
Khalid Belhajjame
Ashish Gehani
Pinar Alper (Eds.)

 123

LN
CS

 1
10

17

7th International Provenance
and Annotation Workshop, IPAW 2018
London, UK, July 9–10, 2018, Proceedings

Provenance
and Annotation of Data
and Processes

Lecture Notes in Computer Science 11017

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Khalid Belhajjame • Ashish Gehani
Pinar Alper (Eds.)

Provenance
and Annotation of Data
and Processes
7th International Provenance
and Annotation Workshop, IPAW 2018
London, UK, July 9–10, 2018
Proceedings

123

Editors
Khalid Belhajjame
Paris Dauphine University
Paris
France

Ashish Gehani
SRI International
Menlo Park, CA
USA

Pinar Alper
University of Luxembourg
Belvaux
Luxembourg

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-98378-3 ISBN 978-3-319-98379-0 (eBook)
https://doi.org/10.1007/978-3-319-98379-0

Library of Congress Control Number: 2018951244

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-6938-0820
http://orcid.org/0000-0002-3940-2467
http://orcid.org/0000-0002-2224-0780

Preface

This volume contains the proceedings of the 7th International Provenance and
Annotation Workshop (IPAW), held during July 9–10, 2018, at King’s College in
London, UK. For the third time, IPAW was co-located with the Workshop on the
Theory and Practice of Provenance (TaPP). Together, the two leading provenance
workshops anchored Provenance Week 2018, a full week of provenance-related
activities that included a shared poster session and three other workshops on algorithm
accountability, incremental re-computation, and security. The proceedings of IPAW
include 12 long papers that report in-depth the results of research around provenance,
two system demonstration papers, and 19 poster papers.

IPAW 2018 provided a rich program with a variety of provenance-related topics
ranging from the capture and inference of provenance to its use and application. Since
provenance is a key ingredient to enable reproducibility, several papers have investi-
gated means for enabling dataflow steering and process re-computation. The modeling
of provenance and its simulation has been the subject of a number of papers, which
tackled issues that seek, among other things, to model provenance in software engi-
neering activities or to use provenance to model aspects of the European Union General
Data Protection Regulation. Other papers investigated inference techniques to propa-
gate beliefs in provenance graphs, efficiently update RDF graphs, mine similarities
between processes, and discover workflow schema-level dependencies. This year’s
program also featured extensions of the W3C Prov recommendation to support new
features, e.g., versioning of mutable entities, or cater for new domain knowledge, e.g.,
astronomy.

In closing, we would like to thank the members of the Program Committee for their
thoughtful reviews, Vasa Curcin and Simon Miles for the local organization of IPAW
and the Provenance Week at King’s College, London, and the authors and participants
for making IPAW a successful event.

June 2018 Khalid Belhajjame
Ashish Gehani

Pinar Alper

Organization

Program Committee

Pinar Alper University of Luxembourg, Luxembourg
Ilkay Altintas SDSC, USA
David Archer Galois, Inc., USA
Khalid Belhajjame University of Paris-Dauphine, France
Vanessa Braganholo UFF, Brazil
Kevin Butler University of Florida, USA
Sarah Cohen-Boulakia LRI, University of Paris-Sud, France
Oscar Corcho Universidad Politécnica de Madrid, Spain
Vasa Curcin King’s College London, UK
Susan Davidson University of Pennsylvania, USA
Daniel de Oliveira Fluminense Federal University, Brazil
Saumen Dey University of California, Davis, USA
Alban Gaignard CNRS, France
Daniel Garijo Information Sciences Institute, USA
Ashish Gehani SRI International, USA
Paul Groth Elsevier Labs, The Netherlands
Trung Dong Huynh King’s College London, UK
Grigoris Karvounarakis LogicBlox, Greece
David Koop University of Massachusetts Dartmouth, USA
Bertram Ludaescher University of Illinois at Urbana-Champaign, USA
Tanu Malik University of Chicago, USA
Marta Mattoso Federal University of Rio de Janeiro, Brazil
Deborah McGuinness Rensselaer Polytechnic Institute (RPI), USA
Simon Miles King’s College London, UK
Paolo Missier Newcastle University, UK
Luc Moreau King’s College London, UK
Beth Plale Indiana University Bloomington, USA
Satya Sahoo Case Western Reserve University, USA
Stian Soiland-Reyes The University of Manchester, UK
Jun Zhao University of Oxford, UK

Additional Reviewers

Carvalho, Lucas Augusto
Montalvão Costa

Cała, Jacek
Chagas, Clayton

Pimentel, João
Rashid, Sabbir
Souza, Renan
Yan, Rui

Contents

Reproducibility

Provenance Annotation and Analysis to Support Process Re-computation. . . . 3
Jacek Cała and Paolo Missier

Provenance of Dynamic Adaptations in User-Steered Dataflows 16
Renan Souza and Marta Mattoso

Classification of Provenance Triples for Scientific Reproducibility:
A Comparative Evaluation of Deep Learning Models
in the ProvCaRe Project. 30

Joshua Valdez, Matthew Kim, Michael Rueschman, Susan Redline,
and Satya S. Sahoo

Modeling, Simulating and Capturing Provenance

A Provenance Model for the European Union General Data
Protection Regulation . 45

Benjamin E. Ujcich, Adam Bates, and William H. Sanders

Automating Provenance Capture in Software Engineering
with UML2PROV. 58

Carlos Sáenz-Adán, Luc Moreau, Beatriz Pérez, Simon Miles,
and Francisco J. García-Izquierdo

Simulated Domain-Specific Provenance . 71
Pinar Alper, Elliot Fairweather, and Vasa Curcin

PROV Extensions

Versioned-PROV: A PROV Extension to Support Mutable Data Entities 87
João Felipe N. Pimentel, Paolo Missier, Leonardo Murta,
and Vanessa Braganholo

Using the Provenance from Astronomical Workflows to Increase
Processing Efficiency. 101

Michael A. C. Johnson, Luc Moreau, Adriane Chapman,
Poshak Gandhi, and Carlos Sáenz-Adán

Scientific Workflows

Discovering Similar Workflows via Provenance Clustering: A Case Study . . . 115
Abdussalam Alawini, Leshang Chen, Susan Davidson, Stephen Fisher,
and Junhyong Kim

Validation and Inference of Schema-Level Workflow
Data-Dependency Annotations . 128

Shawn Bowers, Timothy McPhillips, and Bertram Ludäscher

Applications

Belief Propagation Through Provenance Graphs . 145
Belfrit Victor Batlajery, Mark Weal, Adriane Chapman, and Luc Moreau

Using Provenance to Efficiently Propagate SPARQL Updates
on RDF Source Graphs . 158

Iman Naja and Nicholas Gibbins

System Demonstrations

Implementing Data Provenance in Health Data Analytics Software 173
Shen Xu, Elliot Fairweather, Toby Rogers, and Vasa Curcin

Quine: A Temporal Graph System for Provenance Storage and Analysis 177
Ryan Wright

Joint IPAW/TaPP Poster Session

Capturing Provenance for Runtime Data Analysis in Computational Science
and Engineering Applications . 183

Vítor Silva, Renan Souza, Jose Camata, Daniel de Oliveira,
Patrick Valduriez, Alvaro L. G. A. Coutinho, and Marta Mattoso

UniProv - Provenance Management for UNICORE Workflows
in HPC Environments . 188

André Giesler, Myriam Czekala, and Björn Hagemeier

Towards a PROV Ontology for Simulation Models 192
Andreas Ruscheinski, Dragana Gjorgevikj, Marcus Dombrowsky,
Kai Budde, and Adelinde M. Uhrmacher

Capturing the Provenance of Internet of Things Deployments 196
David Corsar, Milan Markovic, and Peter Edwards

VIII Contents

Towards Transparency of IoT Message Brokers . 200
Milan Markovic, David Corsar, Waqar Asif, Peter Edwards,
and Muttukrishnan Rajarajan

Provenance-Based Root Cause Analysis for Revenue Leakage Detection:
A Telecommunication Case Study. 204

Wisam Abbasi and Adel Taweel

Case Base Reasoning Decision Support Using the DecPROV
Ontology for Decision Modelling . 208

Nicholas J. Car

Bottleneck Patterns in Provenance . 212
Sara Boutamina, James D. A. Millington, and Simon Miles

Architecture for Template-Driven Provenance Recording 217
Elliot Fairweather, Pinar Alper, Talya Porat, and Vasa Curcin

Combining Provenance Management and Schema Evolution. 222
Tanja Auge and Andreas Heuer

Provenance for Entity Resolution . 226
Sarah Oppold and Melanie Herschel

Where Provenance in Database Storage . 231
Alexander Rasin, Tanu Malik, James Wagner, and Caleb Kim

Streaming Provenance Compression . 236
Raza Ahmad, Melanie Bru, and Ashish Gehani

Structural Analysis of Whole-System Provenance Graphs. 241
Jyothish Soman, Thomas Bytheway, Lucian Carata,
Nikilesh D. Balakrishnan, Ripduman Sohan, and Robert N. M. Watson

A Graph Testing Framework for Provenance Network Analytics 245
Bernard Roper, Adriane Chapman, David Martin, and Jeremy Morley

Provenance for Astrophysical Data . 252
Anastasia Galkin, Kristin Riebe, Ole Streicher, Francois Bonnarel,
Mireille Louys, Michèle Sanguillon, Mathieu Servillat,
and Markus Nullmeier

Data Provenance in Agriculture. 257
Sérgio Manuel Serra da Cruz, Marcos Bacis Ceddia,
Renan Carvalho Tàvora Miranda, Gabriel Rizzo, Filipe Klinger,
Renato Cerceau, Ricardo Mesquita, Ricardo Cerceau,
Elton Carneiro Marinho, Eber Assis Schmitz, Elaine Sigette,
and Pedro Vieira Cruz

Contents IX

Extracting Provenance Metadata from Privacy Policies 262
Harshvardhan Jitendra Pandit, Declan O’Sullivan, and Dave Lewis

Provenance-Enabled Stewardship of Human Data in the GDPR Era. 266
Pinar Alper, Regina Becker, Venkata Satagopam, Christophe Trefois,
Valentin Grouès, Jacek Lebioda, and Yohan Jarosz

Author Index . 271

X Contents

Reproducibility

Provenance Annotation and Analysis
to Support Process Re-computation

Jacek Ca�la(B) and Paolo Missier

School of Computing, Newcastle University, Newcastle upon Tyne, UK
{Jacek.Cala,Paolo.Missier}@ncl.ac.uk

Abstract. Many resource-intensive analytics processes evolve over time
following new versions of the reference datasets and software dependen-
cies they use. We focus on scenarios in which any version change has
the potential to affect many outcomes, as is the case for instance in high
throughput genomics where the same process is used to analyse large
cohorts of patient genomes, or cases. As any version change is unlikely
to affect the entire population, an efficient strategy for restoring the cur-
rency of the outcomes requires first to identify the scope of a change, i.e.,
the subset of affected data products. In this paper we describe a generic
and reusable provenance-based approach to address this scope discovery
problem. It applies to a scenario where the process consists of complex
hierarchical components, where different input cases are processed using
different version configurations of each component, and where separate
provenance traces are collected for the executions of each of the com-
ponents. We show how a new data structure, called a restart tree, is
computed and exploited to manage the change scope discovery problem.

