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Abstract. A prediction mechanism for Memetic Algorithm is presented
in this paper. The Predictive Memetic Algorithm (PMA) uses a nonlinear
regression method to estimate the parameters used by the algorithm to
obtain good solutions in a dynamic and stochastic environment. The
algorithm is applied to nonlinear data sets and performance is compared
with genetic and simulated annealing algorithms. When compared with
the existing methods, the proposed method generates a relatively small
error difference after prediction thereby proving its superior performance.
A dynamic stochastic environment is used for experimentation, so as
to determine the efficacy of the algorithm on non-stationary problem
environments.
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1 Introduction

Most of the artificial intelligence mechanisms draw inspiration from nature.
These mechanisms follow the natural evolutionary process for their internal
transformations. For example, Genetic algorithm (GA) which is based on the
concept of natural genes and evolutionary inheritance process has been applied
to solve many problems [1]. However, due to its inherent inefficiencies such as pre-
mature convergence [2], Memetic algorithm (MA) was developed address them.

Although MA builds on genetic evolution, it presents another form of evolu-
tion called memetic evolution [3–5]. This is where memes are transmitted from
brain to brain through interaction and experience. A meme represents a unit of
information in MA that can be passed on from one individual to another, such
as ideas, beliefs, attitudes and principles. These can then be multiplied across
generations.

Moscato [1] gives some of the benefits of Memetic Computing, and the efficacy
of hybrid genetic algorithms in generation high quality solutions for complex and
dynamic problems. One of their major benefits is the ability to refine solutions
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by performing a neighborhood search to avert premature convergence in global
search methods. MA leverages both global and local search methods to improve
the search, thereby offsetting the weaknesses of individual methods. For example,
the global method does not perform search intensification to exploit the search
space. By the same token, the local methods do not perform diversification to
explore the search. These limitations are alleviated in MA.

MA has been extensively applied to solve a variety of problems in opti-
mization [6–12]. However, MAs have been majorly applied to stationary envi-
ronments, and yet the current problems have become more complex, contin-
uous and dynamic [13–15], hence an increasing demand for more intelligent
mechanisms.

The predictive approaches in evolutionary algorithms help to track moving
optima in stochastic problem environments. Therefore, in this paper prediction
is introduced in MA for dynamic problem environments, based on nonlinear
regression method [18,19], which lends itself to rugged landscapes and shifting
optima in capricious search.

The remainder of this article is organized as follows. The Sect. 2 introduces
the problem, Sect. 3 presents a review of related work. The Sect. 5 introduces the
proposed architecture. Results are discussed in the Sect. 6. The Sect. 7 covers the
conclusion, limitations and potential future research.

2 Problem Definition

In a stochastic environment, it is difficult to predict the optimal outcome, espe-
cially when the optima is constantly moving within the search space. This
increases the complexity and intractability of the problem. In combinatorial
optimization, multiple solutions are generated for an optimization problem. The
problem can be defined by the objective function with a feasible region in which
alternative solutions are found. In this context, the problem at hand is nonlinear,
which depicts its stochasticity, and the optimization objective is to find a solu-
tion with the smallest error, denoted by ε. Rp is the parameter space, Rm is the
solution space and f(x, θ) is a nonlinear function of θ. Therefore, the problem is
to estimate θ in a standard nonlinear regression model in Eqs. 1 and 2. σ and N
are nonlinear parameter and population sample respectively.

y = f(x, θ) + ε (1)

ε ∼ N(0, σ2) (2)

For x ∈ Rm, the function of x and θ denote nonlinear where θ ∈ Rp [29]. Consider
a solution set, where yi, xi and i = 1, 2, 3, . . . , N . We then minimize θ as follows:

T (θ̂) ≤ T (θ)) (3)

T (θ) =
n∑

i=1

[yi − f(xi, θ)]2 (4)
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MinT (θ) (5)

The nonlinear estimation problem is for intents and purposes an optimization
problem, hence this requires the minimization of the objective function, T (θ), in
Eqs. 3, 4 and 5 for solutions in the sample.

3 Related Work

Zhou et al. [20] presented an adaptive hill climbing strategy implemented with
MA for dynamic optimization problems. The crossover-based hill climbing and
mutation-based hill climbing are combined to increase search diversity, although
there is high computational complexity arising from other integrated methods,
such as adaptive dual mapping and triggered random. [12,14–16] introduced
other techniques in prediction to foretell Pareto front’s presence in problems
of multiobjective nature. Pareto’s approach draws on past information to read
patterns and make predictions, in addition to using the apriori technique. This is
similar to the multiobjective method presented in [17–20], where the population
is reused. The method draws on past details to reach good solutions. The past
record of an individual is characterized by the changes that have taken place and
the perturbation record helps to determine the behavior of subsequent solutions.
However, different variations are factored in, over and above, the population
parameters and time.

