
Chapter 6
Optimal Structure of Experiential Services:
Review and Extensions

Guillaume Roels

Abstract In many consumer-intensive (B2C) services, delivering memorable
customer experiences is often a source of competitive advantage. And yet, there
exist few formal guidelines to design the structure of such experiences. In this
chapter, we introduce a utility-based model of customer satisfaction when customers
are subject to acclimation, satiation, and memory decay. We then review and extend
principles for optimizing the structure of an experience to maximize customer
satisfaction; specifically, we characterize the optimal sequence of activities, the
optimal activity selection, and the optimal information policy about an uncertain
outcome. We find that, in general, the optimal experience structure is non-monotone
in service levels and makes use of breaks/intermissions to create contrasts and reset
satiation levels. However, in many extreme cases, we show that a crescendo design
is optimal. We then discuss the implications of our framework for quality manage-
ment in services, especially as it relates to a potential gap between ex-ante expecta-
tion and ex-post satisfaction, and for monetizing customers’ utilities derived while
anticipating or recalling the event.

Keywords B2C services · Experiences · Behavioral operations management ·
Scheduling · Social psychology

6.1 Introduction

In competitive consumer-intensive (B2C) service industries (e.g., healthcare, leisure
and hospitality, transportation), delivering memorable customer experiences is often
a source of competitive advantage (McKinsey 2016). Experiences are indeed one of
the key service differentiators once basic service outcomes are met for a given price
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point (Berry et al. 2002). Experience drives customer satisfaction, which then drives
customer loyalty (Braff and DeVine 2008), which in turn drives revenue growth and
profitability (Heskett et al. 1994). In fact, Pine and Gilmore (1998, pp. 97–98)
propose that “from now on, leading-edge companies . . . will find that the next
competitive battleground lies in staging experiences.”

Because experiences are ubiquitous in B2C services and can be a source of
competitive advantage, Ostrom et al. (2015) identify the topic of “enhancing the
service experience” as one of the 12 research priorities for service research, and they
classify it within the context of value creation. Zomerdijk and Voss (2010) identify
six levers that can be pulled to enhance service experiences, namely (1) the orches-
tration of clues (or cues) that are emitted by products, services, and the environment,
within and across service encounters (see, e.g., Berry et al. 2002, Haeckel et al.
2003), (2) the design of the sensory environment using, e.g., servicescape frame-
works (Bitner 1992), (3) the engagement of front-line employees with customers,
(4) the dramatic structure of the experience, (5) the management of the presence of
fellow customers, and (6) the coordination between the front- and backstage pro-
cesses, and more generally, of processes across customer interfaces, using, e.g.,
service experience blueprints (Patrício et al. 2008, 2011). This chapter focuses on the
fourth lever, namely the design of the dramatic structure (i.e., the sequence, pro-
gression, and duration of activities) of an experience.

We take the perspective of a service provider who seeks to optimize the structure of a
service encounter to maximize customer satisfaction. Throughout the encounter, the
customer is exposed to various stimuli, which can be multi-dimensional and time-
varying, and she derives (instantaneous) utility from them.Her satisfaction is a summary
of these instantaneous utilities, assessed at the end of the process (Oliver 2015).

In practice, experiences are built up through a collection of touchpoints in multiple
phases of a customer’s decision process or purchase journey (Lemon and Verhoef
2016). We focus here on one such touchpoints, i.e., a particular encounter. Accord-
ingly, we adopt customer satisfaction as our main performance objective, and not the
more holistic metric of customer experience, which is affected by factors falling outside
the encounter (e.g., search, after-sale purchase), across channels, or even outside the
service provider’s control (e.g., influence of others); see Verhoef et al. (2009).

Because the customer is the ultimate recipient of the experience (Pullman and
Gross 2004), one needs to turn to behavioral science to understand how different
types of experience structures affect customer satisfaction. Building on the findings
from behavioral science, Chase and Dasu (2001) formulate five experience design
principles: Finish strong; Get the bad experiences out of the way early; Segment the
pleasure, combine the pain; Build commitment through choice; Give people rituals
and stick to them. See also DeVine and Gilson (2010). Although these principles are
very sensible, there has been little guidance—until recently—as to when and how
they should apply.

To fill that gap, an emerging stream of research has offered novel design insights
by formally modeling a customer’s utility, with specific preferences or behavioral
regularities, and optimizing the structure of the experiential process to maximize that
utility.
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The purpose of this chapter is to review that nascent literature and offer novel
insights into the optimal design of the structure of service experiences by general-
izing results by Das Gupta et al. (2015) and Ely et al. (2015), among others.
Specifically, we propose a utility-based model of customer satisfaction when cus-
tomers are subject to acclimation, satiation, and memory decay and we embed that
utility model into a service design optimization model. We consider a single service
encounter with fixed total duration, consisting of several activities, potentially
preceded by an anticipation period and followed by a recall period. Throughout
the experience, the customer is exposed to a sequence of activities, each associated
with various service levels (or stimuli) from which the customer derives utility.
Activities are homogenous in the sense that they are characterized by the same set of
attributes, but they differ in terms of service levels on each of these attributes.

We study the following structure design decisions: How to sequence activities
within the encounter? How to allocate duration to the activities? Which activities to
select? How to reveal information about an uncertain state of nature to maximize
suspense or surprise?

As proposed by Kahneman et al. (1997), customer satisfaction, or equivalently
customers’ remembered utility, may differ from their total utility derived from the
service. In particular, we assume that customers are subject to memory decay
(Ebbinghaus 1913); that is, when customers recall how much utility they derived
from the experience, they put greater weight to the most recent events. In addition,
we consider specific customer preferences, or behavioral regularities, which affect
their instantaneous utilities. Specifically, we assume that customers are subject to
acclimation (a.k.a., adaptation, habituation); that is, a customer’s instantaneous
utility from a particular activity’s service level is assessed relative to a reference
point, which adapts to states and reacts to changes (Hsee and Abelson 1991; Wathieu
1997). We also assume that customers are subject to satiation; in particular, a
customer’s instantaneous utility from a particular activity is a function of past
consumption (Baucells and Sarin 2007). Finally, customers may exhibit decreasing
marginal returns to gains (i.e., concave utilities) and loss aversion.

In practice, customer utilities may be subject to other behavioral preferences or
regularities such as mental accounting or the endowment effect (see Thaler 2015 for
an overview). We focus here on memory decay, acclimation, and satiation because
their effect on satisfaction is intimately related to the structure of the experience (e.g.,
sequencing and duration of activities). In contrast, the effect of other behavioral
factors (e.g., mental accounting) may be less related to the structure of the experi-
ence, but more to its framing (or marketing; e.g., communication, pricing), which
falls outside the scope of this chapter. There are other behavioral factors that may be
related to the structure of the experience (e.g., the primacy effect), but to the best of
our knowledge, there has been no formal model characterizing the optimal experi-
ence design in the presence of these effects, and we leave it for future research to
further explore those phenomena.

Throughout the analysis, we assume that customers are captive, i.e., are present
from the beginning to the end of the encounter. In particular, we do not consider
decisions that relate to customer engagement, such as the design of customer
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narratives or work allocation policies (Roels 2014; Bellos and Kavadias 2017), and
leave it to future research to incorporate those into our analytical framework. We
also assume that the service is not customer-routed, that is, the sequencing, duration
allocation, and activity selection decisions are under the provider’s control. Exam-
ples of such non-customer-routed service experiences with homogenous activities
and captive customers are live performances (e.g., music concerts, magic shows,
fireworks), executive education programs, conferences, massages and spa treat-
ments, fitness classes, museum tours, and dental procedures.

The chapter is structured as follows. In the next section, we introduce a utility-
based model of customer satisfaction in the presence of acclimation, satiation, and
memory decay, and we embed it within a generic optimization model of experience
structure design. Sections 6.3–6.5 study three specific cases of structure design
decisions: Considering a fixed set of activities with fixed duration and fixed service
levels, Sect. 6.3 characterizes the optimal sequence of activities under various effects
of acclimation, satiation, and memory decay. Considering fixed durations, Sect. 6.4
characterizes the optimal activity selection, subject to a budget constraint on their
service levels. In Sect. 6.5, we consider a specific type of activities, namely messages
that update customer beliefs about an uncertain outcome. We characterize the
optimal sequence of messages, i.e., the optimal information policy, that maximizes
customer satisfaction from their experienced suspense or surprise. Sections 6.6 and
6.7 expand the scope of the analysis beyond a single encounter to assess what
happens before and after the experience. Specifically, Sect. 6.6 identifies a potential
gap between a customer’s ex-ante expectations about an experience and her ex-post
satisfaction and discusses its implications for quality management; and Sect. 6.7
proposes a model of customer utility during anticipation and recall. We conclude in
Sect. 6.8 with future research directions. All proofs appear in the Appendix.

6.2 Model

We consider a service encounter taking place over T discrete time periods and
consisting of N activities. Each activity is characterized along K orthogonal attri-
butes, which can be physiological (e.g., noise, smell, sweetness), cognitive (e.g.,
level of mathematical sophistication), or emotional (e.g., fear, joy).

For any activity i¼ 1, . . ., N, let xk, i be the service level on attribute k¼ 1, . . ., K,
and xi ¼ (x1, i, . . ., xK, i) be the corresponding vector of attributes. For simplicity, we
assume that the service level remains constant during the duration of an activity.
(Otherwise, an activity consisting of multiple phases with different service levels
could be split into multiple activities with constant service levels.) In Sect. 6.5, we
interpret xi as a collection of messages.

Let di and d̄i be respectively the lower and upper bounds on activity i’s duration.
When di ¼ d̄i, the duration of the activity is fixed. When di ¼ 0, the service provider
has the flexibility to spend zero time on activity i, i.e., to remove it from the
encounter.
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The service provider’s decision consists of choosing which activity to schedule in
any period. For any t¼ 1, . . ., T, let πt be the activity index scheduled in period t; that
is, πt ¼ i if activity i is scheduled in period t. Let π ¼ (π1, . . ., πT) be the service
provider’s decisions, constrained to belong to a feasible set Π(x). In this model
formulation, we keep the representation of Π(x) abstract, but note that it can include
many different types of constraints such as

• minimum activity durations, i.e., if Activity i has been scheduled to start at time t,
then no other activity can be scheduled in periods t, . . . , t þ di, and Activity
i cannot be scheduled to start at an earlier or later time;

• precedence constraints, e.g., Activity i must precede Activity j;
• budget constraint on the total set of activities being scheduled, e.g., when K ¼ 1,XT

x B for some budget B;

• disjunctive constraints on activity selection, e.g., either Activity i or Activity
j may be scheduled in the encounter, but not both of them.

With a slight abuse of notation, we denote by xt ¼ xπt the service levels of the
activity scheduled in period t, and by x ¼ (x1, . . ., xT) the corresponding vector. This
generic framework can encompass such design decisions as activity sequencing,
duration allocation, or activity selection.

The utility the customer derives from an activity scheduled in period t depends on
three variables, namely,

1. the activity’s service level on each attribute k, denoted as xk, t, with xt¼ (x1, t, . . .,
xK, t),

2. a reference level on attribute k at the beginning of period t, denoted as rk, t, with
rt (r1, t, . . ., rK, t), and

3. a satiation level on attribute k at the beginning of period t, denoted as sk, t, with
st (s1, t, . . ., sK, t).

We denote by uk(x, r, s) the customer’s instantaneous utility associated with
service level x on attribute kwith a reference level r and a satiation level s. Following
Baucells and Sarin (2010), we assume that

uk x; r; sð Þ ¼ vk x– r þ sð Þ – vk sð Þ, ð6:1Þ

in which vk(x) denotes the customer’s instantaneous utility associated with service
level x on attribute k with an initial reference level of zero and an initial satiation
level of zero. We assume throughout that vk(x) is increasing and that vk(0) ¼ 0.
For certain results (e.g., Propositions 3, 5, 6, and 7), we will make additional
restrictions on vk(x), such as concavity or loss aversion.1

1Prospect theory posits that is concave for all x ≥ 0, convex for all x < 0, and exhibits loss aversion
in the sense that –vk(–x) ≥ vk(x) ≥ 0 for all x > 0; see, e.g., Baucells and Sarin (2010) and Kőszegi
and Rabin (2006).
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Hence, the utility a customer derives from a service level x is assessed relative to a
reference point r, and the higher that reference point, the smaller the utility. For
instance, a customer entering a store that has an ambient temperature of 70 ○F will
enjoy more the ambient warmth if the outside temperature is low. In addition, the
utility from current consumption is a function of past consumption, i.e., of the
satiation level s; specifically if vk(x) is concave, the higher past consumption, the
lower the utility from current consumption. For instance, a customer eating steak will
enjoy more utility if she is hungry than if she just had a filling appetizer.