Keywords: Provenance annotations · Process re-computation

1 Introduction

Consider data analytics processes that exhibit the following characteristics. C1:
are resource-intensive and thus expensive when repeatedly executed over time,
i.e., on a cloud or HPC cluster; C2: require sophisticated implementations to run
efficiently, such as workflows with a nested structure; C3: depend on multiple
reference datasets and software libraries and tools, some of which are versioned
and evolve over time; C4: apply to a possibly large population of input instances.

This is not an uncommon set of characteristics. A prime example is data
processing for high throughput genomics, where the genomes (or exomes) of
a cohort of patient cases are processed, individually or in batches, to produce
lists of variants (genetic mutations) that form the basis for a number of diag-
nostic purposes. These variant calling and interpretation pipelines take batches
of 20–40 patient exomes and require hundreds of CPU-hours to complete (C1).
Initiatives like the 100K Genome project in the UK (www.genomicsengland.co.
uk) provide a perspective on the scale of the problem (C4).
c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-319-98379-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_1&domain=pdf
http://orcid.org/0000-0002-8322-4370
http://orcid.org/0000-0002-0978-2446
www.genomicsengland.co.uk
www.genomicsengland.co.uk

4 J. Ca�la and P. Missier

Fig. 1. A typical variant discovery pipeline processing a pool of input samples. Each
step is usually implemented as a workflow or script that combines a number of tools
run in parallel.

Figure 1, taken from our prior work [5], shows the nested workflow structure
(C2) of a typical variant calling pipeline based on the GATK (Genomics Analysis
Toolkit) best practices from the Broad Institute.1 Each task in the pipeline relies
on some GATK (or other open source) tool, which in turn requires lookups in
public reference datasets. For most of these processes and reference datasets new
versions are issued periodically or on an as-needed basis (C3). The entire pipeline
may be variously implemented as a HPC cluster script or workflow. Each single
run of the pipeline creates a hierarchy of executions which are distributed across
worker nodes and coordinated by the orchestrating top-level workflow or script
(cf. the “Germline Variant Discovery” workflow depicted in the figure).

Upgrading one or more of the versioned elements risks invalidating previ-
ously computed knowledge outcomes, e.g. the sets of variants associated with
patient cases. Thus, a natural reaction to a version change in a dependency is to
upgrade the pipeline and then re-process all the cases. However, as we show in
the example at the end of this section, not all version changes affect each case
equally, or in a way that completely invalidates prior outcomes. Also, within each
pipeline execution only some of the steps may be affected. We therefore need a
system that can perform more selective re-processing in reaction to a change. In
[6] we have described our initial results in developing such a system for selective
re-computation over a population of cases in reaction to changes, called ReComp.
ReComp is a meta-process designed to detect the scope of a single change or of
a combination of changes, estimate the impact of those changes on the popula-
tion in scope, prioritise the cases for re-processing, and determine the minimal
amount of re-processing required for each of those cases. Note that, while ide-
ally the process of upgrading P is controlled by ReComp, in reality we must also
account for upgrades of P that are performed “out-of-band” by developers, as
we have assumed in our problem formulation.

1 https://software.broadinstitute.org/gatk/best-practices.

https://software.broadinstitute.org/gatk/best-practices

Provenance Annotation and Analysis 5

Fig. 2. Schematic of the ReComp meta-process.

Briefly, ReComp consists of the macro-steps shown in Fig. 2. The work pre-
sented in this paper is instrumental to the ReComp design, as it addresses the
very first step (S1) indicated in the figure, in a way that is generic and agnostic
to the type of process and data.

1.1 Version Changes and Their Scope

To frame the problem addressed in the rest of the paper, we introduce a simple
model for version changes as triggers for re-computation. Consider an abstract
process P and a population X = {x1 . . . xN} of inputs to P , referred to as cases.
Let D = [D1 . . . Dm] be an ordered list of versioned dependencies. These are
components, typically software libraries or reference data sets, which are used
by P to process a case. Each D has a version, denoted D.v, with a total order
on the sequence of versions D.v < D.v′ < D.v′′ < . . . for each D.

An execution configuration for P is the vector V = [v1 . . . vm] of version
numbers for [D1 . . . Dm]. Typically, these are the latest versions for each D, but
configurations where some D is “rolled back” to an older version are possible.
The set of total orders on the versions of each D ∈ D induce a partial order on
the set of configurations:

[v1 . . . vm] ≺ [v′
1 . . . v

′
m] iff {vi ≤ v′

i}i:1...m and vi < v′
i for at least one vi.

We denote an execution of P on input xi ∈ X using configuration V by
E = P (x, V), where P may consist of multiple components {P1 . . . Pk}, such
as those in our example pipeline. When this is the case, we assume for gen-
erality that one execution P (x, V) given x and V is realised as a collection
{Ei = Pi(x, V)}i:1...k of separate executions, one for each Pi. We use the W3C
PROV [13] and ProvONE [7] abstract vocabularies to capture this model in
which: P, P1 . . . Pk are all instances of provone:Program, their relationships is
expressed as

{provone:hasSubProgram(P, Pi)}i:1...k
and each execution Ei is associated with its program Pi using:

{wasAssociatedWith(Ei, , Pi)}i:1...k

6 J. Ca�la and P. Missier

Version Change Events. We use PROV derivation statements prov:was-
DerivedFrom to denote a version change event C for some Di, from vi to v′

i

: C = {D.v′
i

wDF−−−→ D.vi}. Given V = [v1 . . . vi . . . vm], C enables the new config-
uration V ′ = [v1 . . . v′

i . . . vm], meaning that V ′ can be applied to P , so that its
future executions are of form E = P (x, V ′).

We model sequences of changes by assuming that an unbound stream of
change events C1, C2, . . . can be observed over time, either for different or the
same Di. A re-processing system may react to each change individually. However,
we assume the more general model where a set of changes accumulates into a
window (according to some criteria, for instance fixed-time) and is processed as a
batch. Thus, by extension, we define a composite change to be a set of elementary
changes that are part of the same window. Given V = [v1 . . . vi . . . vj . . . vm], we

say that C = {D.v′
i

wDF−−−→ D.vi,D.v′
j

wDF−−−→ D.vj , . . . } enables configuration
V ′ = [v1 . . . v′

i . . . v
′
j . . . vm]. Importantly, all change events, whether individual

or accumulated into windows, are merged together into the single change front
CF which is the configuration of the latest versions of all changed artefacts.

Applying CF to E = P (x, V) involves re-processing x using P to bring the
outcomes up-to-date with respect to all versions in the change front. For instance,
given V = [v1, v2, v3] and the change front CF = {v′

1, v
′
2}, the re-execution of

E = P (x, [v1, v2, v3]) is E′ = P (x, [v′
1, v

′
2, v3]). It is important to keep track of

how elements of the change front are updated as it may be possible to avoid
rerunning some of P ’s components for which the configuration has not changed.
Without this fine-grained derivation information, each new execution may use
the latest versions but cannot be easily optimised using partial re-processing.

Clearly, processing change events as a batch is more efficient than pro-
cessing each change separately, cf. E′ = P (x, [v′

1, v2, v3]) followed by E′′ =
P (x, [v′

1, v
′
2, v3]) with the example above. But a model that manages change

events as a batch is also general in that it accommodates a variety of refresh
strategies. For example, applying changes that are known to have limited impact
on the outcomes can be delayed until a sufficient number of other changes have
accumulated into CF , or until a specific high-impact change event has occurred.
A discussion of specific strategies that are enabled by our scope discovery algo-
rithm is out of the scope of this paper.

1.2 Problem Formulation and Contributions

Suppose P has been executed h times for some x ∈ X, each time with a different
configuration V1 . . . Vh. The collection of past executions, for each x ∈ X, is:

{E(Pi, x, Vj)i:1...k,j:1...h,x∈X} (1)

The problem we address in this paper is to identify, for each change front
CF , the smallest set of those executions that are affected by CF . We call this the
re-computation front C relative to CF . We address this problem in a complex
general setting where many types of time-interleaved changes are allowed, where
many configurations are enabled by any of these changes, and where executions

Provenance Annotation and Analysis 7

may reflect any of these configurations, and in particular individual cases x may
be processed using any such different configurations. The example from the next
section illustrates how this setting can manifest itself in practice.

Our main contribution is a generic algorithm for discovering re-computation
front that applies to a range of processes, from simple black-box, single compo-
nent programs where P is indivisible, to complex hierarchical workflows where P
consists of subprograms Pi which may itself be defined in terms of subprograms.

Following a tradition from the literature to use provenance as a means
to address re-computation [2,6,12], our approach also involves collecting and
exploiting both execution provenance for each E, as well as elements of process–
subprocess dependencies as mentioned above. To the best of our knowledge this
particular use of provenance and the algorithm have not been proposed before.

