.

The proposal is not complete in that it does not specify every detail a specifi-
cation would have. As with any proposal, we are looking for feedback from other
groups including about applicability, syntax, available transformations and com-
patibility/consistency with the current OpenMP standard.
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Abstract. OpenMP provides several mechanisms to specify parallel
source-code transformations. Unfortunately, many compilers perform
these transformations early in the translation process, often before per-
forming traditional sequential optimizations, which can limit the effec-
tiveness of those optimizations. Further, OpenMP semantics preclude
performing those transformations in some cases prior to the parallel
transformations, which can limit overall application performance.

In this paper, we propose extensions to OpenMP that require the
application of traditional sequential loop optimizations. These extensions
can be specified to apply before, as well as after, other OpenMP loop
transformations. We discuss limitations implied by existing OpenMP
constructs as well as some previously proposed (parallel) extensions to
OpenMP that could benefit from constructs that explicitly apply sequen-
tial loop optimizations. We present results that explore how these capa-
bilities can lead to as much as a 20% improvement in parallel loop per-
formance by applying common sequential loop optimizations.

Keywords: Loop optimization · Loop chain abstraction
Heterogeneous adaptive worksharing · Memory transfer pipelining

1 Introduction

Efficient use of the complex hardware commonly available today requires com-
pilers to apply many optimizations. OpenMP already supports many of these
optimizations, such as offloading regions to accelerators like GPUs and the par-
allelization of code regions through threads and tasks. However, OpenMP cur-
rently ignores the large space of sequential optimizations, such as loop fusion,
loop fission, loop unrolling, tiling, and even common subexpression elimination.

One might argue that the compiler can automatically apply traditional
sequential optimizations. This approach has worked reasonably well for sequen-
tial code regions. However, the space of sequential optimizations, when to apply
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them, and in what order is complex and OpenMP parallelization complicates it
further. Thus, hints, or even prescriptive requirements, from the application pro-
grammer could substantially reduce the complexity of the compiler’s navigation
of that space.

More importantly, the semantics of several existing OpenMP constructs pre-
clude the use of some sequential optimizations prior to the transformations repre-
sented by those constructs. Many proposed OpenMP extensions, such as ones to
support pipelining [3] and worksharing across multiple accelerators [7,9], increase
these restrictions. Others, such as loop chaining [1,2] complicate the optimiza-
tion space further. Thus, the ability to specify sequential optimizations and when
to apply them could substantially improve the compiler’s ability to exploit the
complex hardware in emerging systems.

A key issue is supplying sufficient data to keep the computational units busy.
Sequential optimizations frequently improve arithmetic intensity and memory
performance. OpenMP parallelization can also improve memory performance by
reducing the memory footprint per thread and thus freeing CPU cache for other
data. Many proposed data and pipelining optimizations also address these issues.
Often the programmer understands which optimizations to apply and the best
order in which to apply them. Other times, the programmer can easily determine
that the order in which they are applied will not impact code correctness. Thus,
OpenMP extensions should allow the programmer to provide this information
to the compiler.

This paper makes the following contributions:

– an initial review of limitations that existing OpenMP constructs and proposed
extensions impose on the use of sequential optimizations;

– proposed syntax to allow OpenMP programmers to request the use of sequen-
tial optimizations; and

– a discussion of the performance implications, including an initial experimental
study, of the current limitations on and the proposed support for sequential
optimizations.

Overall we find that flexible support to specify sequential optimizations could
use existing compiler capabilities to produce significantly more efficient code.

The remainder of the paper is structured as follows. In the next section, we
discuss the limitations that OpenMP semantics place on the use of traditional
sequential optimizations. Section 3 then presents our proposed syntax for an
initial set of sequential optimizations to include directly in OpenMP. We then
present an initial performance study in Sect. 4 that demonstrates that these
sequential extensions could provide significant performance benefits.

2 Existing Limitations

Existing OpenMP constructs can require that their semantics be instantiated
prior to performing several important sequential optimizations. These require-
ments can limit the scope and the effectiveness of those optimizations. Other
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#pragma omp for schedu le ( static , 1) nowait
for ( int i = 0 ; i < n ; ++i )

A[ i ] += B[ i ] * c ;

Fig. 1. A simple static loop, with a chunk size that interferes with optimization

optimizations may be complicated by the order in which a specific OpenMP
implementation interprets OpenMP semantics and applies sequential optimiza-
tions. In this section, we discuss common subexpression elimination, unrolling,
pipelining, CoreTSAR, and loop chaining.

2.1 Common Subexpression Elimination

A simple example that we do not address in this work is common subexpression
elimination (CSE). For CSE, the optimization could take the form of code hoist-
ing to outside of an OpenMP parallel region and creation of firstprivate copies
that are stored in registers for each thread. CSE would be performed before
parallelization.

2.2 Unrolling

Of particular interest in the context of our proposed extensions are limitations
implied by the loop construct. Consider, for example the loop unrolling optimiza-
tion. In Fig. 1, the specification of a static schedule with a chunk size parameter of
one implies that unrolling cannot be performed prior to implementing the sched-
ule. Specifically, since OpenMP requires iterations to be distributed in chunks
of the given size, a single thread cannot be provided with any more than one
consecutive iteration in this case.

2.3 Pipelining

The expression of data access patterns can be leveraged to allow for pipelin-
ing of data transfers and computation in loop offload. This is a topic that we
have explored before in the context of pipelining individual loops [3]. Given
annotations of the data access pattern of a given iteration in a loop nest, the
implementation can implement multiple buffering and an overlapped pipeline of
data transfers and computation for the user. Figure 2 shows a simple example of
a stencil code, which uses one possible way to describe the data access pattern,
by using the iteration variable to split on the pipeline map clause. Specifically,
referring to the induction variable k in the pipeline map clause expands to a
reference to all iterations of the range of iterations from one to nz-1 as defined
by the loop.

A weakness of the previously proposed approach is that it cannot easily be
extended to work for asynchronous loops with dependencies. It must be syn-
chronous with respect to other loops at least, if not with respect to host exe-
cution. Since the first loop must fully complete before the next can start, loop
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#pragma omp ta rg e t \
p i p e l i n e ( stat ic [ 1 , 3 ] ) \
pipe l ine map ( to :A0 [ k− 1 : 3 ] [ 0 : ny−1 ] [ 0 : nx−1])\
pipe l ine map ( from : Anext [ k : 1 ] [ 0 : ny−1 ] [ 0 : nx−1])\
p ipe l i n e mem l im i t (MB 256)

for ( k=1;k<nz−1;k++) {
#pragma omp ta rg e t teams d i s t r i b u t e p a r a l l e l for

for ( i =1; i<nx−1; i++) {
for ( j =1; j<ny−1; j++) {

Anext [ Index3D ( i , j , k ) ] =
(A0 [ Index3D ( i , j , k + 1 ) ] +
A0 [ Index3D ( i , j , k − 1 ) ] +
A0 [ Index3D ( i , j + 1 , k ) ] +
A0 [ Index3D ( i , j − 1 , k ) ] +
A0 [ Index3D ( i + 1 , j , k ) ] +
A0 [ Index3D ( i − 1 , j , k ) ] ) * c1

− A0 [ Index3D ( i , j , k ) ] * c0 ;
} }

}

Fig. 2. An example stencil kernel using pipelining.

fusion is effectively impossible, at least unassisted. Similarly pipelining com-
plicates tiling since both modify the loop bounds, possibly dynamically. Given
extensions to express how the data flows from one loop to the next, this kind
of pipelining might be applied to multiple loops in sequence without having to
complete one loop in full before beginning the next.

2.4 CoreTSAR

As with the pipelining extensions, CoreTSAR [7,9], the Core Task Size Adapting
Runtime, leverages data access pattern information to coschedule loops across
different resources such as CPUs and GPUs or coprocessors. The main abstrac-
tion is a loop iteration mapping to the accesses made by any given iteration.
Figure 3 shows a simple partitioning of a GEMM kernel by its outer loop, split-
ting the loop by rows according to the i index. CoreTSAR uses a somewhat more
abstract syntax to describe the data access pattern. Its hetero clause selects the
devices and schedule to use, and defines that the associated loop over i should
be split. Each part map clause overloads the array section syntax to represent
split by loop iter:length.

The information provided by the user, along with the usual loop trip count
information, feeds into a scheduler that selects how much of the given iteration
range should be provided to each device, and distributes the data accordingly.
This scheduler can be any of a wide range, but the static and adaptive sched-
ules are most common. The static schedule is similar to the static sched-
ule on the loop construct but adjusted proportionally by the performance of
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Fig. 3. An example GEMM kernel with CoreTSAR.

the hardware targets, while adaptive starts out as static and uses a linear-
optimization approach to attempt to complete the work given to each device
in as close to the same amount of time as possible while minimizing time. The
resulting code precludes loop fusion for the same reason as pipelining does. If the
loop transformations to generate the dynamically sized inner chunks are applied
before sequential optimizations, tiling is also effectively precluded since the loop
distribution extension would require information about the tiling to be correct.

2.5 Loop Chain Abstraction and Optimization

A loop chain is N (N > 1) loop nests with no code between them that explicitly
share data. Figure 4 shows an example of a simple loop chain. These are common
in stencil applications and present an opportunity for both data-reuse optimiza-
tions and temporary-storage optimizations. The loop chain abstraction [5] rep-
resents a loop chain as a sequence of loops domains L1, L2, . . . , LN , well defined
data space domains D1,D2, . . . , DM , read access functions Readl,d : Ll → Dd,
and write access functions Writel,d : Ll → Dd. This model of a loop chain
provides a framework for developing and implementing scheduling and storage
optimizations between loops.

The key optimization applied to loop chains is loop fusion, which is used in
conjunction with other loop optimizations such as tiling and wavefront paral-
lelism. However these optimizations can be difficult to apply manually to complex
scientific codes, obfuscate the primary computation, and may not be portable.
Further, there are many combinations of possible optimizations, including the
parameterization of tile sizes; a developer would need significant expertise to
know ahead of time which optimizations would be useful.
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for ( int i = lb ; i <= ub ; i += 1 )
A[ i ] = (B[ i −1] + B[ i ] + B[ i +1 ] ) ;

for ( int i = lb ; i <= ub ; i += 1 )
A[ i ] = A[ i ] * ( 1 . 0 / 3 . 0 ) ;

Fig. 4. Example of simple loop chain.

The loop chain abstraction allows automated loop fusion, tiling, and paral-
lel wavefronting of loop chains through a source-andto-source compiler [1,2]. A
major contribution of that work is an OpenMP-style annotation language that
allows the developer to state explicitly the loop chain domains, access functions,
and a list of desired optimizations to be applied to the loop chain. Figure 5 shows
how the loop chain in Fig. 4 would be annotated with this language. The sepa-
ration of the schedule(..) specification in only one location for the entire loop
chain enables the use of autotuning across different potential schedules.

The annotations allow the developer to identify the entire loop chain, each
loop nest of the chain, the domains of the loops, and the read and write access
functions. The annotations can also be applied to sequences of inlineable func-
tions whose bodies contain the loops and accesses. The annotations then pro-
vide the transformation tool information about the code (loop domains and data
access patterns) required to perform the optimizations, replacing the need for
complicated analysis. Additionally, loop chain scheduling operators (fuse, tile,
wavefront, serial, and parallel) allow the developer to list specific optimiza-
tions to apply to the loop chain. Combined, the loop chain and related annota-
tions support easy application of complicated optimizations on new and existing
code without requiring cumbersome and unnecessary rewriting and redesigning
of the applications. These annotations can be written by non-experts, who can
easily change the optimizations that are applied. Thus, the developer can use
these optimizations and experiment to find the fastest schedule by changing the
scheduling annotations and not the application code.

3 Sequential Optimizations

In this section, we discuss some of the most effective sequential optimizations for
scientific codes: loop fusion, tiling, and unrolling. Each have been implemented
with pragmas in various tools.

3.1 Fusion

Loop fusion is a common optimization that takes two or more loop bodies and
combines them into one. The loop domains may also be shifted to respect data-
dependencies that occur between the loops. Loop fusion improves caching behav-
ior by reducing the distance between when data is produced and when it is used.
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#pragma omplc loopcha in schedu le ( . . . )
{

#pragma omplc for domain ( lb : ub ) \
with ( i ) \

wr i t e A {( i )} , \
read B {( i −1) ,( i ) , ( i +1)}

for ( int i = lb ; i <= ub ; i += 1 )
A[ i ] = (B[ i −1] + B[ i ] + B[ i +1 ] ) ;

#pragma omplc for domain ( lb : ub ) \
with ( i ) \

wr i t e A {( i )} , \
read A {( i )}

for ( int i = lb ; i <= ub ; i += 1 )
A[ i ] = A[ i ] * ( 1 . 0 / 3 . 0 ) ;

}

Fig. 5. Example of annotated source code (schedule omitted)

for ( int i = lb ; i <= ub ; i += 1 ){
A[ i ] = (B[ i −1] + B[ i ] + B[ i +1 ] ) ;
A[ i ] = A[ i ] * ( 1 . 0 / 3 . 0 ) ;

}

Fig. 6. Example of a fused loop chain using schedule( fuse() )

Loop fusion can also enable reduction of the amount of temporary storage that
a computation requires.

In the loop chain transformation framework [1,2], the fuse() scheduling
operator specifies the fusion of all loops in the loop chain. The tool uses the
read/write information to form a dependency graph and to find the smallest
shifts required to make fusion legal. Alternatively, the developer can explicitly
specify the shifts that they require. Figure 6 shows the result of the schedule
fuse() applied to the example loop chain in Fig. 5.

3.2 Tiling

Tiling is a common optimization that breaks a loop into contiguous chunks [4,
12,13]. Tiling reduces reuse distances in order to improve caching behavior.

In the loop chain transformation framework [1,2], the tile( ) scheduling
operator specifies tiling of the loops in the loop chain. This operator has three
required arguments. First, a tuple indicates the tile-size in each dimension. Cur-
rently, tile-size is not parameterizable (a current limitation of the polyhedral
code generator, ISL [11]), and requires a constant value. The tiling can be of
fewer dimensions than the loop being tiled (for example, strip mining is a one
dimensional tiling of a two-or-more dimension space). The second argument to
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#pragma omp p a r a l l e l
for ( int i o = lb ; i o <= ub ; i o += 10 ){

for ( int i = i o ; i <= io +10; i += 1 ){
A[ i ] = (B[ i −1] + B[ i ] + B[ i +1 ] ) ;

}
for ( int i = i o ; i <= io +10; i += 1 ){

A[ i ] = A[ i ] * ( 1 . 0 / 3 . 0 ) ;
}

}
// clean−up loop

Fig. 7. Tiled loop chain with schedule( tile( (10), parallel, serial ) )

the tiling operator specifies the schedule to apply over the tiles. The current tool
supports several scheduling operators: tile; wavefront; serial; and parallel.
For example, using the serial operator over the tiles would lead to each tile
being visited serially, whereas using the parallel operator allow each tile to be
visited in parallel (with no guarantee of order). Similarly, the third argument to
the tiling operator is the schedule that is applied within a tile; it can also be any
one of the scheduling operators (tile, wavefront, serial, or parallel). For
example, using the serial operator within a tile would lead to each each point
within a tile being visited serially, whereas using the parallel operator would
allow all points in a tile to be visited in parallel (with no guarantee of order).
Figure 7 show the result of the schedule tile( (10), parallel, serial ).

3.3 Unrolling

Many compilers support loop unrolling. Unfortunately no common mechanism
for invoking loop unrolling is consistently available. For example, the Intel and
IBM XL compilers accept pragma unroll(n). On the other hand, gcc supports
pragma GCC unroll n. In contrast, the PGI and Microsoft C compilers do not
offer any unrolling pragma.

The state of standardization for unrolling directives is similar to the range
of non-portable parallel directives before OpenMP, and extending OpenMP to
support it should carry the same overall benefit. Adding a new unroll(n) clause
to the loop directive or the same as a loop chain operator can deliver this behavior
portably. As a simple example, Fig. 8 shows a simple loop with the unrolling
annotation and the result of unrolling it.

3.4 Interaction Between Optimizations

In the loop chain source-to-source transformation framework, each scheduling
operator produces some function mapping from one polyhedral space to another.
These functions are composed together when performing the complete transfor-
mation. In the more general case, any of the optimization operators or clauses
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// Annotated
#pragma omp for un r o l l ( 2 ) schedu le ( static , 1) nowait
for ( int i = 0 ; i < n ; ++i )

A[ i ] += B[ i ] c ;
// Expanded
#pragma omp for schedu le ( static , 1) nowait
for ( int i = 0 ; i < n ; i+=2 ) {

A[ i ] += B[ i ] *

*

c ;
A[ i +1] += B[ i +1] * c ;

}

Fig. 8. Example of applying an unrolling clause to the loop directive.

Table 1. Descriptions for each of the execution schedules presented.

Legend label Description

Baseline Original implementation, series of loops

Fuse Loop fusion

Tiled 8X8X8 Loop fusion then tile

Tiled 16X16X16 Loop fusion then tile

Tiled 32X32X32 Loop fusion then tile

that we have discussed could be composed, and in some cases even repeated.
For example, a loop might be tiled for one size, parallelized, then tiled again
for an inner cache on a given core. How these optimizations compose together is
beyond the scope of this paper.

4 Experimental Results

Current results with the proposed loop chain optimizations [2] indicate that
stencil applications optimized with loop chain optimizations perform better than
the baseline at high thread counts.

4.1 Loop Fusion and Tiling

MiniFluxDiv1 captures a subset of the stencil computations implemented in
PDE solvers for computational fluid dynamics simulations. It was developed to
emulate the behavior of the shared memory portion of code in the Chombo
framework [6]. A series of sequential optimizations including loop fusion, itera-
tion space shifting followed by loop fusion, and tiling were applied. The schedules
presented here are described in Table 1.

1 The code for the mini-flux-div benchmark can be found in the Variations on a Theme
[10] benchmark repository.
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Fig. 9. Experimental results of Mini-Flux-Div (a stencil CFD code) micro-benchmark,
(a) overall performance results, (b) zoomed view of results for threads 14 through 28

These experiments were run on a single node of the multi-node R2 cluster,
at Boise State University. Each node contains a dual socket, Intel Xeon E5-2680
v4 CPU at 2.40 GHz clock frequency with 28 cores (14 per socket).

The sequential optimizations improves performance the most with larger
domains and larger core counts. Figure 9 shows that shared memory scaling
was improved for the cases with larger domains (1283). This improvement
impacts the full application performance as the interprocess communication can
be reduced when larger shared memory domains are utilized.

The fusion optimizations that loop chains can enable also address some of the
issues that arise with abstractions that produce many workshared loops nearly
in direct contact [8]. They provide an easy way to eliminate the overheads of
extra barriers and joins.

4.2 Loop Unrolling

The unrolling optimization can benefit non-chained loops as well as chains. To
explore those benefits, we modify the clompk benchmark from the CORAL2
benchmark suite, which measures OpenMP overheads for execution patterns that
are roughly consistent with a sparse matrix hydrodynamics code. We produced
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three unrolling factors for each loop: no unrolling; unroll by two; and unroll by
four. We compile with OpenMP in parallel, and separately without any OpenMP
directives. Figure 10 presents the performance results.

Fig. 10. Performance of clompk with and without unrolling applied.

For the sequential loop variant, an unroll factor of two produces a slowdown
of about one percent, while a factor of four yields a speedup of a little more
than one percent. The differences there are nearly in the noise, and show little
change from the baseline. On the other hand, the OpenMP loops speed up by
over 23% with an unroll factor of two, and almost 12% for a factor of four. These
differences underscore a key point of this paper: manual unrolling makes almost
no difference for serial execution since the compiler can accurately determine
the degree to which to perform the transformation. However, manual unrolling
can provide substantial benefit in the context of OpenMP. Thus, the version of
clompk with OpenMP active runs 10% slower with one thread than the version
compiled without OpenMP.

5 Conclusion

Modern systems are complex. They utilize powerful hardware and diverse archi-
tectures. Optimizations on loops, such as heterogeneous adaptive worksharing,
memory transfer pipelining, and loop chain scheduling, are necessary to achieve
the performance offered by these advanced architectures. However, these, and
other necessary optimizations, are difficult to implement in the compiler while
maintaining all required invariants of parallel programming models like OpenMP,
and can be quite costly if added manually by the developer.
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While the scope of OpenMP has traditionally been limited to an easy-to-use
API for adding parallelism, we argue that these sequential optimizations could be
made more accessible and portable by extending OpenMP to support them. The
proposed extensions follow the OpenMP model by providing developers pragmas
that explicitly prescribe specific optimizations. We combined them with descrip-
tive information that gives the compiler the necessary information, particularly
data access patterns, to perform the optimizations legally and efficiently.

Some of these extensions require the compiler to be more intelligent. For
example, the fusion optimization in loop chaining requires the compiler to
determine the required loop shifts to make fusion legal for stencil computations.
However, this intelligence is augmented by the descriptive information provided
by the annotations. Thus, developers can easily apply advanced and complex
optimizations to their application without restricting their ability to maintain
and to improve the application around and beyond these optimizations.
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Abstract. OpenMP has supported the offload of computations to accel-
erators such as GPUs since version 4.0. A crucial aspect in OpenMP
offloading is to manage the accelerator data environment. Currently, this
has to be explicitly programmed by users, which is non-trival and often
results in suboptimal performance. The unified memory feature available
in recent GPU architectures introduces another option, implicit manage-
ment. However, our experiments show that it incurs several performance
issues, especially under GPU memory oversubscription. In this paper,
we propose a compiler and runtime collaborative approach to manage
OpenMP GPU data under unified memory. In our framework, the com-
piler performs data reuse analysis to assist runtime data management.
The runtime combines static and dynamic information to make optimized
data management decisions. We have implement the proposed technology
in the LLVM framework. The evaluation shows our method can achieve
significant performance improvement for OpenMP GPU offloading.

Keywords: Data management · Unified memory
OpenMP offloading · Compiler · Runtime · LLVM

1 Introduction

Today’s computing systems rely on accelerators to achieve performance and energy
efficiency goals. As the most popular accelerator nowadays, the massive thread-
ing ability of GPUs can especially benefit applications with large amounts of par-
allelism, such as scientific computing and machine learning. Therefore, GPU is
and will remain a crucial component of supercomputing systems in the foresee-
able future. For instance, in the next OLCF supercomputer, Summit, each node is
equipped with 6 NVIDIA Volta GPUs while the number of CPUs remains 2 [2].

In order to leverage accelerators like GPUs, OpenMP 4.0 introduced the
ability to offload computations to accelerators [3]. It is called device offloading.
Compared to native GPU programming models such as CUDA [15] and OpenCL
[19], using OpenMP for GPU programming has a shorter learning curve for users
c© Springer Nature Switzerland AG 2018
B. R. de Supinski et al. (Eds.): IWOMP 2018, LNCS 11128, pp. 69–81, 2018.
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and is more performance portable. Compared to other directive based methods
like OpenACC [1], OpenMP has a broader user community and better compiler
support. Therefore, we expect the number of OpenMP+GPU users will continue
to grow.

However, writing efficient GPU programs is still a non-trivial job with
OpenMP. One of the biggest challenges in GPU programming is how to effi-
ciently program GPU memory. Normally, CPU and GPU are attached with sep-
arate memory since they have different memory preferences. While CPU prefers
low access latency, GPU performance is more sensitive to memory bandwidth
compared with latency. Separate memory also helps reduce memory contention
caused by sharing. Traditionally, CPU and GPU use separate memory spaces for
their individual memory. As a result, they cannot access each other’s memory,
and data exchange has to be managed explicitly by programmers.

To ease the programming of GPU memory, a feature called unified mem-
ory (UM) is introduced in recent NVIDIA GPU architectures. Unified memory
introduces a single memory space which covers both CPU and GPU memory.
From programmers’ perspective, they do not need to worry about the location
of accessed data, and data is moved between CPU and GPU by the underlying
system software automatically if necessary. The burden of programming data
transfer is relieved.

The other major advantage of unified memory is that it enables running
kernels with memory footprints larger than the GPU memory capacity. Without
on demand page migration of unified memory, GPU offloading is possible only if
the dataset fits into the GPU memory. While with it, part of data can reside in
the CPU memory, and they will be fetched into the GPU memory when actually
required at runtime. These advantages promote more usage of unified memory
in future GPU programming.

Every story has two sides. As we will show, unified memory also brings many
challenges along with its benefits. First of all, page fault overhead can be signif-
icant in cases when data transfers dominate in the execution. More importantly,
although unified memory is able to address working sets that exceed the GPU
memory capacity, significant data thrashing often happens in such scenarios.
Programmers often have no clues about these issues. Therefore, we believe it is
crucial to address the performance issues of unified memory for OpenMP offload-
ing, and it would be preferable if the solution is transparent to programmers.

This paper makes the following contributions for this goal.

– First, we analyze the performance of unified memory. The results reveal that
its performance mainly depends on accessed data properties, including size,
access density and reuse situation (Sect. 3).

– We design a compiler-runtime collaborative framework to optimize unified
memory performance and implement it in Clang and LLVM OpenMP runtime
[12]. The proposed method analyzes data object properties to find out proper
optimization strategies, which are applied at runtime (Sect. 4).

– The experimental results demonstrate that our technique can improve unified
memory performance significantly while having low overhead (Sect. 5).
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2 Related Work

Since the introduction of device offloading in OpenMP 4.0, several compilers have
adopted this feature. For instance, [5] describes how to implement this extension
in the LLVM framework. Our optimization uses this work as the baseline.

There are several proposals to simplify and optimize the GPU memory man-
agement. CGCM [10] provides compiler and runtime support to automatize the
GPU memory management for CUDA programs. Pai et al. propose a software
coherence mechanism to reduce redundant data transfers between the CPU and
GPU [17]. Zhao and Xie propose to leverage hybrid DRAM and NVM GPU
memory systems and a data migration mechanism to reduce GPU power con-
sumption [20]. These works aim at traditional GPU programs where data move-
ment is managed explicitly by users, and do not consider unified memory.

Some recent research aims to study or improve the performance of unified
memory. In the presence of heterogeneous memory, Agarwal et al. propose that
the ratio of data allocation in each memory should be proportional to the mem-
ory bandwidth in order to achieve the highest total bandwidth [4]. The method
we propose in this paper is orthogonal to this work.

Several research efforts have studied and optimized OpenMP device data
management. Grinberg et al. introduce a method to use unified memory within
the current OpenMP implementation [8]. Mishra et al. study the OpenMP
offloading performance under unified memory [14]. Cui et al. propose a pipeline
directive to break down OpenMP parallel loops and thus achieve device com-
putation and communication overlapping [7]. Hahnfeld et al. propose to use
existing OpenMP 4.5 directives for similar purposes [9]. Olivier et al. discuss
double buffering for Intel Xeon Phi processors in OpenMP [16]. These methods
are limited to cases where data access patterns are analyzable, and they also
require programming efforts. In contract, our work is able to address unpre-
dictable memory access pattern using unified memory, and does not require
inputs from users.

3 Unified Memory Analysis

As the first step, we compare the performance of unified memory with that of
traditional GPU memory management approach, and analyze how it performs in
different scenarios. Table 1 shows our benchmarks. We use the OpenMP offload-
ing version of BFS, CFD, and SRAD from the Rodinia benchmark suite in our
experiments [6,14]. For each benchmark, we generate inputs with various sizes
to study the performance impact of workload sizes. The detailed experimental
setup is described in Sect. 5.1. We modified the LLVM OpenMP runtime so that
it supports the placement of data in unified memory.

Figure 1 illustrates the GPU execution time when data is placed in unified
memory and transferred implicitly, versus when data is transferred by OpenMP
runtime explicitly. The x axis represents the working set size and y axis repre-
sents the execution time. The measured execution time captures both the GPU
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Table 1. Benchmarks.

Name Domain Description

Breadth first search
(BFS)

Graph algorithms Breadth first search traverses all the
connected components in a graph

Computational fluid
dynamics solver
(CFD)

Fluid dynamics The CFD solver is an unstructured
grid finite volume solver for the
three-dimensional Euler equations for
compressible flow

Speckle reducing
anisotropic diffusion
(SRAD)

Image processing SRAD is a diffusion method for
ultrasonic and radar imaging
applications based on partial
differential equations (PDEs)

(a) BFS. (b) CFD. (c) SRAD.

Fig. 1. GPU performance under traditional approach and unified memory.

computation time and data transfer time between CPU and GPU. Note that
the y axis of BFS is on the logarithmic scale due to the dramatic performance
change in the presence of memory oversubscription. Our key observations are as
follows.

1. For working sets that fit into the GPU memory, unified memory
outperforms when less data is actually required at runtime. While tradi-
tional approach needs all data to be present in the GPU memory before computa-
tion starts, unified memory only transfers the actually accessed data at runtime
and thus may result in less data transfer. However, the data transfer bandwidth
is lower under unified memory, because it incurs extra address translation and
page fault processing overhead.

Here, we define the ratio of actually accessed data size and total data size as
access density. The lower the density is, the less data is transferred under unified
memory. When it is lower than a threshold (mostly depends on the hardware),
the benefit brought by less data transfer outweighs the lower bandwidth disad-
vantage of unified memory. Therefore, unified memory outperforms in such cases.
BFS belongs to this category. For other programs including CFD and SRAD,
traditional approach outperforms.

In summary, for data with high density, we would like to explicitly transfer all
data beforehand to reduce page fault overhead. Otherwise, we should let unified
memory fetch data on demand at runtime.
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2. Unified memory suffers from poor performance for oversubscribing
workloads with data reuse. For working sets that are larger than the GPU
memory size, unified memory is able to work correctly while traditional approach
fails. Its performance is largely decided by data reuse for such workloads. When
large amount of data gets reused, it is likely that reused data will thrash between
CPU and GPU memory. While all 3 benchmarks exhibit various degree of data
thrashing behavior, BFS incurs the largest performance loss.

(a) BFS. (b) CFD. (c) SRAD.

Fig. 2. Data transfer volume under unified memory. H2D and D2H represent traffic
from CPU to GPU and that from GPU to CPU respectively.

Table 2. Unified memory performance summary and optimization strategies.

Data size Reuse Density Performance Optimization

≤GPU memory size \ High Slightly worse (page
fault overhead)

Explicit data copy

Low Better (less data
transfer)

None

>GPU memory size High \ Poor (data thrashing) Data pinning

Low Good None

GPU programs are more likely to suffer from data thrashing because of the
following reason. In the GPU execution paradigm, different threads usually per-
form similar operations on different data items to exploit its massive threading
and data parallel ability. As a result, a large volume of data gets accessed in a
single OpenMP target region (i.e., kernel) call, which fills up the GPU memory
and evicts old data out. Since data reuse usually happens across different GPU
kernel invocations, soon-to-be-reused data is not likely to survive in the GPU
memory under the default replacement algorithm, LRU [11,13,18].

Figure 2 shows the data transfer volume of both directions under different
workloads. For oversubscribing workloads, the dramatic traffic increment of both
directions demonstrates the existence of data thrashing. Data thrashing not only
adversely affects performance, but also wastes a lot energy on redundant data
transfer.
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To avoid data thrashing, we propose to pin data in a certain memory to
prevent harmful data movement. The pinned location, GPU or CPU memory,
should be selected based on the overall locality of a data object. For instance,
data with good locality should be pinned to GPU, and data with poor locality
should be pinned to CPU instead.

3. Unified memory performs well for oversubscribing working sets with
little data reuse. If little data reuse exists, the performance of unified memory
does not show significant difference whether GPU memory is oversubscribed or
not. Since there is no reuse, all data is brought to the GPU memory once and
replacement decisions do not affect performance. On demand data fetching works
well in this case.

Conclusion. Table 2 summarizes the performance of unified memory and corre-
sponding optimization strategies in different scenarios. Data size, access density
and data reuse (i.e., locality) play important roles in the performance of uni-
fied memory. Later we will introduce how we identify different scenarios and
apply optimization strategies accordingly, in order to improve unified memory
performance.

4 Unified Memory Management

In this section, we propose a compiler-runtime combined framework to optimize
GPU unified memory management. The key idea of our framework is to ana-
lyze the properties of data objects in unified memory, and apply optimization
according to the analysis results for each object. The data analysis is performed
by both compiler and runtime in our framework, while the optimization is applied
by runtime. We will introduce each part separately in the rest of this section.

4.1 Static Analysis

The compiler identifies unified memory data objects and performs static analysis
on them. The proposed compiler analysis includes 3 stages: data allocation anal-
ysis, GPU data usage analysis, and data access frequency analysis. All analysis
is performed on the LLVM IR level. We briefly describe them as follows.

Data Allocation. As the first step, we identify all data objects in unified
memory space and record them. Such objects can be allocated through CUDA
APIs (e.g., cudaMallocManaged()), and OpenMP memory allocation APIs (e.g.,
omp target alloc()). Note that we modified the implementation of omp target
alloc() in the LLVM OpenMP runtime to support unified memory allocation.
The compiler employs a GPU object table (GOT) to keep records of detected
unified memory objects and their information obtained in the following steps.

GPU Usage. Then, we would like to find where these data objects are used
in GPU execution (i.e., which OpenMP offloading regions) for later analysis.
We implement a pass to check all usage of a unified memory object’s allocated
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memory space. When a related address of the object is passed to an OpenMP
target launching function (e.g., tgt target()), we identify one instance of its
GPU usage and record this OpenMP target region in the corresponding GOT
entry.

Data Access Frequency. At last, we design a compile-time analysis pass to
help understand data access frequency within target regions, which will be used
to estimate data reuse and access density that is critical for unified memory
optimization as shown in Sect. 3. First, for a certain data object in GOT, we
would like to calculate the access frequency for every OpenMP target region
that uses it, namely local access frequency (LAF). The existing LLVM pass
BlockFrequencyInfo can help achieve this purpose. This pass takes the taken
probability of branch instructions as input, to derive the execution frequency
of every basic block. It achieves so with static information. Using the informa-
tion provided by BlockFrequencyInfo, we get the execution frequency of each
memory access instruction. Then we accumulate the frequency of all memory
instructions within a target region that relate to a data object to get its LAF.

We would also like to get the global access frequency (GAF) of each data
object, which represents the overall GPU access frequency across the whole pro-
gram. For this purpose, we implement an inter-function/module analysis pass
to build a global call graph that includes both CPU and GPU functions. In this
graph, we calculate the call frequency of each parent and child function pair,
using the results from BlockFrequencyInfo. Then we estimate the overall exe-
cution frequency of each GPU function by traversing all leaf nodes in the built
call graph. Combining the execution frequency and LAFs of all GPU functions,
the GAF of a unified memory object is calculated.

Data Reuse. Since the desired optimization only needs a relative not absolute
data reuse results, i.e., it is good enough to tell object A gets better reuse than
object B, the data reuse of a data object is derived from its GAF directly.
We rank all unified memory objects based on their GAFs, and use the ranking
number to represent the data reuse. Assuming object A has the highest GAF
and B has the lowest GAF, the ranking (i.e., data reuse) of A and B will be 1 and
n respectively, where n is the total number of objects. We modify the OpenMP
runtime interface, so that for every unified memory argument, both data reuse
and LAF information is passed to the OpenMP runtime on offloading. LAFs
will be used by the runtime to estimate access density as will be introduced in
Sect. 4.2.

Completely compiler-based data access analysis has the drawback of low
accuracy and non-awareness of dynamic execution pattern. The latter is critical
for GPU execution since a code fragment can be executed by millions to billions
of threads. For data reuse, a relative result is good enough and thus we use
static analysis results for simplicity. For data size and access density, we leave a
significant part of analysis to the runtime, as will be introduced in Sect. 4.2.

Overhead. The proposed analysis utilizes results from existing LLVM passes
and does not need to be performed recursively. Compared to dozens of default
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analysis and optimization passes in Clang, its time overhead is negligible. In our
experiments, we do not observe notable compile time change when the proposed
analysis is enabled.

4.2 Runtime Analysis

Our runtime analysis utilizes runtime information to help the compiler finalize
data analysis results. Particularly, data size and access density are estimated
combining both runtime and compile-time information.

Data Size. The size of data objects depends on input in many cases and thus it
is natural for runtime to get this information. In the OpenMP offloading runtime
interface, the size of arguments is passed along with arguments themselves, and
it is thus free for runtime to get data size. One problem is the existing data
size is measured in bytes, while we would also like the number of elements for
the access density estimation introduced below. Luckily the element size can be
easily obtained by the compiler through type checking, and we pass it to the
runtime so that the number of elements can be computed by dividing the total
size by the element size.

Access Density. Density is calculated as the actual accessed element number
divided by total element number. We already discussed how to get the total
element number. The difficult part is how to estimate the number of actually
accessed elements.

Fortunately, the regular code structure of OpenMP target regions makes a
simple solution to calculate the number of accessed elements possible. In the
common scenario which covers more than 90% of offloading regions, an outer
for loop contains all work of an offloading region. Its iterations are distributed
across all GPU threads. The loop body is usually short and has simple control
flow. In such scenarios, the accessed element number in a single iteration is easy
to estimate thanks to the simple loop body. The total accessed number mainly
depends on how many iterations are executed.

We design a compiler-runtime combined scheme to compute total accessed
element number and thus access density. The runtime is responsible to obtain
the number of outer loop iterations, while the compiler estimates the number
of accessed elements in a single iteration, using LAF. If we assume memory
accesses distribute evenly across different elements in a data object, which is
quite reasonable for GPU, the number of accessed elements in a loop body is
equal to its LAF. By multiplying LAF and loop iteration number together at
runtime, we get an estimation of the total accessed element number in a object.
Then the access density can be computed as min(accessed element number/total
element number, 100%).

Discussion. The limitation of our density estimation method is that it assumes
a unified access distribution and does not distinguish elements within a data
object. For instance, if a small fraction of elements receive all data accesses in
an object, the access density estimated using the proposed method will be larger
than the actual value.
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In order to get more accurate analysis results, methods such as profiling and
instrumentation can potentially be used. However, unlike our proposed method
which puts little burden on compiler and runtime, these methods suffer from
significant compiling/runtime overhead and often need help from programmers.
Applying them will also add significant complexity to the implementation. As
Sect. 5 will show, the proposed compiler-runtime combined analysis can already
achieve significant performance improvement.

4.3 Runtime Management

This subsection will describe how we manage unified memory objects based on
the above analysis results, namely data size, data reuse and access density. The
runtime makes two key decisions for each object: (1) where it should be mapped,
GPU or CPU memory, and (2) how it should be transferred if it is mapped to
GPU, explicitly or implicitly (i.e., data transfer is performed on demand). Table 2
has listed our optimization strategies.

Data Mapping. When encountering an OpenMP target call, the runtime will
follow these steps to map the arguments in unified memory before execution
starts. After all properties are collected (i.e., size, reuse and density) as described
earlier, all unified memory objects involved in this call are ranked based on their
reuse. Then we select the proper mapping strategy for each object using the
reuse order (from large to small), so that data with better locality has higher
priority to be mapped to the GPU memory. If there is enough space in the
GPU memory, the current object is mapped to the GPU memory. Otherwise, it
is mapped to that of CPU to prevent data thrashing. In this case, we use the
CUDA API cudaMemAdvise to pin data into the CPU memory.

Data Transfer. If an object is mapped to the GPU memory, we further decide
how it should be transferred based on its density. Objects with small density
(<0.6, an empirical number obtained based on experimental results) should be
transferred implicitly to reduce data transfer volume, otherwise explicit transfer
is used. For explicit transfer, a GPU memory object with the same size is allo-
cated using cudaMalloc for GPU usage, and data transfer primitive cudaMemcpy
is used to synchronize original and new copies. This is the default policy followed
by the current OpenMP implementation. In the case of implicit transfer, we sim-
ply pass the original object to GPU kernels, and let the unified memory driver
handle on demand data transfer during execution.

Book Keeping. To implement the method described above, several book keep-
ing needs to be done at runtime. To keep track of GPU memory, the runtime uses
two 64-bit counters for each GPU. They record the size of GPU memory objects
that are transferred explicitly and implicitly, respectively. We can calculate the
free GPU memory size with these two counters.

The proposed runtime also maintains a table to keep records of active data
objects in the GPU memory. For each object, it records the size, data reuse,
mapping place (GPU or CPU), and transfer mechanism (explicit or implicit).
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Overhead. The proposed runtime is integrated seamlessly within the existing
LLVM OpenMP target offloading runtime. We do not introduce any expensive
operation into it. In our experiments, we find that there is virtually no difference
for the runtime execution time with or without our modification. Besides, all
performance results in Sect. 5 include the runtime overhead, if there is any.

5 Evaluation

5.1 Experimental Methodology

To evaluate the performance of our benchmarks, we use the OLCF SummitDev,
which is the prototype machine of Summit. Each SummitDev node is equipped
with 2 POWER8 CPUs and 4 Tesla P100 GPUs. They are connected through
NVLink 1.0, which provides up to 160 GB/s IO bandwidth per GPU. The Tesla
P100 GPU has 56 SMs and is equiped with 16 GB HBM2 memory. It supplies a
local memory bandwidth of 732 GB/s.

We use the up-to-date Clang [5] that supports OpenMP GPU offloading to
compile benchmarks. To enable offloading for NVIDIA GPUs, we pass the flag
-fopenmp-targets=nvptx64-nvidia-cuda along with -fopenmp to Clang. All
benchmarks are compiled under the O2 optimization level. The Linux kernel
version is 3.10.0 and the CUDA version is 9.0.69 on SummitDev.

(a) BFS.

(b) CFD. (c) SRAD.

