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Abstract. This paper introduces a temporal-causal network model that
describes the recognition of emotions shown by others. The model can show
both normal functioning and cases of dysfunctioning, such as can be the case for
persons with certain types of dementia. Simulations have been performed to test
the model in both these types of behaviours. A mathematical analysis was done
which gave evidence that the model as implemented does what it is meant to do.
The model can be applied to obtain a virtual patient model to study the way in
which recognition of emotions can deviate for certain types of persons.

1 Introduction

Computational methods are more and more used to get more insight in human func-
tioning and dysfunctioning. By designing a human-like computational model for cer-
tain normal functioning of certain mental and/or social processes, it can be found out
what alterations make the model show dysfunctional behavior, and verify how that
relates to the empirical literature. Such a computational model can be a basis for a so-
called virtual patient model. An important source of knowledge for the design of a
human-like computational model can be found in the fields of Cognitive and Social
Neuroscience, and in what is encountered in the practice of medical clinics. The work
reported in this paper results from a cooperation between researchers in AI and in
medical practice.

The focus here is on social functioning and dysfunctioning resulting from a certain
type of dementia, in particular the behavioral variant of frontotemporal dementia
(bvFTD); see (Piguet et al. 2011). As will be explained in Sect. 2 in more detail, one of
the problems encountered is difficulty in recognizing emotions of others, in particular
the negative ones, even while emotion contagion still can function properly.

To model such human processes in a way that is justifiable from a neuroscientific
perspective, knowledge of the underlying mechanisms in the brain is needed. Usually
dynamics and cyclic connections play an important role in such mechanisms, and
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therefore a modeling approach is needed that can handle such cyclic dynamic processes
well. The Network-Oriented Modeling approach based on temporal-causal networks
used here is indeed able to do so (Treur 2016b; 2018).

In the paper, first in Sect. 2 background knowledge is described on the processes
addressed. In Sect. 3 the temporal-causal network model is introduced. Section 4
describes simulation experiments for the addressed case, both for normal functioning
and for dysfunctioning. Finally, Sect. 5 is a discussion.

2 Neuropsychiatric Background

The behavioral variant of frontotemporal dementia (bvFTD) is a neurodegenerative
disorder associated with progressive degeneration of the frontal lobes, anterior temporal
lobes, or both (Piguet et al. 2011). The disease is a leading cause of early-onset
dementia and the third most common form of dementia across all age groups (Rat-
navalli et al. 2002). Alterations in social cognition represent the earliest and core
symptoms of bvFTD resulting in emotional disengagement and socially inappropriate
responses or activities (Ibanez and Manes 2012; Kumfor and Hodges 2017). As part of
their impaired social cognition, bvFTD patients are often unconcerned about their
relatives, unable to adjust to their environment, lacking usual social inhibitions, and
unable to recognize and attribute mental states to self and others. Consequently, dis-
solution of social attachment can be profound and the implications on patients’ life and
their relatives are far-reaching (Diehl-Schmid et al. 2007; Riedijk et al. 2006). In this
paper, the following case is used as an illustration.

A 55 year old man who was recently diagnosed with bvFTD visited our outpatient
clinic with his wife. While explaining the difficulties she met in the home situation, she
started crying. The patient followed the conversation, and at this point he looked at her,
his own eyes got watery, but he looked dazzled. Upon the question how he thought his
wife was feeling, he answered that his wife was probably feeling happy. On the Ekman
60 faces test, he scored 43 out of 60 items correctly, which is below the cutoff of 46.
His subscores were: Anger 8/10, Disgust 9/10, Anxiousness 8/10, Happiness 8/10,
Sadness 5/10, Surprise 5/10.

This case illustrates that in bvFTD there may be a dissociation between emotion
contagion and facial emotion recognition, in this case in particular the recognition of
sadness.