Attributes are orthogonal in the sense that reference and satiation levels on
attribute k are a function of past service levels on that particular attribute k, but
independent of the past service levels on the other attributes l 6¼ k. Similar to
Baucells and Sarin (2010), we consider the following state transitions:

rk, tþ1 ¼ α xk, t þ 1– αð Þ rk, t ð6:2Þ
sk, tþ1 γ xk, t rk, t sk, t , 6:3

in which α 2 [0, 1] is the rate of acclimation (a.k.a. adaptation, habituation) and
γ 2 [0, 1] is the rate of decay in the satiation level. More general models could
consider attribute- or activity-specific rates.

Following Kőszegi and Rabin (2006), Bleichrodt et al. (2009), and Baucells
and Sarin (2010), we assume that the instantaneous utility associated with a
multi-attribute service level xt, reference level rt, and satiation level st, denoted as
u(xt, rt, st), is additively separable, i.e.,

u xt; rt; stð Þ ¼
XK

k¼1
uk xk, t; rk, t; sk, tð Þ: ð6:4Þ

Although the customer derives a total utility U x; r1; s1ð Þ ¼ T

t¼1
u xt; rt; stð

from the experience (Edgeworth 1881), the customer’s remembered utility, which
drives future purchase decisions, usually differs from the total utility (Kahneman
et al. 1997). Let S(x, r1, s1) be the customer’s remembered utility, or satisfaction,
derived from an encounter featuring service levels x, when the customer’s reference
level and satiation level at the beginning of the encounter are equal to r1 and s1. A
customer who is subject to memory decay (Ebbinghaus 1913), will remember more
recent events than past events. With exponential memory decay, this leads to

S x; r1; s1ð Þ ¼
XT
t¼1

δT–t u xt; rt; stð Þ, ð6:5Þ

in which δ is the rate of memory decay (Das Gupta et al. 2015). More generally,
serial effects such as primacy and recency could be incorporated (Karmarkar and
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Karmarkar 2014), e.g., Sð Þx; r1; s1 ¼ wt uð Þxt; rt; st , where wt is the weight

t¼1
associated with position t.2,3

when the customer is subject to memory decay, i.e., (6.5), when utilities are
additively separable across attributes, i.e., (6.4), and when the customer is subject
to acclimation, i.e., (6.1) and (6.2), and satiation, i.e., (6.1) and (6.3).
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Alternatively, Frederickson and Kahneman (1993) suggested that customers only
remember the peak and the end of an experience, i.e., that S(x, r1, s1)¼ δmaxt ¼ 1, . . .,

Tu(xt, rt, st) + (1 – δ) u(xT, rT, sT). Building upon the peak-end rule, Dixon and
Verma (2013) empirically find that customers’ remembered utility from a concert
season of a performance art center is a function of the peak, end, spread (i.e., timing
of the peak), and trend. Dixon and Thompson (2016) use this objective to optimize
season bundles. However, the peak-end rule is deceptive for design since it would
imply that all sequences of activities with the same end would lead to identical
satisfactions.

In this chapter, we consider a model with acclimation, satiation, and memory
decay. Accordingly, the service provider seeks to optimize the sequence of activities,
allocate duration, and/or select activities to maximize customer satisfaction,

maxπ2Π xð ÞS xπ1 ; . . . ; xπTð Þ; r1; s1ð Þ

We next characterize the optimal design in three particular cases, namely (1) the
optimal sequencing of activities for a fixed set of activities with fixed duration;
(2) the optimal selection of activities when there is a budget constraint on the
aggregate service levels; and (3) considering activities as messages, the optimal
information policy to maximize recollection of suspense or surprise.

6.3 Activity Sequencing

In this section, we consider a fixed set of activities with fixed durations (i.e., di ¼ d̄i

¼ di ≥ 1 ) such that
XN

i¼1
di ¼ T and we characterize the optimal sequence of

activities to maximize customer satisfaction. In order to derive first-order structural
results, we assume no precedence constraints, i.e., all permutations are possible.

In general, the optimal sequence of activities can be quite complex in the presence
of the three behavioral factors of acclimation, satiation, and memory decay, and a
complete characterization is beyond the scope of this chapter. Instead, we next
consider several extreme cases, and we find that sequencing activities in increasing

2Even without explicitly modeling primacy effects, we find that a U-shape sequence may be optimal
under Model (6.5). See Proposition 5.
3Baucells and Bellezza (2017) consider an even more general model with a discount factor that is
period-specific and dependent on the magnitude of the utility experienced in that period.



Table 6.1 Summary of results on optimal sequences

Proposition
Memory
decay Acclimation Satiation Utility

Optimal
design

1 No ( ¼
2 No

α 0)¼ No (γ 0) Crescendo

α 0) Full (γ 1) Crescendo

3 No δ ¼ 1) Full (α 1) No (γ 0) Subadditive, loss
aversion

Crescendo

Full (γ 1) Crescendo

5 Linear

( ¼ ¼
( ¼ ¼

4 N δ 1)o ( ¼ ¼
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U-shaped

order of service levels, i.e., in crescendo, is often optimal. Considering single-
attribute service levels (i.e., K ¼ 1), the first two propositions study the role of
memory decay with full or no decay in satiation (i.e., γ ¼ 0 or γ ¼ 1), and the next
two propositions study the role of acclimation with full or no decay in satiation. We
then consider multi-attribute service levels when utilities are linear (i.e., vk(x) ¼ wk x
for all k). Table 6.1 offers a summary of our results on optimal sequences.

Considering single-attribute service levels, we first characterize the case with
only memory decay, no acclimation, and no satiation, generalizing the result
obtained by Das Gupta et al. (2015) to the case of nonlinear utility functions.
Because memory decay puts greater weight on the last activities, it is optimal to
schedule the activities with the highest service levels near the end of the encounter.

Proposition 1: Suppose that K 1 and thatdi d̄i di 1 for all i. When there is¼ ¼ ¼ ≥
no acclimation nor satiation (α ¼ γ ¼ 0), it is optimal to sequence activities in
increasing order of service level.

The next proposition complements Proposition 1 by considering the case with no
decay in satiation. Similar to the case with no satiation, a crescendo is optimal when
satiation never decays.

Proposition 2: Suppose that K¼ 1, that di ¼ d̄i ¼ di ≥ 1 for all i. When customers
experience no decay in satiation (γ ¼ 1) and never acclimate (α ¼ 0), it is optimal to
sequence activities in increasing order of service level.

However, for intermediate levels of decay in satiation (0 < γ < 1), the optimal
sequence when there is no acclimation may not necessarily be a crescendo, as
illustrated in Fig. 6.1. In order to yield a high utility in the last periods (which are
heavily weighted due to memory decay), it is important to set the satiation level prior
to the last period sT at a low value. Because of decay in satiation, the satiation level sT
depends more on the most recent service levels than on the earlier ones. Accordingly,
it may be optimal to drop the service levels in the middle of the encounter to reset the
satiation level to a low value and maximize the utility derived from the subsequent
activities. Effectively, one should insert a break or intermission to reduce satiation
and fully enjoy the end of the encounter.



¼

6 Optimal Structure of Experiential Services: Review and Extensions 113

Fig. 6.1 Optimal sequence with memory decay, but no acclimation. (Note: δ¼ 0.2, α¼ 0, γ ¼ 0.5,
v xð Þ ¼ ---

x
p

if x ≥ 0 and – ------–x
p

if x < 0, T ¼ 5, r1 ¼ 0, s1 ¼ 0, x ¼ (1, 2, 3, 4, 5). Optimal sequence
identified through exhaustive search)

We next investigate the role of acclimation without memory decay (i.e., when
δ¼ 1). Das Gupta et al. (2015) show that with linear utilities, crescendos are optimal.
We next generalize their result to the case with nonlinear utilities.

We first consider the case of no satiation (γ ¼ 0) and assume full acclimation
(α¼ 1). We require the utility function to be such that for all x > 0, v(x + y)≤ v(x) + v
( y), which is a weak form of subadditivity (and satisfied when v(x) is concave), and
that –v(–x) ≥ v(x) ≥ 0 for all x > 0, which implies loss aversion. Under those
conditions, an increasing sequence x1 < x2 < x3 always generates greater satisfaction
than a U-shaped sequence (e.g., x2 > x1 < x3), because the disutility obtained from the
initial drop in service levels will not be compensated by the utility obtained from the
final increase in service levels due to loss aversion.

Proposition 3: Suppose that K¼ 1, that di ¼ d̄i ¼ di ≥ 1 for all i, that, for all x > 0,
v(x + y)≤ v(x) + v( y), and that–v(–x)≥ v(x)≥ 0 for all x > 0. When customers fully
acclimate (α ¼ 1), but experience neither memory decay (δ ¼ 1) nor satiation
(γ 0), it is optimal to sequence activities in increasing order of service level.

The next proposition complements Proposition 3 by considering the other
extreme of satiation, i.e., when there is no decay in satiation level (γ ¼ 1). Unlike
Proposition 3, no condition is required on the shape of the utility function.

Proposition 4: Suppose that K ¼ 1 and that di ¼ d̄i ¼ di ≥ 1 for all i. When
customers experience no decay in satiation (γ ¼ 1) and no memory decay (δ ¼ 1), it
is optimal to sequence activities in increasing order of service level.

However, for intermediate levels of decay in satiation (0 < γ < 1), the optimal
sequence when there is no memory decay may not necessarily be a crescendo, as
illustrated in Fig. 6.2. Decreasing the service level of the activities in the middle of
the encounter indeed resets both the reference point and the satiation level to low
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Fig. 6.2 Optimal sequence with acclimation, but no memory decay. (Note: δ¼ 1, α¼ 0.1, γ ¼ 0.4,
v xð Þ ¼ ---

x
p

if x ≥ 0 and – ------–x
p

if x < 0, T ¼ 5, r1 ¼ 0, s1 ¼ 0, x ¼ (1, 2, 3, 4, 5). Optimal sequence
identified through exhaustive search)

values, thereby increasing the utility from the subsequent activities. Although this
initial drop in service level may potentially result in negative utility due to acclima-
tion (especially in the presence of loss aversion), such disutility can be mitigated if
the satiation levels are high already. Here the role of the break or intermission is not
only to reduce satiation, but also to create contrast.

Overall, we have shown that when satiation exhibits either full or no decay,
memory decay and acclimation individually lead to crescendos. A common recom-
mendation for experience designers is indeed to “finish strong;” for instance, the tour
of Guinness Storehouse ends with a highly-valued complimentary drink in a sky bar
(Zomerdijk and Voss 2010).

However, as shown in Das Gupta et al. (2015), even with no satiation, combining
memory decay and acclimation could lead to U-shaped optimal designs, as is
illustrated in Fig. 6.3. The intuition is as follows: Together, memory decay and
acclimation favor a steep gradient in service levels near the end of the encounter. To
achieve a sharp increase in service levels at the end of the encounter it may be
optimal to move some of the activities that are associated with a high service level at
the beginning of the encounter. Although this results in negative utility when the
customer experiences a drop in service levels, this carries little weight in the
customer’s overall assessment of the encounter given that this disutility happens at
the beginning of the encounter and tends to be forgotten. U-shape sequences are in
fact ubiquitous in practice, such as in music concert’s sequence of songs (Baucells
et al. 2016) or in arc-like structures of exposition (Zomerdijk and Voss 2010).

We next generalize the characterization obtained by Das Gupta et al. (2015) to
multi-attribute service levels for linear utilities. With linear utilities, satiation has no
impact. In this case, the optimal sequence is in general U-shaped in the activities’
weighted average service levels, and the last two activities are sequenced in increas-
ing order of weighted average service level.
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Fig. 6.3 Optimal sequence with acclimation and memory decay, but no satiation. (Note: δ ¼ .5,
α ¼ 0.9, γ ¼ 0, v xð Þ ¼ ---

x
p

if x ≥ 0 and – ------–x
p

if x < 0, T ¼ 5, r1 ¼ 0, s1 ¼ 0, x ¼ (1, 2, 3, 4, 5).
Optimal sequence identified through exhaustive search)

Proposition 5: Suppose that d ¯
i ¼ di ¼ di ≥ 1 for all i and that vk(x)¼ wk x for all k.