Fig. 3. Performance of various schemes.
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5.2 Performance Results

Figure 3 illustrates the GPU performance under unified memory (UM), tradi-
tional approach (w/o UM), and our compiler-runtime collaborative OpenMP
Target data Management framework (OTM). Again, note that the execution
time (y axis) of BFS is on the logarithmic scale. While OTM helps BFS and
SRAD achieve significant performance improvement, it fails to do so on some
CFD workloads. Detailed analysis is as follows.

BFS. BFS receives the most performance gain from our approach. Under fitting
workloads, OTM outperforms w/o UM by 113% on average and has similar
performance compared to UM. Under oversubscribing workloads, OTM achieves
a dramatic average speedup of 3.37× compared with UM.

There is a large amount of data reuse existing in BFS, because the same
vertex and neighbor vertices are likely to be accessed in multiple iterations.
However, the traversal happens in an irregular order, and thus it is difficult
to optimize its performance using traditional methods. With OTM, the data
structure that is used to store edges of each vertex, which is less frequently
accessed but has the largest size, is often pinned to the CPU memory. This
prevents it from thrashing other more important data in the GPU memory, so
that data locality can be exploited within the GPU memory.

Note that there is a performance drop for OTM at the workload of 20 GB.
This is because at this point, OTM decides to pin several small data objects
into the CPU memory instead of a larger one, due to the GPU memory capacity
limitation. As a result, having multiple objects in the CPU memory collectively
has a larger impact on performance. When the workload is larger, once again,
a large data object is pinned to the CPU memory. We will address this issue
by enabling finer grained data mapping control in the near future, to further
improve performance.

CFD. On average, OTM and UM has similar performance across all workloads.
On some workloads, OTM is outperformed by UM. The reason that OTM fails
to improve CFD performance, is that OTM currently does not handle complex
scenarios well. Compared with BFS and SRAD, CFD has more complex data
structures and control flow. Multiple target regions interleave with each other in
multiple ways, and different regions use different sets of data objects as well as
share some of them. Under some workloads, we find that for every target region,
OTM pins some of its data objects into the CPU memory, which slows down
all target region execution. The smarter choice here is to keep all data required
by some target regions in the GPU memory to accelerate their execution, while
have mixed data location for other kernels. We will develop technology to solve
this problem soon.

SRAD. OTM helps SRAD achieve an average speedup of 2.55× across all over-
subscribing workloads compared with UM. Since the data reuse in SRAD is
limited compared with that in BFS, the speedup of OTM is more moderate.

For smaller workloads, the performance of OTM is similar to that of UM
while lower than the traditional approach by 30.7% on average. By taking a
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closer look, we find that OTM transfers some highly reused data objects using
unified memory’s on demand fetching, while they should be transferred explic-
itly. This is because loop nests exist in some target regions, which confuses the
proposed compiler analysis. More accurate analysis methods can be used to alle-
viate this problem. Luckily selecting the incorrect data transfer manner does not
impose a large performance penalty. The data mapping location has much more
significant performance impact, in which OTM makes optimized decisions for all
3 benchmarks.

In all benchmarks, the data transfer between CPU and GPU is reduced
significantly for large workloads under OTM. Since there are no existing tools
that can extract data transfer volume when data pinning is applied, we do not
compare the data transfer of different methods.

6 Conclusion

In this paper, we develop a compiler-runtime collaborative technology to improve
OpenMP GPU data management under unified memory. There are several future
directions worth exploring besides what we have mentioned in Sect. 5. First,
application experts may wish to provide data locality hints directly rather than
relying on compiler analysis. We plan to explore new OpenMP directives/clauses
for this purpose. Second, ideas presented in this paper are not limited to unified
memory but also applicable to more generic scenarios. We plan to further develop
our techniques to have a generic optimized OpenMP GPU data management
framework.
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tems for over a decade. With the heterogeneity trend in architectures
rapidly growing, the programming model needed to evolve such that
applications could not only be ported to traditional CPUs but also to
accelerators often acting as discrete or integrated devices to CPUs. To
that end, OpenMP started to provide support for heterogeneous systems
since 2013 when the version 4.0 of the specification was ratified. OpenMP
4.5 is being enhanced to cover major requirements of Exascale Comput-
ing Project (ECP) applications. As a result it is time-critical to ensure
that the implementations of the 4.5 features are correct and conform-
ing to the specification. This paper focuses on building a Validation and
Verification testsuite that will test and present results for several offload-
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1 Introduction

In 2013 the OpenMP specification made a significant shift to provide support
for heterogeneous systems. They introduced a set of directives for identifying
code as well as data to be moved to the target device for computation. Other
than support for accelerators, SIMD support for vectorization, thread affinity
control, user defined reductions, updates to task construct by introducing task
groups and dependency clauses were also introduced. This led to the release
of Version 4.0. Significant further improvements for device support along with
runtime routines for device memory management was introduced in Version 4.5
in 2015 along with new taskloop construct that would enable loops to be divided
into tasks avoiding the requirement that all threads execute the loop. Support
for doacross loops to parallelize loops with well-structured dependences were
provided. Further support for tasks in the form of task priority was introduced.
SIMD extensions included the ability to specify exact SIMD width and additional
data-sharing attributes.

As the OpenMP specification continues to grow and evolve with all its exist-
ing and new features, it is critical to ensure that the different implementa-
tions that claim conformance are functionally correct and true to the specifi-
cation. Having confidence in the correctness of implementations will encourage
users to adopt OpenMP 4.5 for large applications and port them to hetero-
geneous systems. Some of the applications that have been ported to GPUs at
DOE laboratories using OpenMP 4.5 include Pseudo-Spectral Direct Numeri-
cal Simulation-Combined Compact Difference (PSDNS-CCD3D) [1], a compu-
tational fluid dynamics code on turbulent flow simulation using GPUs and run
to scale on the Titan super-computer, Quick Silver [12], a proxy app of Mer-
cury, that solves a simplified dynamic Monte Carlo particle transport problem.
Both these papers discuss the challenges such as heterogeneous memory model,
thread safety and thread management, and common programming patterns that
are not portable, faced by the application developers before the code ran on a
GPU using OpenMP 4.5.

As hardware continues to evolve, the trend for systems to be equipped with
specialized accelerators or co-processors attached to a CPU-based system is only
going to continue. Top500 reports that a hundred and two systems in the list
are configured with accelerators and coprocessors among which, eighty six use
NVIDIA GPUs, twelve use Intel Xeon Phi cards, five uses PEZY technology, and
two systems use a combination of NVIDIA GPUs and Intel Xeon Phi coproces-
sors [13]. Directive-based programming models, like OpenMP, can prove to be
very effective and useful especially when there are legacy codes that need to be
migrated to such evolving platforms. Programming models do not require appli-
cation developers to be fully aware of hardware details or learn newer program-
ming languages thus allowing developers to spend more time on the algorithms
and the scientific findings and lesser time on deciphering the intricate details of
hardware and language.

Going forward we already know that ORNL’s Summit will be a heterogeneous
platform consisting of IBM Power9 and NVIDIA’s Volta GPUs. We also know
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that Argonne National Lab will receive an Intel-based system (not Knights Hill),
Aurora, in the time frame of 2021. Having all this compute power is useless unless
we have vetted OpenMP 4.5 implementations that deliver what the specification
promises.

Compilers [11] that support OpenMP features include GCC 7.1 where
OpenMP 4.5 is fully supported for C and C++. IBM XL C/C++ for Linux
V13.1.5 on little endian distributions and XL Fortran for Linux V15.1.15 on lit-
tle endian distributions (available in Dec 2016) support OpenMP 3.1 and features
in OpenMP 4.5 (include device constructs for offloading to NVIDIA GPU), Intel
17.0 supports OpenMP 4.5 for C/C++ and Fortran, Cray Compiling Environ-
ment (CCE) 8.5 (June 2016) supports OpenMP 4.0, with OpenMP 4.5 support
for device constructs, LLVM Clang 3.9 release supports all non-offloading fea-
tures of OpenMP 4.5. Clang that supports offloading features is currently in
development.

Such a wide range of compilers and interpretation of different implementers
can lead to differing implementations of OpenMP features. Our previous publica-
tions have captured such discrepancies [6,15]. To that end, this paper continues
to leverage our previous contributions on Validation and Verification testsuite
for OpenMP and build a number of functional test cases along with use cases
to test 4.5 offloading constructs and clauses or combinations of occurrences of
clauses on constructs in order to check for correctness and conformance of fea-
tures specifically to the 4.5 specification. Once our implementation of the new
OpenMP 4.5 features is complete (this is currently on-going work and not fully
complete yet), we plan to tie in the 3.1 testsuite and make them all available
under one repository to enable testing the entire 4.5 Specification.

This paper makes the following contributions:

– Releases a Validation and Verification testsuite currently comprising of
approximately 60 tests that includes unit tests covering extensively target,
target data, target enter and exit data features, target update, target teams
distribute, and target teams distribute parallel for. We will continue to add
more test cases to this suite.

– The testsuite also contains use cases that represent kernels extracted from
production DOE applications and other frequently used computation kernels.

– Describe the testsuite infrastructure and add relevant license thus allowing
anyone to contribute and to the testsuite.

– Present bugs identified and their potential workarounds thus informing appli-
cation developers of challenges using key constructs.

– Evaluate implementations of different compilers and verify their conforma-
tion to 4.5 specification (these results are posted on https://crpl.cis.udel.
edu/ompvvsollve).

– List ambiguities in the specification that we came across while interpreting
definitions of clauses and constructs and relevant steps taken to clarify them.

– Assemble a user-friendly website with easy to find status update on compiler
implementations among other details.

https://crpl.cis.udel.edu/ompvvsollve
https://crpl.cis.udel.edu/ompvvsollve
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The remainder of the paper is organized as follows: Sect. 2 discusses some
of the most relevant testsuite work by the authors and others. Section 3 gives
more insight into the new 4.x features. Section 4 explains the workflow and the
process of developing such a suite. Section 5 explains the testsuite infrastructure.
Sects. 6 and 7 present discussions, conclusion and future work.

2 Related Work

Related work on OpenMP Validation and Verification suite includes [6,7] that
present validation of OpenMP 2.0 implementations which was further extended
and improved in [15] to develop a more robust testsuite and provide up-to-
date test cases covering all the features until OpenMP 3.1. Some of our other
efforts include an OpenACC Validation and Verification testsuite [2,16] where we
discuss the compiler status of OpenACC 2.0 and 2.5 specifications respectively
and present ambiguities identified in the specification. Some of the tests also
focus on challenges with creating unit test cases covering possible combinations
of directives/clauses under study. The papers also highlights reported bugs being
fixed and the improvement in the compiler’s status over a period of time.

Other related efforts to building and using a testsuite include Csmith [17],
a comprehensive, well-cited work where the authors perform a randomized test-
case generator exposing compiler bugs using differential testing. Such an app-
roach is quite effective to detecting compiler bugs but does not quite serve the
validation purpose since it is hard to automatically map a randomly generated
failed test to a bug that actually caused it.

LLVM has a testing infrastructure [5] that contains regression tests and whole
programs. The tests itself are driven by lit testing tool, which is part of LLVM.
Recently [3,4] published examples on how a user may program with OpenMP
4.5 on IBM’s heterogeneous platforms with GPU support. Though these provide
a very good overview on how to use OpenMP 4.5 offload features, they assume
that the underlying implementation is as per specification and correct.

3 New in OpenMP 4.x

Going from OpenMP Specification version 3.1 to 4.0, the most significant
change was the support for accelerators. OpenMP 4.0 provides directives to
describe when data and/or computation should be moved to another computing
device/accelerator. This is usually indicated by the presence of target keyword
which in itself and as a part of others forms the new directives for device offload.
Other changes that OpenMP 4.0 brought are: SIMD constructs that enable vec-
torization of serial and parallelized loops, addition of error handling capabilities,
thread affinity mechanisms through OMP PROC BIND and OMP PLACES,
tasking extensions for support task-to-task synchronization, Fortran 2003 sup-
port that allows interoperability of Fortran and C, user defined reductions, and
ability to enforce sequential consistency in atomics [9].
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In November 2015 OpenMP Specification 4.5 was released. The significant
changes there were the introduction of the taskloop construct, allowing the
use of depend, threads and simd clauses on ordered directive, data sharing
changes allowing C++ methods to privatize accessible non-static members of an
object (with restrictions) [10], and changes in default mapping for offloading.

Scalar variables in OpenMP 4.0, in the absence of explicit mapping, were
implicitly mapped tofrom but in OpenMP 4.5 (without explicit mapping) the
scalars are implicitly privatized. They have the same effect as if they were
declared firstprivate on the target construct. Now the User has to explic-
itly copy the scalar value back if the value is needed on the host. With OpenMP
4.5 C/C++ pointers are implicitly mapped. Hence the host pointer is translated
to the corresponding device pointer in case the pointed object is already mapped
else it is NULL.

The use device ptr clause to target data construct and is device ptr
clause to target construct allow using device specific memory routines. Also
new directives such as target enter data and target exit data were added
to enable mapping and un-mapping of variables independently (synchronously
or asynchronously) in separate functions or methods. Additional support for
mapping C++ references made possible to map structure elements individually
in OpenMP 4.5. Asynchronous offloading on the target directive through the
nowait and depend clauses is now possible. Lastly the declare target directive
was extended to be able to mark global variables for deferred mapping.

4 Testsuite Workflow

The testsuite presented in this work aims at providing tests that provide a com-
prehensive coverage of different offload directives in OpenMP 4.5. The tests are
intended to establish accuracy of the interpretation of the OpenMP specification
by an implementation and verify the correctness of the functionality. Develop-
ment of the tests is an on-going iterative process where we address both the
functional tests for different combinations of directives and clauses and applica-
tion kernels tests abstracted out of real world applications. We evaluate all tests
by verifying with the specification through a peer review process and testing
them on different OpenMP implementations available to us. Our current testbeds
(Summitdev, Titan and Summit) at ORNL. They have LLVM, IBMXL, GNU
and CCE compilers available, each implementation, in our experience, has differ-
ent levels of support for OpenMP 4.5. We solicit community feedback, especially
from OpenMP developers, to review and refine the tests. For a given directive
we first refer to the OpenMP 4.5 specifications to list the different directives
and their constructs. Although it is hard to assess how many tests are needed
per directive, we try to keep an organized list of the tests we have created. We
start by listing all the directives, followed by the multiple constructs that can
be used with such directive. For each construct we expand the list with possible
modifiers, options, or cases that could apply to that particular construct. Our
goal is cover as many valid combinations as possible. We have found it difficult
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Fig. 1. Workflow for developing the validation and verification suite

to assess the exact number of tests that are needed per combination of directive
and clause(s). In most of the cases, new tests will often come up during the
discussion, as there are corner cases either from the description of the specifica-
tions, or the interaction with the C and C++ programming model that need to
be addressed.

For our second category of tests we collect different application motifs and
distill them down to tests through our interaction with different DOE appli-
cations. These tests provide insights into how OpenMP 4.5 directives are used
in real-world applications and could potentially bring to light unexpected side
effects or performance degradation due to interactions between different target
directives. Currently, our Validation and Verification suite is hosted on bitbucket
for easy collaboration and though not complete (in coverage of all offloading
directives) we plan to open it to the OpenMP community with this paper. A
summary of the results can be seen at our website https://crpl.cis.udel.edu/
ompvvsollve. The framework, discussed in more detail in Sect. 5, is geared to be
stand-alone, with options to compile for different OpenMP implementations.

Figure 1 represents the development cycle of a test-case. There are three
possible positive outcomes of the process we have adopted. Either a test passes
through all the checks and makes it to the validation suite, or it uncovers a
bug in the vendor implementation of the OpenMP 4.5 standard, or highlights
a contentious concept or text that is easy to misinterpret and brings it to the
attention of the OpenMP community and specification developers. All tests are
written agnostic to where they are executed (host vs. target). We do this to
facilitate execution of tests in situations where the host is also configured to be
the target or no device is available at the execution time where the computation
could be offloaded. After a test executes the output indicates if the test passed

https://crpl.cis.udel.edu/ompvvsollve
https://crpl.cis.udel.edu/ompvvsollve
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or failed and where it was executed (host or target). We have encountered cases
where we cannot confidently confirm the correctness. One such example is the
nowait clause. For such cases we do not use affirmative output messages. If the
test fails, it could have been because of a number of reasons other than the
incorrect implementation and we try to capture it as best as possible. Failure
could mean failure to compile or execution time failure that lead to crashes or
cryptic error codes. By providing feedback to the vendors we hope to make the
error codes more user friendly.

5 Validation Suite Infrastructure

In addition to having a well defined workflow to guarantee correctness (as
described in Sect. 4) it is equally important to provide a well defined and flexible
infrastructure that supports such a workflow. The design process of this infras-
tructure has been thoroughly discussed and incrementally improved, resulting in
a set of requirements that justify the different features that we have implemented
so far. These requirements are as follows:

1. In order to support the previously described workflow, we must define com-
munication mechanisms between active compiler developers, the OpenMP
community and the application developers. This requires creation of a web
portal and a code repository.

2. It is necessary to provide the user with an easy, flexible and simple to use
interface. This interface must allow fast deployment and execution of the
testsuite. To this end, the testsuite must adapt to new execution environ-
ments, providing customization of compilers’ options configuration and flags
etc. Additionally, it should be able to support different batch schedulers and
Linux environment modules.

3. Those who would like to use this testsuite must be able to obtain and export
compilation and execution results for an off-line system evaluation. Hence,
the designed infrastructure should allow them to obtain results in either a
well defined raw logfile format, an intermediate format for exporting to other
analysis tools and scripts, or create a well presented report.

With these requirements defined, we present our infrastructure in the rest of
this section.

5.1 Development Environment and Website

As described in our workflow, sharing and evaluating tests is an important part
of the test creation process. This requires code sharing and tracking changes. To
this end, a repository was created in Bitbucket. We use the features available
in a git repository, plus the additional components provided by Bitbucket to
support our development workflow. This repository can be found in [14].

In addition to the Bitbucket repository, we have created a website that con-
tains all project related information, including project objectives, documentation
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on how to use and contribute to this software, publications, and repository guid-
ance. Furthermore, we envision this website as a point of contact with those
that would use this testsuite, where they can find documentation, examples,
and results obtained from the systems evaluated. Our website is https://crpl.
udel.edu/ompvvsollve.

5.2 Makefile

A Makefile has been created and included in this project. It is used as an entry
point to our testsuite. The Makefile allows users to compile, run, and report test
results. A set of make rules has been created for each purpose, together with a
set of options that modify each rule’s behavior (e.g. verbosity, log creation and
tests selection). Furthermore, it is possible to use the standard CC and CXX
flags to select different compilers. Our testsuite uses the following syntax:

make CC=ccompi l e r CXX=cppcompi ler [OPTIONS] [RULE]

Rules for Makefile. See Table 1 for a list of all the rules that can be used.

Table 1. Set of rules available in the Makefile

Rule Description

compile Compile tests using the compilers specified by CC and CXX

run Run tests that have been previously compiled

all Compile and run tests using the compilers specified by CC and CXX

compilers Print a list of available compilers

report json Given a set of logfiles, create a JSON file containing all the results

report html Create an HTML-based results report that allows filtering and search

clean Remove all compiled tests

Options. A set of options can be used to modify the behavior of the rules. The
SOURCES C and SOURCES CPP options can be used with compile and all rules
to select which tests to compile. To select what tests to run the TESTS TO RUN
option should be used. The VERBOSE option can be used to increase verbosity
level of the make command, while VERBOSE TESTS will increase verbosity level of
the tests outputs. This is, each test can display additional information at runtime
about what it is executing and where the error is encountered. The option LOG
switches logs on and off, while LOG ALL changes if the output of the Makefile
commands should be included in the log files. NO OFFLOADING can be used to
turn off offloading capabilities in the compiler.

https://crpl.udel.edu/ompvvsollve
https://crpl.udel.edu/ompvvsollve
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Other options have been created to adapt the testsuite to the underlying
system. It is common to use environment modules to provide multiple software,
compilers and libraries within the same system. Additionally, batch schedulers
are used to guarantee exclusive and fair access to systems in environments where
many users access the same resources. However, this creates new challenges to our
testsuite. The options MODULE LOAD and ADD BATCH SCHED are available for this
purpose. The first one will execute a module load... command before compiling
or running the tests. The second one will pre-append a batch scheduler command
(e.g. jsrun and aprun) to tests that are running. However, since these elements
change from system to system it is necessary to create a system description file
and use the SYSTEM option to select this description file.

The following use case examples will compile and run all the tests, in verbose
mode enabled in both the tests and the make command. Logs will be created
including all output from compilers, tests runtime outputs, and make commands
outputs. According to the Summit [8] system description file, we will add the
jsrun command before running each tests, and we will load all the required
modules before compiling and running each tests.

make CC=clang CXX=clang++ SYSTEM=summit VERBOSE=1 VERBOSE TESTS=1 \
LOG=1 LOG ALL=1 ADD BATCH SCHED=1 VERBOSE TESTS=1 MODULE LOAD=1 a l l ;

Customizations. As mentioned before, it is possible to customize the test-
suite to adapt it to the system environment. A template for a system descrip-
tion file is provided which contains the following options: BATCH SCHEDULER,
C COMPILER MODULE, CXX COMPILER MODULE, C VERSION, CXX VERSION, and
CUDA MODULE. The VERSION commands will be used during the log creation.
For further information and example, refer to the documentation on our website.

5.3 Results, Logs and Reports

Although it is possible to obtain results directly from the standard output. We
have made it easier for the user to create logs and reports for offline results
evaluation. So far there are three options to obtain results: Raw format, JSON
format, or HTML format.

Raw Format. When the LOG option is used in the make command, a new folder
called logs is created. It contains a log file per test that was compiled and/or
executed. Log files are accumulative in the sense that if the make command is
issued multiple times, they will all be registered within the same log files. To
differentiate multiple runs, as well as compilation from run, we have created a
header and footer line per entry, containing system information, compiler used,
source file, compiler command, and time. Refer to our website for Header and
footer formats.
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JSON Format. Although the raw format is easy to read, it is not well struc-
tured and it would be hard to parse and automate to generate final reports. For
this reason, we have created the report json rule that uses a script to parse the
raw format and output a JSON file. The structure of the JSON file is as follows:

[{
"Binary path": "...",
"Compiler command": "...",
"Compiler ending date": "...",
"Compiler name": "...",
"Compiler output": "...",
"Compiler result": "PASS/FAIL",
"Compiler starting date": "...",
"Runtime ending date": "...",
"Runtime only": false/true,
"Runtime output": "...",
"Runtime result": "PASS/FAIL",
"Runtime starting date": "...",
"Test comments": "...",
"Test name": "...",
"Test path": "...",
"Test system": "..."

}, ...]

Fig. 2. Snapshot of the HTML report generated by the testsuite
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HTML Format Using the JSON file, it is possible to create a user-friendly and
readable report. This report uses a pre-defined HTML template with advanced
javascript and css libraries that allows the listing of all the tests in a table,
access to more information for each test, filter out results by compiler, systems
and PASS/FAIL results or even search an specific name or clause. An snapshot
of these results can be seen in Fig. 2

6 Discussion

Each test is compiled with four different compilers that are available to us. Some
of these compilers provide complete support for OpenMP 4.5 constructs while
others have indicated to offer only partial support (at the time of writing this
paper). By using multiple implementations we are able to analyze the validity of
the tests and at the same time how each compiler’s implementation behaves for
a particular construct under study. The compilers we use include GCC Version
7.1.1, IBM XL Version 14.1 Beta 7, Cray CCE Version 8.6.1 and Clang Version
3.8.0. It is worth noticing that this version of Clang has been modified for our
running environment, and it is not exactly the same available in the main LLVM
trunk.

We uncovered many implementation bugs, misunderstanding/misinterpreta-
tion of the definitions in the specification that led to us (incorrectly) reporting
as an implementation bug, as well as ambiguities in the specification throughout
this process. Due to space constraints we only discuss the more interesting cases.

6.1 Implementation Bugs

– Target construct in methods of a class
During testing target directive in C++ methods, we noticed that Clang
failed to map an array tofrom in one of the OpenMP implementations. Since
there is no explicit restriction in the OpenMP specification such usage sce-
narios are valid. Similarly, a target construct in static method of class failed
to map class static variables. The later was fixed as a result of the bug report.

– Compiler crashes
We noticed that the Clang compiler crashed when collapse clause was used
with dependent iteration spaces. Though the behavior is invalid the imple-
menters agreed that it should present an error to the user and not crash.
With the Cray implementation, when trying to use map delete or release
of a variable that was originally mapped by target enter data, led to com-
piler crashes. The bug reported was promptly addressed to correct such a
behavior.

– Scalar values and defaultmap
For the Cray compiler implementation, we uncovered that the defaultmap
would not correctly map to the scalar values. Scalar variables in OpenMP
4.0, in the absence of explicit mapping, were implicitly mapped tofrom but in
OpenMP 4.5 (without explicit mapping) the scalars are implicitly privatized.
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From our experience most of the errors on our part were from not account-
ing for the default mapping on the target clause. Earlier in the development
phase, especially while trying to test target data directive we would run into
errors such as an array segment mapping to device with default length (e.g.
map(array[1:])) would fail at runtime or we would get errors saying that the
test was trying to map data that was already mapped. We understand that this
behavior is going to change in OpenMP 5.0, where the implicit data mapping
on the target construct will work differently from explicit data mapping. In the
presence of partial mapping, the reference counter will get incremented and it
will no longer be classified as undefined behavior.

6.2 Specification Ambiguities

There have been moments when interpreting the specifications document has
been problematic. This brought intense discussions in our meetings and/or led
to the submission of invalid bug reports. Here we discuss three cases that we
would like to go through with the OpenMP community.

When using classes in C++, it is a common practice to use the this pointer
to refer to the current object, or to access methods or data members of the class.
There are difficulties for a programmer using OpenMP to use the this pointer
for setting data environment as map(to: this) or map(to: this->attribute)
to map the object or an attribute. In the former case, the problem is the inter-
pretation of the this. It is interpreted as a pointer but as a special expression.
This will cause most of the compilers to complain. In the latter case, the oper-
ation this->attribute is an arbitrary expression and the map clause expects a
list item that is mappable.

In the second case, we were attempting to test the private and
firstprivate clauses in combination with offload directives. The specifications
document [10] in section 2.15.3.3 says that “Inside the construct, all references
to the original list item are replaced by references to the new list item. In the
rest of the region, it is unspecified whether references are to the new list item or
the original list item.”. When used with device regions, it is not easy to under-
stand what is the meaning of “rest of the region”, as there are three different
concepts that must be distinguished: region, target region and task region. It
has not been possible for us to clearly identify and separate all these regions,
and to understand the rest of the paragraph.

Finally, we present an issue with the array section dependencies. When
using the depend() clause, it is possible to specify array sections in the form
of depend(inout: a[10:5]). This clause will map 5 elements of the array a
starting from position 10. However, in the description of the depend clause,
section 2.13.9, restriction 1 “List items used in depend clauses of the same task
or sibling tasks must indicate identical storage locations or disjoint storage loca-
tions.”. This implies that it is not possible to map array sections that over-
lap. Additionally, this section mentions that dependencies only take into con-
sideration storage locations, which creates doubts with respect to the differ-
ence between specifying an array section, compared to specifying the element
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where the array section begins. That is, the difference between depend(inout:
a[10:5]) and depend(inout: a[10]). We hope that the specification commit-
tee would make requirements more explicit.

7 Conclusion and Future Work

Our ongoing work on the OpenMP validation and verification test-suite targets
features of the OpenMP 4.5 standard in the order of priority as identified by DOE
applications. Particularly the offloading mechanisms for target devices. Although
the majority of our current set of tests are implemented in C and C++, we plan
to have Fortran versions in the near future. Our workflow discussed in Sect. 4
ensures that we make every effort to catch and mitigate implementation or inter-
pretation errors while developing the tests. We try to capture corner cases that
we believe might be prone to implementation errors or that are important to
applications. Section 5 detailed how to access, execute and customize the test-
suite along with how to visualize the results. A website has been built to capture
our efforts narrated in this paper https://crpl.cis.udel.edu/ompvvsollve. As of
this writing we have not covered the entire OpenMP 4.5 API but we hope that
this paper will encourage compiler developers and anyone else interested to use
the testsuite and provide feedback. While we implement tests for the remainder
of the OpenMP 4.5 offloading and new API we want to begin concurrent dia-
logue with such users of the testsuite to ensure smooth adaptability of the V&V
suite.
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Abstract. In High-Performance Computing (HPC), Field Programm-
able Gate Array (FPGA) is attracting increased attention as an acceler-
ator because its performance has been dramatically improved in recent
years. On the other hand, task-based programming recently supported
in OpenMP 4.0 enables to expose much parallelism by executing several
tasks of the program in the form of a task graph. To accelerate the task-
based parallel program by FPGA, it is useful for some dominant tasks
frequently executed in parallel to be offloaded to FPGA as an asyn-
chronous FPGA task. We present a performance optimization based on
the trade-off between the kernel size and the number of asynchronously
executed kernels in parallel in OpenMP task-based programming with
FPGA tasks to make use of FPGA hardware resources efficiently. Since a
“program” for FPGA is directly converted into the hardware, the hard-
ware resource limitation raises a new issue in optimization on which and
how to offload a task to FPGA. Taking task-based block Cholesky fac-
torization as a motivating example, we present the trade-off on how to
offload dominant “GEMM” task frequently executed in parallel in the
execution of the task-graph. We found that under the limitation of the
hardware resource, multiple small kernels are better than a single big
high-performance kernel because of higher throughput and higher kernel
frequency.

Keywords: Accelerator · FPGA · OpenMP
Task-based programming

1 Introduction

In recent years, in the field of High-Performance Computing (HPC), Field
Programmable Gate Array (FPGA) is getting more attracted as an accelera-
tor since the performance of some applications can be dramatically improved.
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FPGA is programmable hardware and is especially good if the operations can
be fully pipelined. The computation and communication performance have been
improved dramatically and are enough to use as an accelerator in HPC. For
example, the latest Intel FPGA “Stratix 10” has 10 TFlops of theoretical peak
performance in single precision. It has been reported that offloading to FPGA
achieves better performance compared with a GPU and CPU in some applica-
tions such as Fast Fourier Transform [1].

On the other hand, the recent trend of the many-core processor, task-based
programming in OpenMP [2] has gained the interests of developers of parallel
applications. It allows users to expose a higher degree of parallelism in tasks
compared with traditional work-sharing constructs of OpenMP such as parallel
loops. Tasks exposed by task-based programming are scheduled to be executed
in each core according to data dependency between them.

OmpSs [3] is the forerunner in task-based programming, and its idea has
been transferred into the OpenMP standard. OpenMP 4.0 has the task directive
with data dependency for task-based programming. OmpSs supports task-based
programming for accelerators like Xeon Phi, GPU, and Xilinx Zynq FPGA.
When a task is offloaded to FPGA, the runtime system creates a helper thread
that manages FPGA offloading tasks.

In this paper, we present the trade-off between kernel size and the number of
kernel instances that are simultaneously executed asynchronously in OpenMP
task-based programming with FPGA tasks in order to use FPGA hardware
resources efficiently. As a prerequisite, we define a program using OpenMP task-
based programming, and then offload specific tasks to FPGA. The OpenMP
runtime will create and manage the tasks. We also assume that we have the
optimized OpenCL kernel implementation as a prerequisite. Unlike CPU and
GPU, a “program” for FPGA is directly converted into the hardware. Thus,
one of the important optimization methods is how to use the limited hardware
resources of FPGA. In task-based programming, the tasks to be offloaded to
FPGA should be carefully generated and scheduled among candidate tasks for
efficient utilization of limited FPGA hardware. When the program is decomposed
into tasks and task graph, the most dominant task should be chosen for offloading
to FPGA. In the example of block Cholesky factorization to be shown later, the
task of general matrix multiplication, “GEMM” is the most dominant task. In
addition, a large number of similar tasks can often be executed in parallel.

An interesting trade-off shown in this paper is how to offload “GEMM”
using FPGA: one complex high-performance kernel which needs large hard-
ware resources, or multiple simple lower performance kernels which need fewer
resources for each kernel. In this paper, we focus on the trade-off between the
performance of a single kernel and multiple kernels under hardware resources
limitation of FPGA for a large number of parallel tasks exposed by task-based
programming.

To program FPGA, we used Open Computing Language (OpenCL) [4] as a
programming model. OpenCL is an open standard programming framework for
heterogeneous systems that use accelerators. Many vendors of CPU, GPU, or
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FPGA support the OpenCL framework though each device has unique optimiza-
tion techniques. We used Intel FPGA SDK for OpenCL [5], which is a toolchain
to develop FPGA applications with OpenCL. It mitigates the complexity of tra-
ditional development with HDL such as Verilog. There plenty of works to utilize
an FPGA in HPC using OpenCL [6,7].

As a result of a real-world application, we found that in the example of task-
based block Cholesky factorization, multiple small GEMM kernels outperform
single large GEMM kernels in a large number of GEMM tasks offloaded in FPGA
because of higher throughput and higher kernel frequency owing to simplicity.
Our contributions are as follows:

– We present an asynchronous offloading algorithm to FPGA by exploiting
OpenMP task programming model.

– We discuss the trade-off between the complexity of high performance and the
throughput under hardware resource limitation of FPGA for the task-based
parallel programming with FPGA offloading.

– We demonstrate the effectiveness of this trade-off by implementing asyn-
chronous offloading to FPGA.

– We propose a directive for task offloading to FPGA with controllable hard-
ware parameters.

The rest of this paper is organized as follows. The next section describes
the motivation and objective of this research. Section 3 describes the implemen-
tations followed by the experimental results in Sect. 4. In Sect. 5, we propose
a programming model for task-based FPGA computing. Section 6 shows the
related works, and the conclusion and future work are presented in Sect. 7.

2 Motivation and Objective

As described above, we are interested in the trade-off involved when using lim-
ited FPGA hardware resources for a large number of parallel tasks exposed by
OpenMP task-based programming. We want to offload calculations to FPGA
under OpenMP task programming. Our motivating example is a task-based ver-
sion of block Cholesky factorization, which is a blocking calculation method
for Cholesky factorization. Cholesky factorization decomposes from a Hermitian
matrix A to lower triangular matrix L and the transposed conjugate matrix L†.
This is a typical application that can be implemented using the task parallel
model.

Block Cholesky factorization consists of following calculations:

– Symmetric rank-k update (SYRK)
– Cholesky factorization (POTRF)
– Solving a triangular matrix equation (TRSM)
– General Matrix Multiplication (GEMM)
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Fig. 1. Task flow of 5 × 5 block cholesky factorization

Figure 1 shows the task flow of 5×5 block Cholesky factorization. Each block
presents the task. Each task has in dependency or inout dependency connected
with the black line. While there are only four GEMM tasks out of 20, the number
of GEMM tasks increase as the number of blocks increase. When the matrix is
divided into 32×32 blocks, 4960 out of 5984 tasks are GEMM. Thus, the GEMM
task is chosen for offloading to FPGA.

The outline of the task-based version with FPGA is shown in Pro-
gram 1.1. This is a persuade program with OpenMP and offloading GEMM
to FPGA. The write data to fpga function is for host-to-FPGA data trans-
fer, the read data from fpga function is for FPGA-to-host data transfer, and
the enqueue request to fpga function is for offloading request to FPGA.

This program assumes that the Hermitian matrix is already copied to the
FPGA DDR memory. As shown in Fig. 1, the block data required by GEMM is
only updated by the TRSM task. Thus, by updating the data on FPGA in the
TRSM task, we can reduce the host-to-FPGA data transfer.

When focusing on the GEMM task, it is suspended by the taskyield
clause after executing the enqueue request to fpga function and the
read data from fpga function. While the task is suspended and host executes
another task, FPGA performs these operations in the background, which enables
overlapping CPU/FPGA computations. When the suspended task is resumed, it
checks whether these operations are finished. If not, then the task is suspended
again.
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1 void cho le sky ( const i n t ts , const i n t nt , f l o a t ∗ A[ nt ] [ nt ] )
2 {
3 #pragma omp p a r a l l e l
4 #pragma omp s i n g l e
5 f o r ( i n t k = 0 ; k < nt ; k++) {
6 // c r ea t e POTRF task
7 #pragma omp task depend ( out :A[ k ] [ k ] )
8 {
9 omp potrf (A[ k ] [ k ] , ts , t s ) ;

10 }
11 f o r ( i n t i = k + 1 ; i < nt ; i++) {
12 // c r ea t e TRSM task
13 #pragma omp task depend ( in :A[ k ] [ k ] ) depend ( out :A[ k ] [ i ] )
14 {
15 omp trsm (A[ k ] [ k ] , A[ k ] [ i ] , ts , t s ) ;
16 wr i t e da t a t o f p ga (A[ k ] [ k ] , event0 ) ;
17 waitForFin i sh ( event0 ) ;
18 }
19 }
20 f o r ( i n t i = k + 1 ; i < nt ; i++) {
21 f o r ( i n t j = k + 1 ; j < i ; j++) {
22 // c r ea t e GEMM task
23 #pragma omp task depend ( in :A[ k ] [ i ] , A[ k ] [ j ] ) depend ( out :A[ j ] [ i ] )
24 {
25 enqueue r eque s t t o fpga ( gemmKernel , . . . , event1 )

;
26 do {
27 #pragma omp ta s ky i e l d
28 checkStatus ( event1 , &r e t ) ;
29 } whi le ( r e t != done ) ;
30 r ead data f rom fpga (A[ j ] [ i ] , event2 ) ;
31 do {
32 #pragma omp ta s ky i e l d
33 checkStatus ( event2 , &r e t ) ;
34 } whi le ( r e t != done ) ;
35 }
36 }
37 // c r ea t e SYRK task
38 #pragma omp task depend ( in :A[ k ] [ i ] ) depend ( out :A[ i ] [ i ] )
39 {
40 omp syrk (A[ k ] [ i ] , A[ i ] [ i ] , ts , t s ) ;
41 }
42 }
43 }
44 #pragma omp taskwai t
45 }

Program 1.1. Outline of block Cholesky factorization with OpenMP

Since the hardware resources of FPGA are limited, determining how to use
them is a significant factor. In the example, a large number of GEMM tasks are
requested in parallel. Our question here is which is better among the following
choices:

– implement a big kernel and handle serially
– implement multiple smaller kernels and handle in parallel

In the typical use of FPGA in HPC applications, a big kernel occupies a
large portion of FPGA logic to enhance the computational performance, and it
is called sequentially according to the host program steps. Since the kernel invo-
cation to FPGA can be controlled asynchronously from the host CPU through
the PCIe interface, it is logically possible to run multiple kernel instances of a
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device program (e.g., GEMM routine) asynchronously in parallel if the applica-
tion implies such parallelism. There is a possibility of optimization based on the
trade-off between the “single big kernel” and “parallel small kernels” on FPGA.

We used OpenCL described in Sect. 3.1 for implementation. We used the
SIMD length of OpenCL kernel described in Sect. 3.2 as a parameter and con-
trolled the resource utilization of a single kernel. If the kernel is small, we repli-
cated it in the logic element space as far as possible. The possible FPGA kernel
frequency of small kernels will be higher than that of the big kernel because of
the simplicity. Thus, the small kernels might be able to handle many tasks faster
than the big kernel.

We claim that, as a result of exposing parallelism in task-based programming,
a large number of the same kind of simple tasks are requested in parallel in several
applications, as shown in our example.

3 Implementation

In this section, we describe our implementation.

3.1 OpenCL

Figure 2 presents the overview of OpenCL offloading flow. The figure assumes
that one kernel is implemented and one Command Queue is prepared. The
Command Queue is a queue that manages offloaded tasks. The host program
enqueues offloading requests into the queue with the host API named “clEn-
queueNDRangeKernel”. If the kernel is ready to be executed, then one request is
offloaded into the kernel and executed. After that, the host calls the API “clWait-
ForEvents” or “clGetEventInfo” to check whether the task is completed. “clWait-
ForEvents” is an API that waits for the completion of tasks. “clGetEventInfo”
is an API that checks the task status.

Fig. 2. Offloading flow in OpenCL
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OpenCL has two kernel models: single work-item and NDRange. The single
work-item kernel model creates the kernel that calculates all data as one task,
just like using a single CPU core without parallelism. The NDRange model
creates the kernel that calculates data in parallel, like using multiple CPU cores
with data parallelism.

3.2 Intel FPGA SDK for OpenCL

For the implementation, we used Intel FPGA SDK for OpenCL, which is a
toolchain for developing FPGA applications with OpenCL [15,16]. The toolchain
includes an OpenCL-to-Verilog HLS compiler. Programmers do not have to con-
sider peripheral circuits like memory controllers or PCIe controllers because the
vendor provides the Board Support Packages that contain them.

The toolchain has some extensions to the OpenCL specification. An exam-
ple is the num simd work items attribute. The attribute can be used in the
NDRangeKernel model and allows SIMD operation. The extensions are neces-
sary for optimizing the OpenCL program for Intel FPGA.

3.3 Implementation of GEMM OpenCL Kernel

The OpenCL kernel that calculates the offloaded GEMM task uses the NDRange
kernel model. The kernel is implemented using a blocking algorithm. The block
size is fixed to 64 × 64 in our implementation. All blocks are loaded to M20K
BRAM to reduce access to global memory (DDR memory). In addition, by using
the num simd work items attribute as a parameter, we can control the resource
utilization of the kernel. In this way, we can implement one big kernel or multiple
small kernels to FPGA. As another type of optimization, we specify memory the
bank for each buffer explicitly because we know the access pattern of GEMM
operation.

3.4 Task-Based Programming with Asynchronous Offloading to
FPGA

GEMM task created by OpenMP task offloads GEMM calculation to FPGA.
After offloading to FPGA with “clEnqueueNDRangeKernel” API, the host

suspends the GEMM task and switches to another task using the taskyield oper-
ation provided by OpenMP. The offloading request is waiting in a queue and is
eventually scheduled to run while the host GEMM task is suspended. When the
suspended GEMM task resumes, it checks whether the offloading FPGA request
is completed. If completed, the host reads the result from FPGA and exits. If
not, it switches to another task again.