Studies on social cognition in bvFTD have shown that facial emotion recognition is
severely disturbed, with the exception of happiness. In particular, impaired recognition
of negative emotions such as anger and disgust have been reported (Gossink et al.
2018). Applying the animal model of empathy of Frans de Waal, emotional conta-
giousness is the most inner layer, present from early evolution in most vertebrate
animals (de Waal 2009). Following the hypothesis that empathy in humans, and more
specific in bvFTD, will exhibit a ‘Recapitulati in reverse’, the outlayers of the Russian
Doll, symbolic for more advanced evolutionary social cognitive abilities will be lost
first and the inner layer of emotion contagion will be preserved and even more
prominent in advanced dementia: ‘Heightened emotional contagion in mild cognitive
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impairment and Alzheimer’s disease is associated with temporal lobe degeneration’, by
(Sturm 2013), as is illustrated in our case.

3 The Temporal-Causal Network Model

This section describes the temporal-causal network model for interpretation of emo-
tions. The model describes how interpretation of emotions takes place, with a focus on
recognizing emotions showed by others. Patients with frontotemporal dementia
(bvFTD) show emotional disengagement and social responses or activities that are not
suitable. In particular, this model focuses on the part where people with bvFTD are
unable to recognize and attribute emotional states to self and others. This can lead to
the effect that emotions are misinterpreted or even not recognized at all. The model can
both show how the process of recognizing and attributing emotional states works
regularly and when it is affected by bvFTD.

A conceptual representation of a temporal-causal network model represents in a
declarative manner states and connections between them that indicate (causal) impacts
of states on each other, as assumed to hold for the application domain addressed. The
states have (activation) levels that vary over time. The following three notions are main
elements of a conceptual representation of a temporal-causal network model:

Connection weight xX,Y. Each connection from a state X to a state Y has a con-
nection weight value xX,Y representing the strength of the connection, between −1
and 1.
Combination function cY(..). For each state a combination function cY(..) to
aggregate the causal impacts of other states on state Y.
Speed factor ηY. For each state Y a speed factor ηY to represent how fast a state is
changing upon causal impact.

The conceptual and numerical representation of the model introduced here will be
presented in this section. The model was designed by integrating a number of theories
some of which were discussed in Sect. 2, and also elements from Damasio (1994;
1999; 2018)’s view on emotions and feelings, and Iacoboni (2009) on mirror neurons
and social contagion.

The developed model shows the difficulties that persons with bvFTD can have
regarding recognition of emotions. Not only the recognition of emotions of others is
included, but also the experience of own emotional feelings which includes mirror links
from observed emotions. Figure 1 gives an overview of the conceptual representation
of the model. The following notations are used for the state names:

For each state a label LPn refers to the corresponding numerical representation of
the update equation of the state, as described below. An overview of the states, their
connections and weights can be found in Table 1. States or weights with subscript h or
s correspond to the emotional feelings happy or sad. An example is ssh meaning the
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sensor state for the own emotional response for happy (sensing the own body state, for
example, the own smile). States indicated by a B correspond to the observation of
emotional expression(s) of another person B. For example, srsB,h means the sensory
representation state of B having a happy face. Finally, subscript e is used to indicate if
someone is showing any emotion. Therefore, wsB,e means the world state of person B
showing an emotion, for example, an emotional face. Overall, the upper part (the first
three causal pathways) are used for recognizing the emotional state of someone else
(person B).

The lower part (the other two causal pathways) are used to model feeling the own
emotions using body loops and as-if body loops as described by Damasio (1994; 1999;
2018). The model presented here incorporates parts of the model described in (Treur
2016b, Ch. 9). The part that is included from this model are the bottom two cycles of
states with the body loops affecting the body state x of a person, representing own
emotional feeling according to the theory of Damasio (1994; 1999; 2018). In this

Fig. 1. Overview of the conceptual representation of the model
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Table 1. Overview of the connections, their weights, and their explanations; see also Fig. 1