1.3 Example: Versioning in Genomics

The problem of version change emerges concretely in Genomics pipelines in which
changes have different scope, both within each process instance and across the
population of cases. For example, an upgrade to the bwa aligner tool directly
affects merely the alignment task but its impact may propagate to most of
the tasks downstream. Conversely, an upgrade in the human reference genome
directly affects the majority of the tasks. In both cases, however, the entire
population of executions is affected because current alignment algorithms are
viewed as “black boxes” that use the entire reference genome.

However, a change in one of the other reference databases that are queried for
specific information only affects those cases where some of the changed records
are part of a query result. One example is ClinVar, a popular variant database
queried to retrieve information about specific diseases (phenotypes). In this case,
changes that affect one phenotype will not impact cases that exhibit a completely
different phenotype. But to detect the impact ReComp uses steps (S2) and (S3),
which is out of scope of this paper.

Additionally, note that version changes in this Genomics example occur with
diverse frequency. For instance, the reference genome is updated twice a years,
alignment libraries every few months, and ClinVar every month.

2 Recomputation Fronts and Restart Trees

2.1 Recomputation Fronts

In Sect. 1.1 we have introduced a partial order V ≺ V ′ between process con-
figurations. In particular, given V , if a change C enables V ′ then by definition
V ≺ V ′. Note that this order induces a corresponding partial order between any
two executions that operate on the same x ∈ X.

P (x, V) = E � E′ = P (x, V ′) iff V ≺ V ′ (2)

This order is important, because optimising re-execution, i.e. executing P (x, V ′),
may benefit most from the provenance associated with the latest execution

8 J. Ca�la and P. Missier

according to the sequence of version changes, which is E = P (x, V) (a dis-
cussion on the precise types of such optimisations can be found in [6]). For this
reason in our implementation we keep track of the execution order explicitly
using the wasInformedBy PROV relationship, i.e. we record PROV statement
E′ wIB−−→ E whenever re-executing E such that E � E′.

To see how these chains of ordered executions may evolve consider, for
instance, E0 = P (x1, [a1, b1]), E1 = P (x2, [a1, b1]) for inputs x1, x2 respectively,
where the a and b are versions for two dependencies D1,D2. The situation is
depicted in Fig. 3/left. When change C1 = {a2 wDF−−−→ a1} occurs, it is possible
that only x1 is re-processed, but not x2. This may happen, for example, when
D1 is a data dependency and the change affects parts of the data which were not
used by E1 in the processing of input x2. In this case, C would trigger one single
new execution: E2 = P (x1, [a2, b1]) where we record the ordering E0 � E2. The
new state is depicted in Fig. 3/middle.

Fig. 3. The process of annotating re-execution following a sequence of events; in bold
are executions on the re-computation front; a- and b-axis represent the artefact deriva-
tion; arrows in blue denote the wasInformedBy relation. (Color figure online)

Now consider the new change C2 = {a3 wDF−−−→ a2, b2
wDF−−−→ b1}, affecting both

D1 and D2, and suppose both x1 and x2 are going to be re-processed. Then,
for each x we retrieve the latest executions that are affected by the change,
in this case E2, E1, as their provenance may help optimising the re-processing
of x1, x2 using the new change front {a3, b2}. After re-processing we have two
new executions: E3 = P (x1, [a3, b2]), E4 = P (x2, [a3, b2]) which may have been
optimised using E2, E1, respectively, as indicated by their ordering: E3 � E2,
E4 � E1 (see Fig. 3/right).

To continue with the example, let us now assume that the provenance for
a new execution: E5 = P (x1, [a1, b2]) appears in the system. This may have
been triggered by an explicit user action independently from our re-processing
system. Note that the user has disregarded the fact that the latest version of
ai is a3. The corresponding scenario is depicted in Fig. 4/left. We now have two
executions for x1 with two configurations. Note that despite E0 � E5 holds it
is not reflected by a corresponding E5

wIB−−→ E0 in our re-computation system

Provenance Annotation and Analysis 9

Fig. 4. Continuation of Fig. 3; in bold are executions on the re-computation front; a-
and b-axis represent the artefact derivation; arrows in blue denote the wasInformedBy

relation. (Color figure online)

because E5 was an explicit user action. However, consider another change event:
{b3 wDF−−−→ b2}. For x2, the affected executions is E4, as this is the single latest
execution in the ordering recorded so far for x2. But for x1 there are now two
executions that need to be brought up-to-date, E3 and E5, as these are the
maximal elements in the set of executions for x1 relative according to the order:
E0 � E2 � E3, E0 � E5. We call these executions the recomputation front for
x1 relative to change front {a3, b3}, in this case.

This situation, depicted in Fig. 4/right, illustrates the most general case
where the entire set of previous executions need to be considered when re-
processing an input with a new configuration. Note that the two independent
executions E3 and E5 have merged into the new E6.

Formally, the recomputation front for x ∈ X and for a change front CF =
{w1 . . . wk}, k ≤ m is the set of maximal executions E = P (x, [v1 . . . vm]) where
vi ≤ wi for 1 ≤ i ≤ m.

2.2 Building a Restart Tree

Following our goal to develop a generic re-computation meta-process, the front
finding algorithm needs to support processes of various complexity – from the
simplest black-box processes to complex hierarchical workflows mentioned ear-
lier. This requirement adds another dimension to the problem of the identifica-
tion of the re-computation front.

If process P has a hierarchical structure, e.g. expressed using the provone:
hasSubProgram statement (cf. Sect. 1.1), one run of P will usually result in a
collection of executions. These are logically organised into a hierarchy, where the
top-level represents the execution of the program itself, and sub-executions (con-
nected via provone:wasPartOf) represent the executions of the sub-programs.
Following the principle of the separation of concerns, we assume the general case
where the top-level program is not aware of the data and software dependen-
cies of its parts. Thus, discovering which parts of the program used a particular
dependency requires traversing the entire hierarchy of executions.

10 J. Ca�la and P. Missier

To illustrate this problem let us focus on a small part of our pipeline – the
alignment step (Align Sample and Align Lane). Figure 5 shows this step modelled
using ProvONE. P0 denotes the top program – the Align Sample workflow, SP0

is the Align Lane subprogram, SSP0–SSP3 represent the subsub-programs of
bioinformatic tools like bwa and samtools, while SP1–SP3 are the invocations
of the samtools program. Programs have input and output ports (the dotted
grey arrows) and ports p1–p8 are related with default artefacts a0, b0, etc. spec-
ified using the provone:hasDefaultParam statement. The artefacts refer to the
code of the executable file and data dependencies; e.g. e0 represents the code of
samtools. Programs are connected to each other via ports and channels, which
in the figure are identified using reversed double arrows.

Fig. 5. A small part of the Genomics pipeline shown in Fig. 1 encoded
in ProvONE. () denotes the hasSubProgram relation; () the has-

DefaultParam statements; () hasInPort/hasOutPort; () the sequence
of the {Pi hasOutPort pm connectsTo Chx, Pj hasInPort pn connectsTo Chx}
statements.

Running this part of the pipeline would generate the runtime provenance
information with the structure resembling the program specification (cf. Fig. 6).
The main difference between the static program model and runtime information
is that during execution all ports transfer some data – either default artefacts
indicated in the program specification, data provided by the user, e.g. input
sample or the output data product. When introducing a change in this context,
e.g. {b1 wDF−−−→ b0, e1

wDF−−−→ e0}, two things are important. Firstly, the usage of
the artefacts is captured at the sub-execution level (SSE 1, SSE 3 and SE 1–SE 3)
while E0 uses these artefacts indirectly. Secondly, to rerun the alignment step
it is useful to consider the sub-executions grouped together under E0, which
determines the end of processing and delivers data y0 and z0 meaningful for the
user. We can capture both these elements using the tree structure that naturally
fits the hierarchy of executions encoded with ProvONE. We call this tree the
restart tree as it indicates the initial set of executions that need to be rerun. The
tree also provides references to the changed artefacts, which is useful to perform
further steps of the ReComp meta-process. Figure 6 shows in blue the restart
tree generated as a result of change in artefacts b and e.

Provenance Annotation and Analysis 11

Fig. 6. An execution trace for the program shown in Fig. 5 with the restart
tree and artefact references highlighted in blue. () – the wasPartOf relation
between executions; () – the used statements; () – the sequence of the
Ej used z wasGeneratedBy Ei statements. (Color figure online)

Finding the restart tree involves building paths from the executions that used
changed artefacts, all the way up to the top-level execution following the was-
PartOf relation. The tree is formed by merging all paths with the same top-level
execution.

3 Computing the Re-computation Front

Combining together all three parts discussed above, we present in Listing 1.1 the
pseudocode of our algorithm to identify the re-computation front. The input of
the algorithm is the change front CF that the ReComp framework keeps updat-
ing with every change observed. The output is a list of restart trees, each rooted
with the top-level execution. Every node of the tree is a triple: (E, [changedData],
[children]) that combines an execution with optional lists of changed data arte-
facts it used and sub-executions it coordinated. For executions that represent
a simple black-box process the output of the algorithm reduces to the list of
triples like: [(Ei, [ak, al, . . .], []), (Ej , [am, an, . . .], []), . . .] in which the third ele-
ment of each node is always empty. For the example of a hierarchical process
shown above in Fig. 6 the output would be [(E0, [], [(SE 0, [], [(SSE 1, [b0], []),
(SSE 3, [e0], [])]), (SE 1, [e0], []), (SE 2, [e0], []), (SE 3, [e0], [])])]

The algorithm starts by creating the root node, OutTree, of an imaginary
tree that will combine all independent executions affected by the change front.
Then, it iterates over all artefacts in the ChangeFront set and for each artefact
it traverses the chain of versions: Item wDF−−−→ PredI

wDF−−−→ . . . (line 4). For each
version it looks up all the executions that used particular version of the data
(line 5). The core of the algorithm (lines 6–7) is used to build trees out of
the affected executions. In line 6 a path from the affected execution to its top-
level parent execution is built. Then, the path is merged with the OutTree such
that two paths with the same top-level execution are joined into the same sub-
tree, whereas paths with different root become two different subtrees on the
OutTree.children list.