The algorithm presented in [21,22] estimates how the changes will be at a
certain period of time. The function of Osmera and Knapsack problems were
used to test the approach. The optimum in the last generation is used to shape
the optimum in the next generation. This method uses two predictors, namely
noisy predictor and perfect predictor. The predictors use observations and data
of individuals. In a similar vein, Weicker [23] shows how the decision process
at every stage provides leverage when solving recurrent problems. This method
draws patterns through deeper studying of relationships between the problem
and possible solutions in the sample. Kalman algorithm presented by Stroud [24]
gives the importance of evaluating the strength of individuals through fitness
values and using this analysis for better decision making. Every information is
useful from the specific elements in the search to the search space. However,
in nonlinear situations, the current information in linear samples may not be
sufficient to accurately keep track of moving optima.

Karaman et al. [25] presented an online dynamic optimization method. Time
is one of the factors used to track changes and draw patterns. The method was
applied to problems, such as the vehicle routing and scheduling. In a similar
vein, Bosman [26,27] uses machine learning, evolutionary methods and statistics
to forecast environment behaviors. In order to prevent premature convergence,
intensification and diversification are used to enhance the accuracy of the pre-
diction outcome. The majority of related work in the literature, shows that a
lot of predictive research is directed towards evolutionary algorithms, such as
genetic algorithms and others but few on MAs.
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4 Dynamic Landscapes

Dynamic environments are explained extensively in [22–24,28], especially on how
the environments change, why they change and how they change. Although most
of the research has been heavy in stationary problems, the pendulum of research
is increasingly shifting to dynamic problems due a proliferation of such prob-
lems. Hongfeng et al. [41] presented an adaptive hill climbing method, where
greedy crossover and steepest mutation are combined to produce good solutions.
Dynamic problems can be either exogenous or endogenous. Weicker [42] defines
exogenous as those dynamics that are directly inherent to the problem, while
endogenous dynamics come from the evolutionary process. The population keeps
on evolving, as individuals shift positions in the dynamic nature of the environ-
ment.

Figure 1 clearly shows that the shifting optima is always on the move. Intel-
ligent methods would be able to track these dynamic alleles. The drifting land-
scapes are compounded by the morphology changes of individuals in the popu-
lation.

5 Proposed Predictive MA

Algorithm 1 shows a proposed prediction model implemented in Predictive MA.
The objective of PMA is to find θ. In case of any signs of environmental change,
PMA finds θ that suits the available dataset, therefore, using apriori, θ is approx-
imated. After these changes have occurred, as seen in Fig. 1, ε is defined. The
error defines the difference between the estimated and non estimated. However,
in error prediction, the difference between the generational change and esti-
mation is registered to provide parameters for dispensing with weak solutions.
The smallest error remains the aim of the function, and if the smallest error is
recorded, it is bench-marked for the next generation. High quality approxima-
tion of parameters is important to achieve accuracy, as presented by Simoes and
Costa [43].

The proposed model is intrinsically nonlinear. The parameters pertaining to
the vector are estimated, and the minimization of error is important for increas-
ing accuracy and performance. MA follows the evolutionary process using the

Fig. 1. The nature of candidate solutions in a dynamic setting [42].
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Population initialization;
Create empty memory;
Evaluate population;
Predict operators;
for each individual, i in P do

Apply operators;
Apply LocalSearch;
if i > j then

Store j;
if i < j then

Store i;
end

end
if change in landscape then

for each individual, i in P do
Predict operators;
Apply operators;
Apply LocalSearch if i > j then

Store j;
if i < j then

Store i;
end

end

end

end

end
Update memory;
Select best,i;
Define next population;
Stop;

Algorithm 1. Proposed Memetic Algorithm

parameters as shown in Algorithm 1. Nonlinear regression applies to both linear
and nonlinear problems. Many problems are inherently nonlinear which makes
it hard for linear functions to produce good results on nonlinear behavioral pat-
terns. The choice of nonlinear is also based on robust data exploitation capacity,
manipulating data and behaviors to make accurate inferences. The proposed
model approximates the parameters of θ and makes predictions.

6 Experimental Results

The standard problems of nonlinear regression [44–46] were used in this study
to conduct the experiments. Results were obtained from 100 iterations, and
in Tables 1, 2 and 3, PMA which is the proposed method, performs better by
yielding the lowest value of θ, hence achieving the minimization of the objective
function.
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Table 1. θ is solved by different methods GA, SA and PMA