From state To state Weight Connection LP Explanation

wsB,e ssB,e x17,e sensing e of B LP1 Sensing body state
e (emotional) of person B

ssB,e srsB,e x19,e representing e of B LP2 Representing the stimulus:
B showing emotional

srsB,e csselfother,B,e x10,e monitoring e of B LP3 Control state for self-other
distinction from represented
emotion of person B

wsB,h ssB,h x17,h sensing h of B LP6 Sensing body state h (happy)
of person B

ssB,h srsB,h x19,h representing h of B LP7 Representing the stimulus of
B showing happy

srsB,e
srsB,h
srsh
bsB,s

bsB,h x2,h

x1,h,h

x4,h

x2,s,h

interpreting e of B
interpreting h of B
interpreting own h
suppressing belief
of s

LP8 Believing that B is feeling
happy (h)
- from showing emotional by B
- from emotion h showed by B
- from own emotional feeling h
- decreases by belief state for
emotion s

csselfother,B,e
bsB,h
pscomm,B,s

pscomm,B,h x6,h

x5,h

x7,s,h

controlling
communication
believing h of B
suppressing
preparation state
s of B

LP9 Preparing for body state h:
communicating that B feels
happy:
- controlled by self-other
distinction
- from believing B has emotion
h
- suppressed by preparation
state that B has emotion s

csselfother,B,e
pscomm,B,h

escomm,B,h x9,h

x8,h

controlling
communication
executing response

LP10 Expressing communication of
body state h of
B (communicating that B feels
happy)
- controlled by self-other
distinction
- from preparation state for h

wsB,s ssB,s x17,s sensing s of B LP11 Sensing body state s (sad) of
person B

ssB,s srsB,s x19,s representing s of B LP12 Representing the stimulus of
B showing sad

srsB,e
srsB,n
srsB,s
srss
bsB,h

bsB,s x2,s

x1,s,s

x4,s

x2,h,s

interpreting e of B
interpreting s of B
interpreting own s
suppressing belief
of h

LP13 Believing that B is feeling
sad (s)
- from showing emotional by B
- from emotion s showed by B
- from own emotional feeling s
- decreases by belief state for
emotion h

(continued)
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Table 1. (continued)

From state To state Weight Connection LP Explanation

csselfother,B,e
bsB,s
pscomm,B,h

pscomm,B,s x6,s

x5,s,h

x7,h,s

controlling
communication
believing s of B
suppressing
preparation state
h of B

LP14 Preparing for body state s:
communicating that B feels
sad
- controlled by self-other
distinction
- from believing B has emotion
s
- suppressed by preparation
state that B has emotion h

csselfother,B,e
pscomm,B,s

escomm,B,s x9,s

x8,s

controlling
communication
executing response

LP15 Expressing communication of
body state s of
B (communicating that B feels
sad)
- controlled by self-other
distinction
- from preparation state for s

wsh ssh x18,h sensing own h LP16 Sensing body state h (happy)
for feeling happy

ssh
psh

srsh x13,h

x14,h

representing h of B
predicting h

LP17 Representing a body map for
h: emotion h felt (own feeling
of happy)
- from sensing own body state
h
- via as-if body loop for body
state h

srsh
srsB,h

psh x12,h

x11,h

amplifying
mirroring h of B to
own emotional
feeling

LP18 Preparing for body state h:
emotional response h (own
feeling h)
- via emotion integration from
own emotion
- via mirroring of emotion that
B shows

psh esh x15,h Executing
emotional
response

LP19 Expressing emotional
response of h

wss sss x18,s sensing own s LP20 Sensing body state s (sad),
own feeling of sad

sss
pss

srss x13,s

x14,s

representing s of B
predicting s

LP21 Representing a body map for
s: emotion s felt (own feeling
of sad)
- from sensing own body state s
- via as-if body loop for body
state s

(continued)
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model body state x can be either s (sad) or h (happy) corresponding to the emotion.
This emotion can also be expressed by another person B. Therefore, the communication
of, for example, body state h (happy) to B expresses that the person self knows that
B feels h (happy). The connections from srsB,h and srsB,s to psh and pss, respectively,
provide mirroring functionality to the preparation states, following Iacoboni (2009).
These connections make the person feel what the other person expresses.