Then, it is optimal to sequence activities in a U-shaped fashion in terms of weightedXK
average attributes wk xk, i. In particular, if Activity i precedes Activity j in thek¼1
optimal sequence and XK K
• If Activity j is not the last activity, then wk xk, i ≥ wk xk, j if andk¼1 k¼1

only if the starting time of Activity i is less than⎛ ⎞
X

j1 –d –d –d di
ln –δ i –– jδ þδ

t ≤ d d d

T þ 1– d1– 1 α – i– j i j
$$ ð Þ– ð Þ1

– ––α
–þð Þ1–α

ln 1–α .ð Þδ

K K
• If Activities i and j are the last two activities, then w⎛ k xk, i¼1

≤ wk xk, j.k k 1
–d –d d d– i– j

¼
1 δ

d
þδ

– i– j
ln δ

d d

In particular, for short encounters, i.e., when T ≤ d1
– – ––ð Þ–α – –ð Þ1– jα þð Þ1– i1 i jα

ln 1–α
δ

X

–1 for all possible durations (di, dj), it is optimal to sequence activities inXK
increasing order of their weighted service level wk xk, i. This condition

k¼1
can easily be shown to hold true when there is no memory decay (δ ¼ 1) or no
acclimation (α 0), consistent with Propositions 1 and 3.
With nonlinear utilities, satiation matters, and the optimal design is in general

more complex than a crescendo or a U-shape. For instance, Fig. 6.4 shows that even
in the absence of memory decay (δ ¼ 1) and acclimation (α ¼ 0), the optimal design
could consist of multiple local minima aimed at resetting the satiation level to a low
value and increasing the utility from the subsequent activities. Because of satiation, it
may thus be optimal to insert breaks in a performance to maximize the utility from
the next segments.
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Fig. 6.4 Optimal sequence with satiation, but no acclimation and no memory decay. (Note: δ ¼ 1,
α ¼ 0, γ ¼ 0.1, v xð Þ ¼ ---

x
p

if x ≥ 0 and –2
------–x

p
if x < 0, T ¼ 5, r1 ¼ 0, s1 ¼ 0, x ¼ (1, 2, 3, 4, 5).

Optimal sequence identified through exhaustive search)

6.4 Activity Selection

In contrast to the previous section, which considered a given set of activities to be
sequenced, we now consider how to select activities under a budget constraint on
their service levels. Specifically we assume that K ¼ 1 and set the feasible set such

that Π xð Þ ¼ x
XT

t¼1
xt ≤ B

|||n o
.4 (In addition, we can restrict service levels to be

nonnegative at the expense of more cumbersome notation.) Economists and decision
scientists (e.g., Samuelson 1937, Koopmans 1960) have studied how to optimize an
individual’s future consumption plan to maximize her expected utility subject to a
budget constraint. In contrast to that literature, which optimizes a customer’s ex-ante
discounted utility, we optimize here a customer’s ex-post satisfaction; that is, time
discounting operates backward here (due to memory decay) as opposed to forward.

We first characterize the optimal activity selection when the customer is subject to
both acclimation and memory decay, but not to satiation. As established in Propo-
sition 5 and illustrated in Fig. 6.3, when the service provider controls only the
sequence of activities, the optimal design may end up being U-shaped so as to
induce a steep gradient in service levels near the end of the encounter, but at the
expense of negative utilities in the early periods of the encounter. In contrast, when
the provider is free to select which activities to schedule, this trade-off is no longer at

4A more general model with multi-attribute activities could consider that the intensity of each
attribute moves proportionally to the budget allocated to the activity, i.e., consider attributes as rays
specific to each activity.



≥ – ≥ – – ¼ –

))

¼ ¼ ¼ ¼ ¼ ¼ ¼

6 Optimal Structure of Experiential Services: Review and Extensions 117

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Fig. 6.5 Optimal activity selection with satiation and memory decay, but no acclimation. (Note:
δ 0.97, α 0, γ 0.3, v(x) x1/4, T 20, λ 1, s1 0)

work and it is optimal to allocate the budget so that the net service level, x∗t – rt, is
increasing over time. With power utility functions, i.e., when v(x)¼ xβ, this results in
a crescendo sequence.

Proposition 6: Suppose that K ¼ 1 and di ¼ d̄i ¼ di ≥ 1 for all i. When customers
experience no satiation (γ ¼ 0, s1 ¼ 0), when v'(x) > 0, v(0)¼ 0, and v''(x) < 0 for all x,
and when the service provider is free to set any service level subject to a budget

constraint, i.e., whenΠ xð Þ ¼ x
XT

t¼1
xt ≤ B

|||n o
, it is optimal to set the service levels

∗
–1 λð Þ1þ tα

such that xT t ¼ rT t þ v
0

t for all t– –
δ

¼ 0, . . ., T– 1, in which λ > 0 is
⎛ ⎞ ⎛ ⎞

such that
XT

t¼1
x∗t ¼ B.Moreover,x∗t – rt is increasing in t. If in addition v(x)¼ xβ for

some 0 < β < 1 when x 0, x∗T t x∗T t 1 for all t 0, . . ., T 2.

We next consider the case with satiation and memory decay, but no acclimation.
Baucells and Sarin (2007) showed that, when δ ¼ 1, the optimal service levels were
constant in period t ¼ 2, . . ., T – 1, and observed that an individual’s optimal
consumption plan (with forward discounting) was in general decreasing over time,
with possible upticks in the first and last periods. Considering customer satisfaction
(with backward discounting) as the objective, we complement their result by show-
ing that the optimal service levels are in general increasing over time, with possible
upticks in the first and last periods; see Fig. 6.5 for an illustration.

Proposition 7: Suppose that K ¼ 1 and di ¼ d̄i ¼ di ≥ 1 for all i. When customers
experience no acclimation (α¼ 0), when v'(x) > 0 and v''(x) < (γ2/δ)v''(γ x) < 0 for all x,
and when the service provider is free to set any service level subject to a budget

constraint, i.e., whenΠ xð Þ ¼ x
XT

t¼1
xt ≤ B

|||n o
, it is optimal to set the service levels

such that v
0
x∗T þ sT
( ) ¼ 1– γð Þλ and v0

x∗T–t þ sT–t

( )– $$ γ=δð Þ v0
γ x∗T–t þ sT–t

((
¼ 1– γð Þλ=δt for all t ¼ 1, . . ., T – 1, in which λ > 0 is such that

XT

t¼1
x∗t ¼ B.
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Moreover, x∗t þ st is decreasing in t. If in addition v(x)¼ xβ for some lnδ/ ln γ < β < 1
when x ≥ 0, then x∗T–t ≥ x∗T–t–1 for all t¼ 0, . . ., T – 3; on the other hand, it may be
that x∗2 < x∗1 .

Comparing Propositions 6 and 7 shows that the optimal net service level x∗t þ st
–rt is increasing in t with acclimation and no satiation and decreasing in t with
satiation and no acclimation. We conjecture that, with both acclimation and satiation,
the optimal net service level will evolve in a non-monotone fashion and we leave it
for future research to characterize the optimal activity selection in this more
general case.

6.5 Suspense and Surprise

In entertainment, games, and sports, experiences are often characterized by an
uncertain outcome (e.g., the name of the murderer in a mystery novel, or the winner
of a tennis game), where uncertainty is gradually resolved as the experience unfolds.
In such settings, customers may derive utility from suspense and/or surprise as they
update their beliefs about the outcome, based on various information signals they
capture during the experience.

We consider here a particular case of the model proposed by Ely et al. (2015) and
extend their results to accommodate memory decay. Specifically, we consider an
experience characterized by an uncertain event (e.g., the event that a book’s main
character would defeat a villain, or that one favorite’s tennis player wins a game) that
may be true or false. We adopt a broader conceptualization of the notion of service
levels introduced in Sect. 6.2 to encompass an information policy, i.e., a set of
signals to send to the customer so that she can update her beliefs about the likelihood
of the event under consideration.5

If the customer updates her beliefs in a Bayesian fashion, the sequence of her
beliefs form a martingale in the sense that the best estimate for next period’s belief is
the customer’s current belief. Ely et al. (2015, Lemma 1) show that, for any belief
martingale, there exists an information policy that induces such belief martingale.
Hence, from a modeling standpoint, one need not model the details of the service
provider’s information policy. Indeed, one may frame the service provider’s deci-
sion as choosing the customer’s posterior distribution of beliefs, provided that the
martingale property is satisfied, i.e., that the expected value of that posterior distri-
bution is equal to the customer’s current belief.

5Although a book writer has complete control over the unfolding of the story, a sports event or game
manager may not fully control it; yet, the rules of the sport or game may be altered to induce more or
less variance in outcomes, as is currently under consideration for the game of tennis (The Economist
2017).
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Within the framework introduced in Sect. 6.2, we model the customer’s
prior belief as her reference point rt and the service provider’s decision as the choice
of a posterior belief distribution that respects the martingale property. Let ~xt be
the (random) posterior belief. The service provider thus needs to choose a distribu-
tion F

(
~xt
)2Φ rtð Þ, where Φ(rt) is the set of probability distributions F

(
~xt
)
such that

F

⌈
~xt
⌉ ¼ Z

1

0

~xtdF
(
~xt
) ¼ rt and

Z1
0

dF
(
~xt
) ¼ 1, in which F :½ ] denotes the expecta-

tion operator. Hence, the provider’s decision in period t, given state rt, is a distribu-
tion of beliefs F

(
~xt
)2Φ rtð Þ, i.e., the service provider randomizes over posterior

beliefs.
Because the customer’s posterior belief in period t will become her prior belief in

period t + 1, the state transition (6.2) simplifies to rt + 1¼ xt, as if α¼ 1. It is thus as if
the service provider were randomizing between service levels (the posterior distri-
bution) and the customer were fully adapting to the realized service level; there is no
concept of satiation in this model (i.e., γ 0).

In addition to being subject to memory decay, the customer derives (instanta-
neous) utility from suspense, i.e., from the variance in next period’s beliefs relative
to her current period’s beliefs, and/or from surprise, i.e., from any jump in belief
from the previous period to the current one. As in Sect. 6.2, we assume memory
decay; thus customer satisfaction evaluated at the end of the encounter puts greater
weight on the most recent instantaneous utilities. Formally, the satisfaction of a

customer who values suspense is equal to S x; r1ð Þ ¼
XT

t¼1
δT–t

-----------------------------
F

(
~xt – rt

)2hr
,

and that of a customer who values surprise is equal to

S x; r1ð Þ ¼
XT

t¼1
δT–t F ~xt – rtj j½ ]. (With a slight abuse of notation, we use here

the same notation to refer to both suspense and surprise, in reference to the concept
of customer satisfaction introduced in Sect. 6.2, but note that they correspond to two
different objectives.) See Ely et al. (2015) for more general forms of utility, multi-
dimensional outcome uncertainty, and trade-offs between suspense and surprise. In
particular, the model can be expanded to incorporate preferences for specific out-
comes (e.g., preference that one’s favorite hero would survive at the end) in addition
to suspense and surprise (Ely et al. 2015).

Given that the service provider adapts the signals to the customer’s beliefs, the
service provider’s choice of signals (or equivalently, of posterior probability distri-
butions of beliefs) can be cast as a dynamic optimization problem. Let δT – t Wt(rt) be
the expected satisfaction generated from the instantaneous utilities derived from time
t to the end of the encounter T, if the customer’s current belief is equal to rt. This
customer’s “satisfaction-to-go” function can be defined recursively as follows:

WTþ1 rTþ1ð Þ ¼ 0 for all rTþ1, ð6:6Þ
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Wt rtð Þ ¼maxF2Φ rtð Þ

-----------------------------
F

(
~xt – rt

)2h ir
þδ–1 F Wtþ1

(
~xt
)⌈ ⌉
,8t < T ,

ð6:7Þ

and if she values surprise:

Wt rtð Þ ¼maxF2Φ rtð ÞF ~xt – rtj j½ ]
þδ–1 F Wtþ1

(
~xt
)⌈ ⌉
,8t < T:

ð6:8Þ

In each period the service provider’s optimization problem consists in choosing

a distribution subject to moment constraints, namely that
Z1
0

~xtdF
(
~xt
) ¼ rt and

Z1
0

dF
(
~xt
) ¼ 1. It turns out that, with two moments, there exists a 2-point distribu-

tion that attains the optimum (Smith 1995). Hence, it is enough to restrict the
optimization to searching over 2-point distributions that satisfy the moment con-
straints. In particular, F is a 2-point distribution that belongs to Φ(rt) if there exists
two numbers x̄t and xt such that 1 ≥ x̄t ≥ rt ≥ xt ≥ 0, such that F(x) ¼ 0 for all

x < xt, F xð Þ ¼ x̄t – rt
x̄t – xt

for all xt ≤ x < x̄t, and F(x) ¼ 1 for all x ≥ x̄t. With these

observations, we next extend the results by Ely et al. (2015) to the case with memory
decay. We first consider the case of suspense.

