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Leonid Andreevich Kalinichenko

10 June 1937 – 17 July 2018

One of the pioneers of the theory of databases passed away. The name of Leonid
Andreevich is rightly associated with the development of promising directions in
databases, the founding of an influential scientific school, the creation of two regularly
held international scientific conferences. Leonid Andreevich Kalinichenko received his
Ph.D. degree from the Institute of Cybernetics, Kiev, Ukraine, in 1968 and his degree
of Doctor of Sciences from the Moscow State University in 1985. Both degrees in
Computer Science.

He served as Head of the Laboratory for Compositional Information Systems
Development Methods at the Institute of Informatics Problems of the Russian Academy
of Science, Moscow. As Professor, he taught at the Moscow State University (Com-
puter Science department) courses on distributed object technologies and
object-oriented databases. His research interests included: interoperable heterogeneous
information resource mediation, heterogeneous information resource integration,
semantic interoperability, compositional development of information systems, mid-
dleware architectures, digital libraries.

His pioneering work on database model transformation (VLDB 1978) and funda-
mental book on data integration “Methods and tools for heterogeneous database inte-
gration” (Moscow, 1983) were ahead of time. His theoretical studies of semantic
interoperability attracted attention of the international community in the 90s, when
interoperability became a hot topic. He is also a co-author of the four books: “SLANG -
programming system for discrete event system simulation” (Kiev, 1969), “Computers
with advanced interpretation systems” (Kiev, 1970), “Computer networks” (Moscow,
1977), “Database and knowledge base machines” (Moscow, 1990). He had a number of
papers in journals and conference proceedings and served as PC member for numerous
international conferences.



During the last few years his activities and work were devoted to problems in data
intensive domains. In 2013–2016 he initiated several research projects aiming at
conceptual modeling and data integration within distributed computational infrastruc-
tures. He also launched a Master program “Big data: infrastructures and methods for
problem solving” at Lomonosov Moscow State University.

In addition to his own research, Leonid spent significant energy on integration of
database research communities in different countries. He had a key role in the orga-
nization of a series of East-West workshops (Klagenfurt and Moscow), as well as of the
ADBIS series of international workshops held in Moscow in 1993-1996. This series of
workshops was transformed into ADBIS (Advances in Data Bases and Information
Systems) conference series. He also established the “Russian Conference on Digital
Libraries” (RCDL) in 1999, transformed into “Data Analytics and Management in Data
Intensive Domains” conference (DAMDID/RCDL) in 2015. Finally, he launched the
Moscow Chapter of ACM SIGMOD in 1992. Monthly seminars of this chapter play
significant role in shaping local research and professional communities in Russia.

L.A. Kalinichenko was a member of the ACM, the Chair of the Moscow ACM
SIGMOD Chapter, the Chair of the Steering Committee of the European Conference
“Advances in Databases and Information Systems” (ADBIS), the Chair of the Steering
Committee of the Russian Conference on Digital Libraries (RCDL), a Member of the
Editorial Board of the International Journal “Distributed and Parallel Databases”,
Kluwer Academic Publishers. All of us will remember him for what he did to build a
wider community in Europe overcoming the divisions that had existed for decades. We,
the members of the Steering Committee, remember him as a very generous person and
an excellent scientist.
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Preface

The 22nd East-European Conference on Advances in Databases and Information
Systems (ADBIS 2018) took place in Budapest, Hungary, during September 2–5, 2018.
The ADBIS series of conferences aims at providing a forum for the dissemination of
research accomplishments and at promoting interaction and collaboration between the
database and information systems research communities from Central and East Euro-
pean countries and the rest of the world. The ADBIS conferences provide an inter-
national platform for the presentation of research on database theory, development of
advanced DBMS technologies, and their advanced applications. As such, ADBIS has
created a tradition with editions held in St. Petersburg (1997), Poznań (1998), Maribor
(1999), Prague (2000), Vilnius (2001), Bratislava (2002), Dresden (2003), Budapest
(2004), Tallinn (2005), Thessaloniki (2006), Varna (2007), Pori (2008), Riga (2009),
Novi Sad (2010), Vienna (2011), Poznań (2012), Genova (2013), Ohrid (2014),
Poitiers (2015), Prague (2016), and Nicosia (2017). The conferences are initiated and
supervised by an international Steering Committee consisting of representatives from
Armenia, Austria, Bulgaria, Czech Republic, Cyprus, Estonia, Finland, France,
Germany, Greece, Hungary, Israel, Italy, Latvia, Lithuania, FYR Macedonia, Poland,
Russia, Serbia, Slovakia, Slovenia, and the Ukraine.

The program of ADBIS 2018 included keynotes, research papers, thematic work-
shops, and a doctoral consortium. The conference attracted 69 paper submissions from
46 countries from all continents. After rigorous reviewing by the Program Committee
(102 reviewers and 14 subreviewers from 28 countries in the PC), the 17 papers
included in this LNCS proceedings volume were accepted as full contributions, making
an acceptance rate of 25% for full papers and 41% in common. As a token of the
appreciation of the longstanding, successful cooperation with ADBIS, Springer spon-
sored for ADBIS 2018 a best paper award. Furthermore, the Program Committee
selected 11 more papers as short contributions. Authors of ADBIS papers come from
19 countries. The six workshop organizations acted on their own and accepted 24
papers for the AI*QA, BIGPMED, CSACDB, M2U, BigDataMAPS, and Current
Trends in contemporary Information Systems and their Architectures (less than 43%
acceptance rate of each workshop) workshops and three from the Doctoral Consortium.
Short papers, workshop papers, and a summary of contributions from ADBIS 2018
workshops are published in a companion volume entitled New Trends in Databases
and Information Systems in the Springer series Communications in Computer and
Information Science. All papers were evaluated by at least three reviewers. The selected
papers span a wide spectrum of topics in databases and related technologies, tackling
challenging problems and presenting inventive and efficient solutions. In this volume,
these papers are organized according to the seven sessions: (1) Information Extraction
and Integration, (2) Data Mining and Knowledge Discovery, (3) Indexing, Query
Processing, and Optimization, (4) Data Quality and Data Cleansing, (5) Distributed



Data Platforms, Including Cloud Data Systems, Key-Value Stores, and Big Data
Systems, (6) Streaming Data Analysis, (7) Web, XML and Semi-structured Databases.

For this edition of ADBIS 2018, we had three keynote talks: the first was by
Alexander S. Szalay from John Hopkins University, USA, on “Database-centric Sci-
entific Computing,” the second by Volker Markl on “Mosaics in Big Data,” and the
third by Peter Z. Revesz from the University of Nebraska-Lincoln, USA, on
“Spatio-Temporal Data Mining of Major European River and Mountain Names
Reveals Their Near Eastern and African Origins.”

The best papers of the main conference and workshops were invited to be submitted
to special issues of the following journals: Information Systems and Informatica. We
would like to express our gratitude to every individual who contributed to the success
of ADBIS 2018. Firstly, we thank all authors for submitting their research paper to the
conference. However, we are also indebted to the members of the community who
offered their precious time and expertise in performing various roles ranging from
organizational to reviewing roles— their efforts, energy, and degree of professionalism
deserve the highest commendations. Special thanks to the Program Committee mem-
bers and the external reviewers for their support in evaluating the papers submitted to
ADBIS 2018, ensuring the quality of the scientific program. Thanks also to all the
colleagues, secretaries, and engineers involved in the conference and workshops
organization, particularly Altagra Business Services and Travel Agency Ltd. for the
endless help and support. A special thank you goes to the members of the Steering
Committee, and in particular its chair, Leonid Kalinichenko, and his co-chair, Yannis
Manolopoulos, for all their help and guidance. Finally, we thank Springer for pub-
lishing the proceedings containing invited and research papers in the LNCS series. The
Program Committee work relied on EasyChair, and we thank its development team for
creating and maintaining the platform; it offered great support throughout the different
phases of the reviewing process. The conference would not have been possible without
our supporters and sponsors: Faculty of Informatics of the Eötvös Loránd University,
Pázmány-Eötvös Foundation, and ACM Hungarian Chapter.

July 2018 András Benczúr
Bernhard Thalheim

Tomáš Horváth
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Spatio-Temporal Data Mining of Major
European River and Mountain Names Reveals

Their Near Eastern and African Origins

Peter Z. Revesz

Uiversity of Nebraska-Lincoln, Lincoln NE 68588, USA
revesz@cse.unl.edu

Abstract. This paper presents a spatio-temporal data mining regarding the
origin of the names of the 218 longest European rivers. The study shows that
35.2 percent of these river names originate in the Near East and Southern
Caucasus. The study also investigates the origin of European mountain names. It
is shown that at least 26 mountain names originate from Africa.

Keywords: Data mining � Etymology � Mountain � River � Spatio-temporal
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Database-Centric Scientific Computing
(in Memoriam Jim Gray)

Alexander S. Szalay

Department of Physics and Astronomy, Department of Computer Science,
The Johns Hopkins University, MD 21210, Baltimore, USA

szalay@jhu.edu

Abstract. Working with Jim Gray, we set out more than 20 years ago to design
and build the archive for the Sloan Digital Sky Survey (SDSS), the SkyServer.
The SDSS project collected a huge data set over a large fraction of the Northern
Sky and turned it into an open resource for the world’s astronomy community.
Over the years the project has changed astronomy. Now the project is faced with
the problem of how to ensure that the data will be preserved and kept alive for
active use for another 15 to 20 years. At the time there were very few examples
to learn from and we had to invent much of the system ourselves. The paper
discusses the lessons learned, future directions and recalls some memorable
moments of our collaboration.

http://orcid.org/0000-0002-4108-3282
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Database-Centric Scientific Computing

(In Memoriam Jim Gray)

Alexander S. Szalay(&)

Department of Physics and Astronomy, Department of Computer Science,
The Johns Hopkins University, Baltimore, MD 21210, USA

szalay@jhu.edu

Abstract. Working with Jim Gray, we set out more than 20 years ago to design
and build the archive for the Sloan Digital Sky Survey (SDSS), the SkyServer.
The SDSS project collected a huge data set over a large fraction of the Northern
Sky and turned it into an open resource for the world’s astronomy community.
Over the years the project has changed astronomy. Now the project is faced with
the problem of how to ensure that the data will be preserved and kept alive for
active use for another 15 to 20 years. At the time there were very few examples
to learn from and we had to invent much of the system ourselves. The paper
discusses the lessons learned, future directions and recalls some memorable
moments of our collaboration.

1 Introduction

The unprecedented amounts of observational, experimental and simulation data are
transforming the nature of scientific research. As more and more data sets are becoming
public, we need to find the right ways not just to make the data public, but accessible
and usable. Our techniques have not kept up with this evolution. Simple things like
moving large amounts of data to the computing are becoming difficult; as a result,
scientists are learning how to “move the analysis to the data”.

The data from Sloan Digital Sky Survey (SDSS) has been one of the best examples
of a large-scale, open scientific data set. It has been in the public domain for almost
twenty years [1, 2]. The project and its archive have changed astronomy forever. It has
shown that a whole community is willing to change its traditional approach and use a
virtual instrument, if the data is of high quality, and if it is presented in an intuitive
fashion. The continuous evolution and curation of the system over the years has been
an intense effort, and has given us a unique perspective of the challenges involved in
the broader problem of operating open archival systems over a decade.

The SDSS is special – it has been one of the first major open e-science archive.
Tracking its usage as well as the changes that occurred helps the whole science
community to understand the long-term management of such data sets, and see what
common lessons can be derived for other disciplines facing similar challenges. These
archives not only serve flat files and simple digital objects, but they also present
complex services, based on multi-terabyte databases. The toolkits (and even the
underlying operating systems) change, the service standards evolve, and even though
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some services may have been cutting edge ten years ago, today they may become
dated. New protocols emerge, and to support the increasingly sophisticated client-side
environments, the services need active updates at regular intervals.

Scientists in many disciplines would like to compare the results of their experi-
ments to data emerging from numerical simulations based on first principles. This
requires not only that we are able to run sophisticated simulations and models, but that
the results of these simulations are available publicly, through an easy-to-use portal.
We have to turn the simulations into open numerical laboratories where anyone can
perform their own experiments. Integrating and comparing experiments to simulations
is another non-trivial data management challenge, in the same spirit as in the SDSS
archive. Not every data set from these simulations has the same lifecycle. Some results
are just transient and need to be stored for a short while to analyze, while others will
become community references, with a useful lifetime of a decade or more.

With the largest supercomputers approaching Exascale, with memories in peta-
bytes, it will soon become impossible to simply use memory dumps as the sharable
scientific output. We need a very different strategy, of finding the most interesting
events while the simulations are running on the supercomputers, and triggering a
“storage event”, where only a very small number of discrete, localized regions of the
simulations are written to disk. The challenge is to find a strategy to make sure that
these regions represent the highest scientific value for posterior analyses. Their access
will be no longer sequential, but through complex multi-dimensional indices.

A common theme in these projects has been the systematic use of databases as the
underlying access medium. This paper will discuss the journey started with our col-
laboration with Jim Gray, and how we followed this path since then. The last two
decades have seen a remarkable evolution in distributed computing, when we went
from a handful of systems running in parallel to millions of machines in the cloud, from
tens of Gigabytes to Petabytes and Exabytes. New computational paradigms came and
went. Many new flavors of databases emerged. It is clear today that databases (SQL or
noSQL) have many unique features to offer, for both commercial and scientific
applications, and they will be a big part of the future.

New technologies, like streaming algorithms, machine learning, Deep Learning,
neuromorphic computing, accelerators like GPUs and FPGAs will all soon be part of
the database universe. The sharp boundaries between databases and parallel computing
are already dissolving, and even filesystems are being replaced by clever uses of
massive databases.

In this paper I would like to remember Jim Gray, a wonderful friend and collab-
orator, who has seen all these profound changes coming. He gave the opening keynote
on ADBIS 2006, also held in Budapest. I would like to use this opportunity to talk
about the story of our collaboration, and discuss the fundamental changes Jim’s con-
tributions brought to science.
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2 Jim Gray and the SDSS SkyServer

Alex Szalay and Ani Thakar, in collaboration with Jim Gray (Microsoft) have spent
much of the last two decades working on the archive for the Sloan Digital Sky Survey.
The archive was originally built on top of an object-oriented database, but after a few
years it became clear that the users will want to have a very flexible query environment
with a lot of ad-hoc queries. The promised flexible Object Query Language (OQL) was
very slow to emerge and turned out to be very fragile. As a result, we have started to
develop our own (very limited) query language (Fig. 1).

It was around this time, when we met Jim Gray of Microsoft. Jim liked to say, that
the “best collaborators are the desperate ones”, as they are ready to change the way they
approach a problem. We were definitely desperate at this point. After a few meetings
Jim advocated that we should consider using a relational database. He made the point
that a few programmers in an academic environment cannot successfully compete with
the thousands of developers at Microsoft, Oracle and IBM, and we should spend our
efforts on creating the additional “business logic” related to astronomy, and use a
commercial platform with a robust SQL query engine. This advice set us on the
trajectory that we have followed ever since.

Another major principle behind our approach also came from Jim Gray. When we
first met, he asked me to give the “20 queries” astronomers wanted to ask from the
database. My first (kneejerk) reaction was that we would like to ask anything and
everything, and this is what science is about. Jim just smiled, and asked me to give the
first five that came to mind. I quickly wrote the down. He then asked me to give the
next five. It took the better part of an hour to do so. By then I realized that the next five

Fig. 1. Jim Gray with members of our team. From left to right: Alex Szalay, Tamas Budavari,
Jim Gray and Ani Thakar.
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will take much longer, and understood that not every question is the same. In an hour
this methodology has taught me a lot of humility, and I learned that there is a priority
among all the things that we can conceivably think of. We have since used this
heuristic technique in a lot of different projects and settings. The results are always the
same: after an initial astonishment the domain scientists very quickly “get the idea” of
establishing clear priorities, and the database architect and domain scientists quickly
find the common ground.

The project has revolutionized not just professional astronomy but also the public’s
access to it. Although a substantial portion of the astronomy community is using the
SDSS archive on a daily basis, the archive has also attracted a wide range of users from
the public [3]: a recent scan of the logs show more than 4M distinct IP addresses
accessing the site. The total number of professional astronomers worldwide is only
about 15K. Furthermore, the collaborative CasJobs interface has more than 9,000
registered users - almost half of the professional astronomy community.

SDSS (2000–2005) and its successors SDSS-II (2005–2008) and SDSS-III (2008–
2014) have an extraordinary legacy of mapping structure across a vast range of scales,
from asteroids in our own Solar System to quasars over 10 billion light-years away.
These surveys have produced data to support the 7,000 papers with more than 450,000
citations. The SDSS has several times been named the highest impact project, facility
or mission in the field of astronomy, as judged by number of citations of associated
refereed journal articles [4, 5].

The SDSS was the source of the most highly cited astronomy article in the years
2000, 2002, 2005, and 2008 [6]. Within the Collaboration there have been over 120
SDSS-based PhD theses, and outside the Collaboration there have been many more. Its
publicly available, user-friendly tools have fueled a large number of undergraduate and

Fig. 2. Monthly traffic of the SDSS SkyServer
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even high-school projects and research papers (including Siemens Competition win-
ners). Galaxy Zoo, based on SDSS, is a hugely successful “citizen science” experiment
that has involved over 100,000 members of the public in astronomical discovery. A key
component of its success has been the cutting-edge data distribution system provided
through SkyServer and CasJobs. The most recent version of the database has a 15 TB
queryable public core, with about 150 TB additional raw and calibrated files [7]. The
traffic on the website is still growing, recently we had to switch the log database to 64-
bit counters, as some of the counter values have exceeded the 32-bit range.

3 Emerging Innovations in the SkyServer

3.1 The SDSS Web Services

The web interface is built on a very small number of atomic services. One simply
executes a single SQL query. This service was very carefully written, it parses the body
of the query looking for all sorts of ‘bad’ patterns, like injection queries,
DROP TABLE, or ALTER TABLE like DDL statements. This function also heavily
interacts with the log, it writes the SQL string into the database when the query is
started, then logs the lapse and CPU times, and the number of rows delivered, or the
error code if any.

The other major core service is the ImageCutout [8]. This is computing the dis-
played views of the sky dynamically, using a multiresolution set of the more than a
million SDSS images. This code has been written is C#, and uses the Microsoft .NET
GDI library for the warping of images. Given the enormous dynamic range in the
brightness of astronomical objects, we used a special color-preserving as in transfor-
mation of the pixel values [9].

3.2 The CasJobs/MyDB Collaborative Environment

As traffic on the SDSS archive grew, many users were running repeated queries
extracting a few million rows of data. The DB server delivered such data sets in 10 s,
but it took several minutes to transmit the data through the slow wide-area networks.
We realized that if users had their own databases at the server, then the query outputs
could go through a high-speed connection, directly into their local databases,
improving system throughput by a factor of 10. During the same time, typical query
execution times and result sets kept growing, thus synchronous, browser-based access
was no longer enough, especially for the rapidly growing segment of “power users”.
There had to be an asynchronous (batch) mode that enabled queries to be queued for
execution and results to be retrieved later at will.

The CasJobs/MyDB batch query workbench environment was born as a result of
combining these “take the analysis to the data” and asynchronous query execution
concepts. CasJobs builds a flexible shell on top of the large SDSS database (Fig. 3).
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Users are able to conduct
sophisticated database operations
within their own space: they can
create new tables, perform joins
with the main DB, write their own
functions, upload their own tables,
and extract existing value-added
data sets that they can take to their
home environment, to be used with
the familiar tools they have been
using since their graduate years. The
system became an overnight suc-
cess. Users needed to register, and
each received an initial 0.5 GB
database. Their data and query his-
tory is always available to them
through their user id, and they do
not need to remember things like “how did I create this data set?”

For redundancy, we had three identical servers containing the active databases. By
studying the usage patterns, we realized that the query length distribution was well
represented by a power law. Hence, we split the traffic into multiple queues served by
different servers, each handling the same aggregate workload [10]. Each query can be
submitted to a “fast,” a “long,” or a MyDB queue, returning the result into a MyDB
table. The user can then process the derived result further, run a multi-step workflow, or
extract the data. Everything that a user does is logged. This set of user-controlled
databases form a very flexible tier on top of the rigid schema of the archive. This
resolves the long-standing tension between stability and rigidity for the integrity of the
core data, and the flexibility to provide room for user creativity.

As users became familiar with the system, there were requests for data sharing. As a
result, we added the ability to create groups and to make individual tables accessible to
certain groups. This led to a natural self-organization, as groups working on a col-
laborative research project used this environment to explore and build their final, value-
added data for eventual publication. GalaxyZoo [11], which classified over a million
SDSS galaxies though a user community of 300,000, used CasJobs to make the final
results world-visible, and CasJobs also became a de-facto platform for publishing data.
We added the capability for users to upload their own datasets and import them into
their MyDBs for correlation with the SDSS. As depicted in Fig. 2, CasJobs-based
systems are currently being used as the primary means of serving the catalog data for
the GALEX and Pan-STARRS projects (among others) in astronomy, in addition to
serving the catalog data for multiple SDSS generations and their worldwide mirrors.
CasJobs has also been (or is currently being) adapted for simulation data projects and
non-astronomy datasets.

Fig. 3. The CasJobs/MyDB framework built for the
Sloan Digital Sky Survey archive.
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3.3 SQL Extensions

In our collaboration with Jim Gray, we have developed a Design Pattern to add domain
specific extensions to SQL Server, using CLI integration. Our code for spatial indexing
was used in the “shrink-wrap” production version of SQL Server 2005 [12–14]. This
code also formed the basis of the subsequent Microsoft Spatial Index. The idea is to
take a class library written in one of the .NET languages (C++, Java, C#), store a binary
instance of the class as a binary datatype, and expose the object methods as user-
defined functions (UDFs). SQL Server makes this very convenient, since unlike many
other database platforms like MySQL, it allows for table-valued UDFs. One can then
pass the binary object as a parameter to the function and execute the method, or access
the property.

In the SkyServer we have 236 UDFs supporting detailed astronomy knowledge,
like conversion of cosmological coordinates in a curved spacetime to angles and radial
distances. Also, we have built an astronomy-specific spatial index, capable of repre-
senting spherical polygons with milliarcsec accuracy over the whole sky, and with a
relational algebra over the regions, and fast indexing capabilities finding several million
points per spherical region in a second.

This turned into another generic indexing pattern. Following the algorithms in the
seminal book of Samet [15] we have built a Euclidian version of the spatial index in 2D
and 3D, using various space filling curves as plugins sharing the same class [16]. Our
turbulence database is using a Morton (or Z) curve, the cosmological simulations use a
Peano-Hilbert curve. Then we map the resulting hash code onto a B-tree index in the
relational database. The points in each bucket along the space filling curve at a given
granularity then map onto a range query, performed extremely fast inside a relational
database. The range of buckets to be searched is given by the intersection of the
geometric search volume with the quad- or oct-tree of the space filling curve. This is
another component that is quite generic. We need to add additional geometric primi-
tives to the library.

For large numerical simulations much of the data is in multidimensional floating-
point arrays. We have built such a User Defined Type for SQL Server, which is used
for all of our simulation databases [17]. We will develop a generic module that
repartitions the data in a large array into smaller blocks organized along a space-filling
curve, adds the custom metadata header and writes these out in native binary format for
optimal SQL Server load performance.

3.4 Schema and Metadata Framework

The schema for the database is contained in a set of DDL files. These files are quite
complex, they not only contain the code to generate the database and the associated
stored procedures and user defined functions, but in the comment fields of the scripts
they contain rich metadata describing the schema elements, including physical units,
enumerations, indexes, primary keys, short and long descriptions. A parser can extract
this information at different granularities (object, column) and create a set of metadata
tables that can be automatically loaded into the database [18]. This ensures that all the
schema and related metadata is handled together in an automated fashion, similar to the
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approach originally employed by Donald Knuth, when he created TeX. The database
will then contain all the up-to-date metadata and these can be queried and displayed
using simple functions and dynamic web services. This tool is quite robust and mature
and has been in use for more than 14 years.

4 Extending to Other Disciplines

4.1 The SkyServer Genealogy

The template for the SDSS archive is now being used within astronomy by several
projects and institutions beyond JHU (STScI, Fermilab, Caltech, Edinburgh, Hawaii,
Portsmouth, and Budapest). The technologies and concepts used for the SDSS archive
have since been used beyond astronomy. Using the same template, we have built
databases for a growing number of other disciplines; see Fig. 2. for the genealogy of
SDSS. Included are databases for turbulence [19, 20], radiation oncology [21], envi-
ronmental sensing and carbon cycle monitoring [22] and most recently a prototype for
high-throughput genomics. The databases built for cosmological simulations at the
Max Planck Institutes in Garching [23] and Potsdam are revolutionizing how astron-
omers interact with the largest simulations. We would also like to acknowledge that the
prototype of the SkyServer was partly derived from the Terraserver, written by Jim
Gray and Tom Barclay (Fig. 4).

4.2 Database-Centric Open Numerical Laboratories

The Emerging Simulation Data Challenge. World-wide there is an ongoing effort to
build an exascale computer. Some of the largest particle simulations today already
exceed a trillion particles. If we only store their positions and velocities, and a single
particle identifier, we have to save 56 TB for each snapshot. At the same time, fewer
and fewer codes will scale to run on millions of cores, and as a result, fewer and fewer
people will use these machines. There will be an increasing gap between the wide
science community and the top users. It will be increasingly important to be able to

Fig. 4. The genealogy of the SDSS archive and the CasJobs/MyDB system.
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create tangible benefits, usable science products that can be used by a much broader
pool of users: otherwise community support will be soon endangered. Thus, we pos-
tulate that it is extremely important to identify a mechanism through which data
products from the largest simulations in science can be publicly shared and used,
potentially over extended periods. Databases play an important role in these
applications.

Databases and Immersive Analysis Through Virtual Sensors. For a large-scale
analyses we need a data access abstraction that is inherently scalable. For the user it
should not matter whether the data in is a terabyte or a petabyte. The casual user should
be able to perform very light-weight analyses, without downloading much software or
data. Accessing data through the flat files violates this principle: the user cannot do
anything until a very large file has been physically transferred.

On the other hand, one can create a so-called immersive environment in which the
users can insert virtual sensors into the simulation. These sensors can then feed data
back to the user. They can provide a one-time measurement, pinned to a physical
(Eulerian) location or they can “go with the flow” as comoving Lagrangian particles.
As a result of this access pattern, the only scaling is related to the number of sensors.
The data access is extremely localized and a relational database is providing the data
access layer, using distributed SQL queries, turning the spatial hash keys into deliv-
ering buckets of data, used for the interpolation of data values as part of a User Defined
Function.

By placing the sensors in different geometric configurations, users can accommo-
date a wide variety of spatio-temporal access patterns. The sensors can feed back data
on multiple channels, measuring different fields in the simulation. They can have a
variety of operators, like the Hessian or Laplacian of a field, or various filters and
clipping thresholds. This design also enables the users to run time backwards,
impossible in a direct simulation involving dissipation. Imagine that the snapshots are
saved frequently enough that one can interpolate particle velocities smoothly enough.
Sensors can back-track their original trajectory and one can see where they came from,
all the way back to the initial conditions. This simple interface can provide a very
flexible, yet powerful way to do science with large data sets from anywhere in the
world.

What is noteworthy about the availability of such a 4D dataset “at your fingertips”
and the ability to make “casual” queries from anywhere, at any time, is that it is
beginning to change how we think about the data. Researchers can come back to the
same place in space and time and be sure to encounter the same values. They can
follow and observe phenomena forward and backwards in time.

The Turbulence Database. The “Twister” metaphor mentioned above, which is based
on our “immersive turbulence” paradigm, has been implemented in the Turbulence DB
8 years ago. The Turbulence DB is the first space-time database for turbulent flows,
containing the output of large simulations, publicly available to the research commu-
nity, [24, 25]. The 27 TB database contains the entire time-history of a 10243 mesh
point pseudo-spectral Direct Numerical Simulation of forced Navier-Stokes equations
representing isotropic turbulence. 1024 time-steps are stored, covering a full “large-
eddy” turnover time of model evolution. We have built a prototype web service
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[24–26] that serves requests
over the web for velocities,
pressure, various space
derivatives of velocity and
pressure, and interpolation
functions. The data and its
interface are used by the
turbulence research commu-
nity and have led to about
100 publications to date. To
date we have delivered over
70 trillion (!) data points to
the user community.

A dataset on Magneto-
Hydrodynamic Turbulence
(50 TB) was the second one
added to the database. After
this, we have added a channel
flow database (120 TB), and
a smaller database of a rotat-
ing fluid. Then, we have
augmented the original isotropic turbulence from 1024 snapshots to 5028 snapshots,
increasing its size to well over 100 TB. We are in the process of converting and loading
another MHD database with a volume of 256 TB. Figure 5 shows a few thousand par-
ticles on stochastic trajectories, all ending within a small distance to each other. The
trajectories were computed by moving the particles backward in time, impossible to do in
an in-situ computation, only enabled by interpolation over the database.

Evaluation of filtered or coarse-grained fields requires intermediate, server-side
computations, such as FFTs or streamed partial sum evaluations of linear operators
acting on the data. The turbulence data sets are simply too big to transfer wholesale to
the user, and conversely, the “pre-determined” user defined functions that can be
implemented within the database system close to the data are simply too inflexible to
enable the next steps of data analysis we wish to perform on the data.

We are in the process of adding CasJobs/MyDB/MyScratch functionality to the
turbulence databases, enabling users to run batch jobs, store and correlate these
intermediate derived data sets with the main data. Furthermore, we will develop two
specific scalable algorithms that capture the most important patterns to create custom
intermediate data sets within the application server layer. We have made some initial
steps already [28], but much more work is required to make these tools sufficiently
robust and efficient. For repeated analyses we will also enable the users to store/cache
such results in their MyDB for reuse.

Fig. 5. Stochastic trajectories of particles with a common
final position from a 50 TB MHD simulation. The particle
tracking has been performed backwards in time, impossible
to do in an in-situ CFD simulation due to the dissipative
nature of the problem [27].
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Cosmological N-body Simulations. A similar transformation is happening in cos-
mology. The SDSS SkyServer framework was reused by Gerard Lemson at the Max
Planck Institute in Garching, Germany for the Millennium simulation database. The
database has been in use for over 8 years, and has hundreds of regular users, and has
been used in nearly seven hundred publications. The database contains value added
data from a simulation originally only containing 10B dark matter particles. These
particles form hierarchical clusters, so called sub-halos and halos, which in turn
become the sites where galaxies might form. A semi-analytical recipe was used to
create mock galaxies in the simulations, and their hierarchical mergers were tracked in
a database structure. The merger history was used to assign a plausible star formation
rate to each galaxy which in turn can be used to derive observable physical properties.
The database contains several such semi-analytic scenarios and has been expanded with
data from three other simulations, one of which, the Millennium XXL [29] is con-
taining 300 billion particles (Fig. 6).

It is clear, that there is a similar momentum building in the cosmology community
as in turbulence, and by being able to move quickly, we can maintain a world-wide
leading role in this emerging field. In order to maximize the access performance to the
data, the halos and particles are stored along a space-filling Peano-Hilbert curve in the
database, which creates a linear ordering maximally coherent in 3D. As hard disks are
inherently sequential devices, this maximizes the database performance (Fig. 7).

Kilometer-Scale Modeling of Virtual Ocean Basins. Tom Haine and his postdocs
and students are developing basin scale models of the ocean with kilometer scale
resolutions. Such models, with appropriate numerical schemes, can help test funda-
mental ideas about how the vast range of turbulent scales in the ocean interact to
maintain climate and how the dominant biomass processes in the ocean respond to and
are affected by the rich ocean eddy field. Many key questions remain unanswered in
these areas and their answers have important implications for the role the ocean can

Fig. 6. Zoom in on a slice through the
Millennium-XXL simulation [29].

Fig. 7. Three-dimensional particle trajectories
in an ocean circulation model in the North
Atlantic region. The particles are inserted poste-
rior, running in a MATLAB script, through a
Jupyter interface.
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play in stabilizing or destabilizing the Earth’s thermal, hydrologic, chemical and bio-
logical balances on time scales from days to decades and beyond.

5 The Next Steps: From SkyServer to SciServer

5.1 The SciServer Architecture

Until a few years ago the SDSS framework was enhanced and expanded to include
other types of data in a rather ad-hoc fashion. The high-level system architecture is
shown on Fig. 8. The system diagram shows (at a very high level) how the different
components interact. The diagram reflects also how the CasJobs/MyDB component is
integrated with the SciDrive object store and how the scratch spaces (both flat files and
databases) are linked to the system, and how the virtual machines are used to support
interactive Jupyter-based scripting.

Over the first 12 years of the SDSS archive we have incrementally evolved the
system, avoiding major architectural changes. The SDSS data with all the additional
science projects have been created at a cost well over $200M. They are widely used by
a large community, generating new papers and supporting original research every day.

Now, as we need to look ahead into the future, the services are showing signs of a
Service Lifecycle, while the data are still very much alive, they will still be used in 15
years from now. In order to prepare for the future, we need to consolidate and
reengineer the services framework, with the main goal of making the data services
much more sustainable, and inexpensive to operate. In order to do this, we have
endeavored on converting the SkyServer to the SciServer, a more generic, modular
framework of a set of building blocks that can be connected in several ways. In this
section we will show the ideas behind this consolidation process, and how we add new
services to fulfill emerging new needs from our users.
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Major challenges exist, from basic cost-effective engineering of sufficiently reliable,
high-performance storage subsystems to productive, scalable analysis systems, col-
lectively capable of tens to hundreds of GBps per second throughput and 1000 to
10,000-way parallelism. In this realm we have been experimenting with distributed
database architectures that include enhanced query languages and data models that
understand spatio-temporal data.

5.2 New Building Blocks

The Millennium and the Turbulence databases have used space filling curves as
indexes inside a relational database. This gave an excellent indexed access perfor-
mance, maximally parallel due to the query optimizer, and enabling the users to access
the data through a declarative interface: they did not have to specify how to set up the
iterators through the data over a distributed set of storage servers, this was hidden by
the query engine. This database-centric view became very powerful, but it did not come
for free. Loading buckets of data in binary BLOBs in the turbulence database was
simple for small datasets, up to about a few tens of TB is data volume. Beyond that
scale the process did not scale well at all, ingesting a 250 TB simulation took several
months.

Over the last few years, Gerard Lemson has developed a new data organization for
cosmological N-body simulations, which keeps the benefits of the database indexing
but avoids the cumbersome database loading. This idea, FileDB is that we keep the
data in (where possible) the original large binary files in the file system, but internally
the data is split into buckets ordered along a space-filling curve. The files can be read in
their entirety through the operating system for global analytics, but for localized access
we can keep an index in a (small) database, which tells us the file and the offset of each
data bucket/item. We only need to load the index into the database.

One table contains pointers to the file locations and has metadata concerning the
snapshot and index range. A second table stores for each file the precise start and end
point of each bucket. Querying for a certain bucket consists of finding the file and offset
in that file. A seek operation moves one efficiently, without requiring any I/O, to the
start point. A sequential read to the end of the bucket will load all the particles into
memory.

This organization on a uniform, hierarchical, recursively indexed grid is the basis
for an efficient implementation of queries for particles in spatial regions such as boxes,
or spheres. It is quite straightforward to calculate all the cells overlapping such a
region. The same pattern has now been applied to the latest turbulence data, which are
no longer stored inside the database. Their access APIs still use the same database
procedures and functions as before, but instead of querying the database tables these
functions use the known spatial organization of the files to perform efficient seek-and-
scan to retrieve the individual data points.

In that case the access is simplified as the data is uniform and exact locations of
requested points can be calculated in closed form. This is in contrast to the particle data
in the cosmological simulations that requires indexing of each separate snapshot. The
oceanography case falls somewhere in between. The grids are known and constant, but

Database-Centric Scientific Computing 15



the irregular boundary conditions prevent one from closed form solutions, and a special
index must be built inside the database as well.

We have enabled the CasJobs system to have many other contexts, not just the
SDSS data versions (right now we have all the previous data releases from DR1
through DR9), but also other astronomical collections. We have also brought the
simulations into the federation. Uploaded and derived data (and the related metadata)
automatically shows up in the user’s MyDB. For large scale intermediate data sets the
few GB of user space provided by default is not quite enough. For example, a custom
cross-match of large astronomical catalogs, like SDSS and GALEX might require
several 100 GB if not TBs of disk space. This cannot be done today. We aim resolved
this problem by a new MyScratch layer between the static contexts and the MyDBs,
with 200 TB of storage. In order to make it easier for users to upload their tables to the
CasJobs environment, we will add a simple DropBox-like drag-and-drop interface to
the system.

Our users, both in SDSS and in the Numerical Laboratories have become quite
artful in using database queries. They use SQL tools not as a hammer, but rather as a
violin, and they generate “nice music”. But, with the emergence of Python, lot of
sophisticated machine learning algorithms, libraries and packages have become
available, and the users are now keen to use these with same ease of interactivity as
SQL. A typical use case would start with a SQL query returning tens of thousands of
objects with a particular spectral property. However, the user would then like to go
back to the raw data (spectra in this case) and run her own tools and algorithm written
in Python.

In order to facilitate this, we built a new component: the SciServer Compute, a set
of servers providing about 100 virtual machines, always available, that can be used to
start Jupyter/iPython notebooks, within Docker containers. These are preconfigured
with the database interface tools, that users can run their SQL queries out of Python.
Furthermore, all the raw data files of SDSS (about 150 TB) are wrapped into a data
container, so access is trivial. Other large projects have similar data containers. The
Jupyter environment also enables Matlab and R, more relevant for our engineering and
Biostats/genomics users. Several of our interactive Numerical Laboratories (Turbu-
lence, Ocean Circulation, N-body) are now using both Python and Matlab bindings.

6 Futures of Database-Centric Computing

What has been emerging in all these use cases is that databases have been used as an
extremely efficient API for localized, parallel I/O streams. Over the last few years there
has been more evolution in terms of storage hardware than for several decades before.
Today’s solid-state disks (SSDs) are commonplace, although expensive, but soon will
be much bigger and much cheaper. One can already buy 16 TB SSDs. NVRAMs will
add another new tier into the storage hierarchy.

As the underlying hardware gets increasingly more complex, the declarative pro-
gramming interface of databases isolates the users from writing explicit iterators, and
the query optimizers provide an efficient parallelism over the distributed hardware.
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Big Data is always noisy, full with systematic errors – thus perfect answers are
meaningless. In a massively parallel system, executing over possibly hundreds of
thousands of data partitions, there will always be a few which will lag behind in
execution. With databases starting to go beyond several petabytes, and with extreme
parallelism, providing a statistically well defined, approximate result using sublinear,
randomized algorithms may be a way to trade accuracy versus execution time in a
controlled fashion. Sketches, approximate aggregations, may provide excellent trade-
offs for heavy-hitter problems. Extreme value statistics may offer additional insights
into Top-k queries.

POSIX file systems are providing a byte stream, completely hiding data locality.
For efficient data queries, locality is important, and increasingly we see intelligent
object stores offering more and more database-like features. Spanner and
BigTable have changed how Google deals with their distributed data objects. It is safe
to say that in some form we see databases gradually replacing file systems.

New computational hardware is emerging as well. Neuromorphic chips enable
extremely fast execution of neural net training and prediction. Preliminary results show
that Deep Learning can predict the locality of a data item based on its key value better
than a B-tree [30, 31]. This is easy to understand when we consider an index to be
simply a mapping of the cumulative distribution of the key values onto an address
space. Such a curve fitting problem maps onto Deep Learning extremely well. Soon we
will see Deep Learning also replace the decision trees of query optimizers [32]. GPU
based sorting is many orders of magnitude faster than CPUs. Soon these devices will
also be running database kernels, not just user-space application codes. There is more
innovation, basic research and new platforms for databases emerging, than any time in
the past, underlining the importance of data locality.

7 Summary

Relational databases have been around for a long time. Over the last few years we have
seen a dramatic change in storage hardware, in distributed computing and these have
resulted in profound changes, many new features in database architectures. Recently
we have seen how databases are moving to the core of scalable data-intensive
computing.

Many sciences now deploy their data into large, open scientific databases, hosting
“smart” data, through computational services. This approach is embraced by the sci-
entists, and enables them to manage and analyze data on scales previously unheard of.
Data science is becoming as important as mathematics for every scientist. Jim Gray’s
Fourth Paradigm is in full bloom, and he has foreseen many of the technological and
scientific advances we see today.

These large data sets, analyzed by a much broader range of scientists than ever
before, using all the tools of the computer age are creating a new way to do science, one
that we are just starting to grapple with. We cannot predict where it will exactly lead,
but it is already clear that these technologies will bring about further dramatic changes
in the way we do science and make new discoveries.
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Abstract. This paper presents a spatio-temporal data mining regarding the
origin of the names of the 218 longest European rivers. The study shows that
35.2% of these river names originate in the Near East and Southern Caucasus.
The study also investigates the origin of European mountain names. It is shown
that at least 26 mountain names originate from Africa.

Keywords: Data mining � Etymology � Mountain � River � Spatio-temporal

1 Introduction

Archeology reveals three main expansions of human populations into Europe. The first
of these expansions is an expansion from North Africa that was likely prompted by the
desertification of the Sahara. The second expansion took place as is a Neolithic agri-
cultural expansion from Anatolia or perhaps even from Mesopotamia. The population
of this expansion is often called the group of Early European Farmers EEF). The third
expansion is a Bronze Age nomadic expansion from the Eurasian Steppe areas. The
third expansion is commonly associated with the expansion of Proto-Indo-European
(PIE) language speaking populations [1]. These expansions and other examples of the
spread of human populations can be studied today using various archaeogenetics
methods [2–4]. However, neither archeology nor archaeogenetics can identify the
languages of the early North Africans and the EEFs. The goal of this research is to
identify the languages of these groups based on the old European river and mountain
names that may derive from those languages.

The approach we take is to analyze ancient river and mountain names. Many of
these topological names are presumed to have survived for millennia, that is, they
reflect a pre-Indo-European era [5]. Therefore, these topological names can be asso-
ciated with the native Ice Age Europeans, the early North Africans of the first
expansion mentioned above, or the Neolithic EEFs.

This paper is organized as follows. Section 2 describes the data sources. Section 3
presents the results of data mining for the origin of the European river and mountain
names. Section 4 discusses the linguistic implications of the data mining. The data
mining implies ancient cross-continental linguistic connections between Africa and
Europe. Finally, Sect. 6 presents some conclusions and ideas for future work.
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2 Data Sources

2.1 River Names

Herodotus wrote extensively about the places he visited around 500 BCE. Strabo’s
work Geographia contains a wealth of river names that existed in the first century and
was known to the ancient Greeks and Romans.

In a recent study of the degree of preservation of European river names, Carsten
Peust [6] considered all European rivers exceeding 250 km that flow into the Atlantic,
the Mediterranean Sea, the Black Sea or the Baltic Sea. He disregarded rivers that flow
into the Arctic Sea and the Caspian Sea because supposedly the ancient Greek and
Roman writers, such as Herodotus and Strabo, could not have known about those
rivers. In this way, he obtained a total of 210 river names. Peust’s goal was to find the
degree that the names recorded by classical writers and used by modern populations
match. He found a very high preservation rate, meaning that many river names seem to
persist in Europe. Although Peust’s study shows that many river names may be ancient,
going back to the Neolithic or earlier, his study did not reveal the origin of these river
names, which is the goal of our study.

We used his list with the addition of eight river names that we thought may be of
ancient, non-PIE origin. Therefore, we used a total of 218 river names in our study. In
particular, we added the following river names:

1. Aragón, this is a significant river flowing through the Basque region of Spain.
2. Arga, this is a significant river in Spain. The similar sounding Aragón river

strengthens the proposition that this is an ancient river name.
3. Arnus, which just barely missed the arbitrary 250 km cut. It was the main Etruscan river.
4. Kama, which is a major river flowing into the Volga. This river flowed through the

Finno-Ugric homeland according to the most widely-accepted theory of the origin
of Finno-Ugric peoples.

5. Rioni, which flows into the Black Sea and is the longest river in Georgia. It seems
that this barely missed Peust’s criteria because Georgia is counted as a non-
European state.

6. Salla, to whose length one may add the narrow and shallow lake Balaton (72 km in
length) that can be considered a continuation of the Salla river. With that addition, it
also just barely misses the arbitrary 250 km cut.

7. Saravus, which just barely missed the arbitrary 250 km cut.
8. Volga, which is the major river flowing into the Caspian Sea.

As a separate list, we created a list of ancient Near-Eastern river names. We placed
into this list ancient Hattic river names from Anatolia because the Hattic people are
assumed to have been indigenous to Anatolia before the arrival of PIE groups. We also
added some Syrian, Caucasian and Mesopotamian river names.

2.2 Mountain Names

As the possible derivatives list, we considered all European mountain names from
Herodotus, Strabo, and Pliny. We also considered all modern mountain names from the
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Carpathian Basin, and area where many migrants passed through over the millennia,
including the EEFs.

For the possible sources list, it seemed unwarranted to restrict attention only to the
Fertile Crescent, which has few mountains, or to Anatolia, which is mostly a high
plateau. Instead, we extended our search for mountain names to Africa. Since Africa is a
huge continent with many mountains, hills and promontories, to cut down the search
space, we considered what locations an ancient migrant population slowly migrating
from North Africa into Europe would go through. Presumably, this ancient mountain-
name-giver population would also name the mountains that it found along the way. This
consideration of possibilities greatly cut down the search place, as explained below.

Migrants from North Africa into the Iberian Peninsula likely followed the path of
the Strait of Gibraltar. In ancient times the North African side of the Strait of Gibraltar
was called the Abile Mountain, which is recorded by Strabo.

Migrants from North Africa to the Italian Peninsula would have to pass the island of
Sicily, where the largest mountain is called NebrodeMountain, which is also recorded by
Strabo. Although technically Sicily is part of Europe, this name could have been given to
the mountain by one of the earliest Africanmigrant groups that passed through the island.

Finally, migrants from North Africa could follow the Nile River and then move
along the Eastern Mediterranean seashore into Anatolia and then Greece. On this way,
they could have seen the Abydos Mountain, which was already recorded in pre-
dynastic Egypt [7]. At the foot of this mountain is a city and a famous sanctuary.

Therefore, the possible sources list consisted of the following mountain names:
Abile, Nebrode, and Abydos.

2.3 Congruent Sound Groups (CSGs)

First, we group some consonants together because theymay change relatively easily from
one to another. For these groups, we used the International Phonetic Alphabet’s phonetic
symbols and categorizations. The congruent sound groups (CSGs) are the following:

1. /b/, /p/, /m/ and /n/ – Here /b/ and /p/ is a voiced/voiceless plosive bilabial pair.
These can change to /m/, which is a nasal bilabial sound. The /m/ can change to /n/,
which is another nasal sound.

2. /d/, /t/ and /h/ – Here /d/ and /t/ is a voiced/voiceless plosive dental/alveolar pair.
The /h/ is an aspiration of the /t/ sound.

3. /f/, /v/ and /w/ – Here /f/ and /v/ is a voiceless/voiced fricative labiodental pair. The /
v/ and /w/ exchange is also common.

4. /g/, /k/ and /h/ – Here /g/ and /k/ is a voiced/voiceless plosive velar pair. The /k/ can
change to /h/. For example, in reconstructed Proto-Finno-Ugric words with a word
initial /k/ followed by a deep vowel the /k/ regularly changes to an /h/.

5. /l/ and /r/ – These alveolar sounds can commonly change into each other. Some
ancient scripts, for example Mycenaean Linear B, did not even distinguish between
these two sounds.

6. /s/, /z/, /ʃ/ and /ʒ/ – These fricative velar sounds can be commonly exchanged.
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3 River Name Groups (RNGs)

River names can have a beginning of the form V1C1V2C2 where C1 and C2 are (not
necessarily distinct) consonants and V1 and V2 are (not necessarily distinct) vowels or
the empty string. We divided into separate groups all river names according to C1 and
C2. Table gives examples of Pre-Indo-European river names for each group for which
we could find an appropriate match (Table 1).

3.1 Mountain Name Groups (MNGs)

The first consonant C1 in each mountain name has to be /b/, /p/, /m/, or /n/. The second
consonant C2 has to be a /d/, /t/ or /h/ in the Abydos group, or an /l/ in the Abile
group. Finally, in the Ne-brode group (where Ne is ignored) the C2 has to be an /l/ or an
/r/ and the third consonant C3 has to be /d/, /t/ or /h/. Table 2 gives a summary of these
three cases.

4 Analysis of the Spread of River and Mountain Names

4.1 Analysis of the Spread of River Names

Figure 1 shows the river names that fit the Adonis group. Altogether nine out of the
218 river names fit into this group.

Table 1. River name groups identified according to the first two consonants in the river name.
The first consonant is in the row and the second consonant is in the column. Where we could
find, we give a Pre-Indo-European river name. The legend of the superscripts is: As = Assyrian,
Can = Canaanite, Cau = Caucasian, Ha = Hattic.

b, p, m n d, t, h f, v, w g, k, h l, r s, z, ʃ, ʒ

b, p, m n MaraššantiyaHa

d, t, h AdonisCan

f, v, w
g, k, h KummelmalyaHa HulayaHa

l, r ArantuAs AraxesCau

s, z, ʃ, ʒ ŠamuraHa ŠariyaHa

Table 2. River name groups identified according to the first two consonants in the river name.
The first consonant is in the row and the second consonant is in the column. Where we could
find, we give a Pre-Indo-European river name.

C2 = d, t, h C2 = l C2 = l, r and C3 = d, t, h

b, p, m n AbydosEgypt AbileMorocco Ne-brodeSicily

other
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Fig. 2. Peust’s river names that fit the Hulaya, Kummelmalya andMaraššantiya river name groups.

Fig. 1. Peust’s river names that fit the Adonis River name group.
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Figure 2 shows the river names that fit the Hulaya, Kummelmalya and Maraššantiya
river name groups. Figure 3 shows the river names that fit the Šamura, Šariya, and
Arantu and Araxes river name groups.

In Table 3 shows the number of river names from our list of 218 rivers that belong
to each RNG that is associated with a Near Eastern river name.

Fig. 3. Peust’s river names that fit the Šamura, Šariya, Arantu nd Araxes river name groups.
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Table 3 shows that 77 European major river names out of 218, that is, 35.3%, could
be traced to the Near East and the Caucasus. That is an unexpectedly high number given
that some European river names could also derive from the native Ice Age hunter-
gatherers, the early North Africans, or from the Bronze Age Proto-Indo-Europeans.
Therefore, this is a strong linguistic support to the thesis that a large number of European
river names go back go the agricultural expansion that started c. 7000 BC.

It is also interesting that the distribution of the river names is not random. There is a
clear preference for the second consonant to be either in the first group (b, p, m and
n) or the fifth group (l and r). Moreover, all of these names are associated with the Near
East, and a remarkably large number with the Hattic names. Hence the mentioned
preference probably reflects an essential characteristic of the Hattic language, who may
have been the earliest agriculturalists in Anatolia. They apparently spread over the
entire European continent and left their marks in all the places that was the main route
of expansion, including present day Bulgaria, Romania, Serbia, Croatia, Slovenia,
Hungary, Slovakia, Poland, Lithuania, Ukraine, Russia, Austria, Germany, Nether-
lands, Norway, Sweden, Finland, England, Ireland, France, Italy and Spain.

When the second syllable was in the fourth group (g, k and h), which was asso-
ciated with the Araxes River in the Caucasus, then the distribution of the names was
more selective. The five names in this group can be divided into a one subgroup, which
starts with a vowel and the first consonant is an r, while the second subgroup starts with
an l and contains the name of only one river near St. Petersburg, Russia.

The first subgroup apparently had a maritime expansion from the Caucasus to the
historical Thrace (approximately present day southern Romania, Bulgaria and Northern
Greece) then it may have reached the Argolis plain in Greece, and then reached
northern Italy, where there is an Orco River, which is a tributary of the Po River, then
reached southern France, where there is an Ariège River, which is a tributary of the
Garonne River, and finally it reached northern Spain. The Loire River, which originates
in southern France, also has the Arroux River as a tributary. It is possible that this
group of people called the entire Po the Orco and the entire Loire the Arroux, but these
latter names survive today only as the names of tributaries.

The second subgroup probably had a separate, unrelated development because of
the combination of the geographic and the subtler linguistic differences. The only route
connecting the Caucasus with the northeast of Russia would be via the Volga River.

Table 3. The number of river names that fall within each river name group.

b, p, m n d, t, h f, v, w g, k, h l, r s, z, ʃ, ʒ

b, p, m n 19
d, t, h 9
f, v, w
g, k, h 6 11
l, r 8 5
s, z, ʃ, ʒ 10 9
Total 33 5 39
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The ancient name of Volga was the Scythian Rā, which has /r/ as the first consonant but
has no second consonant. Therefore, whether this indicates an expansion from the
Caucasus or not cannot be decided by this study.

4.2 Analysis of the Spread of Mountain Names

Figure 4 shows the list of mountain names that were found to fit well with the three
source names. Naturally, the list contains a large number of Greek mountain names
because that area was the most familiar to Strabo. Although the study of Asian

Fig. 4. Mountain names that fit the three mountain name groups.
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mountain name was not the goal of this study, we also added to the Abydos list in
Fig. 4 the famous Emodos Mountain, which today is called the Himalayas Mountain,
the Sarpedon promontory in Cilicia, which is in southern Turkey, and the Pedalion
promontory on Cyprus. It is possible that some of the ancient African migrants instead
of following the Eastern Mediterranean coast followed a different route into India,
probably going around the Arabian Peninsula. The Burundi mountain name Buda
suggests that the expansion of the population that gave these mountain names started
from around Lake Victoria, which is a source of the Nile River.

In summary, we found 6 European mountain names in the first group, 5 European
mountain names in the second group (including Nebrode), and 15 mountain names in
the third group. Therefore, we found a total of 26 mountain names that seem to derive
from African sources. We also found a Burundian mountain name supporting the
hypothesis of a mountain name giving population expansion along the Nile River.

5 Discussion of the Linguistic Implications

5.1 River Name Etymologies

The Araxes river name group (especially its first subgroup) recalls the Argonauts in
Greek mythology. These mythical heroes made a journey to the land of the Colchis,
which is present day Georgia. This myth may reflect some knowledge about the
expansion of this first subgroup from the Caucasus to Greece. There are some linguistic
theories that connect the Kartvelian languages, which includes Georgian, to the Bas-
ques [8]. If the connection is valid, then the maritime expansion of this group may be
the explanation for the linguistic connection.

The etymology of the Arantu river is unknown. It may be a Hurrian name in origin.
The Arnus is the main Etruscan river. There are some indications of Etruscan-Hurrian
language relationships.

The word Maraššantiya may be related to puroFinnish (creek) and folyóHungarian

(river). Another surprising finding is that the Hattic river names all end in –ya. This
could be related to jóHungarian (river), which is the last syllable of many Hungarian river
names.

5.2 Mountain Name Etymologies

It already struck us that the three mountain name groups Abile, Nebrode, and Abydos
may be cognates. That is, they may all derive from some common root, some African
word of truly ancient origin that may be Proto-Word for many languages in the world.

For example, Abydos and Bile may be related because a /d/ to /l/ change is not
unusual. Hence *Abydo > *Abilo > Abile is a possible development. In addition, the
insertion or deletion of an /r/ is also possible. Moreover, Nebrode could be a composite
word consisting of Ne + Abrode. We also could have with an /r/ omission the fol-
lowing development: *Abrode > *Abode > Abydo. Therefore, it is not impossible that
one ancient North African population split and migrated on separate route into Europe.
During this migration, the original word for “mountain” became slightly modified.
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To further investigate this possibility, we searched for possible cognate words in
various African, Eurasian languages. Table 4 lists the words that we could identify as
possible cognates. Note that the Somali word buurta, which means “hill” could be close
to the proto-word we look for. Our guess is that the proto-word was *aburda. The
Somali language is a distinct branch of the Afro-Asiatic languages, but the proto-word
*aburda likely pre-dates the beginning of Proto-Afro-Asiatic because it is also related
to Sumerian bàd, which means “wall.” The Sumerian wall is clearly cognate because
walls are made of rocks and bricks. The proto-word is also related to the Filipino bato,
which means “rock.”

It is also surprising that the Carpathian Mountains now can be given a Sumerian
etymology. In Sumerian kur means “mountain” and combines with bàd, it means
mountaintop [9]. Previously, no satisfying etymology was given for the name Carpat,
which was already recorded by Pliny.

Previous research of the author [15–19] using phylogenetic and spatio-temporal
data mining methods [20, 21] has revealed a close language connections between
Minoan, Hattic and Hungarian. This result seemed to contradict previous theories about
the origin of the Hungarian people and language. However, Fig. 5 suggests an
explanation for the relationships. The white circles in Fig. 5 show the geographic
locations that may provide refuge areas against any nomadic invasion from the great
Eurasia Steppe areas. It can be assumed that in general the nomadic invaders, be they
Bronze Age Proto-Indo-Europeans [1] or later groups, would have preferred the rela-
tively flat areas north of the Carpathian Mountains than to go through the Carpathians
with their horses. They would also avoid the northern forest areas, which may be a
refuge area other Uralic people. Similarly the Caucasus Mountains, Apennine Moun-
tains and the Pyrenees Mountains may have provided some refuge for the Caucasian,
the Etruscan and the Basque populations, respectively.

Table 4. Some words that are cognates of various mountain name groups.

Group Definition Source

Abile pellaGreek Stone, rock [10]
Abile paaluFinnish Pile [13]
Abydos apataYoruba Rock [13]
Abydos batoFilipino Rock [13]
Abydos bàdSumerian Wall [9]
Car-pat kur-badSumerian Mountaintop [14]
Abydos budaHungarian Sharp picket [11]
Abydos patiMansi Go down to the river from a mountain [12]
Abydos budjāProto−Albanian Lip, end, edge, bank, stitch, rock [10]
Abydos pytnaGreek Stone, hill rock [10]
Abydos petraGreek Stone, rock [10]
Ne-brode blatMaltese Rock [13]
Ne-brode buurtaSomalian Hill [13]
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However, while all the white circles are shielded from an invasion from the Eur-
asian Steppe, they fare differently from an invasion from Anatolia. The Basque and the
Etruscan areas would be still shielded, but most of the Carpathian Basin would be
exposed to a southern invasion along the Danube River. It is possible perhaps that the
relatively mountainous areas of Transylvania would have some protections, but that
protection would be much weaker than the protection provided by the Carpathian
Mountains against an eastern invasion. That means that a Hattic expansion could have
influenced the population and culture of the Carpathian Basin, but the Proto-Indo-
European invasion could have only a minimal impact.

Figure 5 also suggests that the Proto-Indo-Europeans may have come to Europe
from two directions. The first direction would have been from the Eurasian Steppe and
the second via Anatolia. The second direction is a rougher terrain, which would have
greatly slowed down the speed of the Proto-Indo-European advance. Moreover, in the
Aegean Sea islands, as well as Sicily and Sardinia, the earlier populations would have
avoided an immediate invasion and could have their culture survive longer than on the
mainland of Europe. This seems to be especially the case in the Cyclades and in Crete.
The island of Crete was the seat of the Minoan civilization. The Minoan civilization
seems related to the Hattic civilization, but survived much longer. Hattusa, the center of
Hattic civilization, fell to the Hittites around 1700 BCE. However, the Mycenaean

Fig. 5. This figure shows two main expansions of human populations into Europe: (1) an
agricultural expansion from Anatolia (dashed yellow lines) and (2) a nomadic expansion from the
Eurasian steppe areas solid red lines). The white circles indicate possible language refugee areas.
(Color figure online)
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Greeks only captured Crete around 1450 BCE. According to many historians, the
Mycenaean conquest would have been further delayed if the eruption of a volcano on
the island of Santorini would not have already weakened by that time the Minoan
civilization.

6 Conclusions and Further Work

Our spatio-temporal data mining study considered the geographic distribution of river
and mountain names over a period of several millennia. We found evidence of an
African origin of many mountain names in Europe, and even in Asia. Our hypothesis is
that these mountain names were brought into Europe when the Sahara dried up and
hunting-gathering North Africans were seeking a better climate. This gradual deserti-
fication may have started at the end of the Ice Age. Hence probably these mountain
names could go back to the Ice Age.

We also found evidence of a Near Eastern or Caucasian origin of many river names.
Apparently the EEFs either did not know the names of the rivers, or they found it very
important to call the rivers certain names. On the other EEFs seem to have been less
interested in the mountains and were willing to accept for them the local names that the
hunter-gatherers already gave them.

One interesting question that remains is whether these river and mountain names
extend to Australia and the Americas. If the river and mountain names have cognates in
these continents, then that fact would imply an even earlier origin of these names,
going back perhaps to the very earliest human proto-language.
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Abstract. The increasing popularity of NoSQL systems has lead to the
model of polyglot persistence, in which several data management systems
with different data models are used. Data lakes realize the polyglot persis-
tence model by collecting data from various sources, by storing the data in
its original structure, and by providing the datasets for querying and anal-
ysis. Thus, one of the key tasks of data lakes is to provide a unified query-
ing interface, which is able to rewrite queries expressed in a general data
model into a union of queries for data sources spanning heterogeneous
data stores. To address this challenge, we propose a novel framework for
query rewriting that combines logical methods for data integration based
on declarative mappings with a scalable big data query processing sys-
tem (i.e., Apache Spark) to efficiently execute the rewritten queries and
to reconcile the query results into an integrated dataset. Because of the
diversity of NoSQL systems, our approach is based on a flexible and exten-
sible architecture that currently supports the major data structures such
as relational data, semi-structured data (e.g., JSON, XML), and graphs.
We show the applicability of our query rewriting engine with six real world
datasets and demonstrate its scalability using an artificial data integra-
tion scenario with multiple storage systems.

1 Introduction

Data integration is an open challenge that has been addressed for decades; with
the increasing diversity in the data management landscape the challenge has
become even harder. One of the first problems in data integration is getting
access to the source data. Data lakes (DLs) have been proposed to tackle the
problem of data access by providing a comprehensive data repository in which the
raw data from heterogeneous sources will be ingested in its original format [6,15].
As DLs do not provide a common unified schema for the loaded data (as in data
warehouses), the extraction of metadata from data sources is a crucial element
in DLs [8,13]. DL is still a relatively new concept; thus, there is still a discussion
about the concrete functionalities and architectures. However, there are certain
aspects that are generally agreed upon, e.g., DLs should provide a common
interface to query integrated data across heterogeneous data sources [6,14,15].
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Fig. 1. Data lake storage layer and motivating example

In this work, we focus on the problem of query rewriting for logical data lakes,
making use of a (partially) integrated schema and logical mappings between the
sources and the integrated schema [14]. Figure 1 sketches the storage layer of a
DL architecture [8] which provides a unified data access interface to heteroge-
neous raw data stores. A metadata repository maintains the schema information
and the mappings to an integrated schema. To illustrate the challenge addressed
in this paper, the right part of the figure sketches a motivating example (the
formal representation of this example will be done in Sect. 2). Suppose we have
two data stores, a graph database (Neo4j) with information about actors and
a document-oriented database (MongoDB) with information about movies and
their cast. To answer the query ‘movies with number of male actors and titles’,
we have to ‘join’ the information from both data stores. For this, our system
will first translate the input queries (which can be in different query formats,
e.g., SQL or JSONiq [4]) into a common logical representation based on Datalog,
which is independent of the underlying systems.