Most connection weights have a positive value between 0 and 1 according to the
strength of the effect they have on consecutive states. However, suppressing effects are
modeled by using a negative weight. A few of those negative weights occur in the
model. The connection weights with a negative value are x3,h,s, x3,s,h, x7,h,s, x7,s,h, x3,

h, and x3,s.
A conceptual representation of the temporal-causal network model can be trans-

formed in a systematic manner into a numerical representation of the model (Treur,
2016b, Ch 2):

• at each time point t each state X connected to state Y has an impact on Y defined as
impactX,Y(t) = xX,Y X(t) where xX,Y is the weight of the connection from X to Y

• Based on the combination function cY(…) the aggregated impact of multiple states
Xi on Y at t is: aggimpactY(t) = cY(impactX1,Y(t), …, impactXk,Y(t))

¼ cYðxX1;YX1ðtÞ, . . .,xXk ;YXkðtÞÞ

where Xi are the states with connections to state Y
• Using the speed factor ηY the effect of aggimpactY(t) on Y is exerted over time

gradually: Y(t + Dt) = Y(t) + ηY [aggimpactY(t) − Y(t)] Dt or

dYðtÞ=dt ¼ gY aggimpactYðtÞ � YðtÞ½ �

Table 1. (continued)

From state To state Weight Connection LP Explanation

srss
srsB,s

pss x12,s

x11,s

amplifying
mirroring s of B to
own emotional
feeling

LP22 Preparing for body state s:
emotional response s (own
feeling s)
- via emotion integration from
own emotion
- via mirroring of emotion that
B shows

pss ess x15,s Executing
emotional
response

LP23 Expressing emotional
response of s

esh wsh x16,h Effectuating h LP24 Effectuating actual body state
ess wss x16,s Effectuating s LP25 Effectuating actual body state
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• Thus, the following difference and differential equation for Y are obtained:

YðtþDtÞ ¼ YðtÞþ gY ½cYðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ � YðtÞ�Dt
dYðtÞ=dt ¼ gY ½cYðxX1;YX1ðtÞ; . . .; xXk ;YXkðtÞÞ � Y tð Þ�

The states related to LP1, LP2, LP3, LP6, LP7, LP11, LP12, LP16, LP19, LP20,
LP23, LP24, and LP25 make use of the identity combination function c(V) = id
(V) = V. Those for LP8, LP9, LP13, LP14, LP17, LP18, LP21, and LP22 make use of
the scaled sum combination function, which is represented numerically by:

cðV1; . . .; VkÞ ¼ ssumkðV1; . . .; VkÞ ¼ ðV1 þ . . . þ VkÞ =k

where k is the scaling factor. Finally, states related to LP10 and LP15 make use of a
logistic function to get a binary all-or-nothing effect of these communications.

cðV1; . . .; VkÞ ¼ alogisticr;sðV1; . . .;VkÞ
¼ ½ð1=ð1þ e�rðV1 þ ... þVk�sÞÞÞ� 1=ð1þ ersÞ� ð1þ e�rsÞ

4 Simulation Experiments

To explore the behaviour of the designed temporal-causal network model, two sce-
narios were simulated in Matlab. The first scenario describes the case of a normal
person who would recognize emotions of others. In this case, it is expected that when
person B shows an emotion, the person will correctly communicate this emotion at the
communication states escomm,B,h or escomm,B,s. Also, the own feeling of that specific
observed emotion will be activated through mirror neurons. The second scenario
describes the specific case in which a person has difficulties recognizing the right
emotions due to bvFTD. It is expected that when person B shows the emotion sad, this
emotion will be wrongly interpreted as happy as the case explained in Sect. 2.
Therefore, the communication states will yield activations that differ from the ones in
the first scenario, although through the mirroring system still contagion takes place
through which the sadness is felt.