When multiple kernels are implemented on FPGA, the host offloads them as
described in Fig. 3. Each device kernel is connected to the independent Command
Queue. The requests are scheduled into the queue of each kernel in a round-robin
manner. The execution of each kernel does not affect other kernels and executed
asynchronously.
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Fig. 3. Enqueue requests with multiple kernels

We found that the taskyield directive does not work properly in Intel
OpenMP since it sometimes does not cause the task switch effectively. This
is because the OpenMP specification allows the exact action of taskyield to be
implementation dependent. In our experiment, we implemented an own task
scheduling system and described the task-based program based on Program 1.1.
Figure 4 presents the overview of this system.

First, OS thread is bound to CPU core. The OS threads have a user-level
thread queue. The runtime creates software-based user-level thread shown as
the orange rectangle, which corresponds the tasks in OpenMP, and scheduling
into the user-level thread queue. The OS thread monitors the user-level thread
queue. If there is a task, then the OS thread pick it up from the head of the queue
and executing. If the thread requests taskyield operation, then the OS thread
suspends it and push it back to the tail of the queue. After that, next task will
be executed. These operations like execution and suspension are not depending

Fig. 4. Overview of task queue implementation
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on the OS threads and implemented with user level API. We used Argobots [8],
which is a lightweight threading and tasking framework developed by Argonne
National Laboratory, to implement this system. Nevertheless, we could execute
the same code by OpenMP if the taskyield was properly implemented.

4 Evaluation

4.1 Evaluation Environment

We used the Pre-PACS version 10 (PPX) system at Center for Computational
Sciences of University of Tsukuba for evaluation. Table 1 shows the details of
the PPX environment. The system has two CPU sockets with Intel Broadwell
and Bittware’s A10PL4 FPGA [9] board. The FPGA board has Intel’s Arria10
FPGA [10] and two 4 GB memory banks. This system has GPU and InfiniBand
HCA, but we did not use them in the evaluation.

Table 1. Evaluation environment

CPU Xeon E5-2660 v4 @ 2.00 GHz x 2

Host DRAM DDR4-2400 16 GB x 4

GPU NVIDIA Tesla P100 PCIe x 2

FPGA Board BittWare A10PL4

FPGA Intel Arria 10 (10AX115N3F40E2SG)

FPGA DRAM DDR4-2133 4 GB x 2

InfiniBand Mellanox ConnectX-4 EDR

OS CentOS 7.3 64bit

FPGA Compiler Intel FPGA SDK for OpenCL 17.1.2

CPU Compiler Intel C Compiler 18.0.1

CPU BLAS Library Intel Math Kernel Library

Thread Library Argobots 1.0b1

4.2 Resource Utilization

The numerical calculation performance of a GEMM kernel is theoretically
defined by SIMD width. Then, we defined three types of kernels according to
the SIMD width. Each kernel type uses the same OpenCL kernel using the
NDRangeKernel model, except the SIMD length and the number of replica-
tions. SIMD lengths of Type1, Type2, and Type3, are 16, 8, and 4 respectively.
Type1 has one replication, while Type2 and Type3 have two replications and
four replications respectively. When several kernel instances are implemented
like Type3, they can be executed in parallel.
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Table 2. Resource utilization

SIMD length Frequency ALMs DSP BRAM

Type1 16 164.71 MHz 25% 69% 60%

Type2 8 179.59 MHz 27% 69% 69%

Type3 4 213.94 MHz 31% 70% 90%

It should be noted that the kernel frequency of Type1 is 164 MHz, and the ker-
nel frequency of Type3 increases to 213 MHz. These frequencies are low because
of the lack of optimization. With respect to Digital Signal Processing (DSP)
utilization, the ratio of each kernel type is about 70%. By reducing Block RAM
(BRAM) usage, we can utilize more DSP resources, which will enhance kernel
performance. We can generate more kernels by reducing the SIMD length as in
from type1 to Type2 and 3 (Table 2).

4.3 Basic Characteristics of GEMM Kernels

First, we measured latency and throughput of each type of GEMM kernel as
basic characteristics in single precision floating point. Latency includes the kernel
execution time and kernel invocation time through PCIe interface. We only use
single kernel instance even if the device program has several kernel instances like
Type3.

Figure 5 shows the latency of each type with four different matrix sizes. The
vertical axis is shown in log scale. Type1, which has the widest SIMD length
among three types, has the minimum latency. On the other hand, the latency
of Type3 becomes eight times as the one side of the matrix becomes double
while the latencies of Type1 and Type2 increase by less than eight times. The
performance of Type3 is stable if the matrix size is 512× 512 or more while the
performance of Type1 and Type2 depends on the matrix size.

Figure 6 shows the throughput for each type kernel when executing a large
number of GEMM operations. If multiple kernel instances are implemented such
as Type3, we used all kernel instances in the throughput result. When the matrix
is small as 512×512, the performance of Type1 and Type3 are almost same. How-
ever, when the matrix size increases, Type3 achieves the highest performance,
while Type1 has the lowest throughput. One of the reasons for the difference
in performance is the difference in kernel frequency. Note that the performance
of Type3 is 350 GFlops at best while the theoretical performance is over 400
GFlops. We guess that this is due to the lack of optimization for task manage-
ment with OpenCL. By improving task management, Type3 might be improved
to obtain better performance.

These results show that when offloading a large number of task to FPGA,
the performance of many small kernels is better than that of the big kernel in
terms of throughput.
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Fig. 5. Latency of OpenCL kernels Fig. 6. Throughput of OpenCL kernels

4.4 Result of Block Cholesky Factorization by Offloading to FPGA

Figure 7 shows the result of block Cholesky factorization shown in Program1.1
with offloading GEMM operation to FPGA in single-precision floating point. The
vertical axis indicates the overall performance, and the horizontal axis presents
the DSP utilization. When implementing multiple kernels like Type3, the number
of DSPs shows with the number of kernel instances used. The Hermitian matrix
size is 32768 × 32768, and divided into 32 × 32 blocks.

As shown in the figure, Type3 achieves the highest performance among the
three types. The performance of Type3 is about 100 GFlops higher than Type1
even though the throughput difference between each of these kernels is approx-
imately 30 GFlops. The result indicates that there may be another reason for
the performance difference, and not just the difference in kernel frequency. We

Fig. 7. Result of block Cholesky factorization with FPGA
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are now working on investigating the reason. Note that in Type3, the more ker-
nels we used, the better the performance. However, it did not scale well as we
expected. One of the reasons may be the task scheduling problem. This will
be improved by implementing a priority queue for tasks that offload to FPGA
asynchronously using taskyield operation.

Overall, the results indicate that implementing several small kernels is better
than the big kernel in the example of block Cholesky factorization.

5 A Proposal of OpenMP Directive for Offloading to
FPGA

In this section, we define the interface offloading to FPGA using OpenCL from
OpenMP directive. We propose an extension of the OpenMP 4.5 directive for
offloading FPGA kernels in task-based programming. We assume that we have
a task-based program executing on CPU, and the optimized OpenCL device
code is already compiled and synthesized for FPGA. The OpenCL kernel has
four instances. This is because the code translation algorithm from OpenMP in
C/C++ to OpenCL for Intel FPGA is under development. Program1.2 shows
the OpenMP program with our proposal. We propose one directive: “alias target”
and two clauses: “work size” and “async” for OpenMP specification.

First, we discuss the “alias target” directive. Originally, Lee et al. proposed
the alias simd directive [11], which specifies the SIMD implementation of the tar-
get function explicitly. If we want to offload the specific task to FPGA, we have
to not only adding the target directive but also renaming the existing function
name to OpenCL function name. For example, we should rename the “func” to
“fpga func” at line 19. To avoid modifying the existing code, we introduce “alias
target” directive to replace the existing function with the explicit OpenCL imple-
mentation. In the example Program1.2, we assume that the name of synthesized
OpenCL function is “fpga func.” At line 3, the program aliases “fpga func” to
“func’, which is an existing function name found at line 19. At line 18, we inserted
the target directive before calling “func” function. This means the operation of
“func” will offload to FPGA using “fpga func”. If we do not insert the target
directive, the program calls the existing “func” function.

The “num units” clause indicates the number of the instances of OpenCL
kernel we use on FPGA. In this case, we can use up to four instances because
the OpenCL kernel has four small instances. This clause is used in “alias tar-
get directive”. As shown in the evaluation of block Cholesky factorization, we
achieved a better performance using several small kernels than the single big
kernel with asynchronous offloading. Since there is no way of describing such
semantics, we added the “num units” clause to the “alias target” directive. In
the Program 1.2 we use the clause at line 3 and indicate that host will offload
the tasks using four instances on FPGA.

The “work size” clause indicates the size of work-items. The value of this
clause is used in the invocation of “clEnqueueNDRangeKernel” API. Since there
is no similar clause that describes the problem size in OpenMP specification, and
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1 #de f i n e SIZE 1024
2

3 #pragma omp a l i a s t a r g e t to ( func ) num units (4 )
4 void fpga func (
5 g l oba l f l o a t ∗ r e s t r i c t A,
6 g l oba l f l o a t ∗ r e s t r i c t B,
7 g l oba l f l o a t ∗ r e s t r i c t C,
8 const i n t s i z e
9 ) ;

10

11 −−−
12

13 #pragma omp p a r a l l e l
14 {
15 #pragma omp s i n g l e
16 {
17 f o r ( i n t i =0; i<nt ; i++) {
18 #pragma omp ta rg e t map( to :A[ i ] [ : ] ) map( to :B[ i ] [ : ] ) map( tofrom :C[ i

] [ : ] ) work s i z e (SIZE , SIZE) async
19 func (A[ i ] , B[ i ] , C[ i ] , SIZE) ;
20 }
21 }
22 #pragma omp taskwai t
23 }

Program 1.2. Example of proposed OpenMP directive for offloading to FPGA

we assume to use synthesized OpenCL kernel, we need a new clause to describe
the size of offload task. The value in the “work size” clause is an extended list in
order to adapt the 3-dimensional parallelism used in OpenCL kernel. Note that
local work size determined in the kernel compilation time is also required in the
invocation of “clEnqueueNDRangeKernel”. However, we do not need to specify
because it could be found using “clGetKernelWorkGroupInfo” API.

At the last, we discuss “async” clause. The compiler will translate Pro-
gram 1.2 to the invocation of OpenCL Host runtime and OpenMP task. In this
example, we add the “async” clause to target directive. It indicates the offload-
ing is processing asynchronously as described in Sect. 3.4. Once the offload-
ing is requested to FPGA, it suspends with OpenMP taskyield operation.
When it resumes, it checks whether the offloading task is finished using the
“clGetEventInfo” API. If not finished, it suspends again. If finished, the task
reads the result data from FPGA. Since there is no way of describing such
semantics, we added the “async” clause to the target directive.

6 Related Works

OpenARC [12] is a research compiler developed by Oak Ridge National Labo-
ratory. It supports offloading to accelerators like GPU and Intel FPGA. Ope-
nARC supports OpenACC directives to program FPGA, and it translates the
OpenACC code into OpenCL host code and OpenCL device kernel [1]. This com-
piler supports OpenCL extension for Intel FPGA by adding some new clauses
to OpenACC. This compiler uses synchronous offloading.
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OmpSs [3] is an extended OpenMP programming model developed by
Barcelona Supercomputing Center. In addition to OpenMP, OmpSs supports
accelerators like Xeon Phi, GPU, and Xilinx Zynq FPGA. Zynq FPGA is a
System-on-Chip platform with the ARM processor. In the point of FPGA,
OmpSs uses OmpSs programming model for the frontend and translates to
Vivado HLS program [13,14]. Vivado is an HLS toolchain for Xilinx FPGA. Pro-
grammers should define the target function with Vivado oriented optimization
techniques. The OmpSs runtime creates a helper thread that manages FPGA
offloading tasks.

Unlike from OpenARC and OmpSs, we used explicit asynchronous offloading
so that users can overlap CPU/FPGA computations. In this paper, we focus on
the differences in implementation between the big kernel and multiple small
kernels.

7 Conclusion and Future Work

In contrast to CPU and GPU, the limitation of hardware resources raises a new
issue in optimization since a “program” for FPGA is directly converted into
the hardware. In this paper, we pointed out a trade-off between the complexity
of high performance and the throughput under the limitation of the hardware
resource of FPGA for OpenMP task-based parallel programming with FPGA
offloading.

Taking task-based block Cholesky factorization as a motivating example, we
demonstrated the trade-off in offloading dominant “GEMM” tasks frequently
executed in parallel in the execution of the task graph. We found that under
the hardware resource limitation, multiple small kernels are better than a single
big high-performance kernel because of higher throughput and higher kernel
frequency. It should be noted that multiple small kernels can be executed at
the higher kernel frequency, resulting in higher performance and better resource
utilization.

Our future work will be to apply our technique to other applications. We
expect that by exposing parallelism in task-based programming, several appli-
cations can execute a large number of the same kind of simple tasks in paral-
lel;hense, our technique will contribute to improving their performance.
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Abstract. Modern compilers support OpenMP as a convenient way to
introduce parallelism into sequential languages like C/C++ and For-
tran, however, its use also introduces immediate drawbacks. In many
implementations, due to early outlining and the indirection though the
OpenMP runtime, the front-end creates optimization barriers that are
impossible to overcome by standard middle-end compiler passes. As a
consequence, the OpenMP-annotated program constructs prevent vari-
ous classic compiler transformations like constant propagation and loop
invariant code motion. In addition, analysis results, especially alias infor-
mation, is severely degraded in the presence of OpenMP constructs which
can severely hurt performance.

In this work we investigate to what degree OpenMP runtime aware
compiler optimizations can mitigate these problems. We discuss several
transformations that explicitly change the OpenMP enriched compiler
intermediate representation. They act as stand-alone optimizations but
also enable existing optimizations that were not applicable before. This
is all done in the existing LLVM/Clang compiler toolchain without intro-
ducing a new parallel representation. Our optimizations do not only
improve the execution time of OpenMP annotated programs but also
help to determine the caveats for transformations on the current repre-
sentation of OpenMP.

Keywords: OpenMP · Compiler optimizations · Alias analysis
Variable privatization · Barrier elimination
Communication optimization

1 Introduction

In the LLVM/Clang compiler toolchain [9] the use of OpenMP allows for par-
allel execution but also introduces immediate drawbacks. Due to early out-
lining and the indirection though the OpenMP runtime, the Clang front-end
introduces an optimization barrier that is impossible to overcome by common
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middle-end optimizations. As a consequence, the OpenMP-annotated program
parts do not benefit from classic compiler transformations like constant prop-
agation or loop invariant code motion. Analysis results, especially alias infor-
mation, is severely degraded in the parallelized program parts. For these and
similar reasons, researchers, industry as well as the general LLVM community
are currently looking into alternative representations of parallelism in a modern
compiler toolchain [11,14].

In order to provide immediate benefit, and to create a meaningful baseline for
these efforts, we investigated the feasibility and limitations of program optimiza-
tions based on the current representation of OpenMP programs. In the following
we present five distinct program transformations that required reasonable imple-
mentation, and thereby maintainability effort. They do however enable some of
the most important compiler optimizations. In the process, we were able to deter-
mine the caveats for transformations on the current representation of OpenMP
programs, which use explicit calls to the OpenMP runtime and early outlined
parallel program parts.

The rest of this report is organized as follows. We first present necessary
background for our work in Sect. 2. Afterwards, Sect. 3 through Sect. 7 describe
the new parallel centric optimizations we introduced in the LLVM pipeline. In
Sect. 8 we show preliminary evaluation results of some of these optimizations
on different OpenMP benchmarks taken from the Rodinia benchmark suite [4]
as well as the LULESH v1.0 benchmark [7]. Finally, we discuss related work in
Sect. 9 and conclude in Sect. 10.

2 Background

Clang, the C/C++ front-end of the LLVM compiler framework, immediately
lowers OpenMP constructs to runtime library calls. The code in parallel regions
(#pragma omp parallel and similar) is outlined into separate functions. Their
addresses as well as all communicated values (shared and firstprivate
clauses) are then passed to a runtime library call. Inside this library function the
outlined parallel region is invoke by each thread in the OpenMP thread team.
Due to this opaque indirection, passes that work on LLVM’s low-level inter-
mediate representation (LLVM-IR) do not need to be aware of any parallel, or
OpenMP specific, semantic. For an example consider the code in Fig. 1a which
is lowered by Clang to LLVM-IR similar to the pseudo C code shown in Fig. 1b.

This early outlining approach allows rapid integration of new features and
bears little risk of miscompilations due to the function level abstraction and the
indirection through the runtime library. Though, this approach will inevitably
prevent any optimization to cross the boundary between sequential and parallel
code as long as the semantics of the runtime library are not explicitly encoded.

In this work we present several compiler transformations which are aware
of the semantics of runtime library calls that implement OpenMP parallel con-
structs. These transformations are designed to be also applicable to OpenMP
tasks runtime calls as well as other parallel language (extensions) expressed in
LLVM-IR.
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3 Optimization I: Attribute Propagation

Programmers employ attributes, e.g., const or restrict, to encode domain
knowledge in the source code. This is an explicit contract between the program-
mer and the compiler that limits the set of defined execution traces in the hope
of better transformations. Similarly, the compiler might employ attributes to
manifest knowledge that was inferred by analyses passes.

The arguably most important use case for attributes are caller-callee bound-
aries, especially for intra-procedural analyses. Attributes for function parame-
ters provide information about the otherwise unknown inputs while the potential
effects of function calls are limited through attributes at the call-site arguments
and at the called function.

To improve attributes at the caller-callee boundary of indirectly called paral-
lel program parts, we created an LLVM propagation pass. It communicates the
following attributes between pointer arguments in the sequential context and
parameter declarations of the parallel work function:

– The absence of pointer capturing1.
– The access behaviour, thus read-only or write-only.
– The absence of aliasing pointers that are accessible by the callee.
– Alignment, non-nullness and dereferencability information of the pointer.

While all but aliasing information can be simply propagated from the (indi-
rect) call site to the parameter declaration and vice versa, the coarse grained
nature of the no-alias attributes, e.g., restrict in C/C++ and noalias in
LLVM’s IR, complicates propagation. Even if pointers are known to be alias free
in the (sequential) code preceding the parallel region, the restrict or noalias
attribute cannot be simply placed at the parameter declaration to convey this
information. First, other arguments could be derived from the alias free pointer
which would introduce aliasing opportunities in the parallel work function. Sec-
ond, the attributes will break dependences that cross barriers thereby allowing
code motion across these sequencing constructs. An example to showcase the
second problem is given in Fig. 1. The OpenMP annotated C source code in
Fig. 1a is translated by the front-end to LLVM’s IR corresponding to the pseudo
code shown in Fig. 1b. Since the parameter int* is known to be alias free in the
(sequential) context of foo we want to restrict qualify it in the parallel work
function as shown in Fig. 1c and d. This qualification will break the dependence
between the accesses to p and the call to bar, allowing the store-load forwarding
performed in Fig. 1c. However, bar could contain a barrier which would require
all increments to be performed prior to any multiplication.

To enable optimizations in the outlined parallel work function we still want to
propagate alias information. However, existing analysis and optimization passes
might change the semantics if we propagate restrict/noalias attributes to
non-read-only argument pointers. For such alias-free pointer arguments, we have
to ensure that their dependences with potential barriers are not eliminated. Since

1 A pointer is captured if a copy of it is made inside the callee that might outlive it.



116 J. Doerfert and H. Finkel

the semantics of both restrict and noalias are defined based on accesses
through the syntactic pointer expression, we can prevent any unsound trans-
formation by providing potential barriers access to this syntactic expression.
This representation is illustrated in Fig. 1d. All existing compiler analyses and
transformations have then to assume the memory pointed to can be inspected
and modified by the potential barrier, ensuring the original memory state when
a (potential) barrier is executed.

int foo() {

int a = 0;

#pragma omp parallel shared(a)
{

#pragma omp critical
{ a += 1; }

bar();

#pragma omp critical
{ a *= 2; }

}

return a;

}

(a) OpenMP annotated C source input
featuring a call to an unknown function
bar inside the parallel region.

int foo() {

int a = 0;

int *restrict p = &a;

omp_parallel(pwork, p);

return a;

}

void pwork(int tid, int *p) {

if (omp_critical_start(tid)) {

*p = *p + 1;

omp_critical_end(tid);

}

bar();

if (omp_critical_start(tid)) {

*p = *p * 2;

omp_critical_end(tid);

}

}

(b) Pseudo C-style representation of the
lowered LLVM-IR produced by Clang for
the input in Figure 1a.

void pwork(int tid,

int *restrict p) {

if (omp_critical_start(tid)) {

omp_critical_end(tid);

}

bar();

if (omp_critical_start(tid)) {

*p = 2 * (*p + 1);

omp_critical_end(tid);

}

}

(c) Unsoundly transformed work func-
tion after alias information propagation
if the call to bar contains a barrier.

void pwork(int tid,

int *restrict p) {

if (omp_critical_start(tid)) {

*p += 1;

omp_critical_end(tid);

}

bar()[p]; // May "use" pointer p.
if (omp_critical_start(tid)) {

*p *= 2;

omp_critical_end(tid);

}

}

(d) Sound representation after alias in-
formation propagation with a pretended
use by the potential barrier call bar.

Fig. 1. Example illustrating the problematic propagation of restrict or noalias
information from the parallel region context to the parallel work function.
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4 Optimization II: Variable Privatization

Writing OpenMP code involves the tedious and error-prone classification of all
variables declared outside and used inside the parallel region. Since this classifi-
cation can have a crucial performance impact we provide a transformation that
reclassifies the variables based on their actual usage. Our optimization is per-
formed on low-level LLVM IR and aims to improve both the sequential code as
well as the parallel work function. In part, the transformation can be interpreted
as strengthening of the OpenMP clauses described below from top to bottom:

– Shared, which indicates any modification might be visible to other threads as
well as after the parallel region.

– Firstprivate, which is a private variable but initialized with the value the
variable had prior to the parallel region.

– Private, which is a thread-local uninitialized copy of the variable, thus similar
to a shadowing re-declaration in the parallel region.

Note that the clause strengthening from shared or firstprivate to private
allows the use of separate variables for the sequential and parallel program parts,
which enables additional optimizations in both parts. This kind of variable pri-
vatization is legal if all of the below stated legality conditions hold:

– The variable is (re-)assigned on all paths from the end of the parallel region
that might reach a use,

– Each use of the variable inside the parallel region is preceded by an assignment
that is also part of the parallel region.

– There is no potential barrier between the use of a variable and its last pre-
ceding assignment.

In addition, we try to communicate variables by-value instead of by-reference.
This is sound if they are live-in (firstprivate or shared) but not live-out
nor used for inter-thread communication. Thus, if only the first and last of the
above conditions holds we pass the value of the variable instead of the variable
container, e.g., the stack allocation.

Finally, non-live-out variables that might be used for communication inside
the parallel region can be privatized prior to the parallel region. Hence, if the first
of the above conditions holds we replace the variable in the parallel region with
a new one declared in the sequential code. This new one is initialized with the
value of the original variable just prior to the parallel region. This transformation
decouples the variable uses in the two code region and thereby allows for further
optimization of the original one in the sequential part.

Note that all transformations have to be aware of potential aliases that could
disguise a user variable. In addition, by-value privatization requires the involved
type changes to be legal and potentially even a register file transfer2.
2 The kmpc OpenMP library used by LLVM/Clang communicates variables via vari-

adic functions that require the arguments to be in integer registers. When a floating
point variable is communicated by-value instead of by-reference we have to insert
code that moves the value from a floating point register into an integer register prior
to the runtime library call and back inside the parallel function.
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5 Optimization III: Parallel Region Expansion

Parallel regions introduce an optimization barrier at their boundary. In addition,
the start and end of parallel execution can, depending on the hardware, add
significant cost. As an example consider the code shown in Fig. 2a.

In each iteration of the sequential outer loop two new OpenMP thread teams
are started to work on the current value of ptr, first in forward and then in
backward direction. Due to the early outlining, there is no analysis information
transfer between the outer loop and the parallel regions nor between the two
parallel loops. Furthermore, starting and ending the task teams will eventually
accumulate non-trivial cost on the critical path. To decrease this cost and to
improve intra-procedural analyses we extend adjacent parallel regions as shown
in Fig. 2b.

To eliminate the task spawning overhead further, the parallel section can
be expanded around sequential constructs as well. This is only possible if the
sequential constructs can be guarded appropriately and they do not interfere
with the parallel semantics, i.a., they do not throw exceptions. The final code
after parallel region expansion is illustrated in Fig. 2c.

If a new expanded parallel region is created the contained existing parallel
regions are flattened. Thus, the original #pragma omp parallel annotations, or
alternatively the indirection through the corresponding runtime calls, contained
in the extended region are removed. Since there is an implicit barrier at the end of
a parallel region, we insert an explicit #pragma omp barrier, or an appropriate
runtime call, when parallel regions are flattened. This allows later passes to
remove the former implicit, and thereby irremovable, barriers. However, it is
important to note that the expanded parallel region will introduce a new implicit
barrier at its end.

Accounting for the two implicit barriers after the parallel for loops, the num-
ber of barriers in this example increased by one compared to the original code.
However, there is now only one parallel region that starts a thread team and
there is far more context in the parallel region to enable further optimizations.

6 Optimization IV: Barrier Elimination

Barriers are synchronization points that can be placed manually by the pro-
grammer or occur implicitly due to the use of certain OpenMP annotations, i.e.,
#pragma omp parallel for without the nowait clause. Since synchronization
can significantly increase the runtime it should always be used with caution.
However, the minimal placement of barriers is an inherently hard and error-
prone task even for expert programmers. Since precise dependency information
is required to argue about the need for a barrier, and program transformations
might be necessary to obtain such information, compilers are well suited to per-
form this task. To this end, we implemented an OpenMP barrier elimination pass
that uses alias information to remove redundant barriers. A barrier is considered
redundant if there is no dependence crossing it, thus from the code after to the
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while (ptr != end) {

#pragma omp parallel for firstprivate(ptr)
for (int i = ptr->lb; i < ptr->ub; i++)

forward_work(ptr, i);

#pragma omp parallel for firstprivate(ptr, a)
for (int i = ptr->ub; i > ptr->lb; i--)

backward_work(ptr, a, i - 1);

ptr = ptr->next;

}

(a) Example featuring two adjacent parallel regions each containing a parallel for loop.

while (ptr != end) {

#pragma omp parallel for firstprivate(ptr, a)
{

#pragma omp for firstprivate(ptr) nowait
for (int i = ptr->lb; i < ptr->ub; i++)

forward_work(ptr, i);

#pramga omp barrier // explicit loop end barrier
#pragma omp for firstprivate(ptr, a) nowait
for (int i = ptr->ub; i > ptr->lb; i--)

backward_work(ptr, a, i - 1);

#pramga omp barrier // explicit loop end barrier
}

ptr = ptr->next;

}

(b) Expanded version of the code shown in Figure 2a with a parallel region containing
two adjacent parallel for loops.

#pragma omp parallel shared(ptr) firstprivate(a)
{

while (ptr != end) {

#pragma omp for firstprivate(ptr) nowait
for (int i = ptr->lb; i < ptr->ub; i++)

forward_work(ptr, i);

#pramga omp barrier // explicit loop end barrier
#pragma omp for firstprivate(ptr, a) nowait
for (int i = ptr->ub; i > ptr->lb; i--)

backward_work(ptr, a, i - 1);

#pramga omp barrier // explicit loop end barrier
#pragma omp master
{ ptr = ptr->next; }

#pramga omp barrier // barrier for the guarded access
}

}

(c) Final code after parallel region expansion. The two adjacent parallel for loops as
well as the sequential pointer chasing loop are now contained in the parallel region.

Fig. 2. Example to showcase parallel region expansion.
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code prior. Note that our transformation is intra-procedural and therefore relies
on parallel region expansion (ref. Fig. 5) to create large parallel regions with
explicit barriers. In the example shown in Fig. 2c it is possible to the eliminate
the barrier between the two work sharing loops if there is no dependence between
the forward_work and backward_work functions, thus if they work on separate
parts of the data pointed to by ptr. If this can be shown, the example is trans-
formed to the code shown in Fig. 3. Note that the explicit barrier prior to the
#pragma omp master clause can always be eliminated as there is no inter-thread
dependence crossing it.

#pragma omp parallel shared(ptr) firstprivate(a)
{

while (ptr != end) {

#pragma omp for firstprivate(ptr) nowait
for (int i = ptr->lb; i < ptr->ub; i++)

forward_work(ptr, i);

#pragma omp for firstprivate(ptr, a) nowait
for (int i = ptr->ub; i > ptr->lb; i--)

backward_work(ptr, a, i - 1);

#pragma omp master
ptr = ptr->next;

#pramga omp barrier // synchronize the guarded access
}

}

Fig. 3. Example code from Fig. 2 after parallel region expansion (ref. Fig. 2c) and
consequent barrier removal.

7 Optimization V: Communication Optimization

The runtime library indirection between the sequential and parallel code parts
does not only prohibit information transfer but also code motion. The arguments
of the runtime calls are the variables communicated between the sequential and
parallel part. These variables are determined by the front-end based on the code
placement and capture semantics, prior to the exhaustive program canonical-
ization and analyses applied in the middle-end. The code in Fig. 5a could, for
example, be the product of some genuine input after inlining and alias analy-
sis exposed code motion opportunities between the parallel and sequential part.
Classically we would expect K and M to be hoisted out of the parallel loop and
the variable N to be replaced by 512 everywhere. While the hoisting will be per-
formed if the alias information for Y has been propagated to the parallel function
(ref. Sect. 3), the computation would not be moved into the sequential code part
and N would still be used in the parallel part. Similarly, the beneficial3 recom-
pute of A inside the parallel function (not the parallel loop) will not happen as
3 Communication through the runtime library involves multiple memory operations

per variable and it is thereby easily more expensive than one addition for each thread.
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__attribute__((const)) double norm(const double *A, int n);

void norm(double *restrict out, const double *restrict in, int n) {

#pragma omp parallel for shared(out, in) firstprivate(n)
for (int i = 0; i < n; ++i)

out[i] = in[i] / norm(in, n);

}

Fig. 4. Parallel loop containing an invariant call to norm that can be hoisted.

no classic transformation is aware of the “pass-through” semantic of the parallel
runtime library call.

The code motion problem for parallel programs is already well known since
the example shown in Fig. 4 is almost the motivating example for the Tapir par-
allel intermediate language [11]. Note that the programmer provided (almost4)
all information necessary to hoist the linear cost call to norm out of the parallel
loop into the sequential part. Even after we propagate alias information to the
parallel function (see Sect. 3), existing transformations can only move the call
out of the parallel loop but not out of the parallel function. Our specialized com-
munication optimization pass reorganizes the code placement and thereby the
communication between the sequential and parallel code. The goal is to mini-
mize the cost of explicit communication, thus variables passed to and from the
parallel region, but also the total number of computations performed.

Our communication optimization pass will generate a weighted flow graph
in which all variables are encoded that are executable in both the parallel and
sequential part of the program. For our example in Fig. 5a the flow graph is
shown in Fig. 5c5. Each variable is split into two nodes, an incoming one (upper
part) and an outgoing one (lower part). The data dependences are represented
as infinite capacity/cost (c∞) edges between the outgoing node of the data pro-
ducer and the incoming node of the data consumer. The two nodes per variable
are connected from in to out with an edge that has the capacity equal to the
minimum of the recomputation and communication (cω) cost. Since recomputa-
tion requires the operands to be present in the parallel region, its cost is defined
as the sum of operand costs plus the operation cost, e.g., c ld for memory loads.
We also add edges from the source to represent this operation cost flow. If an
expression is not movable but used by movable expression it will have infinite
cost flowing in from the source. Globally available expressions, thus constants
and global variables, have zero communication cost and are consequently omit-
ted. Though, loads of global variables are included as they can be moved. Finally,
all values required in the immovable part of the parallel region are connected to
a sink node with infinite capacity edges.

The minimum cut of this graph defines an optimal set of values that should be
communicated between the sequential and parallel code. For the example code in

4 We need to ensure that norm is only executed under the condition n > 0.
5 The nodes for X are omitted for space reasons. They would look similar to the ones

for L, though not only allow cω flow to the sink but also into the incoming node of L.
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Fig. 5. Communication optimization example with the original code in part 5a, the
constructed min-cut graph in part 5c and the optimized code in part 5b.

Fig. 5a, the communication graph, sample weights and the minimal cut are shown
in Fig. 5c. After the cut was performed, all variables for which the incoming node
is reachable from the source will be placed in the sequential part of the program.
If an edge between the incoming and outgoing node of a variable was cut, it
will be communicated through the runtime library. Otherwise, it is only used in
one part of the program and also placed in that part. For the example shown
in Fig. 4 the set of immobile variables would necessarily include out,in and n
as they are required in the parallel region and cannot be recomputed. However,
the result of the norm function will be hoisted out of the parallel function if the
recomputation cost is greater than the communication cost, thus if cω > ccall.

In summary, this construction will perform constant propagation, commu-
nicate arguments by-value instead of by-reference, minimize the number of
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communicated variables, recompute values per thread if necessary, and hoist vari-
ables not only out of parallel loops but parallel functions to ensure less executions.

8 Evaluation

To evaluate our prototype implementation we choose appropriate Rodinia 3.1
OpenMP benchmarks [4] and the LULESH v1.0 kernel [7]. Note that not all
Rodinia benchmarks communicate through the runtime library but some only use
shared global memory which we cannot yet optimize. The Rodinia benchmarks
were modified to measure only the time spent in OpenMP regions but the original
measurement units were kept. All benchmarks were executed 51 times and the
plots show the distribution as well as the median of the observed values. We
evaluated different combinations of our optimizations to show their individual
effect but also their interplay. However, to simplify our plots we only show the
optimizations that actually changes the benchmarks and omit those that did
not. The versions are denoted by a combination of abbreviation as described in
Table 1. Note that due to the prototype stage and the lack of a cost heuristics
we did not evaluate our communication optimization.

Table 1. The abbreviations used in the plots for the evaluated optimizations as well
as the list of plots that feature them

Version Description Plots

base Plain “-O3”, thus no parallel optimizations Figs. 6, 7 and 8

ap Attribute propagation (ref. Sect. 3) Figs. 6, 7 and 8

vp Variable privatization (ref. Sect. 4) Figs. 6, 7 and 8

re Parallel region expansion (ref. Sect. 5) Fig. 7

be Barrier elimination (ref. Sect. 6) Fig. 8

When we look at the impact of the different optimizations we can clearly distin-
guish two groups. First, there is ap and vp which have a positive effect on every
benchmark. If applied in isolation, attribute propagation (ap) is often slightly
better but the most benefit is achieved if they are combined (ap vp versions).
This is mostly caused by additional alias information which allows privatization
of a variable. The second group contains parallel region expansion (re) and bar-
rier elimination (be). The requirements for these optimizations are only given in
some of the benchmarks (see Fig. 7 and respectively Fig. 8). In addition, parallel
region expansion is on its own not always beneficial. While it is triggered for cfd,
srad, and pathfinder it will only improve the last one and slightly decrease the
performance for the other two. The reason is that only for pathfinder the over-
head of spawning thread teams is significant enough to improve performance,
especially since barrier elimination was not able to remove the now explicit bar-
riers in any of the expanded regions. These results motivate more work on a
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Fig. 6. Performance improvements due to attribute propagation (ref. Sect. 3) and vari-
able privatization (ref. Sect. 4).

better cost heuristic and inter-pass communication. It is however worth to note
that the LULESH v1.0 kernel [7] already contained expanded parallel regions
without intermediate barriers. This manual transformation could now also be
achieved automatically with the presented optimizations.

9 Related Work

To enable compiler optimizations of parallel programs, various techniques have
been proposed. They often involve different representations of parallelism to
enable or simplify transformations [6,8,15].

In addition, there is a vast amount of research on explicit optimizations
for parallel programs [1–3,5,10]. In contrast to these efforts we introduce rel-
atively simple transformations, both in terms of implementation and analysis
complexity. These transformations are intended to perform optimizations only
meaningful for parallel programs, but in doing so, also unblock existing compiler
optimizations that are unaware of the semantics of the runtime library calls
currently used as parallel program representation.

The Intel compiler toolchain introduces “OpenMP-like” annotations in the
intermediate representation IL0 [12,13]. While effective, this approach require
various parts of the compiler to be adapted in order to create, handle, and
lower these new constructs. In addition, each new OpenMP construct, as well as
any other parallel language that should be supported, will require a non-trivial
amount of integration effort. Partially for these reasons, Intel proposed a more
native embedding [14] of parallel constructions (especially OpenMP) into the
intermediate representation of LLVM. Similarly, Tapir [11] is an alternative to
integrate task parallelism natively in LLVM. In contrast to most other solutions,
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Fig. 7. Performance results for three of our parallel optimizations (ap, vp, re).

Fig. 8. Performance results for three of our parallel optimizations (ap, vp, be).
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it only introduces three new instructions, thus requiring less adaption of the code
base. However, it is not possible to express communicating/synchronizing tasks
or parallel annotations distributed over multiple functions.

10 Conclusion

In this work we present several transformations for explicitly parallel programs
that enable and emulate classical compiler optimizations which are not applica-
ble in the current program representation. Our results show that these transfor-
mations can have significant impact on the runtime of parallel codes while our
implementation does not require substantive implementation or maintainability
efforts. While further studies and the development of more robust and cost aware
optimizations are underway, we believe our initial results suffice as an argument
for increased compiler driven optimizations of parallel programs.

It is worthwhile to note that we are currently proposing to include the pre-
sented optimizations into LLVM. To this end we generalized them to allow opti-
mization not only of OpenMP programs lowered to runtime library calls but a
more general set of parallel representations.
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Abstract. Although the OpenMP API is supported across a wide and
diverse set of architectures, different models of programming – and
in extreme cases, different programs altogether – may be required to
achieve high levels of performance on different platforms. We reduce
the complexity of maintaining multiple implementations through a pro-
posed extension to the OpenMP API that enables developers to specify
that different code paths should be executed under certain compile-time
conditions, including properties of: active OpenMP constructs; the tar-
geted device; and available OpenMP runtime extensions. Our proposal
directly addresses the complexities of modern applications, allowing for
OpenMP contextual information to be passed across function call bound-
aries, translation units and library interfaces. This can greatly simplify
the task of developing and maintaining a code with specializations that
address performance for distinct platforms and environments.

1 Introduction

As the OpenMP* programming model has evolved to keep pace with evolving
architectures, it has introduced many new features (e.g. task-based parallelism,
offloading to accelerators and explicit SIMD programming). These features are
both sufficient to ensure that OpenMP is portable to a wide range of devices, and
also expressive enough that developers are able to write codes that are capable
of extracting a high level of performance from their targeted device.

However, writing a code that is able to run well on all of the devices that
OpenMP supports – a code that exhibits high levels of “performance porta-
bility” [12,13] – remains a challenge; different devices and/or OpenMP imple-
mentations may prefer different ways of expressing parallelism, and some may
prefer different algorithms altogether. Several frameworks have been developed
on top of OpenMP in an attempt to simplify development when targeting mul-
tiple architectures [4,7]; our interpretation of this is that many find the current
tools in OpenMP lacking in expressibility.

The proposed concurrent directive from OpenMP TR6 [11] addresses part
of this problem, effectively providing a mechanism for developers to request that
the decision of which OpenMP construct(s) should be used on a given loop nest
be made by the implementation, based on analysis of the loop nest and the
implementation’s knowledge of the targeted device. Such a descriptive approach
c© Springer Nature Switzerland AG 2018
B. R. de Supinski et al. (Eds.): IWOMP 2018, LNCS 11128, pp. 128–142, 2018.
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covers simple cases well, but we believe it is insufficient for the needs of expert
programmers: the implementation’s decisions cannot be overridden when the
developer has additional information (or simply believes that they know better),
and a general-purpose OpenMP implementation will likely not be able to identify
and replace algorithms (although this may be possible for common idioms). In
this paper, we focus on providing a prescriptive complement to the functionality
of concurrent, enabling users to assert direct control over which code is executed
and under which conditions.

It should be noted that our proposal is primarily focused on furnishing
expressibility rather than providing new functionality to developers; our intent
is to make existing functionality more accessible, and to present a simple mech-
anism with common syntax that can be employed across all base languages
supported by OpenMP. There are already myriad options for maintaining differ-
ent code paths for different devices and compilation contexts: preprocessors and
#ifdef guards; template functions (in C++); and the aforementioned “perfor-
mance portability” frameworks to name but a few. In our own attempts to use
such approaches, we have found them wanting: standardized preprocessors are
not available for all languages, and handling multiple conditions through nested
#ifdef clauses can quickly lead to unreadable code; templates may be too com-
plex for average users to reason about, and are not available in C or Fortran;
the use of non-standard interfaces may lead to interoperability or composabil-
ity challenges; and developing bespoke solutions to this problem for all codes
(or even all domains) is not productive.

2 Related Work

Since OpenMP 4.0 [10], developers have been able to request that a compiler
create alternative versions of a function specialized for execution in SIMD or
on accelerator devices via the declare simd and declare target directives
respectively. Developers are able to influence the code generation inside such
functions using clauses to these directives (e.g. specifying uniform or linear
will lead to different optimizations for simd functions), but are unable to exert
any direct control using standard OpenMP functionality. Furthermore, since
both directives only alter the way in which a single implementation of a function
is compiled, the optimizations that can be employed are limited to those that
compilers can identify and (safely) implement automatically after static analysis
of the function, with no further input from the developer.