Several big data systems like Apache Spark are already able to access data
in different types of DBMS; yet, the challenge which we address in this paper is
that data for answering a single query is stored in several DBMS of various types.
In addition, we also use schema mappings to perform a logical data integration,
i.e., resolving the heterogeneities which are caused by different schema structures
and semantics (e.g., different labels for types and attributes). Furthermore, our
approach also handles queries that cannot be answered just by a union of the
sources, i.e., our system performs additional query processing (e.g., join of source
data) that cannot be handled by any system separately.

Our system SQRE (Scalable Query Rewriting Engine) executes the generated
subqueries on each data store, retrieves the query results, executes the parts of
the query not covered by a source, and creates the final integrated results. We use
Apache Spark to execute the queries as it provides many connectors to various
DBMS and enables with its Dataset abstraction an easy integration of the query
results. We also push down selection predicates to the data sources to optimize
query execution and to reduce the amount of data that has to be loaded.
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The problem of processing queries that span multiple heterogeneous data
stores and integrating the query results has been addressed recently in multistore
(or polystore) systems [3,7,9]. These systems usually focus on the optimization
and the efficient execution of queries spanning multiple systems; in contrast, our
logical approach focuses on the heterogeneities caused by different query and
schema languages as well as different schema structures; logical optimization is
only a side effect of the approach. Especially, we study query rewriting for queries
expressed in JSONiq, a query language for JSON data, which is becoming the
data format for NoSQL systems and data exchange settings.

Our main contributions in this paper are as follows:

– We propose a query rewriting engine, which supports unified query interface
over heterogeneous data stores in data lakes.

– We define a system-independent, logical query language to identify relevant
data stores based on the logical schema mappings.

– We show experimentally the practicality, scalability, and efficiency of our
proposed system over two use cases covering six real world data sets.

The remainder of the paper is organized as follows. In Sect. 2, we present first
the overall architecture and then discuss in detail the major components as well
as the logical approach for query rewriting and data integration of our system.
The evaluation results are reported in Sect. 3, before we introduce related works
in Sect. 4 and conclude the paper in Sect. 5.

2 Query Rewriting with SQRE

Figure 2 depicts the architecture of SQRE. The input query is parsed by the
Query Parser, which creates the logical representation. The Logical Form Ana-
lyzer (LFA) takes this formula and creates an internal data structure as input
for the Predicate Filters of the sources. These filters match the predicates with
the schemas that are available in the sources. For this, source and the integrated
schemas and their mappings have to be taken into account, as provided the meta-
data repository in our data lake [6]. The output of the LFA and the predicate
filters is a list of predicates that can be processed by each data store. The predi-
cate list is then transformed by the Translator components to the query language
of the corresponding data store, e.g., SQL for MySQL, Cypher for Neo4j. The
executors will take the transformed queries, execute them, and return the result
back to the Data Source Integrator. Finally, the Data Transformer will create
the desired result structure.

The components of SQRE will be described in the subsequent sections with
the running example: a data set for actors stored in Neo4j with schema as S1:
movie actors(actor id, name, gender); the second data set stored in MongoDB
that describes the cast information with schema S2: cast info(actor id,movie-
id,movie title). The integrated schema is T : movie(movie id,movie title,
actors(actor id, name, gender)). To keep the example simple, we removed some
of the details, e.g., non-matching IDs, complex JSON structures. The schema
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Fig. 2. Overall architecture of SQRE

Fig. 3. Running Example: JSONiq Query and Corresponding Logical Rule

mappings are also simple in this example as they are element-to-element cor-
respondences between elements with the same in the source schemas S1, S2,
and the integrated schema T . More complex mappings for nested structures
using Skolem functions are also supported (see below). Figure 3 shows the input
JSONiq query, which returns the ID, title and total number of male actors for
each movie in the collection movies (example is database name). We explain how
SQRE parses, analyzes, and rewrites the given query in what follows.

2.1 Logical Representation of Queries

To provide sufficient extensibility for different query languages and flexibility for
handling schema mappings, we use a logical representation based on Datalog
(see Table 1) with a semi-structured data model. Figure 3 presents the input
JSONiq query and its corresponding logical rule. The logical rule is divided into
three parts: head := body -> result. The head defines the main variables of
the query, the body is a conjunction of predicates that must be satisfied and
the result part determines the structure of the result objects (these can also be
nested) as specified in the return clause of the JSONiq query.

During the translation process, the variables of the original query are
replaced with generated variables in the logical rule, e.g., movie is replaced with
Vmovie in1. The variables VFresh1 in1 and VFresh2 in1 represent the inter-
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Table 1. An overview of predicates in the Query Parser

Predicate Description

in i(x, c) The item x is a member of c (sequence or array), and
i is the sequence number of c in the current logical
form

a(x, k, v) The item x is an object with a key k, and the value
is v

let(x, y) Assert y is the value of x

letG(k, y) x is a group-by-key, whose value is y

eq/ne/lt/le/gt/ge(x, y) x = y/x �= y/x ≤ y/x < y/x ≥ y/x > y

call(x, f, [a1, . . . ]) x is the result of function f with arguments a1, . . .

mediate objects in the path expression movie.actors.gender, VFresh3 in1 is
the movie ID. Since the query contains a group-by statement, we use letG(
Vmovies in1, VFresh3 in1) to state that the results should be grouped by
movie.movie id (variable VFresh3 in1). In the result part of the rule (after ->),
the return object is constructed. The main variable is VFresh5 in1, all attributes
of the result (MovieID, MovieTitle, and NumberOf- Actors) are assigned with
an a-predicate to this variable. Since there is an aggregation function count in
the input query, it is specified with a call clause.

The Logical Form Analyzer (LFA) discovers equivalent predicates and
tracks back to all related predicates to clarify the references of variables.
Moreover, it analyzes the inner relations of predicates and transforms them
into more meaningful internal representations (implemented as Java classes).
In Fig. 3, the LFA first recognizes that the final result is represented as
the variable after ->, i.e., VFresh5 in1. Then, the LFA identifies all a-
predicates whose first variable is also VFresh5 in1. In this case, it finds
a(VFresh5 in1,MovieID,VFresh3 in1). Next, in order to find the meaning
of a variable in the original query, the LFA continues to track back the rel-
evant predicate a(Vmovie in1,movie id,VFresh3 in1). Finally, it reassembles
movie.movie id as the returned attribute path under the name of MovieID. The
rest of the logical form is similarly analyzed, the result is shown in the upper
part of Fig. 4.

JSONiq allows also nested FLWOR expressions, which will be translated
to multiple rules. The LFA also supports analyzing nested JSONiq queries by
traversing their subqueries and tracking back the related predicates in terms of
variables. Not all JSONiq queries can be translated to the logical form, as it can
represent only disjunctions of conjunctive queries.

2.2 Generation of Data Source Queries

To generate executable subqueries for the underlying DBMS, the Translators
perform the following operations: (1) transform the internal representation from
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Fig. 4. Running example: from internal representation to executable queries

integrated schema to source schemas using the mappings; (2) validate explicit
equality joins spanning multiple sources and add implicit join conditions; (3)
generate executable queries for various data source types. SQRE instantiates for
each data source a corresponding Translator with two subcomponents. The Data
Source Predicate Filters handle the first two operations, while Syntax Creators
rearrange the transformed predicates and generate executable subqueries.

The Data Source Predicate Filters replace the attribute names in the
internal form with the attribute names in the current source based on the cor-
respondences in the mapping. For example, in Fig. 4 for DS1 the Predicate Fil-
ter replaces movie.actors.gender and movie.actors.actor id in the internal
representation with movie actors.gender and movie actors.actor id (simi-
larly for DS2). To guarantee the correctness of the rewritten query, there are
two special cases in which the predicate filter adds new ReturnedResults to the
list of internal representations for the current source. The first case applies to
schema mappings referring to attributes with corresponding elements in multiple
sources, e.g., movie.actors.actor id in the integrated schema has correspond-
ing schema elements in both DS1 and DS2. Thus, the predicate filter adds an
implicit join between the actor ids of both sources. In the second case, if a
source attribute corresponds to group-by-keys, this attribute is added to the list
of returned variables.

Moreover, the filter also performs data type conversion in case that the types
differ in the integrated schema and the sources. SQRE also supports the Skolem
functions in nested GLAV mappings [16]. Skolem functions are applied for the
grouping to create complex elements in nested relations. The predicate filter
checks also which predicates can only be applied after the data has been merged
from multiples sources (referred to as unresolvable predicates), e.g., joins, aggre-
gation functions, and group-by clauses. These predicates are handled later by
the Data Source Integrator.
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In order to translate the internal form into corresponding queries for specific
DB systems, the Syntax Creators are applied. A Syntax Creator translates also
the function calls into corresponding functions or query expressions of the source
systems. This is of course limited only to ‘known’ functions (e.g., count, max,
contains) and cannot be applied to general user-defined functions. For example,
the function contains(a,"b") (substring match), the Syntax Creator creates a
like clause for SQL and Neo4j, and {match {$regex: }} for MongoDB. Figure 4
shows the results for the Neo4j and MongoDB queries. Notably, we use GK to
mark the group-by-keys, e.g., NumberOfActors GK IN movie actors.

2.3 Query Execution on Data Sources

The Data Source Executors take the generated queries and execute them on the
corresponding DBMS. For the MongoDB and Neo4j executors, we use Spark-
Mongo-Connector1 and Spark-Neo4j-Connector2 to connect to databases and
execute native queries. The XML executor uses Spark-XML3, while relational
databases are accessed with the built-in JDBC interface of Spark. For the running
example in Fig. 4, SQRE initializes a Neo4j Executor and a MongoDB Executor
to execute the queries. The query results from the sources are transformed into
structured Datasets with Rows, and passed to the Data Source Integrator.

2.4 Data Integration and Final Transformation

The results retrieved from each data source are not yet integrated, i.e., the unre-
solved predicates still have to be applied, e.g., group by, join, aggregation func-
tions, and having clauses. In the running example, these predicates include the
group-by-key movie id and the count function on actor id. To obtain the inte-
grated results, the Data Source Integrator collects the unresolved predicates
and forms a final SparkSQL query. Then, it executes the final SparkSQL query
and stores the result in a dataset. There are two practical issues that need to be
considered in this step. First, a join condition can either be defined explicitly in
a query, or implicitly from results of schema matching. In the running example
actor id has corresponding attributes in both DS1 and DS2. In SQRE, the
integrator adds a full outer join clause based on such correspondences to inte-
grate results from distinct sources, while join conditions in the original query
are translated to an inner join. Second, as shown in Fig. 5 the Integrator merges
matched columns in distinct sources into one column, since they are treated as
one attribute in the integrated schema. SQRE applies a series of user defined
functions (UDFs) based on SparkSQL to resolve the attribute name and type
conflicts of these matched columns.

As JSONiq queries can be the input, the final result of the query needs
to be transformed into JSON. In the previous step, Spark Datasets are cre-
ated as an intermediate result, which correspond to relational tables. The Data
1 https://docs.mongodb.com/spark-connector/v1.1/java-api/.
2 https://github.com/neo4j-contrib/neo4j-spark-connector.
3 https://github.com/databricks/spark-xml.

https://docs.mongodb.com/spark-connector/v1.1/java-api/
https://github.com/neo4j-contrib/neo4j-spark-connector
https://github.com/databricks/spark-xml
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Fig. 5. Running example: the final spark query and final query results

Transformer transforms the datasets into a JSON structure using the built-in
methods of Spark. In the case that the query groups the result by a key and
returns a set of elements with the same key in a single JSON object, we perform
an additional step using user defined aggregation functions (UDAFs).

3 System Evaluation

We have evaluated the performance of SQRE over six real world data sets.
First, we compare SQRE with a baseline approach, which transforms data stored
in MongoDB and Neo4j to MySQL, and executes queries only in MySQL. We
show that our approach significantly cuts down the total query processing time
(including the time for data transformation) compared to the baseline app-
roach. Furthermore, we design three data integration scenarios with queries,
and demonstrate that our query rewriting approach scales well to the increase
of query complexity. The experiments in this section are performed on a Intel
i7 2.6 GHz machine with 12 GB RAM. We have implemented our framework in
Java and used Apache Spark 2.2.1. We have run the experiments in standalone
deploy mode provided by Spark. In addition, we used MySQL 5.7, MongoDB
3.2.9 and Neo4j 3.3.1 as DBMS. The results reported are the average values from
six trials.

3.1 Experimental Setup

The goal of the experiments is to test the SQRE’s functionality of querying
structured, semi-structured, and structure-less data from heterogeneous sources
(e.g., MySQL, MongoDB, Neo4j, and XML files). However, the open data sets
with meaningful integration scenarios are scare. Therefore, we have designed two
use cases for the purpose of our experiments.

In the first use case, we have created an artificial multi-store scenario using
the Internet Movie Data Base (IMDB) provided by the Join Order Bench-
mark [11]. The original IMDB data set is in CSV files, containing 21 tables that
occupy 3.6 GB in total. We have divided the 21 tables into three groups and
imported them separately into MongoDB, Neo4j, and MySQL. MySQL holds
the information regarding movies and Neo4j stores the companies related infor-
mation. All the tables related to type are stored as collections in MongoDB.
In this IMDB use case, we consider the original schema with 21 tables as the
integrated schema, and the schemas in each DBMS as source schemas. The joins
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Table 2. Data set statistics

Scenario DS Rec# Ele# Attr#

Publications DBLP 1,466,351 19 15

EPMC 4,399,876 36 32

IntPubs 44 40

Drugs and

proteins

DrugBank 8,257 427 290

PSD 262,525 77 59

IntDrugs 489 337

Startups and

stocks

Startups 18,801 160 1230

Stocks 6,756 72 69

IntComps 226 193

Table 3. No. of returned records in Q1

MySQL

title

Neo4j

movie companies ��

company name

MongoDB

kind type

Final

result

1.0 M 1.0 M �� 234997 7 10106

1.3 M 1.3 M �� 234997 7 15097

1.6 M 1.6 M �� 234997 7 35845

1.9 M 1.9 M �� 234997 7 127206

2.2 M 2.2 M �� 234997 7 209830

2.5 M 2.5 M �� 234997 7 275251

between data sets are performed using the existing foreign key constraints. We
have compared the results returned by our system with the SQL query results
with the same semantics, and verified the correctness and completeness of our
results. We report the performance of SQRE for the IMDB use case in Sect. 3.2.

In the second use case, to examine the scalability of our query rewriting app-
roach over complex data integration scenarios, we have designed three scenarios
with two real-world data sets in each scenario. Table. 2 reports the statistics
of the data sets (scenario, data source, #records, #elements, and #attributes
in source schemas and integrated schema). Each scenario has two data sources
sharing some attributes with the same semantics, but the two data sources may
or may not describe the same entity.

In the Publications scenario, DBLP4 and Europe PubMed Central (EPMC)5

are two publication databases, both in JSON format. The next scenario uses
Drugbank6 and the Protein Sequence Database (PSD)7, which share information
regarding the protein name, citations, etc. Both data sets have been downloaded
from the websites in XML format. The size of DrugBank is 587.2 MB and the
size of PSD is 716.9 MB. In the Startups and Stocks scenario, the data of listed
startup companies and stocks are downloaded in JSON format8. The size of
datasets are 78.2 MB and 10.8 MB, respectively.

To prepare the input for the experiments for each scenario, we have conducted
source schema extraction, schema matching, integrated schema generation, and
nested mapping generation. Notably, different from the IMDB use case, for test
queries in this use case we cannot obtain the ground truths directly. Thus, we
went through the taunting task of manually checking the correctness and com-
pleteness of the results. The results of this use case are presented in Sect. 3.3.

4 http://dblp.org/.
5 https://europepmc.org/.
6 https://www.drugbank.ca/.
7 http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/.
8 http://jsonstudio.com/resources/.

http://dblp.org/
https://europepmc.org/
https://www.drugbank.ca/
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/
http://jsonstudio.com/resources/
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3.2 Query Execution Performance

As we will point out in Sect. 4, existing systems mostly apply a different setting
of multistore system from our work, or lack system details for us to conduct per-
formance comparison. Therefore, for the purpose of comparison we have designed
a baseline approach. It transforms data stored in MongoDB and Neo4j to CSV
files, loads them into MySQL, and retrieves query results using MySQL. To
examine our system both with and without joins in the local source data store,
we have designed two queries, Q1 and Q2.

Fig. 6. Test query Q1

Fig. 7. Performance comparison with increasing returned data size in Q1

We first apply query Q1 in Fig. 6, which joins title, kind type, company name
and movie companies. The table title is stored in MySQL, while kind type is
stored as a collection in MongoDB and the other two tables are stored in Neo4j.
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In order to see how the performance of SQRE varies with the increasing data size,
we controlled the amount of records retrieved from MySQL and Neo4j by varying
the ID range for title ($movie range) and movie companies ($c range). We vary
the ID range from 1 million to 2.5 million, which results also in an increasing
dataset to be joined in Spark. Table 3 reports the size of the intermediate results
of MySQL, Neo4j, MongoDB, and for the final results by Spark. Please note, since
company name and movie companies are both stored in Neo4j, SQRE creates
a subquery for Neo4j that joins these relations and only the result of the join
is transferred to Spark. Thus, less records need to be loaded into Spark for the
subsequent joins and aggregation functions.

Fig. 8. Test query Q2 Fig. 9. Performance for Q2

Spark does not cache the intermediate results by default. Thus, we have
implemented a method in SQRE to identify the intermediate views in Spark
and cache them. Figure 7 depicts the total query processing time by the baseline
approach and SQRE (with and without caching). SQRE outperforms the baseline
approach with regard to the total query processing time. Moreover, by comparing
the two settings in SQRE, we find that the performance of SQRE is further
improved by caching. With an increasing dataset size, the query processing time
of SQRE with caching shows a much smaller increasing slope than the baseline.

To measure the performance of SQRE with a larger data size, we designed
a second query Q2 (up to 10 million records, cf. Fig. 8). Q2 retrieves two tables
separately from MySQL and Neo4j (similar to the running example), on which
the join and aggregation functions are performed later. Different from Q1, there
is no join operation conducted in local data stores. We modified the ID range of
table cast info to obtain varying sizes of intermediate results and final results.
Figure 9 shows the performance comparison with varying ID range in Q2. The
results are similar as for Q1. With 10 million records retrieved from cast info,
the total query processing time of SQRE (enable caching) is only 111 s compared
to 1629 s by the baseline approach, which is a 14.6× improvement.
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3.3 Query Rewriting Performance

We evaluated the performance of our query rewriting procedure including the
query reformulation and translation from the given JSONiq query into multi-
ple executable source subqueries and the final SparkSQL query. Due to space
restrictions, we only report the results using the second use case. In order to
isolate the query rewriting step, we have run SQRE and disabled the query exe-
cution, results integration, and transformation. We have conducted two exper-
iments to study the impacts of query type and number of attributes, respec-
tively. In the first experiment, for each pair of data sets in a data integration
scenario, we tested four types of queries9 to see the impact of query complexity
on query rewriting time: (1) Q3: return clause; (2) Q4: Q3 + where clause; (3)
Q5: Q4 + group by clause; (4) Q6: Q5 + nested query in the return clause. In this
experiment, we fix the maximum number of attributes appearing in each query as
10. Each query is run five times and the mean value are shown in Fig. 10. In the
majority cases of all scenarios, the query rewriting time slightly increases when
queries get more complex. The query rewriting time for Publications scenarios
is less than the other scenarios. The reason is that its two data sets, DBLP and
EPMC, have less schema elements compared to the other data sets as reported
in Table 2. The schema mappings for the Publications scenario are also simpler
than the other two scenarios.

Fig. 10. Impact of different query
types

Fig. 11. Impact of attribute numbers

In the second experiment, we study the impact of query complexity regarding
the total number of attributes in an input query. We use Q3 with the number of
attributes appearing in the queries varying from 10 to 100. If there are duplicated
attributes appearing in the return clause, we rename them such that they are
handled separately in query rewriting and returned as a single column in Spark.
From the results shown in Fig. 11, we observe that the time increases sub-linear
when the number of attributes in query rises. Even with a large amount of atomic
elements (300) the query rewriting time is less than 5.6 s.

9 Queries and datasets are available at https://bit.ly/2l9lXhc.

https://bit.ly/2l9lXhc
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The experiments show that our proposed query rewriting method scales well
with increasing complexities of input queries and also with increasing dataset
sizes. Thus, SQRE is a scalable query rewriting engine that could also handle
well big data scenarios.

4 Related Work

Our approach is similar to recent multistore systems which also support diverse
query languages and querying multiple data stores. We roughly divide the exist-
ing solutions into three categories. The first group of studies transforms the
data in heterogeneous NoSQL stores into relational tables and uses an existing
RDBMS to process the data. For example, Argo [2] studies enabling key-value
and document-oriented systems in relational systems. Though such solutions
offer an easy adaptation to existing relational systems, they come with a high
cost of data transformation, especially with large data sets and are therefore not
scalable for big data settings.

Another group of approaches focuses on multistore systems providing a
SQL-like query language to query NoSQL systems. For instance, CloudMd-
sQL [9] supports graph, document and relational data stores. BigIntegrator [17]
is a system that enables general queries over relational databases and cloud-
based data stores (e.g., Google’s Bigtable). MuSQLE [5] performs optimization
of distributed queries across multiple SQL engines. FORWARD [12] provides
a powerful query language SQL++ for both structured and semi-structured
data. Although these approaches perform more sophisticated optimizations than
SQRE (e.g., semijoin rewriting), they do not consider schema mappings during
the rewriting steps. We plan to include more complex optimization steps based
on the intermediate logical representation of queries and schema mappings in
the future.

The third category covers approaches which provide more efficient query
processing techniques by applying a middle-ware to access the multiple NoSQL
stores, such as Estocada [1] and Polybase [7], BigDAWG [3], and MISO [10]. In
this paper, we focus on the setting of the multistore systems with heterogeneous
data stores, e.g., relational, document-oriented (MongoDB), graph (Neo4j), or
XML, and queries spanning multiple heterogeneous systems at the same time,
which is not studied in most of the aforementioned works.

5 Conclusion

We presented SQRE, a spark-based query rewriting engine for unified query
processing over heterogeneous data stores in data lake systems. We designed a
general query parser that interprets queries in different formats into a unified
logical representation. In particular, SQRE supports JSONiq queries and later
translates them into executable queries for various relational and NoSQL sys-
tems. Moreover, our approach analyzes the predicates and rewrites them from
integrated schema to source schemas using nested schema mappings. In SQRE,
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we developed several translators that reformulate the original queries from inter-
nal representations into executable queries for SQL systems, MongoDB, Neo4j,
and XML files. Further systems and query languages can be supported by imple-
menting new translators and plugging them into our extensible architecture.

We have shown experimentally the usefulness and efficiency of our approach
compared to a baseline approach through real world datasets. We have also
shown that even with complex data integration scenarios, the query rewriting
time of SQRE is scalable with increasing query complexity.

For future work, we will extend our system to support more query languages
(e.g., Cypher, XQuery, etc.) and more NoSQL stores. To improve the system per-
formance with large data sets, we want to explore the benefits of the distributed
query processing. We are confident that the logical representation used in SQRE
is well-defined basis for applying further query optimization techniques.
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Ministry of Education and Research (BMBF) (project HUMIT, http://humit.de/,
grant no. 01IS14007A), German Research Foundation (DFG) within the Cluster of
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and by the Joint Research (IGF) of the German Federal Ministry of Economic Affairs
and Energy (BMWI, project charMant, http://charmant-projekt.de/, IGF promotion
plan 18504N).
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Abstract. Data exploration and visual analytics systems are of great
importance in Open Science scenarios, where less tech-savvy researchers
wish to access and visually explore big raw data files (e.g., json, csv) gen-
erated by scientific experiments using commodity hardware and without
being overwhelmed in the tedious processes of data loading, indexing
and query optimization. In this work, we present our work for enabling
efficient query processing on raw data files for interactive visual explo-
ration scenarios. We introduce a framework, named RawVis, built on
top of a lightweight in-memory tile-based index, VALINOR, that is con-
structed on-the-fly given the first user query over a raw file and adapted
based on the user interaction. We evaluate the performance of prototype
implementation compared to three other alternatives and show that our
method outperforms in terms of response time, disk accesses and memory
consumption.

Keywords: In situ query · Big raw data · Adaptive processing
Visual analytics · Visualization · Indexing · User interaction
Exploratory data analysis

1 Introduction

In situ data exploration [1,15–17] is a recent trend in raw data management,
which aims at enabling on-the-fly scalable querying over large sets of volatile
raw data, by avoiding the loading overhead of traditional DBMS techniques. A
common scenario is that users wish to have a quick overview, explore and analyze
the contents of a raw data file through a 2D visualization technique (e.g., scatter
plot, map).

As an example, a scientist (e.g., astronomer) wishes to visually explore and
analyze sky observations stored in raw data files (e.g., csv) using the Sloan
Digital Sky Survey (SDSS) dataset (www.sdss.org), which describes hundreds
of millions of sky objects (e.g., stars). First, the scientist selects the file and
visualizes a part of it using a scatter plot with the sky coordinates (e.g., right
ascension and declination). Then, she may focus on a sky region (e.g., defining
c© Springer Nature Switzerland AG 2018
A. Benczúr et al. (Eds.): ADBIS 2018, LNCS 11019, pp. 50–65, 2018.
https://doi.org/10.1007/978-3-319-98398-1_4
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Fig. 1. RawVis framework overview

coordinates and area size), for which all contained sky objects are rendered;
move (e.g., pan left) the visualized region in order to explore a nearby area; or
zoom-in/out to explore a part of the region or a larger area, respectively. She
may also click on a single or a set of sky objects and view details, such as name
and diameter ; filter out objects based on a specific characteristic, e.g., diameter
larger than 50 km; or analyze data considering all the points in the visualized
region, e.g., compute the average age of the visualized objects.

Most experimental and commercial visualization tools perform well for ad-
hoc visualizations of small files (e.g., showing a trend-line or a bar chart) or
over aggregated data (e.g., summaries of data points, into which user can zoom
in), which can fit in main memory. For larger files, these tools usually require
a preprocessing step for data to be loaded and either indexed in a traditional
database, or distributedly stored and queried by non-commodity hardware (e.g.,
a Big Data tool).

On the other hand, in the in situ exploration scenarios, large data files which
do not fit in main memory, must be efficiently handled on-the-fly using com-
modity hardware [1,15–17]. In the in situ visual exploration scenarios, several
challenges arise.

A first requirement is that no offline preprocessing is to be performed and
any preprocessing, such as indexing or repartitioning must be performed on-
the-fly, minimizing the user involvement and time overhead. Secondly, a non-
expert user with limited programming or scripting skills must be supported to
access and analyze data through visual ways, i.e., via an intuitive set of visual
rather than data-access (e.g., querying) operations. Further, the response time
of such visual operations must be significantly small (e.g., less than 1 s) in order
to be acceptable by the user. Finally, the aforementioned operations have to be
performed in machines with limited computational, memory and space resources,
i.e., using commodity hardware.

In this work, we address the aforementioned challenges for enabling inter-
active 2D visual exploration scenarios of large raw data files using commod-
ity hardware. We present the RawVis framework, which is built on top of a
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lightweight main memory index, VALINOR (Visual AnaLysis Index On Raw
data), constructed on-the-fly given the first user query and adapted based on
the user interaction.

In our working scenario (Fig. 1), we assume that a user visually explores
multidimensional objects stored in a raw file, using a 2D visualization tech-
nique. The user initially selects two attributes (Ax and Ay) as the X and Y
axis of the visualization. In the first user interaction, the entire raw file is parsed
and an “abstracted” version of the VALINOR is built on-the-fly, organizing the
data objects into tiles based on their Ax and Ay values. Further, the index stores
auxiliary metadata in each tile regarding its contents (e.g., average attribute val-
ues), in order to reduce computation cost and access to the raw file. Throughout
the exploration, visual user operations (e.g., pan, zoom, filter) are expressed
as queries evaluated over VALINOR. Following the user interaction, VALINOR
incrementally reorganizes the objects’ grouping, constructs tile hierarchies, and
recomputes and enriches metadata.

The main contributions of this work are: (1) we formulate visual user interac-
tions as data-access operations; (2) we design an index in the context of in situ
visual exploration over large data; (3) we describe the query processing tech-
niques over this index; (3) we conduct an experimental evaluation using real and
synthetic datasets, as well as several systems and structures; i.e., MySQL, Post-
gresRaw, and R-tree, which shows that our technique outperforms competitors
both in execution time and memory consumption.

2 Preliminaries

Data File and Objects. We assume a raw data file F containing a set of
d-dimensional objects O. Each dimension j corresponds to an attribute Aj ∈ A,
where each attribute may be numeric or textual. Each object oi contains a list
of d attributes oi = (ai,1, ai,2, ..., ai,d), and it is associated with an offset fi in F
pointing to the “position” of its first attribute, i.e., ai,1. Note that, object entries
can be either fixed or variable-length, in the latter case they are separated by a
special-character; e.g., CR for a text file, that precedes the offsets.

Visual Exploration Scenario. Given a set of d-dimensional objects, the user
arbitrarily selects two attributes Ax, Ay ∈ A, whose values are numeric and
can be mapped to the X and Y axis of a 2D visualization layout. Ax and Ay

attributes are denoted as axis attributes, while the rest as non-axis.
The user follows a sequence or combination of the following visual operations

to interact with the data: (1) render: visualizes the objects included in a specified
2D area, denoted as visualized area. (2) move: changes the visualized area (i.e.,
pan). (3) zoomin/out: specifies a new visualized area that is within (resp. covers)
the current visualized area. (4) filter: excludes objects from the visualized area,
based on conditions over non-axis attributes. (5) details: presents values of non-
axis attributes. (6) analyze: analyzes data from the objects included in the
visualized area.
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Note that, as previously illustrated, multiple visual operations can be per-
formed in a single user interaction; e.g., zoom in a region while filtering the
presented objects.

Exploratory Query. Considering the aforementioned visual operations, we
define the corresponding data-access operators. In what follows, we formulate
the notion of an exploratory query. Given a set of d-dimensional objects O and
the axis attributes Ax and Ay, an exploratory query Q over O is defined by the
tuple 〈S,F,D,N〉, where:

– The Select part S defines a 2D range query (i.e., window query) specified by
two intervals S.Ix and S.Iy over the axis attributes Ax and Ay, respectively.
This part selects the objects OS ⊆ O for each of which both of their axis
attributes have values within the respective intervals, defined by the window
query. The select part is mandatory, while the rest parts are optional.

– The Filter part F defines conditions over the non-axis attributes. As AF we
denote the set of attributes involved in F. In our current implementation, the
conditions in F are expressed using a single attribute, unary and binary arith-
metic operations, and constants. The filter part is applied over the objects
OS, selecting the objects OQ ⊆ OS that satisfy F. If the filter part is not
defined (i.e., F = ∅), then OQ = OS.

– The Details part D defines a set AD of non-axis attributes. The query returns
the values of these attributes for each object in OQ.

– The Analysis part N defines aggregate, analytic, or user-defined functions
over numeric attributes of the objects OQ. As AN we denote the attributes
that are used in these functions. In our current implementation, we consider
a single attribute and the following aggregate functions: count, sum, average,
min, and max. The analysis part returns the values VN from the evaluation
of the specified functions.

The semantics of query execution involves the evaluation of the four parts
in the following order: (1) Select part; (2) Filter part; (3) Details; (4) Analysis
part.

Query Result. An exploratory query Q returns the axis values for the objects
OQ along with their values VD of the attributes specified in D, denoted as OD

Q;
and the numeric values VN resulted from the analytic part. Formally, the result is
consisted by: (1) a set of tuples OD

Q = 〈αi,x, αi,y, αi,AD1
, ...αi,ADd

〉, ∀oi ∈ OQ,∀d ∈
{1, ...|AD|} with ADd

∈ AD; and (2) a list of numeric values VN.

Example (From Visual operations to Exploratory query). Each visual operation
can be expressed as an exploratory query. Specifically, the render operation is
implemented using only the Select part of the query, setting the intervals equal
to the values of the visualized area. Assuming our running example, in which
Ax = declination and Ay = right ascension. A render operation that visualizes
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the rectangle sky area from 100◦ to 110◦, and from 20◦ to 25◦, is executed by
defining S.Ix = [100◦, 110◦] and S.Iy = [20◦, 25◦].

The move, zoom in/out operations are also implemented by defining a
Select part, having as parameters the coordinates of the neighboring, con-
tained/containing visualized regions, respectively. For example, a zoom-out oper-
ation over the previously presented area is executed as S.Ix = [97.5◦, 112.5◦] and
S.Iy = [18.75◦, 26.25◦]. Further, the filter operation is implemented by including
a Filter part. In our example F = “diameter > 50 km”. Finally, the details and
analyze operations correspond to the Details and Analysis parts. For example
the details and analyze operations described in our example correspond to D =
{name, diameter} and N = “avg(age)”, respectively.

3 The VALINOR Index

The VALINOR is a lightweight tile-based multilevel index, which is stored in
memory, organizing the data objects of a raw file, into tiles. The index is con-
structed on-the-fly given the first user query and incrementally adjusts its struc-
ture to the user visual interactions. In the construction, each tile is defined on a
fixed range of values of the Ax and Ay axis attributes, by dividing the euclidean
space (defined by the Ax and Ay domains) into initial tiles. Then, user operations
split these tiles subsequent into more fine-grained ones, thus forming a hierarchy
of tiles. In each level of the hierarchy, all tiles are disjoint (i.e., non-overlapping)
and can belong to only one parent tile. Next we formalize the main concepts of
the proposed index.

Object Entry. For an object oi its object entry ei is defined as 〈ai,x, ai,y, fi〉,
where ai,x, ai,y are the values of the axis attributes, fi the offset of oi in the raw
file.

Tile. A tile t is a part of the Euclidean space defined by two intervals t.Ix and
t.Iy. Each t is associated with a set of object entries t.E , if it is a leaf tile, or a set
of child tiles t.C, if it is a non-leaf tile. The set t.E is defined as a set of object
entities, such that for each ei ∈ t.E its attribute values ai,x and ai,y fall within
the intervals of the tile t, t.Ix and t.Iy respectively. Further, t is associated with
a set t.M of metadata related with the t.E objects contained in the tile, e.g.,
aggregated values over attributes. As t.MA we denote the attributes for which
metadata has been computed for the tile t.

VALINOR Index. Given a raw data file F and two axis attributes Ax, Ay,
the index organizes the objects into non-overlapping rectangle tiles based on
its Ax, Ay values. Specifically, the VALINOR index I is defined by a tuple
〈T , IP,AP,MH〉, where T is the set of tiles contained in the index; IP is the ini-
tialization policy defining the initial tile size; AP is the adaptation policy defining
a criterion (e.g., the relation of a tile’s size w.r.t. the query’s window size), and a
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method for splitting tiles and reorganizing object entries following user’s inter-
action; and MH is the metadata handler defining and computing the metadata
stored in each tile.

Algorithm 1. Initialization (F , Ax, Ay, Q)
Input: F: raw data file; Ax, Ay : X and Y axis attributes;

Parameters: IP: initialization policy

Output: T : initialized index tiles;

OD
Q, VN: first query results

1 T ← ∅ //set of tiles

2 x0, y0 ← IP.getInitialTileSize() //initial tile size

3 foreach oi ∈ F do //read objects from raw file

4 read ai,x, ai,x from F
5 set fi ← offset of ai,1 in F
6 append 〈ai,x, ai,y, fi〉 to tile t.E, where t ∈ T

determined from ai,x, ai,y and x0, y0

7 compute first query result (OD
Q, VN) through file parsing

8 return T , OD
Q, VN

VALINOR Initialization.
In our approach we do
not consider any prepro-
cessing for the index con-
struction, but rather the
index is constructed on-
the-fly upon the first time
the user requests to visual-
ize a part of the raw file.
The file is scanned once, for
creating the initial VALI-
NOR structure and com-
puting the results of the
first query. The initial version of VALINOR corresponds to a flat tile structure
that does neither exhibit any hierarchy nor contain any metadata to the tiles.
This phase, referred to as initialization phase, aims at minimizing the response
time of the first user action, by avoiding computations which may not be used
through exploration.

Algorithm 1 describes the initialization phase. The input initialization policy
IP determines the initial size of the tiles x0 × y0 (line 1). Algorithm 1 first scans
the raw file F once (loop in line 3), reads the values of ai,x, ai,y fi of each object
oi (line 4 & 5), and appendsa new object ei to the entries t.E of the tile t (line 6).
It, finally, evaluates whether this entry should be included in the results of the
initial query.

The initialization policy IP is a parameter that defines the initial tile size. It
can be given either explicitly by the user (e.g., in a map the user defines a default
scale of coordinates for the initial visualization), be computed based on data
characteristics (e.g., the ranges of the Ax, Ay attributes), or adjusted to the visu-
alization setting considering certain characteristics (e.g., screen size/resolution)
[4,13].

4 Query Processing and Index Incremental Adaptation

This section describes the evaluation of exploratory queries over the proposed
index.

Query Processing Workflow. Algorithm 2 outlines the workflow of the query
evaluation. Given a query Q, we first look up the index I and determine the tiles
TQ that overlap with the query. In addition, we examine their objects and select
the ones OS (line 1) that are contained in the query window.
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Algorithm 2. Query Processing (I, Q, F )
Input: I: index; Q: query; F: raw data file

Variables: OS: objects selected from select part;

TQ: tiles that overlapped with the select part;

TF : tiles for which file access is required

Parameters: AP: adaptation policy; MH: metadata handler

Output: OD
Q: objects of the result along with the detail values;

VN: analysis values

1 OS, TQ ← evaluateSelectPart(I,S)

2 foreach t ∈ TQ do

3 if fileAcessRequired(t, Q) then

4 W ← AP.splitTile(t)

5 add W into TF

6 if TF �= ∅ then

7 VAF
, VAD

, VAN
, ← readFile(TF , F, OS)

8 MH.updateMetadata(TF , Q, VAF
, VAN

)

9 OD
Q ← evaluateFilterPart (OS , F, VAF

,VAD
)

10 VN ← evaluateAnalysisPart(OQ, VAN
)

11 return OD
Q, VN

Considering TQ, we
determine the tiles TF for
which we have to access
the raw file in order to
answer the query (line 3).
In this step, we also split
the tiles t ∈ TF based
on the adaptation policy
AP , creating a new set of
tiles W , as explained later
in the section. Next, we
access the file at each off-
set of the objects in TF
tiles and retrieve in mem-
ory the attributes defined
in the details, filter, and
analysis parts (line 7).
We use these values for
the metadata handler MH to compute and store metadata in each tile (line 8).
Finally, we evaluate the filter and analysis parts on the retrieved objects
(lines 9 & 10). Each different operation of Algorithm2 is described below.

Evaluate Select Part. In order to evaluate the Select part over the index
(Algorithm 2, line 1), we have to identify OS by accessing the leaf tiles TQ which
overlap with the window query specified in Q. Since window queries can be eval-
uated directly from the index, the Select part is computed without performing
any I/Os.

Procedure 1. fileAcessRequired(t, Q)
Input: t: tile; Q: query;

Output: true / false: file access is required

1 if D �= ∅ then //detail part is included

2 return true //access file for the OQ objects in t

3 else if F = ∅ and N = ∅ then //no filter & analysis parts

4 return false

5 else if AN ⊆ t.MA and F can be evaluated from

t.MA then //filter and/or analysis part is included

6 return false

7 else

8 return true //access file for the OQ objects in t

Determine File Read. Proce-
dure 1 determines whether and
for which objects, file reads are
required. The check is performed
for each tile t independently and
distinguishes between the type
of operation is requested by the
query. If details are requested,
we always have to access the file
(line 1); otherwise for each t we
check if the Analysis and Filter parts can be evaluated using the metadata that
has been already computed for t (line 5), by a previous query.

Incremental Computation of Metadata and Query Processing. The
metadata is computed incrementally and help improving the performance eval-
uation of the filter expressions and the functions defined in the analysis part.
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Procedure 2. splitTile(t)
Input: t: tile

Parameters: AP: adaptation policy

Output: Ta: tiles resulted from

adaptation

1 if AP.checkCondition (t) =

reconstruction required then

2 Ta ← AP.reconstruct (t)

3 else

4 Ta ← t

5 return Ta;

Procedure 3. readFile(TF , F , OS)
Input: TF : tiles for which file access is required;

F: raw data file OS : data selected from the select part

Output: VAF
, VAD

, VAN
, attributes values required

for the filter, details & analysis part

1 forall the oi included in tiles TF , with oi ∈ OS do

2 access F at file offset fi

3 VAFi
, VADi

, VANi
← read the oi attributes values

that are required for the F, D and N parts

4 insert: VAFi
into VAF

; VADi
into VAD

; VANi
into VAN

5 return VAF
, VAD

, VAN

Incremental computation implies that metadata for a tile is not fully computed
during the (initial) index construction, but rather, during user exploration, i.e.,
the first time a query access a tile.

For example, the Analysis part of a user query requires the aggregate (min,
sum, etc.) value of a non-axis attribute that was already computed for the tiles
overlapping with the query, from a previous user visit. In this case, we do not need
to read the non-axis attribute from the file, as we can aggregate the precomputed
values for computing the output value of the query. Further, assume that we have
a Filter part, e.g., F= “diameter > 50 km”, evaluated over the objects of a tile t,
on which we have stored as metadata the maximum value of the diameter if its
containing objects, e.g., 60 km. Similarly, we can easily answer the query through
a single lookup at the index and avoid processing the objects in t. Currently, we
consider aggregate values over attributes of the t.E objects as metadata – i.e.,
count, sum, average, min, max.

The metadata handler MH, using the values retrieved from file, for each tile
(Algorithm 2, line 8): (1) determines for which attributes to compute metadata;
(2) computes metadata; and (3) updates metadata in the tiled accessed by the
query. The attributes for which metadata is computed are: the attributes t.MA

for which metadata has been previously computed in t, as well as the attributes
included in the query filter AF and analysis part AN.

Incremental Index Adaptation. Procedure 2 reorganizes objects in the index
by splitting tiles into smaller ones, based on the adaptation policy AP. It first
checks whether a tile t must be split (checkCondition, line 1) and, if so, places
all objects in t into the new tiles T that are resulted from splitting (line 2). Note
that, a tile’s splitting (if required) is performed, each time (i.e., incrementally) a
query accesses the particular tile (i.e., adaptively). The incremental adaptation
attempts to maximize the number of tiles which are fully-contained in a query
window. For a fully-contained tile t, there is no need to: (1) access the file if the
required metadata have been computed for t; and (2) examine the objects in t in
order to find the objects that are included in the window. Thus, fully-contained
tiles reduce both computation and I/O cost.

In our current implementation, AP defines a numeric threshold h > 0, defining
the relation between the tile and the window size. The checkCondition method
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(line 1) examines if the size of the t is more than 1/h times larger than the
window size. Then, using the reconstruct method (line 2), t is split into more tiles
constructing a tile hierarchy. The splitting is performed following the method
used in either Quadtree or k-d tree.

Read File. We use the file offset stored in object entries, in order to access
the file (Procedure 3). For each object we read the attributes values required for
the filter, details & analysis part. A crucial issue in our index is to improve the
execution time of the queries when file access is required. Exploiting the way
that VALINOR constructs and stores the object entries, we are able to scan the
raw file in a sequential manner. The sequential file scan increases the number of
I/Os over continuous disk blocks and improves the utilization of the look-ahead
disk cache.

During the initialization phase, the object entries are appended into tiles as
the file is parsed (Algorithm 1, line 5). As a result, the object entries in each tile
are sorted based on object’s file offset. In the query evaluation, we identify the
tiles TF for which we have to read the file (Algorithm2, line 3). Considering the
lists of objects entries in TF , we read the objects from lists following a k-way
merge, i.e., all objects are sorted on their offset before reading the file. This way,
objects values are read by accessing the file in sequential order. Note that, in our
experiments, the sequential access results in about 8-times faster I/O operations
compared to accessing the file by reading objects on a tile basis (i.e., read the
objects of tile w, then read the objects of tile v, etc.).

Evaluate Filter, Details and Analysis Parts. In the general case, the Filter
part requires access to the file to retrieve the values of the attributes included
in the filter conditions. However, there are cases where precomputed values in
metadata (e.g., min, max) can be exploited to avoid files access. On the other
hand, the Details part always requires access to the raw file (Procedure 3), since
our index does not keep in memory attribute values other than the two axis
attributes. Particularly, for each object oi in, using the file offset pointers, we
retrieve the values VDi

of the attributes included in the details part. Finally,
the Analysis part is first evaluated on existing metadata stored in the index;
otherwise it requires access to the values VAN

read from the file.

5 Experimental Analysis

5.1 Experimental Setup

Datasets. We have used a real dataset, the “Yahoo! Flickr” (YAHOO), which is a
csv file, containing information regarding public Flickr photos/videos1. YAHOO
contains 100M objects and each object refers to a photo/video described by 25

1 Available at: https://research.yahoo.com.

https://research.yahoo.com
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Fig. 2. From-Raw Data-to-1stResult Time (SYNTH dataset)

attributes (e.g., longitude, latitude, accuracy, tags). We consider a map-based
visualization, with the axis attributes being the longitude and latitude of the
location where a photo was taken. From this dataset, we select the photos/videos
posted in USA region, resulting to 13M data objects and a csv file of 7 GB.
Regarding the synthetic datasets (SYNTH), we have generated csv files of 100M
data objects, having 2, 10, and 50 attributes (2, 11, and 51 GB, respectively),
with 10 being the default value. Each attribute value is a real number in the
range (0, 1000) and follows a uniform distribution.

Competitors. We have compared with: (1) A traditional DBMS (MySQL
5.5.58), where the user has to load all data in advance in order to execute queries;
three indexing settings are considered: (a) no indexing (SQL-0I); (b) one com-
posite B-tree on the two axis attributes (SQL-1I); and (c) two single B-trees,
one for each of the two axis attributes (SQL-2I). MySQL also supports SQL
querying over external files (see CSV Storage Engine in Sect. 6); however, due
to low performance [1], we do not consider it as a competitor in our evaluation.
(2) PostgresRaw (RAW)2 (build on top of Postgres 9.0.0) [1], which is a generic
platform for in situ querying over raw data (see Sect. 6). (3) A main memory
Java implementation of the R*-tree3. We have tested various configurations for
the index fan-out, ranging from 4 to 128; as the difference in the performance is
marginal, we only report on the best one, i.e., 16.

Implementation. We have implemented VALINOR4 in Java and the experi-
ments were conducted on an 2.67 GHz Intel Xeon E5640 with 64 GB of RAM.
We applied memory constraints (max Java heap size) in order to measure the
performance of our approach and our competitors in a commodity hardware
setting. For large datasets, the available version of RAW, required a significant
amount of memory (in some cases more than 32 GB); the same held for the in-
memory R-Tree implementation (more than 16 GB in most cases). In contrast,
VALINOR performed well for heap size less than 10 GB for the larger dataset of
100M objects, 50 attributes (51 GB).

2 https://github.com/HBPMedical/PostgresRAW.
3 https://github.com/davidmoten/rtree.
4 The source code is available at https://github.com/Ploigia/RawVis.

https://github.com/HBPMedical/PostgresRAW
https://github.com/davidmoten/rtree
https://github.com/Ploigia/RawVis
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Evaluation Scenario and Metrics. We study the following visual exploration
scenarios: (1) first, the user requests to view a region of the data from the raw
file. For this action, referred to as “From-Raw Data-to-1stResult”, we measure
the time for creating the index and fetching the query results. (2) Next, the user
explores neighboring areas, using render, move and zoom operations, denoted
as “Basic Visual Operations”, for which we measure the query response time.
(3) Finally, the user explores neighboring areas of the dataset, requesting also
aggregate values for the included objects. For that, we examine the efficiency of
our adaptive method, over a sequence of overlapping window queries.

In our experiments, we measured time, memory consumption and file accesses
varying the following parameters: cardinality (number of objects), dimensional-
ity (number of attributes), and query selectivity (i.e., objects included in the
examined area).

5.2 Results

From-Raw Data-to-1stResult Time. In this experiment, we measured the
time required to answer the first query. This corresponds to loading and index-
ing the data for MySQL, and to constructing the positional map for RAW. For
the VALINOR and R-tree cases the in-memory indexes must be built. For the
R-tree construction, bulk-loading was used. In VALINOR we used 100 × 100
tiles for the initialization of the index (this number of tiles is used in all the
experiments). Note that, we also examined different number of tiles; however,
the effect on the performance was negligible and we do not report on these
results. Figure 2 presents the results varying the dimensionality of the objects.
VALINOR outperforms the MySQL and R-tree methods, with the difference
getting more significant as the dimensionality increases. As expected, VALINOR
exhibits a lower initialization time than R*-tree; the latter must determine mul-
tilayer MBRs and assign objects to leaf nodes as opposed to our approach which
is initialized with fixed tile sizes exhibiting no hierarchy. In this experiment,
VALINOR is outperformed by RAW, due to its non-optimized CSV parsing and
slower I/O Java operations, as opposed to the efficiency provided by RAW’s
programming language (i.e., C). This is something we plan to address in the
future.

Fig. 3. Execution time for basic visual operations (SYNTH dataset)
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Performance of Basic Visual Operations. In this experiment we study the
performance of the render, move and zoom in/out visual operations. Recall that,
these operations are expressed as queries over the axis attributes (i.e., windows
queries). We use the SYNTH dataset to evaluate these operations over regions
that contain different numbers of objects (100K, 1M, 5M). Figure 3 presents the
query execution time. As expected, execution time increases for higher values of
selectivity. VALINOR significantly outperforms all methods in all cases.

Regarding RAW, its positional map is used to minimize file parsing and
tokenizing costs, which can not be exploited to reduce the number of objects
examined in range queries. R-tree is the best competing method. However, its
performance is significantly affected by the number of objects. Overall, VALI-
NOR is around 5–12× faster than R-tree, and more than 1 magnitude faster
than the other methods.

Index Adaptation. We define a sequence of neighboring and overlapping
queries in order to study the adaptation of the index, and we measure the execu-
tion time for each query. To assess the effect of VALINOR’s adaptation policy,
we compare its performance with that of a “static” VALINOR version (denoted
as VALINOR-S), for which tiles are not split as a result of user queries, and we
measure the number of objects read from the file for each version. As adapta-
tion policy we consider standard Quadtree splitting of tiles and we only present
MySQL-1I, which has exhibited the best performance.

First, we use the real YAHOO dataset (Fig. 4). We constructed a sequence
of ten queries (Q1-Q10), each one defined over an area of 10 km × 10 km size
(i.e., window size), requesting the average value of one of the non-axis attributes.
Every query is shifted by 10% of the window size (i.e., 1 km) in relation to its
previous one, where the shift direction (N, E, S, W) is randomly selected, with
the first query Q1 posed in central LA. Note that, we were not able to run RAW
in this dataset, due to the types of the attributes included in YAHOO (i.e.,
textual). For the synthetic dataset (Fig. 5), we use a default window size with
approximately 100K objects, and uniform data distribution, shifting each query
by 10% of the window size.

Comparing VALINOR with its non-adaptive version, we observe that in both
datasets (Figs. 4 and 5) the adaptive method exhibits better performance in time
and file reads. The number of objects read from file is defined in the right axis and
depicted with slashed lines. This improvement, as a result of the tile splittings
and the computed aggregate values, is obvious even after the first query Q1,
with the difference getting more significant after the query Q3. Variations in
these improvements are due to the different number of objects contained in each
window query, as well as to its position of the query w.r.t. to its previous one.
Overall, for the real dataset, the adaptive method requires up to 6× less file
reads (slashed lines) and up to 5× less time; 25× and 17× for the synthetic one,
respectively.

Compared to the other methods, VALINOR outperforms all methods with
the exception of the first 3 queries in the YAHOO dataset (Fig. 4) where SQL
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Fig. 4. Execution Time & File Accesses for each Query (YAHOO dataset)

performs better. Regarding the RAW method (Fig. 5), we observe that it requires
approximately the same time for every query, since it does not adapt to the work-
load and the positional map cannot be exploited to answer the aggregate queries.
Considering all the workload (Q1-Q10), in YAHOO, VALINOR requires 4 s to
execute all queries, VALINOR-S 12 s, R-tree 15 s, and SQL-1I 6 s; in SYNTH,
74, 82, 105 and 145 s, respectively.

Memory Consumption. We measured the memory used to build VALINOR
and R-tree varying the number of objects in the SYNTH dataset (Fig. 6). Note
that, the memory consumption in VALINOR and R-tree is not affected by the
objects’ dimensionality, since in each case, only the two axis attributes are
indexed. We did not consider RAW and MySQL settings since they exhibit
different memory requirements due to their tight-coupling with the DBMS. We
can observe that VALINOR requires significantly less memory than R-tree, with
R-tree requiring 2× more memory for 100M objects.

Fig. 5. Execution Time & File Accesses for each Query
(SYNTH dataset)

Fig. 6. Memory Con-
sumption (SYNTH
dataset)

6 Related Work

In situ Query Processing. Data loading and indexing usually take a large
part of the overall time-to-analysis for both traditional RDBMs and Big Data
systems [11]. In situ query processing aims at avoiding data loading in a DBMS
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by accessing and operating directly over raw data files. NoDB [1] is one of the
first efforts for in situ query processing. NoDB incrementally builds on-the-fly
auxiliary indexing structures called “positional maps” which store the file posi-
tions of data attributes in order to reduce parsing and tokenization costs during
query evaluation, as well as it stores previously accessed data into cache. The
authors have also developed PostgresRaw, which is an implementation of NoDB
over PostgreSQL. DiNoDB [17] is a distributed version of NoDB. In the same
direction, RAW [15] extends the positional maps to index and query file for-
mats other than CSV. Recently, Slalom [16] exploits the positional maps and
integrates partitioning techniques that take into account user access patterns.

Raw data access methods have been also employed for the analysis of scientific
data, usually stored in array-based files. In this context, Data Vaults [12] and
SDS/Q [5] rely on DBMS technologies to perform analysis over scientific array-
based file formats. Further, SCANRAW [6] considers parallel techniques to speed
up CPU intensive processing tasks associated with raw data accesses.

Recently, several well-known DBMS support SQL querying over raw csv files.
Particularly, MySQL provides the CSV Storage Engine, Oracle offers the Exter-
nal Tables, and Postgres has the Foreign Data. However, these tools do not focus
on user interaction, parsing the entire file for each posed query, and resulting in
significantly low query perfomance [1] for interactive scenarios.

All the aforementioned works study the generic in situ querying problem
without focusing on the specific needs for raw data visualization and exploration.
Instead, our work is the first effort trying to address these aspects, considering
the in situ processing of a specific query class, that enables user operations in 2D
visual exploration scenarios; e.g., pan, zoom, details. The goal of our solution
is to optimize these operations, such that visual interaction with raw data is
performed efficiently on very large input files using commodity hardware.

Indexes for Visual Exploration. VisTrees [9] and HETree [4] are tree-based
main-memory indexes that address visual exploration use cases; i.e., they offer
exploration-oriented features such as incremental index construction and adapta-
tion. Compared to our work, both indexes focus on one-dimensional visualization
techniques (e.g., histograms), and they do not consider disk storage; i.e., data is
stored in-memory.

Hashedcubes [8] is a main-memory data structure supporting a wide range
of interactive visualizations, such as heatmaps, time series, plots. It is based on
multiple hierarchical multidimensional (spatial, categorical, temporal) indexes,
which are constructed during the loading phase. The construction requires mul-
tiple sortings on the input values, which may result in increased amount of time
for large datasets. In comparison with our approach, Hashedcubes requires that
all data resides in memory, and thus it does not address the need of reducing
the overall time-to-visualization (both loading and query processing time) over
raw data files and it does not feature any adaptive technique based on the user
interaction. Further, graphVizdb [3] is a graph-based visualization tool, which
employs a 2D spatial index (e.g., R-tree) and maps user interactions into window
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2D queries. Compared to our work, graphVizdb requires a loading phase where
data is first stored and indexed in a relational database system. In addition,
it targets only graph-based visualization and interaction, whereas our approach
offers interaction in 2D layouts, such as maps or scatter diagrams.

In different contexts, tile-based structures are used in visual exploration
scenarios. Semantic Widows [14] considers the problem of finding rectangu-
lar regions (i.e., tiles) with specific aggregate properties in an interactive data
exploration scenario. This work uses several techniques (e.g., sampling, adaptive
prefetching, data placement) in order to offer interactive online performance.
ForeCache [2] considers a client-server architecture in which the user visually
explores data from a DBMS. The approach proposes a middle layer which
prefetches tiles of data based on user interaction. Prefetching is performed based
on strategies that predict next user’s movements. Our work considers different
problems compared to the aforementioned approaches. However, some of their
methods can be exploited in our framework to further improve efficiency.

Traditional Indexes. A vast collection of index structures has been introduced
in traditional databases, as well as Big Data systems (see e.g., M-trees [7] ).
Traditional spatial indexes, such as the R-tree family and kd-trees, are designed
to improve the evaluation of a variety of spatial queries and are widely available
in both disk-based and main memory implementations. Due to their objective
(i.e., support of various spatial query operations), even main memory spatial
indexes require substantial memory and time resources to construct [10], which
makes them inappropriate for enabling the users to quickly start exploring and
interacting with the data, as in the case of in situ data exploration (see also
the results in Sect. 5). On the contrary, our approach proposes a main-memory
lightweight index, which aims at accelerating the raw data-to-visualization time
and offering a simple set of 2D visual operations to the user, rather than covering
all aspects of spatial data management.

7 Conclusions

In this paper, we have presented the RawVis framework and the VALINOR
index, a lightweight main memory structure, which enables interactive 2D visual
exploration scenarios of very large raw data files in the presence of limited mem-
ory resources. VALINOR is constructed from a raw data file given the first user
query and adapted based on the user interaction. We have formulated a set of
simple visual operations and mapped them to query operators evaluated on the
VALINOR index. We have conducted a thorough experimental evaluation with
real and synthetic datasets and compared with three competitors; i.e., MySQL,
PostgresRaw, and R-tree. The results showed that our technique outperforms
both in query execution time and memory consumption.
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Abstract. Nowadays active learning is gaining increasing interest in computer
vision community, especially on images. The most commonly used query
strategy framework is uncertainty sampling usually in a pool-based sampling
scenario. In this paper we propose two query strategies for image classification
under the uncertainty sampling framework, both of them being improvements of
existing techniques. The first strategy, so called Extended Margin incorporates
all possible class labels to calculate the informativeness values of unlabeled
instances. The second strategy is the improvement of the recently published
BAL method, so called Soft Balanced approach, where we suggest new final
informativeness score from an uncertainty measure and a novel penalty metric.
We used least margin criterion for the former and the latter was calculated from
the categorical penalty scores by using soft assignment. We conducted experi-
ments on 60 different test image sets, each of them was a randomly selected
subset of the Caltech101 image collection. The experiments were performed in
an extended active learning environment and the results showed that the
Extended Margin outperforms the least margin approach and the Soft Balanced
method overcomes all other competitor method.

Keywords: Active learning � Query strategies � Uncertainty sampling
Image classification � Penalty metric � Soft assignment

1 Introduction

Active learning is a way of addressing a common problem, where unlabeled data may
be easily obtained, but labels are expensive, time-consuming and difficult to create. For
example consider such a movie annotation, where the target group consists of hearing
impaired people. In this case accurate labeling of every sound (not only the speech)
would be required and this is an extremely time consuming task. Another example
could be the classification of different plant species based on visual information
(photos), which requires trained biologists. In these scenarios the goal is to use as few
labeled instances as possible, while retaining the same level of accuracy that could be
achievable by using the total dataset. The method of active learning approaches this
issue by giving the opportunity to the learning system to iteratively select which
unlabeled instances to label. The key idea here is that if we allow the learner to query
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the label of the presumably most informative instance, then it will be able to set up a
more accurate model than with the label of a randomly selected instance.

There are three different problem scenarios that have been considered in the lit-
erature: membership query synthesis [8], stream-based selective sampling [9, 10] and
pool-based sampling [11]. In this paper we only consider the pool-based sampling, in
which we assume that a large collection of unlabeled data (U) is available at once. As
can be seen in Fig. 1, the learner may ask queries in form of one or more carefully
selected unlabeled instances to be labeled by an oracle (e.g. human annotator), then
these new labeled instances are added to the labeled set (L). Based on the extended
knowledge provided by the new labeled instances, the learner sets up a new machine
learning model, then it estimates the informativeness values of the remaining unlabeled
instances, and then it chooses which instances to query next.

One of the most important parts of an active learning algorithm is how it estimates
the informativeness of unlabeled instances. There are many proposed query strategy
frameworks in the literature, e.g. uncertainty sampling [36], query-by-committee
(QBC) [34], expected model change [5], expected error reduction [22], to mention only
the most commonly used ones. We developed and implemented two methods to predict
the informativeness of the unlabeled instances, both of them belong to the uncertainty
sampling framework.

The rest of this paper is organized as follows. First we summarize the related
literature in this area, then in Sect. 3 we present our proposed approaches, the Extended
Margin and the Soft Balanced query strategies. In the next section we briefly review
our solution for image classification. Section 5 presents the experimental results that
were conducted on 60 different image datasets (each of them being a random subset of
the Caltech101 image collection [19]), finally in the last one we describe our
conclusion.

Fig. 1. Active learning cycle [2]
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2 Related Work

We will focus on active learning problems especially on pool-based scenario and
uncertainty sampling. The authors of [31] used a support vector active learning algo-
rithm for conducting effective relevance feedback for image retrieval. In another work
[4], an active learning framework was proposed to guide hidden annotations to improve
retrieval performance in content-based information retrieval (CBIR). The authors of
[35] used simple margin selection method for SVM for the active selection of object
windows in images. The system autonomously refines its models by actively requesting
crowd-sourced annotations on images crawled from the Web. On the other hand, in
[25], an uncertainty sampling method was applied to image recognition in an active
learning scenario; a margin sampling criterion and entropy criterion were used in the
conditional part of this method. We compared our approaches with random sampling
and the basic uncertainty sampling using least margin criterion in this paper.

Many other works on uncertainty sampling methods are based on the entropy
notion. For example, in [36] an entropy criterion was used to measure the uncertainty
of random variables in random walks on a graph. The authors of [12] present a so-
called class balanced active learning (CBAL) framework for classifier training to detect
cancerous regions on prostate histopathology. They also address the minority class
problem, where one class is underrepresented, but their solution is only for binary
problems. Another solution called Balanced Active Learning (BAL) method [26]
applies a novel penalty metric to support entropy based uncertainty sampling, and
balances the distribution of the already labeled instances among the categories (multi-
class). We present an improvement of this method and compare it to the original
version of BAL method.

One of the most recent paper [32] attempts to distinguish between the two types of
uncertainties (conflicting-evidence vs. insufficient-evidence), but it does not provide
another alternative approach for improving uncertainty sampling.