The weights for the connection strengths xk are for most connections set to 1; the
exceptions are shown in Table 2 lower part. For x7,h,s and x7,s,h a value of −0.2 has
been chosen, since the preparation states for communication that either it is a sad
emotion that person B is showing or a happy emotion normally will not have a high
activation level at the same time. In this way, negative weights will cause suppression
between the states if one of them is activated. Similarly, for weights x3,h,s and x3,s,h a
value of −0.05 has been chosen, to express that the belief states for either believing
person B shows a happy emotion or a sad emotion usually will not have high acti-
vations at the same time. Note that the values 0.7 and 0.05 for x2,h and x2,s, respec-
tively, indicate that when no specific emotion is recognized, usually an emotional face
is more believed to indicate happiness than sadness.
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The simulations have been performed with speed factor η = 0.5 for all states,
Dt = 0.5, and the scaling factors as displayed in Table 2 upper part. Since LP10 and
LP15 make use of a logistic function, they have a threshold and steepness. Both states
use a logistic function with steepness 200 and threshold 0.5. On the figures, time can be
seen on the horizontal axis of the figures and the activation levels of the states are on
the vertical axis.

The graphs in Figs. 2 and 3 display the results of the simulations that have been
performed, for Scenario 1 and Scenario 2, respectively. The upper and lower graphs
show a part of the results, to get a better view at them. The graph in Fig. 2 highlights a
few of the states which show the results of the simulation. It can be seen that the states
for a person showing emotional (wsB,e) and for a person showing a sad face (wsB,s) are
highly activated at the start (blue and orange striped lines). Naturally, the sensor states
and sensory representation states are becoming active as well (srsB,e and srsB,s) which
can be seen by the yellow and black striped lines. Those states for the representation of
the happy face (srsB,h) stay low, visible by the pink striped line. Furthermore, it can be
seen that the believe state for recognizing a happy face (bsB,h) shows some activation
(purple line). This is caused by the fact that the state for recognizing an emotional face
is high, but when it gets clear to the person that the emotion is about a sad emotion the
feeling that it might be a happy emotion is quickly reduced and it can be seen that the
communication state for a happy emotion (escomm,B,s) stays low (dark blue line). In the
end, the person communicates that a sad face has been observed (escomm,B,s, red line).
Also, the mirror neuron system for the own sad feeling becomes active, showing that
emotion contagion takes place for the observed sadness. This can be seen by the
activation of esh which is in the emotion contagion cycle. When performing the sim-
ulation with the activation of a happy face instead of a sad face at the start, similar
results are shown (with the activation of communication a happy face instead of a sad
face). Therefore, this simulation shows what is expected of how someone without any
condition that affects these processes would interpret an emotion.

For the second scenario, the settings of four weights have been changed. The
weights for x1,h,h, x1,s,s, x4,h, and x4,s have been set to a connection weight of 0.05.
This has been done because in the second scenario the case of a person with bvFTD is
simulated, which means that those links are damaged and therefore have a low weight.
Figure 3 displays the result of the second scenario. In the graph, it can be seen that the
external states for showing an emotional face (wsB,e) and showing a sad face (wsB,s) are
high from the start, and are kept high, to simulate their presence.

These are the black and pink lines on top of the graph. However, due to the
damaged links, the communication state for saying that a person shows a sad face
(escomm,B,s, dark blue line) is not activated in the end, while still by emotion contagion

Table 2. Settings for the scaling factors used and connection weights deviating from 1
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the own sad feeling develops (ess, orange line). This can be seen as the dark blue dotted
line at the bottom of the graph stays low throughout the entire simulation, which
implies no communication of an observed sad feeling while the orange line indicates
the own sad feeling to be active. As can be seen, in contrast the communication state
for saying that a person shows a happy face (escomm,B,h) does get activated while the
person never showed a happy face (red line), and no contagion of happiness took place.
This can be explained from the fact that the person does recognize that there is an
emotion visible (activation of srsB,e, yellow line). However, the interpretation of the
specific kind of emotion is disrupted. Therefore, the simulation shows the specific case
that has been observed in patients: how damaged links can cause someone with bvFTD
to misinterpret emotions.