12 J. Ca�la and P. Missier

Listing 1.1. An algorithm to find the re-computation front.

1 f unc t i on f i n d r e c omp f r o n t (ChangeFront) : T r e e L i s t
2 OutTree := (root , data := [] , c h i l d r e n := [])
3 f o r I tem i n ChangeFront do
4 f o r Pred I i n t r a v e r s e d e r i v a t i o n s (Item) do
5 f o r Exec i n i t e r u s e d (Pred I) do
6 Path := p a t h t o r o o t (PredI , Exec)
7 OutTree . merge path (Path)
8 re tu rn OutTree . c h i l d e r n

Listing 1.2 shows the path to root function that creates the path from the
given execution to its top-level parent execution. First it checks if the given
execution Exec has already been re-executed (lines 4–6). It does so by iterat-
ing over all wasInformedBy statements in which Exec is the informant check-
ing if the statement is typed as recomp:re-execution. If such statement exists,
path to root returns the empty path to indicate that Exec is not on the front (line
6). Otherwise, if none of the communication statements indicates re-execution
by ReComp, Exec is added to the path (line 7) and algorithm moves one level
up to check the parent execution (line 8). This is repeated until Exec is the top-
level parent in which case get parent(Exec) returns null and the loop ends. Note,
get parent(X) returns execution Y for which statement X wasPartOf Y holds.

Listing 1.2. Function to generate the path from the given execution to its top-level
parent.

1 f unc t i on p a t h t o r o o t (ChangedItem , Exec) : Path
2 OutPath := [ChangedItem]
3 repeat
4 f o r wIB i n i t e r w a s i n f o rm e d b y (Exec)
5 i f typeof (wIB) i s ” recomp : re−e x e c u t i o n ” then
6 re tu rn []
7 OutPath . append (Exec)
8 Exec := g e t p a r e n t (Exec)
9 u n t i l Exec = n u l l

10 re tu rn OutPath

The discussion on other functions used in the proposed algorithm, such as
traverse derivations and iter used, is omitted from the paper as they are simple to
implement. Interested readers can download the complete algorithm written in
Prolog from our GitHub repository.2 Preliminary performance tests showed us
execution times in the order of milliseconds when run on a 250 MB database of
provenance facts for about 56k composite executions and a set of artefact doc-
uments of which two had 15 and 19 version changes. As expected, the response
time was increasing with the growing length of the derivation chain.

2 https://github.com/ReComp-team/IPAW2018.

https://github.com/ReComp-team/IPAW2018

Provenance Annotation and Analysis 13

4 Related Work

A recent survey by Herschel et al. [9] lists a number of applications of provenance
like improving collaboration, reproducibility and data quality. It does not high-
light, however, the importance of process re-computation which we believe needs
much more attention nowadays. Large, data-intensive and complex analytics
requires effective means to refresh its outcomes while keeping the re-computation
costs under control. This is the goal of the ReComp meta-process [6]. To the best
of our knowledge no prior work addresses this or a similar problem.

Previous research on the use of provenance in re-computation focused on
the final steps of our meta-process: partial or differential re-execution. In [4]
Bavoil et al. optimised re-execution of VisTrails dataflows. Similarly, Altintas
et al. [2] proposed the “smart” rerun of workflows in Kepler. Both consider data
dependencies between workflow tasks such that only the parts of the workflow
affected by a change are rerun. Starflow [3] allowed the structure of a workflow
and subworkflow downstream a change to be discovered using static, dynamic
and user annotations. Ikeda et al. [10] proposed a solution to determine the
fragment of a data-intensive program that needs rerun to refresh stale results.
Also, Lakhani et al. [12] discussed rollback and re-execution of a process.

We note two key differences between the previous and our work. First, we
consider re-computation in the view of a whole population of past executions;
executions that may not even belong to the same data analysis. From the popu-
lation, we select only those which are affected by a change, and for each we find
the restart tree. Second, restart tree is a concise and effective way to represent
the change in the context of a past, possibly complex hierarchical execution. The
tree may be very effectively computed and also used to start partial rerun. And
using the restart tree, partial re-execution does not need to rely on data cache
that may involve high storage costs for data-intensive analyses [15].

Another use of provenance to track changes has been proposed in [8,11] and
recently in [14]. They address the evolution of workflows/scripts, i.e. the changes
in the process structure that affect the outcomes. Their work is complementary
to our view, though. They use provenance to understand what has changed in
the process e.g. to link the execution results together or decide which execution
provides the best results. We, instead, observe changes in the environment and
then react to them by finding the minimal set of executions that require refresh.

5 Discussion and Conclusions

In this paper we have presented a generic approach to use provenance annota-
tions to inform a re-computation framework about the selection of past execu-
tion that require refresh upon a change in their data and software dependencies.
We call this selection the re-computation front. We have presented an effective
algorithm to compute the front, which relies on the information about changes
and annotations of re-executions. The algorithm can handle composite hierar-
chical structure of processes and help maintain the most up-to-date version of

14 J. Ca�la and P. Missier

the dependencies. Overall, it is a lightweight step leading to the identification of
the scope of changes, i.e. computing difference and estimating the impact of the
changes, and then to partial re-execution.

In line with [1], we note that a generic provenance capture facility which
stores basic information about processes and data is often not enough to sup-
port the needs of applications. For our algorithm to work properly, we have to
additionally annotate every re-execution with the wasInformedBy statement, so
the past executions are not executed again multiple times. This indicates that the
ProvONE model defines only a blueprint with minimal set of meta-information
to be captured which needs to be extended within each application domain.

References

1. Alper, P., Belhajjame, K., Curcin, V., Goble, C.: LabelFlow framework for anno-
tating workflow provenance. Informatics 5(1), 11 (2018)

2. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the
Kepler scientific workflow system. In: Moreau, L., Foster, I. (eds.) IPAW 2006.
LNCS, vol. 4145, pp. 118–132. Springer, Heidelberg (2006). https://doi.org/10.
1007/11890850 14

3. Angelino, E., Yamins, D., Seltzer, M.: StarFlow: a script-centric data analysis
environment. In: McGuinness, D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010.
LNCS, vol. 6378, pp. 236–250. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17819-1 27

4. Bavoil, L., et al.: VisTrails: enabling interactive multiple-view visualizations. In:
VIS 05. IEEE Visualization, 2005, No. Dx, pp. 135–142. IEEE (2005)

5. Ca�la, J., Marei, E., Xu, Y., Takeda, K., Missier, P.: Scalable and efficient whole-
exome data processing using workflows on the cloud. Future Gener. Comput. Syst.
65, 153–168 (2016)

6. Ca�la, J., Missier, P.: Selective and recurring re-computation of Big Data analytics
tasks: insights from a Genomics case study. Big Data Res. (2018). https://doi.org/
10.1016/j.bdr.2018.06.001. ISSN 2214-5796

7. Cuevas-Vicentt́ın, V., et al.: ProvONE: A PROV Extension Data Model for Scien-
tific Workflow Provenance (2016)

8. Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.:
Managing rapidly-evolving scientific workflows. In: Proceedings of the 2006 Inter-
national Conference on Provenance and Annotation of Data, pp. 10–18 (2006)

9. Herschel, M., Diestelkämper, R., Ben Lahmar, H.: A survey on provenance: what
for? what form? what from? VLDB J. 26(6), 1–26 (2017)

10. Ikeda, R., Das Sarma, A., Widom, J.: Logical provenance in data-oriented work-
flows. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE),
pp. 877–888. IEEE (2013)

11. Koop, D., Scheidegger, C.E., Freire, J., Silva, C.T.: The provenance of workflow
upgrades. In: McGuinness, D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010.
LNCS, vol. 6378, pp. 2–16. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-17819-1 2

12. Lakhani, H., Tahir, R., Aqil, A., Zaffar, F., Tariq, D., Gehani, A.: Optimized
rollback and re-computation. In: 2013 46th Hawaii International Conference on
System Sciences, No. I, pp. 4930–4937. IEEE (Jan 2013)

https://doi.org/10.1007/11890850_14
https://doi.org/10.1007/11890850_14
https://doi.org/10.1007/978-3-642-17819-1_27
https://doi.org/10.1007/978-3-642-17819-1_27
https://doi.org/10.1016/j.bdr.2018.06.001
https://doi.org/10.1016/j.bdr.2018.06.001
https://doi.org/10.1007/978-3-642-17819-1_2
https://doi.org/10.1007/978-3-642-17819-1_2

Provenance Annotation and Analysis 15

13. Moreau, L., et al.: PROV-DM: the PROV data model. Technical report, World
Wide Web Consortium (2012)

14. Pimentel, J.F., Murta, L., Braganholo, V., Freire, J.: noWorkflow: a tool for col-
lecting, analyzing, and managing provenance from python scripts. Proc. VLDB
Endow. 10(12), 1841–1844 (2017)

15. Woodman, S., Hiden, H., Watson, P.: Applications of provenance in performance
prediction and data storage optimisation. Future Gener. Comput. Syst. 75, 299–
309 (2017)

Provenance of Dynamic Adaptations
in User-Steered Dataflows

Renan Souza1,2(&) and Marta Mattoso1

1 COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
renanfs@cos.ufrj.br

2 IBM Research, Rio de Janeiro, Brazil

Abstract. Due to the exploratory nature of scientific experiments, computa-
tional scientists need to steer dataflows running on High-Performance Com-
puting (HPC) machines by tuning parameters, modifying input datasets, or
adapting dataflow elements at runtime. This happens in several application
domains, such as in Oil and Gas where they adjust simulation parameters, or in
Machine Learning where they tune models’ hyperparameters during the training.
This is also known as computational steering or putting the “human-in-the-loop”
of HPC simulations. Such adaptations must be tracked and analyzed, especially
during long executions. Tracking adaptations with provenance not only
improves experiments’ reproducibility and reliability, but also helps scientists to
understand, online, the consequences of their adaptations. We propose PROV-
DfA, a specialization of W3C PROV elements to model computational steering.
We provide provenance data representation for online adaptations, associating
them with the adapted domain dataflow and with execution data, all in the same
provenance database. We explore a case study in the Oil and Gas domain to
show how PROV-DfA supports scientists in questions like “who, when, and
which dataflow elements were adapted and what happened to the dataflow and
execution after the adaptation (e.g., how much execution time or processed data
was reduced)”, in a real scenario.