3 Proposed Query Strategies

3.1 Uncertainty Sampling

Uncertainty sampling is the most commonly used and probably the simplest query
strategy framework, and its goal is to query the instance with least certainty about its
true label [2]. Therefore, we measure the amount of uncertainty as informativeness
value in this case. The easiest way is to select the image whose prediction is least
confident, i.e. the maximum element of its decision vector is minimal (see Eq. 1).

x� ¼ argmax
x

1� PM y� xjð Þð Þ ð1Þ

where y� denotes the class label with the highest probability under the model
M. Despite its simplicity this method is very efficient, however it only uses the
information provided by the most probable class label. Another uncertainty sampling
variant called least margin calculates the difference between the first and second most
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probable class labels, and then it selects the image whose difference value (margin) is
minimal, as can be seen in Eq. 2.

x� ¼ argmin
x

PM y�1 xj
� �� PM y�2 xj

� �� � ð2Þ

where y�1 and y�2 denote the first and second most probable class labels, respectively.
However, the least margin approach still ignores much of the remaining label
distribution.

3.2 Extended Margin

To correct for this, we developed so-called Extended Margin technique, which
incorporates all class labels into the formula. The informativeness value of an image is
the weighted sum of C � 1 component margins, where C is the number of classes.
Component i is the difference between the first and ith most probable class labels. We
calculate the Extended Margin metric for each unlabeled instance, and then we select
the image corresponding to the lowest score; as can be seen in Eq. 3.

x� ¼ argmin
x

Xc

i¼2

w i�1ð Þ PM y�1 xj
� �� PM y�i xj

� �� � ð3Þ

where w i�1ð Þ represents the weight of component i� 1. We investigated several pos-
sible weight vectors (w), which were the following:

• w ¼ 1; 1; 1; 1; . . .f g
• w ¼ 1; 12 ;

1
3 ;

1
4 ; . . .

� �
• w ¼ 1; 12 ;

1
4 ;

1
8 ; . . .

� �

The first, equal weights vector, gives too much influence to less important com-
ponents. Component i is more important than component iþ 1, because probability i is
higher than probability iþ 1, and therefore it is more likely that the classifier confuses
the most probable class with class i than with class iþ 1. In the second case we chose
decreasing weights to follow the decreasing importance, moreover the value of the
elements of the third weight vector is decreasing even faster, and we used this weight
vector in our experiments. Furthermore, the Extended Margin can be considered as a
general margin formula with arbitrary weights; e.g. if we choose w ¼ 1; 0; 0; 0; . . .f g as
weight vector then we get the least margin formula.

3.3 Soft Balanced

In this section we present the second proposed active learning strategy, so called Soft
Balanced approach. The basis of our approach is the BAL method introduced in [26].
This kind of informativeness measurement consist of two parts, an uncertainty value
and a so-called penalty metric. In the Soft Balanced strategy we used least margin
criterion (see Eq. 2) for uncertainty measurement and we propose a new penalty metric
defined as
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PENi ¼ CTRi � 1
C

ð4Þ

where i ¼ 1. . .C and CTRi denotes a general counter whose value increases by 1 with
each iteration of queries when the received category is other than i. Note that we used
categorical penalty metrics instead of giving each unlabeled instance its own. The
individual penalty metric of an instance is composed from the categorical ones by
taking their weighted average, where the weights are the corresponding class mem-
bership probabilities (as can be seen at the denominator of Eq. 5). We call this cal-
culation method soft assignment, hence the “soft” prefix in the name of the method.
The original BAL method uses hard assignment, which means that the penalty metric
of an unlabeled instance is the penalty metric of the most probable class.

We normalized the CTR values by the number of classes (C), so the penalty metric
also depends on the number of classes. When the learner queries an instance from a
particular category, the CTR value (and therefore the penalty metric) of that category is
reset to zero. Higher penalty metric represents higher uncertainty, and because of this
an unlabeled instance with higher assigned penalty metric is more desirable to query
than one with a lower value. Consequently, the learning system would query the
instance with maximum penalty metric, while it would query the instance with mini-
mum least margin criterion score. We merged these measurement scores into a final
decision score by taking the ratio of them, as can be seen in the following equation:

Sxj ¼
PM y�1 xj j

� �
� PM y�2 xj j

� �

PC
i¼1 PM yi xj j

� �
� PENi

� � ð5Þ

where the nominator represents the least margin score of instance xj similarly to Eq. 2.
In the denominator we calculate the penalty metric of instance xj by taking the cate-
gorical penalty metrics over all possible labeling. It is important to mention that the
denominator is always a positive number, and therefore we did not have to handle the
case of division with zero. Sxj denotes the final uncertainty score of instance xj, and the
algorithm aims to query the unlabeled instance corresponding to the minimal S. The
advantage of our proposed approach is that it establishes a balance among the classes of
labeled instances.

In order to test our active learning query strategy methods in image classification, in
each iteration we had to calculate the class membership probabilities (PMðyi xj jÞ) used in
the above equations; in the next section we describe it in details.

4 Image Classification

In this section we will briefly review the image representation and image classification
processes; we applied BoV (Bag-of-Visual-Words) model [13, 18, 20] for the former
and SVM (Support Vector Machine) [1, 7, 18] for the latter. The key idea behind BoV
model is to represent an image based on its visual content with so-called visual code

Extended Margin and Soft Balanced Strategies in Active Learning 73



words while ignoring their spatial distribution. This technique consists of three steps,
these being (i) feature detection, (ii) feature description and (iii) image description as
usual phases in computer vision. For feature detection we utilized the Harris-Laplace
corner detector [3, 24], and then we used SIFT (Scale Invariant Feature Transform) [21]
to extract and describe the local attributes of the features. Note that we used the default
parameterization of SIFT proposed by Lower; hence we got descriptor vectors with 128
dimensions. To define the visual code words from the descriptor vectors, we used the
GMM (Gaussian Mixture Model) [30, 33], which is a parametric probability density
function represented as a weighted sum of K Gaussian component densities; as can be
seen in Eq. 6.

p Xjkð Þ ¼
XK
j¼1

xjg X lj; rj
��� � ð6Þ

where X is the concatenation of all SIFT descriptors, xj, lj and rj denote the weight,
expected value and variance of the jth Gaussian component, respectively; and K ¼ 256.
We calculated the k parameter, which includes the parameters of all Gaussian func-
tions, with ML (Maximum Likelihood) estimation by using the iterative EM (Expec-
tation Maximization) algorithm [16, 33]. We performed K-means clustering [23] over
all the descriptors with K ¼ 256 clusters to get the initial parameter model for the EM.
The next step was to create a descriptor that specifies the distribution of the visual code
words in an image, called high-level descriptor. To represent an image with high-level
descriptor, the GMM based Fisher-vector [14, 28] was calculated. This is an appro-
priate and complex descriptor vector, because this is able to take the semantic essence
of the picture, and this is already validated in classification problems [14, 15, 27, 28].
The Fisher-vector is computed from the SIFT descriptors of an image based on the
visual code words by taking the derivative of the logarithmic of the Gaussian functions
(see Eq. 7), thus it describes the distribution of the visual elements for an image. These
vectors were the final representation of the images, and we used them as input for the
classification.

FV ¼ rk log p X kjð Þ ð7Þ

where p X kjð Þ is the probability density function introduced in Eq. 1, X denotes the
SIFT descriptors of an image and k represents the parameter of GMM k ¼ xj; lj; rjj

��
j ¼ 1. . .KgÞ.

For the classification subtask we used a variation of SVM, the C-SVC (C-support
vector classification) with RBF (Radial Basis Function) kernel. The one-against-all
technique was applied to extend the SVM for multi-class classification. We used Platt’s
[29] approach as probability estimator, which is included in LIBSVM (A Library for
Support Vector Machines [6, 17]). We used these algorithms in each iteration of the
active learning cycle to calculate the class membership probabilities that were used to
estimate the informativeness of the unlabeled instances.
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5 Experimental Results

5.1 Experimental Environment

We used the Caltech101 [19] image collection for conducting our experiments, which
consists of 8677 images from 101 different categories. More precisely, we used 60
different, randomly selected and possibly overlapping subsets of Caltech101 as test
image sets. To get these subsets we performed the following operations 20 times for
each different category number (C):

1. Randomly selected 30 images from each category
2. Divided each category into train and test parts (20 images in train, 10 images in test)
3. Randomly selected C ¼ 5; 10; 20f g classes from the total 101 classes.

We repeated the selection 20 times for each different category number to be able to
take the average of the results got on them; and therefore to give a comprehensive result
and conclusion about what is expected if one chooses one of the given number of
classes. In the rest of the paper we will consider only the image set types, instead of the
individual image sets one by one; also later on, when we present the results of the
image set types, we mean the averaged results got on the 20 individuals.

It is important to mention that we used an extended environment for our experi-
ments, which means that we had an additional fix test image set (F) on which we
evaluated the results (as can be seen in Fig. 2). This is the reason why we divided the
images into train and test parts; the test part in each category will be the fix image set.
However, we need to classify the unlabeled pool (U), because we calculate the
informativeness values based on the decision vectors. We could also evaluate the
results got on U, but it would be misleading, especially in case of uncertainty sampling,
since we query an instance that is difficult to classify; thus eliminating a probably
misclassification is further increasing the accuracy in the new iteration (aside from the
new label). Thereby we chose to use a fix test image set to measure the accuracy.

The labeled training set (L) is a very small set in the beginning, we randomly
choose an image from each category at the start, and then in each iteration it is
expanded by one more image and its label. The iteration stops when L and U has the
same size, and at that point L and F also has the same size. Note that by same size we
mean equal number of images.

Fig. 2. Extended active learning cycle
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We evaluated six strategies for comparison, these were:

• Random sampling (RS)
• Uncertainty sampling using least margin (LM)
• Original BAL method (using entropy criterion, BAL1)
• BAL method using least margin criterion (BAL2)
• Extended Margin (ExM)
• Soft Balanced sampling using least margin (SBAL).

5.2 Results

Now, we will present our experimental results that were conducted on the 60 test image
sets. We call the image set types with 5, 10 and 20 categories by Caltech5, Caltech10
and Caltech20, respectively; and we present the results got on them in Figs. 3, 4 and 5.
Each figure consists of two graphs where the left one shows the results of RS, LM,
BAL1 and BAL2 methods represented as long dashed, dashed, dotted and solid lines,
respectively; while the right one shows the results of BAL2, ExM and SBAL methods
represented as dashed, dotted and solid lines, respectively. Both graphs have the
accuracy on the y-axis and the number of trained images on the x-axis. We separated
the methods to make the figures less crowded and easier to read. As can be seen in the
left side of the figures, random sampling gave the lowest accuracy almost at all points
on each image set type. The uncertainty sampling with least margin criterion gave
much higher accuracies than RS, and the original BAL method was a little bit better
than LM. Furthermore, the results obtained by using BAL1 and BAL2 methods show
that we were able to create a better query strategy by (only) changing the uncertainty
measurement technique inside the original BAL method from entropy to least margin.

On the right graph of the figures we compare our proposed query strategies only to
BAL2, since it gave the highest accuracy among the competitor methods. Therefore, if we
show that ExM and SBAL outperform BAL2, then it implies that they also outperform
RS, LM and BAL1. As can be seen in the figures, SBAL gave the highest accuracy at
almost all points, while ExM gave higher accuracy than LM at each point. In fact, ExM
gave similar accuracies as BAL1 and in some cases it even outperformed BAL2.

We summarize the results of the experiments in Table 1, where we use abbrevia-
tions to encode the image set type and the number of trained images; e.g. ‘C5 #50’
represents the results obtained on Caltech5 image set type with 50 training images in
the labeled pool. Basically, Table 1 includes the accuracies got on each image set type
with each tested methods after querying one quarter or half of the unlabeled pool.
Furthermore, we calculated the standard deviation of the accuracies because the
experiments were performed 20 times on each image set type. We denote the rows that
contain the standard deviation values with ‘sdev’ and the ones that contain average
accuracy values with ‘acc’. Based on the results we may conclude that ExM is a better
uncertainty sampling criterion than LM and SBAL is the best query strategy among the
investigated methods.

76 D. Papp and G. Szűcs



Fig. 3. Results got on Caltech5 image set type

Fig. 4. Results got on Caltech10 image set type
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6 Conclusion

In this paper we presented two new query strategies for active learning in a pool-based
scenario. Both of these approaches belong to the uncertainty sampling framework
because they measure the uncertainty among the possible labels as informativeness of
the unlabeled instances. The proposed Extended Margin (ExM) is the general case of

Fig. 5. Results got on Caltech20 image set type

Table 1. Average and standard deviation of the accuracy values evaluated on each image set
type with each tested method

RS LM BAL1 BAL2 ExM SBAL

C5 #25 acc 0.295 0.330 0.340 0.356 0.344 0.357
C5 #50 acc 0.679 0.724 0.730 0.751 0.747 0.778
C5 #25 sdev 0.174 0.167 0.026 0.186 0.143 0.156
C5 #50 sdev 0.119 0.126 0.075 0.146 0.142 0.125
C10 #50 acc 0.470 0.477 0.495 0.519 0.490 0.533
C10 #100 acc 0.645 0.707 0.714 0.729 0.738 0.757
C10 #50 sdev 0.075 0.090 0.041 0.085 0.104 0.093
C10 #100 sdev 0.060 0.070 0.039 0.069 0.076 0.067
C20 #100 acc 0.446 0.489 0.504 0.524 0.504 0.545
C20 #200 acc 0.604 0.663 0.664 0.671 0.668 0.704
C20 #100 sdev 0.054 0.056 0.021 0.045 0.064 0.057
C20 #200 sdev 0.039 0.048 0.027 0.047 0.050 0.051
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least margin and it incorporates all class labels into formula. On the other hand, our
Soft Balanced method (SBAL) uses categorical penalty metrics to determine the
individual penalties of the unlabeled instances and it merges these scores with the ones
coming from an uncertainty measurement with least margin criterion. We tested the
proposed query strategies on 60 randomly selected subsets of Caltech101 image col-
lection and compared the obtained results to several other uncertainty sampling
methods. Our experiments showed that SBAL outperforms all of the competitor
methods, while ExM gave higher classification accuracy than the basic least margin
during the tests, moreover many times it gave the second best accuracy behind SBAL.
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the European Social Fund (EFOP-3.6.2-16-2017-00013).
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Abstract. We present our initial findings regarding the problem of the
impact that time series compression may have on similarity-queries, in
the settings in which the elements of the dataset are accompanied with
additional contexts. Broadly, the main objective of any data compression
approach is to provide a more compact (i.e., smaller size) representation
of a given original dataset. However, as has been observed in the large
body of works on compression of spatial data, applying a particular algo-
rithm “blindly” may yield outcomes that defy the intuitive expectations
– e.g., distorting certain topological relationships that exist in the “raw”
data [7]. In this study, we quantify this distortion by defining a measure
of similarity distortion based on Kendall’s τ . We evaluate this measure,
and the correspondingly achieved compression ratio for the five most
commonly used time series compression algorithms and the three most
common time series similarity measures. We report some of our obser-
vations here, along with the discussion of the possible broader impacts
and the challenges that we plan to address in the future.

1 Introduction and Motivation

Modern advances in sensing technologies – e.g., weather stations, satellite
imagery, ground and aerial LIDAR, weather radar, and citizen-supplied obser-
vation – have enabled representing the physical world with high resolution and
fidelity. The trend of Next Generation Sensor Networks and Environmental Sci-
ence [9] aims at integrating various data sources (e.g., offered by the state-of-
the-art GEOS-5 data assimilation system [26]) and make them publicly avail-
able. An example of such large scale dataset is the MERRA-2 data, provided
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by NASA [19] – covering the whole time period of the modern era of remotely
sensed data, from 1979 until today, and recording a large variety of environ-
mental parameters, e.g., temperature, humidity and precipitation; on a spatial
resolution of 0.5◦ latitude times 0.67◦ longitude produced at one-hour intervals.
This, in turn, enables access to many Terabytes of historic evolution in time of
environmental data.

Fig. 1. Simplification and topological distortions (based on [7])

Although the focus of this work is on the peculiarities of compressing time
series and the interplay with other contexts, to better understand the motivation
we briefly turn the attention to compression in spatial data. In the mid 1990s,
concurrently with the advances in cartography and maps management [30], the
multitude of application domains depending on geographic properties (e.g., dis-
tributions) of various phenomena in agriculture, health, demographics, etc. [11],
brought about the field of Spatial databases [24]. Most of the compression tech-
niques applied in spatial datasets rely on some kind of a line simplification app-
roach, and many variants have also been extensively studied by the Computa-
tional Geometry (CG) community [3,28]. Among of the most popular line sim-
plification approaches is Douglas-Peuker1 (DP) [6]. However, as demonstrated
in [20], applying the DP algorithm to reduce the polylines bounding the polygons
in a given subdivision, may often cause topological inconsistencies, as illustrated
in Fig. 1, in the following sense:

• Boundaries of regions which were not intersecting in the original represen-
tation may end up intersecting after the simplification is applied. Similarly,
the simplified polylines corresponding to different regions may intersect each
other.

• Relative position of point-locations with respect to a boundary or a polyline
may change after the simplification is applied – e.g., a city which was on
the north bank of the river may end up in its south bank after the polyline
representing the river has been simplified.

1 Around the same time, there were other algorithms developed for polyline simplifica-
tion, some of which had almost-identical methodologies with the DP algorithm. Most
notably [16] which is the reason that sometimes the name Ramer-Douglas-Peuker is
used in the literature.
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One of the canonical problems in time series is the similarity search – i.e.,
given a collection/database of time series and a particular query-sequence, detect
which particular time series is most similar to the querying one, with respect to
a given distance function [5]. Since time series databases are large in size, much
research has been devoted to speeding up the search process. Among the bet-
ter known and used paradigms are the ones based on techniques that perform
dimensionality reduction on the data, which enables the use of spatial access
methods to index the data in the transformed space [14]. Many similarity mea-
surements and distance functions for time series have been introduced in the
literature [5] – however, what motivates our work is rooted at the observation
that large datasets that are time series by nature, are often tied with other con-
text attributes. Sources of such time series exist in many different domains –
such as location-aware social networks [8,31] and atmospheric and precipitation
data [21,23] (but two examples).

Fig. 2. Precipitation time series

Our key observations are:

O1: Given the size of such datasets, one would naturally prefer to store the data
in a compressed/simplified representation.

O2: Many queries of interest over such datasets may involve values from >1
context/domain.
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For example, Fig. 2(a) (cf. [17,21]) illustrates the spatial distribution of the
measurements of precipitation in discrete locations. However, in each individual
location, the collection of the measurements from different time-instants actually
form a time series – as illustrated in Fig. 2(b) which shows the detailed corre-
sponding precipitation time series. In the spirit of O1 and O2 above, consider
the following query:

Q1 : Which location in the continental US has the most similar distribution of
monthly precipitation with Ames?

The main motivation for this work is to investigate the impact of different com-
pression approaches on variability of the answer(s) to Q1 above. While in the
case of Q1 the additional context is the location, we postulate that other queries
pertaining to time series with additional contexts may suffer from distortion
of their answers. Such distortions, in turn, may affect the choice of a particu-
lar compression algorithm to be used – e.g., as part of materializing the data
in dimensions-hierarchy of warehouses [27]. In this work, we report our initial
findings in this realm.

In the rest of the paper, Sect. 2 defines the problem settings and Sect. 3
reviews the compression approaches and respective measures. In Sect. 4 we dis-
cuss in detail our observations to date, and in Sect. 5 we summarize and outline
directions for future work.

2 Problem Definition

In broadest terms, data compression can be perceived as a science or an art – or
a mix of both – aiming at development of efficient methodologies for a compact
representation of information [10,22]. Information needs a representation – be
it a plain text file, numeric descriptors of images/video, social networks, etc. –
and one can rely on properties of structure, semantics, or other statistically-valid
features of that representation when developing the methodologies for making
the underlying representation more compact. Speaking a tad more formally, data
compression can be defined as any methodology that can take a dataset D with
a size β bits as an input, and produce a dataset D′ as a representation of D and
having a size β′ bits, where β′ < β (hopefully, β′ << β).

To measure the capability of a data compression algorithm to reduce the size
of a dataset, in this work we simply rely on the typical measure – the compression
ratio [10].

Definition 1 (Compression Ratio). Let D be a dataset represented by βD

bits. Let C be a compression function, which maps D to a compressed dataset
C(D) represented by βC(D) bits. We define the compression ratio of C on D as:

RC(D) =
βD

βC(D)
.
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We note that the representation size βD is not necessarily equal to the entropy
E(D) of D [18]: The entropy of D is the smallest possible number of bits required
to represent D. Thus, it must hold that E(D) ≤ βD. The aim of this study is
not to evaluate the information aspects of time series theoretically, but rather,
to see the impact of the loss of a particular type of information incurred by
compression algorithm on practical queries related to similarity search on time
series.

Clearly, one can easily find a compression algorithm that maximizes the com-
pression ratio of Definition 1, by a “brute force” discarding any and all informa-
tion. However, such an approach would inhibit any meaningful similarity search
among the compressed time series, as all of them would be equally-valid candi-
dates for an answer. Thus, the challenge approached in this work is to maximize
the compression ratio while maintaining similarity search results as accurate as
possible.

To measure how a compression algorithm C can maintain similarity search
results among a set D of time series tied with other context attributes, we com-
pute similarity rankings between all the time series. A similarity ranking, using
a query time series T ∈ D, ranks all other time series in D \T by their similarity
to T . To quantify the similarity ranking before vs. after the compression, we
employ Kendall’s rank correlation coefficient τ [12], which measures how many
pairs of relative ranking positions are preserved and discordant between the two
rankings. Formally,

Definition 2 (Ranking Similarity). Let D be a set of time series. For a query
time series T ∈ D, let Rank(T,D) be the similarity ranking of T to all other
time series T ′ ∈ D \ T . Further, let C be a compression algorithm, let C(D)
denote the compressed representation of D, and let Rank(T, C(D)) denote the
similarity ranking of T after the compression. Then, we describe the similarity
of these two rankings as:

τ(Rank(T,D), Rank(T, C(D))) =
∑

Ti,Tj∈D,i≤j

I(conc(Ti, Tj)) − I(disc(Ti, Tj))
(|D|2 − |D|)/2

,

where either (I(conc(Ti, Tj))) or (I(disc(Ti, Tj))) is an indicator function that
returns 1 if time series Ti and Tj are concordant or discordant in both rankings
(that is, if the relative ranking order between Ti and Tj is maintained or not in
both rankings) and 0 otherwise.

As an example, consider a case where we have four time series T1, ..., T4, and
assume that the similarity ranking of T1 is (T2, T3, T4), implying that T2 is most
similar to T1, while T4 is the least similar one. Further, assume that after com-
pression, the ranking becomes (T2, T4, T3). In this case, the relative order between
T2 and T3 is preserved, as is the relative order between T2 and T4. The only “dis-
cordant” order is between T3 and T4, yielding τ((T2, T3, T4), (T2, T4, T3)) = 1

3 .
To quantify the overall information maintained between all of the time series,

we compute the average τ score of all time series in D.
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Definition 3 (Average Ranking Similarity). Let D be a set of time series
and let C(D) denote the compressed representation of D. We define the average
ranking similarity between D and C(D) as

τ(D, C(D)) =
∑

T∈D τ(Rank(T,D), Rank(T, C(D)))
|D| .

We reiterate that our goal is to evaluate how different compression algorithms C
affect the balance between compression ratio (Definition 1) and average ranking
similarity (Definition 3).

3 Compressions and Distances

For self-containment, we now briefly survey the compression techniques and dis-
tance measures used in this study.

3.1 Compression Approaches

We have used two broad categories of compression techniques, as described in
detail in the sequel.

Dimensionality Reduction. Instead of being viewed as a collection of n time-
instant phenomenons, a time series, {t1, t2, ..., tn}, can be considered as a point
in n-dimensional space. Dimensionality reduction approaches focus on reduc-
ing the dimensionality – from n in the “native”, to m (m < n) in the lower
dimensional space – while minimizing the loss of explained variance. We use two
representative techniques:

• Discrete Fourier Transform:
The key idea of Discrete Fourier Transform (DFT) [2] is based on the observa-
tion that any n-length time series can be represented in the frequency domain
with n sine and cosine waves, that can be used to reconstruct the original time
series. The compression stems from the observation that the waves with low
amplitudes can be neglected without losing too much valuable information.

• Piecewise Aggregate Approximation:
The basic concept behind the Piecewise Aggregate Approximation (PAA) [14]
is dividing the original time series into N equally sized windows, where (N is
the desired dimensionality of transformed space. Then, each window/frame
is represented by the mean value of all the data within that particular frame.
The formula used for performing PAA on an n-dimensional time series and
transforming it into the N-dimensional space is shown in Eq. 1:

ti =
N

n

N
n i∑

j=N
n (i−1)+1

tj , i = 1, 2, ..., N (1)
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One may observe that a small window-size can achieve a better performance
on preserving information, but yields a poor compression ratio – e.g., when
the window size is equal to n, the transformed representation is identical to
the original time series.

Native-Space Compression. Another kind of compression approaches reduces
the size of the initial time series in its “native space”:

• (Adapted) Douglas-Peucker Algorithm:
Given a sequence of time series and a user-defined tolerance threshold ε,
the Douglas-Peucker (DP) [6] algorithm recursively sub-divides the input
sequence based on an “anchor”. An “anchor” is a point that has a largest
distance exceeding ε from the line segment connecting the initiator (first
point initially) and the terminus (last point initially). The DP algorithm is
traditionally used to compress polylines. To adapt it to time series, we use
vertical (instead of perpendicular) distance in this study. Vertical distance
between point tk and line segment(ti, tj), i < k < j, is defined as

∣∣∣t
′
k − tk

∣∣∣,
where t

′
k is the intersection of line segment(ti, tj) and the line passing tk and

perpendicular to the time-axis.
• Visvalingam-Whyatt Algorithm:

The key aspect of Visvalingam-Whyatt (VW) [29] algorithm is the “effective
area”, which indicates the surface area of the triangle formed by a point with
its two neighbors. For a time series of length n, a total (n-2) triangles can
be formed. The main idea behind the VW algorithm is to iteratively drop
the middle point of the triangle with the least “effective area” and keep on
updating the triangles related to that displaced point until the “effective area”
is larger than the user-given parameter ε.

• (Adapted) Optimal Algorithm:
The main idea of optimal algorithm (OPT) [4] is to consider two directions
(forward and backward), for each point of a time series. For instance, (ti+1,
ti+2, ..., tn) is forward for ti, and (ti−1, ti−2, ..., t1) is backward. The i-
th (1 ≤ i ≤ n) pass of the algorithm draws circles with radius ε, centered at
each the forwards and backward points of ti – denoted Circlei+1, Circlei+2, ...,
Circlen and Circlei−1, Circlei−2, ..., Circle1. Take forward chain as instance.
While touching a new point, tk, i < k ≤ n, let Uk and Lk indicate the upper
and the lower ray emanating from ti, passing through the top and bottom
point of Circlek - in a sense, defining a wedge pertaining to tk and with
the apex at ti. For as long as the intersection of successive wedges is not
empty, nothing needs to be updated except of recording the lowest-upper
and highest-lower boundary of the intersection maintained so far. Otherwise,
denote tk as the event point which generates an empty intersection. We keep
ti and tk−1 into the result and repeat the procedure from the event point tk−1

forwards. Similarly for the backward chain of ti.
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3.2 Distance Measures

Existing literature has identified many scenarios where similarity cannot be sim-
ply evaluated by any single distance function [5]. Thus, for validity, we used
three measurements in this work, as described next.

Pearson Correlation Coefficient. The Pearson product-moment correlation
coefficient [15] (denoted r) is a widely used lock-step measure for relationship.
By Cauchy-Schwartz inequality, the range of r is established to the interval [−1,
+1], where +1 denotes total positive linear correlation, 0 is no linear correlation,
and −1 indicates negative linear correlation.

Dynamic Time Warping. Dynamic Time Warping (DTW) [13] is an elastic
similarity measure between two temporal sequences. In general, it focuses on
calculating an optimal match between two given time series that may vary in
speed/frequency. Unlike lock-step methods, DTW alignment may match a point
from one sequence to one or more points of another sequence.

Cosine Similarity. Cosine similarity [25] aims at evaluating the orientation
difference between two time series, and is independent of the magnitude of the
samples. If two sequences are with a same orientation, their cosine similarity will
be 1; and if their orientation difference is 90◦, then their similarity will be zero.

4 Experimental Observations

In this section, we present the experimental evaluations of the approaches dis-
cussed in Sect. 3 in terms of compression rate and average ranking similarity.
Our data sets are obtained from the University Corporation for Atmospheric
Research (UCAR) and the National Center for Atmospheric Research (NCAR)
at the Global Precipitation Climatology Centre [1].

Fig. 3. Location-based similarity scores
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Table 1. Locations used in the reported experiments

Location Abbreviation Location Abbreviation

Wheeler, IA WH Massena, IA MA

Hartford, IA HA Boyer, IA BO

Grant, IA GR Garfield, IA GA

South Kidder, ND SK Union County, NM UC

Otter Creek, IA OC Courtland Township, MN CT

Anoka County, MN AC Grant Township, SD GT

Grantsburg, WI GB Scott, WI SC

Hazelhurst, WI HH

Recall the motivational question stated in Sect. 1: Which location in the con-
tinental US has most similar distribution of monthly precipitation with Ames? In
this spirit, we extract 50 years worth of monthly precipitation data for Ames and
other 500 land areas in the United States. Figure 3 shows the top five locations
having highest similarity with Ames measured by Pearson Correlation Coeffi-
cient, DTW and Cosine Similarity, respectively. The horizontal axis shows the
abbreviation of each locations, and the corresponding full name can be found
at Table 1. The vertical axis shows the similarity score of each locations. As
discussed in Sect. 3, higher score means better performance for Pearson Corre-
lation Coefficient and Cosine Similarity, and DTW pursues lower distance. We
can figure out that the five locations listed in Fig. 3(a), (b) and (c) are same
though the ranking has some differences.

Figure 4 states the effect of two Dimensionality Reduction methods on rank-
ing. 0.7 in terms of multiples of the maximum value of each time series is defined

Fig. 4. Dimensionality reduction compression
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Fig. 5. Native-space compression

as error tolerances. We can discover the only half of the locations have no dif-
ference with Fig. 3.

Figure 5 illustrates the influence of three different Native-Space compres-
sion approaches mentioned in Sect. 3 on ranking of similarity. For DP and VW
approaches, the error tolerances are set to be 5. For the OPT algorithm, the
values of tolerance are set to be the half of those of DP and VM algorithms.
As can be seen from results, though the compression do influence the ranking
of top five locations, all the locations in the result are the same as the ranking
of ground truth except of Grant, IA. And performance is similar to Fig. 3 and
better than Fig. 4 while checking the similarity score.

To evaluate the influence of different compression approaches on time series in
a more general way, we randomly samples 100 land areas in the United States,
and fetched 50 years of monthly precipitation data for each location in our
work. Similarly to the above experiment, for each selected area, we can get
three different rankings of similarity across the rest of 99 locations measured by
Pearson Correlation Coefficient, DTW and Cosine Similarity. As mentioned in
Sect. 2, the goal is to evaluate the influence of different compression approaches
on compression ratio and impacts on the average ranking similarity. In order
to perform such comparison, we set the single parameter error tolerance for



92 X. Teng et al.

different algorithms. For DFT and PAA approaches, the error tolerances are set
to be 0.7, 0.75, 0.8, 0.85, 0.9, 1 in terms of multiples of the maximum value of
each dataset. For DP and VW approaches, the error tolerances are 5, 10, 15, 20,
25, 30. Lastly, for the OPT algorithm, the values of tolerance are set to be the
half of those of DP and VM algorithms.

Fig. 6. Global similarity distortions

Figure 6 illustrates one
more of our experimental
observations that we now
discuss. Note that, in a
sense, we have transformed
the coordinates and the
respective values are: — the
x-axis for each of the three
graphs represents 1/RC(D);
— the y-axis in each of the
three graphs represents 1 −
τ(D, C(D)). This transfor-
mation was made to ensure
that a “good” approach is
close to the origin of the
chart. For instance, a point
at the (0, 0) origin would cor-
respond to a perfect τ of
1, and a perfect compression
rate of ∞.

Firstly, we observe that
there exists no single app-
roach that clearly dominates
all the other approaches, in
terms of both τ -score and
compression rate. However,
we also observe that DFT
performs rather poorly in

comparison with the other measures. Thus, we conclude that even when achiev-
ing a fairly low compression rate, DFT looses most of information required to
maintain the original similarity ranking. This loss is not compensated by addi-
tional frequency features, as these low amplitude features mostly incur additional
noise.

Secondly, we observe that PAA achieves a relatively high compression rate,
but the averaging of consecutive time stamps yields a high loss of information
that drops τ to roughly 60% for all the other applied distance functions.

In contrast, we observe that all three native-space compression algorithms
have comparable performances. We note that the OPT algorithm generally
achieves worse results, and is dominated by DP and VW – which, in part, may
be a consequence of setting a lower error-threshold. We observe minor difference
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between DP and VW, expect when DTW is used a distance measure: namely,
VW is able to maintain more ranking for the similarity-based semantics in the
DTW space.

We note that, for reproducibility, the source code for all the implementa-
tions used in our experiments, along with the corresponding dataset, is publicly
available2.

5 Summary and Future Directions

Satellites and other sensory devices have enabled a generation of extremely
large environmental time series datasets. Ultimately, this data has the poten-
tial to transform our understanding of the world for a plethora of applications of
societal relevance, such as meteorology, agriculture, urban development, traffic
management, etc. However, this understanding is hindered by the overwhelming
deluge of O(Petabytes) of such data. To reduce this data, the state-of-the-art
offers many time series compression algorithms.

In this study, we experimentally evaluated the trade-off between the data
reduction and the loss of semantics when an additional context – location in this
work – is associated with each time series. Rather than measuring the theoreti-
cal loss of entropy, we measured how the incurred distortion changes similarity
search results on environmental time series, using precipitation time series as a
case-study.

Our main experimental finding is that dimensionality reducing methods, such
as Discrete Fourier Transform and Piecewise Aggregate Approximation incur a
high loss of similarity between compressed time series, relative to the origi-
nal ones. In contrast, native space compression algorithms obtain similar com-
pression rates, but maintain much more of the similarity information between
time series. In particular, the Visvalingam-Whyatt algorithm and the Douglas-
Peucker algorithm yield the best trade-off. Moreover, when Dynamic Time Warp-
ing is used as a similarity metric, Visvalingam-Whyatt has a significant advan-
tage over Douglas-Peucker.

Our main objectives for the future are: (1) extend this study to include
more compression algorithms, and include different types of environmental time
series other than precipitation; and (2) investigate the impact of compression
on semantics of other context attributes – e.g., in addition to location, exploit
the (joint) impact on other social networks features; (3) evaluate the potential
impacts of running time of the algorithms, especially in the sense of updating
the datasets from newly available observations.

Acknowledgments. We thank Praxxal Patel and Yash Thesia for their help in final-
izing part of the experiments.

2 https://github.com/XuTengNU/ADBIS2018.git.
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27. Vaisman, A.A., Zimányi, E.: Data Warehouse Systems - Design and Implementa-
tion. Data-Centric Systems and Applications. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54655-6

28. van Kreveld, M., Luo, J.: The definition and computation of trajectory and sub-
trajectory similarity. In: GIS (2007)

29. Visvalingam, M., Whyatt, J.D.: Line generalisation by repeated elimination of
points. Cartographic J. 30(1) (1993)

30. Weibel, R.: Generalization of spatial data: principles and selected algorithms. In:
van Kreveld, M., Nievergelt, J., Roos, T., Widmayer, P. (eds.) CISM School 1996.
LNCS, vol. 1340, pp. 99–152. Springer, Heidelberg (1997). https://doi.org/10.1007/
3-540-63818-0 5
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Abstract. The Resource Description Framework (RDF) is a simple, but
frequently used W3C standard, which uses triplets to define relationships
between resources. In this paper the evaluation of queries in the query
language SPARQL on RDF data with meta-data is investigated. We
first show that if the data are stratified, i.e. a particular partial order
can be defined on the meta-data labels, then a nesting procedure can be
applied, which induces a rewriting of the query. Based on a specification
by an Abstract State Machine we show that the result of the rewritten
query equals the one that would have resulted from the evaluation of
the original query. We further investigate the reduction of complexity by
using data and query nesting.

Keywords: RDF · SPARQL · Meta-data · Nesting

1 Introduction

The Resource Description Framework (RDF) is a simple, but frequently used
W3C standard [4,9], which uses triplets to define relationships between resources.
A triplet (s, p, o) is a statement with the informal meaning that resource s (the
subject of the statement) is linked to resource o (the object of the statement)
via information in the resource p (the predicate of the statement). Resources
are identified by a unique identifier, for which the language of Internationalised
Resources Identifiers (IRI) is commonly used. Instead of using an IRI in subject
or object, an auxiliary identifier (commonly referred to as blank node) can be
used. For the object it is further possible that an arbitrary value, referred to as
label, can be used. When we talk about RDF data, we usually mean a set of
such RDF triplets.

SPARQL is a common pattern-based query language for RDF data [12]. In
a nutshell, a pattern is also a triplet, but may contain variables. By matching
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patterns with RDF triplets we obtain bindings for the variables. A query consists
of a set of patterns that must be simultaneously matched, and a specification of
the output variables. As observed among others by Hartig [7], the writing and
evaluation of SPARQL queries can become very cumbersome, when meta-data
is to be exploited, e.g. concerning information about the creator or source of a
triplet. The meta-data itself requires already at least three additional triplets
for each triplet in RDF data and patterns in queries have to refer to all of these.
Alternatives are the use of a singleton property [11], the application of named
graphs [10] or emergent schemata [13]. Meta-data represented in this way also
thwart common methods for SPARQL query optimisation [14] and provenance
[5]. In order to solve this problem, the idea explored in [8] is to first rewrite both
the RDF data and the queries using nested triplets, i.e. to permit triplets to
appear as subject, object or both in RDF statements, and then to evaluate the
rewritten query on the rewritten data.

The purpose of this paper is to provide a thorough investigation of such a
process, which is quite common in the optimised evaluation of complex database
queries (see for instance [1]). Our contributions are a simplification of the condi-
tions, under which nesting of RDF data and query rewriting is possible, proofs of
the correctness of such a process, and a thorough analysis of the efficiency gain.
Using a specification by an Abstract State Machine (ASM) [2] we show how to
represent RDF data and SPARQL queries and how to specify the transforma-
tion into the nested versions, provided there are no cycles among the meta-data,
for which we provide a stratification check, which is also specified by an ASM.
Our stratification condition is much simpler than the nesting condition used
in [8] as well as in earlier works on nested RDF such as [3]. Then we proceed
with analysing the nested evaluation procedure in two directions emphasising
correctness and complexity.

In Sect. 2 we start with a general introduction to RDF, meta-data and
SPARQL, which leads us to the definition of nested data and consequently nested
SPARQL queries. In Sect. 3 we then show how nested SPARQL queries can be
evaluated for which we introduce ASM specifications. Section 4 contains a formal
analysis of the approach, first showing the correctness of the specifications, in
particular the preservation of query result under the nesting procedure, second
showing the reduction of complexity by using data and query nesting.

2 Stratified RDF Data and SPARQL

In this section we briefly introduce RDF and SPARQL, and provide a character-
isation, under which conditions RDF data and SPARQL queries can be nested.

2.1 RDF Data and Meta-data

Definition 2.1. Let I,A and V be pairwise disjoint sets of resource identifiers,
auxiliary labels, and values, respectively. An RDF triplet is a triplet (s, p, o) with
p ∈ I, s ∈ I ∪ A and o ∈ I ∪ A ∪ V. A finite set R of RDF triplets is simply
referred to as RDF data.
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Example 2.1. Statements about movies can be represented by RDF triplets such
as (:hitchcock, :director, :psycho), (:hitchcock, :name, “Hitchcock”), (:hitchcock,
:firstname, “Alfred”), (:psycho, :genre, :thriller), and (:psycho, :year, “1960”)
where we marked resource identifiers in I by a leading colon, and values in V by
quotes.

In the simplistic RDF model the representation of meta-data, i.e. data about
statements, e.g. their source, creator and the like, is rather cumbersome. In order
to integrate meta-data in RDF data auxiliary labels can be used in combination
with reserved resource identifiers such as :subject, :predicate and :object.

Example 2.2. We may add triplets ( s, :subject, :hitchcock), ( s, :predicate,
:director) and ( s, :object, :psycho) using an auxiliary label s ∈ A to repre-
sent the first statement in the previous example. Then we can add statements
such as ( s, :source, “http://www.imdb.com/title/tt0054215/”) to state that the
information that Alfred Hitchcock directed the movie Psycho can be found on
the given web page. Here we should guarantee that the additional labels such as
s are only linked to a unique statement.

The introduction of meta-data in this way may lead to awkward RDF data.
For instance, assume triplets ( s2, :p, :o2) represented by the auxiliary label s1,
and ( s1, :p, :o1) represented by the auxiliary label s2, which introduces an
undesirable cycle.

As discussed in detail in the RDF literature (see e.g. [7]) the writing and
evaluation of queries on RDF data can become complicated, when meta-data
as in Example 2.2 is to be exploited. Each statement requires at least three
additional triplets and all these triplets must be used in a query. Therefore,
it is desirable to permit a representation of meta-data that does not require
the addition of many auxiliary triplets. This can be achieved by nesting, i.e.
extending RDF in such a way that triplets may appear directly within triplets.

Definition 2.2. A nested RDF triplet based on RDF data R is either an RDF
triplet in R or a triplet (s, p, o) with p ∈ I, s ∈ I∪A∪R∗ and o ∈ I∪A∪V ∪R∗,
where R∗ is the set of all nested RDF triplets based on R.

Example 2.3. We can create nested RDF triplets ((:hitchcock, :director, :psy-
cho), :source, “http://www.imdb.com/title/tt0054215/”) to represent the same
meta-data as in Example 2.2.

However, if we are given RDF data with cycles, e.g. ( s2, :p, :o2) represented
by the auxiliary label s1, and ( s1, :p, :o1) represented by the auxiliary label
s2—we omit the meta-data here—then the nested analogue becomes a rational

tree (((. . . ( s2, :p, :o2). . . ), :p, :o1), :p, :o2), which is hard to handle in queries,
unless fixed-point constructions are supported.

In order to exclude cycles we require RDF data to be stratified. For this
we assign stratum numbers strat(�) ∈ N to each label in St = {� ∈ A |
∃s, p, o.represents(�, (s, p, o))} using the predicate represents defined by

represents(�, (s, p, o)) ≡ R(�, :subject, s) ∧ R(�, :predicate, p) ∧ R(�, :object, o).
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Definition 2.3. RDF data R are called stratified iff there exists an assignment
strat : St → N of stratum numbers such that strat(�) > strat(�′) holds, whenever
represents(�, (s, p, o)) holds with s = �′ ∨ o = �′.

Example 2.4. The RDF data and meta-data in Examples 2.1 and 2.2 are trivially
stratified with St = { s}.

However, the cyclic RDF data in Example 2.3 are not stratified, as it is impos-
sible to assign stratum numbers to s1 and s2. The condition in 2.3 would require
strat( s1) < strat( s2) < strat( s1), which is impossible.

2.2 SPARQL Queries

SPARQL queries are conjunctive queries defined by patterns, which are simply
triplets with variables that have to be matched to the given RDF data.

Definition 2.4. Let V be a set of variables. An RDF pattern is a triplet (s, p, o)
with p ∈ I ∪ V, s ∈ I ∪ A ∪ V and o ∈ I ∪ A ∪ V ∪ V , where I,A and V are as
in Definition 2.1.

A query is a pair (Vq,P) with a finite set P of RDF patterns and a set
of result variables Vq that is a subset of the set of variables appearing in the
patterns in P.

Example 2.5. Consider the query (({$m, $y}),P) with the patterns ($p, :direc-
tor, $m), ($p, :name, “Hitchcock”), ($p, :firstname, “Alfred”) and ($m, :year,
$y) in P, based on RDF data in Example 2.1. Clearly the result will be a list of
movies directed by Alfred Hitchcock together with the production year.

If in addition we take the meta-data in Example 2.2 into account, add $w to
the result variables, and add the patterns ($s, :source, $w), ($s, :subject, $p),
($s, :predicate, :director) and ($s, :object, $m) to P, the query result will also
contain the source of the information that a movie was directed by Hitchcock.

The semantics of a query is obvious. We look for all possible simultaneous
instantiations of the patterns by labels matching the given RDF data and include
the tuple of labels assigned to the result variables into the result relation, i.e.

Result(Vq,P) = {(ai1 , . . . , aim) | [a1/x1, . . . , an/xn].p ∈ R for all p ∈ P}, (2.1)

where VP = {x1, . . . , xn} is the set of variables appearing in P and Vq =
{xi1 , . . . , xim} ⊆ VP .

If RDF data are nested in order to permit easier representation of meta-data
as explained in the previous subsection, the evaluation procedure above will no
longer produce the correct results. We have to extend queries to nested queries
as well.

Definition 2.5. A nested RDF pattern is either an RDF pattern or a triplet
(s, p, o) with p ∈ I ∪ V, s ∈ I ∪ A ∪ P∪ V and o ∈ I ∪ A ∪ V ∪ P∪ V , where P is
the set of all nested RDF patterns over R.

A nested query is a pair (Vq,P) with a finite set P of nested RDF patterns
and a set of result variables Vq that is a subset of the set of variables appearing
in the patterns in P.
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We preserve the definition of semantics in Eq. (2.1). In particular, variables
will be bound to labels in I ∪ A ∪ V, not to triplets. The only difference is that
for a nested query R represents nested RDF data.

Example 2.6. Consider again the second query in Example 2.5. On nested RDF
data the nested query with the same result variables Vq = {$m, $y, $w} and the
nested RDF patterns (($p, :director, $m), :source, $w), ($p, :name, “Hitchcock”),
($p, :firstname, “Alfred”) and ($m, :year, $y) in P will produce the desired result.

3 Evaluation of SPARQL on Stratified RDF Data

We now define the general procedure for the evaluation of SPARQL queries
on RDF data with meta-data. Exploiting the idea of nesting we first have to
check, whether the RDF data and meta-data are stratified, for which we define
a procedure Stratified. If this is the case, we first transform the RDF data
into nested RDF data using a procedure Nest, then we transform the query
into a nested query using a procedure Nest-Query. Finally, we use a procedure
Evaluate to evaluate the transformed query. In case the data is not stratified,
the procedure Evaluate will be applicable nonetheless, but there will be no
gain in complexity reduction.

3.1 ASMs in a Nutshell

We will define an Abstract State Machine (ASM) [2] for this evaluation proce-
dure. Then Stratified, Nest, Nest-Query, and Evaluate will become ASM
rules. First we give a brief description of ASMs.

States in an ASM M are Tarski structures, i.e. there exists a signature Σ
associated with M comprising a set of function symbols. Each function symbol
f ∈ Σ has an arity ar(f) ∈ N. For a fixed set B of values (usually called base
set) we obtain a structure by interpretation of the function symbols: a function
symbol f or arity n gives rise to a function fS : Bn → B, and the state S is
defined by these functions. The interpretation is extended to terms in the usual
way. Note that a function symbol of arity 0 is usually called a variable, if it can
be updated, or a constant, if it is static, i.e. its interpretation is never changed.

A pair (f, b̄) consisting of a function symbol f of arity n and an n-tuple
b̄ = (b1, . . . , bn) ∈ Bn is called a location. A pair (�, b) comprising a location �
and a value b ∈ B is called an update.

Furthermore, M has a rule, by means of which states can be updated. Rules
are composed inductively using the following constructors:

assignment. f(t1, . . . , tarf
) := t0 with terms ti built over Σ,

branching. IF ϕ THEN r+ ELSE r− ENDIF (the ELSE-branch is optional),
parallel composition. FORALL x WITH ϕ(x) DO r(x) ENDDO,
bounded parallel composition. PARBLOCK r1 r2 . . . rn ENDPAR,
choice. CHOOSE x WITH ϕ(x) DO r(x) ENDDO
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The informal meaning is as follows. An assignment evaluates the terms on the
left hand side, which define an ar(f)-tuple b̄ and thus a location � = (f, b̄). The
evaluation of the term on the right hand side defines a value b, which is to become
the new value at location � in a successor state. For branching the Boolean term ϕ
is evaluated to either true or false, and then either r+ or r− is applied depending
on this truth value. For parallel composition the Boolean term ϕ(x) is evaluated,
and for all values of x that lead to true the corresponding rules r(x) are executed
in parallel. For bounded parallel composition all rules r1, . . . , rn are executed in
parallel. For choice the Boolean term ϕ(x) is evaluated, and among those values
of x that lead to true one is selected and the corresponding rule r(x) is executed.

Formally, each rule r, when applied in a state S, yields an update set Δr(S)—
we omit the rather obvious definition—and this update set is applied to state S
to define a successor state S + Δr(S), where the value at a location � = (f, b̄) is
defined by

fS+Δr(S)(b̄) =

{
b if (�, b) ∈ Δr(S)
fS(b̄) else

.

A run of an ASM M with rule r is a sequence S0, S1, . . . of states, where S0

is an initial state and Si+1 = Si + Δr(Si) holds for all i ≥ 0. If for some k we
have Sk+1 = Sk (and then further Si = Sk for all i ≥ k), we call Sk a final state
and say that the run terminates in Sk.

3.2 Nesting of RDF Data and SPARQL Queries

In ASMs RDF data can be simply represented by a single ternary function
symbol R. In a state S we always have R(s, p, o) ∈ {true, false} with the obvious
interpretation that R(s, p, o) = true holds iff the triplet (s, p, o) belongs to the
RDF data R. As common in databases we tacitly assume that in every state
almost all triplets have the value false.

In the presence of meta-data stratification can be checked by the following
ASM rule, which constructs an assignment of strata, if possible. For convenience
we also assign a stratum number 0 to all labels not in St. The main idea is that
in every step (in the ’progress’ mode) the algorithm assigns an stratum number
to every label � in St which has not got one yet and which represents a triplet
(s, p, o) where the stratum numbers of s and o have already been defined. This
process continues until it is no longer possible to assign new stratus numbers. If
at this point all labels in St have got a stratum number, then the data has been
successfully stratified.

Stratified ≡
PARBLOCK
IF mode = ‘init’
THEN PARBLOCK

FORALL � ∈ I ∪ A ∪ V WITH ¬∃(s, p, o) ∈ R. represents(�, (s, p, o))
DO strat(�) := 0 ENDDO
mode := ‘progress’
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ENDPAR ENDIF
IF mode = ‘progress’
THEN FORALL � ∈ A

WITH strat(�) = undef ∧ ∃(s, p, o) ∈ R. represents(�, (s, p, o))∧
strat(s) �= undef ∧ strat(o) �= undef

DO CHOOSE (s, p, o) ∈ R WITH represents(�, (s, p, o))
DO strat(�) := max(strat(s), strat(o)) + 1 ENDDO

ENDDO ENDIF
IF mode = ‘progress’ ∧∀� ∈ A.

strat(�) = undef ∧ ∃(s, p, o) ∈ R. represents(�, (s, p, o)) ⇒
strat(s) = undef ∨ strat(o) = undef

THEN mode := ‘limit’ ENDIF
IF mode = ‘limit’
THEN IF ∃� ∈ A. strat(�) = undef

THEN stratified := false
ELSE stratified := true
ENDIF ENDIF ENDPAR

The following ASM rule transforms given RDF data with meta-data into nested
RDF data, provided the original data are stratified. For all auxiliary label s
and all triplet (s1, p1, o1) represented by s where neither s1 nor o1 are auxiliary
labels which represent triplets, the algorithm replaces every occurrence of s in
every triplet in R by the actual triplet (s1, p1, o1). This process is repeated until
no more replacements are possible.

Nest ≡
FORALL s, s1, p1, o1
WITH s ∈ A ∧ R(s1, p1, o1) ∧ represents( s, (s1, p1, o1))∧

¬∃s2, p2, o2.represents(s1, (s2, p2, o2))∧
¬∃s3, p3, o3.represents(o1, (s3, p3, o3))

DO PARBLOCK
FORALL s, p, o WITH R(s, p, o) ∧ (s = s ∨ o = s)
DO PARBLOCK

IF s = s ∧ o = s
THEN PARBLOCK

R((s1, p1, o1), p, (s1, p1, o1)) := true
R( s, p, s) := false
ENDPAR ENDIF

IF s = s ∧ o �= s
THEN PARBLOCK

R((s1, p1, o1), p, o) := true
R( s, p, o) := false
ENDPAR ENDIF

IF s �= s ∧ o = s
THEN PARBLOCK

R(s, p, (s1, p1, o1)) := true
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R(s, p, s) := false
ENDPAR ENDIF

ENDDO
R( s, :subject, s1) := false
R( s, :predicate, p1) := false
R( s, :object, o1) := false
ENDPAR

ENDDO

The following ASM rule transforms a given query into a nested one, provided
the original RDF data are stratified. Note that only the RDF patterns in P are
changed, whereas the result variables remain unchanged. For all auxiliary label s
and all triplet (s1, p1, o1) represented by s where neither s1 nor o1 are auxiliary
labels which represent triplets, the algorithm replaces every occurrence of s in
every triplet in P by the actual triplet (s1, p1, o1). For the case of variables, we
say that $s q-represents a triplet (s, p, o) if ($s, :subject, s), ($s, :predicate, p) and
($s, :object, o) all three belong to P. As with labels, for every variable $s in V
and all triplet (s1, p1, o1) q-represented by $s where neither s1 nor o1 q-represent
triplets, the algorithm replaces every occurrence of $s in every triplet in P by
the actual triplet (s1, p1, o1). Again these processes are repeated until no more
replacements are possible.

Nest-Query ≡
PARBLOCK

FORALL s, s1, p1, o1
WITH s ∈ A ∧ R(s1, p1, o1) ∧ represents( s, (s1, p1, o1))∧

¬∃s2, p2, o2.represents(s1, (s2, p2, o2))∧
¬∃s3, p3, o3.represents(o1, (s3, p3, o3))

DO FORALL s, p, o WITH (s, p, o) ∈ P ∧ (s = s ∨ o = s)
DO PARBLOCK

IF s = s ∧ o = s
THEN P := P ∪ {((s1, p1, o1), p, (s1, p1, o1))}

−{( s, p, s), ( s, :subject, s1),
( s, :predicate, p1), ( s, :object, o1)}

ENDIF
IF s = s ∧ o �= s
THEN P := P ∪ {((s1, p1, o1), p, o)}

−{( s, p, o), ( s, :subject, s1),
( s, :predicate, p1), ( s, :object, o1)}

ENDIF
IF s �= s ∧ o = s
THEN P := P ∪ {(s, p, (s1, p1, o1))}

−{(s, p, s), ( s, :subject, s1),
( s, :predicate, p1), ( s, :object, o1)}

ENDIF
ENDPAR
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ENDDO
ENDDO
FORALL $s, s1, p1, o1
WITH $s ∈ V ∧ (s1, p1, o1) ∈ P ∧ q-represents($s, (s1, p1, o1))∧

¬∃s2, p2, o2.q-represents(s1, (s2, p2, o2))∧
¬∃s3, p3, o3.q-represents(o1, (s3, p3, o3))

DO FORALL s, p, o WITH (s, p, o) ∈ P ∧ (s = $s ∨ o = $s)
DO PARBLOCK

IF s = $s ∧ o = $s
THEN P := P ∪ {((s1, p1, o1), p, (s1, p1, o1))}

−{($s, p, s), ($s, :subject, s1),
($s, :predicate, p1), ($s, :object, o1)}

ENDIF
IF s = $s ∧ o �= $s
THEN P := P ∪ {((s1, p1, o1), p, o)}

−{($s, p, o), ($s, :subject, s1),
($s, :predicate, p1), ($s, :object, o1)}

ENDIF
IF s �= $s ∧ o = $s
THEN P := P ∪ {(s, p, (s1, p1, o1))}

−{(s, p, $s), ( s, :subject, s1),
( s, :predicate, p1), ($s, :object, o1)}

ENDIF
ENDPAR

ENDDO
ENDDO

ENDPAR

3.3 Query Evaluation

The evaluation of a query Q can then be easily expressed by the following ASM
rule:

Evaluate ≡ FORALL x1, . . . , xn ∈ I ∪ A ∪ V
WITH ∀(s, p, o) ∈ P.R(s, p, o)
DO

Result(xi1 , . . . , xim) := true
ENDDO

using the assumption VP = {x1, . . . , xn} and Vq = {xi1 , . . . , xim}.
Note that this rule is applicable regardless if we have nested RDF data and a

nested SPARQL query or not. Then we can use the following main ASM rule with
the initial value ‘init’ of ctl-state to express the complete evaluation procedure:

Main ≡ PARBLOCK
IF ctl-state = ‘init’ ∧ stratified = undef
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THEN Stratified
ENDIF
IF ctl-state = ‘init’ ∧ stratified = false
THEN ctl-state := ‘eval’
ENDIF
IF ctl-state = ‘init’ ∧ stratified = true
THEN ctl-state := ‘nest’
ENDIF
IF ctl-state = ‘nest’ ∧ stratified = true
THEN PARBLOCK

Nest
Nest-Query
ctl-state := ‘eval’

ENDPAR
ENDIF
IF ctl-state = ‘eval’
THEN PARBLOCK

Evaluate
ctl-state := ‘halt’

ENDPAR
ENDIF

ENDPAR

4 Correctness and Complexity Analysis

In this section we analyse the evaluation procedure, which we specified in the
previous section, with respect to correctness and complexity. For correctness we
emphasise that the result of a nested query on nested RDF data preserves the
result that would have been obtained without the nesting. For complexity we
show that by nesting we can expect a reduction of the number of necessary
matches between patterns and RDF data.

4.1 Correctness of the Abstract State Machine

We first look at the rule STRATIFIED, for which we show termination and
correctness.

Proposition 4.1. The ASM rule STRATIFIED always reaches a final state, in
which no more changes are possible. In this final state the value at the location
(stratified, ()) is either true or false.

Proof. Initially we have mode = ‘init’, so in a first step we will assign strat(�) := 0
to all labels � ∈ I ∪ V and as well to all labels � ∈ A that do not represent
statements. Furthermore, the value of location (mode, ()) will become ‘progress’.
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In a state with mode = ‘progress’ either at least one label � ∈ A, for which
strat(�) is still undefined, will be assigned a stratum number—and this cannot
be repeated forever, as there are only finitely many such labels—or if this is
not possible, i.e. the condition in the second branching rule is violated, then the
value of location (mode, ()) will become ‘limit’.

In a state with mode = ‘limit’ only a value true or false is assigned to the
location (stratified, ()), and then no further changes are possible. ��
Proposition 4.2. The ASM rule STRATIFIED produces the result stratified =
true iff the RDF data R are stratified in the sense of Definition 2.3.

Proof. According to Proposition 4.1 the rule STRATIFIED produces either the
result stratified = true or stratified = false. In the former case strat(�) is defined
for all labels. Labels for � ∈ St have been assigned in a step on a state, in
which mode = ‘progress’ holds. The assignment is done such that strat(�) >
max(strat(s), strat(o)) holds, when � represents an RDF triplet (s, p, o), which
is exactly the condition required in Definition 2.3.

Conversely, in case stratified = false results, there exists a label � ∈ St such
that strat(�) remains undef in the final state. According to the condition in
the second branching rule (and its negation in the third one) � represents an
RDF triplet (s, p, o), in which for at least one of s or o (let this be �1) strat(�1)
remains also undef in the final state. So we obtain a sequence � = �0, �1, �2, . . .
of labels in St, for which strat(�i) = undef holds for all i. As St is finite, this
sequence must contain a cycle, say �k = �k′ (with k < k′). Then it is impossible
to assign stratum number to labels �i with k ≤ i ≤ k′ fulfilling the condition in
Definition 2.3, i.e. the RDF data are not stratified. ��

For correctness of the ASM rule Main we first show the termination of the
nesting rules.

Proposition 4.3. If RDF data R with meta-data are stratified, then the ASM
rules Nest and Nest-Query for a query (Vq,P) always reach a final state, in
which no more changes are possible.

Proof. Though stratum numbers are not explicitly used in the rule Nest, the
nested proceeds according to increasing stratum numbers. If � ∈ St has stratum
number strat(�) = 1 and represents (s, p, o), then s and o must have stratum
number 0. Then any occurrence of � in an RDF triplet as subject or object will
be replaced by (s, p, o) and the corresponding meta-data will be deleted. As this
is done in parallel for all such labels � ∈ St, any remaining labels in St, i.e.
representing some RDF triplets, will have a larger stratum number. That is, if
the lowest stratum number left is i, then for strat(�) = i, if � represents (s, p, o),
then s and o do not represent RDF triplets, so the nesting, i.e. the replacement
of occurrences, will suceed. This continues to the maximum stratum number,
when no more change is possible, so Nest terminates.

The very same procedure is applied for the nesting of a query (Vq,P) by the
rule Nest-Query. So, using the same argument we conclude that Nest-Query
terminates in a state, where no further change is possible. ��
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Finally we show that the rule Main is correct, i.e. nesting of data and queries
in the case of stratified RDF data and meta-data with follow-on evaluation by
the rule Evaluate preserves the result of the queries.

Proposition 4.4. Let (Vq,P) be a query on RDF data R with meta-data. Then
the result of the ASM rule Main satisfies the required condition (2.1).

Proof. The termination of Main is an obvious consequence of Proposition 4.3
and the fact that Evaluate only makes a single step. If the RDF data are not
stratified, then there is no change to the evaluation, so we can assume without
loss of generality that R is stratified.

Furthermore, using induction it suffices to consider a single replacement
step in Nest and Nest-Query. That is, if we have a pattern ($s, p, o) ∈ P)
and this matches an RDF triplet ( s, p′, o′), for which represents( s, (s1, p1, o1))
holds, then we have RDF triplets ( s, :subject, s1), ( s, :predicate, p1) and
( s, :object, o1). Through Nest these meta-data will be replaced by the nested
RDF triplet ((s1, p1, o1), p′, o′).

The query may then contain patterns ($s, :subject, s′
1), ($s, :predicate, p′

1)
and ($s, :object, o′

1), for which q-represents($s, (s′
1, p

′
1, o

′
1)) holds. These match

the RDF triplets for the representation of meta-data. Through Nest-Query
these patterns will be replaced by the nested pattern ((s′

1, p
′
1, o

′
1), p, o). This

nested pattern matches the nested RDF triplet iff the original patterns match
the original RDF triplets, and consequently the nesting of RDF data and query
patterns preserves the bindings for the query result.

The same argument applies analogously for variables in the third argument,
and in the same way for constants, which implies the preservation of query results
under nesting of RDF data and query patterns. ��

4.2 Reduction of Complexity

When looking at the complexity of query evaluation, the decisive condition in
Evaluate is ∀(s, p, o) ∈ P.R(s, p, o), i.e. we have to consider all bindings of
variables in patterns (s, p, o) that will simultaneously define RDF triplets in R.
We may assume that the time required to check, if an instantiation of a pattern
matches an RDF triplet in the database is bound by a constant. While patterns
are interpreted conjunctively, we still have to match all patterns against the
given RDF data, which implies that the time complexity for the evaluation of a
query depends linearly on N · P , where N is the number of RDF triplets in the
database and P is the number of patterns in the query.