To address these issues, there have been several previous efforts to extend
OpenMP to enable developers to provide drop-in replacements for the functions
generated by declare simd and declare target. OmpSs supports an exten-
sion to target – the implements clause [3] – which specifies that one function
is an alternative implementation of another, specialized for particular devices;
this idea has been adopted, with the same syntax and semantics, in OpenMP
TR6 [11]. The Intel R© C/C++ compiler provides similar functionality for func-
tions specialized for particular SIMD widths and instruction sets – so-called
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“vector variants” [8] – via function attributes; RIKEN and Arm explored the
same concept via an OpenMP extension – alias simd [9] – with different syn-
tax but similar semantics. None of these proposals address situations in which
a developer wishes to specialize a function for SIMD and a particular device
simultaneously, nor considers the utility of extending function implementation/-
variant/alias support to other situations. We proposed yet another version of
this functionality – declare version – for memory allocators [14] in previous
work. In this paper, we attempt to unify all of the directives discussed above into
a single directive, which permits the specialization of functions based on multiple
criteria and which is designed to be extensible to future OpenMP constructs.

It should also be noted that similar functionality has already been adopted
outside of OpenMP. Thrust [2] and the parallel extensions to the C++ Standard
Template Library (STL) [6] allow an execution policy (encapsulating the pro-
gramming model, device, etc) to be passed to a function call, enabling different
implementations to be selected by the library; the Kokkos [4] framework provides
a similar facility through the use of tags passed to functors. The PetaBricks [1]
language takes a different approach, providing a mechanism to declare a func-
tion in terms of multiple candidate algorithms from which the compiler and an
autotuning framework can construct an optimized application.

3 Specialization

Specialization is a valuable concept to deploy in software development, opti-
mization, and maintenance. At its core, it is simply a programming construct – a
function, a type declaration or even a snippet of code – paired with a mechanism
for expressing when that construct should be used. The most common forms of
specialization in real code are highly manual in nature: the programmer decides
that a particular function (for example) needs to be used in a particular context
and makes it happen by forking the codebase, or by employing a conspicuous
branch in the code to perform the discrimination.

Consider a parallel histogram computation, where many inputs are divided
among threads and reduced into a relatively small array. A developer has a
common implementation in a portable language that runs on many of their
platforms of interest, and which uses atomic additions found in the language; this
implementation provides correct results in all cases. The developer may discover
that the atomics primitives on some platforms are very slow, and that giving
each thread its own copy of the accumulation array (i.e. privatizing the array)
runs with much greater efficiency on those platforms. This could be described as
specialization for performance’s sake, but it is also easy to imagine a platform
with no support for atomics at all, in which case the privatized implementation
would be necessary for compatibility.

That specialization is useful and even necessary in real code bases is evident;
the challenge – which our proposal aims to address – is to make the mechanism
for deploying the appropriate specialization as easy-to-use and expressive as
possible.



Supporting Function Variants in OpenMP 131

4 Enabling Specialization in OpenMP

We propose an extension that uses functions and function calls as the language-
level granularity of specialization; developers are able to use a new directive,
declare variant, to indicate that a given function variant is intended to be a
specialization of another base function with a compatible type signature. The
specialization mechanism is then used to decide which function calls to the base
function are replaced with function calls to specialized variants (if any). Our
proposal allows the user to annotate function variants with selector information
that guides the specialization mechanism; these selectors generally interact with
the context around function calls to select meaningful specializations.

Specialization of function calls enables composability (e.g. across translation
units and library interfaces) via a mechanism that is simple to understand, famil-
iar due to its similarity to other approaches (e.g. template specialization) and in
keeping with good software engineering practices (i.e. modular design). A simple
example of a function variant family is given in Fig. 1.

// Default behavior (i.e. the base function)
float my_rsqrt(float x)
{

return 1.0f / sqrt(x);
}

// Variant that uses an approximation
float my_rsqrt_approx(float x)
{

// e.g. result after several Newton -Raphson iterations
}

// Variant vectorized with AVX -512
__m512 my_rsqrt_avx512(__m512 x)
{

return _mm512_rsqrt_ps(x);
}

// Variant which forwards to library implementation (where it exists)
float my_rqsrt_native(float x)
{

return rsqrt(x);
}

Fig. 1. An example of a function variant family for computing reciprocal square roots.

4.1 declare Variant Syntax

The C/C++ syntax1 of our proposed declare variant directive is as follows:
#pragma omp declare variant(base -function) [match(context -selector )]
<specialized -function -definition -or -declaration >

where base-function is the name of the function that the programmer wishes to
specialize. The function the directive is applied to is a specialized variant that is

1 Analogous syntax is proposed for Fortran but we omit it for brevity.
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defined as a suitable replacement of base-function. The scope of this directive
is the translation unit where it appears; therefore, we expect the directive to
be applied to the specialized function declaration in headers and also to the
specialized function definition itself.

If no match clause is provided, then all calls to the base-function
will become calls to the specialized function. Figure 2 shows how the
declare variant directive is used to provide an OpenMP specialization,
my rsqrt omp approx, of the function my rsqrt. All calls to my rsqrt will be
replaced by calls to my rsqrt omp approx. As the variant directive is only
recognized by OpenMP-enabled compilers, this provides a mechanism for users
to have different code used when compiling for OpenMP (which could also be
achieved by means of #ifdef OPENMP with preprocessors).

#pragma omp declare variant(my_rsqrt)
float my_rsqrt_omp_approx(float x) { ... }

void foo (float x)
{

... = my_sqrt(x); // will call my_rsqrt_omp_approx
}

Fig. 2. Example of the declare variant directive.

The match clause allows the developer to specify a context-selector that spec-
ifies the context in which calls to base-function should be substituted with calls
to the specialized function. The syntax of a context-selector is as follows:
match(trait -class -name={ trait[(trait -properties )][ ,...][ ,...]})

We propose a number of traits for specialization, organized into four trait
classes that can specified in the match clause: OpenMP construct traits, for spe-
cialization based on OpenMP constructs; device traits, for specialization based
on the target device; implementation traits, for specialization based on charac-
teristics of the underlying OpenMP implementation; and user-specified traits.
Section 4.2 details the traits of each class and their properties (if any).

Multiple specializations of the same base function can be specified using a
declare variant directive on each specialization. Figure 3 shows an example
where two variants have been defined: my rsqrt omp approx, to be called when
the base function appears in the context of a simd directive; and rsqrt (possibly
provided by a library), to be called when the base function appears in the context
of a target directive.

In the previous example, it was unambiguous which specialization should be
used in each call to my rsqrt, but that is not always the case. For example, if the
call were to happen inside a target parallel for simd directive, it would be
unclear which specialization should be called. We handle such cases by assigning
different priorities to each variant, and selecting the variant with the highest
priority at a callsite; this algorithm is described in detail in Sect. 4.3.
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#pragma omp declare variant(my_rsqrt) match(construct ={simd})
float my_rsqrt_omp_approx(float x) { ... }

#pragma omp declare variant(my_rsqrt) match(construct ={ target })
float rsqrt(float x); // library provided

void foo ( float x )
{

#pragma omp simd
for ( ... ) { ... = my_rsqrt(x); } // will call my_rqsrt_omp_approx

#pragma omp target
{

... = my_rsqrt(x); // will call rsqrt
}

}

Fig. 3. Example of declare variant directives with match clauses.

4.2 Context Selection Traits

We have identified several concepts that give rise to a need for specialization,
and for the purposes of their use and description, we have organized them into
classes of traits. This taxonomy aids the user in clearly expressing their intents
for when a particular variant takes precedent over another for a given context.
This proposal identifies four distinct classes of traits that help distinguish the
conditions for specialization.

OpenMP Construct Traits. The traits in the construct class are related to
existing OpenMP constructs that might impact a developer’s choices for special-
ization. Table 1 describes the traits in the construct class. Each trait specified
for this class restricts the associated variant to calls to the base function that
appear in the context of the directive of the same name.

Table 1. Traits in the construct trait class

Trait name Example uses

target Code paths that track host/target allocations and perform transfers

parallel Code paths that choose between serial & parallel algorithms; code
paths that discriminate based on memory model (e.g. atomics, critical,
etc)

teams Code paths that choose algorithms or implementations based on
synchronization behavior; code paths that perform differently when
synchronization is expected to be fast within a team

simd Code paths that deploy horizontal vector operations (e.g. conflict
detection); code paths that override default auto-vectorization behavior

For the simd trait, we also propose to allow different trait properties that
represent clauses available in the declare simd directive. These properties fur-
ther restrict the context in which a variant can be selected. In Fig. 4 two variants
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are defined to be used in the context of a simd construct. The first variant can
be used in any simd context but the second one can only be used when the
simd context also determines that the argument of the function is linear. Con-
sequently, the first invocation of foo in Fig. 4 will be substituted with the first
variant as the compiler cannot determine that the argument is linear, whereas
the second call to foo will be substituted with the second variant as the compiler
can determine that i is linear.

float foo(float *x);

#pragma omp declare variant(foo) match(construct ={simd})
__mm512 foo_simd_gather(__m512 *x); // needs to use gather instructions

#pragma omp declare variant(foo) match(construct ={simd(linear(x))}
__mm512 foo_simd_linear(__mm512 *x); // can avoid gather instructions

#pragma omp parallel for simd linear(i)
for ( i = 0; i < N; i++ ) {

... = foo(x[rand ()]); // will call foo_simd_gather

... = foo(x[i]); // will call foo_simd_linear
}

Fig. 4. Example of simd trait properties.

Device Traits. The traits in the device class are based on properties of the
hardware that the code is being compiled for. Therefore, they restrict the con-
texts where a variant can be selected to only those where the specified device
traits are true. Table 2 describes the traits in the device class. Multiple isa
traits can be specified for a single variant: all of them must be supported by the
target device for a variant to be selected. We propose that implementations not
be required to be able to compile the function body for variants with device
traits that are not supported (e.g. an unknown ISA), thereby simplifying the
use of device-specific intrinsics by programmers. However, we still require that
extensions used in the context of a variant function should at least allow other
implementations to properly parse (and ignore) the function (i.e. by allowing to
find the closing bracket of the variant function).

Table 2. Traits in the device trait class.

Trait name Example uses

uarch(uarch-name) Code paths that use different optimizations for different
microarchitectures; code paths that care about particular
implementations of instruction sets or compute capabilities

isa(isa-name) Code paths that use specific instruction sets

OpenMP Implementation Traits. Traits in this class are concerned with
properties of the particular OpenMP implementation that will be used to run
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the generated code. Only implementations that support the traits specified in
a selector can select that variant as a replacement of the base function. Table 3
describes the traits in the implementation class.

Table 3. Traits in the implementation trait class.

Trait name Example uses

unified shared memory

unified address

Code paths that require runtime support for unified
shared memory/address spaces across devices. The
behavior of these traits is documented in OpenMP
TR6 [11]

vendor(vendor-name
[,extensions])

Code paths that require vendor-specific and/or
prototype concepts

User Traits. In addition to the above trait classes associated with OpenMP
contexts, hardware, and runtime capabilities, there is a user class that accepts
logical expressions as traits. These logical expressions, expressed in the base
language, must be able to be evaluated at compile-time, and they can be used to
add arbitrary user-specified conditions that can inform variant selection. Figure 5
shows an example of a user trait in use; the logical test for the value of the
static constant variable layout may enable or disable each of the variants in the
example.

void foo(float *x);

typedef enum {AoS=0, SoA} layout_t;

#pragma omp declare variant(foo) match(user={ condition(layout ==AoS)})
void foo_AoS(float *x);

#pragma omp declare variant(foo) match(user={ condition(layout ==SoA)})
void foo_SoA(float *x);

...
static const layout_t layout = AoS;
...
foo(z); // will call foo_AoS

Fig. 5. Example of a user trait; the value of the compile-time variable layout deter-
mines the logical value of the user selector in each variant.

These classes and their traits are those that we have chosen as the most
important and tractable in this initial proposal; they are all static notions that
allow contextual information to be tracked or inferred during compile-time. Many
other concepts – for example, the values of certain variables or certain arguments
at runtime, system conditions, and other language constructs – would be inter-
esting to explore in future work.
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4.3 Caller Context and Variant Selection

Our proposed selection mechanism is not explicit; instead, the choice of which
variant to call is performed through the interaction of the various selectors and
the context around the function call. This is necessary to correctly handle cases in
which the arguments to a function may be generated or modified by the compiler
(e.g. during auto-vectorization); to leverage contextual information not exposed
to the developer (e.g. during auto-parallelization); and to enable selection to
be employed transparently for functions maintained by other developers (e.g.
library functions). Such an implicit mechanism does not remove any control
from the user; they remain free to call specific variants explicitly by name.

In the remainder of this section, we discuss how such contextual information
can be established and tracked by way of: lexical scope; compiler configuration
for a given translation unit; and a function variant’s selector information.

Lexical Scope. The OpenMP construct trait class described in Sect. 4.2 con-
tains traits related to a number of OpenMP directives that establish lexical
blocks with specific behavior. Conceptually, as each such directive is encoun-
tered in lexical order, the corresponding trait is added to the context. As the
block for each directive closes, the corresponding trait is eliminated from the
context. See Fig. 6 for an example of how contexts vary with the presence of
OpenMP directives.

void main()
{

// construct context = {} (i.e. empty)
#pragma omp target
{

// construct context = {target}
#pragma omp parallel
{

// construct context = {target ,parallel}
#pragma omp simd
{

// construct context = {target ,parallel ,simd}
}
// construct context = {target ,parallel}

}
// construct context = {target}

}
// construct context = {} (i.e. empty)

}

Fig. 6. Example of how the construct context is changed upon entering and exiting
lexically scoped OpenMP regions.

Traits in the OpenMP construct context may also be set implicitly, as
the result of certain optimizations: regions that are automatically parallelized
and/or vectorized without use of the corresponding OpenMP directives may add
parallel and/or simd to the context; similarly, implementations may alter the
context to reflect decisions taken as a result of certain descriptive constructs
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(e.g. concurrent). Such transformations still imply a lexical scope, albeit one
that is usually not exposed to the developer.

Translation Units. Many traits are not established by explicit directives that
annotate lexical structures; the traits found in the device and OpenMP run-
time trait classes (see Sect. 4.2) are generally established for a translation unit
implicitly, by the compiler itself. The exact behavior of these traits will vary
from compiler to compiler, but tracking them as part of the context is necessary
for matching variants effectively.

For example, a user may specify options to a compiler instructing it to gen-
erate code for a specific instruction set or to optimize for the characteristics of
a particular microarchitecture; in the presence of such flags, the isa and uarch
traits should be defined appropriately in the context. Specific examples of how
such compiler options can impact the device context are given in Fig. 7.

icpc -xMIC-AVX512:

device context = { uarch(knl), isa(avx512f, avx512er, avx512cd, ...) }

icpc -xCORE-AVX512:

device context = { uarch(skx), isa(avx512f, avx512cd, ...) }

gcc -msse2 -msse3:

device context = { isa(sse2, sse3) }

clang++ --cuda-gpu-arch=sm_70:

device context = { isa(sm_70) }

Fig. 7. Example of how the context is changed by compiler flags. Flags for enabling
and configuring OpenMP are omitted.

Functions. Generally speaking, contexts are established within a function body
without accounting for any surrounding contexts that hypothetical callers may
establish, and the user should not assume that contextual information is passed
across function boundaries. Our proposal makes two exceptions: a function’s
initial context may be modified by its variant selector; and compilers are free
to broaden contexts when inlining. An example with both behaviors is shown in
Fig. 8.

Variant Selectors. The context of a variant is defined to contain at least the
traits specified in the variant’s selector; additional traits may be present (defined
for the translation unit) but only if they are compatible with the selector. This
behavior allows for traits derived from lexical scope to be passed explicitly across
translation unit boundaries.
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void bar ();

#pragma omp declare variant(bar) match(construct ={ teams})
void baz()
{

// without inlining: construct context = {teams}
// with inlining: construct context = {parallel , teams}
...

}

void foo()
{

// without inlining: construct context = {}
// with inlining: construct context = {parallel}
#pragma omp teams
{

// without inlining: construct context = {teams}
// with inlining: construct context = {parallel , teams}
baz ();

}
}

void main()
{

#pragma omp parallel
{

foo ();
}

}

Fig. 8. Example of context propagation via variant selectors and/or inlining.

Inlining Behavior. It is common for a compiler to inline function bodies to sat-
isfy user requests and to enable many optimizations. In such cases, the compiler
may be able to supply additional context to the inlined function body based on
where it has been inlined. While we would like to have consistent behavior of
how OpenMP constructs should behave with respect to inlining, the OpenMP
specification is not clear on this point and implementations vary in their interpre-
tation. As such, developers should not depend on particular inlining behavior –
since it is compiler-specific – but it does not introduce problems for our selection
mechanism.

Selecting a Variant Based on Context. Given a calling context C and a
variant family V, the variant selection algorithm proceeds as follows:

1. Eliminate all variants from V with selectors that are incompatible with C.
2. Compute a specificity score associated with each remaining selector.
3. If the most specific (highest scoring) selector is unique, return its variant.

A selector’s specificity score is computed by assigning a value of 2i to each
context trait, where i reflects the trait’s position in the context, and summing
these values. Traits are ordered according to their class – construct, device,
implementation, user – and level of nesting in lexical scope (if appropriate).
If the most specific score is not unique, but the selectors can be ordered by
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a strict subset/superset relationship of their properties, the selector with the
largest superset should be chosen; otherwise, the choice between the most specific
selectors is unspecified.

Figure 9 shows this algorithm applied to an example calling context and a
family of six variants. First, the variants are compared with the calling context
to assess their compatibility: the first two variants are eliminated in this step,
as neither target nor teams is present in the calling context. Second, the traits

parallel = 1
simd = 2

device = 4

Variant Score

3: match(construct={parallel, simd}) 3

4: match(construct={parallel, simd(aligned(x:64))},
device={isa(avx512f)})

7

5: match(construct={parallel, simd(aligned(x:64),
uniform(x))},

device={isa(avx512f)})
7

6: match(construct={parallel, simd(aligned(x:64),   
linear(y))},

device={isa(avx512f)})
7

construct={parallel,
simd(aligned(x:64),  

uniform(x),
linear(y))}

device={isa(avx512f)}

Calling Context

1: match(construct={target, teams})
2: match(construct={teams, simd})
3: match(construct={parallel, simd})
4: match(construct={parallel, simd(aligned(x:64))},

device={isa(avx512f)})
5: match(construct={parallel, simd(aligned(x:64),

uniform(x))},
device={isa(avx512f)})

6: match(construct={parallel, simd(aligned(x:64),
linear(y))},

device={isa(avx512f)})

Available Variants

Assign values
to traits

Score 
variants

Check 
compatibility

Select highest scoring
Remove subsets

3: match(construct={parallel, simd})
4: match(construct={parallel, simd(aligned(x:64))},

device={isa(avx512f)})
5: match(construct={parallel, simd(aligned(x:64),

uniform(x))},
device={isa(avx512f)})

6: match(construct={parallel, simd(aligned(x:64),
linear(y))},

device={isa(avx512f)})

Compatible Variants

5: match(construct={parallel, simd(aligned(x:64),
uniform(x))},

device={isa(avx512f)})
6: match(construct={parallel, simd(aligned(x:64),

linear(y))},
device={isa(avx512f)})

Selected Variants

Fig. 9. Example of the variant selection algorithm.
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are assigned a value according to their position in the calling context, and these
values are used to assign specificity scores to the variants: the variants receive
scores of 3, 7, 7 and 7 based on the values assigned to the parallel, simd and
device traits. The last step selects the variants with the highest score and, from
those, removes variants that are a subset of other variants: the variant with
just simd(aligned(x:64)) is eliminated, since it is included in the other two
variants. The algorithm selects two variants: the simd properties for the selected
variants contain aligned(x:64) as a common subset, but since uniform(x) and
linear(y) cannot be ordered an implementation is free to choose either.

4.4 Relation to Existing Directives

The behavior of declare variant as defined in our proposal is orthogonal to
the behavior of the declare simd and declare target directives: it provides
a mechanism for associating user-provided variants to base functions, but does
not provide a mechanism for requesting compiler-generated variants of base func-
tions. At the time of writing, it is unclear whether or not consolidating these
functionalities into a single directive is desirable. By design, extending declare
variant to support more contextual information is easier than extending the
existing directives, but deprecating existing functionality may break existing
user code. Should it be decided that deprecating declare simd and declare
target is desirable, then modifying our proposed syntax to support this could
be as straightforward as making the base-function part of an optional clause
(as shown in Fig. 10), or introducing a separate create variant directive
(as shown in Fig. 11).

// Request compiler -generated variant of foo , specialized for simd context
// Base -function omitted; equivalent to "declare simd"
#pragma omp declare variant match(construct ={simd})
void foo ();

// Associate user -provided variant of foo , specialized for simd context
// Uses "implements" clause; equivalent to current syntax
#pragma omp declare variant match(construct ={simd}) implements(foo)
void bar ();

Fig. 10. Example of using a modified declare variant directive to replace declare

simd and declare target.

// Request compiler -generated variant of foo , specialized for simd context
// Equivalent to "declare simd", but user provides name for generated function
#pragma omp create variant(foo_simd) match(construct ={simd})
void foo ();

Fig. 11. Example of using a new create variant directive to replace declare simd

and declare target.
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5 Summary

Application developers hoping to achieve high levels of performance on multiple
platforms require a mechanism for selecting and executing different code paths
based on properties of the current execution context. This paper proposes a set of
extensions to the OpenMP API that provide such a mechanism, introducing the
ability to perform function dispatch based on contextual information known to
OpenMP at compile-time. The specific contributions of this work are as follows:

1. We review the complex interaction between modern OpenMP constructs and
representative OpenMP devices, thus motivating the introduction of powerful
and expressive developer tools for specializing code for different execution
environments.

2. We propose a new directive, declare variant, for declaring variants of func-
tions that should be preferentially selected under certain conditions. Our pro-
posal unifies several previous proposals, and is designed to be easily extended
to cover future additional functionality.

We have designed declare variant to ensure that the contextual informa-
tion it supports can be extended as the OpenMP API evolves, and there are
many exciting future directions to explore. Incorporating an ability for dynamic
(run-time) dispatch is the most obvious: many performance-impacting variables
in OpenMP can be chosen dynamically (e.g. number of threads, scheduling
policies); users may wish to select different devices or algorithms based on prop-
erties of program input; and just-in-time (JIT) compilation for problem size has
been demonstrated to significantly improve performance in some cases [5]. When
considering this extension, it will be important to consider the cost of run-time
selection and dispatch.

Acknowledgements. Intel and the Intel logo are trademarks of Intel Corporation or
its subsidiaries in the U.S. and/or other countries.
* Other names and brands may be claimed as the property of others.
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Abstract. OpenMP is increasingly being considered as a convenient
parallel programming model to cope with the performance requirements
of critical real-time systems. Recent works demonstrate that OpenMP
enables to derive guarantees on the functional and timing behavior of
the system, a fundamental requirement of such systems. These works,
however, focus only on the exploitation of fine grain parallelism and do
not take into account the peculiarities of critical real-time systems, com-
monly composed of a set of concurrent functionalities. OpenMP allows
exploiting the parallelism exposed within real-time tasks and among
them. This paper analyzes the challenges of combining the concurrency
model of real-time tasks with the parallel model of OpenMP. We demon-
strate that OpenMP is suitable to develop advanced critical real-time
systems by virtue of few changes on the specification, which allow the
scheduling behavior desired (regarding execution priorities, preemption,
migration and allocation strategies) in such systems.

1 Introduction

There is an increasing demand to introduce parallel execution in critical real-time
systems to cope with the performance demands of the most advanced function-
alities, e.g., autonomous driving and unmanned aerial vehicles. In this regard,
OpenMP is a firm candidate [22,40] due to its capability to efficiently exploit
highly parallel and heterogeneous embedded architectures, and its programma-
bility and portability benefits. OpenMP is already supported in several embed-
ded platforms for instance, the Texas Instruments Keystone II [37] or the Kalray
MPPA [18]. Moreover, OpenMP is being evaluated to be supported in future ver-
sions of the Ada language [26], used to develop safety critical systems.

Current critical real-time systems are composed of a set of independent and
recurrent pieces of work, known as real-time tasks, implementing the function-
alities of the system. This model enables to exploit the inherent concurrency of
the system when the number of available cores is low, as it is the case of the Infi-
neon Aurix, a 32-bit micro-controller used in automotive that features six cores [5].
With the newest highly parallel embedded architectures targeting the critical real-
time market, the number of available cores has increased significantly, enabling to
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Fig. 1. Real-time task representation.

exploit fine-grain parallelism within each real-time task as well. This is the case
for instance, of the Kalray MPPA, featuring a fabric of 256 cores [18].

However, critical real-time systems must provide strong safety evidences on
the functional and timing behavior of the system. In other words, the system
must guarantee that it operates correctly in response to its inputs, and that sys-
tem operations are performed within a predefined time budget. A recent work
evaluated the suitability of OpenMP from a functional perspective [29]. This
paper complements that work and evaluates OpenMP from a timing behavior
perspective. In this context, recent studies have shown the similarities between
the structure and syntax of the OpenMP tasking model and the Direct Acyclic
Graph (DAG) scheduling model [40], which enables to verify the timing con-
straints of parallel real-time tasks [13]. These similarities allow the analysis of
the timing behavior of a single real-time task parallelized with OpenMP [35,38].

This paper extends previous works, and analyses the use of OpenMP (as
it is in version 4.5 [3]) to implement critical real-time systems. We focus on
the design implications and the scheduling decisions to efficiently exploit fine
grain parallelism within real-time tasks and concurrency among them, while
guaranteeing the timing behavior according to current real-time practices.

2 Critical Real-Time Systems

2.1 The Three-Parameter Sporadic Tasks Model

Critical real-time systems are represented as a set of recurrent and independent
real-time tasks T = {τ1, τ2, . . . τn}. Each execution of a real-time task is known
as a job; the time at which a job is triggered is known as release time and it is
denoted by ti. A recurrent task can be periodic, if there is an exact time between
two consecutive jobs, or sporadic, if there is a minimum time between jobs. In
both cases, they can be triggered either by an internal clock or by the occurrence
of an external event, e.g., a sensor.

Traditionally, the three-parameter sporadic tasks model [25] is used to char-
acterize critical real-time systems composed of sequential tasks that run con-
currently on a platform. In this model, each task τi is represented with the
tuple 〈Ci, Ti,Di〉, where Ci is the Worst-Case Execution Time (WCET), i.e., an
estimation of the longest possible execution time of τi; Ti is the period, or the
minimum time between two consecutive jobs of τi; and Di is the deadline at
which τi must finish (see Fig. 1). Critical real-time systems must guarantee that,
for each task, its deadline is met, i.e., ∀τi ∈ T , ti + Ci ≤ Di.
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(a) 3-parameter sporadic tasks (b) Sporadic DAG tasks

Fig. 2. Real-time system models.

2.2 The Sporadic DAG Tasks Model

In the recent years, the complexity of real-time tasks have significantly increased
to incorporate advanced functionalities, e.g., image recognition. With the objec-
tive of providing the level of performance needed, the code within each real-time
task can be further parallelized. In this context, the use of the sporadic DAG
task model [13] enables to characterize parallel real-time tasks1 with the tuple
τi = 〈Gi, Ti,Di〉. Gi = (Vi, Ei) is a DAG representing the parallelism exposed
within a real-time task. Vi = {vi,1, . . . , vi,ni

} denotes the set of nodes that can
potentially be executed in parallel, where ni is the number of nodes within τi.
Ei ⊆ Vi×Vi denotes the set of edges between nodes, representing the precedence
constraints existing between them: if (vi,1, vi,2) ∈ Ei, then vi,1 must complete
before vi,2 begins its execution. In this model, each node vi,j ∈ Vi is characterized
by its WCET, denoted by Ci,j . Finally, as in sequential real-time tasks, Ti and Di

represent the period and deadline of the parallel real-time task τi. This model is
considered in the integrated modular avionics (IMA) [2] and the AUTOSAR [20]
frameworks, used in avionics and automotive systems, respectively.

Figure 2 shows a taskset composed of three real-time tasks: in Fig. 2a, tasks
are modelled with the three parameter sporadic tasks model, i.e., real-time tasks
are sequential and run concurrently; in Fig. 2b, tasks are modelled with the
sporadic DAG tasks model, i.e., real-time tasks have been parallelized, enabling
to exploit both, concurrency and fine-grain parallelism.

2.3 Parallelizing a Single Real-Time Task with OpenMP

Several works demonstrate that the OpenMP tasking model resembles the
sporadic DAG task scheduling model when considering a single real-time
task [24,35,38,40,41]. Hence, the OpenMP tasking model can be used to paral-
lelize a real-time task, modelled as a DAG, upon which timing guarantees can
be provided. Given an OpenMP-DAG G = (V,E), nodes in V correspond to
the portions of code that execute uninterruptedly between two Task Scheduling
Points (TSPs), referred as parts of a task region in the OpenMP specification,
and considered as task parts henceforward. Edges in E correspond to explicit syn-
chronizations (for instance, defined by the depend clause), TSPs (for instance,
defined by the task construct) and control flow precedence constraints (defined
by the sequential execution order of task parts from the same OpenMP task).
1 Parallel real-time tasks denote real-time tasks which exploit parallelism within them.
These tasks are also concurrent among them.
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Fig. 3. Example of an OpenMP real-time task.

Figure 3a shows an example of a real-time task τ parallelized with the
OpenMP tasking model, and Fig. 3b shows the corresponding OpenMP-DAG.
Nodes of the OpenMP-DAG represent the seven tasks parts generated within the
four explicit tasks and the implicit task executing the single region. For instance,
task T1 (line 6 of Fig. 3a), is composed of task parts part10 and part11 (nodes
p10 and p11 in Fig. 3b). Edges represent (1) the data dependence between T1
and T4; (2) the TSP after the creation of tasks T1 to T4, e.g., at the end of task
part p10 task T2 is created; and (3) control flow dependences, e.g., task parts
p10 and p11 from T1 execute sequentially. All threads are synchronized in the
implicit barrier at the end of the parallel construct (not shown in Fig. 3b).

3 Developing Critical Real-Time Systems with OpenMP

This section analyses the use of the OpenMP tasking model to develop a critical
real-time system, from two different perspectives: (1) how to efficiently exploit
parallelism within real-time tasks and among them, and (2) how to express the
recurrence of real-time tasks.

3.1 Parallelizing Several Concurrent Real-Time Tasks

In critical real-time systems, the scheduler plays a key role as it must guarantee
that all real-time tasks execute before its deadline. To do so, real-time schedulers
implement the following features (Sect. 4 provides a detailed analysis): (1) tasks
priorities, which determine the urgency of each real-time task to execute; (2)
preemption strategies, which determine when a real-time task can be temporarily
interrupted if a more urgent task is ready to execute; and (3) allocation strategies,
which determine the computing resources (cores) in which tasks can execute.
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Fig. 4. Critical real-time system implemented with OpenMP parallel tasks.

As introduced in the previous section, current works consider OpenMP only
to exploit parallelism within a single real-time task. As a result, each real-time
task defines its own OpenMP parallel environment. This becomes a black box
for the scheduler, which can not control the resources used by real-time tasks.

In order for the scheduler to have full control over the execution of the real-
time tasks (and their parallel execution), the complete taskset must be included
within a single OpenMP application. To do so, one option is to exploit nested
parallel regions, i.e., to enclose the real-time tasks, each defining its own parallel
region (see Fig. 3a), within an outer parallel region. In this case, the OpenMP
framework manages two scheduling levels: one in charge of scheduling the real-
time tasks (outer parallel region), and another one in charge of scheduling the
parallel execution within each real-time task (inner parallel regions). Interest-
ingly, this approach enables the first level scheduler to use the priority clause
associated to the task construct to determine the priority of each real-time task
(see Sect. 4). However, this solution is not valid as the first-level scheduler cannot
control the parallel execution of each real-time task. In other words, the team of
threads of each real-time task is (again) a black box for the first-level scheduler.
Hence, preemption and allocation strategies cannot be implemented.

Clearly, the control of the OpenMP threads executing each of the real-time
tasks is key to support a fine-grain control over the whole parallel execution. To
do so, we propose to define a common team of OpenMP threads to execute all
the real-time tasks. Figure 4 shows the implementation of a real-time system in
which each real-time task τi ∈ T is encapsulated within an OpenMP task, and
implemented in a function RT task X(). The code in Fig. 3a could represent an
example of one of these functions. However, the parallel and single constructs
(lines 2 and 3, respectively) must be removed, and a taskwait synchronization
construct must be included at the end of the function (line 18). These changes
are not shown due to lack of space. In this design, a single real-time scheduler will
be in charge of scheduling both, the OpenMP tasks implementing the real-time
tasks (with an associated priority given by the priority clause), and the nested
OpenMP tasks implementing the parallel execution of each real-time task.
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3.2 Implementing Recurrent Real-Time Tasks in OpenMP

The OpenMP tasking model is very convenient to implement critical real-time
systems based on DAG scheduling models. However, OpenMP lacks an important
feature of these systems, the notion of recurrency. As presented in Sect. 2, the
execution of real-time tasks can be either periodic or sporadic triggered by an
event, e.g., an internal clock or a sensor.

With the objective of including recurrency in the OpenMP execution model,
we propose to incorporate a new clause, named event, associated to the task
construct. This clause enables to define the release time of the OpenMP tasks
implementing real-time tasks. The syntax of the event clause is as follows:

#pragma omp task event (event-expression)

where event-expression is an expression, if it evaluates to true the associated
OpenMP task is created. This expression represents the exact moment in time2

at which the real-time task release occurs or the external event that must occur
for the real-time task to release a new job. The expression is true whenever
the task releases, and shall evaluate to false after the task creation. However,
the event clause is not enough to state the synchrony between the event that
triggers a real-time task and the actual execution of that task. In languages
such as Ada, which are intrinsically concurrent, events are treated at the base
language level, thus an Ada task triggering an event will launch an entry (a
functionality) of a different task. But OpenMP is defined on top of C, C++ and
Fortran, languages intrinsically sequential, that do not typically provide these
kind of features. Following, we analyze three different approaches to associate
the occurrence of an event and the execution of a real-time task:

– Managed by the base language: a simple approach would use the base language
to implement an infinite loop containing the set of real-time tasks with their
corresponding events and priorities. This solution however renders one thread
useless, executing the control loop. Interestingly, C++11 introduces multi-
threading support, adding features to define concurrent execution.

– Managed by the operating system: based on the previous approach, the thread
executing the control loop may be freed at the end of each iteration, and the
operating system may return the thread to the control loop in a period of
time shorter than the minimum period of a task (ensuring no job is missed).

– Managed by the OpenMP API: a different approach would be implementing
the concept of persistent task [27] in the OpenMP API, pushing the respon-
sibility for checking the occurrence of an event to the OpenMP runtime.

A deeper evaluation of the most suitable solution to implement critical real-
time system is of paramount importance to promote the use of OpenMP in
critical real-time environments. This evaluation is out of the scope of this paper
and remains as a future work.
2 Real-Time Operating Systems (RTOS) provide time management mechanisms and
timers to determine the release time or deadline of real-time tasks.
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Interestingly, this new event clause would allow to unequivocally identify
which OpenMP tasks implement real-time tasks, differentiating them from the
OpenMP tasks used to parallelize each real-time task. The real-time system
implemented in Fig. 4 must therefore include the event clause associated to
each task construct at lines 4, 6 and 9.

4 Implementing Real-Time Scheduling Features in the
OpenMP Task Scheduler

One of the most important components of critical real-time systems is the real-
time scheduler, in charge of, not only assigning the execution of real-time tasks to
the underlying computing resources, but also guaranteeing that all tasks execute
before its deadline. In the context of multitasking systems, the scheduling policy
is normally priority driven [16], i.e., real-time tasks have a priority assigned and
the preference to execute is given to the highest-priority tasks. A scheduler may
preempt a running task if a more urgent task is ready to execute. The interrupted
task resumes later its execution. Moreover, different scheduling algorithms place
additional restrictions as to where real-time tasks are allowed to execute. Overall,
real-time schedulers can be classified based on: (1) task priorities, (2) preemption
strategies and (3) allocation strategies. Following, we describe how these features
can be supported by the OpenMP specification.

4.1 Priority-Driven Schedulers Algorithms

Depending on the restrictions of how to assign priorities to real-time tasks,
priority-based schedulers are classified as follows [11]: (1) Fixed Task Priority
(FTP), (2) Fixed Job Priority (FJP), and (3) Dynamic Priority (DM). In FTP,
each real-time task has a unique fixed priority. This is the case of the rate-
monotonic (RM) scheduler that assigns the priorities based on the period (i.e.,
tasks with smaller periods have higher priority). In FJP, different jobs of the
same real-time task may have different priorities. This is the case of the earliest
deadline first (EDF) scheduler that assigns greater priorities to the jobs with
earlier deadlines. In DM, the priority of each job may change between its release
time and its completion. This is the case of the least laxity (LL) scheduler that
assigns the priorities based on the laxity3 of a job.

In OpenMP, the priority clause associated to the task construct matches
the priority representation of real-time tasks for the FTP scheduling. However,
the OpenMP specification (version 4.5) states that “the priority clause is a hint
for the priority of the generated task [..] Among all tasks ready to be executed,
higher priority tasks are recommended to execute before lower priority ones. [...]
A program that relies on task execution order being determined by this priority-
value may have unspecified behavior”. As a result, the current behavior of the

3 The laxity of a job at any instant in time is defined as its deadline minus the sum
of its remaining processing time and the current time.
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Fig. 5. OpenMP real-time system designed for a deadline-based scheduler.

priority clause does not guarantee the correct priority-based execution order of
real-time tasks. Therefore, the development of OpenMP task schedulers in which
the priority clause truly leads the scheduling behavior is essential for real-time
systems. Moreover, the priority-expression value defined at real-time task level
must be inherited by the corresponding child tasks implementing parallelism
within each real-time task. By doing so, the OpenMP task scheduler can preempt
the OpenMP tasks conforming a low priority real-time task in favour of higher
priority tasks.

Regarding the implementation of EDF and LL schedulers, a new clause,
named deadline, associated to the task construct is needed. This clause will
enable to define the deadline of the real-time task upon which EDF and LL
schedulers are based. The syntax of the deadline clause is as follows:

#pragma omp task deadline (deadline-expression)

where the deadline-expression is the expression that determines the time instant
at which the OpenMP task must finish. Similarly to the priority clause, the
deadline-expression associated to an OpenMP task implementing a real-time
task must be inherited by all its child tasks. This allows the scheduler to identify
those OpenMP tasks with the farthest deadline, and preempt them to assign the
corresponding OpenMP threads to those tasks with the closest deadline. The
deadline clause is not compatible with the priority clause, as both are meant
for determining the priority of a task for different scheduling algorithms.

Figure 5 shows an example of an OpenMP real-time system, when the sched-
uler is EDF or LL, and so the deadline clause is required. Real-time tasks
τ1 . . . τn have a deadline and an event associated to them. Notice that, in case
of a fixed task priority scheduler, the deadline clause would be replaced by a
priority clause. Real-time task τ1 corresponds to the real-time task represented
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(a) Fully-preemptive scheduling. (b) Non-preemptive scheduling.

(c) Limited preemptive scheduling.

Fig. 6. Scheduling preemption strategies in a single core.

in Fig. 3. All child tasks inherit the deadline of the parent task, for instance, T1,
T2, T3 and T4 inherit the deadline D1.

4.2 Preemption Strategies

The real-time scheduling theory defines three different types of preemption
strategies: (1) fully-preemptive (FP), (2) non-preemptive (NP), and (3) limited
preemptive (LP). The FP strategy [9] preempts the execution of low priority
tasks as soon as a higher priority task releases. This strategy allows high-priority
tasks not to suffer any blocking due to low priority ones. However, it may lead to
prohibitively high preemption overheads, mainly related to task context switches
and migration delays [15], which may degrade the predictability and performance
of the system. The NP strategy [14] executes real-time tasks until completion
with no interruption. This strategy offers an alternative that avoids preemp-
tion related overheads at the cost of potentially introducing significant blocking
effects to higher priority tasks. So far, this strategy has only been considered
for sequential real-time tasks. The reason is that parallel real-time tasks may
require a different number of computing resources during its execution, and the
NP strategy shall guarantee that these resources are always available to avoid
preemption operations. Finally, the LP strategy [17] has been proposed as an
effective scheduling scheme that reduces the preemption-related overheads of FP,
while constraining the blocking effects of NP, thus improving predictability. In
LP, preemptions can only take place at certain points during the execution of a
real-time task, dividing its execution in non-preemptive regions.

Figure 6 illustrates the three preemption strategies presented above. It con-
siders a task set composed of two tasks: a high-priority task τhp, with a WCET
Chp = 2, and a period Thp = 5 time units, and a low-priority task τlp, with a
WCET Clp = 4, and a period Tlp = 7 time units. In order to facilitate the expla-
nation, we consider that: a single core is used and real-time tasks are sequential.
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Moreover, the deadline is equal to the period, so arrows represent the release
time of a given job, and the deadline of the previous job. In the FP strategy
(Fig. 6a), as soon as τhp is released, at times t = 3 and t = 8, τlp is preempted
and it resumes as soon as τhp has finished. In the NP strategy (Fig. 6b), although
τhp is released at time instant t = 3, it must wait 1 time unit, until τlp finishes.
At the following τhp release, it must wait again 3 time units. In the LP strategy
(Fig. 6c), τlp defines one preemption point (named as TSP). In the first release
of τhp, at time instant t = 3, the preemption point of τlp has already passed,
so τhp must wait until τlp has finished. In the second release, at time instant
t = 8, τhp must wait only until the preemption point of τlp, at t = 9. Then τlp is
preempted, and τhp starts its execution.