Proposition 8: When the customer values suspense and is subject to memory decay

i.e., S x; r1ð Þ ¼
XT

t¼1
δT–t

-----------------------------
F

(
~xt – rt

)2h ir
with δ < 1, it is optimal for the service

provider solving (6.6) and (6.7) to send signals such that if the customer’s
belief in period t < T is equal to rt, then her posterior belief at the end of

period t is equal to 1
2 þ

-------------------------------------------------------------
rt – 1

2

( )2 þ 1–δ–2

1–δ–2 T–tþ1ð Þ rt 1– rtð Þ
q

with probability

½þ rt–1
2ð Þ

2

------------------------------------------
rt–1

2ð Þ2þ 1–δ–2

1–δ–2 T–tþ1ð Þrt 1–rtð Þ
q and to 1

2 –
-------------------------------------------------------------
rt – 1

2

( )2 þ 1–δ–2

1–δ–2 T–tþ1ð Þ rt 1– rtð Þ
q

with

probability½– rt–1
2ð Þ

2

------------------------------------------
rt–1

2ð Þ2þ 1–δ–2

1–δ–2 T–tþ1ð Þrt 1–rtð Þ
q . In period T, full revelation is optimal, i.e.,

the customer’s posterior belief at the end of period T is equal to 1 with probability rT
and 0 with probability 1 rT.

Similar to Ely et al. (2015), we find that, in order to maximize suspense under
memory decay, it is optimal to fully reveal the outcome in period T, and only in
period T. Figure 6.6 illustrates a typical belief sample path. In the figure, the markers



10
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9
Time

¼ ¼ ¼

10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6

d ↓

7 8 9
Time

¼

6 Optimal Structure of Experiential Services: Review and Extensions 121

Fig. 6.6 Posterior belief
sample path with suspense
and memory decay. (Note:
T 10, δ 0.95, r1 0.5)

Fig. 6.7 Posterior belief
feasible sets with suspense
as a function of memory
decay. (Note: T ¼ 10,
δ ¼ 0.95 (black curves),
δ ¼ 0.8 (dark grey curves),
δ ¼ 0.6 (light grey curves),
r1 0.5)

indicate the set of possible posterior beliefs {rt} whereas the dotted line represents a
sample path. Belief updates consist of either confirmation beliefs, which reinforce
the current belief (i.e., if the current belief is greater than 0.5, the next period’s belief
is higher than the current belief), or plot twists, which make beliefs switch from one
path to the other. The sample path depicted in Fig. 6.6 depicts two plot twists, in
period 4 and in period 8. As the experience unfolds, given the dependence of the
probabilities on rt, confirmation beliefs are more frequent and plot twists less
frequent.

In contrast to Ely et al. (2015), who show that, in the absence of memory decay

(i.e., when δ ¼ 1), the variance in beliefs

-----------------------------
F

(
~xt – rt

)2h ir
remains constant across

periods under the optimal policy; Proposition 8 shows that with memory decay, a
crescendo in variance in beliefs is optimal. That is, the variance in beliefs should be
increasing over time since a customer who is subject to memory decay will put
higher value to suspense that happens at the end of the encounter. Figure 6.7 shows
that, as the intensity of memory decay increases (i.e., as δ decreases), the feasible set
of the beliefs becomes more narrow and evolves more sharply near the end of the
encounter. (Here, we connected the markers depicting the feasible sets, but a sample
path may alternate between the boundaries of the feasible set, similar to Fig. 6.6.) As
a result, memory decay induces more stable beliefs throughout most of the experi-
ence, but greater uncertainty about the final outcome near the end of the experience.
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We next consider the combined effect of surprise and memory decay, generaliz-
ing the result obtained by Ely et al. (2015). As Ely et al. (2015), we only consider
three periods and leave it for future research to analytically characterize the optimal
solution when T > 3.

Proposition 9: When the customer values surprise and is subject to memory decay,

i.e., S x; r1ð Þ ¼
XT

t¼1
δT–t F ~xt – rtj j½ ], if T ¼ 3 and r1 2 [δ(1 + δ)/4, 1 – δ(1 + δ)/

4 ], it is optimal for the service provider solving (6.6) and (6.8) to send signals such
that the customer’s posterior belief at the end of period t is equal to rt + δT – t/4 with
probability ½ and to rt – δT – t/4 with probability ½. In period T, full revelation is
optimal, i.e., the customer’s posterior belief at the end of period T is equal to 1 with
probability rT and 0 with probability 1 rT.

Figure 6.8 illustrates Proposition 9 when r1 ¼ 1/2. The markers represent the
feasible set of posterior beliefs and the lines denote possible belief trajectories. As in
the case with suspense, it is optimal to fully reveal the outcome in the last period;
however, unlike the case with suspense, it may be optimal to do so before the last
period if r1 =2 [δ(1 + δ)/4, 1– δ(1 + δ)/4]. (This latter case is not depicted in the figure
since it is assumed that r1 ¼ 1/2.) In case of early resolution of uncertainty, the
customer’s utility in the last periods is equal to zero, given that no surprise is
generated once the time the state of the event is revealed. Although it may seem
counterintuitive to fully reveal the state before the end of the encounter, the possi-
bility of such sample paths enriches the overall environment and makes the other
sample paths more surprising. For instance, if every mystery novel always followed
the same story template, e.g., always revealed the name of the murderer in the last
chapter, there would be little room for surprise as the reader would then give no
credibility to any early suspicion on identifying the murderer.

In addition, sample paths of beliefs under surprise are much spikier than sample
paths under suspense. While beliefs under suspense are mostly confirming, with
occasional twist plots that become less frequent as time goes by, beliefs under
surprise go up and down by small increments with equal probability. Until the
uncertainty is fully resolved, beliefs evolve as a random walk in which the magni-
tude of the steps in either direction increases over time, but the probability of
updating beliefs upwards or downwards remains constant at 50%.

Fig. 6.8 Posterior belief
feasible sets with surprise
and memory decay. (Note:
T 3, δ 0.95, r1 0.5)
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Fig. 6.9 Posterior belief
feasible sets under surprise
as a function of memory
decay. (Note: T ¼ 3,
δ ¼ 0.95, (black dots),
δ ¼ 0.8 (dark grey dots),
δ ¼ 0.6 (light grey dots),
r1 0.5)
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Because of memory decay, a crescendo in surprise is optimal. Specifically, as
illustrated in Fig. 6.9, as memory decay increases (i.e., as δ decreases), the funnel of
belief sample paths become narrower up to the next-to-last-period, creating more
room for a high (and memorable) surprise in the last period. In particular, full
revelation of the outcome before the last period becomes less likely with greater
memory decay. Hence, similar to its effect on suspense, memory decay tends to
prolong a high degree of uncertainty about the final outcome when the customer
values surprise. Moreover, the greater the memory decay, the smaller the belief
updates from one period to the next. However, in contrast to its effect on suspense,
memory decay does not affect the likelihood of revising upwards or downwards
one’s beliefs, which remains constant at 50% until uncertainty is fully resolved.

6.6 Gap Model: Satisfaction and Expectation

Our discussion has so far consisted in maximizing customer’s satisfaction, evaluated

ex-post, i.e., S x; r1; s1ð Þ ¼
XT

τ¼1
δT–τ u xτ; rτ; sτð Þ, when the customer is subject to

memory decay with decay rate δ. In contrast, a customer discounting time at rate θ,
consistent with the economics literature (Samuelson 1937; Koopmans 1960), would
value ex-ante the total utility she expects to receive from the experience as

E x; r1; s1ð Þ ¼
XT

τ¼1
θτ–1 u xτ; rτ; sτð Þ. (The term “expectation” refers to the

ex-ante nature of the assessment, and not to the stochastic nature of the experience,
unlike Sect. 6.5.)

There may be a discrepancy between the customer’s ex-ante expectations from
the service and the overall ex-post satisfaction because consumption is discounted
forward in the former and backward in the latter. As a result, customers’ perceived
service quality, which generally stems from comparing what they feel the service
firm should offer with their perceptions of the performance of the firm (Parasuraman
et al. 1988; Oliver 2015), i.e., from S(x, r1, s1)– E(x, r1, s1), could be affected by that
discrepancy.

In particular, a customer with reservation utility Ū may choose to join a service
priced at p if she expects to obtain a positive surplus from the transaction, i.e., if



¼
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E x; r1; s1ð Þ – p ≥ Ū; see, e.g., Aflaki and Popescu (2013) and Bellos and Kavadias
(2017). The service provider, in turn, sets its price to capture the entire customer
surplus, i.e., to p ¼ E x; r1; s1ð Þ – Ū. Accordingly, when the customer evaluates her
relative satisfaction from the service at the end of the encounter (e.g., to consider
patronizing the service in the future), she will compare her overall satisfaction from
the service to the price she paid, i.e.,

S x; r1; s1ð Þ – p ¼ S x; r1; s1ð Þ – E x; r1; s1ð Þ þ Ū ¼PT
t¼1 δT–t – θt–1
( )

u xt; rt; stð Þ þ Ū:
ð6:9Þ

In (6.9), each instantaneous utility is weighted by (δT – t – θt – 1). Although this
difference in discount factors is increasing over time (similar to memory decay), the
optimal design may change. For instance, with linear utility functions, the sequence
that maximizes customer satisfaction is U-shaped (Proposition 6), but the one that
maximizes (6.9), i.e., the gap between customer satisfaction and expectations, may
have an interior local maximum, as shown in Fig. 6.10.

In particular, when the customer’s perceived quality is a function of the gap
between her ex-post satisfaction and her ex-ante satisfaction, it may be optimal for
the service provider, if her objective is to maximize the customer’s perceived quality,
to set low expectations (provided of course, that the customer is captive) so as to
increase that gap. In Fig. 6.10, swapping the order between the first activity (x ¼ 1)
and the second activity (x ¼ 4) would result in higher expectations (because of the
immediacy of the consumption of the high service level x ¼ 4), which would then
negatively affect the gap between satisfaction and expectations.

With uncertainty in the delivery of the service levels and misaligned communi-
cation, the gap could be even larger. To illustrate this, suppose that service levels X
are random (e.g., due to lack of process conformance and heterogeneity in cus-
tomer’s inputs) with realization x. Suppose also that the customer, from what she
heard about the service or past experience, expects to receive (random) service levels
Y. With these constructs, the total gap between the satisfaction the customer derives
from the service and her expectation of utility prior to the experience, is equal to

S x; r1; s1ð Þ –  E Y; r1; s1ð Þ½ ]:

Fig. 6.10 Sequence that
maximizes gap between
satisfaction and expectation.
(Note: θ ¼ 0.2, δ ¼ 0.8,
α ¼ 1, v(x) ¼ x,
x (1, 2, 3, 4, 5))
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Similar to Karmarkar and Roels (2015), this gap can be broken down into the
following subcomponents:

• A process conformance gap, S x; r1; s1ð Þ –  S X; r1; s1ð Þ½ ], which measures the
expected gap between a customer’s actual satisfaction and the expected satisfac-
tion the process is supposed to deliver; the discrepancy here lies in the random-
ness in service levels;

• A customer’s quality perception gap,  S X; r1; s1ð Þ½ ] –  E X; r1; s1ð Þ½ , which
measures the gap between a customer’s expected ex-post satisfaction (given the
random service levels) and her ex-ante expectations; the discrepancy here lies in
the way the customer aggregates the sum of individual utilities to set her
expectations (forward discounting) and to assess her satisfaction (backward
discounting);

• A communication gap,  E X; r1; s1ð Þ½ ] –  E Y; r1; s1ð Þ½ ], which measures the gap
between a customer’s expectations from the service, if she knew ahead of time the
sequence of activities (and the variations in service levels) X relative to her
expectations based on what she anticipates to receive Y.

In principle, nothing precludes these gaps to be negative, in which case they
would be quality-enhancing. For instance, in case the customer values suspense or
surprise, it may be optimal to introduce some degree of variability in the service
levels X, as discussed in Sect. 6.5.