So, let n0 be the number of RDF triplets in R, and let n′
0 ≤ n0 denote

the number of statements, about which meta-data is stored. Then we get
3 · n′

0 + n1 adding RDF triplets for the meta-data, where n1 is the number
of additional RDF triplets containing the relevant meta-data, while 3 · n′

0 addi-
tional RDF triplets are required for linking the meta-data to the core data. We
can assume n′

0 ≤ n1, as it does not make sense to introduce auxiliary labels for
the representation of RDF triplets, if they do not appear in at least one meta
RDF triplet.
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In the same way we can consider meta-meta-data, etc. so we get
n0, n1, n2, . . . , nk for the numbers of additional RDF triplets as well as
n′
0, n

′
1, n

′
2, . . . , n

′
k−1 for the numbers of those triplets that are represented by

meta-data. As before we have n′
i ≤ ni and n′

i ≤ ni+1. The total number of RDF
triplets amounts to

N =
k∑

i=0

ni + 3 ·
k−1∑
i=0

n′
i,

while the number of nested RDF triplets after the running of Nest is only
Nnest =

∑k
i=0 ni. Similarly, we obtain P =

∑k
i=0 pi +3 ·∑k−1

i=0 p′
i for the number

of patterns and P ′ =
∑k

i=0 pi for the number of nested patterns after running
Nest-Query. As the number of patterns in queries is usually not very high,
the reduction from P to P ′ does not contribute very much to the reduction
of complexity. If we let P ′ ≈ P , then the number of matches is still reduced
significantly by 3 · P · ∑k−1

i=0 n′
i.

Clearly, any optimisation of the way RDF triplets are stored impacts on the
complexity of query evaluation, but this will be similar for unnested or nested
triplets.

5 Concluding Remarks

In this paper we investigated the evaluation of SPARQL queries on RDF data
with meta-data. Using specifications by Abstract State Machines we showed that
a reduction of complexity can be obtained, if RDF data and consequently also
patterns in SPARQL queries are nested. This reduction permits RDF statements
to be used directly within other RDF statements and thus reduces the number
of matches in the evaluation of queries. This nesting is only possible, if the RDF
data and meta-data are stratified in the sense that there are no cycles in the
meta-data. Stratification can also be checked by a simple ASM.

In doing so we provided a solid formal underpinning for the idea of nesting
that was brought up by Hartig [8]. In particular, we provided proofs that the
evaluation of nested queries on nested RDF data preserves the results that would
have been obtained without the nesting. By introducing stratification we also
simplified the condition, under which nesting is possible. We also showed that
there is indeed a reduction of complexity.

From a practical perspective, the procedure presented in this paper could be
effectively implemented in parallel using some semantic Web tools, for instance,
following the approach described in [6].
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Abstract. Grouped aggregation is a commonly used analytical func-
tion. The common implementation of the function using hashing tech-
niques suffers lower throughput rate due to the collision of the insert
keys in the hashing techniques. During collision, the underlying tech-
nique searches for an alternative location to insert keys. Searching an
alternative location increases the processing time for an individual key
thereby degrading the overall throughput. In this work, we use Single
Instruction Multiple Data (SIMD) vectorization to search multiple slots
at an instant followed by direct aggregation of results. We provide our
experimental results of our vectorized grouped aggregation with various
open-addressing hashing techniques using several dataset distributions
and our inferences on them. Among our findings, we observe different
impacts of vectorization on these techniques. Namely, linear probing
and two-choice hashing improve their performance with vectorization,
whereas cuckoo and hopscotch hashing show a negative impact. Overall,
we provide in this work a basic structure of a dedicated SIMD acceler-
ated grouped aggregation framework that can be adapted with different
hashing techniques.

Keywords: SIMD · Hashing techniques · Hash based grouping
Grouped aggregation · Direct aggregation · Open addressing

1 Introduction

Many analytical processing queries (e.g., OLAP) are directly related to the effi-
ciency of their underlying functions. Some of these internal functions are time-
consuming and even require the complete dataset to be processed before produc-
ing the results. One of such compute-intensive internal functions is a grouped
aggregation function that affects the overall throughput of the user query. Hence,
it is evident that improving the throughput of grouped aggregation processing
in-turn improves the overall query throughput.

A grouped aggregation function is commonly implemented using hashing
techniques. The throughput of a grouped aggregation function is affected by the
c© Springer Nature Switzerland AG 2018
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collision of keys in the underlying hashing techniques. A collision occurs when
a given key is hashed to a slot that is preoccupied with another key. In this
case, the collision is resolved by finding an alternative location for the colliding
key. Searching for an alternative location requires more time and affects the
throughput of the whole operation. Hence, improving probe time in a hashing
technique improves the overall execution time.

Since real-time systems process large volumes of data, Single Instruction Mul-
tiple Data (SIMD) is the commonly sought out parallelization strategy to perform
these operations. Previous work has shown how to use SIMD to accelerate differ-
ent database processing operations [3,7,11]. Ross et al., detail a strategy of using
SIMD acceleration for probing multiple slots in cuckoo hashing [14]. Furthermore,
Broneske et al. have shown that execution of hand-written database operations
that are code optimized for underlying hardware can be faster than the query plan
given by a query optimizer [1,2]. Using these insights, we explore the advantages of
hand-written grouped-aggregation using SIMD acceleration over various hashing
techniques. In addition to it, we also use the code optimization strategy of direct
aggregation for improved throughput (explained in Sect. 3).

We discuss a SIMD-based probing called horizontal vectorization, where mul-
tiple slots are searched for a single key at an instant using the instructions avail-
able in the SIMD instruction set [10]. We adopt this technique to different open-
addressing hashing techniques available. This vectorized probing is enhanced
with direct aggregation for increased performance. From our evaluation results,
we observe that these optimizations provide notable speedups of up to N x over
the scalar mechanism, where N is the vector length. Our core contributions in
the paper are:

– We explore SIMD-based code optimization for different hashing techniques
(Sect. 3).

– We evaluate the performance of computing grouped aggregation using these
SIMD accelerated techniques (Sect. 5.2).

– Finally, we report our observations on the results and discuss the impact of
SIMD for the different hashing techniques (Fig. 10).

From our evaluation, we found out that the multiple parameters involved in
hashing techniques also affect their efficiency. Hence, SIMD accelerated grouped
aggregation could be further improved by tuning these underlying hashing tech-
nique’s related parameters. Also, based on our results, we show that the best
hashing algorithm for a given data distribution can be selected for reduced
latency.

2 Related Work

In this chapter, we compare our work with others that are similar in studying the
aggregation operation in databases. The approaches are selected based on the
use of SIMD and other hardware related optimizations over grouped aggregation
functions.



SIMD Vectorized Hashing for Grouped Aggregation 115

In this work, we do not consider quadratic probing and double hashing. We
exclude them due to their poor locality of keys.

Jiang et al. use a modified bucket chaining hashing technique to group data
and aggregate them on the fly during insertion [7]. In order to eliminate conflicts
arising due to SIMD parallelization with insertion and to accommodate values
within main memory, they have proposed to add a distinctive offset for each of
the SIMD lanes and manipulate data separately. This approach is also extended
for MIMD execution. Broneske et al. use SIMD to accelerate selection opera-
tions [1]. The authors argue that SIMD acceleration influences the operation of
aggregation operations. In our approach, we have gained similar improvements
in SIMD acceleration of grouping with aggregation operation especially for lin-
ear probing and two choice hashing. Further, various SIMD-based aggregation
operations are explained in the paper by Zhou and Ross [15]. They detail the
performance impact of SIMD on different aggregation operations.

Finally, Richter et al. provided an extensive analysis of different hashing tech-
niques [13]. These are some of the works done on hashing and grouped aggre-
gation techniques. In the next section, we discuss different hashing techniques
followed by details on incorporating SIMD on the them.

3 Hash-Based Grouped Aggregation

Traditional grouped aggregation using hashing techniques is computed in two
phases. In the first phase, all the keys are hashed and segregated into their own
buckets. In the second phase, each of the keys within the buckets is aggregated
providing the final result. Since it is time-consuming to perform two passes on
the same data, an alternative single pass variant - direct aggregation is used to
improve the throughput.

Direct aggregation initializes the aggregate value for a key during its inser-
tion. During subsequent insertions of the same key, its corresponding aggregate
value is updated. To further improve the throughput of the single pass algorithm,
SIMD vectorization can be used.

In this section, we describe the different hashing techniques used for com-
puting grouped aggregation followed by our strategy to incorporate SIMD vec-
torization on these techniques.

3.1 Outline of Hashing Techniques

The major bottleneck of any hashing technique is the collision of keys, where
two keys are hashed into the same location. Each of the hashing techniques has
their own ways to resolve the collision of keys.

We use the open-addressing hashing techniques: linear probing, two-choice
hashing, hopscotch hashing and cuckoo hashing for computing grouped aggrega-
tion. These techniques have a linear hash-table structure with a known boundary
which is suitable for vectorization. In the following sections, we detail the colli-
sion resolution mechanism of these techniques and the ways to perform grouped
aggregation on them.
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3.2 Cuckoo Hashing

Cuckoo hashing resolves collision by using multiple hash tables [9]. These tables
resolve collision by swapping collided keys. The collided key, during collision,
replaces the key within the insert table. The replaced key is then hashed into
the next hash table. The keys are swapped until the final table. In case of collision
in final table, the replaced key is routed back to the first table and swapping con-
tinues. Since number of swaps is in-determinant, a user-defined threshold, swap
number cuts-off, swapping and re-hash the whole keys using different hashing
functions for the tables and increasing the hash table size. Hence, cuckoo hash-
ing has near direct probing by trading-off increased insertion time. For grouped
aggregation computation, first the given key is probed in all the locations in
the hash tables. If it is found, the corresponding payload is updated. Else, the
key along with the initial payload are inserted. Both the key and payload are
swapped among the tables for accommodating the new key.

3.3 Linear Probing

Linear probing, as the name suggests, searches the hash table for a desired
location using sequential scanning [4]. It searches the hash table to find the
nearest empty slot for insertion. Similarly, it scans the table linearly for the
probe value. For grouped aggregation, we search the hash table until either the
probe key or an empty location is found. If an empty slot is encountered first,
then aggregate resultant is initialized. Else if the key is found, the aggregate is
updated.

3.4 Two-Choice Hashing

Two-choice hashing, a variant of linear probing, has two different hash functions
for a single hash table [12]. The two hash functions provide for a given key, two
alternative positions. Having alternative positions increase the chance of finding
a slot with lesser probe time. If both of the slots are occupied, the hash table is
probed linearly from both the slots until an empty slot is encountered. Grouped
aggregation is computed similar to linear probing. However, instead of a single
probe, the hash table is probed from the two start locations.

3.5 Hopscotch Hashing

Hopscotch hashing has a user-defined parameter - neighborhood - that guar-
antees any given key will be available within the neighborhood range from the
originally hashed location [6]. If the key is not available within the neighborhood,
it has to be inserted. For insertion of a key, the hash table is searched for an
empty location and the existing keys in the table are swapped until an empty
slot is available within the neighborhood. Finally, the key is inserted in the slot.
Thus, hopscotch hashing trades less search space to prolonged insertion.
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4 SIMD Vectorization of Hashing Techniques

SIMD performs a single instruction on multiple data in an instant. Modern CPUs
have extended register sizes of up to 128 bits, possible for accommodating four
packeted integers. Using these larger registers, a single operation is applied over
multiple data at a time. Though it might seem trivial that K packed values
provide a speed-up of K in SIMD, incorporating SIMD in hashing techniques
has its complexities due to the collision of keys.

Specifically, a hashing technique has delayed time due to the search of the
desired location either for inserting a new key or searching an existing key. We
address this issue by incorporating SIMD for searching multiple slots at a time
thereby improving the throughput. In the next sections, we detail the SIMD
accelerated probing on the above discussed hashing techniques.

4.1 Table Structure

Probing requires multiple slots of a given hash table to be readily available.
Hence, a right table structure improves the efficiency of the hashing tech-
nique. Since cuckoo hashing has multiple hash tables, we use the table structure
described in Fig. 2. We store a packed set of keys followed by a packed set of
payloads for each bucket. As multiple swaps are required, packing keys and pay-
loads improves the efficiency by loading both into the memory for easy swapping
among tables.

Fig. 1. SoA table structure Fig. 2. Cuckoo hash-table structure

For other hashing techniques, we use a Structure of Arrays (SoA) for the hash
table as shown in Fig. 1. The hash tables have keys and payloads in different
arrays with the same index pointing to a key and its corresponding index. We
use this structure, as the payload is accessed only if the key is found in the hash
table.

4.2 SIMD Accelerated Cuckoo Hashing

Ross et al., have given a detailed outline for performing SIMD accelerated prob-
ing in cuckoo hashing [14]. We extend their idea by adding the direct aggregation
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Fig. 3. SIMD accelerated cuckoo hashing (extended from Ross et al. [14])

mechanism. We depict the general direct aggregation with probing in cuckoo
hashing in Fig. 3.

Grouped aggregation using cuckoo hashing has two phases. First, the slot
locations are identified using hashing functions. Second, we use the identified
slots to probe the respective tables.

In our approach, the slots for a key are identified using multiplicative hashing.
The function multiplies the key with a random multiplier, then performs modulo
on the resultant with the table size to get the slots. To perform multiplicative
hashing in SIMD, a SIMD COPY functions (e.g., mm set epi32()) vectorize the
search key. This key vector is multiplied with a multiplier vector using SIMD
MULT functions (e.g., mm mul epi32()) (2). Finally, the resultant vector is
again multiplied with a table size vector (3). The slot values are available in the
least significant bytes of the result vector.

Based on the slots, the bucket vector values are compared with the key vector
using SIMD CMP-EQ functions (e.g., mm cmpeq epi32()) providing a mask
vector (4, 5). The mask vector based on the comparison has either 0 or 1 and
this result along with the corresponding payloads are updated using SIMD SUM
operations (e.g., mm add epi32()). Finally, if all the masks are 0 then the key
is inserted.

4.3 SIMD-Accelerated Linear Probing

Scanning hash table one at a time is time consuming. This is improved by using
SIMD for scanning multiple slots in an instant.

In Fig. 4, we describe the SIMD adapted linear probing mechanism. First,
scalar multiplicative hashing function computes the slot for the given key. We use
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Fig. 4. SIMD accelerated linear probing

scalar function as only one slot is required. Second, the search key is vectorized
using a SIMD COPY function (1). This search key vector is then compared
with the values present in the pointed bucket using SIMD COMPARE (e.g.,
mm cmpeq epi32()). Final steps are similar to that of cuckoo hashing, where the
resultant mask vector is added to the corresponding payloads (4) and insertion
based on the mask is determined (5).

4.4 SIMD Accelerated Two-Choice Hashing

The major advantage of using SIMD for two-choice hashing is to compute the
slots from two hash functions at a time. SIMD acceleration is similar to that
of linear probing. Instead of comparing the key in a single vector of slots, we
compare the vectors from the selected slots in sequence.

4.5 SIMD Accelerated Hopscotch Hashing

Hopscotch hashing is a multi-step algorithm, where the probing for key is done
in the first and swapping of keys to have empty location in the second. Hence,
this technique requires additional measures for adapting SIMD. In fact, it might
even create an overhead for preprocessing the input to adapt SIMD for each
of these steps. We call these steps forward and reverse probe. In the forward
probe, we search for a key until the neighborhood boundary and empty space
afterward. In reverse probe, we perform the swaps with the empty slots until we
reach the neighborhood. We use SIMD to accelerate the probing of keys in the
forward probe and swapping of keys while insertion.

We use the same SIMD acceleration of linear probing for the forward probe
in hopscotch hashing (cf. Fig. 4). For swapping of keys, we use the gather instruc-
tions in SIMD as given in Fig. 5.



120 B. Gurumurthy et al.

Forward Probe. Within the neighborhood, direct aggregation is done similar
to linear probing. Once outside the boundary, the table is probed for an empty
location. This empty location index is used in the next phase for swapping of
keys.

Fig. 5. SIMD accelerated hopscotch
hashing - reverse probe

Reverse Probe. A reverse probe is
done to select the positions to swap the
keys in order to have an empty loca-
tion within the neighborhood bound-
ary. During the reverse probe, the
pointer moves back from the empty
slot until a key inside the neighbor-
hood of insert key can be swapped.
On each step, the key to be swapped
is stored into a swap array until
the neighborhood of the insert key is
reached. The keys are swapped for the
indexes and the given key is inserted. If
the neighborhood is not reached, then
the table has to be rehashed.

In the next section, we evaluate these SIMD-accelerated hashing techniques
using different data distributions. We detail our evaluation setup first, followed
by our results. Finally, we provide our insights on the results found.

5 Evaluation

To assess the efficiency of the presented hashing techniques, we measure their
performance for different data distributions. In our hashing techniques, the inser-
tion and aggregation functions are performed in a single atomic step. Hence, we
include the overall insertion and probing time for determining the efficiency of
the techniques. We conducted our experiments on a machine running CentOS
Linux version-7.1.1503 and gcc version 4.8.5 with an octa core Intel Xeon E5-
2630 v3s- 2014. The system is incorporated with the AVX2 instruction set.

5.1 General Assumptions and Experimental Setup

For all our experiments we have the below assumptions for terms of consistency.
These are common across all the hashing techniques.
Key-payload pair: We assume that the key and payload to insert are 32-bit
integers. Also, w.l.o.g., the value zero is not a valid key or payload value as it
is used to represent empty slots in the hash table. In a production system, the
maximum value in the domain can also be chosen.
Hash function: A multiplicative hashing function is used to disperse the input
keys into different buckets. The main advantages are: (1) it can be parallelized
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easily, (2) provides a good balance for arithmetic progression values (e.g., pri-
mary key). We use Knuth’s multipliers in the hashing function [8].
Aggregation: For simplicity, we perform count as the aggregation function to
be performed over the given set of keys. This can be easily extended to perform
other aggregation operations such as max, min, sum. The approach fails for other
dual pass functions such as average or standard deviation. In this case, normal
two pass algorithm is used as in first pass total count is recorded followed by the
respective function in the second pass.

All the experiments are run with an increasing number of keys and we record
the CPU processing time for complete computation of grouped-aggregation for
the different distributions. Every experiment is executed for 20 iterations and
the results are averaged. We have performed two different tests over the hashing
techniques. In Sect. 5.2, we discuss in detail the impact of the different parame-
ters and we discuss in detail the impact of different distributions on these hashing
functions.

The techniques are subjected to insertion with different distribution gener-
ators for our test cases. Each distribution represents the characteristics of the
input keys provided to the hashing techniques. We synthesize these input based
on descriptions given by Gray et al. [5]. The distributions used are (1) unique
random, (2) uniform random, (3) moving cluster, (4) exponential, (5) self similar,
and (6) heavy hitter. We use the parameters for the generation of the different
distributions based on the values given by Gray et al. [5]. For unique random
distribution, the seed for generation is selected based on the given input size. We
use the random generator function to generate the keys for the uniform random
generation. In exponential distribution, the lambda is set to as 0.5, where the
number of keys is normalized. Our heavy hitter distribution produces 50% of
the given input size as duplicates with remaining keys unique. Finally, the self
similar distribution generates 80% of the given input size as duplicates and the
remaining 20% is generated as unique keys.

5.2 Factors Affecting Cuckoo Hashing and Hopscotch Hashing

The performance of cuckoo and hopscotch hashing relies on the parameter values,
swap number, and neighborhood size respectively. The maximum efficiency of
these techniques is achieved by selecting the right value for these parameters.
We vary these parameters and find their impact on the load factor. Load factor
is the ratio of number of slots filled to the total number of slots available in a
hash table. Since, both the hash tables in the worst case cannot accommodate
100% of the hash table slots, we use the parameter for which the load factor is
the maximum.

Cuckoo Hashing. We depict in Fig. 6, how the swapping threshold impacts
the achievable load factor. Since reaching the swap number threshold requires
the table to be rehashed, the execution time of the hashing technique is directly
related to the swap number and its corresponding load factor.
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Fig. 6. Cuckoo hashing - swap threshold vs. load
factor

For this experiment, we iter-
ate the insertion of keys with
size equal to the size of the hash
table. We vary the swap number
in steps until the total key size.
We are able to achieve a maxi-
mum load factor of 98.385% for
swap number at 25% of the total
number of keys. We were not
able to achieve hundred percent
of the load factor due to the dis-
persion of keys by the underly-
ing hash function.

Hopscotch Hashing. Hopscotch hashing has minimal insertion time for a key
within the neighborhood. Whereas, swapping is performed outside the neigh-
borhood swapping for insertion. Thus, decreasing the neighborhood size leads to
faster probing and slower insertion and increasing the neighborhood size does the
vice versa. Hence, an optimal neighborhood size must be used for efficient exe-
cution. Similar to cuckoo hashing, we evaluate the optimal neighborhood of the
hashing technique with different neighborhood sizes and the charts are plotted
in Fig. 7.

We run two tests to determine the correct neighborhood size for hopscotch
hashing. In our first test, we determine the neighborhood size for optimal inser-
tion time. We vary the neighborhood size from 10% to 100% the total size of the
table and record the overall average insertion time for the different sizes. From
the results plotted in Fig. 7(a), we observe the lowest insert time is for a neigh-
borhood size 20% of the total table size. We also see that the insert time increases
rapidly after the neighborhood size 40% of the total table size mainly due to the
multiple swaps for every insertion. Hence, a neighborhood size between 10% to
20% of the total size shows good performance for the hashing technique.

In our second experiment, we investigate the impact of neighborhood size on
the load factor. In this experiment, we vary the neighborhood size and record the
maximum load factor reached. This is plotted in Fig. 7(b). From our observations,
we are able to reach an average of 99% load factor. However, increasing the
neighborhood size impacts in the runtime as the number of probe locations
increases. We observe that a load factor of 98% is reached for neighborhood size
after 20% of the total size for all the data sizes. Hence, the best neighborhood size
lies between 20% to 30% of the total size. The remaining keys are not inserted
due to poor dispersion of the keys by the hashing function.

Summary. Using the above mentioned parameters, we could reach a maximum
load factor of 98% for these two hashing techniques after which re-hashing of
the tables is probable. We set the number of swaps for cuckoo hashing as 25 and
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Fig. 7. Hopscotch hashing - impact of neighborhood

the neighborhood size of hopscotch hashing as 50 for all the experiments below.
Also, we keep the load factor as 96%.

Impact of Different Distributions. In this experiment, we aggregate keys
of various distributions using the hashing techniques with their optimal param-
eters. Since cuckoo hashing is having a maximum load factor of 98%, we set our
maximum load factor as 95% in order to insert all the given keys. Also, we use
the optimal parameters for cuckoo and hopscotch hashing.

Fig. 8. Hopscotch hashing - impact of distribution

Dense Random Unique Distribution: For unique random distribution linear
probing performs worst, whereas the vectorized version competes with other
techniques as shown in Fig. 8(a). This is mainly due to the advantage of prob-
ing multiple slots in a single step. Cuckoo hashing performance degrades with
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increasing data size, mainly due to swaps during insertion. The other hashing
techniques have a linear increase of runtime as they have no additional over-
head in inserting keys. Specifically, hopscotch hashing works efficiently for this
distribution due to the neighborhood size reducing the number of keys to be
probed.

Uniform Distribution: Figure 8(b) shows the performance graph for uniform dis-
tribution. Hopscotch hashing performs worse in this case due to the overhead of
swapping. Cuckoo hashing has nearly similar efficiency as the hopscotch hashing,
due to again the penalty from insertion. In case of linear probing and two-choice
hashing, the efficiency depends on the order of hashing keys, as the best order of
insertion needs less probing. Hence, the runtime oscillates from low to high. How-
ever, the vectorized version of the hashing techniques has near linear runtime,
except for hopscotch hashing. All other vectorized versions are more efficient
than their scalar version, with linear probing having the best speed-up of 3x
the scalar version mainly due to an early detection of an empty slot during the
probe.

Moving Cluster: We see a peculiar impact on cuckoo hashing for the moving
cluster distribution shown in Fig. 9. It performs efficiently until it reaches 50K
and after that its performance degrades rapidly. This is mainly due to the heavy
swapping of keys inside the cluster. Whereas, the other hashing techniques have
a linear performance with increasing data size.

Fig. 9. Moving cluster distribution

Other Distributions: We omit a
performance graph for the other
distributions, as the technique’s
behavior are similar to what
we see for uniform distributed
values. The only notable differ-
ence is that vectorized cuckoo
has good performance for self-
similar and exponential distri-
butions for earlier data sizes but
is soon surpassed by vectorized
two-choice hashing.

Speed-Up Gain. Based on our results, we found that several factors influence
the speed-up gained by vectorization of the hashing techniques. We plot the
speed-up of the hashing techniques in Fig. 10.
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Fig. 10. Speed-up across all tested distributions

We observe from the figure,
linear probing (LP) has consis-
tently positive impact of SIMD
acceleration with the maximum
of up to 3.7x the speed of
scalar version. Two-choice hash-
ing (TCH) also has a consid-
erable impact of vectorization
with the maximum gain of 2.5x,
but the speed-up depends on
the input data distributions. SIMD vectorization has no impact on cuckoo hash-
ing (CH) as the insert time for cuckoo hashing balances the speed-up gained due
to probing of keys. However, for distributions with a high number of duplicate
keys, the technique gains a speed-up of 2x the scalar version. Finally, our result
indicates that the usage of SIMD instructions for hopscotch hashing (HH) is not
providing a performance increase. This is due to the preprocessing steps needed
for inserting keys. Mainly for SIMD insertion, single key insertion re-arranges
multiple keys inside the table.

6 Conclusion

Vectorization impacts the execution of a grouped aggregation function. This
impact differs based on the hashing technique used to compute the results. In
the work, we explored the impacts on vectorizing the commonly used open-
addressing hashing techniques.

For vectorization of the techniques, we provide a framework with horizontal
vectorization along with an interleaved insertion. In our method, a given key
is searched in a hash table using vectorized probing with either an insertion
of a key or an update of the aggregate payload. We detail the execution flow
of vectorized hashing techniques and discuss the complexities in incorporating
them.

In our experiments, we found that the overhead of vectorizing a scalar key
limits the overall performance gain from SIMD. For the case of linear probing
and two choice hashing, SIMD acceleration provides gain of 2x with respect to
their scalar implementation. Whereas in case of cuckoo hashing and hopscotch
hashing, we get negative impact from SIMD. This is mainly due to additional
overheads for key insertions in these techniques.

Using our framework, we provide a possible vectorization model for hash-
ing techniques. This model is extensible for further techniques as well as other
vectorization strategies. Our current framework is not scalable for a multi-CPU
system but a synchronization mechanism can be easily added. Finally, from our
analysis, we found that the hashing technique related parameters must be tuned
for efficient execution.

Acknowledgments. This work was partially funded by the DFG (grant no.: SA
465/51-1 and SA 465/50-1).
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Abstract. Techniques of the Hamming embedding, producing bit string
sketches, have been recently successfully applied to speed up similarity
search. Sketches are usually compared by the Hamming distance, and
applied to filter out non-relevant objects during the query evaluation.
As several sketching techniques exist and each can produce sketches with
different lengths, it is hard to select a proper configuration for a partic-
ular dataset. We assume that the (dis)similarity of objects is expressed
by an arbitrary metric function, and we propose a way to efficiently esti-
mate the quality of sketches using just a small sample set of data. Our
approach is based on a probabilistic analysis of sketches which describes
how separated are objects after projection to the Hamming space.

1 Introduction

Efficient search for data objects according to their pairwise similarity presents
an important task in data processing. We consider similarity search for complex
objects, e.g. multimedia files. Features of these objects are typically characterized
by descriptors, which are often high dimensional vectors. They can be bulky
and evaluation of their pairwise similarity may be computationally demanding.
Thus techniques to process them efficiently are needed. We consider one to one
mapping between objects and descriptors, thus we do not distinguish these terms
and we use just term object.

Techniques transforming data objects to smaller objects are often used to
speed up similarity search. Their number and number of their inherent param-
eters make their fair comparison difficult. Moreover, the ability of particu-
lar approaches to approximate similarity relationships between objects is data
dependent. This paper considers a particular family of techniques – transforma-
tion of objects to the Hamming space – and it provides formal analysis which
allows to efficiently estimate a quality of particular transformation techniques.
Our approach uses a small sample set of the original and the transformed objects,
and, inspired by the separability, which is traditionally used in data clustering
and processing of biometrics, we estimate the ability of the transformed objects
to distinguish different values of genuine similarity. We define the problem pre-
cisely in the following section.
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Table 1. Notation used throughout this paper

(D, d); X ⊆ D Metric space with domain D and distance function d; dataset X

iDim Intrinsic dimensionality of dataset

sk(o) Sketch of object o ∈ X

λ Length of sketches in bits

h(sk(o1), sk(o2)) Hamming distance of sketches sk(o1) and sk(o2)

β Balance of bits of sketches

p(x, b) Probability that h(sk(o1), sk(o2)) = b for o1, o2 ∈ X : d(o1, o2) = x

pi(x, 1) Probability p(x, b) for λ = 1 considering an average bit i

x, b Values of the distance functions d and h, respectively

Γ Maximum distance x

φ Number of degrees of freedom of distance function d(o1, o2)

μ, σ2 Mean value and variance of Hamming distance

m, s2 Mean value and variance of probability p(x, b) for a given x

1.1 Problem Formulation

We focus on similarity search in the metric space [18]. The notation used
throughout the paper is provided in Table 1. Formally, the metric space is a
pair (D, d) where D is a domain of objects and d is a total distance function
d : D×D �→ R. This function determines the dissimilarity of objects – the bigger
the value d(o1, o2), the less similar the objects o1, o2 ∈ D. The distance can be
an arbitrary function which satisfies the properties of non-negativity, identity,
symmetry and triangle inequality [16].

Having a metric space (D, d), we consider a dataset X ⊆ D, and a sketching
technique sk : D �→ {0, 1}λ, which transforms objects o ∈ D to bit-strings of
fixed length λ. We call these bit strings sketches, and we assume that dissimilarity
of these sketches is measured by the Hamming distance. Further, we focus on a
family of sketching techniques which produce bits balanced to β:

– Bit i is balanced to ratio β (with respect to the dataset X) iff it is set to 1
in β · |X| sketches sk(o), o ∈ X.

We consider just values 0.5 ≤ β ≤ 1, since if β is smaller than 0.5 for some
bit i, this bit can be flipped in all sketches sk(o), o ∈ X which preserves all the
Hamming distances. The objective of this paper is to propose a way to estimate
ability of sketches to approximate similarity relationships between objects o ∈ X,
using just a small sample set of data and sketches.

1.2 Related Work

Several sketching techniques have been proposed [1,5,7,10–14,17] and most of
them produce sketches with bits balanced to 0.5. To the best of our knowledge,
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there is no prior work which would efficiently estimate, what sketches, their
balance β and length λ are suitable for particular data (on condition that β is
tunable). For instance, Wang et al. [17] provide analysis to estimate recall of kNN
queries for particular sketching technique to select suitable length of sketches.
However, their method is not extendible for other sketching techniques and the
estimation is rather approximate. Mic et al. also provide approach to estimate
suitable length λ for their sketching technique [12], but their ideas cannot be
applied for arbitrary sketches. Our proposal is inspired by Daugman’s analy-
sis [3], who investigates binary codes of human irises. He evaluates separability
of two distance densities to describe the quality of his method to identify people
according to this biometric.

The paper is organized as follows. Section 2 contains analysis to estimate
an ability of sketches to approximate similarity relationships between objects,
Sect. 3 proposes another approach to estimate this quality, Sect. 4 contains dis-
cussion about a cost of estimations and results of experiments to compare mea-
sured and estimated quality of sketches, and Sect. 5 concludes the paper.

2 Analysis to Estimate Quality of Sketches

The goal of this section is to derive formula describing the ability of sketches to
separate two distances from the original metric space. In particular, we consider
four arbitrarily selected objects o1, o2, o3, o4 ∈ X and their distances d(o1, o2) =
x1, d(o3, o4) = x2, x1 ≤ x2. The goal of function sepsk(x1, x2) is to describe how
separated are the Hamming distances h(sk(o1), sk(o2)) and h(sk(o3), sk(o4)).

2.1 A Single-Bit Sketch

We start with an average probability pi(x, 1) that one bit i of sketches sk(o1) and
sk(o2) has different value for objects o1, o2 ∈ X with distance d(o1, o2) = x. This
probability can be derived in an analytic way just for some specific sketching
techniques [17]. Therefore, we propose to determine it empirically by its evalua-
tion on a sample set of data. We measure the probability pi(x, 1) on equidistant
intervals of distances x. To make function pi(x, 1) continuous, we use linear
interpolation between measured points and we add an artificial point [0, 0] to
catch influence of smaller distances than were observed on the sample set. We
work with an average probability pi(x, 1) evaluated over all bits i. Probability
function pi(x, 1) constitutes one of features describing quality of sketches, as it
should obviously increase with x. An example is provided in Fig. 1a.

2.2 Projection of Distance x on Hamming Distance b

As a next step, we derive probability function p(x, b) that Hamming distance
h(sk(o1), sk(o2)) is equal to b for objects o1, o2 with distance d(o1, o2) = x. It
is done by composition of λ instances of probability function pi(x, 1). This step
is challenging due to possible bit correlations. Probability function p(x, b) for a
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fixed x can be modelled by a symmetric function1, which allows us to use its
binomial analogue. It is a scaled binomial distribution with the same variance
as function p(x, b). To fit variance of function p(x, b), we need to estimate its
number of degrees of freedom φ [3].

Lemma 1. The number of degrees of freedom φ of function p(x, b) is similar to
the number of degrees of freedom φ′ of the density of the Hamming distance on
all sketches sk(o), o ∈ X.

Clarification. Daugman [3] evaluates the number of degrees of freedom of the
density of the Hamming distance on sketches:

φ′ =
μ · (λ − μ)

σ2
(1)

where λ is the length of sketches, μ is the mean value and σ2 is the variance of
the Hamming distance. According to analysis in [13], the μ is given by λ and
β, and σ2 is given by λ, β and pairwise bit correlations. Therefore, iff sketches
of objects o1, o2 : d(o1, o2) = x have bits balanced to β and they have same
pairwise bit correlations as all the sketches sk(o), o ∈ X, the Lemma 1 describes
equality, i.e. φ = φ′. Our first approach to estimate quality of sketches assumes
this equation, and the error caused by this assumption is discussed in Sect. 2.4.

We connect Eq. 1 with the term intrinsic dimensionality (iDim), which
describes an amount of information in data. Several ways to estimate the iDim
have been developed but just a few of them can be used in a general metric
space. We use the formula of Chávez and Navarro [2]:

iDim ≈ μ2

2 · σ2
. (2)

The mean value μ equals 2λ · β · (1 − β) [13], and thus, using the Eqs. 1, 2 and
Lemma 1, we may express the number of degrees of freedom φ using the intrinsic
dimensionality of sketches iDim and balance of their bits β:

φ =
μ · (λ − μ)

σ2
=

μ · μ
2·β·(1−β)

σ2
− μ2

σ2
≈ 2 · iDim ·

(
1

2 · β · (1 − β)
− 1

)
. (3)

In order to model probability p(x, b), we propose to use binomial distribution
with φ degrees of freedom which we scale and interpolate to get the final function.
The only input necessary for the usage of this binomial analogue is iDim of
sketches, empirically evaluated on a sample set of sketches, and balance of their
bits β. We round number of degrees of freedom to the nearest integer and denote
it φ in the rest of this paper. In the following, we describe the estimation of
p(x, b) formally. We approximate this function by a linear interpolation plin(x, b)
normalized with a coefficient coef(x):

p(x, b) ≈ plin(x, b)
coef(x)

. (4)

1 Reasoning is provided at https://www.fi.muni.cz/∼xmic/sketches/Symmetry.pdf.

https://www.fi.muni.cz/~xmic/sketches/Symmetry.pdf
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The normalization coefficient coef(x) is evaluated as:

coef(x) =
φ∑

i=0

plin(x, i)

and the linear interpolation plin(x, b) as:

plin(x, b) = pint(x, �b′	) + (b′ − �b′	) · (pint(x, 
b′�) − pint(x, �b′	))
where b′ is the scaled value b:

b′ = b · φ

λ

and where function pint(x, bint) (which requires the second parameter to be an
integer), evaluates the binomial distribution:

pint(x, bint) =
(

φ

bint

)
· pi(x, 1)bint · (1 − pi(x, 1))φ−bint .

We use linear interpolation plin since b′ is usually not an integer. Due to the
transformation of the binomial distribution, it is necessary to normalize prob-
ability using coef (x) coefficient: we normalize function pint by the sum over all
values, since p(x, b) is discrete with respect to b.

(a) Dependency of pi(x, 1) on x (b) Measured and modelled p(x, b)

Fig. 1. Example of functions pi(x, 1) and p(x, b) used in the model

We show an example, how this binomial analogue fits the distribution of
the measured p(x, b) in Fig. 1b. The black points show values empirically mea-
sured, and grey points show values estimated by the proposed binomial analogue
described by Eq. 4. In this experiment, we used sketches with λ = 205 bits bal-
anced to β = 0.5, and just sketches of objects within distance x = 86 evoking
probability pi(x, 1) = 0.51. These measurements confirm that the binomial ana-
logue is a good approximation of probability p(x, b).

2.3 Quality of Sketches

Quality of sketches used for the similarity search is given by their ability to
preserve similarity relationships between objects. Let us consider four arbi-
trarily selected objects o1, o2, o3, o4 ∈ X and distances d(o1, o2) = x1 and
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d(o3, o4) = x2, x1 ≤ x2. In the following, we focus on a separation of proba-
bility functions p(x1, b) and p(x2, b) and we describe it by formula adopted from
work of Daugman [3]:

sepsk(x1, x2) =
m2 − m1√

s2
1+s2

2
2

(5)

where m1 and m2 are mean values of p(x1, b) and p(x2, b), and s21 and s22 are
their variances. These values can be expressed by analysis of Eq. 4:

Lemma 2. Mean value m of probability function p(x, b) is pi(x, 1) ·λ. Variance
s2 of probability function p(x, b) is λ2

φ · pi(x, 1) · (1 − pi(x, 1)).

Proof. Function p(x, b) is formed by binomial distribution (see function pint in
Eq. 4), which is scaled with respect to value b by coefficient φ

λ . Since mean of
function pint is pi(x, 1) · φ and its variance is φ · pi(x, 1) · (1 − pi(x, 1)), then:

m = pi(x, 1) · φ · λ

φ
= pi(x, 1) · λ,

and

s2 = φ · pi(x, 1) · (1 − pi(x, 1)) ·
(

λ

φ

)2

=
λ2

φ
· pi(x, 1) · (1 − pi(x, 1)).

Theorem 1. Considering four arbitrary objects oz ∈ X, z ∈ [1..4] with distances
d(o1, o2) = x1, d(o3, o4) = x2, x1 ≤ x2, and an arbitrary sketching technique sk
producing sketches with bits balanced to β, the separation sepsk(x1, x2) of the
Hamming distances h(sk(o1), sk(o2)) and h(sk(o3), sk(o4)) can be expressed:

sepsk(x1, x2) ≈ 2 ·
√
iDim · fsk(x1, x2) ·

√
1

2 · β · (1 − β)
− 1 (6)

where

fsk(x1, x2) =
pi(x2, 1) − pi(x1, 1)√

pi(x1, 1) · (1 − pi(x1, 1)) + pi(x2, 1) · (1 − pi(x2, 1))
(7)

Proof. Theorem holds as a consequence of Eqs. 3, 5, and Lemma 2.

Theorem 1 reveals features of sketches sk(o), o ∈ X, which improves their
capability to approximate similarity relationships between objects. For instance,
sufficiently high iDim of sketches is necessary to allow them distinguish distances
d(o1, o2) < d(o3, o4). Please notice, that just function fsk(x1, x2) (defined by
Eq. 7) takes into account values x1 and x2, and that there is no direct dependency
of sepsk(x1, x2) on sketch length λ.

To describe quality of sketches, we propose to evaluate sepsk(x1, x2) over
whole range of distances function d. Without loss of generality, we assume that
d is continuous and its range is [0, Γ ]. Then:

quality(sk) =
∫ Γ

0

∫ Γ

x1

sepsk(x1, x2) ∂x2 ∂x1 (8)
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Semantics of this integral is in compliance with the sign of sepsk(x1, x2): value
of sepsk(x1, x2) is negative iff the distances x1, x2 are swapped after the trans-
formation to sketches2. Such distances x1, x2 then naturally decrease the quality
of sketching technique, as described by this equation. Since quality(sk) cannot
be meaningfully compared for metrics with different Γ , we propose to normalize
it. Equation 8 allows direct normalization by Γ 2. Finally, if sketches are going to
be applied for similarity search, they are needed to well separate small distances
from the others. Therefore, it is meaningful to evaluate quality of sketching
technique using some threshold t < Γ :

qualitynorm(sk, t) =

∫ t

0

∫ Γ

x1
sepsk(x1, x2) ∂x2 ∂x1

Γ2
. (9)

Therefore, we propose to evaluate qualitynorm(sk, t) using a sample set of
data and use it to compare quality of sketches. The cost of this estimation is
discussed in Sect. 4.1.

2.4 Sources of Error

The main source of error of proposed quality estimation is caused by Lemma 1,
as we assume that balance β and pairwise correlations of bits of sketches sk(o1),
sk(o2), o1, o2 ∈ X : d(o1, o2) = x for an arbitrary given x are the same, as on
the whole dataset X. The precision of this assumption is data and sketching
technique dependent. We have observed, that the proposed binomial analogue
is quite precise for non-extreme distances x (as shown by Fig. 1b), but its preci-
sion decreases mainly for tails of x. Therefore, this feature causes an erroneous
estimation for some sketching techniques and datasets. An example is given in
Fig. 2, where the binomial analogue p(x, b) for a very low x is examined.

Fig. 2. Measured and modelled p(x, b) for x = 38 implying pi(x, 1) = 0.2

Another errors are caused by our intention to use a small sample set to
evaluate qualitynorm(sk, t), and by the fact that the provided analysis is based
on expected values and it does not consider deviations from modelled functions.
2 Please see, that the sign of sepsk(x1, x2) is given by the sign of function fsk(x1, x2),

and this is negative iff pi(x2, 1) < pi(x1, 1). We have assumed x1 ≤ x2, and these
two inequalities are equivalent to swapping distances x1, x2.
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We evaluate experiments with this approach in Sect. 4, and we denote it Approach
A (as analytique). In the following section, we propose the second way to estimate
quality of sketches, which aims to mitigate the error of Approach A.

3 Approach PM

The second way to estimate qualitynorm(sk, t) is based on direct evaluation of
means m1,m2 and variances s21, s

2
2 of the p(x, b), used in Eq. 5. If these values are

evaluated directly on a sample set of data, just this equation and Eq. 9 are uti-
lized to estimate qualitynorm(sk, t). However, this approach requires evaluation
of mean m and variance s2 of p(x, b) for the whole range of distances x ∈ [0..Γ ].

In particular, we use equidistant intervals of x and we evaluate distances
b = h(sk(o1), sk(o2)) for each pair of objects o1, o2 from the sample set such
that d(o1, o2) is from a given interval of x. Then we evaluate the mean m and
variance s2 for each interval of x and we add an artificial mean m = 0 and
variance s2 = 0 for distance x = 0. Finally, we use linear interpolation to get
values m and s2 for an arbitrary distance x.

We denote the estimation of qualitynorm(sk, t) according to this procedure
Approach PM (partially measured) and we evaluate its capability to estimate
quality of sketches in Sect. 4. At first, let us discuss sources of errors of this
approach. The cost of this estimation is discussed in Sect. 4.1.

3.1 Sources of Error of the PM Approach

Approach PM mitigates an error brought to the Approach A by too strong
usage of Lemma 1. Instead of this error, Approach PM is more sensitive on a low
number of objects o1, o2 within very small distances d(o1, o2) = x in the sample
set. Since the mean m and variance s2 of p(x, b) is examined for the whole range
of distance x, it needs a representative number of objects o1, o2 within each
interval of x to measure it precisely, which is obviously a problem for tails of
distances x. However, exactly the ability to precisely handle extremely small
distances is crucial to well estimate quality of sketches for similarity search.

The rest of errors is caused by similar features as in case of Approach A (see
Sect. 2.4 for details). Therefore, both approaches provide estimation with some
probable level of error, and we evaluate them both in the next section.

4 Experiments

This section provides verification of the proposed approaches to estimate quality
of sketches. At first, we discuss costs of proposed estimations in comparison with
a traditional approach to evaluate quality of sketches.
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4.1 Queries Evaluations vs. Proposed Estimations

Testing quality of sketches is usually performed via evaluation of sufficient num-
ber of representative queries on sample data. Therefore, the precise answer for
these queries must be known, and the sketches for both, the dataset and query
set must be created.

We use the recall of k nearest neighbours queries (kNN) evaluated via simple
sketch-based filtering. In particular, sketches are applied to filter a fixed number
of the most similar sketches to the query sketch sk(q), and then the set of corre-
sponding objects CandSet(q) is refined by the distances d(q, o), o ∈ CandSet(q).
Finally, the k most similar objects from the CandSet(q) are returned as the query
answer. The recall expresses the relative intersection of this answer with the pre-
cise answer returned by the sequential evaluation of all distances d(q, o), o ∈ X.
Please, notice that a suitable size of the CandSet(q) considering applied sketch-
ing technique must be selected, which is another difficult and data dependent
task. Finally, even if this expensive procedure is performed, it is relevant just for
a tested dataset and it is dependent on a selection of queries.

We evaluate one thousand 100NN queries on two datasets of size 1 million
objects. Therefore, both ground truths cost 2 billion evaluations of distance
d(q, o), several (30) different sets of million sketches are created, and finally,
billion Hamming distances are evaluated for each set of sketches. In our experi-
ments, we use 16 and 14 different sets of sketches for our datasets. The cost of
their creation is in order of billions of distance computations, and several GB of
data are read from hard-drives during these experiments.

Conversely, proposed quality estimations do not use any queries. We use
just a sample set of 5000 objects and their sketches in our experiments. In case
of Approach A, we use 2 million distances to get function pi(x, 1) and iDim
of sketches. The efficiency of the estimation is given mainly by the precision
of integral evaluation (defined by Eq. 9). Since we use parameters providing
high precision, an evaluation of qualitynorm(sk, t) by Approach A for one set of
sketches takes about 50 s on average. Approach PM is even more efficient, as it
uses 2 millions distances to get means m and variances s2 of p(x, b) directly. Its
evaluation takes approximately 30 s per set of sketches on average.

4.2 Test Data

We use two real-life datasets, both consisting of visual descriptors extracted from
images. The first one is formed by 1 million DeCAF [4,15] descriptors from
the Profiset collection3. These descriptors are 4,096-dimensional vectors of float
numbers taken as an output from the last hidden layer of a deep convolutional
neural net [8]. Although this neural net has been trained for ImageNet classifi-
cation, the last hidden layer is suitable for solving recognition problems [4,15].
These descriptors with Euclidean distance L2 form the metric space (D, d). The
distance density is depicted in Fig. 3a and the intrinsic dimensionality of dataset
(defined in Sect. 2.2) is 26.9.
3 http://disa.fi.muni.cz/profiset/.

http://disa.fi.muni.cz/profiset/
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(a) DeCAF (b) SIFT

Fig. 3. Distance densities of d(o1, o2), o1, o2 ∈ X

The second dataset is formed by 1 million SIFT descriptors [9] from ANN
dataset4. These descriptors are 128-dimensional vectors of unsigned integers. We
compare them with Euclidean distance as well, and density of this distance is
depicted in Fig. 3b. The intrinsic dimensionality of this dataset is 13.4.

4.3 Sketching Techniques

We examine four sketching techniques in this paper. The GHP 50 technique
is adopted from paper [12]. It is based on generalized hyperplane partitioning
(GHP) depicted in Fig. 4. A pair of pivots pi1, pi2 ∈ D is selected for each
bit i of sketches sk(o), o ∈ X, and value of bit i expresses which of these two
pivots is closer to o. Therefore, one instance of GHP determines one bit of all
sketches sk(o), o ∈ X. The pivot pairs are selected to produce balanced and low
correlated bits.

(a) GHP to set values in one bit (b) Two GHPs to set two bits of
sketches

Fig. 4. Generalized hyperplane partitioning for sketching technique

In particular, the pivot selection [12] works as follows: (1) an initial set of
pivots Psup is selected at random from domain D, (2) balance of GHP is evaluated
using a sample set of X for all pivot pairs (p1, p2), p1, p2 ∈ Psup, (3) set Pbal is
formed by all pivot pairs that divide the sample set into two parts balanced
with tolerance 5 % (at least 45 % to 55 %) and corresponding sketches skbal
with balanced bits are created. (4) The absolute value of Pearson correlation
coefficient is evaluated for all pairs of bits of sketches skbal to form correlation
matrix M , and (5) a heuristic is applied to select rows and columns of M , which
form its sub-matrix with low values and size λ × λ. (6) Finally, the pivot pairs
4 http://corpus-texmex.irisa.fr/.

http://corpus-texmex.irisa.fr/
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which produce the corresponding low correlated bits define sketches sk(o), o ∈ X.
A pseudo-code of this heuristic is available online5.

The second technique GHP 80 is similar to GHP 50, but the pivots Pbal

are selected to produce bits balanced to β = 0.8. This sketching technique have
been discussed to produce sketches of the similar quality as GHP 50, considering
sufficiently high sketch length λ [13]. However, such sketches should be indexable
more easily due to their lower intrinsic dimensionality.

Technique BP 50 uses ball partitioning instead of GHP. BP is defined by a
pivot and radius to split data into two parts. We evaluate distances to pivot for
each object from a sample set to select radius dividing sample set into halves.
Therefore λ pivots are selected to create sketches of length λ. To ensure as small
pairwise bit correlations as possible, we employ the same heuristic as in case of
techniques GHP 50 and GHP 80.

The last technique THRR 50 is inspired by papers [6,10], and it is the only
one of examined sketching techniques which is applicable just in vector space,
not in the more generic metric space. It uses the principal component analysis
(PCA) to shorten vectors to length λ. Then these shortened vectors are rotated
using a random matrix, and finally they are binarized using the median values
of each their dimension: the bit value expresses, whether the value in a given
position of rotated shortened vector is higher or lower then the median evaluated
on a sample set. Therefore, the balance β of bits is 0.5. The random rotation of
shortened vectors helps to distribute information equally over the vector, as the
PCA returns vectors with decreasing importance of values in particular positions.
Since the binarization dismiss this different importance, it is suitable to rotate
shortened vectors randomly and then binarize [6].

We create sketches sk(o), o ∈ X of four different lengths: 64, 128, 192 and
256 bits, by each of the sketching technique for the both, DeCAF and SIFT
datasets. The only exception is constituted by THRR 50 on SIFT dataset, as this
technique cannot produce sketches longer then the original vectors. Therefore,
for this combination we examine just lengths 64 and 128 bits.

4.4 Results

To verify capability of Approaches A and PM to estimate quality of sketches,
we compare these estimations with the recall of kNN queries, using the pro-
cedure and parameters described in Sect. 4.1. We use CandSet(q) of size 2000
objects (i.e. 0.2 % of the dataset X), and we depict results by box plots to show
distribution of values for particular query objects (see Fig. 5 for its definition).

The results for the DeCAF dataset are depicted in Fig. 6. The box-plots,
which describe the measured recall use the primary y axis. The names of par-
ticular sketching techniques (on x axis) are of the form skTech β λ where β is
the balance of bits in percentages and λ is the sketch length in bits. Quality
estimations use the secondary axis y : Approach A is expressed by dashed line
and Approach PM by full line. As we have two estimations of the same feature,

5 https://www.fi.muni.cz/∼xmic/sketches/AlgSelectLowCorBits.pdf.

https://www.fi.muni.cz/~xmic/sketches/AlgSelectLowCorBits.pdf
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Fig. 5. Box-plot

Fig. 6. DeCAF dataset: the measured recall and quality estimations by approaches A,
PM and their average

we evaluate even the average of these two estimations, which is expressed by
black curve with points.

The results for the SIFT dataset are depiected in the same way in Fig. 7.
There is a clear correspondence for both datasets between the recall and estima-
tions. However, in case of SIFT, the Approach PM significantly overestimates
sketches THRR and Approach A underestimates it. Another remark is, that the
quality of sketching techniques is data dependent, as for instance the BP tech-
niques perform bad on DeCAF dataset but for SIFT they are still reasonable.
The interpretation of these results should take into account, that the recall is
strongly dependent on the size of the CandSet(q) as well.

We show the Pearson correlation coefficient between the estimated values
and the medians of measured recalls in Table 2. The both approaches provide
top quality results in case of DeCAF dataset, but the estimations are not as
good in case of SIFT due to THRR technique. Nevertheless, the Approach PM
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Fig. 7. SIFT: the recall, quality estimations by approach A, PM and their average

Table 2. Correlations of quality estimations and measured medians of the recall

Approach A Approach PM Average

DeCAF +0.96 +0.97 +0.98

SIFT +0.55 +0.74 +0.93

still provides a strongly correlated estimation with the measured values, and the
quality of averaged estimation is of a top quality even in case of this dataset.

We do not discuss an efficiency of query processing, as we consider sequential
evaluation of all Hamming distances h(sk(q), sk(o)), o ∈ X during query evalu-
ation. In this case, query processing times are equal for all sets of sketches, as
they are given by the size of candidate set. Indexing of sketches pays off mainly
for huge datasets, and its efficiency is influenced by iDim of sketches. However,
our preliminary experiments on just two very different datasets do not justify
any reasonable conclusions about this feature, and thus we postpone it to the
future work.

5 Conclusions

Several techniques of the Hamming embedding have been proposed to speed up
similarity search. Since their parameters (including the length of the transformed
objects – sketches) must be selected in advance, and their ability to approximate
similarity relationships between objects is data dependent, the selection of par-
ticular sketches for similarity search is a challenging problem.

We proposed two efficient approaches to estimate the quality of sketches with
respect to particular data. These approaches do not need any ground truth or



140 V. Mic et al.

query evaluations but just a small sample set of data objects and their sketches.
Both approaches are based on analytic study of sketches. Experiments with two
real-life datasets show that they provide a reasonable estimation of the quality
of sketches when compared with the recall of kNN queries. The average of the
proposed estimations follow the medians of the measured recall with correlations
+0.98 and +0.93, in cases of our two datasets.

Acknowledgements. Paper was supported by the Czech Science Foundation project
GBP103/12/G084.

References

1. Charikar, M.: Similarity estimation techniques from rounding algorithms. In: Pro-
ceedings on 34th Annual ACM Symposium on Theory of Computing, Montréal,
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Abstract. The division operator from the relational algebra allows sim-
ple and intuitive representation of queries with the concept of “for all”,
and thus it is required in many real applications. However, the rela-
tional division is unable to support the needs of modern applications
that manipulate complex data, such as images, audio, long texts, genetic
sequences, etc. These data are better compared by similarity, whereas
relational algebra always compares data by equality or inequality. Recent
works focus on extending relational operators to support similarity com-
parisons and their inclusion in relational database management systems.
This work incorporates and studies the behavior of several similarity-
aware division algorithms in a commercial RDBMS. We compared the
two state-of-art algorithms against several SQL statements and found
when to use each one of them in order to improve query time execution.
We then propose an extension of the SQL syntax and the query analyzer
to support this new operator.

Keywords: Database · Relational division · Similarity comparison

1 Introduction

The relational division [1] allows writing queries involving the concept of “for
all” in a simple and intuitive manner, being employed in queries performed by
real applications. For example: (1) “What products have all the requirements
for the industrial quality control?”; (2) “What cities have all the requirements
to produce a given type of crop?”; (3) “What companies have all the products
required in a request for tender?”. This operator identifies groups of tuples in
one relation that share the same values for a given set of attributes, and whose
values for the remainder attributes cover all values contained in the tuples of a
second relation.

Let us use the first example to describe the division. Consider the existence
of an industrial production line that wants to implant an automatic real-time
c© Springer Nature Switzerland AG 2018
A. Benczúr et al. (Eds.): ADBIS 2018, LNCS 11019, pp. 142–155, 2018.
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ID Picture
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1
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(a) ScrewThreads

÷

Picture

(b) StandardSample

=
ID

1

(c)
Approved

Fig. 1. A toy example illustrating the similarity division to select newly produced screw
threads similar to the sampled. Images from group with ID = 2 represent defective and
cracked screw threads.

quality control. Thus, a flawless sample is selected to be considered the “standard
sample” from which many images are extracted from many different angles and
stored in a set. Then, from every newly produced item, images from the same
angles are taken and stored in another set. Finally, the quality inspection of a
produced item is to check, for every image, if the item’s image is sufficiently
similar to the corresponding standard sample’s image. The division operation of
the second set (items) by the first set (sample) would return exactly the items
that passed the quality control.

However, the relational division can only answer queries by equality whereas
images are better compared by similarity. Many researchers have been extending
relational operators, such as the division operator, to support similarity compar-
isons. The similarity-aware division operator is able to answer queries with the
concept of “candidate elements and requirements” on distinct but similar data
by considering as valid elements with similar attribute value, according to a
distance function and a threshold defined by the user. In the example, sup-
pose that the images from the standard sample are stored in a relation named
StandardSample(Picture), where Picture is an image attribute, as illustrated
in Fig. 1b, and the items’ images are stored in relation ScrewThreads(ID,
Picture), where ID is the identifier of the item from which the picture was
taken (Fig. 1a). The result of the division between the relations ScrewThreads
and StandardSample is the relation Approved (Fig. 1c), containing the ID of
the items that have all their images similar to the corresponding ones from the
standard sample, which in the example is only item 1.

Early works regarding the similarity-aware division showed the usability of
this operator in real datasets in applications such as: finding relevant request for
tenders a company is able to satisfy by comparing their product catalog with the
products required [2]; identifying cities able to support a type of crop by com-
paring satellite images of cities against the requirements’ images; and identifying
animals with all genetic sequences similar to animals that have predefined genetic
traits, to develop high quality derivative, such as milk, for selective breeding [3].
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This article focuses on the inclusion of the similarity-aware division operator
in an Relational Database Management System (RDBMS). We propose syntac-
tic representations, implemented different execution algorithms in the Oracle
RDBMS, and evaluate their performance on synthetic data that represent pos-
sible input relations for this operator. Our main contributions are: (1) SQL syn-
taxes to represent the Similarity-Aware Division operator; (2) The inclusion of
this operator in an commercial RBDMS; (3) Hints from experimental evaluation
to help decide when to execute the appropriate algorithm.

The remainder of this article is organized as follows. Section 2 presents the
background on similarity queries. Section 3 focuses on the related work regard-
ing relational division and the inclusion of similarity algorithms in RDBMS.
Section 4 presents our proposed inclusion of the similarity-aware division oper-
ator in a RBDMS. Finally, Sect. 5 discusses the experimental evaluation, and
Sect. 6 concludes this article.

2 Background

2.1 Similarity Queries in Metric Spaces

Similarity queries have been widely employed as a mean to manipulate complex
data such as audio, video, images, genetic sequences, long texts etc. Such data
does not present total order relationship so operators like <, ≤, >, ≥ cannot be
used and the identity comparison (=) is usually meaningless as these types of
data will hardly ever be equal to one another [4]. In this context, complex data
are represented in a metric space by their intrinsic feature, i.e., an image can be
compared against each other using numeric features that represent color, texture
or shape patterns extracted from their visual content. This representation allows
evaluating how much an element is similar to another according to a distance
function.

Formally, a metric space [4] is a pair defined as M = {S, d} where S is the
data domain and d is the distance function that expresses the similarity between
elements of S by a value between 0 and 1 where values closer to zero means
more similar and closer to one less similar. The distance function must satisfy
the following properties: symmetry: d(s1, s2) = d(s2, s1); non-negativity: 0 <
d(s1, s2) < ∞ if s1 �= s2 and d(s1, s2) = 0 if s1 = s2; triangular inequality: d(s1, s2)
≤ d(s1, s3) + d(s3, s2) for any s1, s2, s3 ∈ S. Data in a metric space can be indexed
in structures called a Metric Access Method (MAM), that divides the dataset
into regions and choses pivots elements to prune the space through triangular
inequality accordingly to their distance to the query element [4].

Many researchers have been extending relational operators, such as the
Selection operator, to support similarity queries based on two approaches: (a)
the range query, which selects all elements that are similar enough to a query
center element, up to a predefined threshold; and (b) k-Nearest Neighbors (k-
NN) query, which returns the k most similar elements to the query center [5].

As well as the range and k-NN queries extensions to the Selection operator,
other relational operators have been extended to support similarity, such as the
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Similarity Join. There are a number of variants for this operator, usually
following the same principles of range and k-NN queries.

There are proposals for the set-based operators as well. Marri et al. [6], pro-
vided efficient similarity-aware algorithms for the Union, Intersect and Dif-
ference operators for unidimensional data and implemented them on Postgres.
Pola et al. [7] presented the concept of SimSets, which are sets with no pair
of elements that are similar to each other up to a threshold. There exists also
algorithms for Grouping and Aggregation [8].

Finally, the Similarity-aware Division operator [3] was recently proposed
by Gonzaga and Cordeiro, who demonstrated its suitability to process complex
data by answering queries with the concept of “for all”, as follows.

2.2 Similarity-Aware Division

The Similarity-Aware Division [3] is defined as T1 [L1 ÷ L2] T2 = TR where
T1, T2 and TR are relations corresponding to the dividend, the divisor, and the
quotient. L1 and L2 are lists of attributes of T1 and T2 respectively. Thus, both
lists must have the same number of attribute and the pair of attribute to be
compared must be in the same domain. The quotient relation TR is defined as
the subset of T1 with the largest possible cardinality, that is, T1 is partitioned
into κ ≥ 0 distinct groups of tuples so that each group TGk

⊆ T1 represents one
candidate tuple for TR and the following conditions applies: TR × T2 ⊆ T1 and
T1 =

⋃κ

k=1 TGk
. During the division operation, each attribute in L1 is compared

against its counterpart in L2.
To illustrate the division, let us consider our toy example in Fig. 1 that illus-

trates pictures of screw-threads obtained in the factory’s production line. In this
setting, relations ScrewThreads and StandardSample are, respectively, the div-
idend and the divisor of this operation. The division between these relations
will produce a third relation Approved, containing the pieces that are similar to
the “standard sample”, a flawless screw-thread. The operator will divide rela-
tion ScrewThreads into two distinct groups by the attribute ID based on the
active domain, this grouping process is called “intra-relation comparison”,
as illustrated in Fig. 1 from Introduction, where different groups are represented
in different shades of gray. However, If the elements are of complex type, they
will be grouped by appropriate similarity grouping algorithm following the prob-
lem’s semantic. Then, the groups will be compared according to the similarity
of the attribute Picture in a process called “inter-relation comparison” by
means of a distance function and maximum similarity threshold. Finally, the
division operator verifies which groups have tuples similar to all tuples in rela-
tion StandardSample and the groups that satisfy this condition is outputted in
relation Approved.

To perform the similarity-aware division there are two proposed algorithms
[3], one is executed when the attributes in L1 are indexed and another algo-
rithm based on full table scan when the attributes in L1 are not indexed. For the
remainder of this article, we will refer to their indexed algorithm as Indexed
Algorithm and the other algorithm as Full Table Scan. We also refer to the
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relation that identifies each group of the dividend as grouping relation. The
authors [3] considered the grouping process a separated task since grouping ele-
ments by similarity is a research area on its own and the appropriate algorithm
depends on the semantics of the problem as well as the data type. Therefore,
the grouping relation is a parameter. Both algorithms receive as parameters the
divisor relation, the distance function and threshold for each column attribute
present in the divisor relation and a relation that identifies the groups that each
tuple from the dividend relation belongs to. The Indexed Algorithm receives
the path to the dividend’s index and while the Full Table Scan algorithm
receives the dividend relation fully. Considering that the divisor relation is gen-
erally small, the Full Table Scan algorithm builds an in-memory index over
that relation to speed up querying process. The idea of both algorithms is to
query through one of the indexes looking for groups with similar tuples to the
query center. The groups that are present in all resulting queries are groups that
meet all the requirements and their ID is outputted in resulting table.