Fig. 2. Simulation results for Scenario 1: normal functioning (Color figure online)

Fig. 3. Simulation results for Scenario 2: the case with bvFTD (Color figure online)
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5 Verification of the Network Model by Mathematical
Analysis

Dedicated methods have been developed for temporal-causal network models to verify
whether an implemented model shows behaviour as expected; see (Treur 2016a, 2016b,
Ch. 12). In this section equilibria of the designed model are addressed. By Mathe-
matical Analysis their values are found and by comparing them to simulated values the
model is verified. Stationary points and equilibria are defined as follows.

A state Y in a temporal-causal network model has a stationary point at t if dY(t)/
dt = 0. A temporal-causal network model is in an equilibrium state at t if all states have
a stationary point at t. In that case the above equations dY(t)/dt = 0 for all states Y are
called the equilibrium equations. These are general notions, for temporal network
models the following simple criterion was obtained in terms of the basic elements
defining the network, in particular, the states Y, connection weights xX,Y and the
combination functions cY(..); see (Treur 2016a; 2016b, Ch. 12).

Criterion for Stationary Points and Equilibria in a Temporal-Causal Network
Model
A state Y in an adaptive temporal-causal network model with nonzero speed factor has
a stationary point at t if and only if

cYðxX1;YðtÞX1ðtÞ; . . .;xXk ;YðtÞXkðtÞÞ ¼ YðtÞ

where X1, …, Xk are the states with outgoing connections to Y.
A temporal-causal network model is in an equilibrium state at t if and only if for all

states with nonzero speed factor the above criterion holds at t.
Equilibrium equations for an identity function id(.) or scaled sum combination

function ssumk(..) are

idðxX;YXðtÞÞ ¼ xX;YXðtÞ ¼ YðtÞ
cYðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ ¼ ðxX1;YX1ðtÞþ . . . þxXk ;YXkðtÞÞ=kY ¼ YðtÞ

So, they are linear equations in the state values involved with connection weights
and scaling factors as coefficients:

xX;YXðtÞ ¼ YðtÞ
xX1;YðtÞX1ðtÞþ . . . þxXk ;YðtÞXkðtÞ ¼ kYYðtÞ

In the presented model the scaling factors have been set as the sum of the positive
weights of the incoming connections; therefore all coefficients are built from connec-
tion weights. Using this, the following equilibrium equations for the states were
obtained for the presented network model here; to simplify the notation the reference to
t has been left out, and underlining is used to indicate that this concerns equilibrium
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state values, not state names. Here the connection weights are named as shown in
Table 1, and A1 to A3 are constants.

srsB;h ¼ A1 srsB;s ¼ A2 srsB;e ¼ A3

ðx1;X;X þx1;Y ;X þx2;X þx4;XÞ bsB;X ¼ x1;X;X srsB;X þx1;Y ;X srsB;Y þx2;X srsB;e þx4;X

srsX þx3;Y ;X bsB;Y
ðx5;X þx6;XÞ pscomm;B;X ¼ x5;X bsB;X þx6;X csselfother;B;e þx7;Y ;X pscomm;B;Y
ðx8;X þx9;XÞ escomm;B;X ¼ x8;X pscomm;B;X þx9;X csselfother;B;e

csselfother;B;e ¼ x10;e srsB;e
ðx11;X þx12;XÞ psX ¼ x11;X srsB;X þx12;X srsX

ðx13;X þx14;XÞ srsX ¼ x13;X ssX þx14;X psX
esX ¼ x15;X psX
ssX ¼ x16;X esX

Note that in the above equations in the equilibrium state values, variable names
X and Y are used that have multiple instances for h (happy) and s (sad). If these
equilibrium state values are instantiated and renamed as shown in Table 3, 19 linear
equations in X1 to X19 are obtained with coefficients based on the connection weights
and the constants A1 to A3.