Assuming positive gaps, this gap decomposition highlights three possible levers
to improve quality:

• To improve process conformance by reducing the variability in inputs (customer-
or server-related) and in process execution;

• To align customers’ ex-ante and ex-post assessment methods of how much utility
they derive; for instance, memory decay from a vacation can be reduced by
keeping a log of the most memorable events;

• To improve the relevance of marketing campaigns to create more realistic
expectations about the service delivery.

Naturally, additional gaps could exist if the service provider misunderstands the
value customers derive from service levels (i.e., their utility function v(x)), their
extent of memory decay (δ), acclimation (α), and satiation (γ), or the way they
discount future consumption (θ).

6.7 Anticipation and Recall

We next extend the scope of our analysis to include periods of anticipation (before
the encounter) and recall (after the encounter). Customers indeed derive utility from
anticipating an event (Jevons 1905), and that utility can be positive (savoring) or
negative (dread), depending on the nature of the event (Lowenstein 1987). Similarly,
customers may derive utility from recalling the event (Baucells and Bellezza 2017).
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Similar to Baucells and Bellezza (2017), we distinguish three phases: anticipa-
tion, event, and recall. Let ta be the time at which anticipation starts, tb be the time at
which service begins, te be the time at which service ends, i.e., te ¼ tb + T, and tr be
the time at which recall ends.

During the anticipation phase, the customer looks forward to the forthcoming
events, but discounts them as they are far in the future (Jevons 1905). To formalize
this growing anticipation, let β be the anticipation discount factor, which may not
necessarily be equal to the discount rate used to discount future consumption
(Lowenstein 1987). At time ta, the anticipated utility from the experience is thus
equal to E x; r1; s1ð Þ ¼

Xte

τ¼tb
βτ–tb u xτ; rτ; sτð Þ. We denote by uA(E, t) the utility

derived in period t, ta ≤ t < tb, from anticipating a total utility E. Because it depends
on the total discounted utility, the anticipated utility is thus a function of both the
intensity and the duration of the event (Jevons 1905).

The anticipated utility could include time discounting, e.g., uA E; tð Þ ¼ kA βtb–t E

¼ kA
Xte

τ¼tb
βτ–t u xτ; rτ; sτð Þ (Lowenstein 1987). It could also include reference

effects (Baucells and Bellezza 2017). For instance, let us denote by ρA, t be the
reference point at time t on the total anticipated utility and by αA the acclimation rate
in the anticipation phase. With acclimation and time discounting, the utility derived
at time t from anticipating an experience generating a utility of E can be defined as
uA E; ρA, t; t
( ) ¼ βtb–tvA E – ρA, t

( )( )
, where ρA, t + 1 ¼ αA E + (1 – αA) ρA, t for all t,

ta t < tb, and ρA, ta 0, v
0
A x 0, and vA(0) 0.

Similarly, utilities during the recall phase depend on the total satisfaction
S x; r1; s1ð Þ ¼

Xte

τ¼tb
δte–τ u xτ; rτ; sτð Þ, which discounts utilities backward due to

memory decay. We denote uR(S, t) as the utility derived in period t, te < t ≤ tr,
from recalling a total utility S. The recalled utility could include time discounting,
e.g., uR S; tð Þ ¼ kR δt–te S ¼ kR

Xte

τ¼tb
δt–τ u xτ; rτ; sτð Þ, but it could also include

reference effects (Baucells and Bellezza 2017). For instance, let us denote ρR, t as
the reference point at time t on the total recalled utility and by αR the acclimation rate
in the recall phase. With acclimation and memory decay, the utility at time t from
recalling an experience generating satisfaction S can be defined as
uR S; ρR, t; t
( ) ¼ δt–te vR S– ρR, t

( )( )
, where ρR, t + 1 ¼ αR S + (1 – αR) ρR, t for all t,

te < t tr, and ρR, te 0, v
0
R x 0, and vR(0) 0.

In principle, the reference points during anticipation and recall, i.e., ρA, t and ρR, t,
may be different constructs from the reference points during the experience itself,
i.e., rt, given that the objects of utility during anticipation and recall, namely the total
expectation E and the total satisfaction S, are different from the objects of utility
during the experience, namely the service levels xt. Alternatively, one may assume
that the reference point evolves continuously throughout the different phases of
anticipation, experience, and recall (Baucells and Bellezza 2017).

Figure 6.11 depicts the evolution of a customer’s instantaneous utility during the
phases of anticipation, event, and recall, when the event consists of a constant
service level of 1, starting from period 5 to period 10, in the presence of acclimation
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Fig. 6.11 Instantaneous utilities under anticipation, experience, and recall. (Note: ta ¼ 1, tb ¼ 5,
te ¼ 10, tr ¼ 13, α ¼ αA ¼ αR ¼ 0.3, β ¼ 0.4, γ ¼ 0.4, δ ¼ 0.7, ρA, 1 ¼ ρR, 11 ¼ r5 ¼ 0, s5 ¼ 0,
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during all phases and satiation during the event. During the event, the customer
experiences a burst of utility at the beginning (t¼ 5) because the service level (x¼ 1)
is higher than her reference point (r5 ¼ 0) and because her level of satiation is low
(s5¼ 0). As the event progresses, the customer’s instantaneous utility declines as she
acclimates to the high service level and starts satiating.

In the anticipation phase (1≤ t≤ 4), because the anticipation time discount factor
(β ¼ 0.4) is relatively small, utilities increase as time gets closer to the actual start of
the event. However, should the customer discount time less (i.e., higher β) o
acclimate more quickly (i.e., higher αR), utilities could be decreasing as the time-
distance to the event would matter less and the customer would acclimate more
quickly to the prospect of the event. With a more intricate model of time discounting,
Baucells and Bellezza (2017) show that utilities during the anticipation phase could
even be U-shaped.

At the beginning of the recall phase (t ¼ 11), the customer experiences another
burst of utility from the comparison between the total satisfaction and the recall
reference point (set to zero). As the distance from the event increases (11 < t ≤ 13),
this utility gradually declines over time as memory fades away and the reference
point adjusts to the satisfaction level. Unlike the anticipation phase, the effects of
time discounting and acclimation are aligned during the recall phase and we expect
recall utilities to be always trending towards zero.

Although it is well documented that customers derive utilities from anticipation
and recall, it is unclear how service firms could capitalize on them since the
experience either has not started or has been completed. Lowenstein (1987) observed
that the total discounted utility, assessed in period ta,

Xtb
t¼ta

θt–ta uA E; ρA, t; t
( )þXtbþT

t¼tb

θt–ta u x; rtb ; stbð Þ

þ
Xtr

t¼tbþT

θt–ta uR S; ρR, t; t
( )

,
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in which θ is the regular rate at which customers discount future consumptions, may
be unimodal in tb. In that case, it may be optimal to delay or advance the consump-
tion of the experience. In fact, Baucells and Bellezza (2017) demonstrate that in
some cases, it may be optimal to advance the event to the point that there is no
anticipation, i.e., a surprise. Hence, if a firm has control on when to start an
experience, after they engaged with a customer, they may want to optimize the
starting time of the experience to maximize the customer’s total discounted utility.

Similarly, in the example used to build Fig. 6.11, we observed that the total
discounted utility is unimodal in ta; that is, when θ ¼ .9, setting ta ¼ 2 instead of
ta ¼ 1 (but keeping tb, te, and tr unchanged) improves the total discounted utility
from 1.87 to 2.05. Hence, even for experiences that have been scheduled on
particular dates (fixed tb), service firms could potentially optimize the time they
reach out to customers so that they can start anticipating the event. For instance,
marathon organizers typically send participants emails in anticipation to the mara-
thon. In particular, and consistent with our discussion of the gap model in Sect. 6.6, a
customer may be willing to pay the highest price for an experience when her total
discounted utility (including anticipation and recall) is the highest. By strategically
timing its engagement with its customers, a service firm may then be able to charge a
higher price for its service (and the anticipation and recall thereof).

6.8 Conclusions

In this chapter, we reviewed and extended existing results to design the structure of
experiential services when customers are subject to acclimation, satiation, and
memory decay. In particular, we considered how to sequence a given set of activ-
ities, how to select activities subject to a budget constraint on the activities’ service
levels, and how to disclose information about an uncertain event to maximize a
customer’s ex-post satisfaction, i.e., a customer’s remembered utility from the
service. We also discussed the design implications on service quality, specifically
on the potential gap between a customer’s ex-ante expectations and ex-post satis-
faction, and on customer’s anticipation and recall from the experience.

One may think that, in order to deliver outstanding experiences, one needs to
achieve outstanding service in every activity of an encounter. Although this would
certainly be a costly strategy, as argued by the design firm IDEO (Zomerdijk and
Voss 2010), we showed here that this could even be counterproductive: There is
indeed value creating contrast (because of acclimation) and interruptions (because of
satiation). Rather than striving to excel on every activity, for a given structure of
experience (e.g., sequence, activity selection and duration, information policy), one
may create higher customer satisfaction by keeping the activities’ service levels
fixed, but changing the overall structure of the experience.

We demonstrated that crescendo designs often turn out to be optimal. Hence,
despite their simplicity, they should not be underappreciated. A common design
recommendation is indeed to “finish strong.”While this is a robust recommendation,
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we identified the mechanisms under which this design is optimal. Specifically, when
the satiation level either never or fully decays (Propositions 1–4) or when the
customer’s utility is linear (Proposition 5), and the customer is subject to either
only memory decay or only acclimation, the optimal sequence of activities is a
crescendo. Similarly, when activities need to be selected, the optimal design tends to
a crescendo in service levels, with the exception perhaps of the first activity
(Propositions 6 and 7), although the net service levels (i.e., relative to the reference
point and satiation level) may not be monotone. Finally, when customers value
suspense or surprise, memory decay leads to an information policy that increases the
level of suspense or surprise over time (Propositions 8 and 9).

In general, however, the optimal design may be more complex, potentially
U-shaped (Proposition 5), but also potentially with many “breaks” (Fig. 6.4).
Inserting breaks resets satiation levels, creates more contrasts, and may make the
subsequent activities more enjoyable. With memory decay, the potential disutility
arising from an early break may be quickly forgotten, but the boost in utility in the
last activities arising from the resetting satiation levels and creating contrast will tend
to be the most memorable.

On potential caveat of this research is that since customers are all different, they
may respond differently to particular structures of experience. However, even if
different customers derive different levels of satisfaction from crescendo or
U-shaped designs, they may still prefer these structures over alternative designs.
Moreover, these designs tend to be relatively robust (Das Gupta et al. 2015); that is,
even if there is a loss of optimality, it tends to be small. Finally, we note that the
development of information technology potentially enables real-time customization
of experiences (Rust and Oliver 2000); thus, if customer preferences are properly
elicited, there is an opportunity to customize the experience to maximize every
individual customer’s satisfaction.

The stream of research on the design of structure of experiences is emerging and
the opportunities for analytical extensions are numerous. Some of the potential
opportunities are:

Incorporate other behavioral factors in the customer utility model such as prefer-
ences for specific sequences, timing of peak, trend, etc. (Karmarkar and
Karmarkar 2014; Dixon and Thompson 2016) and hyperbolic discounting
(Plambeck and Wang 2013).

Incorporate other “stock” variables (besides satiation), such as moods and trust
(Dasu and Chase 2010), which can be affected by reputation (Gebbia 2016).

Capture the notion of customer engagement or control (Dasu and Chase 2010),
perhaps due to customer participation (a.k.a., the IKEA effect, see Norton et al.
2012), which would require incorporating a model of joint production (Roels
2014; Rahmani et al. 2017; Bellos and Kavadias 2017).

Relax the assumption that customers are captive and test the robustness of the
crescendo design in that case.

Leverage group dynamics, such as social comparisons (Roels and Su 2013) and
learning (Acemoglu et al. 2011), in case the experience involves a group of
customers.
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Enlarge the scope of the analysis beyond the single encounter to encompass the
anticipation and recall phases and what drives customer retention across encoun-
ters (Aflaki and Popescu 2013), and more generally, what drives customer
experience throughout their journey (Verhoef et al. 2009).
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In addition to these analytical extensions, further empirical evidence is needed to
estimate the parameters of the model (acclimation rate, satiation decay rate, memory
decay rate) and validate the model predictions about customers’ preferences for
specific designs. This analytical work built upon findings from psychology and
behavioral science, but it may now be time to go back to the lab or the field, validate
(or not) the model predictions, inform future analytical developments, and improve
the accuracy of their predictions and the relevance of their prescriptions. In the spirit
of design thinking, it would be valuable to actively engage customers in the design
process, leverage technological advances to come up with novel service designs,
fertilize multi-disciplinary research, and derive design principles through iterative
hypothesis testing and prototyping; see Patrício et al. (2018) for an outline of a
research agenda along those directions.