3 Related Work

This section presents the related work on relational division and the inclusion
of similarity operators in RDBMS. To illustrate the relational division in SQL,
statements 1 to 3 represents the query “What candidates have all the require-
ments for the job?”, using relations CandidateSkills(CandidateID, Skill)
and JobRequirements(Skill).

3.1 Algorithms for Relational Division

Matos et al. [9] and Gonzaga et al. [10] compared many division statements
in SQL and concluded that the counting approach was the fastest statement
in every case tested. In a nutshell, as illustrated in Statement 1, the approach
counts if the number of matched tuples between a group in the dividend and
the divisor is the same as the divisor’s cardinality, if it is, the group attends
to all division’s requirements. The second most efficient approach presented in
the work of [10] was the Subset and the third most efficient was the Double
Negation. The Subset selects candidates whose set of ability is a superset of
the required abilities and the Double Negation selects candidates that do not
contain a missing requirement. These approaches are represented in Statements
2 and 3, respectively.

(1) SELECT CandidateID |(2) SELECT candidates FROM

FROM CandidateSkills cs |(SELECT DISTINCT CandidateID

CROSS JOIN JobRequiriments jr | candidates FROM CandidateSkills)

WHERE cs.Skill = jr.Skill |WHERE NOT EXISTS(

GROUP BY CandidateID | (SELECT Skill FROM JobRequirements)

HAVING COUNT(*) = | EXCEPT

(SELECT COUNT(*) FROM | (SELECT Skill FROM CandidateSkills

JobRequirements); | cs WHERE candidates=cs.CandidateID));
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Draken et al. [11] proposed a new SQL expression to support Relational
Division. The authors included a novelty keyword DIVIDE to which users can
express division easily on their queries. The query using the new keyword is
rewritten into equivalent SQL queries such as the counting approach or the
Double Negation approach.

(3) SELECT DISTINCT CandidateID FROM CandidateSkills csGlobal

WHERE NOT EXISTS( SELECT Skill FROM JobRequeriments jr

WHERE NOT EXISTS( SELECT * FROM CandidateSkills csLocal

WHERE csLocal.CandidateID = csGlobal.CandidateID

AND csLocal.SKill = jr.Skill ) );

3.2 Similarity-Awareness in RDBMS

Similarity comparison is not naturally supported by commercial RDBMS, there-
fore, many researchers have been proposing means to include this type of com-
parison in RDBMSs. The proposals to include similarity awareness in RDBMSs
vary from extending the core of the system to implement external resources that
execute similarity-aware operations and return information to the core.

PostgreSQL-IE [12] and Kiara [13] encapsulate similarity query algo-
rithms, such as the range and k-nn selection and join, in User Defined Func-
tions in PostgreSQL, SimDB [14] is an extension of PostgreSQL’s core that
implements similarity group by and join algorithms as physical operators.

SIREN [15], SimbA [16] are similarity retrieval middlewares embedded
between the application and the database that provides an extended SQL to
support similarity queries. This SQL allow the representation of similarity-based
predicate along with traditional predicates by extending the grammar of stan-
dard SQL such as in the SELECT command and the WHERE clause. As well
as extending DDL commands to associate complex data with feature extractors
and distance functions. When a query written in this SQL is submitted by the
application to the database, the middlewares intercept the query, perform the
similarity operators externally and rewrite the query using standard SQL includ-
ing the tupples outputed from the algorithms in a WHERE IN clause. Then the
database finishes processing relational operators, if there is any. For instance,
Statement 4 performs a range query on the tuples of table TABLE 1 evaluating
if their attribute SIGNATURE is similar the homonym attribute of the element 1
in TABLE 2 up, to a threshold of 2. The middleware will process the query and
rewrite it as in Statement 5 and submit to the database system. Note that the
second predicate is not processed by the middleware. All standard predicates are
processed by the RDBMS. SimbA is an extension of SIREN that allows the
inclusion of distance functions and feature extractos dynamically.

(4) SELECT * FROM |(5) SELECT *

FROM TABLE1 |FROM TABLE1

WHERE SIGNATURE |WHERE ID IN (1,2,3,6,9..)

NEAR (SELECT SIGNATURE FROM TABLE2 |AND att2 = ’landscape’;

WHERE ID = 1) RANGE 2 USING euclidean |

AND att2 = ’landscape’; |
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Fig. 2. (a) Sequence to execute relational division in RDBMS. (b) Our proposed
sequence to execute the similarity-aware division.

Finally, FMI-SiR [17] is a module that uses interface and resource exten-
sions provided by Oracle to implement DBMS-linked data types, feature extrac-
tors, distance functions and indexes for similarity-based retrieval. The module
is implemented as a C++ Oracle library and defines methods in SQL that maps
to C++ functions, such as the one in Statement 6. Then, the function can be
used in any SQL query as part of the WHERE clause, such as in the statement
in 7 that executes the same range query illustrated in Statement 4.

(6) CREATE FUNCTION |(7) SELECT *

euclidean_distance |FROM TABLE1

(signature BLOB, signature2 BLOB) |WHERE euclidean_dist(signature,

RETURN float AS |(SELECT signature FROM

LANGUAGE C LIBRARY libfmisir |TABLE2 WHERE id = 1)) <= 2

NAME "euclideanDistance" |att2 = ’landscape’;

WITH CONTEXT; |

During query execution, the RDBMS changes context from SQL to C++,
executes the similarity algorithm and returns the result to the RDBMS which
continues to process the query. The query processor can manipulate the invoca-
tion anywhere in the query plan, allowing query optimization.

4 Including the Similarity-Aware Division Operator in a
Commercial RDBMS

This section details our proposed inclusion of the similarity-aware division oper-
ator on Oracle RDBMS with FMI-SiR library attached to it.

Figure 2a illustrates the RDBMS’s architecture to execute the original Rela-
tional Division. In Step 1a, the user writes the query in SQL using a Statement
such as 1, 2 or 3. In Step 2a, the query is submitted to the query interpreter
for parsing. Step 3a optimizes the query based on relational algebra’s rules and
on access cost and data’s statistics. This optimized plan is executed in Step 4a.
Finally, the query result is outputted to the user in Step 5a.
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We propose to do the same for the Similarity-Aware Division. As illustrated
in Fig. 2b, first we propose intuitive syntaxes to represent this operator using an
SQL with support to similarity operators (Step 1b). Then, we map these syntaxes
to a SQL executable by the RDBMS (Step 2b). We study these syntaxes’ runtime
execution inside the RDBMS and obtain hints to when each syntax is the fastest.
These hints can be used during the query optimization (Step 3b). Finally, an
improved query is rewritten and executed by the RDBMS (Step 4b) using a
similarity retrieval module. The query result is outputted to the user in Step 5b.

4.1 The Proposed Syntax for Similarity-Aware Division

We studied the division’s SQL statements from the works of Matos et al. [9] and
Gonzaga et al. [10] and carefully designed strategies that allowed us to create
similarity-aware versions for them.

Experimental evaluations in their work show that the counting approach
(Statement 1) is the most efficient to execute the original relational division.
Unfortunately, this approach cannot be efficiently adapted to resolve similarity
division. As illustrated in Statement 1, for each group in the dividend, this app-
roach counts how many tuples are equal to the tuples in the divisor. By equality,
each tuple in the group matches exactly one tuple in the divisor. However, by
similarity, a single tuple in a group can be similar to multiple tuples in the divi-
sor, i.e., a single tuple can match all the tuples in the divisor and thus qualify its
group or two distinct tuples in a group can be similar to the same tuple in the
divisor. In these scenarios, the number of tuples that are similar to the tuples in
the divisor is uneven for each group. Some groups can have more tuples, fewer
tuples or equal tuples and still qualify for the operation.

The similarity operators can be represented in SQL via user defined functions,
such as in Statement 7, or by extension of the SQL’s syntax, such as in State-
ment 4. We choose the latter approach to represent the Similarity-Aware Division
operator, in Step 1b, as it allows the manipulation of complex data in a similar
manner to regular data types, such as number and characters. The execution of
these operations is implicit to the user. In this regard, we employed SIREN’s
similarity-oriented SQL. To include similarity comparison in our designed adap-
tations, we changed the comparisons originally performed by equality in the
statements. The intra-relation comparisons are now represented by means of a
distance function and a threshold. The inter-relation comparison is provided by
joining the dividend relation with its grouping relation and projecting the fea-
ture vectors along with the group identifier instead of the primary keys from the
original relation.

The Subset approach requires a similarity difference operator. To represent
this operator we added a new syntax rule to the SQL, illustrated in Statement 8.
This novel syntax rule follows the same principles of other similarity operators
in the employed extended SQL [15]. The phrase RANGE EXCEPT expresses the
similarity difference operator, the keyword NEAR provides the similarity threshold
for each attribute participating in the operation and the keyword USING specifies
the respective distance functions.
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The Statements 8 and 9 adapts the Subset and the Double Negation
approaches to perform similarity division and answer the query of our toy dataset
in Fig. 1: “What products have all the requirements of the industrial quality
control?”. In both statements relation ScrewThreads is the dividend, relation
StandardSample is the divisor and SThreadGroups is the resulting table from an
grouping algorithm that relates each tuple from ScrewThreads to their respec-
tive group and the attribute ID is replaced by groupID.

(8) SELECT groupIDs FROM |(9) SELECT DISTINCT groupID

(SELECT DISTINCT groupId |FROM SThreadGroups ST1

groupIDs FROM SThreadGroups) |WHERE NOT EXISTS(

WHERE NOT EXISTS( | SELECT Pictures FROM

(SELECT Pictures FROM StandardSample) | StandardSample S

RANGE EXCEPT | WHERE NOT EXISTS(

(SELECT Pictures FROM ScrewThreads | SELECT * FROM ScrewThreads

JOIN SThreadGroups ON | JOIN SThreadGRoups ON

ID = ElementID stg WHERE | ID = ElementID ST2 WHERE

stg.groupID = groupIDs) | ST1.groupID = ST2.groupID

) NEAR 1 USING euclidean)); | AND ST1.Picture RANGE

| S.Picture NEAR 1 USING

| euclidean));

4.2 Algorithms to Perform the Similarity-Aware Division

To execute the similarity-aware division the statements 8 and 9 are rewritten
to the supported SQL in Oracle where similarity algorithms are represented
in user-defined functions, as in Step 2b. We choose this module for similarity
retrieval because it delegates the execution of this operators to the RDBMS
query processor, allowing optimization by query rewriting. Statements 10 and
11 represent the rewriting of Statements 8 and 9.

(10) SELECT groupIDs FROM |(11) SELECT DISTINCT groupID

(SELECT DISTINCT GroupId |FROM SThreadGroups S

groupIDs FROM SThreadGroups) |WHERE NOT EXISTS(

WHERE NOT EXISTS( | SELECT Pictures FROM

SELECT * FROM TABLE(SIMEXCEPT( | StandardSample S2

CURSOR(SELECT Pictures FROM | WHERE NOT EXISTS(

StandardSample),CURSOR(SELECT | SELECT * FROM ScrewThreads

Pictures FROM ScrewThreads JOIN | JOIN SThreadGRoups ON

SThreadGroups ON ID = ElementID | ID = ElementID ST2

stg WHERE stg.groupID = groupIDs), | WHERE S.groupID = S2.groupID

’euclidean’,’1’) | AND euclidean_dist(S.Picture,

); | S2.Picture) <= 1));

The Double Negation syntax in Statement 11 may employ a metric access
method to speed the operation. The Subset syntax, in Statement 10, requires
a similarity difference algorithm. Though there are algorithms proposed in the
literature, they have limitations such as only working for unidimensional data
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or not allowing tuples from the same relation to be similar to each other. Thus
we propose a similarity difference algorithm named SIMEXCEPT that works as it
follows: Given two relations R and S, our novel algorithm iteratively builds an
in-memory index for each attribute of S. The elements from the R relation are
used as the query center. If an element appears in every index result from the
same query object, the query object is excluded from the answer, i.e., there is a
similar element to that query object.

As well as extending well-known SQL division statements, we implemented
the algorithms described in Sect. 2.2 as table functions on FMI-SiR through
Oracle’s interface ODCITable. This implementation allows the algorithms to be
invoked in an SQL statement such as in Statement 12, that invokes the Full
Table Scan algorithm. This approach is the same used to implement the simi-
larity difference algorithm from Statement 11. In both cases, the first parameters
are tables resulted from queries - this approach allows the operator to be invoked
anywhere in the query plan - and the last two indicate the distance functions
and the similarity threshold.

(12) SELECT * FROM TABLE(FTSDivide(CURSOR(SELECT * FROM ScrewThreads),

CURSOR(SELECT * FROM StandardSample),CURSOR(SELECT * FROM SThreadSamples),

‘euclidean’, ‘1’));

5 Experiments and Discussion

We created synthetic datasets that represent possible input relations to per-
form similarity division. Remember that the division is represented as T1 [L1 ÷
L2] T2 = TR. Therefore, in our experiments, the dividend (T1) is defined as
T1(ID,SIGNATURE) and the divisor (T2) is defined as T2(SIGNATURE). For
each relation, respectively, L1 and L2 contain the attribute SIGNATURE that is a
five-dimensional array with values varying from 0 to 1 stored in the RDBMS as
a BLOB. The experiments were to evaluate the scalability of the algorithms in
an RDBMS environment. We tested the algorithms in an Intel 2 machine with
CPU of 2,67 GHz, 32 GB of RAM running Ubuntu. The Oracle version used was
the 12c with the FMI-SiR library installed.

Unless stated otherwise, the cardinality of the dividend is 100 thousand tuples
while the cardinality of the divisor is 5 tuples. We did not create large divisor
relations because division with too many requirements is likely to be useless,
returning a very limited or empty result set. A huge number of tuples in the
divisor makes the division operation too restrictive as it requires groups to have
tuples similar to all of them. The total number of groups is fixed to 10 but only
one group is considered valid, that is, meets all the requirements. The tuples
where inserted on the group in an exponential fashion, that is, the higher the
group’s id, the more tuples it has. In the graphics and the following paragraph
Subset refers to statement 10, Double Negation refers to Statement 11, the
Indexed Double Negation refers to the same statement, however, access is done
via index. Indexed Algorithm refers to the implementation of the algorithm
that uses a pre-built index - the same used in the Indexed Double Negation -
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(a) Dividend Size (b) Divisor Size

(c) Number Of Groups (d) % Valid Groups

(e) Similarity Threshold

Fig. 3. Runtime of similarity-aware division algorithms. Consider the operation repre-
sented as T1 [L1 ÷ L2] T2 = TR. a–is the runtime when increasing the number of tuples
of the dividend (T1). b–is the runtime when increasing the number of tuples of the
divisor (T2). c–is the runtime when increasing the number of groups in the dividend
relation. d–is the runtime when increasing the number of tuples of the quocient/valid
groups (TR). e–is the runtime when increasing the similarity threshold between
the attributes in L1 and L2, that is attribute in the dividend that is compared with
the attribute in the divisor.

and Full Table Scan refers to the implementation of the algorithm that reads
the dividend table fully. The y-axis is always presented in log scale.

Each of these alternatives perform the similarity division operation in dif-
ferent manners. The Subset and the Double Negation (Statements 10 and 11,
respectively) are SQL statements containing a set of operations and/or sub-
queries to which the RDBMS has freedom to choose the best execution plan
while the Indexed Algorithm and Full Table Scan algorithm are the imple-
mentations of the two state-of-art algorithms describe 2.2 in section executed by
the DMBS through statements similar to Statement 12.
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The Indexed Double Negation is a variant of the Double Negation query
that relies on index to speed up execution. It is interesting to notice that, thanks
to the index, the former variant presented very satisfiable results in almost every
experiment, the latter presented the worst execution time in nearly every case,
with the sole exception when increasing the similarity threshold.

Figure 3a shows the run time of the algorithms when increasing the dividend
size. The Indexed Double Negation, was the fastest in every case tested. This
is because of the inter-table comparison task. While Indexed Algorithm and
Full Table Scan algorithm load the entire grouping relation in memory, this
algorithm only joins the query result elements with a filtered grouping relation.
The Full Table Scan and the Subset are the reverse versions of each other.
While the former builds an index over divisor table, the later builds the index
over the dividend table but both load the dividend relation in memory, hence
they are so slow.

Figure 3b shows the runtime of the algorithm when increasing the divisor size.
The divisor size varies from 5 to 100 tuples. The Indexed Double Negation
algorithm presented an increasing curve, implying that the number of tuples in
the divisor relation is directly related to this algorithm’s performance. High val-
ues of divisor tuples also affected the Full Table Scan algorithm as it requires
more accesses to a small index. The other algorithms did not show much impact
regarding this parameter.

Figure 3c shows the run time of the algorithms when increasing the total num-
ber of groups, varying from 10 groups to 100. The Indexed Double Negation
showed to be more sensitive to this parameter as increasing the number of groups
also increases the number of calls to the intern query where the index is accessed
resulting in more disk access.

Figure 3d shows the run time of the algorithms when increasing the number
of valid groups, i.e., groups that satisfy the requirements. The total number of
groups was fixed to 40. The x-axis represents the percentage of valid groups
where 0.01 is 5 groups and 1 is 40 groups. This parameter did not seem to affect
the algorithms.

Figure 3e shows the run time of the algorithms when increasing the similarity
threshold. The value represents the percentage of the dataset’s estimated diame-
ter, in which 0 means identity comparison and 1 means all elements are similar to
each other. This parameter did not seem to affect the Indexed Algorithm and
Subset, however, the Full Table Scan and Indexed Double Negation showed
to be more sensitive to large threshold values. This is due to a well-known prob-
lem regarding indexes in general, provided that they lose performance in queries
with low selectivity. The Full Table Scan algorithm has an index over the
divisor table, the index is degrading fast to a linked-list. As for Indexed Double
Negation, while still using the very same index of Indexed Algorithm it differs
in the access form and the memory space used to retrieve the elements.

Discussion: As shown in Fig. 3, if there are no existing indexes for the complex
attributes in the dividend relation that are compared with the complex attributes
in the divisor relation, the Subset approach is more efficient than the Full
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Table Scan algorithm in all experimented cases. If there are indexes there are
cases when the Index Double Negation approach is more efficient than the
Indexed Algorithm. Thus, during the rewriting step from the extended SQL
to an Oracle-executable SQL - discussed in Sect. 4.2 - the analyzer must check
divisor’s size and the number of groups. For increasing values in the divisor or in
the number of groups, regardless of how the SQL statement is written, it must
be rewritten to perform the Indexed Algorithm. However, on smaller values, it
must be rewritten to perform the Indexed Double Negation approach.

6 Conclusion

In this article, we propose a new SQL syntax for the similarity-aware division
operator based on the relational division syntax and an similarity-oriented SQL.
We then studied their implementations and compared them with two state-of-art
algorithms to perform the similarity-aware division operation on a commercial
database, namely Oracle. After comparing each implementation in order to find
bottlenecks in many different situations, we identified hints to when one algo-
rithm is better then the other. We found that if there is an existing index for
the attribute in the dividend that is compared with an attribute in the divisor
relation, the best approach is to perform similarity division on a small number of
divisor elements or groups is the Indexed Double Negation while for greater
values the Indexed Algorithm should be used. When there is no index, the
Subset is the most appropriated algorithm to be used.

Future works include extending the experiments to real datasets and using
the hints to rewrite the similarity-aware division operator query to the appropri-
ated statement accordingly to the evaluated parameters, providing a more effi-
cient way to perform the operation, i.e., if one write a query using the Indexed
Double Negation and the divisor is too small, the query analyzer rewrites the
query to perform the operation using the Indexed Algorithm. Considering the
complexity to write these queries, we find interesting to evaluate the necessity
of a new keyword, to represent the operation in a more intuitive manner similar
to the work of [11].
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Abstract. In each of the phases of a Big Data analysis process, data
quality (DQ) plays a key role. Given the particular characteristics of the
data at hand, the traditional DQ methods used for relational databases,
based on quality dimensions and metrics, must be adapted and extended,
in order to capture the new characteristics that Big Data introduces.
This paper dives into this problem, re-defining the DQ dimensions and
metrics for a Big Data scenario, where data may arrive, for example, as
unstructured documents in real time. This general scenario is instanti-
ated to study the concrete case of Twitter feeds. Further, the paper also
describes the implementation of a system that acquires tweets in real
time, and computes the quality of each tweet, applying the quality met-
rics that are defined formally in the paper. The implementation includes
a web user interface that allows filtering the tweets for example by key-
words, and visualizing the quality of a data stream in many different
ways. Experiments are performed and their results discussed.

Keywords: Data quality · Social networks · Big Data

1 Introduction and Motivation

The relevance of so-called Big Data has been acknowledged by researchers and
practitioners even before the concept became widely popular through media
coverage [1]. Although there is no precise and formal definition, it is accepted that
Big Data refers to huge volumes of heterogeneous data that must be ingested at a
speed that cannot be handled by traditional database systems tools. Big Data is
characterized by the well-known “4 V’s” (volume, variety, velocity, and veracity).
implying that not only the data volume is relevant, but also the different kinds
of structured, semistructured and unstructured data, the speed at which data
arrives (e.g., real time, near real time), and the reliability and usefulness of such
data. However, it is also acknowledged that most of the promises and potential
of Big Data are far from being realized. This gap between promise and reality is
due to the many technical problems and challenges that are usually overlooked,
although the database research community has warned about them, namely
heterogeneity, scale, timeliness, complexity, and privacy, among other ones [3].

In each of the phases in a Big Data scenario, data quality (DQ) plays a key
role, as the very nature of the “4 V’s” suggest. The largely studied concepts
of DQ must be revisited and re-studied in a Big Data context, since, as it will
be discussed in this paper, many new problems appear, which are not present
c© Springer Nature Switzerland AG 2018
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in traditional relational databases scenarios [8]. Intuitively, each of the “V’s”
define a different context for data analysis, and therefore, for DQ. Thus, there
is a strong relationship between the work about contexts in DQ (e.g., [7,11])
and the problems of DQ in Big Data, since different notions of quality must
be used for different types of Big Data. In particular, this paper deals with
DQ in a real-time scenario, specifically Twitter feeds. This is a typical scenario
where data come at high speed, highly unstructured, and with very volatile
reliability and usefulness. All of these characteristics are the complete opposite
of a relational database analytics scenario, where data are highly structured,
and cleaned, transformed and analyzed offline. Therefore, DQ must be addressed
considering these differences.

In spite of the relevance of the topic, there has been not much work so far,
in particular regarding the implementation of quality processes over Big Data
sources. This paper tackles this issue. More concretely, the contributions of this
work are: (1) The definition of DQ dimensions and metrics in a Big Data scenario
where data arrive as unstructured documents and in real time. Traditional DQ
dimensions are redefined, to address those particular characteristics. This general
scenario is instantiated to study the concrete case of Twitter feeds. (2) The
implementation of a system that acquires tweets in real time, and computes the
quality of each tweet, applying the quality metrics defined formally in the paper.
The implementation includes a web user interface that allows filtering the tweets
e.g., by keywords, computing their data quality, and visualizing the DQ, not
only the overall one, but also along each dimension. (3) An experimental study
of the quality of the feeds, using the tool described above. This study is aimed
at showing how DQ can be used to determine the attributes that characterize
the different quality of the tweets, filter out bad quality data, or validate the
conclusions drawn in the data analysis phase.

The remainder of the paper is structured as follows. Section 2 discusses
related work. In Sect. 3, the traditional DQ dimensions and metrics are presented,
while Sect. 4 studies the DQ dimensions and metrics for Big Data. Section 5
presents the computation of DQ metrics to evaluate the quality of a tweet based
on a collection of weighted metrics. Section 6 introduces the implementation of
the system, and Sect. 7 presents an experimentation and reports and discusses
the results. Section 8 concludes the paper.

2 Related Work

Ensuring the quality of data in databases has long been a research topic in the
database community. Research in DQ has resulted in the definition of dimensions,
metrics, and methods to assess the quality of a database [16], and also in an
ISO standard specification1. In spite of this, classic research considers DQ as
a concept independent of the context in which data are produced and used,
which is clearly not enough to solve complex problems, particularly in current
times, when, among other facts, ubiquitous computing requires accounting for
space and time when a query is being answered. Strong et al. [14] realized this
problem, and claimed that data quality is highly dependent on the context,
1 http://iso25000.com/index.php/en/iso-25000-standards/iso-25012.

http://iso25000.com/index.php/en/iso-25000-standards/iso-25012
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which became an accepted fact thereon. The rationale for this conclusion was
based on the fact that, similarly to quality in general, DQ cannot be assessed
independently of the consumers who choose and use the products (e.g., [11]).
The former proposes a system where contextual information allows evaluating
the quality of blood pressure data. The latter proposes a framework that allows
context-sensitive assessment of DQ, through the selection of dimensions for each
particular decision-maker context and her information requirements.

There is a large corpus of work regarding data context management with
a wide variety of uses. It is widely accepted that most modern applications,
particularly over the web, are required to be context-aware. Bolchini et al. [6]
presented a survey of context models, with a well-defined structure, that identi-
fied some important aspects of context models. In particular, they remark that
models must account for space, time, context history, subject, and user profile.
Preferences in databases have also been extensively studied [7,13]. In the multi-
dimensional databases domain, [10] proposes to define the context through the
use of logic rules, representing the database as a first-order logic theory.

Recently, [4,8] study the particularities of data quality in the context of Big
data, that is, how the “4 V’s” mentioned in Sect. 1 impact on well-known DQ
dimensions and metrics used in traditional structured databases [5]. The main
message in [8] is that Big Data quality should be defined in source-specific terms
and according to the specific dimension(s) under investigation. In some sense,
this means that the context is again present in the Big Data scenario when
quality is addressed. The present paper builds from these studies, as will be
clear in the remaining sections.

3 A Short Background

Data Quality (DQ) is a multi-faceted concept, represented by different dimen-
sions, each one referring to a different quality aspect [5,14]. A DQ dimension
captures a facet of DQ, while a DQ metric is a quantifiable instrument that
defines the way in which a dimension is measured. Since a DQ dimension is in
general a wide concept, an associated metric allows specifying a concrete meaning
for the dimension. As a consequence, many different metrics can be associated
to the same DQ dimension, and their application will measure several different
aspects of the dimension. In a broader sense, the quality of an object or service
represents how much this object or service fits the needs to solve a given prob-
lem. That is, quality is not absolute to the object or service per se, but relative
to the problem to be solved. This is the approach followed in this work.

3.1 Dimensions and Metrics

While a large number of DQ dimensions were proposed in the literature, there
is a basic set of them, which are generally acknowledged to be representative of
the quality of data [5,12]. This set includes accuracy, completeness, consistency,
freshness (or timeliness), among other ones.

– Accuracy: Specifies how accurate data are, and involves the concepts of
semantic accuracy and syntactic accuracy. The former refers to how close is
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a real-world value to its representation in the database. The latter indicates
if a value belongs to a valid domain. In other words, it describes the closeness
between a value v and a value v′, considered as the correct representation of
the real-life phenomenon that v aims at representing. For example, if someone
wants to type the name “John” but typed “Jhn”, there is an accuracy issue.

– Completeness: Represents the extent to which data are of sufficient breadth,
depth, and scope for the task at hand. For relational databases, this can be
characterized as the presence/absence and meaning of null values, assuming
that the schema is complete.

– Redundancy: Refers to the representation an aspect of the world with the
minimal use of information resources.

– Consistency: Refers to the capability of the information to comply without
contradictions with all the rules defined in a system. For example, in a rela-
tional database constraints are defined to guarantee consistency.

– Readability: Refers to the ease of understanding of information. This could be
the case when, for example, a hand-written paragraph is scanned, and some
of the characters are not well defined.

– Accessibility: Also called availability, is related to the ability of the user to
access the information.

– Trust: Refers to how much the information source can be trusted, and there-
fore to what extent data are reliable. For example, people may rely on Face-
book or Twitter posts to find out the quality of a movie, or check the IMDB
site at http://www.imdb.com, which might provide more reliable data.

– Usefulness (cf. [8]): This is related to the benefits a user can obtain when
using the data to produce information. For example, to observe technical
details present in a picture of a painting, a user would choose the image
with the highest contrast. Again, this is also a contextual quality dimension:
a lower-quality picture may be enough for some users or for some kinds of
requirements, while clearly not enough when the details are needed.

To quantify these dimensions and to be able to assess DQ according to them,
the concept of metrics must be introduced. Mathematically, a DQ metric for a
dimension D is a function that maps an entity to a value, such that this value,
typically between 0 and 1, indicates the quality of a piece of data regarding the
dimension D. For a given dimension, more than one metric could be defined
and combined to obtain a concrete quality value. Note that metrics are highly
context-dependent. For example, the readability of a hand-written text may be
influenced not only by the text content, but also by the way the user writes. The
same occurs with metrics for other DQ dimensions.

3.2 Big Data Quality

In a Big Data context, datasets are too large to store, analyze, handle or process,
for the traditional database tools. As explained above, Big Data are character-
ized by the well-known “4 V’s”, namely Volume (size of the datasets), Velocity
(speed of incoming data, e.g., the number of tweets per second (TPS)), Vari-
ety (refers to the type and nature of the data), and Veracity (the reliability of
the data, which, in this context, is greatly volatile, even within the same data

http://www.imdb.com
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stream). In the literature, many other “V’s” can be found, but only these four
will be considered in the present work. According to the structure of data, they
can be classified in: (a) Stuctured, where each piece of information has an associ-
ated fixed and formal structure, like in traditional relational databases; (b) Semi
Structured, where the structure of the data has some degree of flexibility (e.g.,
an XML file with no associated schema, or a JSON response from an API, whose
structure is not completely defined); (c) Unstructured, where no specific struc-
ture is defined. Further, the United Nations Economic Commission for Europe
(UNECE) classifies Big Data according to the data sources in: Human sourced ;
Process mediated ; and Machine generated [15]. These are explained next.

– Human-sourced data: Information people provide via text, photos or videos.
Usually, this information lacks of a fixed structure, like the texts written in
natural language. Therefore, the information streamed here is loosely struc-
tured and often ungoverned. Examples are social networks posts (Facebook,
Twitter), YouTube videos or e-mails, and, in general, data coming from social
networks.

– Process-mediated data: This is the information that concerns some business
events of interest, like the purchase of a camera in an e-commerce site or the
sign-up of clients in a system. This information is highly structured, such as
relational databases, coming from traditional Business systems.

– Machine-generated data: Refers to the data resulting of the tracking of sensors
of the physical world (e.g., temperature sensors, human health sensors, GPS
coordinates, etc.). This type of source is associated with very large amounts
of data, given the constant tracking of the sensors. In general, these are data
coming from the so-called Internet of Things.

Given these characteristics of Big Data, the DQ along the dimensions
explained in Sect. 3.1 must be quantified using metrics specific to such a context,
therefore the typical quality metrics used for structured, process-mediated data
must be adapted to this new situation. This is studied in the next section.

4 Data Quality Dimensions and Metrics in a Big Data
Context

This section studies how the DQ dimensions can be used in a Big Data scenario.
The study focuses in human-sourced generated data. The next sections describe
how these dimensions can be applied to address the quality of Twitter2 streams.
Metrics for the dimensions defined here are presented later.

– Readability ( r). Given a dictionary D, and a collection of words considered
as valid in a document x, the Readability of x, denoted r(x) is defined as the
quotient between the valid words in x and all the words in x, if any, otherwise
it is zero. That is, given a set W of the words (valid and non-valid) that are
present in the document x, the readability of x is

r(x) =

⎧
⎨

⎩

#{w∈W ∧ w∈D}
#{w∈W} if W �= ∅

0 if W = ∅
2 http://www.twitter.com.

http://www.twitter.com
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In the remainder, the problem to be addressed will refer to tweets in a Twitter
stream, thus x will represent a tweet.

– Completeness ( c). Consider an object x in domain, and an array propsp that
contains the names of the properties required to describe x for a given problem
p; assume that x is represented as a collection of (property, value) pairs of
the form {(p1, v1), . . . , (pn, vn)}, such that vi is a value for pi. If a property
pi ∈ x has associated a non-null value vi, it is called well-defined. There is
also a function validPropsOf that, given an object x retrieves the set of
well-defined properties in it. The Completeness of x, denoted c(x) tells if all
the properties in propsp are well-defined in x. It is computed as:

c(x) =

⎧
⎨

⎩

1 if propsp ⊂ validPropsOf(x)

0 otherwise

Example 1. Given an object (a tweet) x, such that x = {text: “I like Bitcoin”,
user: null}, and an array propsp = [text], it follows that c(x) = 1. Consider now
propsp = [text, user]. In this case, c(x) = 0, since the user property is not well
defined, because it has a null value.

– Usefulness (u). Since this paper deals with human-sourced datasets, it will
be assumed that this property is directly related to the possibility of (among
others):

• (a) Detecting a sentiment, whether positive or negative, in an object x, say
a tweet or post. Therefore, if x reflects a positive or negative feeling about
a certain topic or person, x will be considered useful. If the sentiment
is neutral, or no sentiment could be computed by a Natural Language
Processing (NLP) tool, x will be considered not useful.

• (b) Detecting the domain or topic of x, for example, politics, marketing,
sports, and so on.

Many other ways of assessing usefulness could be considered, but this is out-
side the scope of this paper. In the remainder, Usefulness is defined as:

u(x) =

⎧
⎨

⎩

1 if (sentiment(x) = P ∨ sentiment(x) = N)

0 otherwise

– Trustworthiness ( t). In a social network (or, in general, for human-sourced
datasets) anyone in general can publish any kind of information anywhere,
whether truthful or not. Although this is mentioned here for completeness,
validating the trustfulness of a post is outside the scope of this paper.

5 Computing Data Quality

As discussed above, the definition of DQ is not the same for all contexts and
problems, but normally it depends on them. That is, DQ depends on the prob-
lem and the domain model at hand. This section provides a wide and general
definition of DQ, that can be instantiated as needed.
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Definition 1 (Problem (p)). A problem p is defined as a string or sequence
of characters that defines the problem to be solved in a human-readable way.

Example 2. A problem can be defined as: Given this Twitter feeds stream, what
are the best quality tweets for the hashtag #2020Elections?

Definition 2 (Domain Model (X)). The set of objects whose quality will be
measured.

Example 3. For the case that will be studied in the next section, the domain
model is defined as a set of Twitter feeds.

Definition 3 (Data Quality Metric (mXp)). A Data Quality Metric is a
function mXp : X → [0 . . . 1], such that, given x ∈ X, and a problem p, then
mXp(x) = 0 if x contains data of very poor quality for the given problem p, and
mXp(x) = 1 if x contains data of very good quality to fit the problem.

Definition 4 (Weight of a Data Quality Metric (mXp.weight)). Each DQ
metric has an associated weight, which is a scalar value between 0 and 1, that
measures the relevance of the metric for solving the problem p.

Definition 5 (Data Quality (QXp)). Consider a problem p, a domain X, and
a set of metrics MXp = {m1,m2, . . . ,mn}. Each mi is a DQ metric function.
Note that n is an integer number greater than zero and the set MXp is finite.
Data Quality (QXp) is a function QXp : X → [0 . . . 1] such that QXp(x) =
g(m1,m2,...,mn)(x), where g is a function g : (X → [0, 1])n → (X → [0 . . . 1]).

In this paper, the quality of a tweet x will be calculated as Q(x) = g(r,c,u)(x) =∑
m={r,c,u} m(x) ∗ m.weight, where r, c and u are the metrics for Readability,

Completeness and Usefulness respectively, defined in Sect. 4.

Example 4. The Quality value of the following tweet x, using the weights values
r.weight = 0.5, c.weight = 0.25 and u.weight = 0.25, is computed as follows.

- text:‘‘I love Big Data Quality m#a!sc["
- id: 1
- coordinates: [48.864716, 2.349014]

– Readability ( r)

r(x) =
#{I, love,Big,Data,Quality}

#{I, love,Big,Data,Quality,m#a!sc[}

r(x) =
5
6

= 0.833

– Completeness ( c). Consider that propsp = {text, id}. Then:

{text, id} ⊂ {text, id, coordinates}, and c(x) = 1.

– Usefulness (u). The text provided expresses positive sentiment, thus:

sentiment(x) = P, and u(x) = 1.

Finally, the quality value for x is Q(x) = 0.83 ∗ 0.5 + 1 ∗ 0.25 + 1 ∗ 0.25 =
0.915.
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6 Implementation

This section presents and describes the implementation of the concepts explained
in previous sections, applying them to analyze the quality of Twitter feeds
streams. The architecture is described first, detailing the technological compo-
nents and how they interact with each other for capturing, filtering, and display-
ing the results. Finally, the user interface is described. The goal of the implemen-
tation is to develop a system that can let users to analyze a stream of Twitter
feeds, based on a particular keyword-led search, and visualize the results to gain
insight on the quality of the requested data.

The core of the system is an Apache Kafka3 cluster of three brokers. Kafka
is a distributed streaming platform for capturing, processing and storing data
streams. The implemented cluster has three nodes running Kafka. A Zookeeper4
service coordinates the cluster and manages the message topics. Besides the
Kafka core, there are three components, one to produce data, one to consume
data, and one to process and display data. Figure 1 illustrates these components
and their orchestration. The components are briefly described next.

– Kafka Producer Service: A Java 8 program exposing a REST API using the
Spring Boot5 framework. This API starts searches over the Twitter API and
publishes the data to a particular topic.

– User Interface (UI) Proxy: In order to show the results, the UI needs a proxy
that consumes the data from the producer and sends it to the UI via a persis-
tent web socket connection, using the socket.io6 framework. Also, this Node.js
service uses express.js framework in order to expose a REST API, through
which the UI can request data in a new search.

– Web UI: The web UI is built on top of the dc.js library, which uses the Big
Data processing framework crossfilter.js and the data visualization library
d3.js. This UI is composed of five parts: (a) The general DQ results; (b)
The DQ results per dimension; (c) The visualization of the presence of a
dimension in the stream, that is, the percentage of tweets with values for
each dimension; (d) The Tweets vs. re-tweets part, comparing DQ values
considering or leaving out re-tweets, respectively; and (e) The verified vs.
unverified users part, indicating the DQ for tweets coming from verified or
unverified users. Of course, this UI can be easily extended according to the
analysis needs, to gain insight on the DQ of the data streams.

The data flow works as follows. First, the UI performs a request to the UI
Proxy via the REST API in order to start a search using some query, indicat-
ing the topic ID to use (just a randomly-generated name), and some optional
advanced parameters (a list of completeness properties to analyze, and the
weights of each DQ metric). Then, the Proxy performs a REST API call to a
Kafka producer service instance in order to start the ingestion of the feeds using
those parameters. At this point, the Kafka producer service creates the topic
3 https://kafka.apache.org/.
4 https://zookeeper.apache.org/.
5 https://projects.spring.io/spring-boot/.
6 https://socket.io/.

https://kafka.apache.org/
https://zookeeper.apache.org/
https://projects.spring.io/spring-boot/
https://socket.io/
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Fig. 1. Architecture diagram.

involved and starts a Kafka producer that fetches the feeds from the Twitter
API and publishes its to the topic. After this initialization, the UI proxy starts
a Kafka consumer peeking the feeds from the respective topic, and forwards the
information to the UI. Finally, the UI processes the records using crossfilter.js
and shows the data in real time using the dc.js library.

Remark 1. The system may scale horizontally as needed, just adding more Kafka
producer services. To scale the Kafka Cluster more workers can be added, and
Zookeeper will take care of their coordination.7

7 Experiments

This section describes the experiments performed over the implementation pre-
sented in Sect. 6, reports the results, and discusses them.

7.1 Use-Cases Description

The goal of the experiments is to illustrate how the quality of a Twitter stream
can be measured using the dimensions and metrics presented above. Of course,
there are countless ways in which the quality of data in tweets can be analyzed.
The experiments presented here are just aimed at showing how the concepts
discussed in previous sections can be studied using the tool presented in Sect. 6.
The quality dimensions considered in all cases are: readability, completeness, and
usefulness, with the metrics described in Sect. 4, and with the following weights:
0.5 for readability, and 0.25 for completeness and usefulness. Of course, the user
can modify the weights according to her analysis needs. The dictionary used to
7 The system is available upon request to the authors.
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check readability is given in [2] and contains 479,000 english words, including
acronyms, abbreviations and even Internet slang. To compute sentiment (for
usefulness), the Stanford CoreNLP software was used [9]. In all cases, the overall
DQ of the stream is computed, as well as each DQ dimension individually, and
the comparisons allowed by the UI (indicated in Sect. 6) are displayed. The
experiments are aimed at:

– (a) Comparing the DQ of the whole stream of tweets, against the DQ of a
stream filtered by a set of keywords related to some topic. The hypothesis is
that the latter are more likely to have better quality than the former.

– (b) Performing the same comparisons above, but requesting the presence of
different sets of properties (that is, changing the requested schema). This will
give insight on which are the properties more likely to be present in a stream
of tweets, and investigating the impact on this of the keyword filtering.

– (c) Determining if there is a correlation between the DQ of a stream, and the
percentage of re-tweeted tweets that it contains. The hypothesis here is that
a tweet with a high number of re-tweets is likely to be of high quality.

– (d) Comparing the quality of tweets from verified and not-verified users.

Next, the problems used to address the goals above, are described.

Problem 1. The first problem p1 consists in analyzing the tweets in a stream,
with no keyword filtering, i.e., all tweets provided by the Twitter API. The UI
allows to indicate the set of properties considered for schema completeness. In
this case, propsp1 = {id, id str, lang, retweet count, usr, text, source}.

Problem 2. For the second problem p2, the same set propsp1 is used, but the
stream is filtered using the keywords: {Trump,Obama,Hillary}.

Problem 3. The third problem p3 consists in analyzing the tweets in a stream like
in the previous problem, but considering a larger set of properties, namely all the
ones supported by the UI. This allows to study how are the properties distributed
in Twitter streams, that is, how many tweets contain the space coordinates or
the language, for example.

Remark 2. Again, it must be clear that it is not intended here to draw conclu-
sions on the DQ of Twitter feeds, but to suggest how the concepts and tools
presented in this paper can be used to analyze such feeds.

7.2 Results and Discussion

Performance results were quite satisfactory. Tweets were captured and displayed
at a rate of 2000 per minute (for non-filtered tweets), and at about 600 per
minute, for filtered tweets, depending on how many tweets pass the filters.

The results obtained for the problems above are commented next, and illus-
trated by graphics. The figures show the status of some runs, such that after
several thousands of consumed tweets, the results become stable, that is, the
graphs do not change significantly.



Data Quality in a Big Data Context 169

Fig. 2. Results for problem 1.

Figure 2 shows a portion of the UI, displaying the results obtained from
running the system with the conditions of Problem 1. In the upper part, the Y-
axis represents the number of tweets, and the X-axis the DQ values, in intervals
of 0.1. It can be seen that the general DQ is low (most of the tweets fall on the
left part of the graph). Readability, completeness and usefulness are shown in
the lower part. The first one is displayed as a boxplot, while the other two are
displayed as bar charts. Since Readability is low, most of the values in the boxplot
are outliers. About 55% of the tweets have values in all the fields in propsp1 , and
more that 70% of the tweets have usefulness = 0. Results also showed (graphics
omitted for the sake of space) that all DQ values are better when only re-tweeted
tweets are considered, and for tweets posted by verified users.

Figure 3 displays the results obtained under the conditions of Problem 2, using
the keywords Trump, Obama, and Hillary (an “OR” condition). The intention
is to capture tweets with political content, based on the hypothesis that their
quality should be better than for non-filtered tweets. It can be seen that the
general DQ is much better, and on the upper part of the right-hand side, most
of the tweets fall on the right part of the graph. Readability, completeness and
usefulness are much better than in Fig. 2, and all DQ values (like in Problem 1)
are better when only re-tweeted tweets are considered, and are also better for
tweets posted by verified users.

Figure 4 displays, for each property supported by the UI, the percentage of
tweets that contains values for that property. Only the values for Problem 1
are displayed, due to space limitations. Anyway, the set of properties that were
checked by the user is the same for Problems 1 and 2. The darker portion of the
circles indicates the percentage of tweets containing no value for the property.
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Fig. 3. Results for problem 2.

Fig. 4. Completeness for problem 1.

It can be seen that the coordinates field (at the top-right corner) has no value
for any tweet, that is, no tweet is geo-referenced.

Figure 5, shows the results for Problem 3. Recall that in this problem, tweets
are captured like in Problem 2, but the property set includes all properties
supported by the system, for example, the spatial coordinates of the tweets.
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Fig. 5. Results for problem 3.

Figure 4 shows that this property is not satisfied by any tweet. Therefore, the
completeness dimension for Problem 3 has value 0 (given that all properties are
required to be present), which lowers the overall quality.

8 Conclusion and future work

This paper studied the particularities of assessing data quality in a Big Data
context, and presented a system that allows analyzing such quality over Twit-
ter streams in real time. Experiments performed over many different Twit-
ter streams, showed how the concepts presented and tools developed could be
applied in a real-world Big Data scenario. Still, there is plenty of room for further
work. One line of research could be oriented to define more DQ dimensions and
metrics for this or other settings (along the lines of [8]), since, as explained, this
is typical context-dependent DQ. Also, new and more sophisticated visualization
tools could extend and enhance the implemented framework. All of these will be
part of future work.
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Abstract. Well-defined dictionaries of tagged entities are used in many
tasks to identify entities where the scope is limited and there is no need
to use machine learning. One common solution is to encode the input
dictionary into Trie trees to find matches on an input text. However, the
size of the dictionary and the presence of spelling errors on the input
tokens have a negative influence on such solutions. We present an app-
roach that transforms the dictionary and each input token into a compact
well-known phonetic representation. The resulting dictionary is encoded
in a Trie that is about 72% smaller than a non-phonetic Trie. We perform
inexact matching over this representation to filter a set of initial results.
Lastly, we apply a second similarity measure to filter the best result to
annotate a given entity. The experiments showed that it achieved good
F1 results. The solution was developed as an entity recognition plug-in
for GATE, a well-known information extraction framework.

Keywords: Entity recognition · Metaphone · Text tagging · Trie
Active nodes · Fast similarity search

1 Introduction

An Information Extraction (IE) pipeline is composed by tasks aiming at extract-
ing information from unstructured sources and making it available in specific and
structured formats [1,12]. The Named Entity Recognition (NER) task aims at
finding and classifying specific entities within a text, such as organizations, cities
or drug names [4,14].

Several approaches use well-defined dictionaries as input for NER tasks [16].
The dictionaries contain lists of classified entities. They are appropriate solutions
either when the scope is limited and when there is no need to use machine
learning techniques, or when they could be used as input for a machine learning
solution. Existing solutions often use indexing structures such as suffix trees
and arrays, q-grams or q-samples. However, it is not enough to use only index-
like structures to support string exact matching algorithms. It is necessary to
take into account the existence of spelling/typing errors in the input text, thus
supporting Approximate String Matching [10]. The size of the dictionary may
also be an issue, specially if there are several dictionaries used by the same task.
c© Springer Nature Switzerland AG 2018
A. Benczúr et al. (Eds.): ADBIS 2018, LNCS 11019, pp. 173–181, 2018.
https://doi.org/10.1007/978-3-319-98398-1_12
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Approximate String Matching (ASM) has been widely studied in different
contexts, including Information Extraction (IE) and in the Named Entity Resolu-
tion (NER) task. One of the central studies was the survey by Navarro et al. [10].
In this paper, however, we do not intend to be exhaustive in this context, but to
narrow the scope with recent approaches that provide Trie-based solutions for
Approximate String Matching.

Recent studies coupling Tries with inexact matching are the works from [5,7].
They introduce the notion of valid (also called active) nodes while searching
through the tree nodes. The active nodes have a calculated Edit Distance (ED)
value which is lesser or equal than a max allowed ED value. They experimentally
showed that these approaches were superior than q-Grams based solutions. In [8],
the authors improve the active nodes computation, by incrementally computing
them and storing them in a cache, creating the ICAN/ICPAN algorithms. The
IncNGTrie [17] algorithm maintains a smaller set of active nodes, improving the
performance. The META approach [3] presents a solution based on matching over
compact indexes and that supports top-k queries. The most recent work from [15]
handles approximate matching using efficient Trie implementations, though in
the context of abbreviations, not full words. However, these approaches, or sim-
ilar solutions, have not experimented using phonetic information from the text
and dictionary, such as applying conversion using the Soundex [18] or Meta-
phone [11] algorithms. There are approaches that combine different similarity
measures into a super-metric [6], though using distinct solutions than the Trie-
based encoding, which has been shown to be effective.

In this paper we present an approach that couples a phonetic conversion
algorithm with a Trie-based encoding in a NER task. First, we transform the
given dictionary into a phonetic representation using the Metaphone algorithm
using a well-known API. The phonetic representation is encoded in a Trie, and
the Trie approximate matching is developed based on the active nodes algorithm
from [5]. Each input token is also converted and than matched. The main advan-
tage of this encoding is the reduced size, which may be important when using
several dictionaries. It produces a Trie around 72% smaller than a Trie with the
complete strings. In order to avoid a low precision, since the representation is
smaller, we apply a second string similarity metric to return the best result, this
time over the original string, linked by the Trie structure.

We have executed a set of experiments showing the applicability of this two-
phase matching solution. The approach is implemented as a Gazeteer plug-in1

for the GATE suite [2], a known information extraction framework. The imple-
mentation enables setting execution parameters, including the string metrics.

This paper is organized as follows. Section 2 presents our solution integrating
inexact matching and a Trie-based ASM solution. Section 3 shows the experi-
ments. Section 4 has the final conclusions.

1 http://gitlab.c3sl.ufpr.br/faes/asm/tree/master.

http://gitlab.c3sl.ufpr.br/faes/asm/tree/master
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2 Inexact Matching and Phonetic Encoding in a NER
Task

In the following sections we describe the tree major steps on how we integrate
inexact matching with phonetic encoding.

2.1 Input Tokens Extraction

We define the NER task as the following, adapting the definition from [14] to add
the input dictionary. Given a document D, composed by a sequence of tokens
T = {t1, . . . , tn}, the NER task extracts from D a set of fields F = {f1, . . . , fk},
where each field is an attribute-value pair fi = 〈a, v〉. The value v is a token or
a set of tokens matched with a key k, which has a corresponding label value lv,
both available in entries from an input dictionary ID = {〈k1, lv1〉, . . . , 〈kj , lvj〉}.
For instance, we could have a field fi = 〈City, London〉, where the City label is
extracted from a dictionary after matching an input token with the London key.
In other words, it produces a list with annotated input tokens with labels from
the input dictionary.

A token is a finite sequence of characters representing a subset of another
finite sequence of characters, both conforming to the same alphabet. A token is
extracted through the definition of delimiters dstart, dstop to identify its start
and end positions within a given sequence. Given a sequence of characters S,
with size |S|, the size of each token t from T , is 0 < |t| ≤ |S| and the sum of
all tokens size is

∑ |T1..n| ≤ |S|. The tokenizing rules depend on the tokenizer
chosen. In our case study, we will use an existing tokenizer which is a plugin
from the GATE framework.

Before the matching process, each individual token and the keys from the
input dictionary are converted into a phonetic representation. We apply a pho-
netic conversion function:

CF (x : String) : String = tph (1)

where tph is a new phonetic token. In a large part of dictionary-based NER solu-
tions, there is no CF function, so they perform exact or approximate matching.
In our solution, the matching process is done using only the newly produced pho-
netic tokens. The phonetic conversion function could be existing phonetic con-
version algorithms, such as the Metaphone algorithm, which provides a compact
phonetic representation for the English language. Table 1 presents some exam-
ples on how the Metaphone algorithm phonetically represents English words. We
included samples in two common utilization of Gazeteers: cities and medication
names.

2.2 Phonetic Approximate String Matching

The matching process to find a named entity considers only full tokens or set of
full tokens. For example, if we have an input key Brazil and the current input



176 J. Ferri et al.

Table 1. Examples of phonetic representations resulting from Metaphone.

Word Phonetic representation

Medroxalol MTRKSLL

Amoxicillin AMKSSLN

Bromfenac BRMFNK

New York NYRK

Avondale Estates AFNTLSTTS

Washington WXNKTN

token is Brazilian, the matching process does not consider this dictionary entry
as a valid matching, if it is not within an Edit Distance (ED) limit.

We implement an algorithm that uses a Trie tree to encode the dictionary
and to perform the inexact matching with the input tokens, using the phonetic
converted versions of the tokens and the dictionary. Our algorithm implements
the idea from [5], having a set of active nodes while searching the tree nodes,
which have an Edit Distance lesser than a given threshold value. Briefly, the
algorithm checks whether each character from an input token matches with
a given Trie node and its descendents. If it does not match, the node ED is
increased by 1. This search process stops when a node has the ED value larger
then the given limit, when it is then deactivated. This need to be done for
each previously activated node. The core algorithm is the same, with two main
differences. First, the data structure has additional information to support NER
matching, containing the following fields:

– character: the current character representing the node;
– child: an array containing the child nodes;
– entryEnd: defines if a given node identifies the end of a dictionary entry. It

is used for composed entries;
– activeNode: identifies if the node is an active node, i.e., its assigned ED

value is within a given threshold;
– currentEd: the current ED value;
– entries: stores the dictionary entries for a given node. One node may contain

more than one dictionary entry. In this case the input token is annotated more
than one time;

– dictionaryEntry: it contains the complete entry and the label used to anno-
tate the input tokens.

As second difference, we add an extra step to allow the matching with entities
composed with more than one token, for instance, a composite city name such
as New York. This means that the matching is not performed only token by
token, but after an unsuccessful token match, the algorithm continues to verify
if it could match as a composed token. The result of the matching process is a
list of candidate entities to be annotated. Utilizing compact phonetic structures
diminishes the size of the Trie, however, it has the drawback of increasing the
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number of matchings. For this reason, it is necessary to add a filtering step,
which is explained in the following section.

2.3 Filtering the Results

The results from the matching phase are filtered by applying the following sim-
ilarity function:

Sim(t : String, e : String) : Float = s (2)

where t is the input token, e is the dictionary entry and s is a similarity value
between both parameters, with 0 < s ≤ 1. However, to avoid any information
loss, the parameters t and e are the original input token and entry, not the
phonetic representation used along the previous step. The approach does not
define a new similarity function, but it uses existing ones, such as the Jaro-
Winkler or StringSim [13] metrics.

The result of the similarity function is used in two filtering rules. First, we
set up a similarity threshold, called minimum similarity, to be considered (e.g.,
0.7). Second, we rank the remaining entries and we choose only the best result.

The result of the filtering phase is a list with the annotated entities. Each
entity contains the start and end positions in the input text, so it can be inte-
grated with NER frameworks, the annotation labels associated and the final ED
value.

3 Experiments

We have implemented a plug-in for the GATE suite to evaluate our approach,
which is freely available for download,2 as well as the dictionary, the input text
and the complete raw results. In addition to the matching algorithm, we took
special attention on providing a fully configurable plug-in, which means sev-
eral configuration parameters can be easily modified. The main parameters are
the following: maxEditDistance, minSimilarityAccepted, similarityClass/Method,
conversionClass/Method (their names are self explanatory). We also provide
parameters for setting up the tokenizer and the format of the dictionary, though
we do not detail them here.

The input dictionary is a list with 76,912 English words obtained from the
WordNet [9] database. The input entities with errors are randomly selected from
a collection of common misspellings from Wikipedia.3 It contains the correct
word and a version with a misspelling error. We used 1,000 input words, all with
at least one misspelling error.

We applied our approach using two main settings. First, we used the Meta-
phone4 conversion function prior to the matching. Second, we used the original

2 https://gitlab.c3sl.ufpr.br/faes/asm/tree/master.
3 https://en.wikipedia.org/wiki/Wikipedia:Lists of common misspellings.
4 Implementation from the commons-codec-1.10.jar library, available at https://

commons.apache.org/proper/commons-codec/download codec.cgi.

https://gitlab.c3sl.ufpr.br/faes/asm/tree/master
https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings
https://commons.apache.org/proper/commons-codec/download_codec.cgi
https://commons.apache.org/proper/commons-codec/download_codec.cgi
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tokens. We used the Jaro-Winkler metric for filtering the results.5 We have used
the StringSim metric as second similarity metric, which keeps the similarity
values higher for words with lower differences.

We used three different Edit Distance values: 0, 1 e 2. The 0 value was used
to evaluate the effect of the conversion function on already eliminating errors.
The limit of 2 was chosen because a higher value would produce a too low recall.
For each ED value, we used 3 minimum similarities: 0.7, 0.8 and 0.9. Values
smaller than 0.7 returned too many results. We evaluated the results in terms
of: (a) precision - the fraction of the relevant annotations among all the returned
ones; (b) recall - the fraction of relevant annotations among the total; and (c)
the F1 measure - the harmonic average between both. We used the list with the
correct words to verify these results.

3.1 Trie Construction

Table 2 shows a comparison between the size of the produced Trie using the
original text (no phonetic conversion) and using the Metaphone function.

Table 2. Trie size for 76.912 entries

Original text Metaphone

Input chars 658.774 372.226

Avg. entries size 8.6 4.8

Trie nodes 240.484 67.602

The utilization of the Metaphone conversion on the list of 76.912 entries
diminished the number of the input characters by 43%, from 658.774 to 372.226.
After encoding the Trie, the number of nodes was 72% smaller, from 240.484 to
67.602. We do not measure the performance results on the Trie creation, since
it is constructed only once. However, the reduced size yields loss of information.
The impact of such codification is explained in the next section.

3.2 Phonetic Approximate Matching

The resulting scores are presented in Tables 3(a) to 4(b). First, we present the
results when using the Metaphone conversion. Second, the results without a
conversion function.

The choice of good parameters values is important to achieve good results.
For instance, choosing a low ED value may minimize the choice of higher simi-
larity thresholds, since it affects a lesser number of entries. Combined variations
of ED and minimum similarity results yield results with a large variation. For
instance, the recall values vary from 64.2% to 89.4%. The experiments results
may be used to guide on the choice of the metrics and this threshold.
5 Implementation from lucene-suggest-5.2.1.jar, at http://lucene.apache.org/.

http://lucene.apache.org/
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Table 3. Metaphone conversion

(a) Jaro-Winkler

ED Min Sim Precision Recall F1

0 0.7 81.3% 64.2% 71.7%
0 0.8 84.4% 64.2% 72.9%
0 0.9 87.8% 62.7% 73.2%
1 0.7 81.5% 84.4% 82.9%
1 0.8 81.5% 84.4% 82.9%
1 0.9 82.6% 82.8% 82.7%
2 0.7 78.3% 82.3% 80.3%
2 0.8 78.7% 82.3% 80.4%
2 0.9 79.7% 81.5% 80.6%

(b) StringSim

ED Min Sim Precision Recall F1

0 0.7 86.7% 66.5% 75.3%
0 0.8 90.7% 66.3% 76.6%
0 0.9 94.9% 51.9% 67.1%
1 0.7 85.7% 89.5% 87.6%
1 0.8 86.4% 89.3% 87.8%
1 0.9 89.3% 72.9% 80.3%
2 0.7 84.0% 88.7% 86.3%
2 0.8 84.0% 88.5% 86.2%
2 0.9 87.3% 73.0% 79.5%

We can see that the highest precision (87.8%) from Table 3(a) was obtained
with the ED value equals to 0. This means that the choice of this phonetic rep-
resentation also had an impact and it absorbed partially the misspelling errors,
since every word had at least 1 error. However, the recall was smaller, 62.7%,
obtaining an F1 score of 73.2%. Increasing the ED by 1 had a positive impact
on the recall, since we had 84.4% of recall. This combination yielded the best
F1 score, 82.9%. The precision diminished on about 2% when augmenting the
ED. In addition, the execution time of the search in the tree started on around
15 ms, raising gradually for higher EDs.

Without the phonetic conversion, as shown in Table 4(a), the best precision
was obtained with ED ≤ 1 (86.6%), with the same result with 3 filtering similar-
ity metrics. The best precision was obtained with ED ≤ 2. The best recall was
obtained with a similar configuration than with the conversion. Finally, the best
F1 results were obtained with ED ≤ 2 and with filtering similarity ≥0.7 and
≥0.8. A higher filtering value yielded a too low precision. We do not consider ED
equals to 0, since the result is an exact matching. The execution times have a
similar order of magnitude, independently from using the Metaphone or without
conversion. This is an interesting result since we could argue that the phonetic
conversion could be chosen without additional time cost.

The results from StringSim were obtained with a very similar choice of
parameters, for both cases. However, the filtering metric yielded a better preci-
sion in both cases, 87.8% with conversion and 88.2% without conversion. The
performance results were slightly worse, though not very significant.

We have also conducted experiments using the Double Metaphone conversion.
This method has an even more compact representation: the Trie size is about
95% smaller, with 10,325 nodes, since in this representation the tokens have only
4 characters. However, it increases too much the number of the matched entries,
thus the filtering metrics need to be executed over too many entries. For this
reason, we discarded such approach.
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Table 4. No phonetic conversion

(a) Jaro-Winkler

ED Min Sim Precision Recall F1

1 0.7 86.6% 72.0% 78.6%
1 0.8 86.6% 72.0% 78.6%
1 0.9 86.6% 70.7% 77.9%
2 0.7 82.6% 84.4% 83.5%
2 0.8 82.6% 84.4% 83.5%
2 0.9 82.6% 82.8% 82.7%

(b) StringSim

ED Min Sim Precision Recall F1

1 0.7 89.3% 74.3% 81.1%
1 0.8 89.5% 74.3% 81.2%
1 0.9 91.8% 65.3% 76.3%
2 0.7 87.0% 89.4% 88.2%
2 0.8 86.9% 89.2% 88.1%
2 0.9 88.8% 73.1% 80.2%

To summarize, we can see from these tables that the parameters with better
F1 were obtained with ED equals to 1 and 2, and with a small variation in the
filtering similarity threshold. Comparing the three methods, the best F1 scores
were better with the StringSim metric. This indicates that a phonetic approach
with filtering is a valid solution when choosing the right parameters and filtering
function. The performance results were similar from both metrics and conversion
methods. Considering the phonetic conversion, the increase on precision was not
very high and the performance results were similar. However, the smaller size of
the Trie justifies the choice of a conversion method. These findings shows that
the initial matching on the phonetic version acts like an initial filter, in order to
reduce the size of the entries.

4 Conclusions

We presented an hybrid approach that integrates approximate string matching
with phonetic string similarity. We have implemented a version of an existing
algorithm to encode a Trie and to apply inexact string matching. We changed
the input of the algorithm by using a compact phonetic representation, using the
Metaphone algorithm. The size of the Trie was 72% smaller, thus having a large
impact on the Trie size. The Trie inexact phonetic matching acts like an initial
filter of similar words, and a second similarity metric, applied on the original
text, does the final filtering. The best F1 scores were achieved with the StringSim

metric. This means it can be used when the size of the Trie is important (for
instance, when there are several dictionaries used on a desktop application). We
have seen that the choice of the right parameters is also important, otherwise
the F1 scores may decrease. The phonetic conversion did not have a significant
impact on performance, making it a good choice.