Keywords: Computational steering � Human-in-the-loop
Dynamic workflow provenance

1 Introduction

It is known that certain actions are better performed by humans than by machines,
especially when the actions require very specific domain or application knowledge [1].
Due to the exploratory nature of scientific experiments, this often happens in com-
putational experiments modeled as scientific workflows, where computational scientists
(the users in this work, who are specialists in application-specific systems, such as
engineers, bioinformaticians, data scientists etc.) need to dynamically adapt online
workflows while they are running on High-Performance Computing (HPC) machines,
i.e., without stopping, modifying, and resubmitting the execution [2].

The data dependencies between programs composing the scientific workflow form
the dataflow. Many elements of the dataflow (e.g., data elements, datasets, attribute

© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 16–29, 2018.
https://doi.org/10.1007/978-3-319-98379-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_2&domain=pdf

values, data transformations) can be modified, online, by humans. This occurs in
several application domains. For instance, in Oil and Gas HPC simulations where users
need to fine tune parameters of a solver [3]; in Machine Learning model training, where
data scientists use their knowledge on the data and on the methods to determine better
ranges of values for hyperparameters, after analyzing their impact on the performance
(e.g., accuracy); or in Uncertainty Quantification iterative simulations where users
control loop stop conditions [4]. Online data analysis and online adaptation steered by
humans comprise “computational steering”, often referred to as “human-in-the-loop” of
HPC applications [2]. In that context, each adaptation occurred for a reason (best
known by the user), in a certain time, influenced elements of the dataflow, and had
effects in the running workflow, like data or execution time reduction [5]. Therefore,
adaptations generate major improvement on performance, resource consumption, and
quality of results [6], and thence need to be tracked.

Not tracking such adaptations has impactful disadvantages. It may compromise
experiment reproducibility as users hardly remember what and how dataflow elements
were modified (especially modifications in early stages), and what happened to the
execution because of a specific adaptation. This is more critical when users adapt
several times in long experiments, which may last for weeks. In addition to losing track
of changes, one misses opportunities to learn from the user steering data (i.e., data
generated when humans adapt a certain dataflow element) with the associated dataflow.
For example, by registering user steering data, one may query the data and discover
that when input parameters are changed to certain range of values, the output result
improves by a defined amount. Moreover, opportunities to use the data for AI-based
recommendations on what to adapt next, based on a database of adaptations, are lost.

Although data provenance in HPC workflows has improved significantly over the
past years, adding online data analyses integrating domain and execution data [7] to
reproducibility [8], provenance of computational steering in HPC workflows remains
an open challenge [6]. Provenance data management and computational steering in
HPC are still worlds apart, despite the increasingly need for joint contribution. Indeed,
in two recent surveys [6, 9], the authors highlight online provenance capture and
human-in-the-loop of HPC simulations as research and development needed. We
believe that a provenance representation able to model dynamic interactions in a
computational steering system will facilitate data representation, understanding, and
standardization among systems. To the best of our knowledge, such model does not
exist yet.

In this work, we propose PROV-DfA, a data provenance representation for mod-
eling online human adaptations in HPC workflows, built on W3C PROV standards. It
allows for explicit representation of the dataflow and provenance of user-steered
dataflow adaptations. PROV-DfA can be implemented in provenance databases of
Parallel Scientific Workflow Management Systems (WMS) [2], or computational
steering frameworks [10], or standalone HPC applications that allow for user-steered
online adaptation. It can represent typical adaptations in HPC applications, while
integrating with data for provenance, execution, and domain dataflow, all in a same
data representation. We specialize PROV-DfA for provenance parameter tuning, loop
control of iterative simulations, and data reduction. To validate our approach, we
explore a case study in an Oil and Gas HPC workflow, where the user adapted online

Provenance of Dynamic Adaptations in User-Steered Dataflows 17

elements of the dataflow. We show how those adaptations can be represented using
PROV-DfA to answer “who”, “what”, “when”, and “how” queries in a relational
provenance database to show, for example, the impact on the results after specific
dataflow adaptations.

Paper Organization. Related work is presented in Sect. 2 and background in Sect. 3.
PROV-DfA is presented in Sect. 4 and in Sect. 5 we specialize it for provenance of
three dataflow adaptations. Section 6 shows the case study. Section 7 concludes.

2 Related Work

As mentioned in introduction, recent surveys [6, 9] bring up challenges of runtime
provenance and human-in-the-loop of HPC workflows. Also, Atkinson et al. [11]
discuss the future of scientific workflows, and they mention that “monitoring and
logging will be enhanced with more interactive components for intermediate stages of
active workflows.” As a result, we found no related work for provenance representation
of human-in-the-loop of HPC workflows. Thus, we analyze computational steering
works that could highly benefit from provenance representation of human adaptation in
dataflows.

Long lasting scientific applications require user steering [2, 10]. BSIT [12] is a
platform tailored for seismic applications that supports adaptations in parameters,
programs, datasets. Few parallel WMSs support human adaptation [13–15], but no
provenance of adaptation. Chiron WMS [4, 5] enables users to change filter values,
adapt loop conditions of iterative workflows, and reduce input datasets. These works
show that online adaptations significantly reduce overall execution time, since users
can identify a satisfactory result before the programmed number of iterations.

WorkWays [16] is a science gateway that enables users to dynamically adapt the
workflow by reducing the range of parameters. It uses Nimrod/K as its underlying
parallel workflow engine, which is an extension of the Kepler workflow system [17]. It
presents tools for interaction, such as graphic interfaces, data visualization, and inter-
operability among others. WINGS [18] is a WMS concerned with workflow compo-
sition and its semantics. It focuses on assisting users in automatic data discovery. It
helps to generate and to execute multiple combinations of workflows based on user
constraints, selecting appropriate input data, and eliminating workflows that are not
viable.

Stamatogiannakis et al. [19] propose a provenance-based representation and
analysis for unstructured processes, including representation of user interactions.
However, their target applications are unstructured processes like editing in a content
management system, which differ from our target HPC workflows applications, which
are considered structured processes.

Bourhis et al. [20] propose a provenance-based solution for data-centric applica-
tions supporting queries like “why such result was generated?”, “what would be the
result if an application logic is modified?”, and “how can a user interact with the
application to achieve a goal?”, in the context of users interacting with the application
in a “what-if” manner. However, no online user-steered dataflow adaptation in HPC

18 R. Souza and M. Mattoso

workflows is tackled. Finally, we envision that AI-based systems recommending on
what to adapt next [21], could highly benefit from a provenance database containing
human user steering data to improve their models.

3 Workflows, Computational Steering and Data Provenance

3.1 Dataflow-Oriented Approach and Runtime Provenance

HPC computational experiments are often modeled as scientific workflows. While
workflows are related to the execution flow control between chained activities (e.g.,
scientific programs, processes, scripts, functions or parts of programs) [9], in dataflows
datasets are transformed by the chaining of data transformations [22]. A workflow W
has an associated dataflow D, which has a composition of n data transformations (DT),
so that D ¼ DT1; . . .;DTnf g. Each DTy, 1� y� n, is executed by a workflow activity,
and consumes or produces datasets. Datasets are further specialized into Input Datasets
(IDS) and Output Datasets (ODS). Each DTy consumes one or more IDS and produces
one or more ODS. Let Iy ¼ IDS1 [. . .[IDSu be a set containing all IDS consumed by the
DTy and Oy ¼ ODS [. . .[IDSv be a set containing all ODS produced by the DTy. Then,
we have adapted from [22, 23]:

Oy DTy Iy
� �

; for all DTy of the dataflow D:

Moreover, datasets are composed of data elements. Data elements in a given dataset
DS have a data schema R DSð Þ ¼ attribute1; . . .; attributeuf g. The schema can be
further specified as: R IDSð Þ ¼ FI ;VI ;PI ; LIf g and R ODSð Þ ¼ Fo;Vo;Co; LOf g, where:
• FI and FO contain attributes that represent pointers to input and output files,

respectively. These files are often large raw (textual, imagery, matrices, binary data,
etc.) scientific datasets in a wide variety of formats depending on the scientific
domain (e.g., FITS for astronomy, SEG-Y for seismic, NetCDF for fluid
simulations).

• VI and VO contain attributes for extracted data or metadata from input and output
files, respectively. In case of output data, some applications write calculated values,
like the main results of a data transformation into files and they often need to be
tracked. VO represents these special resulting extracted data, which are often scalars,
useful for domain data analyses [7, 22, 24]. VI and VO can be seen as a view over
the actual large raw datasets, as users can have a big picture of the content of the
large datasets through them.

• PI contains attributes for general purpose input parameter values of the data
transformation. For example, numerical solver parameters, thresholds, and any
other parameter that can be adjusted.

• LI contain attributes used in the data transformation in case it evaluates a loop [4].
Several applications modeled as scientific workflows have an iterative workflow
execution model. Examples include uncertainty quantification and solvers from the
Oil and Gas industry [4, 9]. In such workflows, typically there are loops like “while

Provenance of Dynamic Adaptations in User-Steered Dataflows 19

e > threshold” or “while i < max”. While PI are for general purpose parameters, LI
contains parameters that are used for loop-stop conditions (e.g., “max”,
“threshold”).

• LO contain output values related to an iteration in case of data transformations that
evaluate a loop. In that case, each iteration may be modeled as a loop evaluation
execution and produces an attribute value that has the current iteration counter.