Interestingly, the OpenMP tasking model implements an LP strategy as
explained in Sect. 2.3: OpenMP tasks are preemptable only at TSPs, dividing the
task into multiple non preemptive task part regions. Accordingly, the OpenMP
runtime can preempt OpenMP tasks and assign its corresponding threads to a
different OpenMP task based on the priorities. It is worth noting that OpenMP
provides the taskyield construct, which allows the programmer to explicitly
define additional TSPs. However, regarding task scheduling points, the OpenMP
API states that “the implementation may cause it to perform a task switch” and
regarding the taskyield clause, “the current task can be suspended in favor of
execution of a different task”. This means that an implementation is not forced
to perform a task switch in any case. However, in real-time scheduling a TSP
must be evaluated, meaning that if a higher priority task is ready at that point,
then the lower priority one must be suspended. Therefore, limited preemptive
OpenMP schedulers must implement the evaluation of each TSP occurrence.

Interestingly, this laxity in the OpenMP specification, which establishes that
threads are allowed to, but not forced to, suspend a task at TSPs, supports the
implementation of NP strategies. By simply disabling the suspension of tasks
at those points, the OpenMP scheduler would be non-preemptive. In fact, for
sequential real-time tasks, this is the default preemption strategy, since there are
no implicit TSPs. In this case, it is worth noting that the taskyield construct
allows the implementation of the LP strategy in sequential real-time tasks as
well.

Finally, OpenMP does not support the implementation of FP scheduling
strategies because that would require the runtime to preempt the execution of
OpenMP tasks at any point of its execution. In any case, as we stated above, FP
is not a desirable strategy due to very high preemption overheads it may cause,
which can degrade the predictability of the system.

4.3 Allocation and Migration Strategies

There exist three strategies to allocate the execution of real-time tasks to the
underlying computing resources (in our case, cores): (1) the static allocation,
which statically assigns real-time tasks to cores at design time, with the objective
of increasing the predictability and minimizing the response time of the overall
system; (2) the dynamic allocation, in which the allocation is performed based
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on runtime information, such as the state of the platform (e.g., computing and
communication resources available), the set of ready tasks, or the location of
input data; (3) the hybrid allocation, which statically allocates a subset of real-
time tasks, while the rest are dynamically scheduled.

Moreover, real-time schedulers define migration strategies to stablish the
cores in which real-time tasks are permitted to execute. These strategies can
be grouped in three categories: (1) global scheduling algorithms allow any real-
time task to execute upon any core, allowing jobs from the same real-time task
to migrate, (2) partitioned scheduling algorithms assign each real-time task to a
core so that each job of a real-time task executes always on the same core, and (3)
federated scheduling algorithms that combine global and partitioned schedulers
for a subset of tasks. Typically, the dynamic allocation strategy is built upon
global scheduling, whereas static allocation is built upon partitioned scheduling.

Although the OpenMP specification says nothing about allocation strategies,
current OpenMP systems are performance-driven, and so all runtime implemen-
tations are based on dynamic scheduling. However, static allocation strategies
have been proposed for OpenMP as well [24]. In case of migration strategies,
the OpenMP tied tasking model (the default one) limits the implementation
of global schedulers. Tied tasks are those that, when suspended, can only be
resumed by the same thread that started its execution. As a result, a real-time
task implemented as an OpenMP tied task will not be able to migrate. This is
not the case of untied task, that can be resumed by any thread in the team. In
this case the untied clause attached to the task directive is required.

OpenMP Task to OpenMP Thread Mapping
With the objective of increasing time predictability, most of the real-time sched-
ulers consider a direct mapping between real-time tasks and cores. This includes
two conditions: (1) threads are mapped to cores in a one-to-one manner, and (2)
threads are not allowed to migrate between cores.

OpenMP threads are an abstraction of the computing resource upon which
OpenMP tasks execute. As stated in Sect. 3, this paper considers a single team
of threads to execute all OpenMP tasks. This enables the real-time scheduler
to have full control over the execution of OpenMP tasks over threads. However,
OpenMP threads are further assigned to the operating system, hardware threads
and cores (referred to as places in OpenMP), existing other levels of scheduling
out of the control of the OpenMP scheduler.

Fortunately, the OpenMP specification provides mechanisms to consider a
single real-time scheduler and so fulfilling the two conditions stated above. On
one hand, the requires directive, which will be introduced in the next OpenMP
specification, version 5.0 [4], allows to specify the features an implementation
must provide in order for the code to compile and execute correctly. This may be
useful to express the minimum number of cores that the target architecture must
provide to guarantee a one-to-one mapping, as required by the system. On the
other hand, OpenMP defines the bind-var internal control variable together with
the proc bind clause, which allow to control the binding of OpenMP threads
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Fig. 7. Real-time system example: LP scheduling and the priority clause. (Color
figure online)

to cores, enabling to define different thread-affinity policies. Finally, the place-
partition-var internal control variable controls the list of places available.

Overall, an OpenMP framework intended to implement a critical real-time
system must obey the following constraints: (a) place-partition-var := cores,
so that each OpenMP place corresponds to a single core; and (b) bind-var :=
close, so that OpenMP threads are consecutively assigned to places (forbidding
threads migration between places). Once OpenMP threads are assigned to cores,
this affinity must not be modified. Therefore, the proc bind clause must be
forbidden or ignored. Moreover, we propose to use the requires directive along
with the ext min cores clause and an integer value, to determine the minimum
number of threads (and so, cores) necessary to correctly execute the system.

4.4 Evaluation of Current OpenMP Implementations

This section evaluates how priorities and preemptions are treated in the OpenMP
runtime implementation provided by GCC 8.1 [28] and Nanos++ [8]. To do so,
we consider the source code presented in Fig. 7a, in which two real-time tasks, T1

and T2, are created, T1 having lower priority than T2. Moreover, T1 includes an
explicit TSP by means of the taskyield construct. Therefore, T1 is divided into
two non-preemptive task parts. Sequential real-time tasks and two threads have
been considered for simplicity. Current OpenMP implementations only support
dynamic allocation and global scheduling.

Critical real-time systems must honor the priority of each task because these
determine preeminence of some tasks over others. Moreover, in the LP strategy,
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low priority tasks are preempted at preemption points (TSPs) in favour of high
priority ones to guarantee that all tasks meet its deadline. Hence, in the example
shown in Fig. 7a, T1 gets first the idle thread as it is created before T2. However,
if T2 is already created (and ready to execute) at the TSP of T1 (line 8), T1 must
be preempted and the thread must be assigned to T2 to honor priorities.

The execution traces4 of three iterations of the source code presented in
Fig. 7a are shown in Fig. 7b, using GCC 8.1, and Fig. 7c, using Nanos++. Green
blocks represent the execution of the code within the single construct (work 01
and work 02 ) in the thread Th 0. Blue blocks represent the execution of T1

(work 11 and work 12 ) in Th 1. Red blocks represent the execution of T2

(work 21 ) in Th 1. The exact expected behavior is observed in Nanos++, since
T2 executes between the two task parts of T1. However, in GCC, T2 executes
after T1 completes, because the preemption point of T1 is not honored: T2 is not
executed as soon possible.

Overall, although current OpenMP runtimes are not ready to support the
development and execution of critical real-time systems, Nanos++ already
implements some of the fundamental features needed by critical real-time sys-
tems. This is not the case of GCC 8.1.

5 Related Work

The performance requirements of advanced embedded critical real-time systems
entails a booming trend to use multi-core, many-core and heterogeneous architec-
tures. As we stated in early sections of this paper, OpenMP has been already con-
sidered to cope with these performance needs [1,21]. In this context, OpenMP has
been analyzed regarding the two features that are mandatory in such restricted
systems: timing analysis and functional safety.

From a timing perspective, there is a significant amount of work considering
the time predictability properties of OpenMP. Despite the fork-join was firstly
considered [22], the tasking model seems to be more suitable given its capabili-
ties to define fine grain, both structured and unstructured parallelism. For this
reason several works [24,35,38,40] studied the OpenMP tasking model and its
similarities with the sporadic DAG scheduling model. However, none of these
works consider a complete real-time system, but a unique non-recurrent real-
time task. The schedulability analysis of a full DAG task-based real-time system
has been addressed for homogeneous architectures under different scheduling
strategies [10,12,19,23,33,34]. Recently, a response-time analysis has been pro-
posed for a DAG task supporting heterogeneous computing [36]: the OpenMP
accelerator model is proposed to address heterogeneous architectures. From a
functional safety perspective, OpenMP is considered as a convenient candidate
to implement real-time systems, although some features and restrictions must
be addressed [29]. Based on the potential of existent correctness techniques for
OpenMP, it could be introduced in safe languages such as Ada [30–32], widely

4 Traces obtained with Extrae and Paraver performance monitoring tools [6,7].
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used to implement safety-critical systems. The Ada Rapporteur Group is consid-
ering the introduction of OpenMP into Ada [26] to exploit fine grain parallelism.

Finally, as embedded systems usually have tight constraints regarding
resources such as memory (e.g., the Kalray MPPA has 2MB shared memory [18]),
different approaches for developing lightweight OpenMP runtime systems [39,41]
coexist. These studies are meant to efficiently support OpenMP in such con-
strained environments. For instance, the memory used at runtime is reduced
when the task dependency graph of the applications is statically derived.

6 Conclusions

OpenMP is a firm candidate to address the performance challenges of critical
real-time systems. However, OpenMP was originally intended for a different pur-
pose than critical real-time systems, for which guaranteeing the correct output is
as important as guaranteeing it within a predefined time budget. In this paper,
we evaluate the use of the OpenMP tasking model to develop and execute the
sporadic DAG-based scheduling model upon which many critical real-time sys-
tems are based on, e.g., IMA and AUTOSAR used in avionics and automotive
respectively. Concretely, we propose the use of a single team of threads to imple-
ment and execute both, concurrent real-time tasks and the parallelism within
them. Two new clauses, event and deadline, are proposed to allow the imple-
mentation of recurrent real-time tasks and FJP and DM schedulers. Moreover,
we analyze some important features already provided in the OpenMP API: the
priority clause and the TSPs. The defined behavior of these two features is not
desirable for critical real-time systems. In both cases, it must be a prescriptive
modifier, instead of a hint (the case of the priority clause) or a possibility
of occurrence (the case of TSPs). In order to implement limited preemptive
scheduling, the most suitable preemptive strategy for OpenMP real-time sys-
tems, it must be guaranteed that, at each preemption point (TSP), if there is a
higher priority task ready, the running task is suspended in favor of the highest
priority task. Overall, correctly addressing all these features in the specification
is of paramount importance to use OpenMP in critical real-time systems.

Nevertheless, some design implications need a deeper analysis and evaluation.
This is the case, for instance, of the event-driven execution model not supported
in OpenMP, which remains as future work.
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40. Vargas, R., Quiñones, E., Marongiu, A.: OpenMP and timing predictability: a
possible union? In: Proceedings of the Design, Automation & Test in Europe Con-
ference & Exhibition (DATE) (2015)

41. Vargas, R.E., Royuela, S., Serrano, M.A., Martorell, X., Quiñones, E.: A
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Abstract. Radio frequency field and particle interaction is of critical
importance in modern synchrotrons. Accelerator Physics Emulation Sys-
tem (APES) is a C++ code written with the purpose of simulating the
particle dynamics in ring-shaped accelerators. During the tracking pro-
cess, the particles interact with each other indirectly through the EM
field excited by the charged particles in the RF cavity. This a hot spot in
the algorithm that takes up roughly 90% of the execution time. We show
how a set of well-known code restructuring and algorithmic changes cou-
pled with advancements in modern compiler technology can bring down
the Ninja gap to provide more than 7x performance improvements. These
changes typically require low programming effort, as compared to the
very high effort in producing Ninja code.

Keywords: APES · RF cavity · Wake field · OpenMP · Xeon PhiTM

1 Introduction

Accelerator design and modeling requires intensive computation capability. The
need for high performance computation rises not only from simulating billions
of particles in the accelerator but also from the dynamics of one particle that
depend on the status of the rest of the particles in a certain spatial and temporal
range. The latter factor is usually referred to as the ‘collective effect’, which pre-
vents the embarrassing parallelization of simulating the motion of large amount
of particles.

In a synchrotron accelerator, radio frequency (RF) cavities are critical parts
which are used in various ways. Although all cavities are designed with a certain
frequency in mind, there will always be some coexisting parasitic modes. Usu-
ally these modes are in higher frequencies, hence we typically call them higher
order modes (HOM). These HOMs could have unwanted, some time destructive
influence on the bunches. Therefore, when designing a synchrotron the HOM
c© Springer Nature Switzerland AG 2018
B. R. de Supinski et al. (Eds.): IWOMP 2018, LNCS 11128, pp. 163–174, 2018.
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property of RF cavities is one of the most important issue scientists need to
address. The way to investigate the problem is to simulate the bunch behavior
under the designed cavity, usually for millions of turns, and see if the bunch life
time is acceptable. A detailed method will be discussed in the next section.

1.1 Longitudinal Beam Dynamics

In this part we will briefly discuss the dynamics of charged particles in a syn-
chrotron. The typical way of dealing with this problem is to treat the cavity and
the ring separately. The RF cavity only updates the momentum of the particles,
and the ring maps the 6D coordinates of all particles into a new set of coordi-
nates. In this paper we only care about the so-called “kick” that the particles
are getting from each mode of the RF cavity, which is the integrated Lorentz
force as shown in Eq. 1,

Δp =
∫ ∞

−∞
F (x, y, t)dt

=
e

c
V sinφ.

(1)

where e is the charge of the particle, c is the speed of light, V is defined as the
voltage of the cavity, and φ is the phase of the mode for the particle. As for the
ring part, we are performing a simple linear mapping as shown in Eq. 2 [2]

xi+1 = xi (cosψx + αx sinψx) + βx sinψx
pxi

pzi

yi+1 = yi (cosψy + αy sinψy) + βy sinψy

pyi

pzi

pxi+1 = −xi
(1 + α2

x)
βx

sinψx pzi + cosψx pxi

pyi+1 = −yi

(1 + α2
y)

βy
sinψy pzi + cosψy pyi

ti+1 = ti + T0η
Δpzi

pz0

(2)

where ti represents the arrival time of the particle at ith turn, xi, yi, pxi, pyi,
and pzi are spacial and momentum coordinates of the particle, α, β, ψ are the
ring parameters, T0 is the revolution time of the bunch, and η is the factor that
links the momentum deviation with the arrival time of the particles. This gives
us the equation we need for the tracking process for the given values of V and φ
for each mode. To get those, we need to do the so called Wake field calculation,
discussed in next part of this section.

1.2 Wake Field in RF Cavity

When a charged particle is passing through an RF cavity, it will excite a certain
amount of EM field, the so called Wake field. The spectrum of the Wake field
is depending on the particle and cavity properties. Any charged particle that
follows the pilot particle will be influenced by the Wake field. Assuming the
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cavity has N different modes, the Wake field will be the linear superposition of
these modes [1]. Namely,

G(t) =
Nmod∑
n=1

V neiωnt (3)

where G is the Wake field generated by the point charge (Green’s Function),
Vn is the amplitude of the nth mode component which depends on the cavity
property, ωn is the angular frequency of the nth mode, and t is the trailing time
between the pilot point charge and the probe particle. Equation 3 only describes
the Wake field generated from a point charge. In reality, most of the particles
will be exposed to the Wake field from all the particles in front of them. As
shown in Eq. 4, the jth particle will be exposed to the Wake field from all the
j − 1 previously arrived particles.

W (tj) =
j−1∑
i=1

G(tj − ti) (4)

where W is the Wake field that is exerted on the j-th particle. Therefore, this
is a causal process that requires information about previous times.

1.3 Data Structures, Algorithms and Challenges

Accelerator Physics Emulation System (APES) [3] is a C++ code that simulates
particle dynamics in ring-shaped accelerators. The core of the APES code is the
implementation of Eqs. 2–4, which calculates the Wake field in the RF cavity,
through which particles interact with the cavity and also with each other, and
updates the phase space coordinates of the particles (integrated Lorentz force).
The top hotspot in the code is the Wake field calculation, which accounts for
90% of the total execution time.

There are two major scaling variables that dominate the execution time of
the code. One is the total number of particles Np (∼1,000,000) in one beam,
and the other is the total number of modes Nmod (∼1,000) in the RF cav-
ity. The main data structures are the six 1D arrays, x, y, t, px, py, and pz,
that store the phase space coordinates of the particles and the six 2D arrays
V xR, V xI, V yR, V yI, V zR, and V zI that store the Wake field exerted on each
particle, with both real and imaginary parts in each direction (Table 1).

The algorithm to calculate the Wake field is straightforward; in the outer
loop, we iterate over all the modes of the cavity, and in the inner loop, we

Table 1. Main data arrays used in the APES code

Name Dimension

x, y, t, px, py, pz 1 ×Np

V xR, V xI, V yR, V yI, V zR, V zI Nmod ×Np



166 T. Xin et al.

iterate over all the particles under each mode in their arrival order to calculate
the Wake field exerted on a particle by summing up the Wake field generated
by all the particles prior to its arrival. The original code is shown in Fig. 1.

Fig. 1. The loops that perform the Wake field calculation in the original APES code.
The outer loop iterates over all the modes in the cavity, and the inner loop iterates
over all the particles under each mode in their arrival time order. The scalar variables
Vbx, Vby and Vbz store the amplitudes of the Wake field in each direction generated
by a single point charge, and the two-dimensional arrays, VxR, VxI, VyR, VyI, VzR,
and VzI, store the real and imaginary parts of the Wake field in each direction in each
mode.

Note that the particles do not arrive at the RF cavity in their index order.
Line 17 in Fig. 1 calculates the particle index (tempID) for the j-th arrival parti-
cle. We can readily see the backward dependency in the inner loop (lines 21–26),
the major challenge we are facing.

2 OpenMP Parallelization

Despite the loop carried dependencies as shown in Fig. 1, we have added the
OpenMP parallel directives (#pragma omp parallel for) to the rest of the major
loops where parallelizations are possible, examples being the loops over the num-
ber of modes (∼1000) for the Wake field calculations and coordinate updates
(outer loop), the loops over the number of particles (∼1,000,000) for the bunch
initialization, etc. In addition, we have also deployed the parallelization from
the algorithms, such as sort and accumulate, from the GNU Parallel library.
Figure 2 (top) shows the thread scaling of this initial OpenMP implementation
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Fig. 2. The OpenMP thread scaling of the APES code before (top) and after (middle)
optimizations on Cori Haswell and KNL nodes. The dotted and solid lines show the
ideal thread scalings on Haswell and KNL nodes, respectively. The horizontal axis
shows the number of threads used, and the vertical axis shows the total runtime of the
APES code with the selected benchmark parameters (N = 1048576, Nmode = 1024,
Nturns = 10). The bottom figure shows the total runtime speedup of the optimized
APES code in comparison with the initial OpenMP implementation. The highlighted
bars in blue (Haswell) and green (KNL) show the results when the number of threads
used equals to the number of cores available on the nodes. (Color figure online)
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of the APES code on the Cori [4] Haswell and KNL nodes (see the next section
for the Cori configuration). The code scales well to the number of available cores
on both Haswell and KNL (see the highlighted bars in blue (Haswell, 32 cores)
and green (KNL, 64 cores out of 68 available)), and reduces the runtime by >15
and >40 times on Haswell and KNL nodes, respectively. Given the fact that the
initial OpenMP implementation is just a straightforward addition of the par-
allel for directive into the code, the performance gain is impressive, confirming
the ease of use of the OpenMP programming model in production codes. Going
beyond this to use the Hyper-Threadings on the nodes, the scaling drops quickly,
although the run time reduces further.

Following the initial OpenMP implementation, we addressed a few top per-
formance issues, which will be described in detail in the next section and is the
main focus of this paper; this achieved a significant performance boost. Figure 2
(bottom) shows the speedup of the optimized code with respect to the initial
OpenMP implementation at a number of thread counts. As shown with the high-
lighted bars (blue for Haswell and green for KNL), we have achieved 3.0 and 7.5
times speedup on Haswell and KNL, respectively, when using all the cores avail-
able on the nodes. Figure 2 (middle) shows the thread scaling of the optimized
APES on Cori. Note that the vertical axis is scaled down 10 fold in Fig. 2. The
thread scaling of the optimized code drops beyond 16 (Haswell) and 32 (KNL)
threads, scaling not as well as the original code. This is mainly due to the loop
carried dependency in the top loop that is neither parallelizable nor vectorizable
and takes similar runtime before and after the optimizations on other parts of
the code. However, the optimal runtime is still achieved when using all the cores
available.

3 Code Optimizations

In this section, we will describe in detail the optimizations we have deployed in
the APES code, including both successful and unsuccessful attempts. Through-
out the optimization process, we heavily relied on the Intel compiler optimiza-
tion reports to identify the performance issues and also to confirm the fixes after
addressing them. We also used Intel VTune [5] and Advisor [6] for some of the
performance analyses. Our benchmark tests were run on Cori [4] at NERSC, a
Cray XC40 system.

3.1 System Configuration and Benchmark Case

Cori has 9688 single-socket KNL (Intel Xeon Phi Processor 7250 (“Knights
Landing”) nodes @1.4 GHz each with 68 cores/272 threads, a 16 GB high band-
width on-package memory (HBM or MCDRAM) (>400 GB/sec) and a 96 GB
DDR4 2400 MHz memory (102 GB/sec). Each core has two 512-bit vector units,
a 64 KB (32 KB instruction, 32 KB data) L1 cache, and shares a 1 MB L2 cache
with the other core on the tile (a tile consists of two cores). The MCDRAM is
configured as a cache (last level) on Cori. In addition to the KNL nodes, Cori



Performance Tuning to Close Ninja Gap for APES 169

has 2388 dual-socket 16-core Intel Xeon Processor E5-2698 v3 (“Haswell”) nodes
@2.3 GHz each with 32 cores (64 threads) and a 128 GB 2133 MHz DDR4 mem-
ory. Each core has two 256-bit vector units, a 64 KB L1 (32 KB instruction cache
and 32 KB data), and a 256 KB L2 cache, sharing a 40-MB L3 cache among
the 16 cores on the socket. Cori nodes are interconnected with Cray’s Aries
network with Dragonfly topology. Cori runs Cray Linux Environment (CLE 6.0
Update 4) and uses SLURM (17.11) as its batch system.

The APES code was compiled with Intel compiler 2018.1.163, and used the
GNU parallel libraries in GCC 7.2.0. We have selected the following parameters
for the benchmark case:

Number of Particles = 1, 048, 576
Number of Modes = 1024

Number of Turns to track = 10

In the following sections, we will focus on the KNL timings only. We ran each
test more than five times, and reported the average time. All of our runs used
64 cores out of the 68 available on a Cori KNL node, which is the recommended
optimal use of the Cori KNL nodes.

3.2 Algorithmic Change to Address Indirect Memory Access

One of the bottlenecks we have identified is the indirect memory access in the
code. The relevant code snippet is shown in Fig. 3. We have modified the algo-
rithm to address this issue. Instead of just sorting the particle indices, we sort
all the coordinate arrays based on the particle arrival time. This is equivalent
to reassigning indices to particles each turn instead of using the pre-assigned
particle indices throughout the tracking process. See Fig. 4 for the correspond-
ing code changes. By doing so, we are able to eliminate the indirect memory
access in the code. Note that we have sacrificed some time in sorting five more
arrays and data rearranging, but the total performance gain from direct memory
access has a much higher overall payoff. Table 2 (row 3) shows the performance
improvement after this issue was addressed, achieving a two times performance
boost in comparison to the initial OpenMP implementation.

3.3 Parallelization of Vector Initialization

In our initial OpenMP implementation, we did not parallelize the initialization
of the Wake field arrays, although they can be easily parallelized. Because the
initialization itself did not take significant time. We identified this issue from the
compiler optimization report, which is especially important for processors with
multiple NUMA domains for improved data locality for each thread. We have
added the “#pragma omp parallel for” before the Wake filed array initialization
loop, as shown in Fig. 5. This small code change has resulted in a large perfor-
mance increase. As shown in Table 2 (row 4) the accumulative performance has
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Fig. 3. This code snippet shows the indirect memory access incurred in the original
APES code. The variable tempID is the index of the particle that arrives j-th at the
cavity. The particles do not arrive in their index order.

Fig. 4. The optimized code in which all six 1D arrays are sorted in the arrival time
order instead of sorting only the particle indices. This eliminates indirect memory
access, bnch.x[tempID], bnch.y[tempID], bnch.px[tempID], bnch.py[tempID], and
bnch.pz[tempID] shown in Fig. 3.

been increased by six times in comparison to the initial OpenMP implementa-
tion. To show the performance impact from each optimization step, in Table 2
column 3, we have shown the performance boost relative to the previous ver-
sion. Initializing the Wake filed in a parallel region has resulted in about 3x
performance boost from the previous version (sorting all six coordinate arrays).

The performance boost appears to be larger than one can usually expect from
the first touch, especially on a KNL node with a single socket. We performed the
VTune advanced hotspot analyses on the two code versions. VTune showed that
when the Wake field was initialized in a parallel region, the master thread had
a significantly reduced serial time (7.5 s vs 60.7 s), accounting for ∼70% of the
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Table 2. APES performance improvement from code optimizations. The first column
shows the optimizations deployed, the second column shows the total runtime of the
APES code, and the third column shows the performance boost relative to the previous
version (to show the performance impact from each optimization step), and the fourth
column shows the cumulative performance boost with respect to the initial OpenMP
implementations of the APES code.

Optimization Total runtime
(sec)

Progressive boost Cumulative
performance boost

Parallelization of outer
loop (initial OpenMP
implementation)

227.02 1.00 1.00

Data rearranging for
direct memory access

111.91 2.03 2.03

Parallelization of vector
initialization

37.33 3.00 6.08

Vectorization of sine and
cosine

30.45 1.23 7.46

Fig. 5. Initializing the Wake field vector in parallel.

Fig. 6. The VTune advanced hotspot summary report for the optimized version that
sorts all six arrays (left) and the version that parallelizes the Wake field initialization
in addition to sorting all six arrays (right). This section reports the serial execution
time of the master thread. When the Wake filed is initialized in a parallel version, the
serial time is significantly reduced.

performance improvement. Since the Wake field initialization invokes the C++
vector resize function, the performance impact from the first touch for the Wake
field initialization seems to be more complicated than just initializing arrays
with scalar values (Fig. 6).
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3.4 Vectorization of Elementary Functions

Another performance issue that we have identified is the repeated invocations of
the elementary functions such as sine and cosine in the inner loops. The inner
loop in Fig. 1 (line 15–31) is one such example. Since the loop iterates over
millions of particles, the time spent computing sine and cosine functions was
significant. In addition, due to the loop carried dependencies, this loop was (and
still is) not vectorizable. As a result, all the sine and cosine invocations were not
able to use their vector versions, as shown in the compiler optimization report.
We have separated the sine and cosine calculations from the rest of the loop body,
and have added the SIMD pragma to vectorize these function calls. We have
confirmed the vectorization of these functions from the compiler optimization
report after the code change as well. The change to the code is rather small, as
shown in Fig. 7. See Table 2 (row 5) for the performance improvement after this
change. The accumulative performance increase was about 7.5 times the initial
OpenMP implementation.

Fig. 7. The vectorized sine and cosine invocations in the optimized code.

3.5 Nested Parallel Sections

As we have mentioned previously, one of the major performance bottlenecks in
the APES code is the loop carried dependencies incurred in the inner loop, which
are neither parallelizable nor vectorizable (see Fig. 1). Therefore, the OpenMP
parallel has been deployed in the outer for loop, although it has a much smaller
trip count (∼1000) in comparison to the inner loop (∼1,000,000). Nonetheless,
we have identified that the OpenMP parallel sections can be deployed to spread
the work load of the inner loop to multiple threads. The changed code is shown
in Fig. 8. Since the outer loop is already parallelized, these parallel sections
have to run in a nested fashion. Unfortunately, this change did not produce any
observable performance improvement.
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Fig. 8. Parallelization of the inner loop with the OpenMP parallel sections.

3.6 Outer Loop Vectorizations

Considering the fact that the inner loops have trip counts thousands of times
larger than the outer loop, another approach we have tried is to vectorize the
outer loops from the beginning, and parallelize the inner loop. Of course, this
involves transposition of the data arrays, but it only has to be done once at the
beginning of the code. We were able to confirm from the compiler optimization
report that the outer loop was indeed vectorized. Unfortunately, this optimiza-
tion didn’t result in a performance increase because of the complexity of the
inner loop.

3.7 Other Optimization Efforts

The loop carried dependency remains the major performance issue in APES. We
have attempted to use the exclusive and inclusive scans available from the Intel
Parallel library (PSTL) and also part of the OpenMP 5.0 specification [7] to
parallelize the inner loop body. The exclusive scan works only with the following
form of the dependency,

B[j] = A[0] + A[1] + ... + A[j − 1] (5)

This appears to be quite similar to the backward dependency in the APES
code, but unfortunately, we were not able to use it in APES because its depen-
dent arrays have complicated scaling factors that fail to fit in the format in
Eq. 5. It would be very helpful if exclusive/inclusive scans could be extended to
support more general forms of the loop carried dependencies in the future.

We have also tried the compiler prefetch and unroll optimizations, experi-
menting with the levels of prefetch and unroll. Unfortunately, they did not make
observable performance differences either.

4 Conclusion

In this paper, we have described how a set of well-known code restructuring and
algorithmic changes coupled with advancements in modern compiler technology
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can bring down the Ninja gap to provide >7 times performance improvements.
Specifically, we have restructured the code and modified algorithms to elimi-
nate the indirect memory access incurred in the large loops (∼1,000,000,000 trip
counts in total). As a result, we have achieved a 2x performance improvement in
comparison to the initial OpenMP implementation. Next, we have initialized the
main arrays in parallel regions, which significantly reduces the serial execution
time, improving the data locality for threads. We have achieved about a 6x per-
formance improvement cumulatively (combined with the previous optimization).
Moreover, we have moved the frequent invocations of the elementary functions
(sine and cosine) out of the inner loop, which is neither parallelizable nor vec-
torizable. By doing so, we were able to vectorize the sine and cosine function
calculations. We have achieved an overall performance improvement of over 7x.

The loop carried dependency in the inner loop still remains the major perfor-
mance bottleneck. Although we have tried a few optimization approaches, such
as nested parallel sections, prefetch and unroll compiler optimizations, none of
them could effectively address this backward dependency issue in APES. The
exclusive and inclusive scans in the OpenMP 5.0 specification looked promising;
however, until they support more general forms of the data dependencies, APES
would not be able to make use of them.

For future work, we will look into adopting MPI in the code, mainly to mit-
igate the memory bandwidth pressure of the code. APES is memory bandwidth
bound code per the Roofline report from Intel Advisor. Distributing data to
multiple nodes may help mitigate this issue, with the performance benefiting
more from the MCDRAM as well.
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Abstract. With the introduction of task dependences, the OpenMP
API considerably extended the expressiveness of its task-based paral-
lel programming model. With task dependences, programmers no longer
have to rely on global synchronization mechanisms like task barriers.
Instead they can locally synchronize a restricted subset of generated
tasks by expressing an execution order through the depend clause. With
the OpenMP tools interface of Technical Report 6 of the OpenMP API
specification, it becomes possible to monitor task creation and execution
along with the corresponding dependence information of these tasks.
We use this information to construct a Task Dependence Graph (TDG)
for the Flow Graph Analyzer (FGA) tool of IntelR© Advisor. The TDG
representation is used in FGA for deriving metrics and performance pre-
diction and analysis of task-based OpenMP codes. We apply the FGA
tool to two sample application kernels and expose issues in their usage
of OpenMP tasks.

1 Introduction

The OpenMP API 4.0 specification introduced the depend clause to express data
dependences between tasks. Using depend clauses, developers can create com-
plex dependence patterns that improve performance by expressing parallelism
at a finer granularity, exposing more parallelism and reducing the need for less
discriminating synchronization constructs like barriers. However, it can be chal-
lenging for developers to understand the ordering constraints they have created,
making correctness and performance debugging difficult.

Computational graphs, such as Task Dependency Graphs (TDG), are not
unique to OpenMP, in fact they have been increasingly adopted as a way for mod-
ern software to express applications that operate on streaming data. The Thread-
ing Building Blocks (TBB) flow graph API [7], Microsoft’s Asynchronous Agents
c© Springer Nature Switzerland AG 2018
B. R. de Supinski et al. (Eds.): IWOMP 2018, LNCS 11128, pp. 175–188, 2018.
https://doi.org/10.1007/978-3-319-98521-3_12
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Library [11] and TPL Dataflow [12], as well as OpenCL* [8] or OpenVX* [9] from
the Khronos* group are examples of libraries that expose an API for explicitly
creating computational graphs. Some of these libraries have graphical tools to
support the design and analysis of these computational graphs. In particular,
Intel R© Advisor Flow Graph Analyzer (FGA) is a tool that provides powerful
features for the design and analysis of computational graphs created using the
TBB flow graph API.

In this paper, we describe an OMPT-based [15] tracing tool that generates
data to be imported to the FGA tool for analysis. Using this OMPT tool and
FGA, we analyze two sample applications to show that this tool, although orig-
inally designed for the analysis of data flow graphs, provides useful correctness
and performance capabilities for analyzing OpenMP task-based applications.
FGA helps answer the following important questions:

1. What is the structure of the TDG created by the depend clauses?
(a) If developers have a mental model for the graph, they can see if they have

correctly expressed the constraints.
(b) If developers do not have a mental model, the provided structure can help

to develop one.
2. What is the total work (Tw) and critical path length (Tc) in the graph (to

provide an ideal upper bound on scaling)?
3. Given the execution trace on a real parallel system, does the application

achieve parallelism close to the predicted ideal performance?
4. If the achieved performance does not match, what is limiting performance?

(a) What are the bottlenecks to focus on?
(b) What patterns in the graph cause low concurrency during execution?
(c) How do these patterns map to the task constructs in source code?

The paper is structured as follows. We discuss related work in Sect. 2 and then
introduce the existing environment for the proposed FGA extension in Sect. 3.
Section 4 describes how the OMPT interface was used to create the TDG for the
Flow Graph Analyzer tool. We present case studies of two example applications
in Sect. 5. Section 6 concludes the paper and presents opportunities for future
work.

2 Related Work

Several tools are targeted at the visualization of dependences in task based pro-
gramming models. Temanejo [3] is a debugger for task-parallel programming,
which includes visualization of task graphs. It supports SMPs, OmpSs, StarPu,
PaRSEC and OpenMP. Unlike FGA however, Temanejo is primarily oriented
towards debugging and not performance optimization. Tareador includes a task
graph visualizer specifically designed for OmpSs [5] with the initial goal to visu-
alize parallelization strategies. Intel R© Advisor’s Flow Graph Analyzer (FGA) [1]
is a tool for the design and analysis of task-based applications that use depen-
dences and data flow graphs. We describe the features of FGA in more detail in
Sect. 3.
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Besides these tools that specifically target visualization of task graphs, HPC-
Toolkit [2] is a collection of tools that support analysis of application perfor-
mance. The tool suite mainly focuses on a timeline view of the execution of
tasks and displays dependences through edges between tasks. FGA provides a
graph topology canvas that highlights the graph structure and is synchronized
with other views, including a timeline view. Like our proposed extensions to
FGA, the HPCToolkit also uses the OMPT interface to retrieve OpenMP con-
text information from the OpenMP implementation executing an application.

Ghane et al. [6] use the OMPT interface to detect false-sharing in multi-
threaded code, to identify OpenMP regions, and to correlate events from the
processors with OpenMP code. In [10], the OpenMP tools interface is applied to
measure performance data of heterogeneous programs that utilize the OpenMP
target directives to offload computation from the host to accelerator devices.
While [6,10] also rely on the OMPT interfaces, our approach solely focuses on
task dependencies and thus is orthogonal to these other usages of OMPT.

The work of [16] focuses on task execution performance by investigating
memory-access issues as they emerge in machines that contain non-uniform mem-
ory. This is in contrast to algorithmic performance issues that arise from task
dependences and that are analyzed by FGA, and relates to how tasks are mapped
to the underlying machine structure once they are ready for execution after all
dependences have been satisfied.

3 Prerequisites

In this section, we review the existing software environment used as the founda-
tion of the FGA extension proposed in this paper. We first provide an introduc-
tion to OpenMP task dependences and then review the OpenMP tools interface
as specified in Technical Report 6 of the OpenMP API specification. The section
closes with a brief review of the capabilities of the Flow Graph Analyzer tool.

3.1 OpenMP Task Dependencies

The OpenMP API supports task-based programming since the introduction of
version 3.0 [13] of the specification. Supporting many forms of irregular paral-
lelisms, OpenMP tasks considerably extended OpenMP’s capabilities for parallel
programming beyond the more traditional worksharing constructs. Augmenting
a block of code with the task construct indicates that the OpenMP implemen-
tation is free to concurrently execute that code block with some other code.

Version 4.0 [14] of the OpenMP API extended the syntax of the task con-
struct by adding the depend clause to model dependences between a set of tasks.
Task dependences can be used to locally synchronize the tasks and to avoid more
expensive synchronization mechanisms. Without dependences programmers have
to rely on taskwait, taskgroup, or barrier constructs to ensure that a subset
of tasks has completed execution before another is scheduled for execution. Any
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1 void task deps ( ) {
2 i n t a , b , c , d ;
3 #pragma omp task depend ( out : a , b ) // T1
4 a = b = 0 ;
5
6 #pragma omp task depend ( in : a ) \
7 depend ( out : c ) // T2
8 c = computation 1 ( a ) ;
9

10 #pragma omp task depend ( in : b ) \
11 depend ( out : d ) // T3
12 d = computation 2 (b) ;
13
14 #pragma omp task depend ( in : c , d ) // T4
15 computation 3 ( c , d ) ;
16 }

T1

T2 T3

T4

a b

c d

Fig. 1. Example code with OpenMP tasks and resulting task dependence graph.

of the three constructs may synchronize a too big of a task subset and thus
overly limits the OpenMP implementation in its scheduling abilities.

Task dependences are based on the depend clause that is accepted by the
task and target construct of OpenMP:

#pragma omp task depend(type: list-items)

The type part of the clause can be one of in, out, or inout, with inout being
a combination of in and out. The list-items are either a variable (e.g., a) or a
array section (e.g., a[0:99]). If array sections are used, then the OpenMP specifi-
cation requires that the array sections completely overlap to define a dependence
or are disjoint if there is no dependence. An in dependence defines that a task’s
execution depends on the out dependence of previously a generated sibling task,
if a subset of the tasks’ list-items appear in both depend clauses.

Figure 1 shows a simple example of four tasks T1–T4 with flow dependences
and the resulting task dependence graph (TDG). Task T1 defines an out depen-
dence for a and b. T2 shares with T1 variable a in its list of in dependences; T3
depends on T1 because of variable b. The last task, T4, depends on the execution
of T2 and T3, as it defines in dependences for the list items that appear in the
out depend clause of T2 and T3.

Through the proper combination of in and out dependence types, OpenMP
programmers can model flow, anti, and output dependences between tasks that
are created by the program.

3.2 OpenMP Tools Interface (OMPT)

Technical Report 6 (TR6) of the OpenMP specification [15] defines a tools inter-
face to infer the OpenMP context for performance and debugging purposes.
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Fig. 2. The IntelR© Advisor – Flow Graph Analyzer GUI. (Color figure online)

An OMPT tool dynamically links into the application process at link time or
execution time and then receives callbacks for OpenMP events while the appli-
cation executes. The events include callbacks to monitor task execution and task
dependences. We discuss our use of the OMPT interface in more detail in Sect. 4.

3.3 Overview of Intel R© Advisor – Flow Graph Analyzer (FGA)

The Flow Graph Analyzer (FGA) feature in Intel R© Parallel Studio XE 2018
was conceived and primarily developed to support the design, debugging, visu-
alization, and analysis of graphs built using the Threading Building Blocks flow
graph API. However, many of the capabilities of FGA are generically useful
for analyzing computational graphs, regardless of their origin. In this paper, we
focus on FGA’s analysis capabilities only and ignore its design features.

The analysis of graphs in FGA can be reduced to the following steps, as
highlighted by the numbered circles in Fig. 2: (1) inspect the tree-map view for
an overview of the graph performance and use this as an index into the graph
topology display, (2) adjust how the graph is displayed on screen using one of
the layout algorithms, (3) examine the timeline and concurrency data for insight
into performance over time, and (4) run the critical path algorithm to determine
the critical path of the computation.

The tree-map view labeled as (1) in Fig. 2 provides an overview of the overall
health of a graph and provides two kinds of information: the aggregate CPU time
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per node and the average concurrency observed while a node is executing in the
graph. In the tree map, the area of each rectangle represents the total aggregate
CPU time of the node and the color of each square indicates the concurrency
observed during the execution of the node. The concurrency information is cat-
egorized as poor (red), ok (orange), good (green), and oversubscribed (blue).
Nodes with a large area and marked as “poor” are hotspots and have an average
concurrency between 0% and 25% of the hardware concurrency and are there-
fore good candidates for optimization. The tree-map view also serves as an index
into a large graph; clicking on a square will highlight the node in the graph and
selecting this highlighted node will in turn mark tasks from all instances of this
node in the timeline trace view.

The graph topology canvas, labeled as (2) in Fig. 2, shows the graph structure,
and supports scroll and zoom features. This view is synchronized with other
views in the tool. Selecting a node in the tree-map view, the timeline, or in a
data analytics report will highlight the node in the canvas. This lets users quickly
relate performance data to the graph structure.