We have implemented the approach as a Gazeteer plug-in for GATE, a well-
known information retrieval framework, with setup parameters that can be mod-
ified, including the metrics presented. This flexibility can be used to conduct
further experiments with different settings, from the initial tokenizer, the exe-
cution parameters, up to the phonetic algorithm and the similarity measure, in
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order to obtain better final F1 scores in a future work. All the results and the
plug-in are freely available.
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Abstract. In data analytics, researchers often work on the same data-
sets investigating different aspects and moreover develop their programs
in an incremental manner. This opens opportunities to share and recycle
results from previously executed jobs if they contain identical operations,
e.g., restructuring, filtering and other kinds of data preparation.

In this paper, we present an approach to accelerate processing of such
dataflow programs by materializing and recycling (intermediate) results
in Apache Spark. We have implemented this idea in our Pig Latin com-
piler for Spark called Piglet which transparently supports both, merging
of multiple jobs as well as rewriting jobs to reuse intermediate results.
We discuss the opportunities for recycling, present a profiling-based cost
model as well as a decision model to identify potentially beneficial materi-
alization points. Finally, we report results of our experimental evaluation
showing the validity of the cost model and the benefit of recycling.

1 Introduction

Today, scalable distributed analytics platforms like Hadoop, Spark or Flink are
typically used together with higher-level languages, either a domain-specific
language (DSL) often integrated with a programming language (e.g. Scala or
Python) or dedicated high-level dataflow languages such as Pig Latin or Jaql
which can be extended by UDFs. Particularly, the latter ones offer the advan-
tage of allowing to write complex analytical pipelines in an easy and incremental
manner. Furthermore, this interactive and incremental formulation is also sup-
ported by notebook-like interfaces such as Jupyter or Zeppelin.

For discussing the opportunities for sharing and recycling intermediate results
of dataflow programs in Apache Spark we consider the following exemplified use
case: A (small) group of data scientists has to analyze several datasets containing
sensor data from weather and environmental observation stations. These datasets
contain spatio-temporal data but also metadata describing e.g. sensors. By ana-
lyzing this data, models are constructed to represent phenomena which can be
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used for forecasting, classification etc. Main tasks in this process are integrating
and preparing data (e.g. cleaning, transformation, and reduction), selecting rel-
evant subsets (e.g. by time or region of interest), and applying machine learning
and other analytical operations. Typically, this follows a rather incremental and
explorative approach where the dataflow jobs are specified and executed step by
step to inspect and validate results, test different parameters, and decide about
subsequent steps to add further necessary operators. Furthermore, multiple sci-
entists might use the same datasets in parallel or simply run multiple jobs to
analyze different aspects. Based on these assumptions, there exist two obvious
opportunities for sharing work:

merge: Merge a batch of submitted dataflow programs into a single job so that
common parts are executed only once.

materialization: Explicitly (by user) or implicitly (i.e. automatically) insert
save/load actions to recycle intermediate results across jobs, similar to mate-
rialized views.

Recycling results is especially useful when computation power is expensive or
limited, but storage is cheap and available to a large extent. This is often the
case for rented cluster resources on cloud providers like Amazon, Google, or
Microsoft Azure. For example, an Amazon Elastic MapReduce cluster has a
per-hour pricing of around $ 2 (c4.8xlarge, Region Frankfurt) but storage is
currently only $ 0.024 per GB (S3, Region Frankfurt). If the execution times
of the jobs running on such clusters can be reduced significantly, users could
save a considerable amount of money. Inspired by the concept of materialized
views and adaptive indexing, we present in this paper an approach on mate-
rializing and recycling (intermediate) results in Apache Spark-based dataflow
programs. The goal of our work is a transparent materialization and reuse of
intermediate results to unburden the data scientist from decisions about costs
and benefits of materializing results, aggregations, and potentially also indexes.
For this purpose, we propose a cost-based decision model which relies on profiling
information obtained by instrumenting the Spark1 runtime environment.

The contribution of our work is twofold: (1) We present and evaluate strate-
gies for transparently materializing and reusing intermediate results of dataflow
programs for platforms like Spark. (2) We present a cost and decision model
for materialization points leveraging platform features and code injection for
runtime profiling.

2 Related Work

Caching and reusing intermediate query results has been extensively studied
for relational databases and data warehouses. Selecting partial results, or views
respectively, for materialization [4,7] as well as rewriting queries using these

1 https://spark.apache.org/.

https://spark.apache.org/
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views [6] are two closely related problems that are used in database systems to
improve query response time.

Early works on reusing materialized views (or derived relations) were done
by Larson and Yang in [9,18]. Other research results on the view-matching prob-
lems for SQL queries were published in [1] or [15]. In [11] the Hawc architecture
is introduced that extends the logical optimizer of an SQL system and con-
siders the query history in order to decide which intermediate result may be
worth materializing to speed up further executions – even if this would create a
more expensive plan which, however, is executed only once. A related problem is
automatic index tuning which has been studied extensively [8,12,13,16]. Here,
recommenders analyze the given workload and underlying data and recommend
to or autonomously create and drop indexes.

For Hadoop MapReduce the MRShare framework [10] merges a batch of jobs
into a new batch of jobs so that groups of jobs can share scans over input files
and the Map output. This is similar to our merging strategy described earlier.
Other projects such as ReStore [5], PigReuse [2], or [17] are similar to MRShare
in the sense that they all merge a batch of scripts into a single plan or share the
intermediate results after a map phase. In PigReuse, the optimization goal is
to minimize the number of operators and the number of generated MapReduce
jobs - but they do not analyze the total cost of the generated plans.

For Spark several additional frameworks were created to support data ana-
lysts with their tasks. KeystoneML [14] is able to identify expensive operations
in machine learning pipelines on Big Data platforms like Apache Spark. They
employ a cost model using cluster costs (such as network bandwidth, CPU speed,
etc.) and operator costs to estimate total execution costs. From this physical
operators for a logical plan are chosen and materialization points are determined.
RDDShare [3] is also based on Spark and simply identifies common operators in
a batch of Spark programs and merges them into a single program.

Our work differs from the mentioned approaches in a way that they either
only focus on merging a batch of submitted scripts into a single job or they do
not use a cost model for their algorithms. Furthermore, most related work is
based on Hadoop MapReduce, except KeystoneML and RDDShare, which dif-
fers significantly from Spark’s characteristics. However, KeystoneML focuses on
choosing the best physical implementation of a logical operator and RDDShare
only tries to merge a batch of scripts without reusing intermediate results over
different runs.

3 Architecture Overview

Figure 1 shows the general architecture overview of our approach. Independently
from the used language (Pig Latin, Scala, Pyhton) and platform (Spark, Flink,
Hadoop MapReduce), a dataflow program can be represented as a directed
acyclic graph (DAG), where operators are the nodes and the directed edges
are the links between these nodes that represent the dataflow. An optimizer
component receives the DAG for the current job and after applying general
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Fig. 1. Architecture overview: (0) Transform script to DAG, (1) Insert LOAD for existing
data, (2) Insert STORE (based on statistics), (3) code instrumentation for profiling, (4)
execute as Spark job. (Color figure online)

rule-based optimizations, the DAG will be modified for recycling. We employ
a cache that will store the materialized results. Ideally, the cache should have
access to HDFS for persistent storage. If materialized data exists for a part of
the current DAG, we first will replace that part with a LOAD operator that reads
the cached data. In the next step, the global operator graph (see Sect. 4.3) that
stores profiling information is checked to determine if operators of the current
DAG should be materialized and respective STORE operators are inserted. After
that, we insert profiling operators to collect runtime statistics of the operators in
the graph. During execution on a cluster, those operators will send information
to the optimizer which will update its statistics. If intermediate results are to be
materialized, those will be written to the cache by the inserted STORE operators.

We implemented the described cost-based decision model and profiler into
our Piglet project: a parser and code generator from Pig Latin to Spark and
other platforms. The code including the implementation of the cost model is
available at our GitHub repository2. However, we would like to emphasize that
the model described in this paper is neither restricted to Piglet nor Spark and
could easily be adopted into other platforms. The details of the decision model
that uses the information in the global operator graph as well as the cache will
be explained in more detail in the next sections.

4 A Cost-Based Decision Model

For our work we assume that in the DAG each operator o has an unique lineage
identifier lid(o). This lid consists of the operator name (LOAD, FILTER, GROUPBY,
. . . ) and parameter values (e.g. filter predicates) together with the lid of its direct
predecessor(s). This lineage identifiers provide a simple way to decide if two
operators are identical, i.e. read the same input and produce the same output.
Currently, we use this approach as a simple replacement for query containment
check which is hard or even undecidable in case of user-defined code. The goal
of our cost model is to identify those operators in the DAG where materializing
their intermediate results speeds up subsequent executions most. Figure 2 shows
2 https://github.com/dbis-ilm/piglet.

https://github.com/dbis-ilm/piglet
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Fig. 2. Runtime difference for loading materialized result. (Color figure online)

a DAG where the width of a node’s box represents its processing time. If, e.g.,
the result of the second join operator is materialized, subsequent executions of
dataflow programs that also contain this part in their respective DAG will benefit
by only having to load the already present result from disk. This leads to two
basic questions that need to be answered:

(1) If multiple materialized results are applicable for reuse in a job, which of
them should be loaded?

(2) The intermediate result of which operators in the current job are worth
materializing so that a subsequent execution will benefit most?

In order to support these decisions, our model introduces materialization points,
for which the benefits are calculated.

4.1 Materialization Point

A materialization point M is a logical marker in a DAG denoting a position
for the decision model to write or load the materialized results. Here, we dis-
tinguish between candidate materialization points and materialization points.
Candidate materialization points are those potential places in a DAG, where the
intermediate result should either be materialized or could be loaded from stor-
age. We denote the (candidate) materialization point representing the output
of operator oi by Mi, meaning that Mi is an alias for the output of operator
oi in the optimizer component. Every non-sink operator can be regarded as a
candidate materialization point. Obviously, one cannot achieve any benefit from
materializing the result of a source operator and thus, these materialization
points need not be considered. We denote the set of all materialization points
M1,M2, . . . ,Mn which are currently kept in the cache as the materialization
configuration M = {M1,M2, . . . ,Mn}.

The decision model has to determine if the result of the respective opera-
tor is worth materializing or already materialized results can be loaded. Thus,
materialization points are always a subset of these candidates.
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4.2 Benefit

The decisions are based on the benefit regarding the execution time of the com-
plete job with the main goal to minimize the overall execution time. Hence, the
benefit is the amount of time saved when intermediate results can be loaded
instead of executing the complete job, as depicted in Fig. 2. Alternatively, one
can also regard the benefit as the amount of money saved by needing to rent
fewer machines in a public cloud.

To calculate the benefit, the decision model is based on the actual costs of
operators which are measured during execution of a job. For an operator oi
uniquely identified by its lid(oi) the following statistics are collected:

– cardinality card(oi): Number of result tuples of oi.
– tuple width width(oi): The average number of bytes per result tuple of oi.
– execution time texec(oi): Duration it takes the operator to completely pro-

cess its input data.

The benefit of a materialization point Mi can be expressed as in Eq. 1.

tbenefit(Mi) = ttotal(Mi) − tread(Mi) (1)

ttotal(Mi) =
∑

o∈prefix(Mi)

texec(o) (2)

ttotal(Mi) denotes the cumulative execution time of operators in the prefix of oi
from the source to Mi and tread(Mi) is the time required to read the materialized
data of Mi. If the prefix of Mi does not contain a join (or cross, etc.) ttotal(Mi)
can be calculated as in Eq. 2. If the prefix of Mi does contain a join (or simi-
lar) operator j, with k1(j), . . . , kn(j) as the direct inputs to j, only the longest
(concerning execution time) of those branches is considered:

ttotal(Mi) = max{ttotal(k1(j)), . . . , ttotal(kn(j))} +
∑

o∈prefix(Mi)
∧o/∈prefix(j)

texec(o)
(3)

This means to take the maximum time of all input branches of the join operator
and add the execution times of all other operators in the prefix of Mi which are
not part of the join input, i.e. are located between j and oi. The time to read
the materialized result of Mi is calculated as:

tread(Mi) =
card(oi) · width(oi)

bps
(4)

The factor bps stands for the number of bytes that can be read per second and
depends on the cluster setup as well as the underlying hardware and thus, is an
installation-specific calibration factor.
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Fig. 3. The global operator graph for four jobs. Stored information on nodes and edges
is exemplarily shown for a single operator node. (Color figure online)

4.3 Global Operator Graph

The benefit of each candidate materialization point is estimated based on exe-
cution of multiple jobs containing the corresponding operator instances. For this
purpose, the statistics are maintained in a global operators graph, a DAG that
was created by merging the DAGs of all ever submitted jobs. The graph is per-
sistently stored and, therefore, available across multiple jobs.

With each operator instance, identified by its lid, the collected runtime statis-
tics are associated while with each edge its frequency of occurrence in all exe-
cuted jobs is stored. Additionally, the global operator graph also contains the
materialization points, i.e., statistics about the already executed operators and
materialized results. Figure 3 shows an example of such a global operator graph
for four jobs J1 (solid red edges), J2 (dashed blue), J3 (dotted green), and J4
(dashed purple)3.

After the execution of a job finished and all statistics (runtimes and result
sizes of the operators) have been collected (cf. Sect. 5), they are added to the
respective nodes in the graph. If the operator is executed for the first time,
no statistics are present for this operator and the collected values are simply
added to the node in the graph. On the other hand, if the operator was already
executed before as part of another job, present statistics are merged with the
newly collected ones by averaging them.

The graph serves as input for the decision model and is used to calculate the
benefit based on the statistics and materialization points.

4.4 Decision Model

The decision model is used to answer the two question posed in the beginning
of this section.

Loading Existing Materialized Data. Answering the first question is
straightforward. From the list of candidate materialization points for a given
job, only those are selected for which materialized results are present. Then,
3 In reality, in the model there is only one edge between the nodes. The multiple edges

are just for illustrating the different jobs.
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from these candidates, the one materialization point that will result in the high-
est benefit is chosen to achieve the greatest speedup. If the job contains multiple
paths, which are then combined in a join (or similar), selection of multiple mate-
rialization point, one for each path, is possible.

Materializing Intermediate Results. The decision model has three dimen-
sions to consider when choosing a materialization point to actually write to
persistent storage.

(1) Which candidate materialization points should be selected for further inves-
tigation?

(2) From the list of candidate materialization points resulting from (1), which
of those should be materialized?

(3) If the persistent storage is limited in space, decide which existing materi-
alized result has to be deleted. Note, that due to space limitations, we do
not consider the dimension of cache eviction strategies here and assume an
infinite cache.

Selection of Candidate Materialization Points. Obviously a sink operator is not
a candidate for materialization as the result is either written to persistent stor-
age anyway or printed to screen. In the latter case, the materialization point
before the that sink operator would be one whose result could be re-used by
another job. A source operator will only read data from storage and pass it to
the next operator without modification. Hence, materializing the output of a
source operator will write the same data back to disk and no benefit can be
gained from this. Therefore, subsequent operations only need to consider candi-
date materialization points that do not belong to a source or sink operator.

Ranking Materialization Points. To decide which materialization point to really
materialize, different strategies exist, which might be suitable for different use
cases:

– latest: A näıve but intuitive strategy for selecting a materialization point is
to always choose the last possible one. This is the one materialization point
that is closest to a sink operator. If a job contains n sinks, the materialization
point before each sink is selected, which means to write n intermediate results.
This is a simple caching strategy and might work well during the incremental
development of scripts, described earlier. However, this bears the “risk” that
the materialized result will not be needed again, e.g., if subsequently executed
scripts are not the next step of the incremental development, but branch off
at another operator so that an earlier materialization point would have been
a better choice. Furthermore, the last materialization point may only bring a
small (or even no) benefit for reusing.

– maxbenefit: Therefore, another option is to choose that one materialization
point with the highest benefit. Compared to the previous strategy, where the
last one is selected, it is guaranteed to bring the best possible benefit when
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the result is needed again. Like in the previous strategy, if the result is not
needed again, materialization was pointless.

– markov: Thus, selection of the materialization points should consider the
probability for reuse – for which a Markov chain can be applied. In fact, we
should regard this as a two dimensional (probabilities and benefits) optimiza-
tion problem to maximize the benefit as well as the probability for reuse of
the selected materialization points. This optimization problem is known as
the Skyline or Pareto efficiency. The result of this optimization problem are
all points where there exists no other point with both a higher benefit and
higher probability. All points in the Pareto front mark materialization points
with either a high probability and/or high benefit, thus being worth mate-
rializing. If only one materialization point should be selected, it has to be
chosen from the Pareto front. For this, the probability of re-occurrence of a
materialization point can be considered as the weight for the benefit, so that
the materialization point with the highest product of probability and benefit
should be selected:

{Mi ∈ M | �Mj ∈ M, i �= j :
Ptotal(Mj) ∗ tbenefit(Mj) > Ptotal(Mi) ∗ tbenefit(Mi)}

(5)

If this set contains multiple elements, one can be chosen arbitrarily or user
specified weights can be applied to express a favor of one dimension over the
other. Ptotal(oi) denotes the minimum probability found on the path in the
DAG from the source operators to oi:

Ptotal(oi) = min{Pok,ol |ok, ol ∈ prefix(oi), ok → ol} (6)

where ok → ol means that ol is a direct successor of ok in the DAG. Pok,ol

describes the probability that ok will be followed by operator ol and can
be calculated in different ways. One approach is to put the frequency into
relation of the total number of executions, with respect to some time window
W. The probability Pok,ol then would be as in Eq. 7

Pok,ol =
fW
ok,ol

min(W, runs)
(7)

Pok,ol =
fW
ok,ol

deg+W(ok)
(8)

A second approach is to put the frequency in relation to the possible other
operators that follow ok, as shown in Eq. 8. Here, fW

ok,ol
is the plain frequency

count for the transition stored on the edges, that lie within the considered
window W, runs is the total number of jobs that are executed by the system,
and deg+W(ok) is the outdegree of a node ok.

5 Profiling Dataflow Programs

Result Size. Unlike traditional DBMS, in the Big Data field one often works with
plain text files (log files, csv, . . . ) and no central data management system that



194 S. Hagedorn and K.-U. Sattler

has access to detailed statistics. Thus, in order to gain the desired information,
there are two options: (1) The optimizer is started separately to analyze the input
file and create a profile. Before executing a job, the optimizer then tries to come to
a decision based on the statistics and selectivity estimations of the involved oper-
ators. (2) The job is instrumented with code that collects the necessary statistics
during execution and the runtime or execution platform has to be extended by
such an optimizer that manages and utilizes the collected data. The first approach
is more or less what traditional DBMS do and is currently also being implemented
in Apache Spark for Spark SQL. However, the second approach has the advantage
that execution time is measured as well as the result size, instead of relying on
estimations that are based on assumptions. In our evaluation we will show that
the instrumentation does not incur in any significant overhead. To determine the
total number of bytes in the result of an operator, and thus the size of the mate-
rialization point, we use Spark’s SizeEstimator that estimates the number of
bytes for a given object. We sample the result of the operator and pass each result
tuple individually into the estimator. The information for each partition is accu-
mulated using Spark’s accumulator mechanism and send to the optimizer. From
the received information the optimize can calculate the average tuple size as well
as the total number of tuples in the result.

Execution Time per Operator. A more difficult task is to measure the execution
time of an operator. In Spark, a job is divided into stages, where each stage
contains a sequence of operators that can be executed without data shuffling.
Shuffling happens when an operation needs data from several partitions, e.g.,
COGROUP. Operators in the same stage can be executed in one scan over the par-
tition. Spark comes with a SparkListener interface that provides information
about status of the current execution including start and completion time of the
stages that form the job. However, relying on the execution times of the stages is
too coarse for our goal as possible materialization points for recycling would be
after a stage only. Thus, there would not be many of such materialization points
and more importantly we would lose most operators that are shared between
different jobs, because they are hidden inside a stage and thereby reducing the
usefulness of the idea. We therefore implemented our own approach, based on
code instrumentation, to measure the execution duration of an operator per
partition. On the logical level, timing operators are inserted between all other
operators in the plan, as depicted in Fig. 4.

Fig. 4. Timing operators inserted into
dataflow plan.(Color figure online)

Fig. 5. Parallel execution of operations.
(Color figure online)
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Fig. 6. Overhead of code instrumentation. (Color figure online)

The task of the timing operators is to send a message to the profiling man-
ager component of the optimizer with the current system time, when they are
executed4. The profiling manager will receive a timestamp and the lid of the
according operator for each partition and calculates the average execution time
of the operators based on this information.

The realization of this concept needs to deal with Spark’s lazy evaluation as
well as the data parallelism. Thus, for each timing operator we inject code to
report the current time when a partition is processed (using mapPartitions).
The partitions that each operator instance processes can be of different sizes,
although the platforms try to keep them balanced to avoid skewed workload on
the nodes. Thus, the operator instances require different times to process their
input. For n partitions, it results in n different execution time information, from
which we have to derive an overall execution time for an operator (cf. Fig. 5).
In our approach we use the average of these n collected times. Other strageties
(min, max, median), however, are also possible and min or max could be used
to implement an optimistic or pessimistic behavior.

Since an RDD has information about its parents, it is enough to only insert
this code after the operator and let the profiling manager calculate the execution
duration, based on the received times of the respective parent operator.

6 Evaluation

To evaluate the proposed decision model we make the following three hypothe-
ses: (1) Injected profiling code only introduces a negligible overhead. (2) The
materialization decision always improves query execution time and avoids bad
decisions. (3) The best strategy for selecting a materialization point for writing
depends on the workload setting.

We use real world data from three use case scenarios: weather contains sensor
data from the SRBench [19] benchmark for hurricane Katrina (180 mio. tuples,
34.7 GiB), New York taxi trip data5 (Yellow Cabs, 2013–2016, 550 mio. tuples,
4 This requires that the clocks on all nodes are synchronized, of course. For example

via NTP.
5 http://www.nyc.gov/html/tlc/html/about/trip record data.shtml.

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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Fig. 7. Three executions times for each script showing the benefit of loading material-
ized results. Runtime in percent of the first execution. (Color figure online)

90 GiB) together with New York block data6 (38,000 tuples, 18 MiB), and the
GDELT7 data from 2013 to 2016 (127 mio. tuples, 48 GiB). We created several
scripts for each use case scenario: T1–T5 for taxi scenario, W1–W3 for weather
scenario, and G1–G3 for GDELT. The scripts and their DAG visualizations can be
found in our GitHub repository(see foontnote 2). Our Spark cluster consists of
16 nodes with: Intel Core i5 2.90 GHz, 16 GB DDR3 RAM, 1 TB disk, 1 GBit/s
LAN. The cluster runs Hadoop 2.7, Spark 2.0.1, and Java 8u102. All experiments
were repeated several times to remove outliers. To avoid caching effects, we
executed a word count program between all executions of test scripts.

Figure 6 shows the execution time without profiling as well as with code
instrumentation for profiling for each of our test scripts. It can be seen that
profiling incurs only a small overhead for a sample rate of 1/1 and 1/2 (meaning
100% or 50% respectively are selected) and runtimes only differ in less than 10 s
or 5%. For our other experiments we selected a sample rate of 10%.

Figure 7 shows runtimes for each script for three executions. Prior to the first
execution no statistics were available and thus are collected during this execution
(blue bars). In the second execution, previously generated statistics were used
to decide which operator to materialize (orange bars). Hence, this execution
includes also the writing of the intermediate result. For the last execution the
materialized results were loaded (green bars) and thereby reduced the overall
execution time of the job.

As we argued in previous sections, scripts are often developed incrementally.
In this experiment we show the runtime differences for one script of each sce-
nario for incremental execution (Fig. 8). We first ran the according script without
materialization support (dashed orange lines) and compared the runtimes to an
execution with materialization enabled (dotted blue lines). On the x-axis, step 0
is the initial execution with a LOAD and a first FILTER operator and subsequent
steps add one or more operators. For the first few steps, both execution times
are equal except for some minimal discrepancies. At some point however, the

6 http://www1.nyc.gov/site/planning/data-maps/open-data.page.
7 https://www.gdeltproject.org/data.html.

http://www1.nyc.gov/site/planning/data-maps/open-data.page
https://www.gdeltproject.org/data.html
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Fig. 8. Incremental execution of one script for each scenario (different y scales). (Color
figure online)

optimizer recognizes a materialization point for which a benefit will be achieved
and writes the respective result to disk (indicated by vertical lines). In this step,
the execution time for with materialization rises above the reference time without
materialization. However, since this is executed only once, the additional costs
(clearly visible in Fig. 8(c)) will easily be amortized in subsequent executions
that benefit from loading the materialized data. In fact, materialization reduced
the cumulative execution time for G1 from 7 to 5 min, for W2 from 30 to 20 min,
and for T5 from 80 to 30 min. The estimation of the benefit is an important
aspect of our approach. In our experiments we saw that the estimated benefits
often were close to real measured speedups, but sometimes also deviated to some
extent. We observed that in almost all cases when a benefit could be achieved, we
underestimated it – meaning that a subsequent execution was even shorter than
calculated. In our tests we never encountered the situation that the optimizer
calculated a benefit for a candidate materialization point which actually did not
bring any benefit during execution. From this we conclude that our cost model
calculates executions costs well enough to select an appropriate materialization
point and avoid candidate materialization points that would cause longer exe-
cution times. Deviations are caused by our current implementation of the time
measurement which depends on the information of a partition’s parent(s). If
the parent partitions could not be determined precisely the computation of the
respective operators execution time may assume a shorter or longer time.

To test the impact of the selected strategy (cf. Sect. 4.4) on the performance,
we looked at two cases: In the first case we used additional scripts that all
share the first six operators and then diverge into their individual paths that all
contain another five operations. Strategy last did not materialize data as the
last candidate materialization point of a job will not be repeated and thus no job
benefited from recycling and execution for each script took around 420 s (7 min).
For strategies maxbenefit and markov intermediate results were recycled and
execution time was around 160 s (2:40 min) for both when results were loaded.
In the second case we disassembled the jobs from our three use case scenarios
into a total of 132 small jobs, executed them one after the other in a random
sort order and captured the time it took to complete all jobs. For strategy last
the execution time was 3:47 h, while for maxbenefit and markov the total time
was 2:52 h and 2:48 h, respectively. This shows that a selection strategy that
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takes the costs of operators into account achieves good results. In this setting
maxbenefit and markov created similar results, but markov strategy performed
slightly better in this last experiment as it sometimes chose other materialization
point than maxbenefit, which more subsequent jobs could recycle.

7 Summary and Outlook

In this paper we presented an approach for a cost-based decision model to speed
up execution of dataflow programs by merging jobs and reusing intermediate
results accross multiple executions of the same or different jobs. The model was
implemented in our Pig-to-Spark compiler Piglet which injects profiling code
into the submitted jobs and rewrites them to materialize intermediate results or
reuse existing results. In our evaluation we showed that profiling does not add
any significant overhead to execution time, that jobs greatly benefit from reusing
existing results, and that different strategies for choosing which intermediate
result to materialize are needed.

In future work we will address the problem of cache replacement as there is
no infinite space for storing the materialized results and existing data may need
to be removed. Furthermore, our current implementation is based on the lineage
information of operators and could be improved by implementing strategies for
query containment checks. To address the fact that often machines are rented
for data processing, the monetary costs of CPU cycles and storage may also be
integrated into our cost model.

References

1. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized
views. In: PODS, pp. 254–263 (1998)

2. Camacho-Rodrguez, et al.: PigReuse: A Reuse-based Optimizer for Pig Latin. Tech-
nical report, Inria Saclay (2016)

3. Chao-Qiang, H., et al.: RDDShare: reusing results of spark RDD. In: DSC, pp.
370–375 (2016)

4. Chirkova, R., Halevy, A.Y., Suciu, D.: A formal perspective on the view selection
problem. In: VLDB, pp. 59–68 (2001)

5. Elghandour, I., Aboulnaga, A.: Restore: reusing results of mapreduce jobs. In:
VLDB, vol. 5, pp. 586–597 (2012)

6. Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10(4), 270–294
(2001)

7. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes effi-
ciently. SIGMOD Rec. 25(2), 205–216 (1996)

8. Idreos, S., et al.: Merging what’s cracked, cracking what’s merged: adaptive index-
ing in main-memory column-stores. PVLDB 4(9), 585–597 (2011)
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and Wolfgang Lehner2
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Abstract. Ad-hoc analysis implies processing data in near real-time.
Thus, raw data (i.e., neither normalized nor transformed) is typically
dumped into a distributed engine, where it is generally stored into a
hybrid layout. Hybrid layouts divide data into horizontal partitions and
inside each partition, data are stored vertically. They keep statistics for
each horizontal partition and also support encoding (i.e., dictionary)
and compression to reduce the size of the data. Their built-in support
for many ad-hoc operations (i.e., selection, projection, aggregation, etc.)
makes hybrid layouts the best choice for most operations.

Horizontal partition and dictionary sizes of hybrid layouts are con-
figurable and can directly impact the performance of analytical queries.
Hence, their default configuration cannot be expected to be optimal for
all scenarios. In this paper, we present ATUN-HL (Auto TUNing Hybrid
Layouts), which based on a cost model and given the workload and the
characteristics of data, finds the best values for these parameters. We pro-
totyped ATUN-HL for Apache Parquet, which is an open source imple-
mentation of hybrid layouts in Hadoop Distributed File System, to show
its effectiveness. Our experimental evaluation shows that ATUN-HL pro-
vides on average 85% of all the potential performance improvement, and
1.2x average speedup against default configuration.

Keywords: Big data · Hybrid storage layouts · Auto tuning · Parquet

1 Introduction

Data analysis plays a decisive role in today’s data-driven organizations, which
increasingly produce and store large volumes of data in the order of petabytes to
zettabytes [16]. The storage and processing of such data has imposed a shift in
the hardware, from single machines to large scale distributed systems. Apache
Hadoop1 is a pioneer large-scale distributed system and consists of a storage
1 https://hadoop.apache.org.
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layer, namely Hadoop Distributed File System (HDFS)2, and a processing layer,
namely MapReduce [6]. The former allows to keep data in raw format with-
out any normalization or pre-processing. The latter allows data-intensive flows
(DIFs) to process raw data such that they are ready for the analysis.

Hadoop and many modern in-memory processing engines (i.e., Apache Spark3)
provide high-level languages (i.e., Apache Pig and Hive, SparkSQL) that facilitate
writing DIFs for processing raw data (e.g., removing dirty data, integrating multi-
ple data sources) stored in HDFS. Typically, the processed data is stored as a very
wide table for analytical queries, because of its advantages over normalized tables
[4,12]. Hybrid layouts are de-facto preferred options for storing such wide tables,
due to their built-in support for many basic operations (i.e., selection, projection,
aggregation, etc.) allowing ad-hoc analysis, without the need of moving the data
to other storage (i.e., relational, document store, etc.).

There are several available hybrid layout implementations, such as: Opti-
mized Record Columnar (ORC)4, Parquet5 and CarbonData6. All of them follow
the same physical structure. Data is stored into multiple horizontal partitions,
known as stripes in ORC, row groups (RGs) in Parquet and blocklet in Carbon-
Data, and each horizontal partition stores its data column-wise. Hybrid layouts
also store min-max statistics [13] for each horizontal partition to help in filtering
(i.e., partitions that do not match predicates of a query are skipped). In addi-
tion, they support dictionary encoding to encode repetitive values, that can also
be used for further filtering partitions.

Table 1. Effect of horizontal partition size

Small Partition Large Partition
Parallelism + -
Task overhead - +
Filtering + -
Metadata size - +
Dictionary encoding - +
Memory buffering + -
Load balancing + -

Despite having default values, the sizes of horizontal partitions and dictionary
are configurable, depending on the type of workload. Thus, their values should
be decided based on the data characteristics and usage. For instance, it is rec-
ommended to have a small size of horizontal partition for low selectivity queries
and, a large size for high selectivity queries. However, it is not straight-forward
to find an optimal size for all the queries, because this depends on their con-
crete selectivity and the type of data they access, therefore the problem becomes
challenging. Moreover, the size of horizontal partitions can also effect different

2 https://hadoop.apache.org/docs/r1.2.1/hdfs design.html.
3 https://spark.apache.org.
4 https://orc.apache.org.
5 https://parquet.apache.org.
6 https://carbondata.apache.org.

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://spark.apache.org
https://orc.apache.org
https://parquet.apache.org
https://carbondata.apache.org
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execution settings, which is shown in Table 1. It can be seen that small partitions
positively impacts parallelism (by increasing the number of parallel tasks), filter-
ing (by skipping unmatched partitions using statistics), memory buffering (they
require less memory to buffer the data before flushing to the disk), and load
balancing (by better distributing the loads among multiple machines). Whereas,
large horizontal partitions help positively to reduce task overhead (by reading
less metadata and reducing Java garbage collector overhead), metadata size (by
storing less statistics), and also helps in performing better encoding (by encoding
large number of repetitive values). In this paper, we aim at improving filtering,
metadata size and dictionary encoding by choosing the optimal partition size.

Similarly, the characteristics of data require different dictionary sizes to han-
dle different attribute lengths and number of distinct values. The dictionary is
not only important for compression, but it can also be used to filter partitions.
Specifically, when data is unsorted and it is not possible to filter partitions simply
using min-max statistics, as we will show in Sect. 5.3.

In this paper, we present our approach, namely ATUN-HL, which helps to
find best values for the aforementioned parameters using a cost model, which
estimates the optimal values for the size of the horizontal partition and the
dictionary, based on the given workload and data characteristics. Moreover, it
should also be noted that the chunk size of HDFS is always greater than or equal
to the horizontal partition size. Hence, it should be configured accordingly. We
instantiated ATUN-HL for Parquet, to show its applicability in real scenarios
and conducted an extensive evaluation on TPC-H7 to show that ATUN-HL
can significantly improve the query response times over Parquet with default
configuration.

The main contributions of this work can be summarized as follows:

– We extend the cost model for hybrid layouts presented in [14].
– We propose ATUN-HL, a framework to optimize hybrid layouts.
– We prototype ATUN-HL on Parquet to show its benefits.
– We report the results of our extensive evaluation with TPC-H benchmark.

The remaining paper is organized as follows. In Sect. 2, we discuss the related
work. In Sects. 3 and 4, we discuss the cost model and our approach in detail.
In Sect. 5, we show our experimental results. Finally, in Sect. 6, we conclude the
paper.

2 Related Work

In [7], an indexing technique is proposed for hybrid layouts. The indexing infor-
mation is stored as metadata per RG and data node, which in turn enables
filtering RGs in selective queries. However, this approach uses default RG size,
which as previously argued does not always perform well.

In [17,18], different partitioning approaches are presented, which help in
selective queries. In [17], data is divided into multiple horizontal partitions and
7 http://www.tpc.org/tpch.

http://www.tpc.org/tpch
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in each partition, data is stored row-wise, rather than column-wise. It also stores
extra meta information for each partition, which is computed based on the pred-
icates of queries. Predicates are used as features, where a bit is stored for each
tuple matching a feature. This eventually gives a feature-vector for every tuple,
which is then used for filtering partitions. A similar vector is also used in [18],
however this time it utilizes hybrid layouts with column grouping, instead of fixed
row layouts. The latter helps for both selection and projection queries. Yet, these
techniques fall short when it comes to tuning the configurable parameters and
they only provide new strategies of partitioning.

In [4], a column reordering technique is proposed to reduce the disk seek
cost for hybrid layouts by storing together the columns which are accessed by
the same queries. In addition, this approach sometimes duplicates columns to
store them in a contiguous way. It helps to reduce the disk seek cost and overall
improves the query execution time. However, it still does not try to find the
optimal configuration values of hybrid layouts based on the running workload.

There are other works [2,3,11,15], which try to use different layouts based
on the workload. The goal is always to store the data in the most appropriate
one for the given workload. Yet again, they do not optimize the layouts.

There are still few research works [9,10] available on tuning big data analyti-
cal platforms (such as Hadoop). They focus on finding the optimal values for each
configuration parameter available in a big data analytical system. Nevertheless,
they target overall systems rather then individual layouts. These techniques can
be used as complementary to our approach.

Fig. 1. Physical structure of hybrid layouts

3 Cost Model

In this section, we extend a cost model of our previous work [14]. Specifically, we
refine the selection cost model based on the use of min-max statistics and dic-
tionary encoding. Further, we extend our cost model to estimate the dictionary
size for hybrid layouts.

First, we present the physical structure of hybrid layouts, which helps to
build the cost model. Based on that, we estimate the cost of selections and the
size of the dictionary. The former helps to find the optimal RG size. Our cost
model considers two scenarios to estimate the selection cost, which are as follows:
filtering using min-max statistics and using the dictionary. Likewise, it considers
two types of dictionaries, i.e., global and local.
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Table 2. Parameters of the cost model

Variable Description

System constants

p Probability of accessed replica being local

ChunkSize Disk assignment unit size in HDFS

BWDisk Disk bandwidth

BWNet Network bandwidth

TimeSeek Disk seek time

TimeDisk ChunkSize/BWDisk

TimeNet ChunkSize/BWNet

Data statistics

|T | Number of rows in a table

ColV alueSize
a Average size of a column value

#Cols Total columns of T

|C| Distinct values of a column

|D| Number of values in the dictionary

SortedCol True for sorted and False for unsorted data

Workload statistics

SF Selectivity factor of a query

Hybrid layouts variables

RGSize Row group size

MetaRGSize Size of meta data for an RG

MarkerSize Size of sync marker
aExtra 4 bytes are considered for variable length columns

As shown in Fig. 1, the data is divided into RGs (i.e., horizontal partitions),
and inside each RG, it is stored column-wise. Further, if dictionary encoding is
possible, first dictionaries are stored per column and afterwards the correspond-
ing encoded data. If dictionary encoding is not possible, then the data values are
stored contiguously without any encoding. Moreover, hybrid layouts also store
metadata (e.g., min-max statistics) for each RG inside either the header or footer
section. Thus, the size of hybrid layouts depends on the size of the actual data
and metadata.

Our cost model for hybrid layouts relies on a wide range of statistical infor-
mation that are summarized in Table 2, containing system constants, data statis-
tics, workload statistics as well as hybrid layout variables. We assume that the
constants which depend on the configuration of the environment (e.g., BWDisk,
BWNet) are provided. Furthermore, we discuss the collection of statistics (e.g.,
dataset and workload) in Sect. 4.

UsedRowGroups =
(ColV alueSize · |T | + MarkerSize) · #Cols

RGSize
(1)
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|RG| =
|T |

UsedRowGroups
(2)

TotalMetaSize = (MetaRGSize
· #Cols) · UsedRowGroups (3)

3.1 Estimating the Selection Cost

The selection cost model estimates the number of RGs read from the disk and as
well as the total read size. For this, first we need to estimate the total number of
RGs using Eq. 1, and the number of rows in an RG (|RG|) using Eq. 2. Further,
we also need to estimate the total size of metadata (cf. in Eq. 3), which is always
read from disk to check the matching RGs. Our selection cost model focuses on
two cases as discussed earlier. The first one considers filtering using min-max
statistics of each RG, and second one filtering using the dictionary.

ReadRowGroups =

⎧
⎪⎨

⎪⎩

SF · UsedRowGroups + 1 sorted data

UsedRowGroups unsorted and min-max

(1 − (1 − SF )|RG|) · UsedRowGroups unsorted and dictionary

(4)

Filtering Using Min-Max Statistics. There are two extreme cases when
hybrid layouts use min-max statistics to filter RGs, depending on whether data
is sorted or not. If data is completely sorted then the selected data will always
be contiguous and we can calculate the total number of read RGs based on the
selectivity factor as shown in Eq. 4. We add one to handle the effect of position
variation inside the RGs for sorted data, because hybrid layouts read the whole
RG even if there is only one matching row. The reason to add one is illustrated
in Fig. 2. It shows two RGs and each has 5 rows. Let us assume that we select 3
rows. There are two possible scenarios: (A) there is no overlap and only one RG
is read from disk; and (B) there is an overlap and two RGs are read. If we take
the average of all possible positions of the first selected row in the first RG, it
gives approximately (SF · UsedRowGroups) + 1.

Fig. 2. Effect of position variation inside the RGs

If data is completely unsorted (i.e., uniform distribution), it is unlikely (shown
in Sect. 5.3) to skip any RG, because the distribution of data makes the min-max
range of each RG too wide. Hence, the read RGs will be the same as the total
number of RGs. We will also experimentally show in Sect. 5.3 the ineffective-
ness of min-max statistics for uniformly distributed unsorted data. Intermediate
cases exist for different kinds of skewness, and Eq. 4 could be enriched with
corresponding estimations without affecting the rest of the paper.
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Filtering Using the Dictionary. The dictionary can also be used to filter
RGs when data is encoded. When min-max statistics fail to filter any RG, the
dictionary is still very useful, because it contains all existing values. The number
of RGs required to be read from disk can be estimated as in Eq. 4 (borrowed
from bitmap indexes [5]).

UsedChunks =
⌈UsedRowGroups ·RGSize

ChunkSize

⌉
(5)

ReadSize = (ReadRowGroups ·RGSize) + (TotalMetaSize · Usedchunks) (6)

|Chunk| =
⌊ChunkSize

RGSize

⌋
(7)

ChunkSeeks =

⎧
⎪⎪⎨
⎪⎪⎩

ReadRowGroups

|Chunk| + 1 if sorted

UsedChunks ·
(
1− (1− ReadRowGroups

UsedRowGroups
)|Chunk|

)
if unsorted

(8)

WReadTransfer =
T imeDisk + (1− p) · T imeNet

T imeSeek + T imeDisk + (1− p) · T imeNet
(9)

QueryCost =
ReadSize

ChunkSize
·WReadTransfer (10)

+ (ChunkSeeks + UsedChunks) · (1−WReadTransfer)

The above equations give the expected number of RGs being read from disk,
which helps in estimating the total query cost. In distributed processing engines,
the data is processed in multiple tasks in parallel and the number of tasks equals
to the number of chunks used to store the data, which can be estimated using
Eq. 5.

Moreover, we observed that each task reads all the metadata separately. The
reason is that the distributed processing engines (such as Hadoop and Spark)
create a separate process for each task with its own memory. This memory is not
accessible to other tasks and hence, forces to read all metadata, and consequently,
increases the reading size. We consider this in Eq. 6, where we estimate the total
read size.

Additionally, we take into consideration the disk seek cost, which depends
on the number of chunks being read and also on the number of seeks required to
fetch the metadata. The former is equal to the number of read chunks if data is
sorted, because it reads consecutive RGs. In Eq. 7, we calculate the total number
of RGs inside a chunk, which is used in Eq. 8 to estimate the total number of
seeks for sorted data. Similar to filtering, we add add one to Eq. 7 to handle
the effect of position variation of RGs inside chunks. On the other hand, when
data is unsorted, number of seeks is directly influenced by the distribution of
the read RGs, which are non-consecutive due to fact that any RG can match
the predicate independently of its position. Thus, it can be approximated by
estimating how many RGs are read from a chunk, which depends on the total
number of RGs inside a chunk, again calculated using Eq. 7. Similarly, we need
to estimate the total seeks for reading metadata. As discussed earlier, typically,
metadata is stored in the header or footer sections and one seek is required to
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locate it on the disk. Additionally, it is always read separately in every task,
hence the total seeks of metadata will be equal to the total number of tasks
(which is equal to the number of chunks).

In distributed processing engines, sometimes, they require to read the data
remotely (for instance, it depends on occupancy of machines and unbalanced
distribution of workload) and for it, we use a probability p to indicate the like-
lihood of chunks being accessed locally (i.e., data shipping through the network
is needed to reach the operation executor). This is used in Eq. 9 to estimate the
weight (to calculate the resources usage) of transferring the chunk data com-
pared to the corresponding seek time. Further, it is used along with the total
number of seeks in Eq. 10 to estimate the total query cost.

|D| =

{
|C| for global dictionary

�|C| · (1 − ((|C| − 1)/|C|)|RG|� for local dictionary
(11)

DictionarySize = |D| · ColV alueSize (12)
Usedbits = �log2|D|� (13)

EncodedColSize =

{
Usedbits · |T | for global dictionary

Usedbits · |RG| for local dictionary
(14)

3.2 Estimating the Size of the Dictionary

As discussed earlier, hybrid layouts support dictionary encoding, which helps to
encode repetitive values to reduce the size and also to facilitate filtering RGs.
There are different implementations of dictionary encoding in different types of
hybrid layouts. For instance, CarbonData uses a global dictionary to encode the
data, whereas Parquet uses a local dictionary inside every RG. However, these
two implementations can be easily handled by the same cost model.

Global Dictionary. The size of the dictionary depends on the number of values
to store inside, which is the total distinct values (i.e., |C|) of a column estimated
in Eq. 11. The size of the dictionary for one column can be then estimated using
Eq. 12. Further, the average number of bits required to encode one value are
estimated in Eq. 13, and used in Eq. 14 to estimate the encoded size of the data.

Local Dictionary. Similarly, the size of the local dictionary depends on the num-
ber of values to be put inside the dictionary of an RG, which is the same as
the distinct values of a column inside an RG. We estimate the total number
of expected distinct values8 inside an RG as shown in Eq. 11. Next, similar to
global dictionary, the average number of bits required to encode one value are
estimated in Eq. 13, and used further in Eq. 14 to estimate the encoded size of
the data.

8 https://math.stackexchange.com/questions/72223/finding-expected-number-of-
distinct-values-selected-from-a-set-of-integers.

https://math.stackexchange.com/questions/72223/finding-expected-number-of-distinct-values-selected-from-a-set-of-integers
https://math.stackexchange.com/questions/72223/finding-expected-number-of-distinct-values-selected-from-a-set-of-integers
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4 ATUN-HL

In this section, we first discuss about the collection of data and workload char-
acteristics. Next, we explain our methodology, which utilizes the cost model to
find the optimal sizes for RG and dictionary.

Fig. 3. Overview of ATUN-HL

4.1 Collecting Workload and Data Characteristics

Figure 3 shows the overview of our approach. It takes a query log and the sam-
ple data as input, and analyzes them in different components to extract statis-
tical information. The query log is used to extract the information related to
the workload. First, our approach extracts the clauses from all the query rep-
resentatives. Second, it merges the similar clauses or the clauses that can be
subsumed. Thirdly, it applies frequent itemset mining approach [8], to rank the
most frequent clauses. Finally, it takes the top-k clauses to extract the workload
information to be considered. On the other hand, dataset analysis module takes
a sample of data and computes the statistical information listed in Table 2. We
use the single column profiling technique from [1].

The use of query log to optimize the parameters for future workloads is
justified in [17,18], which conclude that filters are recurring and only a small
portion are entirely new over time.

4.2 Finding the Best Configuration Parameters

Let us assume T is a wide table and has a set of columns defined as C =
{c1, c2, ..., cn}. Similarly, a workload is defined as Q = {q1, q2, ..., qn}, the fre-
quent clauses extracted from Q are defined as P = {p1, p2, ..., pn} the total cost
of workload is calculated as CostP (RGSize, Z) =

∑
p∈P QueryCost(RGSize, Z),

where Z represents the total size of T (considering dictionary encoding if needed).
Our goal is to minimize CostP by selecting the best RG and dictionary sizes.

Algorithm 1 shows the steps to find the optimal sizes of RG and dictionary.
It initializes a set in line 1 with the element 0, which corresponds to the scenario
where dictionary encoding is completely disabled for all columns. Next, in lines
2 to 4, it iterates over all the columns, computes their dictionary sizes, rounds



ATUN-HL: Auto Tuning of Hybrid Layouts 209

Algorithm 1. Finding the best size of RG and dictionary
1 PossibleDictSizes = {0};
2 for c ∈ Cols do
3 DictSize = RoundUpToKiloBytes(EstimateDictionarySize(c));
4 PossibleDictSizes .insert(DictSize);

5 end
6 Best = [∞, 0, 0] ; // Best[Cost,RGSize, DictSize]
7 for DictSize ∈ PossibleDictSizes do
8 Z = EstimateEncodedSize(DictSize);

9 CurrRGSize = Solver(
d

dRGSize
(CostP (RGSize, Z)) = 0);

10 CurrCost = CostP (CurrRGSize , Z);
11 if CurrCost < Best.Cost then
12 Best = [CurrCost, CurrRGSize , DictSize];
13

14 end
15 return Best;

them up to the nearest kilobytes, and stores them inside the set. Further, in
lines 7 to 12, it iterates over all those dictionary sizes and computes the table
size according to the current processed dictionary size. Then, the encoded size
is used to find the optimal RG size by solving the derivative of the overall cost
function. Finally, this value is used to compute the corresponding cost. If the
cost is smaller than the best until now, we keep the current processed dictionary
and RG sizes as the best ones.

In order to be able to find the minimum cost, we derive the function with

respect to the RG size (i.e.,
d

dRGSize
(CostP (RGSize, Z)) = 0). Equation 15

shows the overall query cost after replacing all variables except read RGs, which
still depends on how data has been stored (see Eq. 4). Notice that, we need to
remove the ceiling function of Eq. 5, as well as floor from Eq. 7. We can do the
former, because the number of chunks is much smaller than the total number
of RGs, and it is only used in calculating the meta size and seek cost, and both
are very small compared to the total reading size. Similarly, we can also remove
floor in Eq. 7, due to its negligible impact on overall cost. We validated their
removal with detailed experiments (see Sect. 5.3).

Z =

{
(ColV alueSize · |T |+MarkerSize) ·#Cols no encoding

(DictionarySize + EncodedColSize +MarkerSize) ·#Cols encoding

Y = MetaRGSize
·#Cols

QueryCost(RGSize, Z) =

ReadRowGroups ·RGSize +
Y · Z2

RGSize · ChunkSize

ChunkSize
(15)
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· WReadTransfer

+

ReadRowGroups +
Z

RGSize

ChunkSize

RGSize

· (1−WReadTransfer)

5 Experimental Results

In this section, we discuss the setup and the dataset used for our experiments. We
also show the ineffectiveness of min-max statistics and usefulness of dictionary
for unsorted data. Moreover, we provide the results to validate the accuracy of
the cost model and to show the benefits of our approach.

Table 3. Values according to our environment

Variable Value

p 0.97

ChunkSize 512 MB

BWDisk 1.3 × 108 bytes/s

BWNet 1.25 ×108 bytes/s

TimeSeek 5.0 ×10−3 s

MetaRGSize 156 bytes

MarkerSize 16 bytes

5.1 Setup

The machine used in our evaluation has a Xeon E5-2630L v2 @2.40 GHz CPU,
128 GB of main memory, and 1TB SATA-3 of hard disk, and runs Hadoop 2.6.2
and Spark 2.1.10 on Ubuntu 14.04 (64 bit). Our approach is evaluated under two
settings: a single node and a 4-machines cluster9. In the cluster, we dedicated
one machine to HDFS name node and Spark master node together, and the
remaining three machines to data nodes for Hadoop and workers for Spark.

We prototyped our approach for Apache Parquet 1.8.2, which further divides
each column into multiple data pages (i.e., 1 MB) and also stores min-max statis-
tics per data page (i.e., 53 bytes). Nevertheless, currently Parquet does not sup-
port data page filtering, so we applied the cost model as described above. If
needed, our cost model could be easily adapted to data page filtering by simply
replacing RG size with data page size and |RG| with the number of rows of a
data page.
9 http://www.ac.upc.edu/serveis-tic/altas-prestaciones.

http://www.ac.upc.edu/serveis-tic/altas-prestaciones
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Table 3 shows the values of all environmental variables in our testbed. In
addition, default RG and dictionary sizes in Parquet are 128 MB and 1 MB,
which we use in our evaluation together with best and worse obtained costs.

5.2 Dataset

As mentioned in [4,12], very wide tables are common in modern analytical sys-
tems, because of their advantages in processing compared to normalizing data
into narrower tables. Nevertheless, in TPC-H, the widest table has only 16
columns and in TPC-DS10, only 26. To the best of our knowledge, there is
no public benchmark available that consists of wide tables. Hence, we follow [17]
to generate a wide table by completely denormalizing all other tables in TPC-H
against lineitem. The FROM clauses in all queries are consequently changed to
the corresponding denormalized table.

5.3 Results

We perform four types of evaluations for our approach. Firstly, we show the
drawbacks of min-max based filtering for unsorted data through statistical and
also experimental evaluation. Secondly, we show the benefits of dictionary based
filtering for unsorted data. Thirdly, we validate the accuracy of our cost model.
Finally, we show the performance improvements of our approach on the cluster
by comparing it to the baseline setting.

Usefulness of Min-Max Statistics. As previously discussed, min-max statis-
tics are not useful for unsorted data, because uniform data distribution makes
it impossible to skip RGs. This behavior is validated with a detailed statistical
and experimental evaluation.

PSkipping =

∑|C|
i=1

(( i− 1
|C|

)|RG|
+

( |C| − i

|C|
)|RG|)

|C| (16)

ReadRowGroups = (1 − PSkipping) × UsedRowGroups (17)

Since point queries (i.e., those that search one single value) have higher prob-
ability of skipping an RG than the other supported types (namely interval and
list of values), and also because of space limitation, we only provide a statistical
cost model for this in Eq. 16. This estimates the probability of being outside of
an RG, which would be the case if the value is less than the minimum of the
RG or greater than the maximum. Thus, our cost model adds the probability
of both (i.e., minimum and maximum) for each value of that column. Further,
the probability of skipping one RG is used in Eq. 17, to find the total number of
RGs read.

10 http://www.tpc.org/tpcds.

http://www.tpc.org/tpcds
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Fig. 4. Probability of skipping one RG

Figure 4a plots Eq. 16 for different number of rows |RG|, and different number
of distinct values of a column |C|, which was confirmed with the corresponding
experiments. We took 100 as the minimum for |RG|, because Parquet does not
allow less rows per RG than that. Thus, it can be observed that the probability
of skipping an RG is very low (i.e., always less than <2%), confirming that min-
max statistics are useless for unsorted data. Moreover, when the number of rows
in an RG increases, the probability of skipping decreases, which means that it
is almost certain that a full scan will be performed. A higher number of distinct
values slightly increase the chances of skipping an RG, but it is still very unlikely
for RGs with many rows.

Benefits of Dictionary Encoding. We also plot Eq. 4 for dictionary encoding
(see Fig. 4b), confirming its superiority over min-max statistics. It can be seen
that this clearly gives higher probability of skipping, but the chances of skipping
still decrease quickly as the number of rows in an RG grows. Yet, it helps with
low selectivity queries (when min-max statistics still fail).

Fig. 5. Comparison between cost model, simplified version, and real execution

Cost Model Validation. Figure 5 shows the comparison of our cost model, the
estimation through its simplified version (which allows derivation as presented in
Eq. 15), and also actual execution (averaging 250 random runs). We normalized
them ((x−min)/(max−min)) to facilitate visual comparison. Moreover, as we
will show below, the different units (as our cost model only considers I/O cost)
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do not affect the quality of our prediction to choose the optimal RG size, since
the estimated values always preserve the shape of the actual ones (i.e., minimum
real cost is obtained for approximately the same value in the model).

We empirically validated the estimations on both sorted and unsorted data,
with and without encoding. It can be seen that our cost model and its simplified
version are very close and result in approximately the same value. Hence, the
derivative can be safely used to find the optimal RG size. Moreover, these both
versions follow exactly the same trend as the actual execution.

Performance Evaluation. We analyzed TPC-H queries to extract the clauses
and ranked them according to their usage. The top 6 clauses which appear
in 82% of the queries, are used to find the optimal RG and dictionary sizes.
ATUN-HL chooses 30.76 MB (that we round up to 32 MB) for RG and 1 MB for
dictionary.

Fig. 6. Speedup gain

Figure 6a shows our estimated overall cost for TPC-H queries. It can be seen
that ATUN-HL predicts the default RG size (i.e., 128 MB) as the worst config-
uration (being the minimum at 32 MB). As discussed earlier, it is very unlikely
for Parquet to skip any RG, when the number of rows in an RG grows. When
this turning point is crossed, the larger the RG the better, and our estimated
cost depicts this behavior after 128 MB. Moreover, we also verified our estima-
tion with detailed experiments as shown in Fig. 6b and c. Figure 6b compares
the time improvements of ATUN-HL against the optimal, default, and worst
configurations. ATUN-HL is not far from the optimal configuration, resulting in
an 85% of all potential gain. Additionally, Fig. 6c shows the relative gain with
regard to default RG size, which is 1.2X speedup on average (for the tested scale
factors), clearly increasing with the increase in scale factor.

Finally, in Fig. 7, we also scrutinize the effect on individual query execution
time for scale factor 64 GB. This shows that our approach improves the execu-
tion time of most of the queries, but does not help those actually performing
a full scan (i.e., Q1, Q13, Q15, and Q16) because of one reason (i.e., high SF,
>10%) or another (i.e., string matching using regular expression, which is not
yet supported by Parquet). As shown above, the large RG size is always better
for full scan.
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Fig. 7. Improvement in query execution time for 64GB scale factor

6 Conclusions

Hybrid layouts are widely used to store processed data in highly distributed Big
Data systems to perform ad-hoc analysis. Nevertheless, they have many config-
urable parameters that need to be tuned according to the characteristics of the
data and workload, which can heavily impact query performance. Consequently,
we proposed a cost-based approach to help optimizing such hybrid layouts. We
prototyped our approach for Apache Parquet, evaluated it on TPC-H queries,
and showed the improvement it provides.
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Abstract. A set similarity join finds all similar pairs from a collection
of sets. This operation is essential for many important tasks in Big Data
analytics including string data integration and cleaning. The vast major-
ity of set similarity join algorithms proposed so far considers string data
represented by a single set over which a simple similarity predicate is
defined. However, real data is typically multi-attribute and, thus, bet-
ter represented by multiple sets. Such a representation requires complex
expressions to capture a given notion of similarity. Moreover, similarity
join processing under this new formulation is clearly more expensive,
which calls for distributed algorithms to deal with large datasets. In this
paper, we present a distributed algorithm for set similarity joins with
complex similarity expressions. Our approach supports complex Boolean
expressions over multiple predicates. We propose a simple, but effective
data partitioning strategy to reduce both communication and compu-
tation costs. We have implemented our algorithm in Spark, a popular
distributed data processing engine. Experimental results show that the
proposed approach is efficient and scalable.

Keywords: Similarity join · Distributed algorithms · Data integration

1 Introduction

The current Big Data era is characterized by large and rapidly growing datasets.
This trend has fueled a substantial expansion of data analytics to reveal novel
insights and guide business decisions. However, effectively deriving value from
such datasets demands computationally intensive data preparation tasks [8].
For example, when data is collected from independent sources storing overlap-
ping information, it invariably results in multiple representations of the same
object which are not exact copies of one another. Such erroneous duplication
affects statistics and can lead to inaccurate analysis results. Therefore, inte-
grated datasets need to be cleaned before applying data mining algorithms.
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Table 1. Records containing demographic information.

ID Name Street name City

1 Susan Allen William St. New York

2 S. Allen William St. New York

3 Susan Allen Woodley Ave. Los Angeles

4 S. Willians Allen St. New York

Set similarity join is an essential operation for integration and cleaning of
string data, which has attracted increasing attention over the years [1,3,6,10–
14,17,18]. After mapping strings to sets, we can employ a set similarity join to
find all pairs of sets whose similarity is not less than a specified threshold. The
underlying notion of similarity is captured by a set similarity function used in the
join predicate. Set similarity join is attractive owing to its efficiency in dealing
with string data, whose representation is typically sparse and high-dimensional,
as well as its versatility in supporting a variety of similarity functions.

The vast majority of set similarity join algorithms proposed so far considers
string data represented by a single set over which a simple similarity predicate is
defined. However, real-world data is often multi-attribute. At first glance, tradi-
tional algorithms can still be used by simply selecting a single attribute for sim-
ilarity assessment or concatenating string values from multiple attributes. How-
ever, both approaches may produce unsatisfactory results. For example, consider
the records shown in Table 1. The four records actually represent three distinct
individuals, because records 1 and 2 refer to the same person. If the similarity
predicate is applied on the Name attribute alone, the pair formed by records 1
and 3 would be returned, whereas records 1 and 2 might not be considered sim-
ilar owing to the abbreviation in the latter. If all attributes are concatenated
instead, the pair formed by records 2 and 4 could be returned, because the value
of Name in one record is similar to the value of Street in the other.

A better approach would be to represent multi-attribute data by multi-
ple sets. Further, different similarity functions and thresholds can be defined,
enabling the composition of more sophisticated similarity expressions. The main
challenge of this approach is to incorporate such new formulation into a similarity
join algorithm without hurting performance and scalability. Multi-attribute data
is naturally larger and the comparison of records based on complex similarity
expressions is computationally more expensive.

This paper presents a distributed set similarity join algorithm on multi-
attribute data. To the best of our knowledge, this type of similarity join has
been hardly investigated in a distributed environment. Our approach general-
izes existing algorithms to enable similarity conditions based on complex Boolean
expressions. We propose a simple, but effective data partitioning strategy to
reduce both communication and computation costs. We have implemented our
algorithm in Apache Spark, a popular distributed data processing engine [19].
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Our experimental results show that the proposed solution is efficient and scalable
when applied to large volumes of data.

The remainder of this paper is organized as follows. We provide background
material in Sect. 2. Our proposed solution is presented in Sect. 3 and evaluated
in Sect. 4. We discuss relevant related work in Sect. 5 before we wrap with the
conclusions and overview of future work in Sect. 6.

2 Background

In this section, we first review basic concepts before formally define the problem.
Finally, we provide a brief overview of the Spark platform.

2.1 Basic Concepts

Strings can be mapped to sets of tokens in several ways. For example, the string
“set similarity join” can be mapped to the set of words {‘set’, ‘similarity’, ‘join’}.
Another well-known method is based on the concept of q-grams, i.e., sub-strings
of length q obtained by “sliding” a window over the characters of the input string.
For example, the string “similarity” can be mapped to the set of 3 -grams tokens
{‘sim’, ‘imi’, ‘mil’, ‘ila’, ‘lar’, ‘ari’, ‘rit’, ‘ity’}. In the following, we assume that
all strings in the database have already been mapped to sets of tokens.

Given two sets x and y, a set similarity function sim (x, y), returns a value in
[0, 1] to represent their similarity; larger value indicates that r and s have higher
similarity.

Definition 1 (Set Similarity Functions). Let x and y be two sets. Popular
set similarity functions are defined as follows.

– Jaccard similarity: J (x, y) = |x ∩ y|
|x ∪ y| .

– Dice similarity: D (x, y) = 2× |x ∩ y|
|x|+ |y| .

– Cosine similarity: C (x, y) = |x ∩ y|√
|x| × |y| .

Whenever clear from context or unimportant to the discussion, we use the
term similarity function (join) to mean set similarity function (join). Further,
we focus henceforth on the Jaccard similarity, but all concepts and techniques
presented in the following can be extended to Dice and Cosine as well [10].

Example 1. Consider the two token sets x and y below, which were derived from
the strings “similarity” and “similarigy”.

x = {‘sim’, ‘imi’, ‘mil’, ‘ila’, ‘lar’, ‘ari’, ‘rit’, ‘ity’},

y = {‘sim’, ‘imi’, ‘mil’, ‘ila’, ‘lar’, ‘ari’, ‘rig’, ‘igy’}.