• CO contain attributes for any output values that are explicit data transformation
results. For example, besides large scientific data files produced by data transfor-
mations, they may produce output quantities, often scalar values or simple arrays
that are very meaningful for the result. Since they may be of high interest for the
user, these values are typical provenance data that need to be registered.

A schema of a dataset DS may not have all these attributes, i.e., they are optional.
For example, if a data transformation consuming a dataset DS does not evaluate a loop,
R DSð Þ does not contain LI or LO.

Several real HPC workflows have been modeled and specified as previously
described, allowing for enhanced provenance data representation [5, 7, 22, 24]. Thus,
in addition to well-known advantages of collecting provenance in HPC workflows,
such as for experiments’ reproducibility and results’ reliability [8], runtime provenance
augments online data analytical potential and is especially useful for long-running
workflows [2, 4, 5]. In addition to data analyses via ad-hoc analytical queries, visu-
alization tools (e.g., ParaView Catalyst) may be coupled to applications querying the
database for a graphic view of the execution [24]. Based on online data analyses, the
user may dynamically adapt dataflow elements, such as parameters, input data etc. [5].
This is known as computational steering or “human-in-the-loop” of HPC applications.

3.2 A Diagram for Runtime Provenance in HPC Workflows

In a previous work [25], we presented PROV-Wf, which is a PROV-DM [26] spe-
cialization. PROV-Wf models workflow provenance, domain-specific, and execution
data, all in a same representation. ProvONE [27] has been compared to PROV-Wf in a
previous work [28]. It has been implemented in provenance databases of existing
WMSs, in real-world workflows [4, 5, 22].

More recently, we extended PROV-Wf into PROV-Df to explicitly represent the
dataflow of a workflow [22]. Even without a WMS, runtime provenance can be
extracted and integrated to domain data by instrumenting an application. Collecting
provenance in standalone HPC applications without a WMS is desired, as there are
applications that already employ highly efficient parallel libraries and the WMS
scheduling conflicts with the HPC application execution control [24]. A diagram of
PROV-Df extended, in this work, for registering human actions, is presented next
(Sect. 2).

In this paper, we use “prov:” namespace to indicate PROV classes or relation-
ships. Each ExecuteDataTransformation consumes (prov:used) and pro-
duces (prov:wasGeneratedBy) AttributeValues. These values may have
been extracted by an ExecuteExtractor [7]. Data elements compose the dataset
(Dataset). For prospective provenance, the dataset has an associated

20 R. Souza and M. Mattoso

DatasetSchema, which is composed of Attribute. Attributes describe the
AttributeValues generated during execution. They have a data type (integer, text
etc.) and may have extra fields in the Attribute class to allow for attribute speci-
fication (i.e., determine if the attribute is in FI ;FO;VI ;VO;PI ; LI ; LO;COf g). Such
specifications enrich domain data analyses and allow for identifying attributes that can
be adapted. Data about execution, such as duration and performance data (CPU,
memory), linkage to subsequent and previous executions, and their related prospective
provenance can be stored relating to instances of ExecuteDataTransformation.

We put this provenance representation into practice in a Bioinformatics HPC
workflow to answer “what”, “when”, and “how” questions, useful for the bioinfor-
matician [7]. She could query output domain data extracted from produced raw data-
sets, and relate domain data to performance data. However, despite the effort for data
provenance in HPC workflows, there is no provenance representation for user steering
data.

4 Provenance of Dynamic Adaptation in User-Steered
Dataflows

During the execution of an HPC workflow, users analyze elements of a dataflow to
steer the execution. In this work, we introduce PROV-DfA by specializing provenance
data model classes to represent these dynamic adaptations. Instead of creating a
completely new provenance model, we first begin by consolidating a base model using
several past contributions to PROV-Wf and PROV-Df [5, 7, 22, 25] to build into
PROV-DfA). PROV-DfA adds provenance of online dataflow adaptations to these
previous PROV-extended models.

PROV-DfA introduces the classes SteeringAction, Analysis, Adapta-
tion, and Adapter; and the relationship WasSteeredBy. We use a UML class
diagram, where the <<stereotypes>> in classes specify PROV super-classes
(mainly Agents, Entities, and Activities) and between classes specify
relationships. Classes in white background represent prospective provenance, whereas
in gray represent retrospective provenance. prov:Entity in yellow means that
classes in PROV-DfA that are subclasses of prov:Entity (prospective or retro-
spective) can be used in place, as we explain next (Fig. 1).

Adaptation is a steering action performed by a human that causes a change in the
flowing data elements in the dataflow. In PROV-DfA, it is represented by Adapta-
tion, a subclass of SteeringAction, subclass of prov:Activity. An adap-
tation was steered by (wasSteeredBy) a prov:Person, occurred at a specified
time (prov:startedAtTime), had an adaptation characteristic (adapta-
tionCharacteristic) that can be “update” or “insert/delete”. Users may add a
plain description to the adaptation, to describe what was going on in the experiment
when they decided to perform a specific change. Also, as inherited by Steer-
ingAction, an Adaptation may have been informed by a previous Adapta-
tion, hence the auto-relationship prov:wasInformedBy. This is the case, for
example, of a rollback adaptation, requested by a user, that happened right after the
user modified parameters in a simulation, which is another adaptation.

Provenance of Dynamic Adaptations in User-Steered Dataflows 21

Since adaptations in the dataflow occur while the workflow is executing, it is
important to keep track of the execution state. The most representative PROV-DfA
activity that represents the execution state is ExecuteDataTransformation.
When an adaption occurs, these instances carry information about time, pointers to
domain data values being consumed or produced, computational resources being con-
sumed, etc. Thus, being able to track which specific data transformation was running at
the moment of the adaptation may be very useful for extended analyses that integrates
adaptation with provenance, domain, and execution data. For this, we relate which
ExecuteDataTransformation instances were influenced (prov:wasInfor-
medBy) by adaptations. How adaptations relate to ExecuteDataTransforma-
tion, as well as how prov:Entities are affected depend on characteristic of the
online adaptation, as explained next.

Adapter is a software component that knows how to adapt the elements of the
dataflow in a running workflow, making it a subclass of prov:SoftwareAgent. In
any case, PROV-DfA is just responsible for registering the actions of an Adapter
software. Thus, when the user decides to adapt an element of the dataflow, the Adapter
is responsible for modifying the requested element. Any information that describes the
Adapter software (e.g., which element of the dataflow it adapts, where the program can
be located, how it can be invoked etc.) may be stored relating to the Adapter class.
Adapter relates to classes that are subclasses of prov:Entity and to the adap-
tation itself (via prov:wasAssociatedWith).

Characteristics of Online Adaptation. Adaptations may have a characteristic of
either update (we say U-adaptation) or insert/delete (I/D-adaptation).

• U-adaptations are updates where the user adjusts, tunes, or modifies one or more
dataflow elements. Examples are parameter tuning, loop control adaptations, etc. In
PROV-DfA, when the user performs a U-adaptation, a new instance of Adap-
tation is created. Also, a new instance of one of the prov:Entity subclasses

Fig. 1. PROV-DfA overview. A larger visualization is on GitHub [29].

22 R. Souza and M. Mattoso

in PROV-Df is created (e.g., AttributeValue, DataTransformation etc.)
containing the new data, which will replace the old data in the dataflow. The newly
created entity is related (prov:wasInformedBy) to the adaptation. Moreover,
the newly created data is related to the old one via prov:wasRevisionOf, so
that the track between the new and old data is maintained. Additionally, to relate the
adaptation with execution state, PROV-DfA relates (prov:wasInformedBy) the
ExecuteDataTransformation instances that were in “running” state at the
moment of the adaptation. Finally, Adapter is related to the prospective entity
(e.g., Attribute, DataTransformation) that specifies the entity adapted.

• I/D-adaptations are steering actions that cause addition or deletion of data elements
in the dataflow. Examples are data reduction or extension, data transformation or
attribute addition or deletion etc. A new instance of Adaptation is created and
there is a relationship (prov:wasInformedBy) between the Adaptation and
the added or deleted instances of a prov:Entity subclass. In case of deletions,
the entity is not physically deleted from the provenance database, for the sake of
provenance. Rather, it is assumed that when an Adaptation is a deletion, the
deleted instance is logically deleted from the dataflow. This enables tracking entities
deleted online. Since adding or deleting elements affects the execution, the instances
of ExecuteDataTransformation directly affected to the added or deleted
elements of the dataflow are related (prov:wasInformedBy) to the Adap-
tation instance. For example, in a data reduction [5], data transformations that
were supposed to execute were not executed because of a dynamic adaptation.
These instances of DataTransformationExecution not executed are related
to the adaptation. Finally, Adapter and Adaptation are related like in U-
adaptations.

Furthermore, to use PROV-DfA in a real use case, it is expected that the user will
work in collaboration with a data specialist, especially in PROV concepts. Together
they specialize the diagram for the domain and application in use, and add provenance
capture calls to the simulation via code instrumentation. Users analyze the data via
provenance queries together with domain, execution, and user steering data.

In summary, in PROV-DfA, an Adaptation is a prov:Activity steered by a
prov:Person, which influenced instances of classes that are subclasses of prov:
Entity, and influenced instances of ExecuteDataTransformation. The
Adapter program relates to the prospective entity being adapted and to the adaptation.

5 Specializing PROV-DfA Concepts

In this section, we specialize PROV-DfA concepts to represent online parameter tun-
ing, changes in loop control, and data reduction as PROV-DfA’s U and I/D-
adaptations. We assume that there is a computational steering framework, such as the
ones surveyed by Bauer et al. [10], or an underlying WMS engine, such as the ones
surveyed by Mattoso et al. [2], or a standalone program adaptable online, as we show
in a previous work [3].