The timeline and concurrency view labeled as (3) in Fig. 2 displays the raw
traces in swim lanes mapped to software threads. Using this trace information,
FGA computes additional derived data such as the average concurrency of each
node and the concurrency histogram over time for the graph execution. Above
the per-thread swim lanes, a histogram shows how many nodes are active at
that point in time. This view lets users quickly identify time regions with low
concurrency. Clicking on nodes in the timelines during these regions of low con-
currency, lets developers find the structures in their graph that lead to serial
bottlenecks or limited concurrency.

One of the most important analytic reports provided by FGA is the list of
critical paths in a graph. This feature is particularly useful when one has to
analyze a large and complex graph. Computing the critical paths results in a
list of nodes that form the critical paths as shown in the region labeled (4) in
Fig. 2. An upper bound on speedup can be quickly computed by dividing the
aggregate total time spent by all nodes by the time spent on the longest critical
path, Tw/Tc. This upper bound can be used to set expectations on the potential
speedup for an application expressed as a graph.

4 Tracing and Visualizing OpenMP Task Dependences

To gather information about task execution for FGA we use the OMPT inter-
face to intercept two events. The event ompt callback task schedule monitors
the begin and end timestamps for each executed OpenMP task and the event
ompt callback task dependences records the storage location of items listed
in the depend clauses of the generated tasks.

These events are then used to create the input for FGA that consists of two
parts: (1) a graph to display and (2) the trace of task executions. The graph
we build represents the partial order imposed by the depend clauses for the
set of OpenMP tasks executed by the application, with the nodes representing
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Fig. 3. Examples of included and removed edges in the TDG.

OpenMP tasks and the edges representing the partial order. To reduce complex-
ity of the graph, we omit some transitive dependences (see Fig. 3). In the figure,
we denote that a node a must execute before a node b in the partial order due
to a dependence on location x as a <x b.

Figure 3(a) shows an example that only includes dependences due to a single
location x. Because a <x b and b <x d, we remove the transitive edge a <x d.
Figure 3(b) shows a case where two locations are involved in determining the
partial order, x and y. In this case there are two potential dependence edges
from a to d : a <x d and a <y d. We include an edge from a to d since a is
the direct source of y for d. It should be noted that if there are parallel edges
between two nodes and at least one of them can be omitted due to transitivity,
they all can be omitted without changing the partial order. Even so, we include
edges like a <y d in the graph-topology because we believe including edges to
satisfy all required data dependences is the most natural representation.

The main components of the FGA display described in Sect. 3.3 include
the tree-map view, the graph-topology canvas, the timeline and concurrency-
histogram view, and the critical-path report. The OpenMP task traces map nat-
urally to these views. The tree-map view shows the time spent in each OpenMP
task, colored according to the average application concurrency during the time
it was executing. The graph topology canvas shows the partial ordering of the
tasks, as described in the previous section. The timeline and concurrency his-
togram view show the execution of each task on the OpenMP runtime threads
and the application concurrency over time. And the critical path report shows
the most time consuming path from each source to each sink in the graph, sorted
with the longest critical path at the top.

5 Case Studies

This section demonstrates the visualization and analysis of two application ker-
nels with task dependencies. We use the Synch p2p kernel from the Parallel
Research Kernels [4] and the Cholesky application from the KaStORS bench-
marks suite [17]. We run the applications on an Intel R© Xeon R© 6140 processor
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Fig. 4. TDG of the Synch p2p kernel in FGA. (Color figure online)

with microcode security patches for Spectre/Meltdown. The software environ-
ment consists of Linux* SLES12 4.4 and Intel R© Composer XE for C/C++,
version 18.0.0.128.

We perform the following analysis steps with both applications: (1) we use
the concurrency histogram and tree map to determine the degree of parallelism
achieved, and the timeline view to see allocation of tasks to threads. (2) we
analyze the critical path in the TDG to find the lower bound of execution time
and (3) we inspect the TDG to find transitive dependences and task execution
issues.

5.1 Synch p2p

We ran the Synch p2p kernel using the settings KMP HW SUBSET=1s,18c,1t and
KMP AFFINITY=granularity=fine,compact; the matrix size was set to 4000 and
the tile size to 1000. Figure 4 shows the resulting TDG1, while the corresponding
code is shown in Fig. 5.

The tree map and concurrency histogram shown in red color in Fig. 4 indi-
cates that with this tile and matrix size, we are able to exploit only a limited
degree of parallelism. The critical path of the task graph is highlighted in pink
in Fig. 6. The latency for the critical path is computed by FGA to be 8.14 msec
and the aggregate CPU time for all of the tasks is 18.72 msec. Evaluating Tw/Tc

1 For improved contrast and readability of the dependence graphs, we have modified
the FGA tool to use white background instead of the standard gray color for this
paper.
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1 p i p e l i n e t ime = prk wtime ( ) ;
2 i n t l i c = (m/mc−1) ∗ mc + 1 ;
3 i n t l j c = (n/nc−1) ∗ nc + 1 ;
4 f o r ( i n t i t e r = 0 ; i t e r<=i t e r a t i o n s ; i t e r++) {
5 f o r ( i n t i =1; i<m; i+=mc) {
6 f o r ( i n t j =1; j<n ; j+=nc ) {
7 #pragma omp task depend ( in : g r i d [ 0 ] , g r i d [ ( i−mc) ∗n+j ] ,\

i[dirg8 ∗n+(j−nc ) ] ,\
i([dirg9 −mc) ∗n+(j−nc ) ] ) \

10 depend ( out : g r id [ i ∗n+j ] )
11 sw e ep t i l e ( i , MIN(m, i+mc) , j , \

;)dirg,n,)cn+j,n(NIM21
13 }
14 }
15 #pragma omp task depend ( in : g r i d [ ( l i c −1)∗n+( l j c ) ] ) \
16 depend ( out : g r id [ 0 ] )
17 g r id [ 0∗n+0] = −g r id [ (m−1)∗n+(n−1) ] ;
18 }
19 #pragma omp taskwait

20 p i p e l i n e t ime = prk wtime ( ) − p i p e l i n e t ime ;

Fig. 5. OpenMP task dependencies in Synch p2p.

Fig. 6. Critical Path of the Synch p2p TDG. (Color figure online)

Fig. 7. Transitive edges and barrier node in the TDG of Synch p2p. (Color figure
online)



184 V. Agrawal et al.

1 p i p e l i n e t ime = prk wtime ( ) ;
2 f o r ( i n t i t e r = 0 ; i t e r<=i t e r a t i o n s ; i t e r++) {
3 f o r ( i n t i =1; i<m; i+=mc) {
4 f o r ( i n t j =1; j<n ; j+=nc ) {
5 #pragma omp task depend ( in : g r i d [ 0 ] , g r i d [ ( i−mc) ∗n+j ] ,\

i[dirg6 ∗n+(j−nc ) ] ) ,\
7 depend ( out : g r id [ i ∗n+j ] )
8 sw e ep t i l e ( i , MIN(m, i+mc) , j , \

;)dirg,n,)cn+j,n(NIM9
10 }
11 }
12 #pragma omp taskwait

13 g r id [ 0∗n+0] = −g r id [ (m−1)∗n+(n−1) ] ;
14 }
15 p i p e l i n e t ime = prk wtime ( ) − p i p e l i n e t ime ;

Fig. 8. Optimized Synch p2p code.

confirms that the speedup is limited to at most 2.30x for this graph. To introduce
more parallelism, we reduced the tile size to 500, shrinking the critical path to
4.1 msec and increasing the potential speedup to 4.34x. Repeating this for dif-
ferent tile sizes, we found the best performance with a tile size 100 for a matrix
size of 4000.

A closer investigation of the task graph reveals the following observations
(see Fig. 7) in the structure of the graph. First, all nodes left of n17 (red circle
in Fig. 7) have a dependence to n17, which in turn also has dependences to all
nodes to the right. Thus, this node effectively constitutes a barrier between tasks
on the left side and right side of the task graph. As in this example all tasks of
the kernel are sibling tasks with the same parent task, a more efficient approach
is to use a taskwait construct instead of the barrier task and execute the code
of the former task in its parent task. This saves the OpenMP implementation
from the bookkeeping overhead to keep track of the task dependences to and
from the barrier node.

Second, there are transitive dependences marked with a blue ellipses in Fig. 7,
e.g., from node n1 to n6. These edges correspond to the type of dependences
highlighted in Fig. 3(b). They do not affect the partial execution order of indi-
vidual tasks, but incur overhead due to the registration of the dependence with
the OpenMP implementation’s internal task-execution state. In the example,
node n6 has to be scheduled after n5, which has to execute after n1. We can
remove these transitive dependences by specializing the task directives of Fig. 5.
We should note that while our kernel retains the same partial ordering of tasks,
the source code may be less readable now since we have elided some (redundant)
data dependences.

The resulting code with the optimizations applied is shown in Fig. 8. We
have removed the task construct in line 15 (see Fig. 5) and moved the taskwait
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Fig. 9. Performance gain for Synch p2p after the optimization.

construct from line 19 to 15. We also removed the transitive dependence by
removing the corresponding depend clause if it generates such transitive depen-
dences. Figure 9 shows an improved performance of about 100 MFLOPS for
different matrix sizes as a result of these optimizations.

5.2 Cholesky

We ran the Cholesky kernel on the same machine used for the previous case study
with the settings KMP HW SUBSET=1s,18c,1t; the matrix size was set to 2048 with
a block size of 512. The kernel has been highly optimized by the benchmark
authors by carefully adding task dependences to yield a better performance
than tasking that uses coarser-grained synchronization. Even so, we traced the
application and loaded the trace into FGA as shown in Fig. 10.

Again, we started with a large tile size and so the concurrency histogram
and tree-map view shown in the Fig. 10 shows limited concurrency. Iteratively
we decreased the tile size to introduce more parallelism until we arrived at a
best tile size of 128, which provided a 4.8x improvement in the GFLOPS rate
over the initial block size of 512. As in the previous case study, we inspected the
TDG for redundant or transitive edges, but in this case were not able to detect
any patterns that would unnecessarily inhibit performance.

While we were not able to improve the performance of the Cholesky kernel
using the FGA tool, we were able to confirm that the dependence structure was
properly implemented and we were able to arrive at a tile size that did not limit
performance by restricting parallelism.
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Fig. 10. Trace data of Cholesky in FGA.

6 Conclusion and Future Work

In this paper, we have shown how the OMPT interface of TR6 of the OpenMP
API specification can be used to create a task dependency graph for the FGA
tool. With the depend clause, programmers are able to impose an ordering on the
execution of OpenMP tasks. While this provides a more fine-grained task syn-
chronization mechanism, it gives rise to potential issues that may harm parallel
execution and thus parallel performance. We used this graph as the founda-
tion of an analysis of two sample applications and were able to expose several
performance-related tasking issues.

When removing transitive dependences, we found that the set of depend
clauses for the task construct may need to be specialized for some combinations
of values of loop counters or other conditions. TR6 of the OpenMP API speci-
fication already defines multi-dependences through the iteration-definition that
can be added to a depend clause. A natural extension would be an if condi-
tion that ignores a depend clause if the if condition evaluates to false. We are
planning to bring a corresponding proposal forward with the OpenMP language
committee.

There are a number of directions we plan to investigate for the FGA sup-
port for OpenMP tasks. FGA could categorize edges through coloring or labels
to communicate dependence types and storage locations. The FGA tool could
automatically expose transitive depend clauses to help remove these additional
dependences that may incur bookkeeping overheads in the OpenMP implemen-
tation without providing new constraints on the partial order of the task execu-
tion. The tool could also help to identify opportunities when a taskwait direc-
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tive may be more efficient than using a barrier task with many dependencies to
previously generated tasks. We intend to show relation between edges and task
depend clauses or variables in the OpenMP source code. We also plan to make
the display and analysis of very large graphs simpler by automatically creat-
ing subgraphs that capture iterations or repeating patterns, collapsing these to
create a smaller number of nodes at the top-level of the display.
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Abstract. DataRaceBench is a benchmark suite designed to systemati-
cally and quantitatively evaluate the effectiveness of data race detection
tools. Its initial release in 2017 contained 72 C99 microbenchmarks with
and without data races and was successfully used to evaluate several
popular data race detection tools.

In this paper, we describe a novel semantics-driven approach to
improving DataRaceBench’s OpenMP standard coverage. Based on a
traditional definition of data races, we define several semantic categories
for parallelism, data-sharing attributes, and synchronization. This allows
us to assign semantic labels to constructs, clauses and data-sharing rules
in the OpenMP 4.5 specification. Based on these labels we then analyze
the coverage of the initial release of DataRaceBench and add 44 new C
and C++ microbenchmarks to improve the OpenMP standard coverage.
Finally, we re-evaluate two popular data race detection tools with the
new microbenchmarks, and show that the new version of DataRaceBench
gives new insights about the selected tools.

1 Introduction

Benchmarks are widely used in many research communities to measure and assess
research and development results in a common, reproducible and systematic
way. Good benchmarks help a community clarify problems to be solved, build
common evaluation metrics, guide future development, and foster collaborations.
For example, the SPEC (Standard Performance Evaluation Corporation) [1] and
LINPACK [8] play important roles in the high performance computing (HPC)
community for performance improvements.

In the HPC community, data race bugs are notoriously damaging while
extremely difficult to detect. We have developed a dedicated OpenMP bench-
mark suite, DataRaceBench [9], to help systematically and quantitatively eval-
uate data race detection tools for their strengths and limitations. The initial
release in 2017, version 1.0.1 of DataRaceBench, included a set of OpenMP
microbenchmarks with and without data races. It contained 72 C99 microbench-
marks and was used to generate detailed accuracy reports for four popular data
race detection tools [2,3,5,6].
This is a U.S. government work and not under copyright protection
in the U.S.; foreign copyright protection may apply 2018
B. R. de Supinski et al. (Eds.): IWOMP 2018, LNCS 11128, pp. 189–202, 2018.
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In this paper, we present a novel semantics-driven approach to analyzing
and improving the OpenMP standard coverage of DataRaceBench by examin-
ing semantics of a data race. This process involves categorizing semantic cate-
gories related to data races, identifying and labeling OpenMP constructs, clauses
and data-sharing attribute rules related to these semantic categories, analyzing
coverage of existing microbenchmarks with respect to the semantic labels, and
finally adding new microbenchmarks to improve coverage. Using this approach,
we have added 44 new C and C++ microbenchmarks to DataRaceBench v1.2.0.
We used the new version of DataRaceBench to re-evaluate two popular data race
detection tools and discovered new insights.

The remainder of this paper is organized as follows. Section 2 gives an
overview of the original DataRaceBench. Section 3 describes semantic analysis
of data races and how we generate semantic labels for the OpenMP 4.5 speci-
fication. Coverage analysis and improvements are described in Sect. 4. Section 5
shows evaluation results. Section 6 presents the conclusion and future work.

2 Original DataRaceBench

DataRaceBench is a dedicated OpenMP benchmark suite to evaluate data race
detection tools. The goal of this benchmark suite is two-fold: (1) to capture the
requirements related to data race detection in OpenMP programs, and (2) to
assess the status of current data race detection tools.

As shown in Fig. 1, the initial release (v.1.0.1) of DataRaceBench contains
72 microbenchmarks written in C99. There are 40 microbenchmarks with known
data races. They are called race-yes programs. The other 32 microbenchmarks
are called race-no programs which are data race free. To enable scalable exper-
iments, some race-yes programs use C99 variable-length arrays to allow user-
specified input sizes as command line options.

Two scripts are also provided to run the benchmark suite and generate
reports.

Several design guidelines are followed when creating microbenchmarks for
DataRaceBench. The guidelines include:

– Each microbenchmark should be as small as possible to represent a pattern
with and without data race. For example, there are programs demonstrating
the use of one or more OpenMP constructs or a common parallel computing
pattern (for example, reduction, stencil, indirect array accesses, etc.).

– Each microbenchmark program has a main function to support dynamic data
race detection.

– We pair up race-yes programs with race-no programs, when possible.
– If possible, a race-yes program should only contain a single pair of source

locations that cause data races. For static tools, this is used to check if they
can catch the right number of location pairs causing data races. For dynamic
tools, we can check if the tool consolidates multiple runtime data races caused
by the same pair of source code locations, into one data race.
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DataRaceBench
v 1.0.1

72 Microbenchmarks 2 Scripts

40 Race-Yes 
Programs

32 Race-No 
Programs

24 Fixed-length 16 Variable-length

Fig. 1. Overview of initially released DataRaceBench Version 1.0.1

Figures 2 and 3 show a pair of race-yes and race-no programs included in
DataRaceBench. The first program has a pair of source code locations (two
references to variable x at line 5) which will trigger data races. The reason is
that there is loop-carried output dependence caused by the writes to the shared
variable x within a parallel region. The second program fixes the data race bug
by introducing a data-sharing clause, lastprivate, to make the accesses to x
private within the region and copy its local value within the last iteration to its
corresponding original variable after the end of the region.

// . . .
int i , x ;
#pragma omp paral le l for
for ( i =0; i <100; i++)
{ x=i ; }
p r i n t f ( ”x=%d” , x ) ;

Fig. 2. Race-yes example

// . . .
int i , x ;
#pragma omp paral le l for lastprivate ( x )
for ( i =0; i <100; i++)
{ x=i ; }
p r i n t f ( ”x=%d” , x ) ;

Fig. 3. Race-no example

Using a data race detection tool to analyze a microbenchmark of
DataRaceBench will generate several possible results. If the analysis tool detects
an existing data race it is called a true-positive (TP). If the tool reports a data
race for a given program, but de-facto the data race does not exist, it is called
a false-positive (FP) analysis result. Similarly, we can have true-negative (TN)
and false-negative (FN) results. With the numbers of positives and negatives
reported by the tool, several standard metrics, including precision (P), recall (R)
and accuracy (A), can be calculated. They are defined as follows: P = TP/(TP+
FP ), R = TP/(TP +FN), and A = (TP +TN)/(TP +FP +TN +FN). More
details of DataRaceBench can be found in a previous paper [9].
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3 Semantic Analysis of Data Races

In order to discover what should be included in DataRaceBench, we study the
semantics of a traditional definition [13] of data races, i.e., “A data race can
occur when two concurrent threads access a shared variable and when at least
one access is a write, and the threads use no explicit mechanism to prevent the
accesses from being simultaneous.” Based on this definition, the occurrence of
a data race depends on satisfying conditions related to at least five kinds of
semantics: parallel (or concurrent), shared, variable, read/write access, and syn-
chronization. As a preliminary study, we only focus on parallel, shared and syn-
chronization semantics and examine the relevant C/C++ OpenMP constructs,
clauses, and data-sharing attribute rules defined in the latest OpenMP 4.5 spec-
ification.

3.1 Parallel Semantics

We define the parallel semantics as the information indicating if a code region
will be executed concurrently or not. Based on this definition, we categorize 26
directives (including their combined variants) specified in OpenMP 4.5 into this
semantic category. They include parallel, for, sections, single, master, simd,
for simd, task, taskloop, taskloop simd, parallel for, parallel sections,
target parallel, target teams and so on. For example, the sections construct
contains a set of structured blocks that are to be distributed among and executed
by the threads in a team. It implies concurrent execution. Similarly, the taskloop
construct specifies loop iterations will be executed in parallel using OpenMP
tasks. Its semantics literally has the word of parallel. Yet another example is
the master construct, which specifies a structured block that is executed by
the master thread of the team. It indicates the region will not be executed
concurrently, but by a single thread. Some clauses are also related to parallel
semantics. They include if, num threads, collapse and num teams.

To facilitate coverage analysis, we assign a semantic label (SID) for each rel-
evant directive or clause. The directives related to parallel semantics are labeled
as PD01 through PD26. The clauses are labeled as PC01 through PC04.

3.2 Shared Semantics

We define shared semantics as any information describing if a variable is visible
and accessible by multiple threads or not. OpenMP 4.5 uses an entire subsection
(Sec. 2.15) to describe its data environment, including data-sharing attribute
rules and clauses (Sec. 2.15.1). The high-level logic flow of the subsection is
shown in Fig. 4. The decision about a variable’s data-sharing attribute starts
with a question (D1) about if a variable is referenced in some eligible OpenMP
regions (dynamic instances of OpenMP code blocks) including target, teams,
parallel, simd, task generating (task, taskloop) and worksharing (for, sec-
tions, single, and workshare). Only a variable referenced in some regions is
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interesting and checked against the second question (D2): Is the variable refer-
enced in a construct (the lexical extent of an executable directive1)? If the answer
is no, a set of not-in-construct rules apply (defined in Sec. 2.15.1.2 in OpenMP
4.5). If yes, three types of rules apply (defined in Sec. 2.15.1.1 in OpenMP 4.5):
predetermined, implicitly determined, or explicitly determined.

Fig. 4. Flowchart of the data-sharing attribute rules

Rules for Not Referenced in a Construct. OpenMP 4.5 uses six sentences
to describe when a variable is not referenced in a construct. We label them as
NIC1 through NIC6 based on the order the sentences appear in the specification.
Since the order of the rules in the specification is rather ad-hoc, we reorganize
them as follows:

– Declared inside the called routine
• NIC1: if the variable uses static storage, it is shared
• NIC6: otherwise, it is private

– File-scope or namespace-scope variable
• NIC2.1: threadprivate if the variable is in a threadprivate directive
• NIC2.2: shared otherwise

– Function arguments in C++
• NIC5.1: same as actual arguments if passed by reference
• NIC5.2: private if passed by values (not explicitly listed in OpenMP)

– Dynamic storage:
• NIC3 - objects with dynamic storage duration are shared

– Static data members
• NIC4.1: threadprivate if within a threadprivate directive

1 In OpenMP, an executable directive is a directive that is not declarative. It may be
placed in an executable context.
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• NIC4.2: shared otherwise

We split NIC2 into two sub rules (NIC2.1 and NIC2.2) since the original sen-
tence checks a condition and leads to two different data-sharing attributes. For
coverage analysis, it is better to have separated rules for different data-sharing
attributes. Similarly, NIC4 is split into NIC4.1 and NIC4.2. NIC5.1 only states
what happens when function arguments use pass-by-reference. We think NIC6
does not really cover function arguments passed by values, since a function argu-
ment is different from a variable declared inside a function body. We added
NIC5.2 to indicate a function argument passed by value should be private to be
consistent with other rules.

Rules for Predetermined Attributes. The rules for predetermined
attributes (prefix PDT) are summarized below. As with the NIC rules we per-
form similar rule re-organization and splitting. For example, the original PDT5
rule is related to a loop iteration variable associated with for-loops of four types
of constructs. We split it into four rules: one for each construct.

– Declared in a scope inside the construct
• PDT2: private if the variable has an automatic storage duration
• PDT8: shared if the variable has an static storage duration

– Declared in a scope outside of the construct
• PDT1: threadprivate if within a threadprivate directive

– Dynamic storage: PDT3 - shared if the variable has a dynamic storage dura-
tion

– Static data member: PDT4 - shared if the variable is a static data member
– If loop iteration variables are in question:

• PDT5.1: private if in the associated for-loops of a for construct
• PDT5.2: private if in the associated for-loops of a parallel for construct
• PDT5.3: private if in the associated for-loops of a taskloop construct
• PDT5.4: private if in the associated for-loops of a distribute construct
• PDT6: linear if the loop is the only loop associated with the SIMD con-

struct
• PDT7: lastprivate if there are multiple loops associated with the SIMD

construct
– Array section: PDT9 - firstprivate if the variable is an array section mapped

within a target construct, and derived from a variable of a pointer type.

Note that unlike many NIC rules stating two choices for a condition (e.g. NIC1
and NIC6, NIC2.1 and NIC2.2), most PDT rules (e.g. PDT1, PDT5.1 through
5.4, PDT6, etc.) only state what will happen when certain conditions are met.
When these conditions are not met, the decision will be deferred to a later stage
using either implicitly determined rules or explicit data-sharing clauses.
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Implicitly Determined Rules. We label the seven sentences for implicitly
determined rules with IDs and re-organized them as follows:

– Default clause: IDT1 - for variables in a parallel, teams, task generating con-
structs, follow the default clause if it is present.

– In a Parallel construct: IDT2 - the variables are shared if no default clause is
present.

– In a Target construct:
• IDT4.1: variables that are not mapped are firstprivate.
• IDT4.2: variables that are mapped, follow data-mapping attribute rules

and clauses.
– Task generating construct:

• IDT5: In an orphaned task generating construct, formal arguments passed
by reference are firstprivate.

• IDT6: A variable is shared when it is in a task generating construct with-
out a default clause, its data sharing attribute is not determined by the
above rules, and the same variable in the enclosing context is determined
to be shared by all implicit tasks bound to the current team.

• IDT7: In a task generating construct, a variable without applicable rules
above is firstprivate.

– Others: IDT3 - In constructs other than task generating or target constructs
(e.g. teams, simd and worksharing), these variables reference the variables
with the same names that exist in the enclosing context, if no default clause
is present.

Explicit Data-Sharing Clauses. Finally, there are seven clauses indicating
data-sharing attributes, including default, shared, private, firstprivate, last-
private, reduction and linear. We categorize them into a DSC (data-sharing
clause) set (DSC01 through DSC07).

3.3 Synchronization Semantics

We define synchronization semantics as any information deciding if there is
any synchronization mechanism to prevent the shared accesses to a variable
from being simultaneous or not. We categorize the following OpenMP directives
and clauses as relevant to synchronization, including nowait, critical, barrier,
taskwait, taskgroup, atomic, flush, ordered (both clause and directive) and
depend. They are labeled as N01 through N10. N00 is reserved to indicate that
no explicit synchronization is specified.

4 Coverage Analysis and Improvements

For each semantic label, if there is a microbenchmark using the corresponding
construct, clause or rule, we claim that the label is covered in our coverage analy-
sis. For example, a microbenchmark shown in Fig. 2 covers PD12 (parallel for),
PDT5.1 (predetermined to be private for an associated loop iteration variable)
and N00 (no explicit synchronization is specified).
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4.1 Analysis Methods

Some coverage information can be obtained by checking if some OpenMP key-
words (such as collapse, depend, and taskgroup) are used in our benchmark
suite. This gives us an overview of which semantic labels are covered and which
are missing.

To recognize complex code patterns beyond keywords, we built a simple
source analysis tool, namely CoverageAnalyzer, using the ROSE source-to-source
compiler framework [7,10]. CoverageAnalyzer parses source files into Abstract
Syntax Trees and finds code patterns satisfying conditions defined in data-
sharing attribute rules. For example, to check if PDT8 is covered, Coverage-
Analyzer tries to find all OpenMP regions first, then searches each region for
locally declared variables. If the variable is not declared static, we find a match
to the conditions corresponding to PDT8 and conclude that PDT8 is covered.

Sometimes we got lucky and did not have to implement condition search
for all rules in CoverageAnalyzer. For example, all NIC rules require a code
pattern in which a variable is referenced within an OpenMP region, but not
within an OpenMP construct. This can only happen through a function call.
CoverageAnalyzer finds that none of the existing programs in v1.0.1 has an
OpenMP region in which a function call to user-defined functions is made. So
we can safely conclude that none of NIC rules are covered.

4.2 Analysis Results

The coverage of semantic labels in each semantic category is summarized in
Table 1. In the parallel category, missed constructs include master, taskloop,
teams and their applicable combined directives. Within the shared semantic cat-
egory, NIC rules have zero coverage while two data-sharing clauses (default and
linear) in DSC are not covered. For PDT and IDT, uncovered rules include those
involving static variables, threadprivate, collapse, taskloop, distribute,
multiple loops associated with SIMD, orphaned task constructs using formal
arguments passed by reference and so on. For synchronization semantics, only
two out of ten relevant clauses are covered (nowait and depend).

Table 1. Coverage analysis result for v1.0.1 of DataRaceBench

Parallel Shared Sync.

NIC PDT IDT DSC

Semantic label count 30 9 12 8 7 10

Covered labels PD1–4, 6, 8, 11,
12, 14, 15, PC02

2, 3, 5.1,
5.2, 6

2, 3, 4.1, 6 2–6 1, 10

Covered label count 11 0 5 4 5 2

Coverage ratio 36.67% 0.0% 41.67% 50.0% 71.43% 20.0%
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4.3 Improving Coverage

Based on the coverage analysis results, we added 44 new microbenchmarks into
DataRaceBench Version 1.2.02 to cover the missed semantic labels. For sim-
plicity, we treat some combined constructs (e.g. target simd) as covered if
their individual constructs are covered by existing microbenchmarks. For exam-
ple, Fig. 5 shows a new microbenchmark program to cover NIC4.1 and NIC4.2.
In the case of not referenced within a construct, a static data member should
be shared, unless it is within a threadprivate directive. Figure 6 covers both
ordered clause and directive. ordered(2), an OpenMP 4.5 addition, also asso-
ciates two loops and make their loop iteration variables private. target teams
and taskgroup are covered in Figs. 7 and 8 respectively.

class A {
public :

stat ic int c t r ;
stat ic int pctr ;

#pragma omp threadprivate ( pct r )
} ;
int A: : c t r =0;
int A: : pct r =0;
A a ;
void f oo ( )
{

a . c t r++;
a . pct r++;

}
int main ( )
{
#pragma omp paral le l

f oo ( ) ;
// . . .
}

Fig. 5. Race-yes using static data
members

#include <s t d i o . h>
int a [ 1 0 0 ] [ 1 0 0 ] ;
int main ( )
{

int i , j ;
#pragma omp paral le l for ordered (2 )

for ( i = 0 ; i < 100 ; i++)
for ( j = 0 ; j < 100 ; j++)

{
a [ i ] [ j ] = a [ i ] [ j ] + 1 ;

#pragma omp ordered depend( sink : i −1, j ) \
depend ( sink : i , j −1)

p r i n t f ( ” t e s t i=%d j=%d\n” , i , j ) ;
#pragma omp ordered depend( source )

}
return 0 ;

}

Fig. 6. Race-no using ordered(2)

As a result, DataRaceBench Version 1.2.0 covers all semantic labels from
each semantic group. This means that the new coverage ratios are all equal to
100%, as shown in Table 2.

Table 2. Coverage analysis result for v1.2.0 of DataRaceBench

Parallel Shared Sync.

NIC PDT IDT DSC

Semantic label count 30 9 12 8 7 10

Covered labels All All All All All All

Covered label count 30 9 12 8 7 10

Coverage ratio 100% 100% 100% 100% 100% 100%

2 Available at https://github.com/LLNL/dataracebench/releases.

https://github.com/LLNL/dataracebench/releases
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// . . .
double a [ l en ] ;

/∗ I n i t i a l i z e wi th some va l u e s ∗/
for ( i =0; i<l en ; i++)

a [ i ]= ( (double ) i ) / 2 . 0 ;

#pragma omp target map( tofrom : a [ 0 : l en ] )
#pragma omp teams num teams(2 )

{
a [ 5 0 ]∗=2 . 0 ;

}

Fig. 7. Race-yes using target+teams

int r e s u l t = 0 ;
#pragma omp paral le l
#pragma omp single

{
#pragma omp taskgroup
#pragma omp task

{
s l e e p ( 3 ) ; r e s u l t = 1 ;

}
#pragma omp task

r e s u l t = 2 ;
}
a s s e r t ( r e s u l t ==2);

Fig. 8. Race-no using taskgroup

5 Evaluation

In order to assess if the new microbenchmarks in DataRaceBench v1.2.0 are
beneficial, we use them to evaluate two popular data race detection tools, Archer
and Intel Inspector. Archer [6] is an OpenMP data race detector that exploits
ThreadSanitizer [5] to achieve scalable happens-before tracking. It uses static
analysis to reduce false positives generated by the dynamic analysis performed
by ThreadSanitizer. Intel Inspector [3] is a dynamic analysis tool that detects
threading and memory errors in C, C++ and Fortran codes. It supersedes Intel’s
Thread Checker tool [11,12], with added memory error checking. The versions of
the selected tools used are listed in Table 3, with the compilers used with these
tools (either to build the tools, compile the microbenchmarks, or both).

Table 3. Data race detection tools: versions and compilers

Tool Version Compiler

Archer towards tr4 branch Clang/LLVM 4.0.1

Intel Inspector 2018 (build 522981) Intel Compiler 18.0.1

Intel Inspector provides different levels of analysis with varying configura-
tions. We configure Intel Inspector to use maximal time and resources in our
evaluation using the command line: inspxe-cl -collect ti3 -knob scope=
extreme -knob stack-depth=16 -knob use-maximum-resources=true.

Our testing platform is the Quartz cluster hosted at the Livermore Comput-
ing Center [4]. Each computation node of the cluster has two Intel 18-core Xeon
E5-2695 v4 processors with hyper threading support. We ran each tool 5 times
for each microbenchmark using 72 threads. For each run, we use ten minutes as
a timeout limit to terminate potential runtime hanging.
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5.1 Experiment Results

Table 4 shows our experimental results. The first column lists the file names
(each with a prefix such as DRB072 as a short ID) of all the newly added
microbenchmark programs. The second column indicates if the program is known
to contain a data race or not (‘Y’ or ‘N’). During multiple runs for a given
program, a tool may report different numbers of data races detected. So ranges
of numbers (min race - max race) are given in Column 3 and 5 of the table. For
example, an entry of 0–0 means that no data race was found in any run of the
respective tool. An entry of 1–3 means in all five runs at least one data race was
detected. If a range such as 0–4 is reported, this means a tool generated mixed
results for a given program.

Column 4 and 6 (labeled as “type”) give a verdict for a tool’s result for a
given program. Based on the range numbers, the result is given as true negative
(TN), false positive (FP) or mixed TN and FP for a program without known
data races. Similarly, a tool’s result an be true positive (TP), false negative (FN)
or mixed TP and FN for a race-yes program.

In some cases, a tool may fail due to errors during compilation or runtime
steps. We mark the result as compile-time segmentation fault (CSF), unsup-
ported feature by a compiler (CUN), runtime segmentation fault (RSF) or run-
time timeout (RTO). If any error happens, we try to investigate log files to
identify any valid true or false positives. Negative reports are ignored since a
negative test report with errors is inconclusive. For example, a tool may trigger
a runtime timeout and generate partial logs with identified data races, which
should be counted. Table 5 summarizes the numbers of positive, negative and
unknown (marked as not available or N/A) results based on the information in
Table 4.

The results show that new benchmark programs generate new insights for
the two tools. Archer did not report any false positives or false negatives in the
experiments. However, 13 programs triggered the tool to have some compile-
time or runtime errors. Five of these error happened because the version of
Clang does not support the OpenMP 4.5 features used in DRB094, DRB095,
DRB096, DRB100 and DRB112 (marked as CUN). Another five errors are
compiler segmentation faults raised by a phase called InstrumentParallel, for
DRB085, DRB086, DRB087, DRB091 and DRB102 (marked as CSF). Runtime
segmentation faults happened for DRB097 and DRB116 (marked as RSF). A
runtime timeout (RTO) happened with DRB106. The tool generated partial
results with true positives for DRB106. We are actively working with the Archer
developers to address these issues in their latest development branch.

In comparison, Intel Inspector reported mixed results (TN FP) for DRB096,
a program using taskloop combined with collapse(2) to cover PDT 5.3. In
only one out of the five runs, the tool reported a write-to-write race for loop
iteration variables. The tool also generated two false positives (FP) for DRB105
and DRB107. DRB105 is a classic task implementation of Fibonacci number
generation using taskwait. The tool reported a write-to-write data race for the
line of i=fib(n-1); For DRB107 (shown in Fig. 8 using taskgroup), the tool
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Table 4. Evaluation report (column R: whether a program contains a data race)

Microbenchmark Program R Data Race Detection Tools
Archer Intel Inspector

min
race -

max
race

type
min
race -

max
race

type

DRB073-doall2-orig-yes.c Y 84 - 92 TP 2 - 2 TP
DRB074-flush-orig-yes.c Y 1 - 3 TP 1 - 1 TP
DRB075-getthreadnum-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB076-flush-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB077-single-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB078-taskdep2-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB079-taskdep3-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB080-func-arg-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB081-func-arg-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB082-declared-in-func-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB083-declared-in-func-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB084-threadprivatemissing-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB085-threadprivate-orig-no.c N - CSF 0 - 0 TN
DRB086-static-data-member-orig-yes.cpp Y - CSF 1 - 1 TP
DRB087-static-data-member2-orig-yes.cpp Y - CSF 1 - 1 TP
DRB088-dynamic-storage-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB089-dynamic-storage2-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB090-static-local-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB091-threadprivate2-orig-no.c N - CSF 0 - 0 TN
DRB092-threadprivatemissing2-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB093-doall2-collapse-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB094-doall2-ordered-orig-no.c N - CUN 0 - 0 RTO
DRB095-doall2-taskloop-orig-yes.c Y - CUN 2 - 2 TP
DRB096-doall2-taskloop-collapse-orig-no.c N - CUN 0 - 4 FP TN
DRB097-target-teams-distribute-orig-no.c N 0 - 0 RSF 0 - 0 TN
DRB098-simd2-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB099-targetparallelfor2-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB100-task-reference-orig-no.cpp N - CUN 0 - 0 TN
DRB101-task-value-orig-no.cpp N 0 - 0 TN 0 - 0 TN
DRB102-copyprivate-orig-no.c N - CSF 0 - 0 TN
DRB103-master-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB104-nowait-barrier-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB105-taskwait-orig-no.c N 0 - 0 TN 3 - 4 FP
DRB106-taskwaitmissing-orig-yes.c Y 35 - 48 RTO TP 4 - 6 TP
DRB107-taskgroup-orig-no.c N 0 - 0 TN 1 - 1 FP
DRB108-atomic-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB109-orderedmissing-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB110-ordered-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB111-linearmissing-orig-yes.c Y 73 - 85 TP 1 - 2 TP
DRB112-linear-orig-no.c N - CUN 0 - 0 TN
DRB113-default-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB114-if-orig-yes.c Y 42 - 48 TP 1 - 1 TP
DRB115-forsimd-orig-yes.c Y 44 - 47 TP 1 - 1 TP
DRB116-target-teams-orig-yes.c Y 0 - 0 RSF 1 - 1 TP

Table 5. The numbers of positive, negative and unknown results of the tools

Tool Race:Yes Race:No

TP TP/FN FN N/A TN TN/FP FP N/A

Archer 15 0 0 4 17 0 0 8

Intel Inspector 19 0 0 0 21 1 2 1
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reported two tasks writing to result causing a data race. DRB094 (shown in
Fig. 6) caused a runtime timeout error (hanging) for Intel Inspector. In this
program, the 2nd loop is associated with ordered(2) so its loop interaction
variable should be private according to PDT5.1. Making j explicitly private will
fix the hanging. We have reported these issues to Intel.

6 Conclusion

In this paper, we presented a semantics-driven approach to analyzing and
improving DataRaceBench’s coverage of the OpenMP standard. We focused on
three semantic categories (parallel, shared and synchronization) and labeled a set
of relevant OpenMP language constructs, clauses and rules for coverage analy-
sis. The application of our approach resulted in adding 44 new microbench-
marks which significantly increased DataRaceBench’s coverage. Finally, the new
microbenchmarks were used to re-evaluate two data race detection tools: Intel
Inspector and Archer. While these two tools performed almost equally well in
our original evaluation [9], the new microbenchmarks reveal that Intel Inspector
outperforms Archer in terms of supporting more microbenchmarks without any
errors. However, there is still room for improvements for Intel Inspector when
analyzing programs using taskloop, taskwait or taskgroup.

In addition, as an unexpected side effect of extracting semantics from the
OpenMP 4.5 standard, we found a misuse of the term “construct”. declare
simd is called a construct while it is a non-executable declarative directive and
an OpenMP construct must be an executable directive. We have reported this
issue to the OpenMP language committee. Another discovery is that the data-
sharing attribute rules in OpenMP are surprisingly difficult to understand. We
had to reorganize these rules, split some of them, and made previously hidden
rules explicit to extract semantic labels. We suggest to the OpenMP language
committee to improve the clarity of the rules and define an official algorithm.

In the future, we plan to explore semantics related to variables and read-
/write accesses. We also want to increase DataRaceBench’s coverage of OpenMP
runtime library routines and environment variables. In the domain of scientific
computing, only a few computational patterns are covered in DataRaceBench,
such as stencil and matrix multiplication. Adding more representative numerical
computation patterns with and without data races may also be beneficial.
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AC52-07NA27344, Lawrence Livermore National Security, LLC, via projects LDRD
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Abstract. Tasks are a good support for composition. During the devel-
opment of a high-level component model for HPC, we have experimented
to manage parallelism from components using OpenMP tasks. Since
version 4-0, the standard proposes a model with dependent tasks that
seems very attractive because it enables the description of dependen-
cies between tasks generated by different components without breaking
maintainability constraints such as separation of concerns. The paper
presents our feedback on using OpenMP in our context. We discover that
our main issues are a too coarse task granularity for our expected per-
formance on classical OpenMP runtimes, and a harmful task throttling
heuristic counter-productive for our applications. We present a comple-
tion time breakdown of task management in the Intel OpenMP runtime
and propose extensions evaluated on a testbed application coming from
the Gysela application in plasma physics.

Keywords: Task granularity · Reordering · Cache reuse
Component model

1 Introduction

Tasks have been incorporated in OpenMP-3.0 in November 2008. This ini-
tial model only considers independent tasks, such as provided by the famous
Cilk [13] parallel programming environment. In July 2013, OpenMP-4.0 inte-
grates a dependent-task model. This model enable computing complex schedules
that favor, for instance, data reuse among tasks.