We have Jaccard (x, y) = |x ∩ y|
|x ∪ y| = 6

8+8−6 = 0.6.
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A predicate involving sets x and y, the Jaccard similarity, and a threshold
τ can be equivalently rewritten into a set overlap constraint: J (x, y) ≥ τ ⇐⇒
|x ∩ y| ≥ τ

1+ τ (|x| + |y|).
Further, we can use the prefix filter technique [3] to discard set pairs that

cannot meet the similarity predicate by examining only a subset of them.

Definition 2 (Prefix Filter). Consider that the tokens of all sets are sorted
based on a total token order. Let pref (x, p) be the subset of x containing its first
p tokens. Then, for any two sets x and y, we have:

|x ∩ y| ≥ α =⇒ pref (x, α + 1) ∩ pref (y, α + 1) �= ∅.

The original overlap constraint only needs to be verified on set pairs sharing
a prefix token. Pairs that have no prefix token in common can be safely pruned.
For the Jaccard similarity and threshold τ , we can identify all candidate matches
of a given set x using pref (x, �(1 − τ) × |x|	 + 1). We denote this prefix simply
by pref (x). Finally, we pick the token frequency ordering as total token order,
thereby sorting the sets by increasing token frequencies in the set collection.
Thus, we move lower frequency tokens to prefix positions to minimize the number
of verifications.

The above concepts apply to single sets. After mapping the string attributes
of a record to sets, we end up with multiple sets (or a family of sets). For
simplicity, we use interchangeably the term record to refer to the record itself
and its representation as a family of sets.

2.2 Problem Definition

Let R be a collection of records. Each record has a set of string attributes
A = (a1, . . . , aj). Let r.a denote the string value of attribute a ∈ A in a record
r ∈ R. Let p be a similarity predicate of the form sim (r.a, s.a) ≥ τ , where sim
is a similarity function and τ ∈ [0, 1] is a similarity threshold. Let φ : R × R →
{true, false} be a similarity expression in disjunctive normal form with clauses
C = {c1, . . . , cm}, whose literals are similarity predicates and negations are not
allowed, i.e.,

φ =
∨

c∈C

∧

p∈c

p.

Definition 3 (Similarity Join on Multi-Attribute Data). Let R be a
collection of records and φ a similarity expression. A similarity join on multi-
attribute data returns all pairs of records (r, s) ∈ R×R, such that φ (r, s) = true.

2.3 Apache Spark

Apache Spark is a popular framework for processing of large-scale datasets
on shared-nothing architectures. It provides a fault-tolerant abstraction for in-
memory data storage and parallel processing on clusters called resilient dis-
tributed datasets (RDDs). More specifically, an RDD is an immutable, parti-
tioned collection of objects created by coarse-grained deterministic operations
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Fig. 1. Set similarity join on multi-attribute data.

called transformations (e.g., map, filter, and groupByKey). Such transformations
can be defined either on data in stable storage or other RDDs. Other operations,
called actions, return a value to the application (e.g., count) or export data to a
storage system (e.g., save). Fault tolerance is provided by logging the transfor-
mations that created an RDD into a lineage graph. Spark exposes RDDs through
a programming model based on a functional programming API in Scala, Java,
Python, or R. In a previous evaluation [15], Spark has been shown to outper-
form MapReduce [5], another popular distributed data processing framework, in
several commonly used workloads.

3 Our Proposed Solution

In this section, we present our solution to the problem of answering similarity
joins on multi-attribute data in a distributed environment. We want to support
complex similarity expressions over multiple attributes as illustrated in Fig. 1.
In the figure, Si

n represents the set obtained from attribute ai of record rn. The
main challenge is to incorporate this new similarity join formulation without
compromising performance and scalability. We first discuss the general idea of
the adopted data partitioning approach. Then, we present our distributed sim-
ilarity join algorithm. Finally, we give a cost model for selecting the attribute
that is used to guide data partitioning.

3.1 Data Partitioning Strategy

We focus on shared-nothing parallel architectures, where multiple (commodity)
machines form a cluster connected via a high-speed network. Each machine (or
node) is independent, i.e., has its own private memory and disk. Typically, each
node may contain multiple multi-core CPUs, to which virtual processors are
associated to increase parallelism. We refer to a virtual processor as worker.
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Fig. 2. Data partitioning with signature key.

The data partitioning strategy is crucial in a shared-nothing setting to reduce
both communication cost, i.e., the number of records sent across the network, and
computation cost, i.e., the number of similarity evaluations performed on each
worker. Signature schemes have been commonly used as partitioning strategy
for similarity joins [6,17]. Given a similarity function and threshold, set pairs
sharing no signature cannot be similar. Thus, an intuitive approach is to use
signatures as partition keys determining the workers to which a record is sent.
Thus, only pairs with a signature in common are sent to the same worker avoiding
unnecessary data transmission and similarity evaluations.

Prefix filter can be readily used as a signature scheme, where each prefix
token corresponds to a partition key. Because prefix tokens mostly have a low
frequency of occurrence, fewer records are transmitted over the network and, in
turn, a smaller number of candidate pairs have to be compared in the workers,
thereby reducing both communication and computation costs. Note that prefix
filter was also used as a signature scheme for distributed similarity joins in
reference [17]; however this work does not consider multiple sets.

To use prefix filter in our context, we define the concept of signature key.
Given a collection of records with an associated schema, the signature key iden-
tifies the attribute that will be used for data partitioning, i.e., the prefix tokens
derived from this attribute are used as partition keys. Note that the signature
key may be involved in more than one predicate in the similarity expression. In
such a case, we simply choose the predicate with the highest threshold: higher
threshold values imply tighter overlap constraints and, in turn, shorter prefixes.
Therefore, a larger number of candidate pairs can be pruned. Figure 2 depicts
the use of Attribute 2 as signature key. Each input record is then associated
to each of its prefix tokens as (key, value) pairs and records associated to
the same key are grouped together afterwards. We discuss how to choose the
signature key shortly.

3.2 Distributed Similarity Join Algorithm

Our proposed solution is given in Algorithm1. The algorithm is divided into
two main steps: partition and verification. In the partitioning step (lines 1–2),
each input record is passed to the funcPart function (lines 6–9), which extracts
the prefix tokens from the signature key and returns a list of (key, record)



222 D. J. do Carmo Oliveira et al.

Algorithm 1. Distributed similarity join on multi-attribute data.
Input: An RDD R containing a collection of records, a similarity expression φ,

an integer i identifying the signature key.
Output: An RDD S containing all pairs (r, s) such that φ (r, s) = true.
// Partition step

1 list(key, r) ← R.flatMap(funcPart(r, i))
2 list(key, list(r)) ← groupByKey(list(key, r))

// Verification step

3 foreach (key, list(r)) ∈ List(key, list(r)) do
4 S′ ← flatMap(evalSim(key, list(r)))

// Collect final result

5 S ← collect (S′)
// Functions

6 Function funcPart(r, i)
7 foreach key ∈ pref (r.ai) do
8 list(key, r) ← (key, r)

9 return list(key,r)

10 Function evalSim(key,list(r))
11 foreach candidate pair(r, s) ∈ list(r) do
12 if φ (r, s) = true then
13 S′ ← S′ ∪ ((r, s))

14 return S′

pairs (lines 7–8)—each pair corresponds to a prefix token as partition key and
the complete record with all its attributes. Then, the groupByKey operation is
called to group records with the same key into a list.

In the verification step, record candidates are compared in terms of the simi-
larity expression (lines 3–4). To this end, a list of records sharing the same key is
passed to the evalSim function (lines 10–14). Similarity evaluation is performed
in a distributed and independent manner in each of the workers of the cluster.
Several filtering techniques can be further employed to reduce the number can-
didate pairs. Moreover, we can use any main-memory similarity join algorithm,
such as ppjoin [18] and mpjoin [10], to first evaluate the similarity predicate on
the signature key attribute; the remaining predicates of the similarity expression
are then evaluated on the surviving candidate pairs. Finally, candidate pairs for
which the similarity expression evaluates to true are added to the result set and
the collect action is called to send the result to the Spark application (line 5).

As presented, the algorithm can produce duplicate pairs in the result. Two
similar records containing more than one prefix token in common will be sent to
different workers and, therefore, appear multiple times in the final result. This
problem is avoided by exploiting the global token order. In the verification step,
we only compare candidate pairs if the first token in common is equal to the
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partition key. Otherwise, if this token is greater than the key, then we are sure
this pair has also been sent to at least one other worker and the evaluation can
thus be safely interrupted.

3.3 Signature Key Selection

The choice of signature key is a crucial aspect of our approach, as it may sig-
nificantly impact communication and computation cost. In principle, several
heuristics can be used for this purpose. For example, we choose the attribute
involved in the predicate with the highest similarity threshold (and hence pos-
sibly more selective) or containing shorter strings—these heuristics can also be
used to determine the order of evaluating different predicates in the verification
step [9]. Another, more sophisticated, alternative is to build performance pre-
diction models based on statistics [16]. However, such approach heavily relies on
comprehensive training data, which is difficult to obtain in practice.

We now define a cost model to select the signature key. It is based on fre-
quency statistics of prefix tokens, which implicitly captures the impact of the
threshold value and underlying data distribution on the overall performance. In
particular, such statistics provide the number of partitions generated (denoted
by P ), the number of records sent over the network (denoted by X), and the
number of similarity evaluations (denoted by Y ).

Let T be the a sequence of tokens. The frequency of moments of T is defined
by Fk =

∑
t∈T df (t)k, for each k ≥ 0, where df (t) is the number of occurrences

of token t in T . Assuming that T contains prefix tokens derived for a given
signature key, then we have F0 = P , F1 = X, and F2 ≈ Y (the number of
similarity evaluations for n records is actually

(
n
2

)
). We next define the similarity

join cost for a given signature key.

Definition 4 (Similarity Join Cost). Let ccomm and ccomp be the cost units
of sending a single record over the network and performing a single similarity
evaluation, respectively. Given the signature key a, the similarity join cost is

C (a) = X ∗ ccomm + Y ∗ ccomp.

The signature key is defined by the attribute that leads to the lowest cost.

Definition 5 (Signature Key Selection Policy). Given a set of attributes
A, the signature key is given by

a = arg min
a∈A

C (a)

We observe that the use of prefix tokens for data partitioning induces impor-
tant aspects in the distributed computation. The number of partitions is much
larger than the number of available workers—the value of P is typically around
hundreds of thousands. As a result, several partitions have to be assigned per
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worker. Further, data skew is significantly reduced, because large partitions are
avoided owing to the token frequency ordering. As a result, the proportion of
the overall computation workload regarding any partition is quite low and, thus,
a complex load-balancing strategy that assigns multiple workers to a single par-
tition (e.g., [4]) is not crucial. In this context, our cost model assumes an even
distribution of the workload among the workers. The design of a load-balancing
strategy tailored to our algorithm is left for future work.

4 Experiments

We now present an experimental evaluation of the techniques proposed in this
paper. The goals of our study are to evaluate (1) different data partitioning
strategies, (2) performance and scalability of our algorithm with varying hard-
ware resources, dataset sizes, and threshold values, and (3) the effectiveness of
our cost model for signature key selection.

Table 2. Description of datasets.

Dataset Type Records # Duplicates Total evaluated

DBLP Bibliography 250K 5 1.25M

IMDB Movies 30K 10 300K

DISC Audio recordings 1M 2 2M

Table 3. Characteristics of the string attributes.

Attr Max Len Avg Len

D
B
L
P

title 340 79
journal 78 22

1st author 41 13
2nd author 44 14
3rd author 55 14

Attr Max Len Avg Len

IM
D
B

title 222 16
actor 51 14

distributor 108 24
director 39 14
producer 39 12

Attr Max Len Avg Len

D
IS
C

title 676 19
name 623 12

1st song 927 17
2nd song 2689 17
3rd song 1236 17

4.1 Experimental Setup

We used three, publicly available, real-world datasets as sources: DBLP1, con-
taining Computer Science publications, IMDB2, containing movie information,
and DISCOGS3 (abbreviated to DISC), containing audio recordings.

1 http://dblp.uni-trier.de.
2 http://www.imdb.com.
3 http://www.discogs.com.

http://dblp.uni-trier.de
http://www.imdb.com
http://www.discogs.com
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(a) DBLP, signature key. (b) IMDB, signature key. (c) DISC, signature key.

Fig. 3. Results of the comparison between different of data partitioning strategies.

In each dataset, we randomly selected records with multiple string attributes.
Then, a number of duplicates were generated from each record, i.e., “dirty copies”
obtained by performing transformations on string attributes such as charac-
ters insertions, deletions or substitutions. Table 2 shows information about the
datasets: the initial number of records, the default number of duplicates gen-
erated from each record, and the final number of records. In the scalability
experiments, we generated larger datasets by increasing the number of records
selected from the sources.

Table 3 shows the characteristics of the string attributes used in each dataset,
including maximum and average string length. All 5 attributes are used by
default. We converted strings to upper-case letters, eliminated repeated white
spaces, and generated the corresponding token sets using q-grams of size 3.

A single similarity predicate based on Jaccard was specified for each attribute;
the default value of the similarity threshold was 0.85. The resulting similarity
expression consists in a single conjunctive clause involving all attributes. We set
ccomm = 2 and ccomp = 1 in our cost model and used the attribute with the
lowest estimated cost as signature key (see Sect. 4.4). Overall performance was
measured in average wall-clock time over repeated runs.

We implemented our algorithm using Oracle Java 8, Scala 2.11 and Spark
2.1.1. We ran our experiments on 8-node cluster, one node configured as the
master and the others configured as slaves. All nodes are equipped with the same
hardware resources: Intel Xeon W3565 Quad-core processor with 3.2 GHz, 8 MB
of CPU cache, 8 GB of main memory, operating system Ubuntu Server 16.04
LTS. We used Hadoop 2.7.3 and YARN configured to use Dynamic Resource
Allocation4 as cluster manager.

4.2 Comparison of Data Partitioning Strategies

For similarity expressions containing a single conjunctive clause, we can employ
an alternative signature scheme for data partitioning. Instead of a single
attribute, we can use multiple attributes to define a composite signature key.

4 https://spark.apache.org/docs/latest/job-scheduling.html.

https://spark.apache.org/docs/latest/job-scheduling.html
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The signature set of a record consists of the combination of the prefix tokens
of all attributes that are part of the signature key. On one hand, this approach
substantially reduces the computation cost, because two records will belong to
the same partition only if they share a token in all attributes. On the other hand,
the number of partitions and records transmitted over the network dramatically
increases, because the number of signature per record grows exponentially with
the number of attributes. Note that this approach was previously adopted in a
centralized setting [9] (see further discussion in Sect. 5).

We compared the performance of using single and composite signature keys
for data partitioning. For this experiment, we used only the first three attributes
of each data dataset. For composite signature keys, we removed partitions con-
taining a single record to reduce communication cost. Figure 3 shows the results
of the comparison between single and composite signature keys. Using a single
attribute as the signature key was much faster than using composite signature
keys on all datasets – up to 12x, 10x, and 4x faster on DBLP, DISC, and IMDB,
respectively. Composite signature keys increased lead to an explosion of the
number of records transmitted over the network and, thus, the reduction in the
number of similarity evaluations did not pay off.

4.3 Varying Hardware Resources, Dataset Sizes, and Thresholds

We now evaluate our algorithm on a varying number of processing nodes, dataset
sizes, and threshold values. Figure 4(a)–(c) show performance results with an
increasing number of processing nodes. We observe that allocating more proces-
sors consistently decreases execution time on all datasets. However, the perfor-
mance gain decreases as the number of processors increases. This behavior is
expected, because the number of processing nodes also increases communication
and distributed processing management tends to negatively affect the overall
execution time.

Figure 4(d)–(f) plot overall runtime with an increasing number of records.
The proposed solution exhibits good scalability: the runtime increases linearly
with the number of records on all datasets. Similarity expressions based on more
attributes increased runtime on IMDB and DBLP (Fig. 4(g) and (h)), because
more similarity predicates have to be evaluated in the verification phase. In con-
trast, the worst result is obtained for a single attribute on the DISC dataset
(Fig. 4(i)). Using a single attribute considerably increased the size of the answer
(320 MB for one attribute against around 26 MB when more attributes are con-
sidered) and, consequently, increases the overall runtime.

Figures 4(j)–(I) show the results on varying threshold values. As expected,
runtime decreases as the threshold increases: greater thresholds lead to shorter
prefixes and, thus, less communication and computation cost.
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(a) DBLP, no. of nodes. (b) IMDB, no. of nodes. (c) DISC, no. of nodes.

(d) DBLP, no. of records. (e) IMDB, no. of records. (f) DISC, no. of records.

(g) DBLP, no of attrs. (h) IMDB, no. of attrs. (i) DISC, no. of attrs.

(j) DBLP, threshold. (k) IMDB, threshold. (l) DISC, threshold.

Fig. 4. Results on varying hardware resources, dataset sizes, and threshold values.

Fig. 5. Signature key selection.

4.4 Evaluation of the Signature Key Selection

Our last experiment evaluates the effectiveness of our cost model in selecting the
signature key. Figure 5 shows the normalized values of runtime and estimated
cost for different signature keys on all datasets. In all cases, our cost model
follows the runtime associated with each attribute, thereby allowing to identify
the best signature key for each dataset. Note that higher processing costs can
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be associated with attributes containing shorter strings. For example, on the
DISC dataset (Fig. 5(c)), the worst overall runtime and higher estimated cost
are obtained using name as signature key, which contains the shortest strings in
average (see Table 3).

5 Related Work

Set similarity joins have been extensively investigated in the literature [1,3,10,
14,18]. A filtering-verification framework supported by inverted lists is preva-
lently adopted by state-of-the-art algorithms. Most proposals focus in the filter-
ing phase, where various filters are applied to reduce the comparison space, such
as prefix filter [3,14], length filter [14], positional filter [18], and min-prefix [10].

Besides stand-alone algorithms, set similarity joins can be realized using rela-
tional database technology. Previous work proposed expressing set similarity
joins declaratively in SQL [11] or implementing it as a physical operator within
the query engine [3]. Recent work exploits massive parallelism available in mod-
ern graphics processing units to speed up similarity join processing [12].

Approximate set similarity joins may miss some valid results to trade accu-
racy for query time. Locality Sensitive Hashing (LSH) is the most popular tech-
nique for approximate set similarity joins [7], which is based on a probabilistic
scheme of hashing functions that are approximately similarity-preserving. Min-
hash [2] is an example of an efficient LSH scheme for the Jaccard similarity.

Another line of work, which is more closely related to this paper, considers
the problem of performing set similarity joins on distributed platforms [6,13,17].
Most proposals implemented their algorithms using MapReduce; nevertheless,
all these techniques can be implemented in Spark as well. The main ingredient
of such approaches, including ours, is the data partition strategy. A common
approach is to use a signature scheme, where sets sharing a common signature
are sent to the same worker. Like our proposal, reference [17] employs prefix
filter to derive signatures. However, only simple similarity predicates over data
represented by a single set are considered. The work in [6] introduced a signature
scheme based on the size of the symmetric set difference (also known as the
Hamming distance). These signature schemes can be directly used in our data
partitioning strategy.

A different approach, based on vertical partitioning, was recently presented
in [13]. First, the universe of all distinct tokens in the input dataset is partitioned
into disjoints segments. The input sets are then split into subsets accordingly and
subsets associated with the same segment are sent to the same worker for partial
overlap calculation. Partial overlap values between candidate set pairs are then
aggregated to obtain the total overlap. This strategy avoids the generation of
duplicate sets and produce segments of roughly the same size, thereby ensuring
load-balancing among the workers. Unfortunately, it is unclear how to adapt
this strategy to our context, which considers multi-attribute data and complex
similarity expressions.
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To the best of our knowledge, reference [9] is the only previous work that con-
siders set similarity joins on multi-attribute data. Signatures of data objects are
generated by the Cartesian product of the prefixes derived from each attribute.
A prefix tree index is built to prune candidate pairs based on multiple simi-
larity predicates. Heuristics are presented to reduce the size of the tree index
and to determine a predicate order for index construction and similarity expres-
sion evaluation in the verification phase. The proposed algorithm is designed
for execution on a single machine and only support conjunctions in the simi-
larity expression. In contrast, our algorithm is distributed and supports richer
similarity expressions containing conjunctions as well as disjunctions.

6 Conclusions and Future Work

In this paper, we presented a distributed set similarity join algorithm on multi-
attribute data, which has received very little attention in the existing literature.
Our solution supports complex Boolean expressions based on multiple similarity
predicates. We introduced the concept of signature key to enable a simple, but
effective data partitioning strategy. Further, we defined a cost model for selecting
the signature key associated with the lowest overall runtime. We implemented
our proposed approach in Spark and conducted an extensive evaluation on real-
world datasets. Experimental results showed that our algorithm is efficient and
scalable. As part of future work, we plan to investigate signature schemes tailored
to complex similarity expressions.

Acknowledgment. This work was partially supported by Brazilian agency CAPES.
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Abstract. Users of modern distributed stream processing systems have
to choose between non-deterministic computations and high latency due
to a need in excessive buffering. We introduce a speculative model based
on MapReduce-complete set of operations that allows us to achieve
determinism and low-latency. Experiments show that our prototype
can outperform existing solutions due to low overhead of optimistic
synchronization.

Keywords: Data streams · Distributed processing · Drifting state

1 Introduction

Currently, many applications use stream processing for network monitoring,
financial analytics, training machine learning models, etc. State-of-the-art indus-
trial stream processing systems, such as Flink [7], Samza [14], Storm [3], are able
to provide low-latency and high-throughput in distributed environment for this
kind of problems. However, unlike batch and micro-batch processing, stream pro-
cessing is inherently non-deterministic [20]. In particular, there is no guarantee
that the messages will be processed in the same order and the system produces
the same result between any two runs, even if messages are fed to the system
with the same monotonically increasing timestamps. Although such behavior
is observed in most state-of-the-art stream processing systems, it has several
pitfalls:

– It is natural for the user of a software system to expect that two independent
runs within the same input data produce exactly the same result. The fact
that this contract can be violated is able to cause misleadings and complicates
the usage of the system.

– The lack of determinism leads to the loss of reproducibility of the results,
that in turn makes testing and verification excessively complicated [19].

– The ability to reproduce predictable results is extremely useful for providing
consistency guarantees [16]. The absence of this property forces the usage of
heavy transactional protocols to achieve exactly-once semantics [6,10].
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A. Benczúr et al. (Eds.): ADBIS 2018, LNCS 11019, pp. 233–246, 2018.
https://doi.org/10.1007/978-3-319-98398-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98398-1_16&domain=pdf
http://orcid.org/0000-0002-8916-9659
http://orcid.org/0000-0002-7273-1692
http://orcid.org/0000-0003-4657-0757


234 I. E. Kuralenok et al.

In this work, we introduce FlameStream - stream processing model that is
deterministic by design. This property is achieved using strong ordering. The
typical way to perform in-order processing is to set up a special buffer in front of
each order-sensitive operation [12]. However, extra buffering can lead to latency
growth [19], especially if the processing pipeline contains several operations that
require ordered input. To avoid this issue, we introduce an optimistic approach
for handling out-of-order items that requires single buffer per computational
pipeline. Our approach is based on the idea that state can be streamed as an
ordinary element. Such approach allows us to generalize speculative computa-
tions on the arbitrary MapReduce task. Additionally, it makes the model state-
less from the business logic point of view. Our evaluation demonstrates that
our method has low overhead and can outperform alternative industrial solution
under normal load conditions.

Therefore, the contributions of this paper are the following:

– Definition of a stateful computational model that does not require state han-
dling from the user

– The optimistic schema for deterministic processing and the demonstration of
its performance competitiveness.

The rest of the paper is structured as follows: in Sect. 2 we introduce the pro-
posed model and the optimistic approach for handling out-of-order items, the
implementation details of the prototype are discussed in Sect. 3 and its perfor-
mance is demonstrated in Sect. 4, the relevant prior research is mentioned in 5,
finally we discuss the results and our plans in Sect. 6.

2 Model

2.1 Motivation

Implementation of deterministic processing is tightly connected to system state
management: if user-defined operations are pure functions and the total order
is preserved, the processing becomes deterministic. Most of existing stream pro-
cessing systems have been already supposing that user-defined operations are
pure. Instead of providing a handler for external storage they give user opera-
tion the state object, provide the user an interface to change the state and finally
store the resulting state object after the operation completes [3,7,14].

Let B denote a business logic operation, x, Y be input and output items, h,
the state handler and st, the state object at time t. The change in contract is
illustrated in (1). In modern setting B becomes stateless and state management
is done on the system side. This change allows the system to implement fault tol-
erance mechanisms, but it also opens the opportunity to implement deterministic
processing.

B(x, h) = Y =⇒ B(x, st) = (Y, st+1) (1)
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The only difference between a state object st and the other items in the
stream is that state objects are produced, updated and consumed by the same
operation. If a system allows cyclic execution graphs [13] this difference becomes
obsolete, as we can transfer state object from operations output to its input. We
treat state object as a part of the stream and we call it drifting state. Drifting
state allows moving fault tolerance logic from user-defined operations to common
stream consistency mechanisms.

The second property of the system needed for deterministic processing is total
order preservation. This one is quite challenging due to asynchronous nature of
the network. On the other hand, we need to care about the order only in the
operations that are order-sensitive. All stateless operations are tolerant to the
out-of-order items. The more stateless operations we have, the easier the task
becomes. Another important note is that calculations are partitioned, and order
between items from different partitions does not influence the result. Partition
could be calculated at single compute unit, which allows us to implement order-
ing within single unit instead of system-wide.

Taking into account above considerations we think that modern stream pro-
cessing problem setup allows us to build a system that is able to provide deter-
ministic processing with low performance overhead. The desired system proper-
ties are:

– Computational model should be deterministic by design, i.e., it should pro-
duce deterministic results for any pipelines and business logic.

– The performance overhead should be low in comparison with the existing
systems.

We will use the following principles for our system:

– Support cyclic execution graph
– Localize state management in terms of system operation type
– A data partition must be processed on a single node
– MapReduce completeness.

2.2 Computational Model

The key concept of FlameStream model is a data stream. It is a sequence of dis-
crete events described by data items, internally represented as (Payload,Meta).
The Payload is processed by a user-defined code, while Meta is handled with
FlameStream engine. In particular, the primary purpose of the meta-information
is to impose the total order on data items. The Meta is assigned at the entry
(called front) and is discarded at the barrier just before the exit.

The stream processing is specified by a logical execution graph. Each node
of the graph represents a single operation on data items, and edges describe the
routing of data items between operations. Our model allows cycles in the graph
while such graphs are commonly assumed to be acyclic (DAGs) [6,21]. The cycles
are required for specification of certain computations (e.g. MapReduce-based)
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with our set of operation types (outlined below). Figure 1 shows the example of
logical execution graph.

A distributed hardware environment is modeled as a set of worker processes.
Each worker executes logical execution graph and has an assigned range of hash
values used for physical routing of data items to workers. Each operation entry
has a user-provided hash function called balancing function. This function is
applied to the payload of data items and determines partitioning before each
operation. After that, the data items are sent to the worker, which is responsible
for the associated hash range. Therefore, load balancing explicitly depends on
the user-defined balancing functions.

Fig. 1. A logical execution graph Fig. 2. The ordering model

Data items are totally ordered according to labeles assigned to events at the
entry as a part of meta-information. All operations preserve this order. Any
additional items produced by an operation are placed between the item being
processed and the next item. The ordering labels are dropped when items are
delivered from the barrier.

The ordering is illustrated in Fig. 2. Data item with payload 1′ is the deriva-
tive of the item with payload 1, according to operation F . The same is for items
with payloads 2′ and 2. After merge operation, the order between 1 and 2 is
preserved. Furthermore, 1′ follows 1, and 2′ follows 2.

The list of available operations includes:

Map applies a user-defined function to the payload of an input item and returns
a (possibly empty) sequence of data items with transformed payloads.

Broadcast replicates an input item to the specified number of operations.
Merge operation is initialized with the specified number of input nodes. It sends

all incoming data to the output.
Grouping constructs a single item containing a set of consecutive items that

have the same value of partition function. The maximum number of items
that can be grouped is specified as a parameter WindowSize.

The output item of the grouping has the same ordering label as the last
item in the output group. Groupings of different partitions are independent.
Grouping is the only operation that has a state.

The following example illustrates the grouping operation. Let the input
stream be a series of integers: 1, 2, 3, . . ., and the partition function returns for
even numbers and 0 otherwise. If the window is set to 3, the output is

(1), (2), (1|3), (2|4), (1|3|5), (2|4|6), (3|5|7), (4|6|8), . . .
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2.3 Drifting State

An important special case of grouping with WindowSize = 2 provides for
realization of stateful calculations with drifting state technique manifested in
Sect. 2.1. Indeed, consider a map operation that follows the grouping and sends
its output to the grouping input. This map operation receives a pair of its pre-
vious output considered as the state object, and new incoming item from the
source stream. The map operation calculates new state object and sends it back
as the grouping input.

As an example, let us demonstrate a generic MapReduce transformation. The
map stage of MapReduce can be expressed in terms of our map operation. The
generic reduce stage can be presented as

for mapped ∈ values do
accumulator := combine (mapped, accumulator);

end for
return accumulator;

The accumulator is an explicit state that should be kept between subsequent
iterations. To implement reduce stage we apply the drifting state technique and
make the accumulator value a part of the stream. Figure 3 shows a generic graph
for the MapReduce transformation. Map and reduce stages are highlighted with
a dashed line.

Fig. 3. Logical graph for MapReduce transformations

There are four types of data items in this stream: input, mapped, accumulator,
and reduced. The operations of the stream have the following purposes:

– The first map operation outputs mapped items according to map stage of
MapReduce model.

– The grouping with WindowSize = 2 groups the accumulator with next
mapped item.

– The combine map produces a new state of accumulator to be sent to grouping.
– The final map converts accumulator into final reduce output.

Ordering rules guarantee that each accumulator item always arrives at the
grouping right before next not yet combined mapped item. The cycle gives the
ability for new accumulator items to get back in the grouping operation. Thereby,
the stream reacts to each input item by generating new reduced item, which
contains the actual value of the reduce stage.
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2.4 Deterministic Computations

Deterministic execution is a desired property of any distributed system.
To restrict outputs to only one possible result, we impose the following restric-

tions on our model:

– We require map function to be pure: return value is only determined by its
input values, without observable side effects

– We impose a strict ordering requirement on the grouping input.

While the former can be satisfied by moderating the business logic, the latter
is foreign to the distributed systems: it is hard to ensure the right order of
delivery due to asynchrony inherent for a distributed system. There are two most
common methods that are used to implement order-sensitive operators: in-order
processing (IOP) [4,9] and out-of-order processing (OOP) [12]. According to
IOP approach, each operation must enforce the total order on output elements.
This method does not scale well, because it requires buffering before each, even
stateless, operation within pipeline until the total order is reached [12]. OOP
is an approach that does not require order maintenance if it is not needed.
In the case of ordering requirements, OOP buffers input items until a special
condition is satisfied. This condition is based on progress indicators such as
punctuations [17], low watermarks [1], or heartbeats [15].

Some state-of-the-art stream processing systems adopt OOP [6], but they
suppose that items must be buffered before each order-sensitive operation if
deterministic results are required. In our system, we use an optimistic approach
for handling out-of-order items, that is based on OOP, but require single buffer
per computational pipeline, no matter how many stateful operations it contains.

Only the grouping operation retains a dependency on the order of incoming
items. Within the optimistic approach, we accept the fact that grouping can
produce incorrect output, but we guarantee that all correct groups are eventually
produced. To eventually produce all correct tuples, we use an approach called
repair. If an item preceding already processed items arrives at the grouping
operation, all items starting with the just arrived one are re-processed, and
tombstones (invalidator) are generated for all items produced earlier for all input
items processed before the new one. A tombstone for an item is the same item
marked with a flag in its meta-information. Hence, it traverses over the same
physical path as the invalidated item.

An example of grouping repair is shown in Fig. 4. The green item is out-
of-order. The output consists of the new valid items (1, 2) and (2, 3) and the
tombstone (1, 3)tomb for the previously generated item.

The barrier keeps outgoing items on hold and filters out invalid elements,
when corresponding tombstones arrive. As soon as no tombstones preceding
certain point cannot arrive anymore, items are delivered up to this point. More
details can be found in Sect. 3.
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Fig. 4. The repair in grouping with WindowSize = 2. (Color figure online)

3 Implementation

FlameStream is implemented in Java, using Akka framework for messaging.
There are several main components within the implementation:

Data producers and data consumers are deployed separately and play the
role of data source and data sink correspondingly.

Graph is a component that is deployed on each node and executes a com-
putational pipeline defined by a logical graph. Operations within the same
node communicate with each other via direct function calls for performance
optimization.

Barrier filters out invalid data items. Besides, it delivers output items to data
consumers.

Acker tracks data items within the stream. Its functionality is detailed further.
Apache ZooKeeper is used for cluster management. The usage of ZooKeeper

mitigates the need for the dedicated master node.
Persistent storage is needed for recovery in case of failures.

The overall scheme of the system components is shown in Fig. 5.

Fig. 5. The overall scheme of the system components

3.1 Ordering Model

The meta-information of data item is implemented as a tuple of a global time, a
trace, child ids and a tombstone flag.
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Meta := (GlobalT ime,ChildIds[ ], T race, IsTombstone)

Global time is assigned to data item once the item enters the system. It is
a pair of logical time and the identifier of the front. The identifier is used to
resolve time collisions within different fronts. It is important to notice that we
do not rely on any clock synchronization between nodes. The only implication
of the clock skew is the system degradation regarding latency: 1 ms of the fronts
clock difference appends 1 ms to minimal latency.

Each map operation can produce multiple items from one. An ordinal num-
ber, child id, is stored in the meta information to differentiate them. ChildIds is
an array of child ids, that corresponds to all visited map operations.

The global time and child ids are enough to identify data item within a
stream if all processing is done in-order. In this case, if we compare global time
and child ids lexicographically the meta has the desired properties that were
defined in Sect. 2.2.

In order to filter out all invalid data at the barrier, there is a need to match
tombstones with corresponding invalid items. However, if any grouping repairs
happened during processing, multiple items with the same global time and child
ids exist in the stream. To differentiate them without direct payload comparison,
there is a Trace value stored in the meta-information. The trace is a xor of all
physical operations’ ids (random 64-bit identifier) visited by item so far. Invalid
item and the corresponding tombstone go along the same path because they
have the same payload and the balancing functions are deterministic. Therefore,
item and the corresponding tombstone can be revealed via trace matching.

3.2 Minimal Time Within Stream

To release an item from the barrier we need to ensure that there are no in-flight
tombstones for that item, i.e., tombstones which have been already generated
but have not arrived at the barrier yet.

Lemma 1. For any data item D let G(D) be its global time. If data item D has
global time G(D) < G(F ) for each in-flight element F , then all tombstones for
that item had already arrived at the barrier.

Proof. Let Dtomb be a tombstone for D. According to the definition of the tomb-
stone item, G(Dtomb) = G(D), hence Dtomb is not in-flight.

New tombstones for D cannot be generated because items with global time
greater than G(D) cannot trigger repair that affects D. This implies that if the
stream does not contain items D′ such that G(D′) ≤ G(D), then all tombstones
for D had already arrived at the barrier. �

Therefore, to output an item from the barrier, we should ensure that there
are no items in the stream with the global time less than or equal to the global
time of this item.
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To track the global time of in-flight items we adopt an idea of acker task
inspired by Apache Storm [3]. Acker tracks data items using a checksum hash,
called XOR. When the item is sent or received by an operation, its global time
and checksum are sent to the acker. This message is called ack. Acker groups acks
by a global time and xors received checksum hashes. When an item is sent and
later received by the next operation, xoring corresponding XORs would yield 0.

Acks are overlapped to nullify XOR only when an item arrives at the barrier.
That is, ack for receive is sent only after both processing and the ack sending for
the transformed item are done, as illustrated in Fig. 6. This technique guarantees
that the XOR for some global time is equal to zero only if there are no in-flight
elements with such global time.

Fig. 6. The example of tracking minimal time using acker

The minimal time within a stream is the minimal global time with non-
zero XOR. On minimal time changes, acker broadcasts the new minimal time
notification. Therefore, the barrier can release elements with global time G(D)
once it received a notification with time greater than G(D).

To ensure that no fronts can generate item with the specific timestamp, each
front periodically sends to acker a special message called heartbeat indicating
that front will not issue items with a timestamp lower than the reported. The
value in the ack table can become zero only after the corresponding heartbeat
arrives.

4 Experiments

We conducted a series of experiments to estimate the performance of our proto-
type. We used a problem of building an incremental inverted index as a stream
processing benchmark for the following reasons:

– It requires stateful operations
– Computational flow contains network shuffle that can violate the ordering

constraints enabling evaluation of our optimistic techniques.
– The workload is unbalanced due to Zipf’s law.
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In the real-world, such scenario can be found in freshness-aware systems, e.g.,
news processing engines.

Building of an inverted index starts with page mapping into the pairs (word;
word positions within the page), then word positions are reduced by word into the
single index update. To avoid index inconsistencies, pairs (word; word positions
within the page) must be ordered by page id and version before the update
of inverted index state. In FlameStream this algorithm is implemented as a
conversion of MapReduce transformation outlined in Sect. 2.3. The index update
record plays the role of an accumulator.

The latency is defined as a (negated) time difference between the entry of
incoming data item and the delivery of all output items generated in response
to the incoming one.

Our experiments were performed on the cluster of Amazon EC2 micro
instances with 1 GB RAM and 1 core CPU. We used 10000 Wikipedia articles
as a dataset.

4.1 Overhead and Scalability

We take the ratio of the total number of items at the barrier to the number of
the valid items among them as a key metric for the estimation of the overhead
of our prototype and measure it for several system configurations.

The relation between the number of workers, the input document rate, and
the ratio is shown in Fig. 8. As expected, the peak of the ratio is achieved when
the document per second rate is high, and the number of the nodes is low. This
behavior can be explained by the fact that a few workers cannot effectively deal
with such intensive load. Nevertheless, the proportion of invalid items reduces
if the number of workers grows. The overhead of the optimistic technique under
moderate pressure is under 10% for all numbers of workers. These results confirm
that the ratio does not increase with the growth of the number of nodes.

The latencies of FlameStream across multiple workers for the fixed document
rate of 15 rps are shown in Fig. 7. This experiment demonstrates that latency is
stable under the growth in the number of workers. These experiments show that
our method is scalable with proper optimization of the system setup.

4.2 Performance Comparison with an Industrial Solution

Apache Flink is chosen for latency comparison in this experiment because it is
state-of-the-art stream processing system that provides similar functionality and
achieves low latency in the real-world scenarios [8].

For Apache Flink, the algorithm for building the inverted index is adopted
by the usage of FlatMapFunction for map step and stateful RichMapFunction for
reduce step and for producing the change records. Order enforcing before reduce
is implemented using custom ProcessFunction that buffers all input until corre-
sponding low watermark is received. Watermarks are sent after each document.
The network buffer timeout is set to 0 to minimize latency.
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Fig. 7. FlameStream latency distribution (left),
high quantiles (right)

Fig. 8. The relation between the
number of workers, the average
input rate, and the repair ratio

We compare 50th, 75th, 95th, and 99th percentile of distributions, which
clearly represent the performance from the perspective of the users’ experience.

The comparison of latencies between FlameStream and Flink within 10 nodes
and distinct document rates is shown in the (a) plot in Fig. 9. In this case,
FlameStream provides better latency even under high load. These results con-
firm that optimistic approach for deterministic processing is able to yield lower
latency than conservative techniques. The reason for that can be that Flink
starts to update index only after the buffer before reduce stage is flushed, while
FlameStream flushes its barrier right before data are delivered. Low watermarks
go along the stream and can be delayed by long-running operations, while acker
processes ack messages independently. It is confirmed by (c) plot in Fig. 9, which
compares waiting time in Flink buffer and FlameStream barrier.

The (b) plot in Fig. 9 compares latencies between FlameStream and Flink
within 5 nodes and distinct document rates. Flink outperforms FlameStream
under extreme load. Such behavior follows from the fact that FlameStream cre-
ates significant overhead under very high load. This result evidently is in line
with measurements of the overhead in Fig. 8. Nevertheless, FlameStream demon-
strates better latency if the load is moderate.

Thus, Flink can be more appropriate if there is a need to optimize compu-
tational resources under a fixed load, but the demands on latency are not very
strict, or determinism is not required. FlameStream is more relevant for cases
when low latency and determinism are strict requirements, but an allocation of
additional resources is not a problem.

5 Related Work

Deterministic Processing and Handling Out-of-Order Items: Research
works on this topic analyze different methods, but most of them are based on
buffering. K-slack technique can be applied, if network delay is predictable [5].



244 I. E. Kuralenok et al.

Fig. 9. The comparison in latencies between FlameStream and Flink, (a) - 10 workers,
(b) - 5 workers. (c) - the waiting time: Flink order enforcer vs. FlameStream barrier

The key idea of the method is the assumption that an event can be delayed for at
most K time units. Such assumption can reduce the size of the buffer. However,
in the real-life applications, it is very uncommon to have any reliable predictions
about the network delay. IOP and OOP architectures [4,9,12] are discussed in
Sect. 2.4. The mechanism to control the trade-off between determinism and low
latency is proposed in [19]. However, such approach only provides for relaxing
determinism properties to achieve low latency if needed.

Optimistic techniques are less covered in the literature. In [18] so-called
aggressive approach is proposed. They introduced an idea of deletion messages
that is very similar to our tombstone items. However, authors describe their idea
in an abstract way and do not provide any techniques to apply their method for
arbitrary operations. Another optimistic strategy is detailed in [11]. This method
is probabilistic: it guarantees the right order with some probability. In addition,
it supports only a limited set of query operators.

Data Flow: One specific detail of our computational model is cyclic data flow
graphs. Naiad [13] by Microsoft Research provides an implementation of this
idea. Nevertheless, Naiad applies cycles only for iterative computations and
allows for each operation to have its own state. Another similar concept to Naiad
is the usage of logical timestamps to monitor progress. However, to propagate
the latest timestamp the pessimistic approach of notifications broadcasting is
defined. Therefore, with the assumption of infrequent out-of-order items, our
optimistic behavior is more relevant.

In our model, map and group operations are used as core processing prim-
itives. Google Dataflow [2] provides the same idea. The primary distinction is
that Google Dataflow has different state model which does not support MapRe-
duce stream processing tasks. Additionally, this model provides different window
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types for grouping. FlameStream grouping is aligned with fixed-sized sliding win-
dow, but it is possible to implement other kinds of windows by using cycle and
grouping with window-affiliation hash.

6 Conclusion and Future Work

We recognized that the lack of determinism implies serious difficulties within the
usage of stream processing systems. In this paper, we presented stream process-
ing model that resolves this issue. Particularly, it has the following properties:

– Novel optimistic approach for handling out-of-order items is applied to achieve
determinism.

– State management is implemented using drifting state technique, which allows
the state to be the part of the stream in the form of an ordinary data item.
Such approach relieves the user from the direct state handling.

We implemented the prototype of the proposed model and deeply analyzed
its performance and imposed overhead. The series of benchmarks within different
computational layouts demonstrated the scalability of the proposed framework.
These experiments also showed that our system can outperform the alternative.

In the future, the following features are planned to be implemented:

– Fault tolerance, and, hence, at least once and exactly once guarantees. As it
was mentioned above, the property of determinism can simplify the imple-
mentation of consistency guarantees, so this is a top-priority task for us.

– Acker can be isolated by hash range. This change allows us releasing from
barrier independently also known as early key availability.
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Abstract. Online news portals constantly produce a huge amount of
content about different events and topics. In such data streams scenarios,
delivering relevant recommendations that best suit each user’s interests
is a challenging task. Indeed, tight-time constraints and highly dynamic
conditions in these environments make traditional batch recommendation
approaches ineffective. In this paper, we present a scalable news recom-
mendation system that takes into account data semantics, trending top-
ics, users’ behaviors and the usage context in order to (1) model news
articles, (2) infer users’ preferences and (3) provide real-time suggestions.
In fact, our proposal is based on the semantic analysis of news articles’
content in order to extract relevant keywords and referenced named enti-
ties. This information is then used to model users’ interests by analyzing
their attitudes while interacting with the available content. Moreover, our
proposition accounts for the temporal variance of a news article’s utility
by considering its freshness, popularity and attractiveness. To prove our
proposition’s quality, scalability and efficiency in real-time data streaming
environments, it was evaluated during the CLEF-NEWSREEL challenge
connecting recommender systems to an active large-scale news delivery
platform. Experiment results show that our system produces high qual-
ity and reliable performances in such dynamic environments.

Keywords: News recommendation · Stream-based recommendation
Semantic analysis · Trends · Temporal recommender

1 Introduction

Recommender Systems are personalized information agents that help users in
finding items matching their preferences [2]. Hereby, an item might be a product
to purchase, a movie to watch or a news article to read. In the last years, with the
huge growth in the amount of available digital content, considerable attention
has been paid to recommender systems.
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Every day, millions of news articles are published online. This amount of news
makes it difficult to find relevant stories that best suit each individual’s interests
and preferences. As a consequence, news recommender systems are considered as
a potential solution to face this information overload problem. News articles rec-
ommender systems have to take into account several domain specific aspects and
constraints [9,10,12]. Firstly, the news domain is a highly dynamic area where
articles tend to have a short lifecycle which impacts their recommendability and
their perceived relevance over the time. Thus, classic recommendation models
trained offline on batches of static datasets may not meet the requirements nor
be relevant in the long term. Secondly, news articles are continuously created in
response to the stream of events and trends. The creation and the consumption
rates of news articles may burst in short periods and thus require scalable rec-
ommender systems capable of ingestion and processing the high velocity data
streams. Thirdly, news portals usually make their content publicly available and
do not require users to create accounts or log in before reading news articles.
Hence, usage data is not linked to users’ profiles or descriptors since they mainly
browse content anonymously. This generalizes the cold start problem to all the
users base and makes it more challenging to tailor recommendations to their long
term interests. Finally, news articles are usually published in an unstructured for-
mat which requires natural language processing and semantic analysis to model
the available content and users’ interests. All these particularities induce the
following research challenges for online news recommendation:

1. Real-time processing and Scalability: Online news recommenders require
robust and low complexity algorithms in order to efficiently deal with the
massive amount of news content with respect to the real-time constraint and
the available computing power.

2. Consumption behaviors modeling with incomplete data: Users behav-
iors history is an essential knowledge to infer their interests. However, in
the news domain, users are mainly anonymous, have no profiles describing
them and are not uniquely identified across reading sessions. Thus, usage
data mainly reflects a persistent churn and leads to a continuous cold start
problem for users. Hence, we believe that news recommender systems should
mainly focus on the content, the context and on the fragmented browsing
sessions data in order to better model and target users’ preferences.

3. Continuous recommendation and temporal relevance: As in all recom-
mendation domains, the cold start problem arises also for the newly published
news articles. In fact, evaluating the relevance of such items is difficult since
they do not have sufficient usage data (e.g. reading or ratings). This problem
is more challenging in the news domain due to the continuous creation of
news articles in response to current events. Moreover, we believe news nov-
elty is a major factor that drives users’ interests. Therefore, the challenge
is to propose recommendation approaches capable of rapidly evaluating the
relevance of new articles and suggesting them to potential consumers. Any
of the existing recommendation approaches that waits until sufficient usage
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data is collected to accurately evaluate the relevance of a newly created news
article risks exceeding the time frame where it is the most interesting and
attractive.

In this paper, we propose a hybrid recommender system that exploits a range
of text mining and semantic web technologies to better model news articles’ con-
tent, infer users’ preferences and provide personalized recommendations. The
system takes into account content-dependent user preferences and the tempo-
ral changes in news articles utility and attractiveness. Moreover, the proposed
recommender system was evaluated both online and offline on real-world users
and content in order to assess its quality and performances in a large scale,
highly interactive and real-time scenarios. The evaluation was conducted during
the CLEF-NewsREEL challenge on an active large-scale news delivery platform
with real news articles and users’ feedback within tight real-time constraints.

The rest of the paper is organized as follows. Section 2 gives an overview
of related work. Section 3 outlines the proposed recommendation system and
its underlying approaches. Section 4 presents a brief overview of the NewsREEL
challenge scenario and discusses both the online and the offline experimentations’
results. The last section concludes the paper and gives an outlook on future work.

2 Related Work

Providing relevant recommendations is becoming gradually more difficult as
online news portals produce an enormous amount of content every day. To face
this information overload problem, several recommendation systems have been
proposed. We review the most commonly used ones and discuss their specific
strengths and weaknesses.

Content-based approaches provide articles that are similar to those pre-
viously viewed by users. They utilize the Vector Space Model to describe content
and users’ interests using keywords weighted by the term frequency-inverse doc-
ument frequency (TF-IDF) [11,13]. These approaches are generic and do not
take into account the specific characteristics of the news domain.

Collaborative Filtering algorithms are based on the assumption that
users who appreciated similar items in the past tend to have similar interests in
the future [7]. Although they are the most commonly used, they suffer from the
data sparsity and the cold start problem [14] require a high number of positive
interactions. This requirement makes them less suitable for news recommenda-
tion scenarios due to the highly dynamic and transient conditions in these envi-
ronments where user are largely anonymous and content is continuously created
and rapidly loosin traction.

Stream-based approaches incorporating trending and temporal fac-
tors try to cope with the specific characteristics of the news articles recommen-
dation domain. In fact, this application domain imposes several hard constraints
on the recommendation approach to adopt due to large volume and velocity of
news streams and users’ actions. Besides, recommendations need to be gener-
ated on the fly under tight time constraints in order to assist the rapid content
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consumption of news articles. Several work in the news recommendation domain
focus on extending collaborative filtering approaches with temporal context anal-
ysis [3,4]. However, Lommatzsch et al. enumerate several approaches that can
incorporate trends and temporal factors in order to improve the quality and
the efficiency of news recommendation [10]. Similarly, Garcin et al. suggest that
exploiting contextual information helps better model and predict users’ naviga-
tional patterns [6].

We believe that currently, there is no universal and generally adopted solu-
tion that takes into consideration the dynamics, trends and temporal factors
in the news recommendation field. Therefore, in this work, we try to propose
and aggregate several specialized models in order to address several recommen-
dation scenarios that need different compromises between personalization and
universality, trending and freshness or implicit and explicit users’ behaviors.

3 Proposed System

Figure 1 presents the architecture of the proposed recommender system and its
underlying hybrid approach based news articles’ semantics, trends and tempo-
ral relevance in order to make suggestions. First, we exploit text mining and
semantic web technologies to extract relevant keywords and referenced named
entities from each news article’s content as it arrives. The extracted knowledge is
then used to model users’ interests by analyzing their attitudes while interacting
with the available content. Afterward, the recommender system suggests to users
items that are likely to be of their interests based on their preferences models,
news articles’ semantics and other influencing factors such as news freshness and
trends in order to deal with item-side and user-side cold-start problems.

Fig. 1. The architecture of the proposed news recommender system (Some icons in this
figure are designed by Freepik.com).

3.1 Content Analyzer

News articles are usually published in an unstructured format which distin-
guishes them from other items such as movies, books or products. In such cir-
cumstances, deriving relevant information from content is a more challenging. In

http://freepik.com/
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our proposition, we perform a set of semantic analysis operations on the news
articles’ content in order to extract the necessary knowledge for users model-
ing and targeting. Such knowledge is mainly composed of keywords and named
entities mentioned in the news story. In order to achieve this objective, we first
break news content into basic linguistic terms (i.e. words, numbers, punctuation,
etc. . . ). Then, these terms are processed by removing non-alphanumeric tokens,
lower casing all terms, eliminating all non-informative words (i.e. stop words) and
reducing inflectional terms to their root form via lemmatization. This natural
language processing phase is useful in order to model articles’ content with non-
repetitive and relevant terms. In parallel, the content is semantically analyzed in
order to understand its meaning and context. Hereby, we try to extract named
entities that are mentioned in the text that may refer to events (what happened),
times or periods (when), locations (where), individuals or organizations (who).
This task is accomplished using the Federated Knowledge Extraction Framework
(FOX) [15] which is able to disambiguate the extracted entities against existing
Linked Data Knowledge Bases such as DBpedia [8].

In this work, named entities and extracted terms are indexed in a data struc-
ture enabling fast queries using the Lucene1 library. This textual and semantic
analysis step for a document d of n words has a linear complexity (i.e. O(n)).

3.2 Profile Learner

In this work, we believe that users’ interests may be modeled using the terms and
the named entities that are mentioned in the news articles they read. In fact,
based on Google Trends statistics for the year 20172, we remark that several
top searched terms in the news category refer to named entities. Besides, v et al.
suggest that users reading and click patterns in news portals are highly influenced
by the stories and the topics that the news articles address [5]. Therefore, we
believe that using the news terms and mentioned named entities are the factors
that drive users’ interests and that they should be used jointly to infer their
preferences.

Based on these hypotheses, we model users based on the keywords and the
named entities within the articles they interact with. We also suggest that the
more frequent a term or a named entity appears in an article, the more impor-
tance it should have in the user profile.

In the news domain, since users are mainly anonymous and cannot be pre-
cisely tracked across reading sessions, we make no use about the existence of
their demographic descriptors and assume that their short-term click history is
sufficient to model and predict their interests. Besides, we note that users’ clicks
do not reflect articles’ reading times due to the nature of web navigation where
a user may open several news articles in different browser tabs at the same time.

1 https://lucene.apache.org/.
2 https://trends.google.com/trends/yis/2017/GLOBAL.

https://lucene.apache.org/
https://trends.google.com/trends/yis/2017/GLOBAL
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3.3 Recommendation Models

The Recommendation model’s objective is to select the most appropriate news
articles to recommend to a particular user. This problem may be stated as
follows: Given the clicks history of m users (U = {u1, . . . , um}) over n items
(I = {i1, . . . , in}), and given an active user u with a profile consisting of key-
words and named entities extracted from the articles he/she already read, the
objective is to predict the most relevant articles that he/she may be interested
in reading in the near future.

In this work, we set the following additional challenges that the recommen-
dation approach should respect:

1. The recommendation approach should address the cold start problem on both
items and users sides.

2. The recommendation approach should take into account the transient nature
of news stories. In fact, new articles have variable lifespans and variable per-
ceived relevance over time.

3. Recommendations should be dynamic and take into account all the available
knowledge about the user when they are inferred. This ensures that the app-
roach operates on line (in contrast to batch offline recommendation) and that
even the most recent user’s reading are considered for prediction.

4. The recommender system should be able to handle the high velocity of the
events generated by news portals (i.e. content creation and users’ clicks).

5. Recommendations should be generated in real-time within a tight response
time.

In this work, we propose four recommendation models and a hybridization
strategy whose role is to select the most promising depending on the available
data. In the next sections, we elaborate on the details of each proposition.

Non-personalized Model (PNstat). In order to tackle the highly sparse users’
data and the cold start problem they face, our approach adopts at first a “univer-
sal to everyone” recommendation strategy which converges progressively towards
a more personalized strategy while more behavioral data is collected for the user.
The non-personalized recommendations are based on news articles recency and
popularity which makes it possible to provide potentially interesting suggestions
even for new users and articles. The approach analyzes on the fly the data stream
by tracking news stories creation and reading events and maintaining an always
up-to-data statistics about each stories’ freshness and popularity. This increases
the recommendations’ quality by continuously following users’ interests trends
and avoiding suggesting outdated stories.

Lommatzsch et al. confirm that the lifecycle of popular news items is very
short and that this popularity state remains only for two to three days [10].
Therefore, in order to model popularity (P ) and recency (N) as temporal facts
that impact the perceived relevance of an article, we propose the PNstat measure,
presented in Eq. 1, that utilizes an exponential form to describe the gradual decay
of the trending popular news articles as time goes. This measure is then used to
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filter the top-N ranking news stories in cold start scenarios where no usage data
is available.

PNstat(a) = P (a) ∗ e−λN(a) (1)

In Eq. 1, for a given article a, N(a) refers to its age while P (a) denotes
the number of its readings normalized by the total number of impression. λ
represents the trending decay rate allowing a control over the period after which
the popularity of the article plummets over time.

The recommendations generated by this model are non-personalized and rel-
atively static overtime. Indeed, once established, the recommendations changes
only when the freshly released articles acquire sufficient reads to outperform the
most popular items that are aging and losing momentum. Consequently, even
if the PNstat model helps avoiding the cold start impact on the recommenda-
tions quality, the slow update rate of its suggestions reduces their usefulness and
diversity over time.

Personalized Model Based on Implicit Negative Feedback (PNdyn). We
extend the non-personalized model PNstat with a feedback mechanism allowing
it to adapt its recommendations according to the implicit attitudes that each
user could have shown against previous suggestions. Hereby, we take into account
the cases where a user, totally aware of a recommended news article, decides to
ignore it and not to interact with it. This attitude against that item indicates its
low perceived utility for the user and the need for the recommendation approach
to acquire this new knowledge implicitly and avoid recommending it again later
to that same user. In this context, we consider that the more a story is rec-
ommended to a user without inducing a positive attitude (impression or click),
the more its utility in time decreases. In order to quantify this feedback, we
integrate a new variable NR(u, a) indicating the number of times a user u was
recommended the article a. The formalization of this concept would contribute
in decreasing the predicted utility of the previously recommended articles as long
as are ignored by the user. Consequently, the model would be able to account
for this negative and implicit users’ feedback and accelerate the replacement of
inefficient suggestions that were previously considered as relevant based on their
popularity and recency.

Based upon the previous analysis, a dynamic and user-dependent variant
named PNdyn is proposed and formulated in Eq. 2. Hereby, δ is a parameter
that controls the decay rate of the utility of articles that was recommended
several times without inducing a positive attitude.

PNdyn(u, a) = P (a) ∗ e−λN(a)−δNR(u,a) (2)

This formulation makes it possible to select the articles having the best com-
promise between trending and freshness and novelty to the user. Moreover, it
has the merit of being adapted to the context of the real-time recommendation
thanks to its constant complexity (O(1)).
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Semantically Personalized Models (SEMterm and SEMne). In this work,
we propose a semantically personalized recommendation model adopting the
same approach as in content based filtering. The assumption here is that news
consumers’ behaviors are highly influenced by the articles’ topics and mentioned
named entities. Hence, based on the semantic knowledge extracted by the content
analysis components, this variant tries to build a user profile describing his/her
preferences using the distribution of keywords and named entities in the news
articles he/she previously read. The main idea is to recommend to each user, the
news articles containing the most important tokens (i.e. keywords for SEMterm

and named entities for SEMne) appearing in his/her profile.
In this work, users’ profiles and news documents are encoded in a Vector

Space Model [13] associating each token with its TF-IDF reflecting its impor-
tance. This representation enables the recommendation model to evaluate a news
article’s relevance as the alignment between its indexed content and the active
user’s profile using the Cosine similarity measure. The cost of calculating such
similarity between a news article d and a user profile u is linearly proportional to
the size of their representative vectors (O(|d|+ |u|)) which is adapted for online,
real-time recommendation scenarios.

A Hybrid Recommendation Variant: The (SEMhyb Recommender). In
this work, we also propose a hybrid recommendation approach based on the
two proposed personalized recommendation models using a switching hybridiza-
tion strategy [2]. This proposition is based on the hypothesis that those previ-
ous models may not have consistent performance for all types of users. In fact,
each model is specialized in different scenarios and utilizes different knowledge
sources. Hence, selecting one model as appropriate in a current situation, based
on a switching criterion may alleviate the weaknesses of each model when used
separately without infringing the real-time constraint. Hereby, the switching cri-
terion is based on the available usage data for the active user since recommen-
dations would be provided by the PNdyn model for a new user, by the SEMterm

model if the user have read articles with no named entities and by SEMne as
soon as named entities appear in his/her reading history (i.e. in the profile).

4 Experimentations

We evaluated our proposals during the NewsREEL live challenge of the CLEF
News REcommendation Evaluation Lab3 [1]. With such online evaluation, we
were able to validate our recommendation models under real conditions and
ensure that our system is able to deliver high throughput while respecting the
imposed 100 ms response delay constraint.

4.1 Methodology

The news NewsREEL challenge, is a campaign-style evaluation lab that offers
researchers the opportunity to connect their recommendation systems to an
3 http://www.clef-newsreel.org.

http://www.clef-newsreel.org
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active large scale news recommender system. This connection is established via
the Open Recommendation Platform (ORP) provided by the news recommen-
dation provider Plista GmbH4. The platform is able to provide real-time rec-
ommendation service for German news portals. As users visit the partner news
publishers, ORP randomly forwards recommendation requests to registered par-
ticipants as shown in Fig. 2.

Fig. 2. The figure illustrates the communication between the recommender participant,
Plista server and real users.

The recommendations quality of the participating recommender systems is
measured by the click-through rate (CTR) referring to the ratio of the generated
recommendations that were clicked by users.

NewsREEL also offers an offline task named NewsREEL Replay in which
participant systems are asked to predict which new articles each user will read
in the near future based on a stream of real events issued from historical logs.
Hereby, the quality measure, called “offline CTR” is defined as the ratio of
successful recommendations that were read by a targeted user in the following
10 min.

4.2 Results and Discussion

In this section, we analyze the evaluation results and discuss the strengths and
weaknesses of the implemented models based on their recommendation quality
and performances.

Table 1 enumerates the deployed recommender models and their Click-
Through Rates for the time period ranging from April 2nd to May 7th 2017.

The results show that both algorithms SEMhyb and PNstat considerably
outperformed basic strategies: SEMterm and SEMne. Moreover, we remark that
models based on named entities profiles (SEMhyb and SEMne) provide more

4 https://www.plista.com/.

https://www.plista.com/
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Table 1. Click-Through Rates of the proposed recommendation models

Recommender Recommendation
strategy

Profiles type Requests Clicks CTR(%)

SEMterm Cosine similarity
between (items,
profile)

Keywords extracted
from the summaries

7 891 59 0.7477

SEMne Cosine similarity
between (items,
profile)

Named entities
extracted from the
summaries

34 490 259 0.7509

PNstat PN ranking (λ=1) on
the last top-50 recent
news

No profile is required 77 723 879 1.1309

SEMhyb Implement the hybrid
recommender strategy

Keywords extracted
from the summaries
and entities extracted
from the full text

75 535 760 1.0062

relevant suggestions than the one based on keywords (SEMterm). This can be
explained by the fact that users’ interests are sometimes driven by the named
entities (i.e. persones, locations, organizations, etc. . . ) mentioned in the news.

We should note that the deployed recommenders started providing recom-
mendations from scratch and with no prior data. Over time, our data collection
system has processed about 82 336 articles and 3 755 547 users. Moreover, since
the evaluation platform only provides news summaries, we had to exploit their
corresponding URLs in order to extract named entities from their web pages
using two permanent processes extracting named entities newly created articles
and old ones. Figure 3 shows the evolution of our SEMhyb model’s CTR as more
semantic knowledge is extracted by the full text semantic analysis.

The experiment show that the SEMhyb’s recommendation quality depends
on the available named entities extracted from the full text of the articles. In
other words, users appreciate news citing the same named entities as the ones
they have previously read. Moreover, we believe that even if PNstat has better
CTR than SEMhyb, the latter may outperform it in the long term. In fact, once
users have read all the recent and/or popular news stories, the PNstat model
would recommend them all the same older and less popular ones, whereas the
proposed SEMhyb would only suggest the ones that are aligned with each ones’
personal preferences.