Finally, from a practical standpoint, service providers operating customer-routed
services (e.g. theme parks, online experiences) should investigate how to guide
customers to choose a sequence of activities that maximize their ex-post satisfaction
(e.g., through recommendations), which may differ from the sequence they may
choose ex-ante. In addition, service providers should investigate how to monetize
customer utilities derived in the anticipation and recall periods, perhaps by targeting
customers at the time their ex-ante expectations about their total utility is the highest.
In an era where experiences can be engineered by computers,6 we believe the time is
indeed ripe for deriving more formal guidelines for designing the structure of
experiences.
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Appendix

Lemma 1: For any p, q 1 and x [0, 1], 1 x–p x–q + x–p – q 0.

Proof: The derivative of the function 1 – x–p – x–q + x–p – q with respect
to p equals x–p ln x (1 – x–q) ≥ 0, and similarly for the derivative with respect
to q. Hence, for any p, q ≥ 1, 1 – x–p – x–q + x–p – q ≥ 1 – x–1 – x–1 + x–2

(1 x–1)2 0. ∎

6For instance, the trailer of the movie Morgan was compiled by IBM’s Watson; see https://www.
ibm.com/blogs/think/2016/08/cognitive-movie-trailer/

https://www.ibm.com/blogs/think/2016/08/cognitive-movie-trailer/
https://www.ibm.com/blogs/think/2016/08/cognitive-movie-trailer/


≤

¼ ¼

!

6 Optimal Structure of Experiential Services: Review and Extensions 131

Lemma 2: For any p, q ≥ 1 and x 2 [0, 1], 1 – x–p – x–q + x–p – q is decreasing
in x.

Proof: The derivative of the function 1 – x–p – x–q + x–p – q with respect to

x equals pþ qð Þ x–p–q–1 p
pþq x

q þ q
pþq x

p – 1
⎛ ⎞

, and it is negative given that xq ≤ 1

and xp 1. ∎

Proof of Proposition 1: The proof uses an interchange argument. Throughout the
proof, since K ¼ 1, we omit the subscript k. Because α ¼ γ ¼ 0,

S x; r1; s1ð Þ ¼
XT

τ¼1
δT–τ v xτ – r1ð Þ – v s1ð Þ . Suppose that, in the optimal

sequence, Activity i starts in time period t and immediately precedes Activity j. In
that case, because xτ xi whenever πτ i, we obtain

S x; r1; s1ð Þ ¼
Xt–1

τ¼1

δT–τ v xτ – r1ð Þ þ
Xtþdi–1

τ¼t

δT–τ v xi – r1ð Þ

þ
Xtþdiþd j–1

τ¼tþdi

δT–τ v x j – r1
( )

þ
XT

τ¼tþdiþd j

δT–τ v xτ – r1ð Þ – v s1ð Þ:

Consider a suboptimal sequence ~x in which Activities i and j have been permuted.
Because x is optimal, we must have that S x; r1; s1ð Þ – S

(
~x; r1; s1

) ≥ 0, i.e.,

S x; r1; s1ð Þ –S
(
~x; r1; s1

)
¼
Xtþdi–1

τ¼t

δT–τ v xi – r1ð Þ þ
Xtþdiþd j–1

τ¼tþdi

δT–τ v x j – r1
( )

–
Xtþd j–1

τ¼t

δT–τ v x j – r1
( )– Xtþdiþd j–1

τ¼tþd j

δT–τ v xi – r1ð Þ

¼ v xi – r1ð Þ
Xtþdi–1

τ¼t

δT–τ –
Xtþdiþd j–1

τ¼tþd j

δT–τ

0
@

1
A

þv x j – r1
( ) Xtþdiþd j–1

τ¼tþdi

δT–τ –
Xtþd j–1

τ¼t

δT–τ

 

¼ v xi – r1ð Þð
–v x j – r1
( ))

δT–t 1– δ–di – δ–d j þ δ–di–d j

1– δ–1 ≥ 0,



s
≤

)

)
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which implies, by Lemma 1, that v(xi – r1) ≤ v(xj – r1). Because v(x) i
increasing, this implies that xi xj. ∎

Proof of Proposition 2: The proof uses an interchange argument. Throughout the
proof, since K¼ 1, we omit the subscript k. Without loss of generality, we set r1¼ 0.

Because α ¼ 0, S x; r1; s1ð Þ ¼
XT

τ¼1
δT–τ v xτ þ sτð Þ – v sτð Þð Þ . Suppose that, in the

optimal sequence, Activity i starts in time period t and immediately precedes
Activity j. In that case, because xτ ¼ xi whenever πτ ¼ i, we obtain

S x; r1; s1ð Þ ¼
Xt–1

τ¼1

δT–τ v xτ þ sτð Þ – v sτð Þð Þ

þ
Xtþdi–1

τ¼t

δT–τ
(
v τ – t þ 1ð Þ xi þ stð Þ

–v τ – tð Þ xi þ stð Þ)
þ

Xtþdiþd j–1

τ¼tþdi

δT–τ
(
v τ – t – di þ 1ð Þ x j þ di xi þ st
(

–v τ – t – dið Þ x j þ di xi þ st
( ))

þ
XT

τ¼tþdiþd j

δT–τ v xτ þ sτð Þ – v sτð Þð Þ

¼
Xt–1

τ¼1

δT–τ v xτ þ sτð Þ – v sτð Þð Þ – v stð Þ δT–t

þ
Xtþdi–1

τ¼t

δT–τ–1 v τ – t þ 1ð Þ xi þ stð Þ δ– 1ð Þ

þ
Xtþdiþd j–1

τ¼tþdi

δT–τ–1 v
(
τ – t – di þ 1ð Þ x j þ di xi

þst
)
δ– 1ð Þ þ δT–t–di–d j v d j x j þ di xi þ st

(
þ

XT
τ¼tþdiþd jþ1

δT–τ v xτ þ sτð Þ – v sτð Þð Þ:

Consider a suboptimal sequence ~x in which Activities i and j have been permuted.
Because x is optimal, we must have that S x; r1; s1ð Þ – S

(
~x; r1; s1

) ≥ 0. Because the
terms associated with activities scheduled before t or after t + di + dj + 1 are identical
across both expressions, we must thus have that



( )

≤

¼ ¼
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S x; r1; s1ð Þ –S ~x; r1; s1

¼
Xtþdi–1

τ¼t

δT–τ–1 v τ – t þ 1ð Þ xi þ stð Þ δ– 1ð Þ

¼
Xtþdiþd j–1

τ¼tþdi

δT–τ–1 v
(
τ – t – di þ 1ð Þ x j þ di xi

þst
)
δ– 1ð Þ

–
Xtþd j–1

τ¼t

δT–τ–1 v τ – t þ 1ð Þ x j þ st
( )

δ– 1ð Þ

–
Xtþdiþd j–1

τ¼tþd j

δT–τ–1 v
(
τ – t – d j þ 1
( )

xi þ d j x j

þst
)
δ– 1ð Þ ≥ 0,

which implies, since v(x) is increasing, that xi xj. ∎

Proof of Proposition 3: The proof uses an interchange argument. Throughout the
proof, since K ¼ 1, we omit the subscript k. Because δ ¼ 1 and γ ¼ 0,

S x; r1; s1ð Þ ¼
XT

τ¼1
v xτ – rτð Þ – v s1ð Þ . Suppose first that Activities i and j are

not the last ones. Specifically, suppose that, in the optimal sequence, Activity
i starts in time period t and immediately precedes Activity j, and that Activity
j precedes Activity l. In that case, because xτ xi whenever πτ i, we obtain

S x; r1; s1ð Þ ¼
Xt–1

τ¼1

v xτ – rτð Þ þ v xi – rtð Þ þ v x j – xi
( )þ v xl – x j

( )

þ
XT

τ¼tþdiþd jþdl

v xτ – rτð Þ – v s1ð Þ:

Consider a suboptimal sequence ~x in which Activities i and j have been permuted.
Because x is optimal, we must have that S x; r1; s1ð Þ – S

(
~x; r1; s1

) ≥ 0. Because the
terms associated with activities scheduled before t or after t + di + dj + dl are identical
across both expressions, we obtain that

S x; r1; s1ð Þ– S
(
~x; r1; s1

)
¼ v xi – rtð Þ þ v x j – xi

( )þ v xl – x j

( )– v x j – rt
( )

–v xi – x j

( )– v xl – xið Þ ≥ 0:

We next show that this inequality holds if only if xi ≤ xj.Suppose first that xi ≤ xj.
Because v(x) is subadditive, v(xj – rt) ≤ v(xj – xi) + v(xi – rt). Similarly, v
(xl – xi) ≤ v(xl – xj) + v(xj – xi). Moreover, because of loss aversion, when xi ≤ xj,
v(xj – xi) ≤ – v(xi – xj). Combining these inequalities yields the desired inequality.
Conversely, suppose that xi > xj. Because v(x) is subadditive, v(xi – rt) ≤ v
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(xi – xj) + v(xj – rt). Similarly, v(xl – xj)≤ v(xl– xi) + v(xi – xj). Moreover, because
of loss aversion, when .xi > xj, v(xj– xi) < – v(xi– xj). Combining these inequalities
yields the opposite inequality. Hence, S x; r1; s1ð Þ – S

(
~x; r1; s1

) ≥ 0 implies
that xi xj.

Next, suppose that Activities i and j are the last ones. Then,

S x; r1; s1ð Þ ¼
Xt–1

τ¼1

v xτ – rτð Þ þ v xi – rtð Þ þ v x j – xi
( )– v s1ð Þ:

Consider a suboptimal sequence ~x in which Activities i and j have been permuted.
Because x is optimal, we must have that

S x; r1; s1ð Þ– S
(
~x; r1; s1

)
¼ v xi – rtð Þ þ v x j – xi

( )– v x j – rt
( )– v xi – x j

( )
≥ 0:

Similar to the argument above for the case where Activities i and j are not the last
ones, we can show that this inequality holds if and only if xi ≤ xj. Hence, S x; r1; s1ð
S
(
~x; r1; s1

)
0 implies that xi xj. ∎

Proof of Proposition 4: The proof uses an interchange argument. Throughout the
proof, since K ¼ 1, we omit the subscript k. Because δ ¼ γ ¼ 1, S(x, r1, s1) ¼ v
(xT – rT + sT) – v(s1). Suppose first that Activities i and j are not the last ones.
Specifically, suppose that, in the optimal sequence, Activity i starts in time period
t and immediately precedes Activity j, and that Activity j precedes Activity l. In that
case, because xτ xi whenever πτ i, we obtain

xT – rT þ sT ¼ xT – rt þ st þ
XT–1

τ¼t

1– αð ÞT–τ xi – rtð Þ

þ
XT–1

τ¼tþdi

1– αð ÞT–τ x j – xi
( )

þ
XT–1

τ¼tþdiþd j

1– αð ÞT–τ xl – x j

( )þ . . . :

Consider a suboptimal sequence ~x in which Activities i and j have been permuted.
Because x is optimal, we must have that S x; r1; s1ð Þ – S

(
~x; r1; s1

) ≥ 0. Because the
function v(x) is increasing, this implies that xT – rT þ sT ≥ ~xT – ~rT þ ~sT , in which
~rT and ~sT are the reference point and satiation level in period T corresponding to
sequence ~x. Because the terms associated with activities scheduled before t or after
t + di + dj + dl are identical across both expressions, as well as rt and xl, we must thus
have that



( )
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xT – rT þ sTð Þ – ~xT – ~rT þ ~sT
¼ xi – x j

( )
×(XT–1

τ¼t

1– αð ÞT–τ –
XT–1

τ¼tþdi

1– αð ÞT–τ

–
XT–1

τ¼tþd j

1– αð ÞT–τ þ
XT–1

τ¼tþdiþd j

1– αð ÞT–τ) ≥ 0:

After expanding the series, we obtain that

xi – x j

( )× 1– αð ÞT–tþ1

α
× –1þ 1– αð Þ–di þ 1– αð Þ–d j – 1– αð Þ–di–d j

⎛
≥ 0

Using Lemma 1, we obtain that the second term in parentheses is always negative,
which implies that xi xj.