PMA yields better results

Iteration GA SA PMA

1 7.098670 9.448511 6.815231

2 7.098670 9.448511 6.815231

3 7.098670 9.448511 6.815231

4 7.098670 9.448511 6.815231

5 7.098670 9.448511 6.815231

6 7.098670 9.448511 6.815231

7 7.098670 9.448511 6.815231

8 7.098670 9.448511 6.815231

9 7.098670 9.448511 6.815231

10 7.801110 9.448511 7.640785

11 7.851110 9.448511 7.640785

12 7.762110 9.448511 7.640785

13 7.873110 8.275364 7.640785

14 7.721110 10.217881 7.640785

15 7.881110 10.217881 7.640785

16 7.901110 10.217881 7.640785

17 7.791110 10.393921 7.640785

18 7.881110 10.393921 7.640785

19 7.698110 12.080187 7.640785

20 7.771110 12.080187 7.640785

21 7.891110 11.524730 7.640785

22 7.721110 11.524730 7.640785

23 7.431110 11.524730 7.640785

24 7.791110 10.448512 7.640785

25 7.631110 10.448512 7.523401

26 7.721110 10.448512 7.523401

27 7.651110 9.217811 7.523401

28 7.701110 9.217811 7.523401

29 7.681110 9.217811 7.523401

30 7.811110 9.217811 7.523401

31 7.791110 9.217811 7.523401

32 7.601110 9.217811 7.523401

33 7.901110 9.217811 7.523401

34 7.781110 9.393920 7.523401

35 7.601110 9.407372 7.523401

36 7.613210 9.407372 7.523401

37 7.703110 9.866600 7.523401

38 7.911110 9.866600 7.523401

39 7.601110 9.866600 7.523401

40 7.723110 9.866600 7.523401

41 7.601110 9.866600 7.523401
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Table 2. θ is solved by different methods GA, SA and PMA

PMA yields better results

Iteration GA SA PMA

42 7.10110 9.36222 6.421933

43 7.10110 9.36222 6.421933

44 7.10110 9.36222 6.421933

45 7.10110 9.36222 6.421933

46 7.10110 9.36222 6.421933

47 7.10122 9.36222 6.421933

48 7.10122 9.36222 6.421933

49 7.10122 9.36222 6.421933

50 7.10122 9.84968 6.421933

51 7.10122 8.89983 6.421933

52 7.10122 10.87476 6.421933

53 7.10122 10.28331 6.421933

54 7.10122 10.28331 6.421933

55 7.10122 9.82237 6.421933

56 7.10122 9.82237 6.421933

57 7.10122 9.82237 6.421933

58 7.10122 9.82237 6.421933

59 7.10122 9.82237 6.421933

60 7.11055 8.22502 6.421933

61 7.11055 8.22502 6.421933

62 7.11055 8.22502 6.421933

63 7.11055 8.22502 6.421933

64 7.11055 8.22502 6.421933

65 7.11055 8.22502 6.421933

66 7.11055 8.22502 6.421933

67 7.11055 8.22502 6.421933

68 7.11055 8.22502 6.421933

69 7.11055 8.22502 6.421933

70 7.11055 8.22502 6.421933

71 7.11055 9.22502 6.421933

72 7.11055 9.22502 6.542042

73 7.12066 9.22502 6.542042

74 7.12066 9.30006 6.542042

75 7.12066 9.30006 6.542042

76 7.12066 9.30006 6.542042

77 7.12066 9.30006 6.542042

78 7.12066 9.30006 6.542042

79 7.12066 9.30006 6.542042

80 7.470024 9.30006 6.542042
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Table 3. θ is solved by different methods GA, SA and PMA

PMA yields better results

Iteration GA SA PMA

81 6.871684 8.30006 6.771297

82 7.005943 8.30006 6.771297

83 7.005943 8.5730 6.771297

84 7.005943 8.3479 6.771297

85 7.005943 8.62329 6.771297

86 7.005943 9.62329 6.771297

87 7.140203 9.62329 6.771297

88 8.518115 9.02486 7.621498

89 8.518115 8.02486 7.621498

90 8.518115 8.21780 7.621498

91 8.518115 9.21780 7.621498

92 8.28100 9.21780 7.621498

93 9.28100 9.39392 7.621498

94 9.28100 9.39392 7.621498

95 9.28100 10.08018 7.621498

96 9.66239 10.08018 9.11152

97 9.66239 10.52473 10.41042

98 9.66239 10.52473 10.41042

99 9.66239 10.52473 10.41042

100 9.66239 10.52473 10.41042

The sample Y = 50 and generation is set at 100, crossover, mutation
and recombination are parametrized at 0.2, 0.1, 0.5 respectively. Owing to the
dynamic changes, there is a continuous parameter change over and above the
different changes created by different functions discussed in this paper. The pre-
dictor is then subjected to these variegated conditions to determine from its
vantage point the performance in dynamic environments. The error magnitude
is weighed on absolute terms, where by the gap between the approximation and
exactness is gradually reduced.

PMA provides better results in terms of error reduction. ε is reduced to the
lowest level. Also, SA is subjected to the same functions in the experiment, to
observe comparisons with other methods although it represents the local search
paradigm. The functions include mutation, crossover, recombination and genetic
that define candidate features and evolve them to better solutions. The lowest
error obtained is in PMA as seen in Tables 1, 2 and 3. This can be attributed to
nearest neighbor aspect which help to prevent errors in optimization.
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7 Conclusion and Future Work

The cyclic change behaviors are important pointers for prediction. The presence
of repeated patterns facilitate the process of prediction to significantly increase
accuracy. This work proposed a PMA that estimates parameters in a dynamic
environment to obtain good solutions. The parametrized changes as a result of
the landscape changes are inherently nonlinear. The algorithm is applied to dif-
ferent nonlinear problem data sets and compared with genetic algorithm and
simulated annealing. The proposed method produces superior results and gener-
ates the lowest error. As part of future work, multiple populations will be con-
sidered and further memory based approaches will be explored. More intelligent
pattern recognition techniques for environment changes will also be incorporated
in the PMA.
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