Since it is unpractical fine-tune the models’ parameters during the online
challenge and the infrastructure needed to deploy multiple configurations at the
same time, we extended our evaluation to the offline NewsREEL Replay task.
As shown in Figs. 4, 5 and 6, we measure, for all the implemented models, the
offline CTR per hour across a three days dataset ranging from February 1st to
February 3rd 2016. This dataset contains 18 273 330 recommendation requests
belonging to three publishers (tagesspiegel, ksta and sport1 ) and is characterized
by a high cold start percentage around 94%. In this experiment, most recent
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Fig. 3. This figure presents the impact of the availability of more semantic knowledge
(right y-axis) on the relevance of the recommendations (left y-axis).

and most popular strategies are used as baseline algorithms. Besides, in the
PNdyn recommender, the adopted time unit is the hour and its parameters were
empirically estimated (i.e. λ = 1/50, δ = 1/5).

The results show that baseline recommenders have fluctuating performances
for all news portals whereas SEMhyb and PNdyn were be able to maintain
more stable results over time. SEMhyb shows similar trends as the PNdyn but
outperforms it in several times. This is due to the cold start problem and the lack
of usage data leading SEMhyb to select PNdyn as its main underlying model.
Therefore, the data points where SEMhyb outperforms PNdyn are due to the
usage of the semantic sub-models SEMterm and SEMne on the rare identified
users having more that one read article. This proves the relevance of textual and
semantic analysis in inferring and predicting users’ interests.

The experiments show that popularity is the most important explicative fac-
tor in general news portals, whereas recency has a fluctuating predicting power
(cf. Figs. 5 and 6). We believe that the CTR burst of the most recent strategy
is due to the occurrence of a recent event of general interest. In contrast, the
recency factor is predominant in the sports news portal while popularity’s predic-
tive power is almost null (cf. Fig. 4). We believe this is due to sport news stories
being consumed rapidly after their corresponding event and hence rapidly loosing
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Fig. 4. Offline Click Through Rate by hour of day for publisher sport1

Fig. 5. Offline Click Through Rate by hour of day for publisher tagesspiegel

Fig. 6. Offline Click Through Rate by hour of day for publisher ksta

their attractiveness and popularity. This leads us to believe that a deeper domain
dependent optimization of λ,δ and the switching conditions of the SEMhyb model
may lead to even better results.

In our experiments, all the implemented models were deployed on an ubuntu
virtual machine having 4 Gb of RAM, 94 Gb of storage and running 2 Intel(R)
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Xeon(R) CPU E5-26xx processor with 2.0 GHz frequency and 4 Mb of cache.
Despite all the semantic analysis and the recommendation workflows, our online
hybrid recommender was able to process on average 4 000 requests per minute
with an average response time of 47 ms, a mean processor occupancy of 6% and
an average memory space of only 240 Mb. In the offline scenario, the system was
able to process up to 150 000 events and requests per minute.

5 Conclusions and Future Work

This article enumerates the results and the lessons learned from deploying several
recommender systems on a large-scale news recommendation platform. In this
work, we studied the usefulness and the effectiveness of several semantic analysis
and modeling techniques in a real-world environment with multiple hard con-
straints. In fact, the news article recommendation domain requires low latency
and scalable approaches with limited complexities, minimal response times and a
large capability of ingesting the large volumes of data streams that describe the
available content and users’ interactions. In this context, we proposed a univer-
sal solution for news articles recommendation taking into consideration several
domain dependent aspect such as content consumption behaviors, dynamics,
trends and temporal context. Our proposition also handles content semantics in
order to model users’ interests using keywords and named entities, hence making
the recommendations explainable.

The obtained results show the impact of recency and popularity in recommen-
dations quality and the role of semantic analysis and users explicit and implicit
interactions with content in making personalized recommendations. The results
are aligned with recent studies’ on news recommendation stating that news rec-
ommendation approaches based on freshness and popularity are hard to outper-
form by the ones based solely on items’ content [10]. However, we believe that
hybridization is the key to overcome the shortcomings of individual strategies.

Our future work will focus on deeper analysis of the correlation between
named entities and users’ interests. Moreover, we believe that analyzing the
contextual dimension of users’ behaviors would also enable recommenders bet-
ter distinguish between long-term and short-term interests and deliver more
accurate suggestions.
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Abstract. MatBase is a prototype data and knowledge base management sys-
tem based on the Relational, Entity-Relationship, and (Elementary) Mathemat-
ical Data Models. The latter distinguishes itself especially by its rich panoply
made of 70 constraint types. They provide database and software application
designers with the tools necessary for capturing and enforcing all business rules
from any sub-universe of discourse, thus guaranteeing database instances
plausibility. When dealing with such a wealth of constraint types, both inco-
herencies and redundancies are possible. As only coherent constraint sets are
acceptable and minimal ones are desirable, this paper proposes as fast as pos-
sible table-driven algorithms for assisting enforcement of coherence and guar-
anteeing minimality of such constraint sets, which are implemented in the
current MatBase versions. The paper also discusses their complexity and utility,
both in the study of sets, functions, and relations semi-naïve algebra and first
order predicate calculus with equality, as well as, especially, in data modeling,
database constraint theory, advanced database management systems, database
design, and database software application development.

Keywords: Data modeling � Database constraints theory
Relational constraints � Non-relational constraints
Coherence and minimality of constraint sets � Knowledge base
Integrity checking � Data structures and algorithms for data management
(Elementary) Mathematical Data Model � MatBase

1 Introduction

MatBase [10, 11, 13] is a prototype Knowledge and Database Management System
(KDBMS) built on top of an existing relational DBMS (RDBMS) and based on both
the Relational Data Model (RDM) [1, 4, 10], the Entity-Relationship one (E-RDM) [3,
10, 16], and the (Elementary) Mathematical one ((E)MDM) [6–11, 13], which also
embeds Datalog¬ [1, 11]: its users may define, update, and delete database
(db) schemas in any of these three formalisms, which MatBase is automatically
translating into the other two ones. Relational constraints (i.e. domain/range, not null,
(unique) key, referential integrity, and tuple/check) are enforced, in the possible extent,
through the host RDBMS [12]. Non-relational ones are enforced through automatically
generated trigger-type methods associated to automatically generated forms built on top
of corresponding relational fundamental db tables and views.
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Just like in any other data model, (E)MDM constraints, which are formalizing the
business rules that apply in the corresponding sub-universes, are closed first order
predicate with equality (FOPC) formulae. Informally, sets of such formulae are said to
be incoherent if they only allow for empty set instances of at least one set and coherent
otherwise [5, 10, 11]. Trivially, always empty db instances are of no interest, be it
theoretical or practical; consequently, only coherent sets of db constraints are accept-
able. When dealing with large constraint sets, even trivial incoherencies are possible by
mistake.

Orthogonally, but, as we will see, somewhat dually, coherent constraint sets may be
minimal or not. Generally [10–12], a logic formula is redundant in a set if it is implied
by the rest of the formulae of that set (i.e., in dbs, it holds in any instances in which the
rest of the constraints holds); a set containing no redundant formula is called minimal.
Obviously, especially in dbs, only minimal constraint sets are desirable, as enforcing
redundant constraints is not only superfluous, but also time (and memory) consuming.

We have designed and implemented in both current MatBase versions (one
developed in MS Access and the other in .NET C# and SQL Server) three table-driven
algorithms that assist users in enforcing constraint set coherence and guarantee their
minimality, which are presented, exemplified, and discussed in this paper.

1.1 A Brief Introduction to (E)MDM

(E)MDM schemes are quadruples made from

• a finite nonempty collection of sets S, partially ordered by inclusion,
• a finite nonempty set of mappings M defined on and taking values from sets of S,
• a finite nonempty set of constraints C over the elements of S and M, and
• a finite set of Datalog¬ programs P associated to the elements of S and M.

In the context of this paper, only (conventional) db schemas (i.e. triples <S, M, C>)
are of interest (when P is non-empty, the corresponding db is a deterministic deductive
one, so a knowledge base).

S is partitioned into the following four blocks: object, value, system, and computed
sets.

• Object ones are partitioned into entity and relationship. In relational dbs (rdbs) they
are implemented as tables.

• Value ones are subsets of (programming/DBMS) data types.
• System sets include at least the data types, the empty set, a distinguished countable

set NULLS of null values, and all the sets of the MatBase metadata catalog.
• Computed sets are obtained from all other types of sets by using semi-naïve sets,

functions, and relations algebra operators. In rdbs they are implemented as views.

All mappings in M are defined either on object or on computed sets not based on
value ones. In rdbs they are implemented as table/view columns. M is partitioned into
the following four blocks: attributes, structural functions (implemented in rdbs as
foreign keys), system, and computed mappings.
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• Attributes are taking values from value sets.
• Structural functions from object ones.
• System mappings include canonical projections, injections, and unity mappings.
• Computed mappings are obtained from all other types of mappings by using semi-

naïve sets, functions, and relations algebra operators.

C is partitioned into the following three blocks: set, mapping, and object con-
straints. Some constraints are associated to corresponding db E-R diagram (E-RD)
cycles [8, 11]. The simplest cycles are those of length 1: the autofunctions (i.e. of the
type f: A ! A). Cycles of length greater than one are made from nodes of three types
(source, i.e. they are domains of the two mappings that connect them to the cycle,
destination, i.e. they are co-domains of the two mappings that connect them to the
cycle, and intermediate, i.e. they are the domain for one mapping and the co-domain
for the other one that connect them to the cycle) and may only be of the following three
types [8, 11]:

• commutative (i.e. having only one source and one destination nodes)
• circular (i.e. having only intermediate nodes)
• general (i.e. any other cycle than those of types commutative and circular).

The set constraints include 16 constraint types partitioned into two blocks: general
set and dyadic relation (i.e. binary math relations defined over a set).

The general set constraints are sub-partitioned into the following five blocks:

• inclusion (e.g. SEA_HARBORS � CITIES)
• equality (e.g. BIRTH_CERTIFICATES = PEOPLE)
• disjointness (e.g. MOTHERS \ FATHERS = ∅)
• union (e.g. UNIVERSITY_PEOPLE = PROFESSORS [ STUDENTS)
• direct sum (e.g. PARLIAMENT_MEMBERS = SENATORS ⊕ DEPUTIES).

Dyadic relation ones are sub-partitioned into the following eleven blocks: reflex-
ivity, irreflexivity, symmetry, asymmetry, transitivity, intransitivity, Euclideanity,
inEuclideanity, equivalence, acyclicity, and connectivity.

There are 53 mapping constraint types that are sub-partitioned into the following
five blocks: general mapping, autofunction, homogeneous binary function product (i.e.
of the type f • g: A ! B2), general function product, and function diagram.

General mapping constraints are sub-partitioned into the following five blocks:

• totality (i.e. not null: codom(f) \ NULLS = ∅)
• nonprimeness (i.e. it cannot be part of any key; e.g. Population :CITIES ! NAT(8))
• one-to-oneness (single key, e.g. SSN : USCITIZENS $ NAT(9))
• ontoness (e.g. MountainRange : MOUNTAINS ! MOUNTAIN_RANGES)
• bijectivity (e.g. BirthCertificate : PEOPLE $ BIRTH_CERTIFICATES).

Autofunction (particular cases of dyadic relations, for which Euclideanity and
connectivity do not make sense, as they would violate function definition) constraints
are sub-partitioned into the following fifteen blocks:

• reflexivity
• irreflexivity (e.g. MedicalDoctor : PEOPLE ! PEOPLE)

MatBase Constraint Sets Coherence and Minimality Enforcement Algorithms 265



• null-reflexivity (i.e. reflexive for its not null values; e.g. Capital ° Country :
COUNTRIES ! COUNTRIES)

• null-irreflexivity (e.g. Father : PEOPLE ! PEOPLE)
• symmetry
• asymmetry
• null-symmetry (e.g. Spouse : PEOPLE ! PEOPLE)
• null-asymmetry (e.g. ReportsTo : EMPLOYEES ! EMPLOYEES)
• idempotency (e.g. USCongressRepres : USCITIZENS ! USCONGRESSMEN)
• anti-idempotency
• null-idempotency (e.g. ReplacementPart : PARTS ! PARTS)
• null-anti-idempotency (e.g. Mother, Father)
• acyclicity
• null-aciclicity (e.g. Mother, Father)
• canonical surjectivity (ontoness; e.g. USCongressRepres : USCITIZENS

! USCONGRESSMEN).

Homogeneous binary function product ones are sub-partitioned into the following
twenty blocks (note that reflexivity does not make sense in this context: why would
anybody wish to have two columns of a fundamental table that should store exactly
same values?):

• irreflexivity (e.g. Country • NeighborCountry : NEIGHBORS ! COUNTRIES2)
• null-reflexivity
• null-irreflexivity (e.g. Husband • Wife : PEOPLE ! PEOPLE2)
• symmetry (e.g. Country • NeighborCountry : NEIGHBORS ! COUNTRIES2)
• asymmetry
• null-symmetry
• null-asymmetry (e.g. Husband • Wife : PEOPLE ! PEOPLE2)
• transitivity (e.g. Divider • Number : DIVISORS ! NAT2)
• intransitivity
• null-transitivity
• null-intransitivity
• Euclideanity (e.g. Person • BloodRelatedTo : BLOOD_RELATIVES ! PEOPLE2)
• inEuclideanity
• null-Euclideanity
• null-inEuclideanity (e.g. Husband • Wife : PEOPLE ! PEOPLE2)
• acyclicity (e.g. Prerequisite • Course : PREREQUISITES ! COURSES2)
• null-acyclicity
• connectivity
• equivalence (e.g. Person • BloodRelatedTo : BLOOD_RELATIVES ! PEOPLE2)
• null-equivalence.

Function product ones are sub-partitioned into three blocks:

• minimal one-to-oneness (concatenated key)
• existence (denoted f g, i.e. whenever f has a not null value, g must also have a

not null value)

266 C. Mancas



• nonexistence (dual to existence: for any element of their common domain, only one
out of a set of mappings should take a not null value).

Function diagram constraints include the following ten blocks:

• commutativity (equality)
• anti-commutativity
• local commutativity (equivalent to corresponding compound autofunction’s

reflexivity)
• local anti-commutativity (equivalent to corresponding compound autofunction’s

irreflexivity)
• local acyclicity (equivalent to corresponding compound autofunction’s acyclicity)
• local symmetry (equivalent to corresponding compound autofunction’s symmetry)
• local asymmetry (equivalent to corresponding compound autofunction’s

asymmetry)
• local idempotency (equivalent to corresponding compound autofunction’s

idempotency)
• local anti-idempotency (equivalent to corresponding compound autofunction’s anti-

idempotency)
• generalized commutativity (particular case of an object constraint only involving

mappings of a same function diagram of type general).

Object constraints are FOPC closed Horn clauses (i.e. disjunctions of literals with
at most one positive, i.e. unnegated one).

Obviously, for example, set equality is a derived one (from inclusion), just as direct
sum (from disjointness and union), equivalence (from reflexivity, symmetry, and
transitivity or reflexivity and Euclideanity), totality (from existence), bijectivity (from
one-to-oneness and ontoness), etc. are. Dyadic relation ones can always be considered
as homogeneous binary product ones, where the products are made from their roles (i.e.
canonical (Cartesian) projections).

In total, there are only 25 fundamental constraint types in (E)MDM, the remaining 45
being derived. In fact, theoretically, as all constraints are closed FOPC formulas, only the
object constraint is actually fundamental. However, as, for example, it is much more
easier to assert that Capital : COUNTRIES ! CITIES is one-to-one, instead of equiv-
alently asserting that (8x1, x2 2 COUNTRIES) (Capital(x1) 6¼ Capital(x2) ) x1 6¼ x2),
all relevant well-established fundamental math and RDM concepts are considered fun-
damental in the (E)MDM too.

All five RDBMS provided constraint types are included in (E)MDM too: domain
(in co-domain definitions) and referential integrity (from the Key Propagation Principle
[2, 10, 12]) implicitly, while not null (totality), keys (minimal one-to-oneness), and
tuple/check (extended to object constraints) explicitly.

To conclude about constraints, always discovering and enforcing all existing ones
in the sub-universes modeled by dbs is crucial: any existing constraint that is not
enforced in a db scheme allows for storing implausible data in its instances. For
example, the dyadic relationship MATCHES storing results of a double leg champi-
onship is connected, irreflexive, symmetric, transitive, and Euclidean; were it storing
results for an eliminatory competition, then it is irreflexive, asymmetric, intransitive,
and inEuclidean, just like the product Mother • Father, etc.
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1.2 An (E)MDM Schema Excerpt Example

Let us consider an excerpt of a small fragment of any operating system internal db for
file management scheme (see it complete in [11]), with one tree of folders per logic
drive, made of only to entity-type sets, FILES and LOGIC_DRIVES, which includes the
following non-relational constraints (where LogicDrive : FILES ! LOGIC_DRIVES
and RootFolder : LOGIC_DRIVES $ FILES):

C5: (∀x∈FILES)(Size(x) = 0 ⇒ StartAddress(x) ∈ NULLS) 
C12: RootFolder ° LogicDrive asymmetric // root folders may not be moved to 

other // logic drives
C13: RootFolder ° LogicDrive idempotent     // root folders are the representatives of

// of their logic drives
C14: LogicDrive ° RootFolder reflexive      // root folders belong to their logic drives
C15: LogicDrive ° RootFolder asymmetric 
C16: LogicDrive ° RootFolder key   // there may not be two roots for a same logic drive

C19: (∀x∈FILE_PROCESSORS)(Ext(Processor(x) ∈ {“com”, “exe”, “hta”, “js”} ∧
¬Folder?(Processor(x)) // file processors may not be folders, and should 

// have extensions in {“com”, “exe”, “hta”, “js”}

1.3 Related Work

Lot of work has been done in mathematical logic regarding the coherence and mini-
mality of FOPC formulae sets (see, for example, [14]), but none in the db theory, as
there are no incoherencies or redundancies in the RDM set of only five constraint types.

1.4 Paper Outline

The following section of this paper introduces and discusses the three MatBase algo-
rithms for assisting coherence enforcement and guaranteeing minimality. The third
section discusses their complexity, optimality, and utility. The paper ends with con-
clusion, further work, and references.

2 MatBase Constraint Sets Coherence and Minimality
Enforcing Algorithms

2.1 Base Theoretical Results Used by the Algorithms

In [11] too, it is proved that the following results hold:

• for dyadic relations and homogeneous binary function products:
– acyclicity ) asymmetry
– asymmetry _ intransitivity _ inEuclideanity ) irreflexivity
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– asymmetry ^ transitivity ) acyclicity
– reflexivity ^ Euclideanity ) symmetry ^ transitivity
– symmetry ^ Euclideanity ) transitivity
– symmetry ^ inEuclideanity ) intransitivity
– symmetry ^ transitivity ) Euclideanity
– symmetry ^ intransitivity ) inEuclideanity
– irreflexivity ^ transitivity ) asymmetry
– symmetry ^ intransitivity ^ inEuclideanity ) ¬connectivity

• for autofunctions:
– f reflexive , f = 1 , f total ^ f symmetric ^ f idempotent ) f bijective
– f symmetric , f 2 = 1
– f canonical surjection , f total ^ f onto ^ f idempotent
– f irreflexive ^ f idempotent ) f asymmetric
– f asymmetric _ f anti-idempotent ) f irreflexive
– f asymmetric ^ f idempotent ) f acyclic
– f acyclic ) f asymmetric ^ f irreflexive ^ f anti-idempotent.

Consequently, not any constraint set is coherent. For example, no autofunction may
be both reflexive, symmetric, and anti-idempotent, as the latter two imply irreflexivity.
Moreover, not any coherent constraint set is minimal. For example, for any dyadic
relation or autofunction the set {acyclic, irreflexive} is not minimal, as irreflexivity is
redundant (because acyciclicity implies asymmetry, which implies irreflexivity), so it
should be replaced with the minimal equivalent set {acyclic}.

2.2 MatBase Knowledge Base Tables Storing Theoretical Results,
Redundancies, Coherent, and Incoherent Combinations of (E)MDM
Constraint Types

We have added to the MatBase metadata catalog a table THEOREMS that stores all
above (and other) coherence and minimality results. For example, there is a row in it of
type “incoherency” having Description “symmetric ^ intransitive ^ inEuclidean ^
connected” and one of type “redundancy” having Description “symmetric ^ intransi-
tive ) inEuclidean”. Besides Type and Description, this table also has columns for
storing the order in which MatBase applies corresponding corollaries, their labels and
pages within [11], etc. This table is used for providing users with adequate questions,
warnings, and error messages. Its 37 lines (17 with incoherency and 20 with redun-
dancy results) were inserted manually.

For set constraints, only trivial results exist (e.g. two equal sets are each included in
the other, hence inclusion is redundant in any set including {equality, inclusion}, two
disjoint sets cannot be included one into the other, hence {inclusion, disjointness} is
incoherent, etc.). For the rest of the constraint types there are trivial, obvious, and not
that obvious results.

We’ve also added to the MatBase metadata catalog three tables that store all
combinations of constraint types per category – set, mapping, dyadic relations and
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homogeneous binary function product, as well as columns for storing whether they are
coherent and the first theoretical result that applies. For fast and easy retrieval, these
tables have a primary key whose values are computed according to the occurrences of
true values in the columns storing the corresponding constraint types. The trivially
coherent combinations represented by the empty set are not stored.

Other three accompanying tables store corresponding redundancies per coherent
combination.

There are only 10 coherent combinations (out of 31) of set constraints stored in the
SCCoherencies and 5 redundancies in the SCRedundancies tables. Abbreviations of the
6 columns of SCCoherencies after the primary key x have the following meanings:
Ch = Coherent?, S = direct Sum, D = Disjointness, U = Union, E = Equality,
I = Inclusion. The unique combination numbers of the primary key x are computed as
the decimal equivalents of the corresponding binary ones (where S is multiplied by
24 = 16, U by 23 = 8, …, and I by 20 = 1).

For example, the {Inclusion}, {Equality}, and {Equality, Inclusion} combinations
have 1, 2, and 3, respectively, as x values in SCCoherencies and are all coherent, while
{Disjointness, Equality, Inclusion} has value 7 (= 4 + 2 + 1) for x and is incoherent
(as equal sets may not be disjoint, except for the trivial empty set, which is not
interesting as only possible table instance). In SCRedundancies, for combination
having x = 3 in SCCoherencies there is a row storing the fact that Inclusion is
redundant (as, for any two equal sets S = T it is known to the system that S � T and
S � T).

There are 645 rows in the table HBRCCoherencies that stores coherent and non-
trivially incoherent combinations for the dyadic relation and homogeneous binary
function product constraints, out of which 219 coherent ones, and 488 redundancies in
the HBRCRedundancies tables. Abbreviations of the 12 columns of HBRCCoherencies
after the primary key x have the following meanings: Ch = Coherent?, IE =
InEuclidean, Q = eQuivalence, C = Connected, R = Reflexive, IR = IRreflexive,
S = Symmetric, AS = ASymmetric, T = Transitive, IT = InTransitive, E = Euclidean,
A = Acyclic. The unique combination numbers x are computed as the decimal
equivalents of the corresponding binary ones, just like for all other tables storing
constraint type combinations (where IE is multiplied by 210 = 1024, Q by 29 = 512,
…, and A by 20 = 1).

For example, in HBRCCoherencies, combinations {Symmetric} and {Symmetric,
Euclidean} have 32 and 34 as values for x (Symmetric being multiplied by 25 and
Euclidean by 2) and are coherent, while the one for x = 31, i.e. {Symmetric, Acyclic}
is incoherent (as any acyclic dyadic relation is also asymmetric, so it cannot be sym-
metric too). In HBRCRedundancies, for combination having x = 42 in
HBRCCoherencies, which is {Symmetric, Transitive, Euclidean} (Transitive being
multiplied by 23), there is a row storing the fact that Euclidean is redundant (as,
Symmetric ^ Transitive ) Euclidean).

There are 5190 rows in the table MCCoherencies that stores non-trivially inco-
herent combinations for the mapping constraints, out of which 802 coherent ones, and
1437 redundancies in the MCRedundancies tables. Abbreviations of the 19 columns of
MCCoherencies after the primary key x have the following meanings: Ch = Coherent?,
C = Connected, Q = eQuivalence, E = Euclidean, IE = InEuclidean, NP = NonPrime,
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P = canonical Projection, T = Totality, MI = Minimally Injective (key), O =
Ontoness, B = Bijection, CS = Canonical Surjection, R = Reflexive, IR = IRreflexive,
S = Symmetric, AS = ASymmetric, I = Idempotent (transitive), AI = Anti-Idempotent
(intransitive), A = Acyclic. The unique combination numbers x are computed as the
decimal equivalents of the corresponding binary ones, just like for all other tables
storing constraint type combinations (where C is multiplied by 217 = 131072, Q by
216 = 65536, …, and A by 20 = 1).

For example, in MCCoherencies, combinations {Symmetric} and {Symmetric,
Anti-Idempotent} have 16 and 18 as values for x (Symmetric being multiplied by 24

and Anti-Idempotent by 2) and are coherent, while the one for x = 15, i.e. {Symmetric,
Acyclic} is incoherent (as any acyclic autofunction is also asymmetric, so it cannot be
symmetric too). In MCRedundancies, for combination having x = 13 in MCCoheren-
cies, which is {ASymmetric, Idempotent, Acyclic} (ASymmetric being multiplied by
23 and Idempotent by 2), there is a row storing the fact that Acyclic is redundant (as,
ASymmetric ^ Idempotent ) Acyclic).

All these six tables storing constraint type combinations and their associated
redundancies also have a column Notes that stores pointers to the THEOREMS tables
for corresponding incoherency and redundancy reasons, respectively. In the three
redundancy tables, the redundant constraint type is stored in a column labeled Rd and
the constraint combination in column Combination.

Trivial incoherencies of type P ^ ¬P are not stored: for example, combinations 12
to 15 are missing from HBRCCoherencies, as they would include both transitivity and
intransitivity; similarly, combinations 14 and 15 are missing from MCCoherencies, as
they would include both idempotency and anti-idempotency. Moreover, due to the
supplementary results from [11] proving that absolutely similar results hold for null-
type constraints just like for their corresponding well-known basic ones, there is no
need to add for the null-type ones corresponding result rows in THEOREMS or col-
umns (and corresponding rows) in the three tables storing combinations.

We’ve added all these seven tables to the MS Access and SQL Server latest
versions of the MatBase metacatalog, as well as corresponding read-only forms for its
normal (i.e. non-system) users. Data for these latter three ones was inserted and updated
programmatically, through SQL queries: one such query per table inserted all non-
trivially incoherent combinations; then, one query was designed and run for each of the
17 incoherence results, marking corresponding combinations as incoherent; finally, for
each of the 20 redundancy results, a query was designed and repeatedly run up until all
redundant constraints were inserted too.

By carefully designing the seven tables that are driving these algorithms, only a
total of 57 columns and 7,827 rows are stored, although there are (216 − 1) +
(253 − 1) = 65,535 + 9,007,199,254,740,991 = 9,007,199,254,806,526 possible com-
binations of the 69 constraint types (i.e. excluding object ones) and 2,830 redundancies.

2.3 MatBase ACME, AACE, and AME Algorithms for Coherence
and Minimality Enforcement

For each type of non-relational constraint, MatBase has a method in its Constraints
library that enforces the corresponding constraint type for the tables/columns that are its
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parameters (together with the current data row and the type of desired operation – add
or remove constraint). To enforce a constraint, MatBase automatically generates code
into the corresponding software db application form classes, for all involved controls
and their event types, calling the corresponding library method with the appropriate
actual values. These classes are associated with forms; if either such a class or even its
host form does not exist, MatBase is automatically creating them for the corresponding
db table/view. To remove enforcement of a constraint, MatBase simply deletes the
corresponding calls to the Constraints library methods from the corresponding classes.

Figure 1 presents the table-driven pseudocode algorithm ACME that is used in
MatBase to enforce the coherence and minimality of constraint sets.

Obviously, the actual table for which ACME computes the values for the primary
keys x and from which it reads corresponding data is one of the SCCoherencies,
HBRCCoherencies, or MCCoherencies, depending on the type of the parameter con-
straint c that the user would like to add to or remove from the current constraint set.

The actual algorithm is more complicated and runs in fact each time when users are
trying to add a new constraint or to remove or edit an existing one from the db scheme.
For keeping things simple, only adding and deleting are included in Fig. 1 (as editing is
equivalent to removing the existent constraint and then adding the corresponding
modified one).

Editing constraints is managed too, as it may also result in incoherencies: for
example, in the MatBase geographical demo db there’s also a computed set
*WATERS = OCEANS ⊕ SEAS ⊕ LAKES ⊕ RIVERS, hence, there is also a corre-
sponding direct sum constraint; moreover, LAKES = *SALTED_LAKES ⊕ *
SWEET_LAKES; if a user would like to add *SWEET_LAKES to *WATERS, this would
cause an inconsistency, as *SWEET_LAKES and LAKES are not disjoint.

ACME rejects both adding, modifying, and removing a constraint that would turn
the constraint set incoherent (but also those that cannot be enforced because the current
db instance violates it), thus enforcing coherence. Actual ACME also automatically
adds redundant ones’ info (without enforcing them), rejects deleting redundant con-
straints, automatically deletes redundant ones which are no more implied, and turns
fundamental ones into redundant ones whenever this becomes the case (which is also
removing their enforcement), thus enforcing minimality too.

For importing legacy dbs, MatBase also includes two “bulk” pseudocode table-
driven algorithms AACE, for assisting enforcement of constraint set coherence, and
AMC, for enforcing minimality, respectively (see [11] for their pseudocode, as space
for this paper is strictly limited to 14 pages). Coherence may not be enforced auto-
matically, as only users should decide what constraints are to be discarded; minimality
may, as MatBase can automatically remove enforcement of all redundant constraints.
They both take as input a set of constraints that might be incoherent and/or not
minimal: AACE is run first to detect all existing incoherencies (if any) and assist users
in removing them; AMC runs then to automatically remove any redundancy, if any.
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2.4 Examples of Applying the ACME, AACE, and AME Algorithms

Constraints may be added/updated/deleted in MatBase through forms for set, rela-
tionship, mapping, mapping equalities, etc. For example, in order to add an inclusion,
one new line has to be inserted through the INCLUSIONS form, by specifying a
constraint name (or accepting the system generated one) and choosing the subset and
the superset from the corresponding combo-boxes; in order to add acyclicity to a
dyadic relation all that is needed is to click on its corresponding check-box in the
RELATIONSHIPS form; similarly, for mappings there are check-box columns for each

Fig. 1. Algorithm A1 (Constraint Sets Coherence and Minimality Enforcement)
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constraint type in the FUNCTIONS form; to delete a nonexistence one you just delete
its row from the NON_EXIST_CNSTR form, etc.

Applying ACME on the constraint set of the (E)MDM scheme from 1.2, when
trying to add constraint C15, it detects the incoherence between it and C14: an auto-
function cannot be both reflexive and asymmetric, as reflexivity in this context implies
symmetry. As, indeed, any root folder belongs to its logic drive, C14 should be pre-
served, while C15 should be rejected. Accepting C15 too would result in the corre-
sponding OS not being able to store assignation of root folders to logic drives (when
formatting them), which, in its turn, would not allow storing any file metadata on that
computer (i.e. both FILES, LOGIC_DRIVES, and FILE_PROCESSORS would only
allow for empty instances). AACE would detect this incoherence too and ask the user
which constraint to discard out of C14 and C15.

Moreover, when trying to add constraint C16, ACME detects that it is redundant: an
autofunction that is reflexive is also bijective. As such, C16 is rejected, as it is implied
by C14. AME would detect this redundancy too and make C16 redundant.

Consequently, the coherent and minimal subset of the scheme from 1.2 should not
include either C15 or C16. As such, this db fragment needs 28 RDM-type constraints
(11 domain ones, 7 not null ones, and 10 keys, out of which 4 primary ones, which also
embed corresponding not nulls, not counted apart here) and 15 non-relational ones (two
nonprimenesses, one acyclicity, one reflexivity, one asymmetry, one idempotency, and
all other object constraints).

For example, then, when trying to remove from the db scheme shown in 1.2 the
constraint RootFolder ° LogicDrive acyclic, ACME is rejecting it as, according to C12
and C13, this compound mapping is both asymmetric and idempotent, hence acyclic,
and redundant constraints cannot be removed from constraint sets. Dually, when trying
to add to the same db scheme the constraint RootFolder ° LogicDrive reflexive, ACME
is rejecting it too, as asymmetry implies irreflexivity, so accepting it would make the
constraint set incoherent.

3 Results and Discussion

3.1 Algorithms Complexity and Optimality

ACME is trivially finishing in finite time as it is constant: it executes at most 8
statements for both removing and adding a constraint, out of which only one reads from
and one writes to the MatBase metacatalog tables, respectively.

Both AACE and AME are obviously finishing in finite time too and are linear in the
sum of the cardinalities of the object sets collection (i.e. corresponding fundamental db
tables/views) and of the mappings set (i.e. corresponding table/view columns).

In fact, for performance reasons (e.g. computing x values for any set and function
only once, reading from the corresponding table only once, etc.) AACE and AME are
combined by MatBase into a single algorithm that was split here into two only for
simplicity of understanding and characterizing them.

Moreover, being that small, table THEOREMS fits into only one 4K data block, so
it is read only once, when first needed.
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Being table-driven, instead of containing huge slow (and very hard to design,
develop, and maintain) code for dealing with 9,007,199,254,806,526 cases individu-
ally, these three algorithms have a total of only some 80 statements, both in C# and
VBA.

3.2 Algorithms Utility

First, analyzing coherence and minimality in (E)MDM constraint sets is interesting
even per se, within the study of sets, functions, and relations semi-naïve algebra, and
first order predicate calculus with equality (FOPC), as it helps getting a better under-
standing on function diagram commutativity and anti-commutativity, as well as on
dyadic relation properties of both single and compound autofunctions and homoge-
neous binary function products, as well as on the coherent, incoherent, redundant, and
minimal closed FOPC sets.

The main utility of these algorithms is, of course, in the realms of data modeling,
database constraint theory, advanced database management systems, database design,
and database software application development.

ACME detects both incoherencies and redundancies, displays corresponding mes-
sages, rejects any attempt to turn the constraint set into an incoherent one, and auto-
matically deletes enforcement of all redundancies.

The algorithm AACE for assisting coherence enforcement in legacy dbs is detecting
incoherencies, displaying corresponding messages, and only removing those chosen by
its users, as it cannot decide which constraints to remove automatically.

The algorithm AME for minimality enforcement in legacy dbs detects, displays, and
then automatically discards redundancies enforcement.

Therefore, these algorithms are crucial in guaranteeing both the coherence of
constraint sets and their minimality.

For example, on a legacy geographical db having 63 object sets, 827 functions, 653
relational and 193 non-relational constraints, AACE discovered 10 incoherencies and
AME 19 redundancies.

4 Conclusion and Further Work

All constraints (which formalize business rules) that are governing the sub-universes
modeled by dbs should be enforced in the corresponding dbs’ schemas: otherwise, their
instances might be implausible. As [2] puts it in its 10th rule (Data Integrity Is Its Own
Reward) “each 1% data integrity failures will double the amount of time you spend
troubleshooting them” and in its 11th one (The Data Integrity Tipping Point) “any
database which contains 20% or more untrustworthy data is useless and will cost less to
replace from source data than to fix”. Not only in our opinion, today’s businesses
cannot be successful if their data is not almost 100% trustworthy.

When dealing with large constraint sets of many types, manually enforcing their
coherence (a sine qua non condition to allow non-empty db instances) and minimality
(an optimization eliminating enforcement of redundant constraints) is very, very hard to
do and heavily prone to errors.
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Therefore, both MatBase current versions also include now the algorithms pre-
sented in this paper, for assisting users in enforcing coherence and for automatically
eliminating enforcement of redundant (E)MDM constraints, except for the object ones.
Moreover, constraint enforcement is done automatically, through code generation,
sparing users lot of software developing time and effort.

These algorithms are either constant (the first one), or linear in the sum of the
cardinalities of the corresponding db tables, views, and their columns (the latter two),
i.e. very fast, table-driven, detecting and dealing with all incoherencies and redun-
dancies for set, dyadic relation, function, and homogeneous function product constraint
categories. Were they not being table driven, their complexity would have been
exponential in the cardinal of the corresponding constraint set instead.

As object constraints are not considered by the algorithms presented in this paper,
their output schemes may still contain both incoherencies and redundancies. For
example, if the db scheme from 1.2 were also including a constraint C20: (8x 2 FILES)
(Size(x) = 0 ) StartAddress(x) 62 NULLS), neither ACME nor AACE would detect the
incoherence between it and constraint C5; similarly, if it were also including a con-
straint C21: (8x 2 FILE_PROCESSORS)(Ext(Processor(x) 2 {“com”, “exe”} ^
¬Folder?(Processor(x)), neither ACME nor AME would detect the fact that it is a
redundant one, as it is implied by C19.

Consequently, further work needs to be done for these algorithms to also consider
object constraints. This is not at all an easy task: unfortunately, no pure table-driven
solution is possible for them; fortunately, for Horn clauses the implication problem
(needed for guaranteeing minimality) is decidable, but it is a NP-complete one if they
include, even if only for integers, x 6¼ y type atoms [15].
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Abstract. This paper is placed among the works on semantic peer
data management systems. It proposes a different perspective in which
a peer of a P2P system may consider its own data to be more trustable
with respect to data provided by external peers (sound peer) or less
trustable (unsound peer). The paper generalizes previous works of the
same authors and proposes a new semantics capturing this simple idea.

1 Introduction

The possibility for the users for sharing knowledge from a large number of infor-
mative sources, have enabled the development of new methods for data integra-
tion [27] easily usable for processing distributed and autonomous data. Due to
this, there have been several proposals which consider the integration of infor-
mation and the computation of queries in an open ended network of distributed
peers [3,6,8,9,21] as well as the problem of schema mediation [25,26,28], query
answering and query optimization in P2P environments [1,7,19,29]. Many of the
approaches proposed in the literature investigate the data integration problem
in a P2P system by considering each peer as initially consistent, therefore the
introduction of inconsistency is just relied to the operation of importing data
from other peers. These approaches assume, following the basic classical idea of
data integration, that for each peer it is preferable to import as much knowl-
edge as possible. This basic setting is the one we used in many of our previous
works [11,13–15,17] in which a different interpretation of mapping rules, that
allows importing from other peers only tuples not violating integrity constraints,
has been proposed. This interpretation of mapping rules has led to the proposal
of a semantics for a P2P system defined in terms of Preferred Weak Models.
Under this semantics only facts not making the local databases inconsistent
can be imported, and the preferred weak models are the consistent scenarios in
which peers import maximal sets of facts not violating the integrity constraints.
Therefore, the preferred weak model semantics follows the classical strategy of
importing as much knowledge as possible, but limiting this to the maximal subset
that do not generate inconsistencies.

In this paper, we propose a different perspective and generalize the definition
of P2P system in order to allow the possibility for each peer to declare either
that its local knowledge is preferred with respect to the knowledge that can
c© Springer Nature Switzerland AG 2018
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be imported from other peers (sound peer) [11,13–15,17], or that it gives less
preference to its local knowledge with respect to the knowledge that can be
extracted from the rest of the system (unsound peer). An unsound P2P system
is a P2P system containing at least one unsound peer. Note that, an unsound
peer is not necessary an inconsistent peer. Basically, it is a peer that joins the
P2P system, aims at maximizing its knowledge by importing data from the rest
of the system, while maintaining or achieving a consistent state [2,24] and for
some reason has less esteem of its own data with respect to the data provided
by others. The semantics of an unsound P2P system is captured by a modified
version of the weak model semantics of a correspondent standard P2P system
obtained by splitting each unsound peer into two peers. Therefore a generic peer
of the system can be:

– Sound. In this setting it assumes that its own knowledge is preferable with
respect to the knowledge that can be imported from other peers.

– Unsound. In this setting it assumes that the knowledge that can be imported
from other peers is preferable with respect to the knowledge that can be
imported from other peers.

We stress that in all the above cases the final aim of a generic peer, inde-
pendently of its initial state and of its self esteem, is that of using the P2P
environment to maximize as much as possible its knowledge, while maintaining
or achieving a consistent state.

Let’s now introduce an example, that will be used as a running example in
the rest of the paper.

Fig. 1. A P2P system (Example 1)

Example 1. Consider the P2P system PS depicted in Fig. 1. P2contains the fact
2:q(b), whereas P1 contains the fact 1:s(a), the mapping rule 1:p(X) ←↩ 2:q(X),
the constraint ← 1:r(X), 1:r(Y ),X �=Y and the standard rules 1:r(X) ← 1:p(X)
and 1:r(X) ← 1:s(X).

– if P1 is sound, it considers its own knowledge more trustable than the knowl-
edge that can be imported from P2. Then the fact 1:p(b) cannot be imported
in P1, as it indirectly violates its integrity constraint. More specifically, 1:p(b)
cannot be imported in P1 due to the presence of the local fact 1:s(a).
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– if P1 is unsound, it considers its own knowledge less trustable than the knowl-
edge imported from P2. Then the fact 2:q(b) is imported from P2 and 1:s(a)
is removed from P1.

Previous example outlines the direction of this paper. It extends the preferred
weak model semantics proposed in [11,13–15,17] whose basic assumption is that
each peer is initially consistent and gives preference to its local data with respect
to data imported from the neighborhood and depicts a more general setting in
which a generic peer can drive the integration process based on the esteem with
respect to its own data.

Organization. Preliminaries are reported in Sect. 2. Section 3 introduces the
syntax used for modeling a P2P system and reviews the Preferred Weak Model
semantics, proposed in [11,13]. Section 4 proposes a generalization of a P2P
system so that each peer can be declared sound or unsound. Section 5 provides
results on the computational complexity of computing preferred weak models
and answers to queries. Related work is discussed in Sect. 6. Conclusions and
directions for further research are drawn in Sect. 7.

2 Background

We assume that there are finite sets of predicates, constants and variables. A
term is either a constant or a variable. An atom is of the form p(t1, . . . , tn)
where p is a predicate and t1, . . . , tn are terms. A literal is either an atom A or
its negation not A. As in this work we use the Closed World Assumption, we
adopt Negation as Failure. A rule is of the form:

– H ← B, where H is an atom and B is a conjunction of literals or
– ← B, where B is a conjunction of literals.

H is called head of the rule and B is called body of the rule. A rule of the form
← B is also called constraint. A program P is a finite set of rules. P is said to be
positive if it is negation free. The definition of a predicate p consists of all rules
having p in the head.

An exclusive disjunctive rule is the form A ⊕ A′ ← B and it is a notational
shorthand for A ← B ∧ not A′, A′ ← B ∧ not A and ← A ∧ A′1. Its intuitive
meaning is that if B is true then exactly one between A or A′ must be true.

It is assumed that programs are safe, i.e. variables appearing in the head
or in negated body literals are range restricted as they appear in some positive
body literal.

An atom (resp. literal, rule, program) is ground if no variable occurs in
it. A ground atom is also called fact. The ground instance of an atom a
(resp. literal l, rule r, program P), denoted by ground(a) (resp. ground(l),
ground(r), ground(P)) is built by replacing variables with constants in all

1 We use for the operator and both ‘,’ and ‘∧’.
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possible ways. An interpretation is a set of ground atoms. The truth value of
ground atoms, literals and rules with respect to an interpretation M is as fol-
lows: valM (A) = (A ∈ M), valM (not A) = not valM (A), valM (L1, . . . , Ln) =
min{valM (L1), . . . , valM (Ln)} and valM (A ← L1, . . . , Ln) = valM (A) ≥
valM (L1, . . . , Ln), where A is an atom, L1, . . . , Ln are literals and true > false.
An interpretation M is a model for a program P, if all rules in ground(P) are
true w.r.t. M . A model M is said to be minimal if there is no model N such that
N ⊂ M . We denote the set of minimal models of a program P with MM(P).
Given an interpretation M and a predicate g, M [g] denotes the set of g-tuples
in M . The semantics of a positive program P is given by its unique minimal
model which can be computed by applying the immediate consequence operator
TP until the fixpoint is reached (T∞P (∅) ). The semantics of a program with
negation P is given by the set of its stable models, denoted as SM(P). An
interpretation M is a stable model (or answer set) of P if M is the unique mini-
mal model of the positive program PM , where PM is obtained from ground(P)
by (i) removing all rules r such that there exists a negative literal not A in
the body of r and A is in M and (ii) removing all negative literals from the
remaining rules [23]. It is well known that stable models are minimal models
(i.e. SM(P) ⊆ MM(P)) and that for negation free programs, minimal and
stable model semantics coincide (i.e. SM(P) = MM(P)).

3 P2P Systems: Syntax and Semantics

This section introduces the syntax used for modeling a P2P system and reviews
the Preferred Weak Model semantics, proposed in [11,13], in which a special
interpretation of mapping rules is introduced.

3.1 Syntax

A peer identifier is a number i ∈ N
+. A (peer) predicate is a pair i:p,

where i is a peer identifier and p is a predicate2. A (peer) atom A is of the
form i:p(X), where i is a peer identifier, p(X) is an atom and X is a list
of terms. A (peer) literal is a peer atom A or its negation not A. A con-
junction B = i:p1(X1), . . . , i:pm(Xm), not i:pm+1(Xm+1), . . . , not i:pn(Xn), φ,
where φ is a conjunction of built-in atoms3, will be also denoted as
i:(p1(X1), . . . , pm(Xm), not pm+1(Xm+1), . . . , not pn(Xn), φ).

Definition 1. [PEER RULE] A (Peer) rule can be of one of the following four
types:

2 Whenever the reference to a peer predicate (resp. peer atom, peer literal, peer fact,
peer rule, peer standard rule, peer integrity constraint, peer mapping rule) is clear
from the context, the term peer can be omitted.

3 A built-in atom is of the form θ(X, Y ), where X and Y are terms and θ∈{<, >, ≤,
≥, =, �=}. It is also denoted as X θ Y .
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1. (Peer) Standard Rule.
It is of the form H ← B, where H is an atom and B is a conjunction of literals
and built-in atoms.

2. (Peer) Integrity Constraint.
It is of the form ← B, where B is a conjunction of literals and built-in atoms.

3. Mapping Rule.
It is of the form H ←↩ B, where H is an atom, B is a conjunction of atoms
and built-in atoms and i �= j. ��
In previous definition, i (resp. j) is the peer identifier (resp. source peer

identifier) of the rule, H is the head of the rule and B is the body of rule. The
concepts of ground rule and fact are similar to those reported in Sect. 2. The
definition of a predicate i:p consists of the set of standard rules in whose head
i:p occurs. A predicate can be of three different kinds: base predicate, derived
predicate and mapping predicate. A base predicate is defined by a set of ground
facts; a derived predicate is defined by a set of standard rules and a mapping
predicate is defined by a set of mapping rules. An atom i:p(X) is a base atom
(resp. derived atom, mapping atom) if i:p is a base predicate (resp. standard
predicate, mapping predicate). Given an interpretation M , M [D] (resp. M [LP],
M [MP]) denotes the subset of base atoms (resp. derived atoms, mapping atoms)
in M .

Definition 2. [P2P SYSTEM] A peer Pi, with a peer identifier i, is a tuple
〈Di,LPi,MPi, ICi〉, where

– Di is a set of facts whose peer identifier is i (local database);
– LPi is a set of standard rules whose peer identifier is i;
– MPi is a set of mapping rules whose peer identifier is i and
– ICi is a set of constraints over predicates defined by Di, LPi and MPi whose

peer identifier is i.

A P2P system PS is a set of peers {P1, . . . ,Pn} s.t. for each source peer identifier
j occurring in its mapping rules, j ∈ [1..n]. �

Given a P2P system PS = {P1, . . . ,Pn}, where Pi = 〈Di,LPi,MPi, ICi〉
for i ∈ [1..n], D,LP,MP and IC denote, respectively, the global sets of
ground facts, standard rules, mapping rules and integrity constraints, i.e. D =⋃

i∈[1..n] Di, LP =
⋃

i∈[1..n] LPi, MP =
⋃

i∈[1..n] MPi and IC =
⋃

i∈[1..n] ICi.
In the rest of this paper, with a little abuse of notation, PS will be also denoted
both with the tuple 〈D,LP,MP, IC〉 and the set D ∪ LP ∪ MP ∪ IC.

3.2 Semantics

This section reviews the Preferred Weak Model semantics for P2P systems [11,13]
which is based on a special interpretation of mapping rules.

Given a P2P system PS = {P1, . . . ,Pn}, for each peer Pi = 〈Di,LPi,MPi,
ICi〉, with i ∈ [1..n], the set of stable models of Di ∪ LPi ∪ ICi represents the
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local knowledge of Pi. We assume that each peer is locally consistent, that is such
a set is not empty (i.e. SM(Di∪LPi∪ICi) �= ∅). A P2P system whose peers are
locally consistent is consistent. Therefore, inconsistencies may be introduced just
when a peer imports data from other peers. The intuitive meaning of a mapping
rule H ←↩ B ∈ MPi is that if the body conjunction B is true in the source
peer Pj the atom H can be imported in Pi only if it does not imply (directly
or indirectly) the violation of some integrity constraint in ICi. The following
example will clarify the meaning of mapping rules.

Example 2. Consider the P2P system in Fig. 1. If the fact 1: p(b) is imported
in P1, the fact 1: r(b) will be derived. As 1: r(a) is already true in P1, because
it is derived from 1: s(a), the integrity constraint is violated. Therefore, 1: p(b)
cannot be imported in P1 as it indirectly violates an integrity constraint. ��

Before formally presenting the preferred weak model semantics, some nota-
tion is introduced. Given a mapping rule r = H ←↩ B, the corresponding
standard rule H ← B will be denoted as St(r). Analogously, given a set of
mapping rules MP, St(MP) = {St(r) | r ∈ MP} and given a P2P system
PS = D ∪ LP ∪ MP ∪ IC, St(PS) = D ∪ LP ∪ St(MP) ∪ IC.

Given an interpretation M , an atom H and a conjunction of atoms B:

– valM (H ← B) = valM (H) ≥ valM (B),
– valM (H ←↩ B) = valM (H) ≤ valM (B).

Therefore, while a standard rule is satisfied if its body is false or its body is true
and its head is true, a mapping rule is satisfied if its body is true or its body is
false and its head is false.

Intuitively, a weak model M of a P2P system PS is an interpretation that
satisfies all standard rules, mapping rules and constraints of PS and such that
each atom H ∈ M [MP] (i.e. each mapping atom) is supported from a mapping
rule H ←↩ B whose body B is satisfied by M . A preferred weak model is a
weak model that contains a maximal subset of mapping atoms. This concept is
justified by the assumption that it is preferable to import in each peer as much
knowledge as possible.

Definition 3. [(Preferred) Weak Model]. Given a P2P system PS =
D ∪ LP ∪ MP ∪ IC, an interpretation M is a weak model for PS if {M} =
MM(St(PSM )), where PSM is the program obtained from ground(PS) by:

– removing all peer rules whose body is false w.r.t. M ;
– removing all mapping rules whose head is false w.r.t. M ;
– removing from the remaining rules each negative literal.

Given two weak models M and N , M is said to preferable to N , and is denoted
as M � N , if M [MP] ⊇ N [MP]. Moreover, if M � N and N �� M , then
M � N . A weak model M is said to be preferred if there is no weak model
N such that N � M . The set of weak models for a P2P system PS will be
denoted by WM(PS), whereas the set of preferred weak models will be denoted
by PWM(PS). ��
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Fig. 2. The system PS

It has been proved in our previous work that P2P systems always admit
maximal weak models.

Theorem 1. For every consistent P2P system PS, PWM(PS) �= ∅.

Example 3. Consider the P2P system PS in Fig. 2. P2 contains the facts 2:q(a)
and 2:q(b), whereas P1 contains the mapping rule 1:p(X) ←↩ 1:q(X) and the
constraint ← 1:p(X), 1:p(Y ),X �=Y . The weak models of the system are M0 =
{2:q(a), 2:q(b)}, M1 = {2:q(a), 2:q(b), 1:p(a)} and M2 = {2:q(a), 2:q(b), 1:p(b)},
whereas the preferred weak models are M1 and M2 as they import the maximal
set of atoms from P2. ��

4 A More General Framework

We first provides the a definition of P2P system that generalizes Definition 2 by
introducing a new type of peers - the unsound peers - giving more priority to
imported data with respect to local data.

Definition 4. An unsound P2P system UPS is a pair (PS,U), where PS =
{P1, . . . ,Pn} is a (standard) P2P system and U ⊆ PS. Peers in U are called
unsound peers. ��

The semantics of an unsound P2P system UPS is derived from the weak
model semantics of a corresponding standard P2P system obtained from UPS
by splitting each unsound peer Pi into two peers. The idea is to move the local
database Di from Pi to the new peer and to introduce in Pi a set of special
mapping rules able to import only portions of Di that do not violate its integrity
constraints only after previously existing mapping rules imported data from the
rest of the system.

Definition 5. Let UPS = (PS,U) an unsound P2P system, where PS =
{P1, . . . ,Pn}, and Pi = 〈Di,LPi,MPi, ICi〉 a peer in U . Then, Split(Pi) is
the set containing the following peers:

– P(i+n): = 〈{(i + n):p(X) | i:p(X) ∈ Di}, ∅, ∅, ∅〉
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– Pi: = 〈∅,LPi,MPi∪MDi, ICi〉, with MDi = {i:p(X) ←↩ (n+i):p(X) | (n+
i):p is a base predicate defined in P(i+n)}.

Moreover:
Split(UPS) = (PS \ U) ∪

⋃

P i ∈ U
Split(Pi)

��
With a little abuse of notations, given an unsound P2P system UPS, Split(UPS)
will be also denoted as 〈D,LP,MP ∪MD, IC〉. In previous definition, the peer
Pi is redefined by deleting its local database Di and inserting mapping rules
MD allowing to import tuples into old base relations (which now are mapping
relations) from an auxiliary peer P(i+n). This split is not visible to other peers
as all predicates defined in Pi are still defined.

Example 4. Let us continue our discussion about the P2P system PS presented
in Example 1. Assuming that PS is an unsound P2P system and P1 is an
unsound peer, Split(PS) contains the following peers (see Fig. 3):

– P1 = 〈∅,LP1,MP1 ∪ {1:s(X) ←↩ 3:s(X)}, IC1〉
– P2 = 〈{2:q(b)}, ∅, ∅, ∅〉
– P3 = 〈{3:s(a)}, ∅, ∅, ∅〉

Fig. 3. The system PS

��
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We need to modify the definition of preferred weak model reported in Sect. 3.2
in order to ensure local data to be less preferred with respect to imported data.
The new semantics of the unsound P2P system is given as follow:

Definition 6. [Semantics] Let UPS = (PS,U) be an unsound P2P system
and Split(UPS) = 〈D,LP,MP ∪ MD, IC〉.

For any two weak models M and N of Split(UPS), we say that M is prefer-
able to N (M � N) if:

– M [MP] ⊃ N [MP], or
– M [MP] = N [MP] and M [MD] ⊇ N [MD].

Moreover, if M � N and N �� M we write M � N . A weak model M is said
to be preferred if there is no weak model N such that N � M . We denote as
PWM(UPS) the set of preferred weak models of UPS. ��
Example 5. Let us continue our discussion about the P2P system PS presented
in Example 1.

– Assuming that PS is a sound P2P system, then P1 trusts its own data more
than the data that can be imported from P2. Therefore it will not import
the fact 1:p(b) because it would violate its integrity constraint. The preferred
weak models of PS is: M1 = {2:q(b), 1:s(a), 1:r(a))}

– Assuming that PS is an unsound P2P system and P1 is an unsound peer
we consider the peers in Split(PS) reported in Example 4. In this case, P1

gives preference to the knowledge that can be imported from P2 with respect
to its knowledge. Therefore, there is only one possible scenario: 1:p(b) is
imported from P2 (i.e. it is derived from 2:q(b)) and 1:s(a) is not imported
from P3 (i.e. it is not derived from 3:s(a)). This is equivalent to delete
1:s(a) from the original peer P1. The corresponding preferred weak model
is {2:q(b), 1:p(b), 1:r(b), 3:s(a)}. Observe that the absence of 1:s(a) together
with the presence of 3:s(a) means that 1:s(a) has been deleted from the orig-
inal peer P1. ��

5 Query Answers and Complexity

We consider now the computational complexity of calculating preferred weak
models and answers to queries for unsound P2P systems. As an unsound P2P
system may admit more than one preferred weak model, the answer to a query
is given by considering brave or cautious reasoning (also known as possible and
certain semantics).

Definition 7. Given an unsound P2P system UPS and a ground peer atom A,
then A is true under

– brave reasoning if A ∈ ⋃
M∈PWM(UPS) M ,

– cautious reasoning if A ∈ ⋂
M∈PWM(UPS) M . ��
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We assume here a simplified framework not considering the distributed com-
plexity as we suppose that the complexity of communications depends on the
number of computed atoms which are the only elements exported by peers.

Theorem 2. Let UPS be an unsound P2P system, then:

1. Deciding whether an interpretation M is a preferred weak model of UPS is
coNP complete.

2. Deciding whether a preferred weak model for UPS exists is in Σp
2.

3. Deciding whether an atom A is true in some preferred weak model of UPS is
Σp

2 complete.
4. Deciding whether an atom A is true in every preferred weak model of UPS

is Πp
2 complete.

6 Related Works

In this paper we introduce the concept of sound and unsound peer. A sound peer
trusts more its own data with respect to the data imported from the rest of the
system, whereas an unsound peer trusts less its own data with respect to the
data imported from the rest of the system. This concept implicitly introduces a
preference in the way the integration process is performed.

This paper is placed among the works on semantic peer data management
systems. Among the approaches that are close to ours, we mention [9,10,21]. In
all them mapping rules are of import kind and none of theme explicitly uses trust
relationships. In [9,10] a semantics for a P2P system, based on epistemic logic,
is proposed. The paper proposes a sound, complete and terminating procedure
that returns the certain answers to a query submitted to a peer. The advantage
of this framework is that certain answers of fixed conjunctive queries posed on a
peer can be computed in polynomial time. A peer that results to be inconsistent
with respect to its local constraints is ignored. New atoms are imported in a
peer by means of mapping rules if this ensures to maintain local consistency.

In [20–22] a characterization of P2P database systems and a model-theoretic
semantics dealing with inconsistent peers is proposed. The basic idea is that if
a peer does not have models all (ground) queries submitted to the peer are true
(i.e. are true with respect to all models). Thus, if some databases are inconsistent
it does not mean that the entire system is inconsistent. The semantics in [21]
coincides with the epistemic semantics in [9,10].

Interesting semantics for data exchange systems that offer the possibility of
modeling some preference criteria while performing the data integration process
has been proposed in [4–6,15,16]. In [4–6] it is proposed a new semantics that
allows for a cooperation among pairwise peers that related each other by means
of data exchange constraints (i.e. mapping rules) and trust relationships. The
decision by a peer on what other data to consider (besides its local data) does not
depend only on its mapping rules, but also on the trust relationship that it has
with other peers. Given a peer P in a P2P system a solution for P is a database
instance that respects the mapping rules and trust relationship P has with its



288 L. Caroprese and E. Zumpano

‘immediate neighbors’. Trust relationships are of the form: (P, less,Q) stating
that P trusts itself less that Q, and (P, same,Q) stating that P trusts itself
the same as Q. This trust relationships are static and are used in the process
of collecting data in order to establish preferences in the case of conflicting
information.

In [15] it is defined a mechanism that allows to set different degree of relia-
bility for neighbor peers.

Both in [15] and in [4,6] the mechanism is rigid as the preference among
conflicting sets of atoms only depends on the priorities (trust relationship) fixed
at design time. In order to overcome static preferences, in [16] ‘dynamic’ pref-
erences are introduced. They allow to select among different scenarios looking
at the properties of provided data provided. This allows modeling concepts like
“in the case of conflicting information, it is preferable to import data from the
neighbor peer that can provide the maximum number of tuples” without selecting
a-priori preferred peers.

In [12] the basic spirit of P2P system has been followed and a semantics
that in which a peer gives no preference to its knowledge with respect to the
knowledge that can be imported from other peers is presented.

7 Conclusion

The paper is placed among the works on semantic peer data management sys-
tems. It introduces the concept of sound and unsound peer: a sound peer trusts
more its own data with respect to the data imported from the rest of the sys-
tem, whereas an unsound peer trusts less its own data with respect to the data
imported from the rest of the system. This concept implicitly introduces a pref-
erence in the way the integration process is performed. The paper introduces
a logic programming based framework and proposes a new semantics capturing
this simple idea.

As for future works, we plan to extend the framework in order to cope with a
finer granularity of self esteem for a generic peer. In addition this concept, could
be combined with mechanism that allows to set different degree of reliability
for neighbor peers, in a way similar to the proposal in [15]. Another possible
extension consists in express the self esteem of the relation of a peer not of the
entire peer as we have done in this work and in the work in [16].

References

1. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized
views. In: ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems. PODS 1998, pp. 254–263 (1998)

2. Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Symposium on Principles of Database Systems, pp. 68–79 (1999)

3. Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A., Mylopulos, J., Serafini, L.,
Zaihrayen, I.: Data management for peer-to-peer computing: a vision. In: WebDB,
pp. 89–94 (2002)



Integration of Unsound Data in P2P Systems 289

4. Bertossi, L., Bravo, L.: Query answering in peer-to-peer data exchange systems.
In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) Current
Trends in Database Technology. LNCS, vol. 3568, pp. 476–485. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-30192-9 47

5. Bertossi, L., Bravo, L.: The semantics of consistency and trust in peer data
exchange systems. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS
(LNAI), vol. 4790, pp. 107–122. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75560-9 10

6. Bertossi, L., Bravo, L.: Consistency and trust in peer data exchange systems. TPLP
17(2), 148–204 (2017)

7. Cal̀ı, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability and
complexity of query answering over inconsistent and incomplete databases. In:
PODS, pp. 260–271 (2003)

8. Calvanese, D., Damaggio, E., De Giacomo, G., Lenzerini, M., Rosati, R.: Semantic
data integration in P2P systems. In: Aberer, K., Koubarakis, M., Kalogeraki, V.
(eds.) DBISP2P 2003. LNCS, vol. 2944, pp. 77–90. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24629-9 7

9. Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Logical foundations of
peer-to-peer data integration. In: PODS, pp. 241–251 (2004)

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Inconsistency
tolerance in P2P data integration: an epistemic logic approach. Inf. Syst. 33(4–5),
360–384 (2008)

11. Caroprese, L., Greco, S., Zumpano, E.: A logic programming approach to query-
ing and integrating P2P deductive databases. In: The International Florida AI
Research Society Conference, pp. 31–36 (2006)

12. Caroprese, L., Zumpano, E.: A declarative semantics for P2P systems. In:
Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2017. LNCS,
vol. 10410, pp. 315–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66808-6 21

13. Caroprese, L., Molinaro, C., Zumpano, E.: Integrating and querying P2P deductive
databases. In: International Database Engineering & Applications Symposium, pp.
285–290 (2006)

14. Caroprese, L., Zumpano, E.: Consistent data integration in P2P deductive
databases. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS (LNAI),
vol. 4772, pp. 230–243. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75410-7 17

15. Caroprese, L., Zumpano, E.: Modeling cooperation in P2P data management sys-
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