These 19 linear equations can be solved symbolically, for example using the WIMS
Linear Solver (see WIMS 2018), thereby obtaining complex algebraic expressions for
the equilibrium values, linear in the constants A1 to A3 with as coefficients rational
(broken) functions in terms of the connection weights. For verification all connection
weights have been set as the simulation shown and Table 2. For these connection
weight values, the following solution was found in terms of A1 to A3:

Table 3. State names used in the equilibrium equations

X1 X2 X3 X4 X5 X6 X7 X8 X9

srsB,h srsB,s srsB,e srsh srss bsB,h bsB,s pscomm,B,h ps comm,B,s

X10 X11 X12 X13 X14 X15 X16 X17 X18

escomm,B,h escomm,B,s csselfother,B,e psh pss esh ess ssh sss
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For the above connection weight values and values A1 = 1, A2 = 0, and A3 = 1, the
solution was found shown in the third and sixth row of Table 4.

A logistic function with steepness 200 and threshold 0.625 applied to the com-
munication execution states X10 and X11 (multiplied by the scaling factor 1.25 to undo
the scaling) provides X10 = 1, and X11 = 2.613 10−21. Similarly, for other values of A1

to A3, the equilibrium values have been found. For example, for A1 = 0, A2 = 0, A3 = 1,
it was found X6 = 0.3176815847395451, X7 = 0.02201027146001467, X8 = 0.4476
266702238826, X9 = 0.1788345672424908, X10 = 0.5581013361791062, X11 = 0.343
0676537939928 (a logistic function with steepness 200 and threshold 0.625 applied to
the communication execution states X10 and X11 multiplied by the scaling factor 1.25 to
undo the scaling provides X10 = 1, and X11 = 0), and for A1 = 0, A2 = 1, A3 = 1,
X6 = 0.2956713132795305, X7 = 0.9904622157006603, X8 = 0.3128971297716712,
X9 = 0.9445252228817893, X10 = 0.4503177038173369, X11 = 0.9556201783054313
(a logistic function with steepness 200 and threshold 0.625 applied to the communi-
cation execution states X10 and X11 multiplied by the scaling factor 1.25 to undo the
scaling provides X10 = 1, and X11 = 0). All these values have been checked with the
values of the simulation scenarios and were found very accurate (deviations less than
0.001). This provides evidence that the implemented model does what is expected.

6 Discussion

This paper introduces a temporal-causal network model that describes the interpretation
of emotions showed by others. The model can also show cases of when the interpre-
tation of emotions is incorrect, such as can be the case of persons with bvFTD; this is

Table 4. Results of the mathematical analysis

X1 X2 X3 X4 X5 X6 X7 X8 X9

srsB,h srsB,s srsB,e srsh srss bsB,h bsB,s pscomm,B,h ps comm,B,s

1 0 1 1 0 1 0 0.987879 0.078788
X10 X11 X12 X13 X14 X15 X16 X17 X18

escomm,B,h escomm,B,s csselfother,B,e psh pss esh ess ssh sss
0.990303 0.263030 1 1 0 1 0 1 0
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based on the assumption that it is at least observed that there is an emotional face,
although the specific type of emotion is not recognized correctly. Several simulations
have been performed to test the model in both these behaviours. In the presented
scenario for a person with bvFTD it was shown how an observed sad face led to
contagion of sadness by the mirror system in a correct way, but at the same time the
emotional face was nevertheless not recognized as sad, but instead as happy. A math-
ematical analysis was done confirming the simulation outcomes; this gave evidence
that the model as implemented does what it is meant to do.

The model can be applied as the basis for human-like virtual agents, for example, to
obtain a virtual patient model to study the way in which recognition of emotions can
deviate for certain types of persons. Also, to study how to potentially enhance the
recognition of emotions when damaged. In further research real data can be used to test
the model in more detail. Furthermore, more scenarios or cases could be simulated to
analyse more and different outcomes of the model. An example is the addition of
specific therapies to enhance the damaged links and therefore see if this can have a
positive effect on interpreting emotions for people that have difficulties with recog-
nizing as a result of bvFTD. In future extensions of the model also more emotions than
sad and happy can be addressed.
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