When Activities i and j are the last two activities, we obtain, using a similar logic,
that

xi – x j

( )× XT–1

τ¼t

1– αð ÞT–τ –
XT–1

τ¼tþdi

1– αð ÞT–τ –
XT–1

τ¼tþd j

1– αð ÞT–τ

0
@

1
A

≥ 0:

After expanding the series using the fact that T t di + dj, we obtain

xi – x j

( )× 1– αð Þdiþd jþ1

α
× –1þ 1– αð Þ–di þ 1– αð Þ–d j – 1– αð Þ–di–d j

⎛
≥ 0

Using Lemma 1, we obtain that the second term in parentheses is always negative,
which implies that xi xj. ∎

Proof of Proposition 5: The proof uses an interchange argument. Because

vk(x) ¼ wk x for all k, S x; r1; s1ð Þ ¼
XT

τ¼1

XK

k¼1
wk δ

T–τ xk, τ – rk, τð Þ, i.e., the
terms in sτ cancel each other. Suppose first that Activities i and j are not the last ones.
Specifically, suppose that, in the optimal sequence, Activity i starts in time period
t and immediately precedes Activity j, and that Activity j precedes Activity l. In that
case, because xk, τ xk, i whenever πτ i, we obtain



Þ
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S x;r1;s1ð Þ¼
Xt–1

τ¼1

XK
k¼1

wk δ
T–τ xk,τ– rk,τð Þ þ

XT
τ¼t

XK
k¼1

wk δ
T–τ 1–αð Þτ–t xk,i– rk,tð

þ
XT

τ¼tþdi

XK
k¼1

wk δ
T–τ 1–αð Þτ–t–di xk,j– xk,i

( )

þ
XT

τ¼tþdiþd j

XK
k¼1

wk δ
T–τ 1–αð Þτ–t–di–d j xk,l– xk,j

( )
þ . . . :

Consider a suboptimal sequence ~x in which Activities i and j have been permuted.
Because x is optimal, we must have that S x; r1; s1ð Þ – S

(
~x; r1; s1

) ≥ 0. Because the
terms associated with activities scheduled before t or after t + di + dj + dl are identical
across both expressions, as well as rk, t and xk, l, we thus obtain that

S x; r1; s1ð Þ –S
(
~x; r1; s1

)
¼
XT
τ¼t

XK
k¼1

wk δ
T–τ 1– αð Þτ–t xk, i – xk, j

( )

þ
XT

τ¼tþdi

XK
k¼1

wk δ
T–τ 1– αð Þτ–t–di xk, j – xk, i

( )

þ
XT

τ¼tþd j

XK
k¼1

wk δ
T–τ 1– αð Þτ–t–d j xk, j – xk, i

( )

þ
XT

τ¼tþdiþd j

XK
k¼1

wk δ
T–τ 1– αð Þτ–t–di–d j xk, i – xk, j

( )
≥ 0:

Equivalently,

XK
k¼1

wk xk, i – xk, j
( ) !

× (XT
τ¼t

δT–τ 1– αð Þτ–t –
XT

τ¼tþdi

δT–τ 1– αð Þτ–t–di

–
XT

τ¼tþd j

δT–τ 1– αð Þτ–t–d j

þ
XT

τ¼tþdiþd j

δT–τ 1– αð Þτ–t–di–d j
) ≥ 0:

After expanding the series, we obtain



XK
k¼1

wk xk, i –xk, j
( ) × 1

δ– 1– αð Þ
× – 1– αð ÞT–tþ1 þ 1– αð ÞT–t–diþ1
⎛

þ 1– αð ÞT–t–d jþ1 – 1– αð ÞT–t–di–d jþ1 þ δT–tþ1

–δT–t–diþ1 – δT–t–d jþ1 þ δT–t–di–d jþ1
) ≥ 0:

 !
⎞

Using Lemm⎛ ⎞as 1 and 2, that the last two terms are nonnegative if and only if
––δ

–– –d –d d dj1 δ i i j
ln δ

d
þ

d d

t ≤ T þ 1– d ––ð Þ– – i–ð Þ– jα 1
–þ i1 1 α

–ð Þ1– jα
1 α .

lnð Þ–
δ
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When Activities i and j are the last two activities, we obtain, using a similar logic,
that

XK
k¼1

wk xk, i – xk, j
( ) !

× (XT
τ¼t

δT–τ 1– αð Þτ–t –
XT

τ¼tþdi

δT–τ 1– αð Þτ–t–di

–
XT

τ¼tþd j

δT–τ 1– αð Þτ–t–d j
) ≥ 0:

After expanding the series, it can be checked that the second term in parentheses

is nonnegative if and only if t ≥ T þ 1–
ln 1–δ–di–δ

–d j

1– 1–αð Þ–di– 1–αð Þ–d j

⎛ ⎞
ln 1–α

δð Þ . Because, for any p,

q ≥ 1, the function 1 – x–p – x–q is increasing in x,
1– δ–di – δ–d j ≥ 1– 1– αð Þ–di – 1– αð Þ–d j if and only if δ ≥ 1 – α. Hence,

the term
ln 1–δ–di–δ

–d j

1– 1–αð Þ–di– 1–αð Þ–d j

⎛ ⎞
ln 1–α

δð Þ is always negative, and therefore, t < T þ 1–
ln 1–δ–di–δ

–d j

1– 1–αð Þ–di– 1–αð Þ–d j

⎛ ⎞
ln 1–α

δð Þ for all Activities i and j. As a result, we must have that
XK

k¼1

wk xk, i – xk, j
( ) ≤ 0 if Activities i and j are the last ones and if Activity i precedes

Activity j in the optimal sequence. ∎

Proof of Proposition 6: We first show by induction that x( ) ⎛ ⎞ T k
1

– ¼
r þ 0
T v

– λ
–k

ð Þ1þkα
k . Consider the Lagrangean function L xðð Þ1; . . . ; xT ; r1; 0δ ⎛ ⎞PT

S xð Þð Þ1; . . . ; xT ; r1; 0 – λ xt
t 1

– B . Because the second-order optimality condi-
¼

Þ ¼

∂2L x ; x
tion associated xT,

1; . . .with i.e.,
ð Þð ÞT ; r1; 0 ¼ v00ð Þx

∂
T

T

– rT < 0, is always
x2

satisfied by concavity of v(x), every stationary point defines a global maximum.



⎛ ⎞ Þ⎛ ⎞
¼ –

)

Þ

( )( )⎛ ⎞
Þ

– λ 1þ kαð Þ
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Because xT ¼ rT + (v')–1(λ) satisfies the first-order optimality condition associated

with xT, i.e., ∂L x1;...;xTð Þ;r1;0ð Þ
∂xT

¼ v0 xT – rTð Þ – λ ¼ 0, it is optimal to set

x∗T ¼ rT þ v
0

⎛ ⎞–1
λð Þ.

Fix k > 0 and suppose that it is optimal to set x∗T–l ¼ rT–l þ v
0 –1 λ 1þ lαð

δl

for l 0, . . ., k 1. Using the induction hypothesis, we obtain that

∂L x1; . . . ; xT–k; x∗T–kþ1; . . . ; x
∗
T

( )
; r1; 0

(
∂xT–k

¼ δk v0 xT–k – rT–kð Þ
– α
Xk–1

l¼0

δl 1– αð Þk–1–lv0 x∗T–l – rT–l

( )– λ

¼ δk v0 xT–k – rT–kð Þ – α
Xk–1

l¼0

1– αð Þk–1–l λ 1þ l αð Þð

– λ ¼ δk v0 xT–k – rT–kð Þ – λ 1þ k αð Þ,

because

Xk–1

l¼0

1– αð Þ–l 1þ l αð Þ

¼ 1– 1– αð Þ–k

1– 1– αð Þ–1

þ α 1– αð Þ–1 1– k 1– αð Þ– k–1ð Þ þ k – 1ð Þ 1– αð Þ–k

1– 1– αð Þ–1
⎛ ⎞2

¼ 1– α

α

(– 1þ 1– αð Þ–k þ 1– k 1– αð Þ– k–1ð Þ

þ k – 1ð Þ 1– αð Þ–k)
¼ 1– α

α
k 1– αð Þ–k – 1– αð Þ þ 1ð Þ ¼ k 1– αð Þ1–k:

Because
∂

∂xT–k

∂L x1; . . . ;xT–k;x∗T–kþ1; . . . ;x
∗
T ;r1;0

∂xT–k
¼ δk v00 xT–k– rT–kð

< 0 and because xT–k ¼ rT–kþ v
0( )–1 λ 1þkαð Þ

δk

⎛ ⎞
solves

∂L x1; . . . ;xT–k;x∗T–kþ1; . . . ;x
∗
T

( )
;r1;0

( )
∂xT–k

¼ 0, it is optimal to set

x∗T–k ¼ rT–kþ v
0

⎛ ⎞–1 λ 1þ kαð Þ
δk

⎛ ⎞
. This completes the induction step.⎛ ⎞ 1

⎛ ⎞
Because v

00
(x) < 0, x∗T–k – rT–k ¼ v

0

δk
is decreasing in k.



Þ

– – ≥ – –

–
⎞

( ) ( )( )
¼ –ð Þ ¼ –

)
ÞÞ

Þ

–
Þ –( )

6 Optimal Structure of Experiential Services: Review and Extensions 139

Finally, suppose that v(x) ¼ xβ for some 0 < β < 1 when x ≥ 0. In that case, x∗T–k

≥ x∗T–k–1 if and only if rT–k þ λ 1þ kαð Þ
β δk

⎛ ⎞ 1
β–1

≥ x∗T–k–1, i.e., if and only if

λ 1þkαð Þ
β δk

⎛ ⎞ 1
β–1 ≥ 1– αð Þ λ 1þ kþ1ð Þαð Þ

β δkþ1

⎛ ⎞ 1
β–1
, i.e., if and only if

λ 1þkαð Þ
β δk

⎛ ⎞
λ 1þ kþ1ð Þαð Þ

β δkþ1

⎛ ⎞ ≤ 1– αð β–1,

i.e., if and only if δ 1þkαð Þ
1þ kþ1ð Þαð Þ

⎛ ⎞
≤ 1– αð Þβ–1. The left-hand side is increasing in k,

whereas the right-hand side is constant, so there is at most one crossing. Because the

left-hand side is equal to δ
1þαð Þ

⎛ ⎞
when k ¼ 0 and to δ when k ! 1, and that both

values are smaller than (1 α)β – 1, we conclude that x∗T k x∗T k 1 for all k. ∎

Proof of Proposition 7: Without loss of generality, we set r1 ¼ 0. Consider the

Lagrangean functionL x1; . . . ; xTð Þ; 0; s1ð Þ ¼ S x1; . . . ; xTð Þ; 0; s1ð Þ λ
PT
t¼1

xt – B

⎛
.

Because the second-order optimality condition associated with xT, i.e.,

∂2L x1; . . . ; xTð Þ; 0; s1ð Þ
∂x2T

¼ v00 xT þ sTð Þ < 0, is always satisfied by concavity of v

(x), every stationary point defines a global maximum. Because xT ¼ – sT + (v')–1

(λ) satisfies the first-order optimality condition associated with xT, i.e.,
∂L x1;...;xTð Þ;0;s1ð Þ

∂xT
¼ v0 xT þ sTð Þ – λ ¼ 0, it is optimal to set x∗T ¼ –sT þ v

0
⎛ ⎞–1

λð Þ.
We next show by induction that v0 x∗T–k þ sT–k – γ=δð Þ v0

γ x∗T–k þ sT–k

1 γ λ=δk for all k 1, . . ., T 1. Because

∂L x1; . . . ; xT–1; x∗T
( )

; 0; s1
( )

∂xT–1

¼ δ v0 xT–1 þ sT–1ð Þ þ γ v0 x∗T þ sT
( )– v

0
sTð Þ( – λ

¼ δ v0 xT–1 þ sT–1ð Þ þ γ λ– v0 γ xT–1 þ sT–1ð Þðð
– λ,

we obtain that

∂
∂xT–1

∂L x1; . . . ; xT–1; x∗T
( )

; 0; s1
( )

∂xT–1

⎛ ⎞

¼ δ v00 xT–1 þ sT–1ð Þ – γ2 v00 γ xT–1 þ sT–1ð Þð < 0,

by assumption, and it is thus optimal to set x∗T–1 such that
∂L x1; . . . ; xT–1; x∗T

( )
; 0; s1

( )
∂xT 1

¼ δ v0 xT–1 þ sT–1ð Þ þ γ λ– v0 γ xT–1 þ sT–1ð Þð Þð λ ¼ 0.