Provenance of Dynamic Adaptations in User-Steered Dataflows 23

5.1 Simulation Parameter Tuning

Parameter tuning refers to the action of steering parameters of a data transformation in a
dataflow, like numerical solver parameters or machine learning model hyperparame-
ters. In PROV-DfA, ParameterTuning is a specialization of Adaptation.
Parameter tunings are adaptations in attribute values (AttributeValue) that are
related to data elements (DataElement) related to IDS (Dataset) of a certain data
transformation (DataTransformation). The attribute value modified must have
been derived from (prov:wasDerivedFrom) an Attribute whose attribute
specification is PI .

It is a U-adaptation. As such, a new instance of ParameterTuning is created
and related to the new instance of its adapted entity, i.e., AttributeValue, with the
new value for the parameter. The new value is related to the old one via prov:
wasRevisionOf. ExecuteDataTransformation instances running at the
moment of the adaptation are related to the Adaptation instance. Finally, since users
tune parameters of data transformations, the Adapter relates to the DataTrans-
formation associated to DatasetSchema that had the Attribute modified.

5.2 Online Adaptation of Iterative Simulations

Workflows with an iterative workflow execution model have data transformations that
evaluate loops. Using the dataflow-oriented approach concepts (Sect. 3.1), values for
these loop-stop conditions may be modeled as an attribute in LI of a data transformation
that evaluates a loop and the iteration counter can be modeled as an attribute in LO of
the data transformation. Moreover, each iteration generates an instance in Exe-
cuteDataTransformation for the loop evaluation. During execution of each
iteration, a relationship between the output of this data transformation, containing the
current iteration value, and the ExecuteDataTransformation instance is par-
ticularly useful for such workflows, as it identifies a specific part of the workflow
execution, and often users can analyze results as the workflow iterates. Such control
information is important for the adaptation, as users can associate their specific actions
with execution data, such as which point in workflow elapsed time that action hap-
pened or what memory/CPU consumption were. In complex iterative simulation,
capturing data at each iteration may be managed in transit by an efficient database
management solution. In a recent work [24], we show an efficient database imple-
mentation using an analytics-optimized DBMS and asynchronous provenance capture,
including extractions from large domain raw data files (like metadata VI and VO), and
related to provenance data in a real iterative HPC simulation. The overall overheads
accounted for less than 1% of simulation time and added data, which is considered
negligible.

Therefore, in PROV-DfA, it is represented as LoopAdaptation, a subclass of
Adaptation. Similarly to ParameterTuning, its instance is related to the new
instance of AtrributeValue, containing the new value for the loop control con-
dition, relating (prov:wasRevisionOf) to the old one. The adapted instance of
AttributeValue must be derived from an Attribute whose attribute specifi-
cation is LI . Additionally, the generated ExecuteDataTransformation instance

24 R. Souza and M. Mattoso

related to the output of the last iteration (i.e., last execution of the data transformation
for loop evaluation) is related to the LoopAdaptation instance. Finally, the adapter
must be able to dynamically modify the data transformation that represents the loop
evaluation. That is, Adapter in this case relates to DataTransformation.

5.3 Data Reduction

Online user-steered data reduction are very useful for reducing execution time and
amount of data to be processed during a simulation [5]. DataReduction is a sub-
class of Adaptation. In the dataflow-oriented approach, the datasets stored as large
raw data files to be processed by a data transformation are represented by attributes
composing data elements in an IDS. Data files are represented as pointers in FI , whereas
VI contain extracted domain values from those files specified in FI . An approach to
reduce data is to specify a criteria based on VI values to eliminate files in FI to be
processed, enabling the adapter program to logically delete data elements in the IDS.
This makes the HPC application not to execute the data transformations for the
removed elements [5].

Analogously, in PROV-DfA, reducing data means logically removing instances of
DataElement (and consequently AttributeValues) of a Dataset (IDS). This
can be the result of an I/D adaptation. Thus, there is a relationship (prov:wasIn-
formedBy) between the removed instances of DataElement and Attribute-
Value and the adaptation. The ExecuteDataTransformation instances that
would use (prov:used) the removed AttributeValue instances are related to the
DataReduction instance. Additionally, the criteria to remove data elements [5] is
stored within the adaptation instance. Finally, as users remove data elements in IDS, the
adapter is related to the DataTransformation associated to the Dataset that had
the DataElement and AttributeValues removed.

6 Case Study

In this section, we present PROV-DfA being used in a real case study in the Oil and
Gas domain. In a previous work [24], we applied the domain dataflow-oriented
approach (Sect. 3.1) in an HPC turbidity currents simulation, modeled as an iterative
scientific workflow. Parts of the simulation code were identified as workflow activities,
modeled as data transformations chained in a dataflow. Data and metadata extractors
were developed, and the simulation source code was instrumented to call these domain
values extractors, together with provenance data collectors, to populate the datasets in a
provenance database at runtime. In Fig. 2, we show large raw input files (with mesh
data) stored on disk, with pointers in the solver IDS. The solver IDS has over 70
parameters (i.e., PI attributes), among which only 2 are displayed in the figure (flow
linear and non-linear tolerance). All these solver parameters are extracted from a
configurations file, which is read at each iteration. Yet, the maximum number of
iterations (t_max) is a LI attribute of the data transformation solver. Some metadata
(VI) are extracted from input raw files at runtime to facilitate tracking their contents
while they are processed. Elements of ODS of each data transformation are also

Provenance of Dynamic Adaptations in User-Steered Dataflows 25

collected (via raw data extractors and source code instrumentation) and stored in the
database. For example, the solver ODS contains calculated values, such as linear and
non-linear results, as well as the current time iteration value. Moreover, the simulation
was coupled to data analysis tools for in-situ data analysis while the workflow runs
[24]. The entire simulation using 3D real data lasts for weeks, making online data
analysis a requirement.

In addition to online data analyses, adapters were developed to enable online
adaptation of the dataflow. Even though the user could adapt the running dataflow, the
adaptations were not being tracked. There were several adaptations during the simu-
lation, and the user lost their track, jeopardizing the experiment’s reproducibility and
results reliability, and missing opportunities to learn from the adaptations.

We developed a first prototype to instrument the source code of the simulation
adapters to collect provenance of adaptation and store in a relational database [3].
However, we developed an ad-hoc provenance data model to represent a specific type
of adaptation, i.e., tuning some simulation parameters. In this section, we explore this
case study to show parameter tuning and data reduction using PROV-DfA.

In Fig. 3, we present a visualization of an excerpt of the data in a provenance
database implementing PROV-DfA. It shows a user tuning the flow linear tolerance
parameter from 1e-5 to 1e-3 and a data reduction with criteria “mx < 7e6”.

Using data in a relational provenance database implementing PROV-DfA, users
can run the following queries (their SQL codes are on GitHub [29]).

Inspecting Parameter Tunings (“who”, “when”, “what”). How many tunings did I
do? Which parameters did I change? What were the values when I changed and what
values did I change into? When did each adaptation happen?

Understanding Consequences of a Tuning (“how”). In parameter tuning 3, how
was the main solver output values 10 iterations before and after?

Fig. 2. Dataflow in the turbidity currents simulation [24].

26 R. Souza and M. Mattoso

Data Reduction (“how”, “which”). On average, how long iterations were lasting
before and after I reduced input files from the input data? Which files were affected?

These queries show the potential of PROV-DfA for provenance databases keeping
track of online dataflow adaptations in computational steering HPC workflows.

7 Conclusion

In this work, we presented PROV-DfA, an extension of W3C PROV for provenance of
dynamic adaptations in user-steered dataflows. Recent surveys [6, 9] call for research
and development in human-in-the-loop of HPC workflows and dynamic data prove-
nance. We believe PROV-DfA is an important step towards modeling provenance of
dynamic adaptations in computational steering. To the best of our knowledge, no such
model exists yet. Different dynamic dataflow adaptations may be modeled as PROV
DfA’s U- or I/D-adaptations. We showed it being used for modeling the track of
parameter tuning, loop control of iterative simulations, and data reduction steered by
users. We queried a provenance database implementing it to answer “who”, “what”,
“when”, “how” queries. In the context of computational steering and provenance, our
approach contributes for reproducibility, results’ reliability, online results under-
standing as consequences of adaptations, and adds a potential for users or AI-based
systems to learn from dynamic interaction data. For future work, we plan to explore
PROV-DfA to model the track of other dynamic adaptations and extend it with online
data analyses steered by users. We plan to integrate it to ProvONE [27] as well. We
expect it can be adopted by WMSs, computational steering frameworks, or standalone
HPC applications with steering capabilities that need to keep track of human
interactions.

Acknowledgement. This work was partially funded by CNPq, FAPERJ and HPC4E (EU
H2020 and MCTI/RNP-Brazil).

Fig. 3. Visualization of data using PROV-DfA.