One of our main testbed application extracted from the Gysela applica-
tion [17] has been parallelized using dependent tasks. Preliminary experiments
have shown that a hand-coded version of the code can greatly improve perfor-
mances due to a better use of caches, but at the expense of code maintainability
and, also with a loss of performance portability caused by hard-coded schedul-
ing decisions. This paper reports our mitigated experience on delegating all task
scheduling concerns to the OpenMP runtime. Our issues mainly come from the
required fine-grain task granularity since reusing in-cache data is expected in
our application.
c© Springer Nature Switzerland AG 2018
B. R. de Supinski et al. (Eds.): IWOMP 2018, LNCS 11128, pp. 205–221, 2018.
https://doi.org/10.1007/978-3-319-98521-3_14
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The algorithmic structure of the testbed application is the following: the
working set is decomposed by planes, each plane is sub-divided in regions (such
as line groups) where a chain of k tasks operate on it. The k−1 first tasks of each
chain are independent, while the last task of each performs a per-plane stencil
computation. Thus, tasks working on different planes are independent. Figure 4
illustrates it. At the end of each iteration, a final task operates on all regions of
the same plane. Because the graph structure is quite simple, at the beginning of
this work we were very confident to delegate the all task scheduling concerns to
an OpenMP runtime.

Depending on the size of the working set and the hardware, only some regions
or few planes could be fit into the shared cache. Two problems occur. First, the
task creation iterates over all the first tasks of all chains, then over all the second
tasks and so forth, which sequentially iterates several times over all the working
set with causing O(k) evictions. Second, the scheduling heuristics of the tested
OpenMP runtimes (an Intel-based, LLVM and a GNU runtime) are not designed
for constructive cache sharing. For instance, the Intel runtime relies on a work-
stealing scheduler where working threads tend to have disjoint working sets.
Constructive cache-sharing schedules have been studied since long time [7,10].

These two problems are strongly connected. The order of the task creation
could not be easily chosen due to software engineering constraints. In our appli-
cation, a high-level assembly of components [5] enforces the order and we do
not want to violate the separation of concern by analyzing1 memory access pat-
terns arising from tasks submitted by different components. Moreover, even if
we reschedule tasks in order to provide an efficient sequential execution, there
is no guarantee that the OpenMP task scheduler will exploit it for constructive
cache sharing.

Considering the scheduling performance guarantee as the most prominent
issue, preliminary experiments of our application using OpenMP tasks enable us
to locate four performance critical issues:

overhead: The task implementation has a significant overhead that limits scal-
ability. In our case, it cannot be easily amortized by computation because of
the fine granularity.

concurrency: The task creation is slowed down as the number of threads
increases.

harmful heuristic: The task throttling [12] may improve performance. But a
naive static heuristic is implemented on several OpenMP runtimes and it has
been proved highly counter-productive. When present, the scheduler could
not be clairvoyant on the future of the computation because almost all tasks
are serialized.

task scheduling: Even if the task throttling is disabled, the default scheduling
strategy between thread sharing cache favor, as discussed above, breadth-first
execution where cores tend to have disjoint working sets.

In the case of coarse grain applications, the task creation overhead and con-
currency issues are amortized by the computation [6]. The first three issues may
1 Such analysis may be complex if made statically.
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be overcome at the expense of a dedicated and optimized implementation: our
experimental results with libKOMP, an extended version of the LLVM OpenMP
runtime, illustrates the gains in term of performances. Nevertheless, the last
issue is about scheduling where the best solution often relies on the applica-
tion pattern. In this paper, we propose a two steps solution where submitted
tasks are reordered cooperatively with the scheduler. This also points out one of
the missing feature in OpenMP standard: the capability to specify specialized
scheduling strategies for a set of tasks.

2 Background: OpenMP Tasks Management

This section deals with the LLVM OpenMP runtime [2] tag release 5.0 as cur-
rently developed by LLVM team2. It also compares some of the key design choices
with those implemented in the GNU OpenMP libGOMP [1] coming with GCC
6 series.

2.1 Implementation of the OpenMP Task Model

The OpenMP task model enables the creation of tasks with dependencies in a
simple way as sketched in the next listing.

The encountering thread of the OpenMP task directive creates a task that
could be performed asynchronously to the caller. A task execution corresponds
to an execution of <code>. Data sharing attributes describe how the task data
environment is built from the environment of the encountering thread.

The compiler and the runtime are responsible for the management of task
internal data structures. For instance, the Intel and Clang compilers generate
a pair of runtime calls [2] to kmpc omp task alloc and kmpc omp task, for
independent tasks, or kmpc omp task with deps if the task directive includes
depend clauses. The previous listing is translated to the following pattern (miss-
ing parameters are not important here) where two main function calls are marked
in bold:

The GNU compiler and libGOMP runtime merge these two calls [1] at the
expense of recopying parts of the task data generated by the compiler on the C
stack:
2 https://openmp.llvm.org, http://llvm.org/git/openmp.git. The LLVM runtime has

been forked from Intel public source and it is fully compatible with GCC, ICC and
Clang compilers.

https://openmp.llvm.org
http://llvm.org/git/openmp.git


208 T. Gautier et al.

Many other OpenMP runtimes follow the same approach: the compiler gen-
erates the code of the outlined function with correct copies or data sharing
(according to the specified data sharing rules). Then, the runtime allocates an
internal task descriptor, copies the fields, computes the dependencies and then
pushes the task to various scheduling queue(s). The next section focuses on this
internal data structure and algorithms used to build correct dependencies. Their
choices explain the observed overhead or limitations.

Table 1. Main characteristics of libGOMP and libOMP. The sizes are in bytes and
the task descriptors take into account structures for managing dependencies.

Size of task
descriptors

Dependencies Task
throttling
threshold

Queues Scheduler

libGOMP Hash table + lock
per team

64× number
of threads

Per task
(children),
task group
and teams

Multiple
lists
scheduling

libOMP 424 Hash table + lock
per dependencies

256 tasks
per queue

One per
thread

Work
stealing

2.2 Internal Data Structures and Algorithms to Manage
Dependencies

GNU libGOMP and LLVM/Intel libOMP runtimes have made very different
implementation choices as summed up in Table 1. The main difference between
libGOMP and libOMP comes from the locking strategy to ensure coherent com-
putation of dependencies: in libGOMP, exclusive accesses are guaranteed by a
lock associated to the team data structure, while in libOMP, there is one lock
per task. This explains scalability issues of libGOMP when the task granularity
is too small [21,27].

The OpenMP dependent-task model is based on defining dependence-type of
a list of memory references in the clause depend. The runtime should keep track
of the previous accesses made on memory regions described by the array sections
of the depend clause. Up to now, the standard restricts the usage to avoid the
overlap of two array sections. This make the computation of dependencies much
simpler in a sequence of tasks by identifying an array section to its base array.
Indeed, runtimes can only store the last dependency into an associative table to
retrieve it from a pointer. The task creation consists in the following steps:
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Allocation of the internal task descriptor. libGOMP relies on the malloc func-
tion of the C library. The LLVM and Intel runtimes implement a thread-local
heap allocator.

Initialization of the task descriptor fields. Once allocated, the runtime ini-
tializes a data structure, copy the ICVs, and update a counter to detect
termination.

Checking dependencies. This step consists in adding the newly created task
into the list of successors from all its predecessor. In the two runtimes, the
scheme is almost the same: for each pointer identifying the array section, the
runtime looks into a hash table to retrieve the last dependencies of the array
section.

Enqueue. If a task is detected as ready for execution, then it is enqueued into
runtime queues. The LLVM and Intel runtimes push a task into a queue
owned by the running thread. GNU libGOMP enqueues the task into several
queues: the child queue of its parent, the queue of the task group if it exists,
and the queue of the team that stores all the ready tasks.

This high-level view masks the way the Intel, LLVM and GNU runtimes man-
age concurrency. The steps ‘Allocation’ and ‘Initialization’ are mostly involving
local updates of data structures. They do not require locking mechanisms for
exclusive accesses. Checking dependencies is the most complex operation of the
task creation since predecessors of a task may finish while the task is being
checked. The design of GNU libGOMP is such that all modifications related
to dependencies are mutually exclusive by using a global lock associated with
the team. This is the main scalability problem of libGOMP. The LLVM and
Intel runtimes enable more concurrency between insertions and suppressions of
dependencies. To manage the modification of data structures, they use a lock per
dependency node attached to each task. Because concurrent accesses are more
frequent, the thread generating tasks is slowed down: new tasks are created and
enqueued at a low throughput compared to a sequential task creation.

2.3 Task Throttling

The term ‘task throttling’ refers to all kind of heuristics [4,12]. It enables the
runtime to serialize tasks in order to reduce the inherent overhead of task cre-
ation. Sophisticated strategies have been designed and experimented [12] which
dynamically profiles the application tasks to produce good decisions. In the
LLVM and Intel libOMP or GNU libGOMP threads throttle task creations are
based on static thresholds: when there is more than 256 tasks per queue in LLVM
libOMP; and when there is more than 64 * omp get num threads() pending
tasks in libGOMP.

These heuristics can efficiently reduce the overhead of task creation (see next
section). However, these heuristics are not well suited, and even harmful, for
some classes of applications [18], such as our. There is a huge gap between these
research results and heuristics found in those OpenMP runtimes. Moreover, the
scheduling decision could not be adapted during runtime.
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3 Performance Evaluation and Extension of the LLVM
Runtime

Experiments have been made on a quad-socket server with 4 NUMA nodes.
Each NUMA node holds a 24-core Intel Xeon E7-8890v4 CPU for a total of 96
cores. The goal of the experimentations is to evaluate the capacity of fine-grained
OpenMP tasks to be a building block to improve reuse of data in shared caches.
We restrict all our experimentation on one NUMA node with up to 24 cores.

We make use of the LLVM libOMP version from http://llvm.org/git/
openmp.git, branch release 50. The source code of the LLVM runtime has been
instrumented to precisely measure the clock cycles for basic operations for the
OpenMP task management in libOMP. We use the time stamp counter (rdtsc)
that is incremented at constant rate on the platform.

3.1 Completion Time Breakdown of OpenMP Tasks Management

The LLVM OpenMP runtime libOMP has been instrumented to measure the
delay for each the different steps in the task creation as presented in Sect. 2.2.
In order to limit the overhead, we insert calls to get the real time stamp counter
a the begin and the end of each of these steps. Delays are cumulated per thread
and a final summation is computed at the end of the program to avoid overhead
due to concurrent update. It impacts six functions, including the initialization
of finalization of the library to dump the values.

Figure 1 reports results for the BOTS [11] benchmarks with only independent
tasks. Figure 2 reports results on the Jacobi and SparseLU benchmarks of the
KASTORS suite [27]. They compare two versions of the same code: one with
independent tasks and the second with dependent tasks.

Each measure is the average cycles per operation over 30 runs. In all figures,
we present the number of cycles for the following internal operations: alloc is
the allocation and initialization of the data fields for the internal task descriptor;
atomic is extracted from alloc and refer to a piece of code that update concur-
rent object by atomic instruction; finally, enqueue is the operation of inserting
the descriptor into a scheduler queue. On the benchmark with dependent tasks,
check deps is the operation of checking and adding the dependencies between
tasks and release deps is the operation of releasing successors of the ended
tasks. The sum of all these operations captures the code between a task submis-
sion and its insertion in scheduler queues.

For the independent task benchmarks, the serialization of all submitted tasks
on the case of 1-core execution shows that a task throttling heuristic can reduce
the overhead of task management. The task initialization cost increases slowly
as the number of cores grows: parts of the initialization make use of atomic
operations for which the cost depends on the number of concurrent data accesses.
The enqueue operation is stable mostly when the number of cores is greater
than 1, except for Uts [18] which is a search algorithm working on very large
unbalanced trees: the concurrency on each queue of libOMP is exacerbated.

http://llvm.org/git/openmp.git
http://llvm.org/git/openmp.git
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Fig. 1. Completion time breakdown of OpenMP independent tasks in libOMP on
BOTS.

Fig. 2. Comparison of the completion time breakdown between OpenMP-3.0 tasks
and OpenMP-4.0 dependent tasks on the Jacobi and SparseLU benchmark from the
KASTORS. The suffix ‘D’ denotes the dependent task version of the code.

For the KASTORS benchmark, except for Jacobi, the global behavior is
similar to SparseLU in Fig. 2. On average, the cost of task creation is about 10
times bigger than for independent task. Most of the cost comes from checking
dependencies. Next comes the release of dependencies to activate successors when
tasks are finished.

Jacobi is a 2D stencil. The grid size is either 8192 or 16384 and the block
size is 128 or 256. The application is memory bound and the tasks are very
fine-grained (about 5 × 105 clock ticks). Concurrent data structures are under
pressure because workers end their tasks quickly. It explains the big increase in
task creation cost (Fig. 2 jacobi taskdep for all the inputs) wherein the generating
thread run in quasi-concurrence with one of the P − 1 other threads.
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Fig. 3. Completion time breakdown of the jacobi taskdep benchmark for different hash-
table sizes (x axis). The standard hash-table size in libOMP is 997. The groups refer
to the number of cores used.

3.2 Impact of the Task Serialization

In the LLVM libOMP, the task queues are bounded to 256. When the queue is
full, the task throttling forces the serialization of the newly created tasks. Such a
situation arises when the generating thread creates tasks faster than the worker
threads can consume them. Increasing the queue size may impact the scheduling
order of the tasks. For instance, in jacobi taskdep [27], the generating thread
creates first a set of independent tasks to copy an old data version in the new
data version, then it creates tasks making stencil computation from an old data
version to produce a new version. Tasks of the second set depend on tasks of the
first set. In this case, the task throttling may block generation of tasks of the
second set: the worker thread may not activate the successor tasks because they
are not yet submitted!

On jacobi taskdep and on the smallest grid (8192, blocksize = 128), we
observe between 15% to 25% of gains for a range of a number of cores with-
out task serialization (a queue of size 216 is large enough). For a grid of size of
16384 and with the same block size (generating 4 times more tasks), the gain
ranges from 2% on 24 cores to 19% on 2 cores (15% on 8 cores) with a small
standard deviation.

3.3 Impact of the Hash Table Capacity

The hash table converts memory addresses to meta data in the libOMP pro-
cedure to compute dependencies ( kmp process deps). libOMP implements a
hash table with separate chaining when keys are hashed to the same slot. When
the load factor of the hash table increases, the cost of insertions becomes linear
in the number of chained keys. If the number n of dependencies is high, the cost
of finding a key is on average O(n/s) where s is the number of slots.

By default, the number of slots in libOMP is 997 for each implicit task
(which generally creates more dependent tasks). With this condition, the load
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factor of the hash table is near to 1: almost all insertions cause hash collisions.
We experiment jacobi taskdep on a grid size of 16384 with a small block size
of 128 and with different sizes of the hash table. The number of dependencies to
resolve is 2883584. For sizes bigger than 49999, the gain is small. The completion
time on 24 cores is 3.16 s with the default value and 2.21 s with a hash-table
size of 49999: the gain on the completion time reach 30%. Figure 3 reports the
completion time breakdown of the internal task management. As expected, the
cost of checking dependencies is reduced as the hash table is getting bigger.

4 Evaluation of the Gysela Testbed Application

The evaluated testbed application is a prototype of semi-Lagrangian 2D advec-
tion extracted from Gysela, an iterative gyro-kinetic simulation of magnetic
fusion plasmas [17]. The extracted part is the most computationally intensive of
the whole application and improving its performance is a major concern. The
prototype makes the uses of task-based scheduling since it offers a promising
approach to improve the performance of the existing code (based on OpenMP
fork-join directives) through a better data locality and a finer-grained paral-
lelism.

4.1 Overview

Being able to maintain the application is crucial since several algorithmic vari-
ants are provided and new algorithms are regularly devised. While studying this
aspect is beyond the scope of this paper, it deeply impacts the evaluated code.
Indeed, the prototype is split into independent computational parts called soft-
ware components [23] in such a way parts can be easily replaced. Components are
then assembled during a compilation process [5] that produces an OpenMP code.

Fig. 4. Sketches of dependencies between OpenMP tasks in our testbed application.
It represents tasks working on three planes. Each application level component spawns
tasks for all the planes. (Color figure online)
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The prototype iterates several times over 2D slices (plane) of 3D and 4D
arrays. An iteration is defined by a sequence of 5 components. Each component
generates a bag of independent tasks (following an SPMD approach) working
on sub-parts of the planes (usually few lines). Assembling components results in
adding dependencies between the generated bags of tasks. Figure 4 displays the
structure of the task graph submitted to the runtime per plane of the working set.
Tasks that work on different planes are totally independent. Because the graph
structure is quite simple, at the beginning of this work we were very confident
to delegate the all task scheduling concerns to an OpenMP runtime. However,
performance issues have been identified on current OpenMP runtimes.

4.2 Task Submission

A carefully hand-written OpenMP-native implementation has been designed
to study how fast it can be to use OpenMP tasks when all maintainability
constraints are skipped. This implementation submits tasks by following a depth-
first strategy, making use of recursive tasks (enabling parallel submission of
independent tasks) and synchronization steps (enforcing runtimes to work on a
sliding window of tasks). This implementation is 38% faster thanks to a better
tasks scheduling and data-reuse in caches.

Although the hand-written implementation has demonstrated the feasibility
in term of performance, important concerns such as code readability and sep-
aration of concerns are totally ignored. By using a HPC component model [5],
the whole task graph is submitted sequentially all at once using a breadth-first
strategy, as for the jacobi taskdep benchmark. In practice, Component 1 submits
a bag of many tasks, then Component 2 do the same and so forth.

It is worth noting that such a design comes from maintainability constraints.
Indeed, the separation of concerns that helps to maintain components also hin-
ders the use of a depth-first submission strategy. Moreover, it also prevents
components to make assumptions on the implementation of other components,
such as the dependency of submitted tasks. Since OpenMP 4.5 provides no way
to submit dependent tasks in parallel, submission is doomed to stay sequen-
tial. Nevertheless, this design suffers from several sources of slowdown with both
GNU libGOMP and LLVM libOMP and shared common conclusions with pre-
vious sections.

4.3 Characteristics of the Performances Drop

As for jacobi taskdep, task submission becomes slower than the actual execu-
tion of tasks before they can be fine enough for the computation to fit better
in caches resulting in starvation of worker threads and higher completion times.
This high overhead comes from a combination of many technical factors: a small
fixed-size hash table not well-suited for so many tasks, a contention of shared
data structures in runtimes as tasks are being submitted while others are run-
ning.
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Fig. 5. Reordering strategy principle. (a) State of the ready list with the original work
stealing after the task submission from components 1 (blue), 2 (hidden because tasks
are dependent of the component 1) and 3 (red). See Fig. 4. (b) State of the ready list
using the reordering strategy. (Color figure online)

The task throttling prevents the execution of tasks using a depth-first strat-
egy as shown in Sect. 2.3: the submission is halted and current tasks executed
before dependent tasks can be submitted. Without clairvoyance on all the com-
putation, the execution order is close to the sequential order of task creation: this
breadth-first strategy causes tasks to work simultaneously on a bigger amount
of data (all the planes) resulting in poor utilization of caches.

4.4 Improving Locality Through Tasks Rescheduling

Even when the task throttling threshold is increased, the available scheduling
algorithms are not able to group the execution of tasks working on the same plane
although they are dependent and share data. The execution order mainly follows
the submission order which turns out to be inefficient in our case. Figure 5(a)
represents the submission order in the scheduler’s ready list of the generating
thread and the way the owner thread and thieves operate on the list during a
steal operation. In work stealing, the owner (victim) and the thieves operate at
the two extremities of the list to avoid any contention.

However, here, we want the cores to share data in caches. It is preferable
that all threads operate on the same side of the list to favor data sharing. Thus,
the LLVM libOMP function kmp steal task has been modified to work in
cooperation with functions that enqueue and dequeue tasks for the owner thread
of the queue. Now, a thread enqueues new ready tasks at the same side of the
list, where all other threads are working.

Keeping lists ordered as in case (a) is not enough, the ready tasks (red tasks
of Fig. 4) have to be enqueued close to those working on the same plane. Thus,
we have developed a fast reordering strategy of the ready list which computes
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Fig. 6. Comparison of completion times for the Gysela application with different con-
figurations.

on-line position where to insert ready tasks. This helps to favor the case (b) of
Fig. 5. The heuristic is simple and well-suited for such a dependency task graph.
It adds O(1) instructions per dependencies.

Each task keeps the range of tasks in the ready list on which it depends. A
task having no predecessor task is enqueued in the ready list and it initializes
the range on itself. The algorithm which computes dependencies visits, for each
newly created task, all its predecessors. During this step, the union of the range
of all predecessors is incrementally computed, and the last inserted tasks in the
ready list to the oldest in the union range is reordered. Due to dependencies, the
ranges tend to include all the tasks. The reordering is currently stopped when
the ranges become too wide.

Figure 6 reports the completion time on 8, 12 and 24 cores of the Gysela
testbed application. A bigger hash-table size (132069 in place of 997) improves
the performance by at least 17%. On 24 cores, the reordering achieves a perfor-
mance gain of 41% over the original LLVM libOMP library.

5 Discussion

The OpenMP standard becomes predominant in the HPC runtime community.
The recent integration of tasks into the standard has completely changed the way
applications can describe parallel algorithms, enabling the description of more
complex and finer-grained parallel computations. However, we are facing issues
where OpenMP specification does not help us to guarantee performance porta-
bility. Indeed, in our case based on the decision to delegate the task management
to OpenMP, the task granularity is enforced to reach high performance, while
the task submission order is a consequence of the need for separation of concerns
in the code. These two factors are the main sources of the issues explained in
this paper: the task implementation of experimented runtime exhibits a high
overhead and the submission order is not well-suited for reusing cached data. It
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seems a better long-term solution to improve OpenMP rather than handcrafting
the generated OpenMP code.

What solutions are offered by OpenMP? Let us consider several opportunities
to solve our issues.

5.1 Optimizing OpenMP Runtime Implementation

There are technical solutions for some issues presented above. The first one con-
cerns the task throttling heuristic which is too basic in LLVM and GCC runtimes.
One way is to integrate a more robust heuristic, for instance, such as in [12].
Another possible direction would be to claim that such heuristic will potentially
always takes wrong decisions, as in our case, with a strong performance loss.
Note that in our past work [9], thanks to a very low overhead in task creation,
our implementation, without any throttling heuristic, was very competitive with
the GCC or Intel implementations. We think that the task granularity is an
algorithmic parameter and that OpenMP provides an explicit way to control it
using the clause if of the task directive. Thus, in our point of view, it is better
to disable any throttling heuristic in the runtime that may impact performance,
even if it is in few cases such as ours.

Another important parameter which impacts performances is the cost of
finding dependencies using the hash table. Preliminary results for GCC exhibits
a similar behavior. The LLVM runtime has a too small hash-table that, indeed,
generate a lot of hash collision. This problem should be studied and we currently
integrate in the LLVM runtime a resizable hash table (the size depends on the
load factor).

5.2 Parallelization of Task Submission

As described in Sect. 4.3, if the task submission is slow compared to the execu-
tion, the scheduler may never be able to activate the dependent tasks because
they are not yet created: the scheduler is not clairvoyant. A straightforward idea
is to make the task submission parallel. As for Gysela, a simple way would be
to take into account the independence of tasks that belong to different planes.
However, the component model used need to be extended to take into account
the hierarchical structure of some applications such as Gysela and the high-level
component assembly compiler back-end need to be changed too.

Moreover, according to the current OpenMP standard, the parallel submis-
sion is restricted to independent tasks only. The enforced constraint on the
depend clause [8] is that it “establishes dependences only between sibling tasks”,
i.e. between tasks that are child tasks of the same task region.

Past projects have deals with a way to parallelize task submission in presence
of dependencies. For instance, Athapascan-1 [14] was able to successfully par-
allelize the task graph submission of a stencil [22] on distributed architectures
using a postponed access mode in order to delegate real access to data to sub
tasks. More recently, a similar solution proposed for OpenMP with the use weak
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dependencies [20] seems very interesting if implementation scale enough with
the number of submitted tasks.

5.3 Specialization of Task Scheduler

It is generally accepted that task scheduling depends on the targeted applica-
tion. How to specialize a task scheduler for an OpenMP program? In addition
to its original implementation, Cilk [13] provides guarantees on the expected
performances in term of work and depth or critical path. What could be such a
performance model for OpenMP task schedulers, even in presence of restrictions?

We propose a two steps organization of the way applications may influence
the task scheduler of an OpenMP runtime. First, hints should be pass to the
runtime in order to schedule a group of tasks according to a specific heuristic.
Similarly to the clause schedule available for work-sharing loops, we expect
a clause task schedule for task groups and parallel directives. Such a clause
enable the application to pick a specific task scheduler (among those provided)
that should be preferred by the runtime, and may be defined by some expert
users.

Secondly, in the same way OMPT has been defined to capture (in a portable
manner) the state and the events generated by OpenMP runtimes, we expect to
have access to an API (for experts) to enforce actions made by the runtime in
order to have a better control over the scheduler or to redefined it.

6 Related Work

Optimizing task submission has been the subject of numerous works. In lazy
approaches, the task creation is delayed until an idle resource requires tasks [16,
24]. Compilation strategies can reduce the overhead by exploiting the structure
of the scheduler: for instance, the Cilk compiler generates two variants of each
task (fast and slow clones) [13] in a way that move overheads out of the work and
onto the critical path. However, this method, defined in Cilk as the work-first
principle, may come at the expense of an impaired scalability. In [4], the authors
have similar considerations about the generation of fast/slow clones. Orthogonal
optimizations concern the optimization of the data-structure representation. The
size of internal descriptors of the dependent tasks in LLVM libOMP is at most
of 424 bytes per dependency, while in libKOMP, a native task descriptor is less
than 64 bytes explaining most of the speedup [9].

Swann [25] compared different methods of dependency analysis. Tur-
boBLYSK [21] has proposed a way to cache dependencies of task graphs in
order to reuse them without any overhead during the resolution. Following the
work-first principle, in [15], the computations of dependencies have been moved
from the work to steal operations.

A fast task creation can reduce the inactivity of worker threads. The schedul-
ing algorithm may have a strong impact on the overall performance, such as the
reorder method proposed in Sect. 4.4. A lot of scheduling heuristics in runtime
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systems has been proposed to improve the task locality [3,7,10] and to control
the task affinity [19,26], but few of them are dealing with task reordering as
presented above.

7 Conclusion

This paper has presented preliminary reports of using fine-grained tasks in
OpenMP. Most of the measures and developments have been made with the
LLVM OpenMP runtime supported by the LLVM group. Due to the fine gran-
ularity and preliminary experiments, we assumed that GNU libGOMP would
behave the same way with at least similar overheads. The completion time
breakdown analysis has focused on the task submission, especially costs related
to checking dependencies and in the way to make the scheduler clairvoyant in
order to reorder the on-line queue of ready tasks.

Further investigations on a wider range of applications are needed for the
reordering method.

Several extensions of the Intel libOMP have been proposed and implemented.
Results obtained on the Gysela prototype are satisfactory. Future works will
focus on optimizing an OpenMP runtime for issues identified by such an appli-
cation: support for fine-grained task. Finally, if the overhead cannot be avoided,
then parallelizing the submission may be a solution.
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Abstract. Tasking was introduced in OpenMP 3.0 and every major
release since has added features for tasks. However, OpenMP tasks coex-
ist with other forms of parallelism which have influenced the design of
their features. HPX is one of a new generation of task-based frameworks
with the goal of extreme scalability. It is designed from the ground up to
provide a highly asynchronous task-based interface for shared memory
that also extends to distributed memory. This work introduces a new
OpenMP runtime called OMPX, which provides a means to run OpenMP
applications that do not use its accelerator features on top of HPX in
shared memory. We describe the OpenMP and HPX execution models,
and use microbenchmarks and application kernels to evaluate OMPX
and compare their performance.

1 Introduction

OpenMP [6] is a directive-based parallel programming interface that provides
a convenient means to adapt Fortran, C and C++ applications for execution
on shared memory parallel architectures. In response to the growing complexity
of shared memory systems, OpenMP has evolved significantly in recent years.
Today, it is suitable for programming multicore or manycore platforms, including
any attached accelerator devices.

Multiple research efforts have explored the provision of an application level
interface based on the specification of tasks or codelets (e.g. PARSEC [9], HPX
[12], OCR [14], OmpSs [10]) and their dependencies. This is due to considerable
interest in the potential of dataflow programming approaches to provide very
high performance via the minimization of synchronization.

Tasking interfaces have also been proposed as a low-level execution layer
for very large computing systems, including the anticipated exascale platforms.
Given this interest, we have explored the mapping of OpenMP to one such
interface, HPX [12]. HPX is a C++ library with an extensive set of features that
support task-parallel programming and that made it a good candidate for this
work. Our translation of OpenMP (with the exception of accelerator features) to
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HPX, called OMPX, began as a modification of the Intel OpenMP Runtime [1].
We ended up rewriting major portions of it, as the use of OpenMP threading and
scheduling mechanisms prevented us from benefiting from key HPX features.

The rest of the paper is organized as follows. We briefly introduce OpenMP
and HPX in Sect. 2, and describe their runtimes in Sect. 3. Section 4 provides
a description of the implementation itself, and Sect. 5 gives the results of our
evaluation. We then outline related work and reach some conclusions.

2 Overview of OpenMP and HPX

OpenMP defines a set of directives for the specification of parallelism in C, C++
and Fortran applications with minimal code change. Code within OpenMP par-
allel regions are executed by a team of threads, each of which may access shared
data and may also have some private data that is not accessible to other threads.
OpenMP has features for specifying parallel loops and sections, which will be
executed by the threads participating in the enclosing parallel region, constructs
for offloading code and data to GPUs, and a means to set/get execution param-
eters such as a thread’s ID or the number of threads in a team.

OpenMP 3.0 introduced task parallelism and redefined itself in terms of tasks.
Explicit tasks are created with the task directive; implicit tasks are created to
implement other constructs. Code associated with an explicit task construct can
be executed asynchronously on any thread in the parallel region at any time
prior to their next synchronization, which may be a taskwait construct, that
waits on all tasks created by the current task, or a barrier that waits for all
tasks created in the parallel region to finish.

Tasks may be suspended by the implementation at certain points during
their execution. By default OpenMP tasks are tied, which prevents a task from
moving to a new thread when its execution is resumed, and which implies that it
may consistently access a specific thread’s private data. Implicit tasks are tied.
Untied tasks may be suspended and subsequently continued by another thread.

OpenMP 4.0 introduced the taskgroup synchronization construct and the
depend clause for the task directive. The taskgroup construct waits on all tasks
created in a region, and not only on those created by the current task. The
depend clause is used to specify data dependencies between tasks. It takes 2
parameters: the type of dependency (in, out or inout) and a list of variables.
OpenMP uses the address of a specified variable to match it to other tasks
so that it can execute them in the order in which they were created. These
dependencies are restricted to tasks created by the same parent task.

HPX comprises both high-level features for creating parallel C++ applica-
tions consisting of a collection of tasks, as well as low-level features that support
their efficient execution, e.g. enabling the creation of a custom scheduler. It pro-
vides a uniform API for both shared and distributed memory systems. HPX
includes the means to create and schedule tasks, and specify task dependences,
without any notion of user-level threading. Under active development, it encom-
passes features for convenience such as a parallel loop (implemented similarly to
OpenMP’s taskloop), and utilities such as parallel sort and search routines.
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HPX tasks are created using dataflow and async (see Fig. 1), extensions of
C++ async and future constructs. Async tasks use available data and are able to
be executed immediately. The dataflow keyword is used when the input for the
task is not yet ready, but futures corresponding to that data are. They can be
used to create directed acyclic graphs (DAGs) of data-dependent tasks without
change to the internals of the functions involved.

int val = func(42);
future<int> f_val1 = async(func, val);
future<int> f_val2 = dataflow(unwrapping(func), f_val1);
f_val2.wait();

Fig. 1. An example comparing the use of dataflow and async to a normal function call.

Futures are a key element of HPX. They coordinate the flow of data between
tasks, as well as the order of execution of tasks. Ideally, futures are used as
input and output for dependent tasks, thereby avoiding explicit synchronization
inside the tasks. Wait and get methods are available for situations where this
is not possible: with them, a task can wait for the data in a future, or retrieve
it, returning control back to the runtime to schedule other work until the data
is available. On distributed memory systems, dependencies may occur between
tasks running on different nodes. To handle this, the user creates a special kind
of object. When methods are called on that object, the implementation will
insert the necessary communication. Note that in other contexts, this might be
resolved via polling or blocking communications, but in HPX the task involved
will relinquish resources until the data is available. HPX also provides a full
set of legacy synchronization mechanisms, including mutex, lock and barrier
features that can be used inside tasks. Unlike their OpenMP counterparts, the
HPX variants exist entirely in user space and do not block a thread. Instead
they return control to the runtime so other work can be done.

Advanced features in HPX include executors. These are containers that tasks
can be created in; synchronization on all tasks in a container is similar to
OpenMP’s taskgroup. Executors can also be used for a high-level specification
of how tasks are scheduled, how the runtime task queues are structured and how
tasks may be stolen from them.

Finally, HPX also provides low-level APIs for direct interaction with the
threading subsystem. This API is very verbose, and is not generally intended for
application development. It can be used to place tasks precisely on threads, set
priorities and queues, and influence work stealing mechanisms.
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3 Runtime Implementation Overview

3.1 OpenMP Runtime Task Management

This section covers the runtime level details of OpenMP that are pertinent to
understanding OMPX. We focus on how a task is handled by the Intel OpenMP
runtime, starting from its creation.

In the Intel OpenMP Runtime, both tied and untied tasks are stored in a
single local queue. Each thread accesses its own queue from one end, and steals
from the other end of other thread’s queues. Whenever a task is stolen, that task
must be checked to see if it is ready to execute, and if it there are constraints
that might not allow it to be executed on the thread that stole it.

Untied tasks can be executed on any thread in a parallel region without
restriction. In contrast, the runtime must ensure that a new tied task is sched-
uled according to certain scheduling constraints [4] to prevent deadlock. The
constraints on execution order arising from OpenMP task dependencies are only
possible among sibling tasks. The input and output variables used to specify
them are tracked by the runtime in a hash table. No synchronization is needed
to access the hash table, since only one task will ever write to an entry.

3.2 The HPX Runtime

Unlike OpenMP, HPX does not implement the fork-join execution model. A
worker thread is spawned for each OS thread, but these do not begin executing
application code until a task is scheduled on them. The necessary functionality
for creating a task in a single function call is already present in C++ con-
structors. The arguments passed to it are copied or moved as specified by the
constructors of the objects being passed in. When a task is initially created,
memory is allocated for a small task data object, similar to OpenMP.

The default scheduler in HPX places tasks in lockless lifo queues. Each worker
thread has a queue for each of three priorities: high, normal and low. There are
no constraints on how tasks can be scheduled or stolen once they are ready for
execution, but there are several modular schedulers included with HPX which
can change the queue organization and how work is stolen.

HPX uses dynamically allocated stacks for its tasks, unlike OpenMP, which
will continue to use the stack of the original thread. The allocation of the stack for
a task can be delayed until immediately before execution. The implementation
can potentially recycle a previous stack frame, if the task that used it is complete.
Tasks that suspend on a wait, get or yield still need their stack frames. Thus
creating a large number of tasks that suspend can consume large amounts of
memory and hurt performance.

A future is used to coordinate shared state between two or more dependent
tasks. If a task hasn’t completed when a second, dependent task is being created,
the latter will append the remainder of its task creation to the end of the first
task. Once complete, the first task will resume creation of the second task. If it
does not depend on any other inputs, then the second task will begin executing
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immediately. If the second task has other outstanding dependencies, the first
task will pass the remainder of the second task’s creation to the next task it
depends on, and another task will be pulled from a work queue and executed.

4 The OMPX Implementation

HPX uses tasks as the primary form of parallelism, and task dependencies as the
primary form of synchronization. Since OpenMP has tasks underlying all of its
parallelism, it can potentially be mapped to a purely task-based programming
model. We describe our OMPX runtime, an adapted version of the Intel OpenMP
runtime, and explain how it translates OpenMP features into HPX code. Since
certain features (primarily, tied tasks) do not have a straightforward mapping,
we created two versions of OMPX in order to assess the cost of providing full
compliance with the OpenMP standard.

4.1 Initialization and Parallel Regions

Like most OpenMP runtimes, OMPX is not loaded until the first time an
OpenMP construct or library call is encountered. As part of its initialization,
OMPX reads and processes environment variables for both OpenMP and HPX.
The execution of a synchronization function passed to hpx::start() signals that
the HPX runtime has started. A function is registered with atexit() that will
shut down the HPX runtime when the process exits. If HPX has already been
started without initializing OMPX, then the application is a hybrid OpenMP
HPX application, in which case the number of threads is queried from HPX and
used for the OMPX runtime.

void thread_setup( microtask_t t_func , arg_struct arg , int tid)

{

omp_task_data task_data(tid , arg.parent );

set_thread_data( &task_data );

kmp_invoke( t_func , arg );

while (task_data.num_tasks > 0) {

hpx:: this_thread ::yield ();

}

}

void fork(microtask_t t_func , void *args)

{

vector <future <void >> threads;

for(int i = 0; i < num_threads; i++) {

threads.push_back( async( thread_setup , t_func , args , i, ...));

}

hpx:: wait_all(threads );

}

Fig. 2. The implementation of fork-join in OMPTX.

Parallel regions are translated into runtime calls to a fork function, where
one of the arguments passed is a compiler-generated function containing the code
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inside the parallel region. The initial implementation of this in HPX is shown in
the fork function call in Fig. 2. The thread setup function initializes OpenMP
metadata for that implicit task (e.g. num threads). This data is stored local
to the HPX task, which is called a thread in HPX nomenclature (but called
a task elsewhere in this paper to avoid confusion), using the HPX function
set thread data. This data can later be retrieved with the get thread data
call. The thread setup function continues to stay in scope as long as there are
explicit tasks that have not completed. This was subsequently replaced by an
implementation that makes calls to HPX’s lower level threading interface to place
tasks on specific threads, and synchronize them with lower level synchronization.
This translation places implicit tasks on a specific thread but does not prevent
them from being stolen, which can cause inconsistencies with any thread-specific
constructs, e.g. accesses to threadprivate data or omp get thread num(). An
HPX construct called an executor can provide the requisite functionality. We
modified the default scheduler to remove work stealing and created an executor
with a suitable work stealing scheduler to handle explicit tasks. The use of HPX
executors may lower performance and thus we created two versions of OMPX:
a compliant version that binds tied tasks to a thread with executors and a non-
compliant version that does not bind tied tasks and uses atomic counters instead.
The version can be selected when compiling the runtime.

4.2 Worksharing Constructs and Synchronization

Relatively little effort is needed to implement worksharing constructs in OMPX,
since the same logic as in standard OpenMP can be used, and the metadata
needed for computing chunks of work and handling constructs like ordered is
passed to the corresponding tasks. Atomic counters and locks local to each par-
allel region support the implementation of single, master and critical constructs
in a manner that is very similar to a standard OpenMP implementation. Since
OpenMP barriers wait on all tasks created in the parallel region before return-
ing, we must keep track of their completion. In OMPX, task completions are
tracked by an atomic counter in the non-compliant version, or the executor in
the compliant version. Once all tasks are complete, each implicit thread waits
on the HPX barrier local to the parallel region.

4.3 Tasking

Outside of scheduling, the biggest challenge in implementing explicit tasks is
the parent-child relationship which OpenMP tasks have, and HPX tasks do not.
Each task requires a small struct to hold the data to implement this behavior.
Care must be taken when creating tasks to avoid referencing the metadata of
the parent task, as the parent may be finished and deallocated by the time
the child task begins executing. To accomplish this, the needed data is copied
into the child task, including a shared pointer to an atomic variable that tracks
the number of child tasks. This atomic is used to implement the wait in the
omp taskwait runtime call.
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void task_setup(kmp_task_t *task , omp_task_data *parent )

{

auto task_func = task ->routine;

omp_task_data task_data(parent ->team , parent ->icv);

hpx:: set_thread_data( &task_data );

task_func(task);

parent ->num_child_tasks --;

team ->num_tasks --;

delete [] (char *)task;

}

int omp_task(kmp_task_t * task_struct)

{

omp_task_data *task = get_task_data ();

task ->num_child_tasks ++;

async(task_setup , task_struct , task);

return 1;

}

Fig. 3. The implementation of task creation in OMPTX.

Task creation is implemented by two calls to the runtime: task alloc, which
allocates memory and omp task, which creates the task and passes control of it
to the runtime. The compiler computes the amount of memory needed for shared
and firstprivate data plus a small struct used by the runtime. The size is passed to
task alloc which allocates the memory and returns a pointer to it. This mem-
ory is freed once the task is completed at the end of task setup shown in Fig. 3.
The omp task call is implemented with async, similar to implicit task creation.
It returns immediately, and allows the HPX runtime to manage the scheduling
of the task. Similar to the thread setup function for spawning implicit tasks,
the task setup function initializes the metadata for the task and decrements
two counters after the task function call returns. The first of the counters decre-
mented in task setup records the number of active, or not completed, tasks in
a parallel region. This information is tracked by the executor in the compliant
version. The second counter maintains the number of active child tasks spawned
by a given task. These are necessary for the correct implementation of barrier
and taskwait respectively.

Tasks with dependencies are translated to an Intel OpenMP runtime call,
omp task with deps, a function similar to the omp task call, but with addi-
tional parameters for dependencies. These parameters include the number of
dependencies and an array of structs populated with the address of the variable
used and a flag indicating the type of dependence.