Fix k > 0 and suppose that it is optimal to set x∗T–l such that v0 x∗T–l þ sT–l

– γ=δð Þ v0
γ x∗T–l þ sT–l

( )( ) ¼ 1– γð Þλ=δl for all l ¼ 1, . . ., k. Using the induction
hypothesis, we obtain that



( )( )

⎞

⎞

)⎞

ÞÞ

–( ) ⎛ ⎞ ( )( )
Þ

Þ
)

≤ þ – þ –

)
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∂L x1; . . . ; xT–k; x∗T–kþ1; . . . ; x
∗
T ; r1; s1

∂xT–k

¼ δk v0 xT–k þ sT–kð Þ
þ
Xk–1

l¼0

δl γk–l v0 x∗T–l þ sT–l

( )– v
0
sT–lð Þ

⎛
– λ

¼ δk v0 xT–k þ sT–kð Þ – δk–1 γ v0 sT–kþ1ð Þ
þ
Xk–1

l¼1

δl γk–l v0 x∗T–l þ sT–l

( )– γ

δ

⎛ ⎞
v0 sT–lþ1ð Þ

⎛
þ γkv0 x∗T þ sT

( )– λ
¼ δk v0 xT–k þ sT–kð Þ – δk–1 γ v0 sT–kþ1ð Þ
þ
Xk–1

l¼1

γk–lλ 1– γð Þ þ γkλ– λ

¼ δk v0 xT–k þ sT–kð Þ – δk–1 γ v0 sT–kþ1ð Þ þ γ λ– λ:

Hence,

∂
∂xT–k

∂L x1; . . . ; xT–k; x∗T–kþ1; . . . ; x
∗
T

( )
; r1; s1

(
∂xT–1

⎛

¼ δk v00 xT–k þ sT–kð Þ – δk–1 γ2 v0
0
γ xT–k þ sT–kðð

< 0,

and it therefore is optimal to set x∗T–k such that
∂L x1; . . . ; xT–k; x∗T–kþ1; . . . ; x

∗
T

( )
; r1; s1

( )
∂xT k

¼ 0. This completes the induction step.

Because v0 x∗T–k þ sT–k – γ

δ
v
0
γ x∗T–k þ sT–k ¼ 1–γð Þλ

δk
< 1–γð Þλ

δkþ1 ¼
v0 x∗T–k–1 þ sT–k–1
( )– γ

δ

( )
v
0
γ x∗T–k–1 þ sT–k–1
( )( )

and because the function v0 xð
– γ

δ

( )
v
0
γ xð Þ is decreasing by assumption, we obtain that x∗T–k þ sT–k ≥ x∗T–k–1 þ

sT–k–1 for any k ¼ 1, . . ., T – 1. Moreover, because 1– γð Þv0 x∗T þ sT
( ) ¼ 1– γð

λ ¼ δ v
0
x∗T–1 þ sT–1
( )– γ v

0

γ x∗T–1 þ sT–1
( )( )

< δ– γð Þ v0
x∗T–1 þ sT–1
( ) ≤ 1– γð Þ v0

x∗T–1 þ sT–1
(

, since v'

(x) > 0, v''(x) > 0, and δ 1; therefore, x∗T sT > x∗T 1 sT 1.
Finally, suppose that v(x)¼ xβ for some lnδ/ ln γ < β < 1 when x≥ 0. In that case,

x∗T–k ¼ –sT–k þ
δk–1 β δ– γβ

( )
λ 1– γð Þ

 ! 1
1–β

for k ¼ 1, . . ., T – 1 and

x∗T ¼ –sT þ β

λ

⎛ ⎞ 1
1–β

. Suppose that T ≥ 3. Then, x∗T ≥ x∗T–1 if and only if

β

λ

⎛ ⎞ 1
1–β

≥ x∗T–1 þ sT ¼ x∗T–1 þ γ x∗T–1 þ sT–1
( ) ¼ 1þ γð Þ x∗T–1 þ sT–1

( – sT–1 ¼



Þ

) Þ)

)

¼
Þ ¼
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1þ γð Þ x∗T–1 þ sT–1
( )– γ x∗T–2 þ sT–2

( ) ¼ 1þ γð Þ β δ–γβð Þ
λ 1–γð Þ

⎛ ⎞ 1
1–β

– γ δ βð δ–γβð
λ 1–γð ÞÞ

1
1–β
.

Hence, x∗T ≥ x∗T–1 if and only if 1 ≥ 1þ γð Þ – γδ
1

1–β

⎛ ⎞
δ–γβð Þ
1–γð Þ

⎛ ⎞ 1
1–β

, which is always

true since 1þ γð Þ – γδ
1

1–β

⎛ ⎞
δ–γβð Þ
1–γð Þ

⎛ ⎞ 1
1–β

≤ 1þ γð Þ – γð Þ 1–γβð Þ
1–γð Þ

⎛ ⎞ 1
1–β

≤ 1. Simi-

larly, suppose that T – k ≥ 3. Then, x∗T–k ≥ x∗T–k–1 if and only if

δk–1 β δ– γβ
( )

λ 1– γð Þ

 ! 1
1–β

≥ x∗T–k–1 þ sT–k ¼ x∗T–k–1 þ γ x∗T–k–1 þ sT–k–1
( ¼ 1þ γð

x∗T–k–1 þ sT–k–1
( )– sT–k–1 ¼ 1þ γð Þ x∗T–k–1 þ sT–k–1

( )– γ x∗T–k–2 þ sT–k–2
( ¼

1þ γð Þ δk β δ–γβð Þ
λ 1–γð Þ

⎛ ⎞ 1
1–β

– γ
δkþ1 β δ–γβð Þ

λ 1–γð Þ

⎛ ⎞ 1
1–β

. Hence, x∗T–k ≥ x∗T–k–1 if and only if

1 ≥ δ
1

1–β 1þ γð Þ – γδ
1

1–β

⎛ ⎞
, which is always true. ∎

Proof of Proposition 8: The proof proceeds by backward induction by showing that

Wt rtð Þ ¼
---------------------------------------------------------
1þ

XT–t

τ¼1
δ–2τ

⎛ ⎞
rt 1– rtð Þ

r
for all t. To initialize the induction step,

we have WT rTð Þ ¼ maxx̄T≥rT≥x
T

------------------------------------------------------------------------------------
rT – xT
x̄T – xT

$$
(
x̄T – rT

)2 þ x̄T – rT
x̄T – xT

rT – xT
( 2

s
¼

--------------------------------------(
x̄T – rT

)
rT – xT
( )q

. Because the objective function is increasing in x̄T and

decreasing in xT , it is optimal to set x̄T ¼ 1 and xT ¼ 0. Hence, WT rTð Þ------------------------
rT 1– rTð Þp

. Fix t < T and suppose that Wtþ1 rtþ1ð--------------------------------------------------------------------
1þPT–t–1

τ¼1 δ–2τ
⎛ ⎞

rtþ1 1– rtþ1ð Þ
r

. In that case,

Wt rtð Þ ¼maxx̄t≥rt≥xt

----------------------------------------------------------------------
rt – xt
x̄t – xt

(
x̄t – rt

)2 þ x̄t – rt
x̄t – xt

rt – xt
( )2r

þδ–1 rt – xt
x̄t – xt

Wtþ1
(
x̄t
)þ δ–1 x̄t – rt

x̄t – xt
Wtþ1 xt

( )
¼ maxx̄t≥rt≥xt

----------------------------------(
x̄t – rt

)
rt – xt
( )q

þ rt – xt
x̄t – xt

---------------------------------------------XT–t

τ¼1

δ–2τ

 !
x̄t
(
1– x̄t

)vuut

þ x̄t – rt
x̄t – xt

---------------------------------------------XT–t

τ¼1

δ–2τ

 !
xt 1– xt
( )vuut :



!

¼ ¼ – –
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Taking the first-order optimality conditions yields that

x̄t ¼ 1
2
þ

------------------------------------------------------------------------------
rt – 1

2

⎛ ⎞2

þ 1

1þ PT–t
τ¼1 δ

–2τ
( ) rt 1– rtð Þ

s
and xt ¼

1
2
–--------------------------------------------------------------------

rt – 1
2

( )2 þ 1

1þ
PT–t

τ¼1
δ–2τ

( ) rt 1– rtð Þ:
r

Substituting these values into the objective

function yields:

Wt rtð Þ
¼

---------------------------------------------------
1

1þ PT–t
τ¼1 δ

–2τ
( )rt 1– rtð Þ

s

þ
---------------------------------------------------------------------------------------------------------------------XT–t

τ¼1

δ–2τ

 !
1
4
– rt – 1

2

⎛ ⎞2

– 1

1þ PT–t
τ¼1 δ

–2τ
( )rt 1– rtð Þ

 vuut

¼
---------------------------------------------------------
1þ

XT–t

τ¼1

δ–2τ

 ! !
rt 1– rtð Þ

vuut ,

completing the induction step. To see that this solution is indeed optimal, note that
Wt(rt) corresponds to the optimal solution of the problem of allocation a total

variance rt(1 – rt) across the T – t + 1 remaining periods so as to maximize
XT

τ¼t

δt–τ ----
vτ

p
subject to

XT

τ¼t
vτ ≤ rt 1– rtð Þ (Ely et al. 2015, online appendix). ∎

Proof of Proposition 9: The proof proceeds by backward induction. In period T,

WT rTð Þ ¼ maxx̄T≥rT≥x
T

rT – xT
x̄T – xT

(
x̄T – rT

)þ x̄T – rT
x̄T – xT

rT – xT
( )

. Because the objec-

tive function is increasing in x̄T and decreasing in xT , it is optimal to set x̄T ¼ 1 and
xT 0. Hence, WT(rT) 2rT(1 rT). Therefore, in period T 1,

WT–1 rT–1ð Þ ¼maxx̄T–1≥rT–1≥xT–1

rT–1 – xT–1

x̄T–1 – xT–1

(
x̄T–1 – rT–1

)
þ x̄T–1 – rT–1

x̄T–1 – xT–1

rT–1 – xT–1

( )
þδ–1 rT–1 – xT–1

x̄T–1 – xT–1

WT

(
x̄T–1

)
þδ–1 x̄T–1 – rT–1

x̄T–1 – xT–1

WT xT–1

( )
¼ maxx̄T–1≥rT–1≥xT–1

2
rT–1 – xT–1

x̄T–1 – xT–1

(
x̄T–1 – rT 1

)
þ2 δ–1

( rT–1 – xT–1

x̄T–1 – xT–1

x̄T–1

(
1– x̄T–1

)
þ x̄T–1 – rT–1

x̄T–1 – xT–1

xT–1 1– xT–1

( ))
:



2 –

⌉
⌉

– – –
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Taking the first-order optimality conditions with respect to xT–1 and x̄T–1 (and
ignoring the suboptimal non-informative solutions) yields the following solution:
xT–1 ¼ rT–1 – δ=4 and x̄T–1 ¼ rT–1 þ δ=4 if rT–12 δ

4; 1– δ
4

⌈ ⌉
, xT–1 ¼ 0 and x̄T–1

¼
-------------
δ rT–1

p
if rT–12 0; δ4

⌈ ⌉
, and xT–1 ¼ 1– ------------------------

δ 1– rT–1ð Þp
and x̄T–1 ¼ 1 if rT–1

1 δ
4; 1

⌈ ⌉
: Hence,

WT–1 rT–1ð Þ

¼

2rT–1 1þ δð Þ – 4rT–1
-------------
δ rT–1

p
if rT–12 0;

δ

4

⌈ ⌉

δ–12rT–1 1– rT–1ð Þ þ δ

8
if rT–12 δ

4
; 1– δ

4

⌈

2 1– rT–1ð Þ 1þ δð Þ – 4 1– rT–1ð Þ ------------------------
δ 1– rT–1ð Þp

if rT–12 1– δ

4
; 1

⌈
:

8>>>>>><
>>>>>>:

Consider next period T – 2:

WT–2 rT–2ð Þ ¼maxx̄T–2≥rT–2≥xT–2

rT–2 – xT–2

x̄T–2 – xT–2

(
x̄T–2 – rT–2

)
þ x̄T–2 – rT–2

x̄T–2 – xT–2

rT–2 – xT–2

( )
þδ–1 rT–2 – xT–2

x̄T–2 – xT–2

WT–1
(
x̄T–2

)
þδ–1 x̄T–2 – rT–2

x̄T 2 xT 2

WT–1 xT–2

( )
:

When r – δþδ2
T , the function is maximized at x–22 δþδ2 ; 1 δ24 4 T =–2 ¼ rT 4–2 –

and x̄T–2 ¼ rT 2 þ δ2=4. ∎–
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