Since HPX uses futures to coordinate task dependencies and OpenMP uses
the address of the variables in the depend clause, a map is needed to match these
addresses with the corresponding future. This future is the one returned from
the last task that output a dependency to the given address. To do this, each
task has its own std::map<int64 t, shared future<void>> to map variable
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1 vector < shared_future < void > > dep_futures;

2 for(int i = 0; i < ndeps;i++) {

3 auto dep_addr = deplist[i]. base_addr;

4 if(df_map.count(dep_addr) > 0)

5 dep_futures.push_back(df_map[dep_addr ]);

6 }

7 shared_future new_task;

8 if(dep_futures.size() == 0 ) {

9 new_task = async(task , args);

10 } else {

11 auto deps = when_all(dep_futures );

12 new_task = dataflow(df_setup , args , deps);

13 }

14 for(int i = 0; i < ndeps;i++) {

15 int64_t dep_addr = deplist[i]. base_addr;

16 if(df_map[i].flags.out)

17 df_map[dep_addr] = new_task;

18 }

Fig. 4. Adding the newly created task to the map for later usage.

addresses to futures. Since each task has its own map, no synchronization is
needed to access it.

The omp task with deps function was re-implemented in three stages: build-
ing the dependency vector, spawning the task, and updating the dependency
map. In the first stage, shown on line 1 of Fig. 4, the addresses of dependencies
are translated to futures that can be used as arguments when creating tasks with
dataflow. This is done by traversing each dependency in the list, looking their
addresses up in the map, and, if that entry in the map holds a future, appending
it to the dependency vector. The first tasks created this way will have no input
dependencies in the vector, as the map starts off empty. Once the dependency
vector is built, the task can be created, as shown on line 7 through 13 of Fig. 4.
If the dependency vector is empty, then the task is spawned using async. Other-
wise, the task is created using dataflow, with the dependency vector as input.
No data is passed through the futures in this dependency vector, as OpenMP
tasks don’t have a return value. The futures only serve to signal that a task is
ready to begin. Finally, as shown in the loop beginning on line 14 of Fig. 4, the
future returned from the async or dataflow is inserted into the map for each
output dependency, to be used by later tasks as input dependencies.

5 Evaluation

In this section we compare and contrast overheads of OpenMP, HPX, and our
two implementations of OpenMP on top of HPX - which we call the “compliant”
and the “non-compliant” versions - and also show their performance on several
application kernels. These benchmarks were run on a single Haswell node of the
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NERSC Cori system. The Cori nodes contain 2 Haswell CPUs for a total of 32
cores and 64 threads. The OpenMP benchmarks were compiled with icc 18.0,
while HPX benchmarks were compiled with gcc 7.1. The performance of HPX
is best with gcc, and new language features used by HPX do not always work
with icc. So, for the kernel applications, we show speedup relative to the serial
version compiled with the corresponding compiler, gcc for HPX and icc for all
others.

Fig. 5. Task creation overhead per task Fig. 6. EPCC barrier benchmark

The microbenchmarks consist of a task creation benchmark, and the EPCC
taskbench benchmark suite [7]. The task creation benchmark is a variation of
the task creation benchmark included with HPX. An OpenMP version of this
benchmark was written for comparison, as well as 2 new HPX versions that use
the same synchronization as the OMPX runtimes. HPX future represents typical
application level HPX, HPX exec and OMPX use executors, and HPX atomic
and OMPX-NC both use atomic counters to synchronize tasks. The overhead
for this task creation benchmark can be seen in Fig. 5.

Fig. 7. EPCC Taskbench overhead
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EPCC taskbench is an OpenMP based microbenchmark suite that measures
overheads of different methods of task creation and synchronization. An HPX
version of these benchmarks was written for comparison. This benchmark suite
is comprised of 9 benchmarks, 8 of which are shown in Fig. 7, and the barrier
benchmark in Fig. 6. The performance gap between runtimes with the barrier
benchmark is so large that it needed to be included as a second figure. To sum-
marize these benchmarks: The barrier benchmark creates tasks on each thread
with a barrier after each task is created. Parallel task creation creates tasks on
each thread. The master task benchmark creates tasks on the master thread. The
master busy benchmark creates tasks on master, while all other threads execute
a large serial workload. The task wait benchmark creates tasks on each thread,
with a taskwait after every task is created. The nested task benchmark creates
tasks on each thread, which create nested tasks. The nested master benchmark
creates nested tasks on the master thread. The tree based benchmarks create a
tree of tasks recursively, with the branch version executing work on the branches,
and the leaf version on the leaves.

There are several noteworthy observations in these microbenchmarks. When
comparing the parallel task and master task benchmarks, we can see that the
OMPX version and the underlying executor have a substantial increase in run
time for concurrent task creation. The nested task and nested master benchmarks
also have concurrent task creation, but to a lesser extent than the parallel task
benchmark. This also corresponds to increased task creation time in the executor
based runtime. In the tree based benchmarks, we see the pure HPX versions take
longer, as the tree structure does not map well to futures when there are no data
dependencies involved. Overall, OpenMP performs consistently better than HPX
and both versions of OMPX on the microbenchmarks.

Fig. 8. Jacobi speedup Fig. 9. Stencil speedup

We have four kernel benchmarks to evaluate the OMPX runtime: LU, Jacobi,
1D Stencil, and Nqueens. The LU decomposition benchmark divides the matrix
into blocks and works on it in place, with each task writing to one block and
reading from multiple. Jacobi iteratively solves the 2D heat equation for a matrix
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that is divided up into chunks of rows, with each task writing one chunk and
reading from three. 1D stencil solves the 1D heat equation for an array which
is divided into chunks that the tasks operate on, similar to Jacobi. In each of
these kernels, the only synchronizations are task dependencies and a final wait
after the tasks have been created. The Nqueens benchmark solves the Nqueens
problem on a given board size, and has no data dependencies, only taskwait.

The Jacobi results in Fig. 8 use the best chunk size for each runtime and input
size. The performance at most chunk sizes was similar across all 4 approaches,
but with the HPX versions, the performance jumped substantially at chunk sizes
that were small enough to fit into cache. This was in the range of 2–8 rows per
chunk, depending on the problem size, while the OpenMP version did best when
the overall number of chunks was close to the number of threads. The 1D stencil
is similar to Jacobi, using task dependencies, but with less data reuse. We can
see in Fig. 9, the overhead introduced with OMPTX increases, but still close to
the OpenMP version. The HPX version achieves near linear scaling. The only
change introduced in the HPX version is the initialization of futures, which is
done parallel, and does not need to be done in OpenMP.

Fig. 10. LU execution time Fig. 11. LU speedup

We see the speedup of LU in Fig. 11, with OpenMP having the best speedup.
However, if we look at the execution times for LU in Fig. 10 we see that that
HPX has the best overall execution time. The 1D-Stencil and Jacobi kernels do
not have such an anomaly, but the Nqueens kernel does. We see in Fig. 12 the
performance of OpenMP is consistently the best. However, HPX shows better
scaling in Fig. 13.
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Fig. 12. Nqueens execution time Fig. 13. Nqueens speedup

6 Related Work

OCR [14] is a distributed tasking runtime with a very restricted interface. All
work is done in tasks and synchronization is done with task dependencies that
form a directed acyclic graph, or DAG.

Parsec [9] is another purely task based distributed framework. It provides an
abstract interface for defining tasks and their dependencies, which is translated
to C by a compiler. The underlying runtime uses MPI with predefined data
layouts the programmer can choose from. Legion [5] is a library based approach
using C++. Like Parsec, it provides an abstract syntax to define tasks and their
dependencies. The data is not simply wrapped like it is in OCR, the programmer
must describe how abstract sets or logical regions of data should be populated, so
the runtime can precisely place tasks and segments of data on separate memory
or devices. Regent [16] is a higher level interface to Legion that is easier to use.

XcalableMP [13] extends OpenMP to include distributed computing, using
a directive based approach, and has recently [17] added task related features
for distributed computing. The previous generation of distributed memory tak-
ing frameworks include Habanero [8] and Chapel. Some of the national labs
have developed distributed tasking frameworks that have gained widespread use
with Argobots [15] and Kokkos [11]. The necessary functionality to implement
OpenMP that is provided by HPX is also introduced in other tasking implemen-
tations that are not distributed, like OmpSs [10], StarPU [3], quark [19], intel
TBB [2], and qthreads [18].

7 Conclusions

We have introduced OMPX, an HPX based implementation of the Intel
OpenMP runtime, and discussed how a multi-paradigm programming interface
like OpenMP can be mapped to a purely task based library like HPX. We have
used microbenchmarks and kernel applications to to compare the performance
of HPX, the Intel OpenMP runtime, and two versions of OMPX. In the bench-
marks where data dependencies existed, HPX and OMPX were able to leverage
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locality in a way that OpenMP currently does not to achieve superior perfor-
mance. Additional benchmarks using larger applications would be desirable, but
applications that are task dependency based are not widely available.

With the microbenchmarks, we can also see that constructs that do not
translate directly to HPX, specifically barrier and thread related constructs,
have worse performance in HPX and OMPX. Executors initially had consistently
worse performance than atomics, but they were improved and optimized. Now
the version of OMPX that uses executors is often faster than the non compliant
version that uses atomics. The HPX library continues to expand, and includes a
new resource manager to control how and where tasks are executed. This could
be integrated into future versions of OMPX to further improve performance.

The next major extension to OMPX would include support for a distributed
environment and evaluate the different approaches to do so. This would require
initial exploration to determine how much compiler work and restrictions to
OpenMP would be needed. This would also include evaluating automatic task
distribution and the benefits of manually placing tasks using some existing
OpenMP abstraction or adding totally new construct to OpenMP.
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8. Cavé, V., Zhao, J., Shirako, J., Sarkar, V.: Habanero-Java: the new adventures
of old x10. In: Proceedings of the 9th International Conference on Principles and
Practice of Programming in Java, pp. 51–61. ACM (2011)

9. Danalis, A., Bosilca, G., Bouteiller, A., Herault, T., Dongarra, J.: PTG: an
abstraction for unhindered parallelism. In: 2014 Fourth International Workshop
on Domain-Specific Languages and High-Level Frameworks for High Performance
Computing (WOLFHPC), pp. 21–30. IEEE (2014)

10. Duran, A., et al.: OmpSs: a proposal for programming heterogeneous multi-core
architectures. Parallel Proces. Lett. 21(02), 173–193 (2011)

https://www.openmprtl.org/
https://software.intel.com/en-us/node/506045
https://software.intel.com/en-us/node/506045
https://doi.org/10.1007/978-3-642-03869-3_80
https://doi.org/10.1007/978-3-642-30961-8_24
https://doi.org/10.1007/978-3-642-30961-8_24


Mapping OpenMP to a Distributed Tasking Runtime 235

11. Carter Edwards, H., Sunderland, D.: Kokkos array performance-portable manycore
programming model. In: Proceedings of the 2012 International Workshop on Pro-
gramming Models and Applications for Multicores and Manycores, PMAM 2012,
pp. 1–10. ACM, New York (2012)

12. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: HPX: a task based
programming model in a global address space. In: Proceedings of the 8th Interna-
tional Conference on Partitioned Global Address Space Programming Models, p.
6. ACM (2014)

13. Lee, J., Sato, M.: Implementation and performance evaluation of XcalableMP:
a parallel programming language for distributed memory systems. In: 2010 39th
International Conference on Parallel Processing Workshops (ICPPW), pp. 413–
420. IEEE (2010)

14. Mattson, T.G., et al.: The open community runtime: a runtime system for extreme
scale computing. In: 2016 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–7, September 2016

15. Seo, S., et al.: Argobots: a lightweight low-level threading and tasking framework.
IEEE Trans. Parallel Distrib. Syst. 29(3), 512–526 (2018)

16. Slaughter, E., Lee, W., Treichler, S., Bauer, M., Aiken, A.: Regent: a high-
productivity programming language for HPC with logical regions. In: International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC 2015, TX, USA, November, Austin (2015)

17. Tsugane, k., Lee, J., Murai, H., Sato, M.: Multi-tasking execution in PGAS lan-
guage XcalableMP and communication optimization on many-core clusters. In:
Proceedings of the International Conference on High Performance Computing in
Asia-Pacific Region, HPC Asia 2018, pp. 75–85. ACM, New York (2018)

18. Wheeler, K.B., Murphy, R.C., Thain, D.: Qthreads: an API for programming with
millions of lightweight threads. In: IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2008, pp. 1–8. IEEE (2008)

19. Yarkhan, A., Kurzak, J., Dongarra, J.: Quark users guide. Innovative Computing
Laboratory, University of Tennessee, Electrical Engineering and Computer Science
(2011)



Assessing Task-to-Data Affinity
in the LLVM OpenMP Runtime

Jannis Klinkenberg1, Philipp Samfass2, Christian Terboven1,
Alejandro Duran3, Michael Klemm3, Xavier Teruel4, Sergi Mateo4,

Stephen L. Olivier5(B), and Matthias S. Müller1

1 Chair for High Performance Computing, IT Center, RWTH Aachen University,
Aachen, Germany

{j.klinkenberg,terboven,mueller}@itc.rwth-aachen.de
2 Department of Informatics, Technical University of Munich, Garching, Germany

samfass@in.tum.de
3 Intel, Santa Clara, USA

{alejandro.duran,michael.klemm}@intel.com
4 Barcelona Supercomputing Center, Barcelona, Spain

{xavier.teruel,sergi.mateo}@bsc.es
5 Center for Computing Research, Sandia National Laboratories,

Albuquerque, NM, USA
slolivi@sandia.gov

Abstract. In modern shared-memory NUMA systems which typically
consist of two or more multi-core processor packages with local mem-
ory, affinity of data to computation is crucial for achieving high perfor-
mance with an OpenMP program. OpenMP* 3.0 introduced support for
task-parallel programs in 2008 and has continued to extend its applica-
bility and expressiveness. However, the ability to support data affinity
of tasks is missing. In this paper, we investigate several approaches for
task-to-data affinity that combine locality-aware task distribution and
task stealing. We introduce the task affinity clause that will be part of
OpenMP 5.0 and provide the reasoning behind its design. Evaluation
with our experimental implementation in the LLVM OpenMP runtime
shows that task affinity improves execution performance up to 4.5x on
an 8-socket NUMA machine and significantly reduces runtime variability
of OpenMP tasks. Our results demonstrate that a variety of applications
can benefit from task affinity and that the presented clause is closing the
gap of task-to-data affinity in OpenMP 5.0.

Keywords: OpenMP · OpenMP tasks · Task affinity
Task scheduling · Work stealing

Under the terms of Contract DE-NA0003525, there is a non-exclusive license for use
of this work by or on behalf of the U.S. Government.

c© National Technology & Engineering Solutions of Sandia, LLC. 2018
B. R. de Supinski et al. (Eds.): IWOMP 2018, LNCS 11128, pp. 236–251, 2018.
https://doi.org/10.1007/978-3-319-98521-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98521-3_16&domain=pdf


Assessing Task-to-Data Affinity in the LLVM OpenMP Runtime 237

1 Introduction

Modern non-uniform memory access (NUMA) shared memory systems comprise
several sockets with multiple cores and local memory connected via an inter-
nal fabric such as the Intel R© QuickPath Interconnect [13]. Cores on a socket
can access local memory with lower latency and higher bandwidth than remote
memory. A proper data distribution and data locality (i.e., the alignment of com-
putation and data accessed by it) is crucial to sustain performance and exploit
the full potential of these architectures. Since the trend to increase size and
complexity of such machines continues, we consider these issues to become even
more important in the future.

OpenMP* is a programming paradigm that is widely used for shared memory
parallelization. Tasking, which allows parallelization of irregular and recursive
algorithms, was first introduced with OpenMP 3.0 [8] and applicability as well
as functionality have been extended since then. Many implementations already
use task stealing for automatic load balancing and hence, for improving parallel
performance. However, OpenMP still lacks locality-aware task scheduling and
does not provide a means to specify or consider affinity between tasks and data.
Thus, dynamic mapping of tasks to threads during run time leads to variations
in performance and increased execution times on NUMA architectures.

In this paper, we discuss several approaches for task-to-data affinity. By pro-
viding hints to compiler and runtime system, we guide task scheduling to reduce
NUMA effects and increase sustainable memory bandwidth. We investigate var-
ious scenarios to identify applications and situations that may or may not ben-
efit from task affinity using compute nodes from the production HPC system at
RWTH Aachen University.

Our work makes the following contributions:

1. We introduce the revised affinity clause for the task construct that will be
included in OpenMP 5.0 and reason about fundamental design choices.

2. We detail our experimental implementation in the LLVM OpenMP runtime
and explain how NUMA-aware task distribution and stealing can be applied
to influence the mapping between tasks and threads.

3. We perform an evaluation on different architectures using multiple bench-
marks to demonstrate the performance for various types of applications.

The remainder of the paper is structured as follows. Section 2 provides infor-
mation about related work in the area of task affinity and data locality using
OpenMP. Essential design concepts to support task affinity and the revised
affinity clause are introduced in Sect. 3. In Sect. 4, we describe our experi-
mental implementation in the LLVM runtime. Section 5 presents an evaluation
of our approach before we conclude and discuss future work in Sect. 6.

2 Related Work

Literature induces several contributions that are using information provided by
OpenMP task dependencies to mitigate the above-mentioned issues arising with
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task parallel programs on NUMA architectures. Muddukrishna et al. [6] pro-
pose techniques for data distribution and locality-aware scheduling. They imple-
ment separate task queues for architectural locations, i.e., NUMA nodes or home
caches, and use task data dependencies and weighted sums of page-wise access
latencies to identify adequate target queues for tasks. Task stealing is based on
the ranking of NUMA node distances. Virouleau et al. [12] also analyze data
specified in the depend clauses. They implemented approaches for data distribu-
tion, assignment of tasks and browsing the architectural hierarchy during task
stealing inside the XKAAPI runtime system and evaluated their implementation
on a 192-core NUMA machine.

There are also numerous other approaches. Huang et al. [5] introduce features
for explicit locality control in OpenMP. Threads are mapped to locations in a
block-wise fashion. Parallel regions as well as worksharing and tasking constructs
can then be executed with a defined set of locations and their threads. Thus,
they enable the programmer to influence the data layout and align tasks and
data. Olivier et al. [7] extended the OpenMP runtime with a set of API calls to
explicitly control the locality domain on which tasks are executed. Additionally,
they performed evaluations with a version that allows stealing between locality
domains and a strict version that represents prescriptive assignments between
tasks and locality domains.

In our previous work [10], several design issues for task-to-thread and task-
to-data affinity are discussed. They propose a new clause for the task construct
as well as solutions for taskgroup and taskloop. Experimental extensions for
the task construct have been implemented in the Nanos++ runtime [2]. Evalua-
tion indicates that the approaches improve performance up to 40% on a 2-socket
machine with Intel R© Xeon R© processors. In this paper, we carry out a deeper inves-
tigation on task-to-data affinity. We present an extended affinity clause and var-
ious scheduling strategies. Although data specified for affinity might also be used
as dependences, the essential concepts are not the same. Compared to prior work,
our work targets a clear separation between task dependences and affinity.

3 Task Affinity Support in OpenMP

In this section, we describe the essential concepts of our solution as well as the
requirements and limitations associated with it. Further, we present the revised
clause and design choices for it.

Looking at task-to-data affinity, the approach is that a programmer speci-
fies data accessed by the tasks. This is then treated as a recommendation for
the OpenMP implementation to execute the task on a resource that is close to
the location of the data. Specifying data on the task construct implies that the
data has to be accessible at the time of task creation. However, it provides an
architectural independent abstraction level and relieves the programmer from
thinking about explicit mappings (i.e., task-to-thread affinity) by placing the
burden on the runtime system. The runtime system is responsible for identifying
the physical location of the data references which might be an expensive oper-
ation. Futher, it has to find a suitable thread close to that location to execute
the task, ideally on the same NUMA node.
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As mentioned earlier, many OpenMP runtimes implement task stealing to
achieve a better load balance. Thus, information provided in task affinity clauses
should not be prescriptive but rather present hints to the runtime in order to
guide task scheduling, establish better data locality and at the same time main-
tain the ability for quick load balancing.

With OpenMP 5.0, users will have the possibility to express task affinity
using the following clause:

#pragma omp task a f f i n i t y ( l i s t )

In contrast to our previous work, it is now possible to specify multiple data
references and affinity clauses on a single task construct. Additionally, it offers
the freedom to express affinity to an entire array section or a dynamic number of
list items via iterators. Due to the fact that currently just task-to-data affinity
will be supported in OpenMP, there will not be any affinity type identifier as
we previously proposed [10]. However, if support for other kinds of task affinity
is complemented in future specifications, type identifiers can be introduced. In
that case, task-to-data affinity represents the default case for clauses without
identifier.

This paper compares and evaluates two fundamental approaches for task-
to-data affinity, which we refer to as modes. The first, here denoted by domain
mode, demands that tasks are executed close to the original location where the
data has been allocated. Another approach, denoted by temporal mode, aims
to execute the task at the last location where a task that used the same data
was executed. For the latter one, some kind of book keeping is required to keep
track of the last place. In addition, if tasks are stolen, that information has to
be updated.

While memory-bound applications might profit from referring to the original
location of the data, the temporal mode might be well suited for compute-bound
programs that rely on cache locality.

4 Implementation in LLVM

We developed an experimental implementation in the LLVM OpenMP runtime1.
Since it is compatible with the Intel compiler and also shipped with clang, which
is open source and available on many clusters, it has the potential to have an
impact on a large community.

In 2013, Intel donated a large portion of their OpenMP runtime to the LLVM
project. Due to the high compatibility, the Intel runtime internally works and
performs similarly. To avoid compiler modifications we emulated the affinity
clause with an API call implemented in our runtime. Benchmarks used for the
evaluation call the API function directly before the task construct. Although the

1 Our implementation is based on a LLVM development version for OpenMP 5.0 from
September 2017 and is available at https://github.com/jklinkenberg/openmp/tree/
task-affinity.

https://github.com/jklinkenberg/openmp/tree/task-affinity
https://github.com/jklinkenberg/openmp/tree/task-affinity
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specification supports multiple affinity clauses and list items, we are currently
only considering the first data reference that has been specified.

Our approach consists of two main components, a NUMA-aware task distri-
bution and task stealing, which are detailed in Sects. 4.2 and 4.3 respectively.

4.1 Characteristics: LLVM Runtime vs Libgomp

Before presenting our NUMA-aware extensions, some default characteristics of
LLVM and libgomp [4] (GCC’s OpenMP runtime library) with regard to tasking
are reviewed.

LLVM employs one task queue per OpenMP thread in the team. A thread
that is encountering a task construct will by default create a task and push it
to its local task queue. If a thread is idle, e.g., in a taskwait or barrier, it will
start a defined sequence of actions. First, it will check its local queue for work. If
this queue is empty, it will start stealing tasks from random thread queues until
all work is done. If a thread has stolen and executed a task, the process starts
from the beginning since the stolen task might have created child tasks that now
reside in the local task queue again. Creating and processing tasks with multiple
threads reduces the idle time and since they are mostly working on the local
queue there is only little performance degradation due to lock contention. The
design is also well suited for nested constructs if parent and child tasks work
on the same data. On the contrary, unequal distribution of tasks leads to an
increased overhead for task stealing and load balancing. Programs might also
suffer from that design if tasks working on remote data reside in a local queue
that could run faster in a different location.

In contrast to LLVM, libgomp implements a single central task queue. Thus,
libgomp does not suffer from poor distribution of tasks. However, a single queue
leads to a higher scheduling overhead because locks have to be acquired by each
thread for each enqueue and dequeue operation to avoid data races.

4.2 NUMA-Aware Task Distribution

In our implementation, we change the behavior of just pushing tasks to the local
task queue. For tasks with the affinity clause the runtime first has to determine
the physical location of the data reference. Usually physical data allocation of
the OS is done in pages of, e.g., 4 KB. Analyzing multiple data references within
a page leads to the same result. Hence, this choice is an adequate granularity
for our approach. We use move pages from libnuma [1] to identify the physical
location. In general, move pages allows explicit migration of individual pages to
other NUMA nodes. However, if the target NUMA node is not specified it will
not move the page but instead return the node where the corresponding page
currently resides.

In the second step, a thread residing on that NUMA node or close to it must
be selected by scanning the place list, and the task is pushed to its queue. To
accomplish that we implemented the temporal and domain mode discussed in
Sect. 3. Although book keeping is only required in temporal mode, we also use it
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Fig. 1. Flow charts describing the process of the task distribution phase.

for performance improvements in domain mode. In temporal mode, the physical
location has to be identified only once for a data reference. An entry containing
the reference and the selected thread is added to the map. If a task is stolen
by another thread, the entry is updated accordingly. For the next tasks using
the same data, the current value in the map is used as a target. In domain
mode, the NUMA node for the reference is saved, focusing on the original allo-
cation location. With a map, this identification is needed only once, and the
information can be reused for the next task specifying affinity to the same data.
In domain mode, the thread selection is performed for every task again. Flow
charts describing the process are illustrated in Fig. 1. Map entries remain for the
complete application run and will be cleared afterwards.

To select threads inside a NUMA node we implemented three different strate-
gies, a random selection of a thread on the node, selection in a round robin
fashion and a strategy selecting the thread with the lowest queue size. In total,
combining each mode with each strategy results in 6 different versions.

4.3 NUMA-Aware Task Stealing

To further improve our solution we adapted the task-stealing process of Sect. 4.1.
We stick with the behavior to favor tasks in the local queue before stealing.
However, before stealing from a random victim of the complete task team, a
thread should prefer stealing from a thread residing on the same NUMA node.
Thus, data locality can be improved but we still maintain load balancing between
NUMA nodes.

5 Evaluation

In this section, we evaluate the performance of our experimental task affin-
ity implementation and compare it with the same LLVM runtime without any
extensions as baseline for all tests. In some parts of our analysis, we additionally
compare it with GCC’s libgomp and the Intel OpenMP runtime. For assessing
the performance we use kernels of the following benchmarks.
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STREAM Synthetic Benchmark: Typically, STREAM is used to measure the
sustainable cache or memory bandwidth on a given architecture. It consists of
four different kernels that are executed multiple times per application run. For
our research, we created a special version of the STREAM benchmark that
utilizes OpenMP tasks for the kernels instead of a worksharing construct to
represent memory bound, task-parallel applications and to determine an upper
bound for improvement that can be obtained with task-to-data affinity. The size
of each double array is 231 elements, which matches 16 GB per array. Each kernel
is repeated 10 times. To create enough tasks for distribution, each kernel is split
into ntasks OpenMP tasks, where ntasks has been set to OMP NUM THREADS ∗ 20.

Merge Sort: We included a task parallel merge sort from the Barcelona OpenMP
Task Suite (BOTS) [3] as a representative for recursive divide and conquer algo-
rithms. The vector size to be sorted was set to 231 integer values.

CG Solver with SPMXV: A common way to parallelize sparse matrix vector
multiplication (SPMXV) is distributing the rows of the matrix among the par-
ticipating threads using a worksharing construct. Depending on the sparsity
pattern of the matrix, the SPMXV might suffer from severe load imbalance.
One mitigation is to use a dynamic or guided schedule or fixed size chunking.
However, in our scenario we use OpenMP tasks for that purpose and evaluate
if and how task affinity can improve the performance of applications that suf-
fer from natural load imbalances. Similar to STREAM, each chunk of rows is
split into 20 separate tasks. Finally, we compare the tasking versions with a
basic worksharing version of the solver. As input we use a sparse matrix with
235 million non-zero entries from an institutional application at RWTH Aachen
University.

Health: The Health benchmark, also derived from the Barcelona OpenMP Task
Suite, runs a simulation for a national health system. Due to its hierarchical
nature, Health represents a divide and conquer algorithm with a tree-based data
structure, which is able to exploit locality when traversing the tree. As input
file we use large.input but set the number of cities per level (branching factor)
to 48. In the data initialization, we evenly distribute the top level cities across
NUMA nodes. By increasing the branching factor we also increase the work load
and memory footprint of the application. Thus, effects can also be observed on
larger machines with multiple NUMA nodes.

All tests are conducted on two different architectures that are part of the
production HPC system at RWTH Aachen University. The first system is a
two-socket NUMA machine equipped with Intel R© Xeon R© E5-2650v4 (codename
“Broadwell”) processors with 24 cores in total running at 2.2 GHz and 128 GB
memory. In order to evaluate the impact of task affinity on systems with higher
amount of NUMA nodes we also perform tests on an 8-socket NUMA machine
consisting of Intel R© Xeon R© E7-8860v4 (code name “Broadwell”) processors run-
ning at 2.2 GHz with 144 cores in total and 1 TB memory. Both systems run Cen-
tOS* 7.4 (RHLE) with Linux* kernel version 3.10.0–693.17.1, installed patches
for Spectre/Meltdown and address space layout randomization (ASLR) set to 1.
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Thread 0 Thread 1 Thread 2 Thread 3

(a) Parallel creator: Task creation and data ini-
tialization follow the same pattern.

Thread 0 Thread 1 Thread 2 Thread 3

(b) Parallel creator inverted: Due to flipped
chunks threads create tasks that are working
on remote data.

Fig. 2. Parallel task creation schemes.

In order to ensure reliability and reproducibility we apply the same environ-
ment and basic configuration to all application runs. Each program is compiled
with the Intel R© Composer XE for C/C++ version 18.0.1 and -O3 optimiza-
tion. libgomp versions are compiled with GCC 7.2.0. We use aligned memory
allocation for data used in the benchmarks and distribute it across NUMA
nodes relying on the first touch policy of the operating system and #pragma omp
parallel for schedule(static). Additionally, we disable Transparent Huge
Pages (THP) in the Linux* kernel. To avoid movement or migration of data that
has been distributed across NUMA nodes we turn off automatic NUMA balanc-
ing OpenMP threads are pinned to physical cores and equally distributed across
the machine by setting OpenMP environment variables OMP PLACES=cores and
OMP PROC BIND=spread. Currently, several parts in the LLVM runtime take
advantage of the assumption that tasks are just pushed to local queues which
no longer holds for our approaches and might lead to deadlock-like situations.
Solving that issue requires a higher implementation effort that is not part of
this research. To avoid problems we disabled constraints during task stealing by
setting KMP TASK STEALING CONSTRAINT=0.

5.1 Preliminary Analysis with STREAM

Since the tasking version of STREAM is easy to understand and balanced, we
decided to use it for addressing the following research questions:

How Does the Location Where Tasks Are Created Affect the Performance of an
Application and How Can Task Affinity Help? The current implementation of
the adapted STREAM benchmark allows multiple execution scenarios. Besides
running with or without task affinity, one can select how to create OpenMP
tasks for the kernels. With the first option, denoted by single creator, only the
master thread is creating tasks but all threads in the team participate in the
work. This option is comparable to the existing taskloop construct nested inside
a master region, except that taskloop is currently not providing support for
affinity specifications. In option two, denoted by parallel creator, each OpenMP
thread is responsible for creating tasks corresponding to its own chunk that
actually follows the same pattern than the data initialization does. An example
is illustrated in Fig. 2a. We also created a third option, a worst case scenario
denoted by parallel creator inverted, to analyze the impact if tasks are created
in a different location than the data they are using. Here, each OpenMP thread
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Table 1. STREAM: speedup compared to baseline LLVM version.

Single creator Parallel creator Parallel creator inverted

domain.lowest 4.510 0.997 8.664

domain.rand 4.521 0.980 8.512

domain.round 4.501 0.981 8.516

temporal.lowest 3.695 0.980 1.398

temporal.rand 3.672 0.951 1.365

temporal.round 3.661 0.934 1.378

is still responsible for creating tasks but for a different chunk. To achieve that
we flipped the order of chunks as demonstrated in Fig. 2b. Experimental results
on our 8-socket machine with 64 OpenMP threads are shown in Fig. 3. Each
option is executed 15 times without task affinity as well as with every task
affinity combination presented in Sect. 4.2. As a reference point, we also added
the result for application runs with the default STREAM benchmark.

As expected, the LLVM and Intel runtimes are reporting similar performance
results and are already performing quite well in parallel creator versions because
task creation and data distribution follow the same pattern. Thus, they are very
close to the solution achieved with the default STREAM. Obviously, in such
situations, using task affinity is not beneficial. We see slightly higher execution
times for parallel task affinity versions caused by overhead for memory location
tracking and sophisticated task scheduling.

On the other hand, there are noticeable performance differences in scenarios
where tasks are not (always) created at the correct place. For the single creator
scenario, random task stealing in the LLVM and Intel runtime prevents data
locality in many cases. Looking at parallel creator inverted, threads start work-
ing on the local task queue first, that solely holds tasks accessing remote data,
before trying to steal from others. In both situations, task affinity can mitigate
these issues by distributing tasks to threads on the correct NUMA node. Table 1
displays speedup achieved for each setup compared to the baseline LLVM ver-
sion. Compared to domain mode, versions with temporal mode are reporting
poor performance caused by task stealing from a different domain. Due to the
map update that happens after a task has been stolen, the next task accessing the
same data will be pushed to the thread on the new NUMA node. Consequently,
the task accesses the data remotely. Especially, memory-bound applications can
profit from using domain mode whereas the temporal mode might provide bet-
ter results for compute-bound applications where the same data is repeatedly
accessed by multiple tasks.

Tests with libgomp, which employs a central task queue, illustrate that it
is severely suffering in the single creator setting. Due to its design, relative
performance for the parallel creator version is even worse compared to LLVM
and Intel. On the other hand, inverting the chunks does not lead to a serious
performance degradation in libgomp. However, ultimately, we observe that our
task affinity implementation is outperforming libgomp in most cases.
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Fig. 3. Execution time (median of 15 runs) for STREAM benchmark runs with and
without task affinity on an 8-socket NUMA machine using 64 OpenMP threads.

How Does NUMA-Aware Task Stealing Affect the Performance of Task Affin-
ity? Distributing OpenMP tasks to adequate threads close to the data is the
first step to establish data locality. However, the mapping between tasks and
threads is not enforced to maintain load balancing. If threads are idle, task
stealing is still expected to kick in. Especially in single creator setups or appli-
cations that exhibit an irregular task creation scheme, that might cause some
disturbance. Although distributing a task to a thread on the correct NUMA
node, it sometimes happens that another under-utilized thread, residing on a
different NUMA node, steals the task before it is started at the desired thread.
Consequently, this leads to remote memory accesses and higher execution time.
To mitigate this issue we use NUMA-aware task stealing to prefer stealing from
threads residing on the same node before stealing from any other threads. To
investigate the influence on task affinity we perform single creator runs with
NUMA-aware task stealing enabled and disabled. Figure 4 shows the speedup
compared to the baseline for both versions. Although most performance gain
stems from proper task distribution we observe that runs with NUMA-aware
task stealing outperform those without and obtain an improvement of about 7%
to 13%. Hence, it is used for further tests.

Is Task Affinity Able to Reduce the Run Time Variability of Task Executions?
Complexity and execution time of the STREAM kernels differ which makes it
hard to distinguish between real variations and those caused by different com-
plexity. Therefore, we just focus on the Triad kernel for this analysis. We run a
single creator scenario with the same configuration as before and record the exe-
cution time for each individual task. Figure 5 shows the distribution of execution
times. The LLVM baseline version has a substantially higher spread and median
which leads to the fact that several tasks are suffering from remote memory
accesses. On the contrary, all versions with task affinity, although having some
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Fig. 4. Speedup for STREAM single creator runs on an 8-socket NUMA machine using
64 threads with NUMA-aware task stealing enabled and disabled compared to baseline
LLVM runtime.

outliers caused by task stealing from a remote NUMA node, show a significant
reduction of variability. Measuring remote data volume with Likwid [9,11] con-
firms that assumption. The baseline version is accessing 69% of all data remotely
whereas for task affinity versions it is just about 13% to 17%.

What is the Most Promising Thread Selection Strategy? Results achieved with
the balanced STREAM indicate that there is no thread selection strategy that
is clearly outperforming the others. However, we notice a slightly better per-
formance with strategy lowest for both, domain and temporal mode. For more
complex or irregular benchmarks we expect lowest to obtain a fair load balance
within a NUMA node at the expense of a negligible overhead to determine the
queue with the lowest size. Therefore, lowest is considered the most promising
strategy and used for further analysis in this section.

5.2 Overall Performance and Scalability

In this section, we evaluate the overall performance for the previously mentioned
benchmark kernels with regard to scalability and speedup, i.e., the relative execu-
tion time compared to the baseline LLVM runtime. We execute each application
with and without task affinity and vary the number of threads per NUMA node
starting from one thread per NUMA node up to using all cores of the given
architecture. The STREAM tasking version runs with a single creator scenario.
Similar to STREAM, the SPMXV kernel in CG can also be executed with a
single or parallel creators. As pointed out in Sect. 5.1, using task affinity is not
profitable for a balanced parallel creator scenario that follows the same or a
similar pattern than the data initialization. For SPMXV we selected a parallel
creator scheme to investigate whether it makes sense to apply task affinity if an
application exhibits natural imbalances. Additionally, we compare the results to
a version that uses a worksharing construct for the kernel. Figure 6 presents abso-
lute execution time as well as relative execution time compared to the baseline
for each benchmark executed on our 2-socket and 8-socket NUMA machines.
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Fig. 5. Variability of individual task execution times for the Triad kernel using an array
size of 231. Each box plot is based on execution times of 12,800 individual tasks.

STREAM stops scaling with 6 to 8 threads per socket. While the baseline
is clearly suffering from remote memory accesses, affinity versions can saturate
more bandwidth by mostly working on local data and improve performance up to
4.5x. On 8 sockets temporal mode is more prone to task stealing from a remote
NUMA node whereas the chance to steal remote tasks decreases with two sockets
and temporal performs better.

On the contrary, improvement for merge sort is moderate, especially when
using a smaller number of cores. Nevertheless, by increasing the core count and
putting more pressure on the memory subsystem we were able to achieve a
performance gain of about 1.6x on 8 sockets. Remote memory accesses prevent
further scaling of the baseline version at about 80 threads. Although parallel
efficiency of affinity versions decreases with higher number of threads, there is
still some improvement up to 128 threads. On two sockets NUMA effects are
much weaker and using task affinity does not pay off.

Results for SPMXV indicate that, although dealing with imbalance, creating
tasks close to the data in LLVM is already performing well. Overhead for affinity
with domain mode does not result in a high degradation but also does not
provide any advantage whereas temporal mode is not able to compete on 8
sockets, especially at higher core count. Further, we observe that tasking beats
the worksharing version when using a smaller amount of cores. By increasing
the number of cores, data chunks and the impact of load imbalance decrease
and overhead of tasking versions becomes visible. Surprisingly, temporal mode
performs slightly better than LLVM on two sockets.

For Health, a slight improvement can be achieved on two sockets. Since
NUMA effects are much stronger on 8 sockets and Health profits from temporal
locality, it can obtain a speedup of about 1.6x by using the temporal mode.
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(b) STREAM on 8-socket
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(c) Merge sort on 2-socket
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(d) Merge sort on 8-socket

0

20

40

60

80

100

120

140

160

E
xe
cu
tio

n
tim

e
[s
]

2 4 6 8 10 12 14 16 18 20 22 24

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

# threads

R
el
.e
xe
cu
tio

n
tim

e

worksharing Rel. time - worksharing

(e) CG on 2-socket

0

10

20

30

40

50

60

70

80

E
xe
cu
tio

n
tim

e
[s
]

16 32 48 64 80 96 112 128 144

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

# threads

R
el
.e
xe
cu
tio

n
tim

e

(f) CG on 8-socket

0
25
50
75

100
125
150
175
200
225
250
275
300
325

E
xe
cu
tio

n
tim

e
[s
]

2 4 6 8 10 12 14 16 18 20 22 24

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2

# threads

R
el
.e
xe
cu
tio

n
tim

e

(g) Health on 2-socket

0

5

10

15

20

25

30

35

40

E
xe
cu
tio

n
tim

e
[s
]

16 32 48 64 80 96 112 128 144

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

# threads

R
el
.e
xe
cu
tio

n
tim

e

(h) Health on 8-socket

Fig. 6. Scalability results for benchmarks on a 2-socket and 8-socket NUMA machine:
Absolute execution time and relative execution time compared to baseline LLVM. For
these plots we use the median of 10 application runs.
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6 Conclusion and Future Work

In this paper, we evaluated the language extensions to express task-to-data affin-
ity that will be part of OpenMP 5.0. The revised affinity clause for the task
construct and its design choices have been described. Further, we presented two
fundamental approaches for task-to-data affinity. The first targets temporal local-
ity by placing the task on the thread where the last task has been executed that
used the same data. The second approach, denoted by domain mode, focuses
on the the original location where the data has been allocated and distributes
the task to a thread close to that location, ideally on the same NUMA node.
Additionally, several strategies for choosing a thread within a NUMA node have
been presented and evaluated.

We created an experimental implementation in the LLVM OpenMP runtime
consisting of a NUMA-aware task distribution (i.e., the approaches mentioned
above) and NUMA-aware task stealing to further increase data locality by pre-
ferring to steal from a thread within the same NUMA node. To assess the per-
formance of our approach and to identify situations and applications that can
benefit from task affinity we use several benchmark kernels representing various
application types and two architectures with different numbers of NUMA nodes.
Results show that a significant speedup can be obtained with domain mode for
memory-bound applications with single task creator schemes or if tasks are cre-
ated at a thread which is not close to the data. Applications with a parallel
task creator scheme that follows the same pattern as the data initialization do
not profit from using task affinity. Irregular and recursive applications, especially
when relying on cache locality, may benefit from temporal mode on architectures
with multiple NUMA nodes.

For future work we plan to investigate ways to enable the selection of modes
presented in this paper by, e.g., adding a clause to the parallel or taskgroup
construct. Another plan is to extend the taskloop construct to allow affinity
expressions based on the iterator variable that are then internally passed to the
created tasks. Since our approach is currently limited to a single data refer-
ence, we consequently plan to evaluate strategies that deal with multiple affinity
specifications and list items.
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