Provenance of Dynamic Adaptations in User-Steered Dataflows 27

References

1. Jagadish, H.V., et al.: Big data and its technical challenges. Commun. ACM 57, 86–94
(2014)

2. Mattoso, M., et al.: Dynamic steering of HPC scientific workflows: a survey. FGCS 46, 100–
113 (2015)

3. Souza, R., Silva, V., Camata, J., Coutinho, A., Valduriez, P., Mattoso, M.: Tracking of
online parameter tuning in scientific workflows. In: Works in ACM/IEEE Supercomputing
Workshops (2017)

4. Dias, J., Guerra, G., Rochinha, F., Coutinho, A.L.G.A., Valduriez, P., Mattoso, M.: Data-
centric iteration in dynamic workflows. FGCS 46, 114–126 (2015)

5. Souza, R., Silva, V., Coutinho, A.L.G.A., Valduriez, P., Mattoso, M.: Data reduction in
scientific workflows using provenance monitoring and user steering. FGCS 1–34 (2017).
https://doi.org/10.1016/j.future.2017.11.028

6. Deelman, E., et al.: The future of scientific workflows. Int J HPC Appl. 32(1), 159–175
(2018)

7. De Oliveira, D., Silva, V., Mattoso, M.: How much domain data should be in provenance
databases? In: TaPP. USENIX Association, Edinburgh (2015)

8. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and opportu-
nities. In: SIGMOD, New York, NY, USA, pp. 1345–1350 (2008)

9. da Silva, R.F., Filgueira, R., Pietri, I., Jiang, M., Sakellariou, R., Deelman, E.: A
characterization of workflow management systems for extreme-scale applications. FGCS 75,
228–238 (2017)

10. Bauer, A.C., Abbasi, H., Ahrens, J., Childs, H., Geveci, B., Klasky, S., et al.: In situ
methods, infrastructures, and applications on high performance computing platforms.
Comput. Graph. Forum Banner 35, 577–597 (2016)

11. Atkinson, M., Gesing, S., Montagnat, J., Taylor, I.: Scientific workflows: past, present and
future. FGCS 75, 216–227 (2017)

12. Hanzich, M., Rodriguez, J., Gutierrez, N., de la Puente, J., Cela, J.: Using HPC software
frameworks for developing BSIT: a geophysical imaging tool. In: Proceedings of
WCCM ECCM ECFD, vol. 3, pp. 2019–2030 (2014)

13. Lee, K., Paton, N.W., Sakellariou, R., Fernandes, A.A.A.: Utility functions for adaptively
executing concurrent workflows. CCPE 23, 646–666 (2011)

14. Pouya, I., Pronk, S., Lundborg, M., Lindahl, E.: Copernicus, a hybrid dataflow and peer-to-
peer scientific computing platform for efficient large-scale ensemble sampling. FGCS 71,
18–31 (2017)

15. Jain, A., Ong, S.P., Chen, W., Medasani, B., Qu, X., Kocher, M., et al.: FireWorks: a
dynamic workflow system designed for high-throughput applications. CCPE 27, 5037–5059
(2015)

16. Nguyen, H.A., Abramson, D., Kipouros, T., Janke, A., Galloway, G.: WorkWays:
interacting with scientific workflows. CCPE 27, 4377–4397 (2015)

17. Abramson, D., Enticott, C., Altinas, I.: Nimrod/K: towards massively parallel dynamic grid
workflows. In: Supercomputing, pp. 24:1–24:11. IEEE Press, Piscataway (2008)

18. Gil, Y., et al.: Wings: intelligent workflow-based design of computational experiments. IEEE
Intell. Syst. 26, 62–72 (2011)

19. Stamatogiannakis, M., Athanasopoulos, E., Bos, H., Groth, P.: PROV 2R: practical
provenance analysis of unstructured processes. ACM Trans. Internet Technol. 17, 37:1–
37:24 (2017)

28 R. Souza and M. Mattoso

http://dx.doi.org/10.1016/j.future.2017.11.028

20. Bourhis, P., Deutch, D., Moskovitch, Y.: Analyzing data-centric applications: why, what-if,
and how-to. In: ICDE, pp. 779–790 (2016)

21. Silva, B., Netto, M.A.S., Cunha, R.L.F.: JobPruner: a machine learning assistant for
exploring parameter spaces in HPC applications. FGCS 83, 144–157 (2018)

22. Silva, V., et al.: Raw data queries during data-intensive parallel workflow execution. FGCS
75, 402–422 (2017)

23. Ikeda, R., Sarma, A.D., Widom, J.: Logical provenance in data-oriented workflows? In:
ICDE, pp. 877–888 (2013)

24. Camata, J.J., Silva, V., Valduriez, P., Mattoso, M., Coutinho, A.L.G.A.: In situ visualization
and data analysis for turbidity currents simulation. Comput. Geosci. 110, 23–31 (2018)

25. Costa, F., Silva, V., de Oliveira, D., Ocaña, K., et al.: Capturing and querying workflow
runtime provenance with PROV: a practical approach. In: EDBT/ICDT Workshops,
pp. 282–289 (2013)

26. Moreau, L., Missier, P.: PROV-DM: The PROV Data Model. https://www.w3.org/TR/prov-
dm/

27. ProvONE provenance model for scientific workflow. http://vcvcomputing.com/provone/
provone.html

28. Oliveira, W., Missier, P., Oliveira, D., Braganholo, V.: Comparing provenance data models
for scientific workflows: an analysis of PROV-Wf and ProvOne. In: Brazilian e-Science
Workshop (2016)

29. PROV-DfA: PROV-DfA GitHub Repository. https://github.com/hpcdb/PROV-DfA

Provenance of Dynamic Adaptations in User-Steered Dataflows 29

https://www.w3.org/TR/prov-dm/
https://www.w3.org/TR/prov-dm/
http://vcvcomputing.com/provone/provone.html
http://vcvcomputing.com/provone/provone.html
https://github.com/hpcdb/PROV-DfA

Classification of Provenance Triples
for Scientific Reproducibility:

A Comparative Evaluation of Deep Learning
Models in the ProvCaRe Project

Joshua Valdez1, Matthew Kim2, Michael Rueschman2,
Susan Redline2, and Satya S. Sahoo1(&)

1 Department of Population and Quantitative Health Sciences,
School of Medicine, Case Western Reserve University,

Cleveland, OH 44106, USA
satya.sahoo@case.edu

2 Department of Medicine, Brigham and Women’s Hospital,
Beth Israel Deaconess Medical Center and Harvard Medical School,

Boston, MA, USA

Abstract. Scientific reproducibility is key to the advancement of science as
researchers can build on sound and validated results to design new research
studies. However, recent studies in biomedical research have highlighted key
challenges in scientific reproducibility as more than 70% of researchers in a
survey of more than 1500 participants were not able to reproduce results from
other groups and 50% of researchers were not able to reproduce their own
experiments. Provenance metadata is a key component of scientific repro-
ducibility and as part of the Provenance for Clinical and Health Research
(ProvCaRe) project, we have: (1) identified and modeled important provenance
terms associated with a biomedical research study in the S3 model (formalized
in the ProvCaRe ontology); (2) developed a new natural language processing
(NLP) workflow to identify and extract provenance metadata from published
articles describing biomedical research studies; and (3) developed the ProvCaRe
knowledge repository to enable users to query and explore provenance of
research studies using the S3 model. However, a key challenge in this project is
the automated classification of provenance metadata extracted by the NLP
workflow according to the S3 model and its subsequent querying in the Prov-
CaRe knowledge repository. In this paper, we describe the development and
comparative evaluation of deep learning techniques for multi-class classification
of structured provenance metadata extracted from biomedical literature using 12
different categories of provenance terms represented in the S3 model. We
describe the application of the Long Term Short Memory (LSTM) network,
which has the highest classification accuracy of 86% in our evaluation, to
classify more than 48 million provenance triples in the ProvCaRe knowledge
repository (available at: https://provcare.case.edu/).

Keywords: Scientific reproducibility � Semantic provenance
Provenance for Clinical and Health Research � Provenance triple classification
Deep learning

© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 30–41, 2018.
https://doi.org/10.1007/978-3-319-98379-0_3

https://provcare.case.edu/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_3&domain=pdf

1 Introduction

Reproducibility is a key component of advancing scientific research that enables val-
idation of both research protocols and study data [1, 2]. However, there is growing
concern in the biomedical research domain regarding the lack of reproducible results
due to missing information or lack of appropriate contextual metadata describing
various aspects of a research study. For example, research study results published in
peer-reviewed articles often lack details regarding the statistical models used to analyze
data and the parameters used to select or discard study data for further analysis, which
often leads to selection bias [2]. The lack of reproducibility has significant impact on
the quality as well as integrity of published scientific results, potential misallocation of
limited funding resources, and concern for patient safety during clinical trials [3].
A number of initiatives in the biomedical domain have focused on supporting scientific
reproducibility, including the US National Institutes of Health (NIH) “Rigor and
Reproducibility Guidelines” [4], and the Consolidated Standards of Reporting Trials
(CONSORT) guidelines [5]. Provenance metadata representing essential contextual
information about research studies is central to achieving the goals of the community-
initiated guidelines and ensure scientific reproducibility [6].

The Provenance for Clinical and Health Research (ProvCaRe) project is developing
a provenance-enabled framework to identify, characterize, and evaluate provenance
metadata terms in support of scientific reproducibility [7]. The ProvCaRe project has
developed: (1) the S3 model for representing multiple aspects of a research study by
extending the W3C PROV Data Model (PROV-DM) [8]; (2) a provenance-focused
Natural Language Processing (NLP) workflow for extracting structured provenance
metadata from unstructured full-text articles from the National Center for Biotech-
nology Information (NCBI) PubMed [9]; and (3) the ProvCaRe knowledge repository
consisting of 48.6 million provenance “triples” extracted from more than 435,000 full-
text articles [7]. The ProvCaRe S3 model consists of three core concepts of:

(a) Study Method describing the research study protocols used for data collection,
inclusion-exclusion criteria among other provenance information

(b) Study Data describing the categorical and continuous variables used in the
research study dataset, including valid data range

(c) Study Tool describing the hardware and software tools used for recording and
analyzing research study data

Detailed provenance metadata associated with a research study, for example study
design, statistical data analysis techniques, among other terms are modeled as sub-
categories of these three core concepts. The S3 model has been formalized in the
ProvCaRe ontology that extends the W3C PROV Ontology (PROV-O) [10] with classes
and properties representing various metadata information of research studies [7]. The
ProvCaRe NLP workflow uses the S3 model to identify and extract provenance meta-
data associated with a research study described in a full-text published article. The
extracted provenance information is transformed into a triple structure similar to the
W3C Resource Description Framework (RDF) model [11] with mappings to the
ProvCaRe ontology terms, for example electroencephalogram ! wasRecordedUsing
! scalp electrodes. These semantic provenance triples are aggregated to create

Classification of Provenance Triples for Scientific Reproducibility 31

provenance graphs, which can be analyzed for characterizing the reproducibility of
research studies, in the ProvCaRe knowledge repository (accessible at: https://provcare.
case.edu/). The ProvCaRe knowledge repository features multiple functionalities to
allow users to query and explore provenance information associated with research
studies, including a hypothesis-driven search interface and a provenance-based ranking
technique to rank query results. The ProvCaRe knowledgebase stores the provenance
triples generated by the NLP workflow after categorizing each triple according to the S3
model concepts, which allows users to easily view provenance metadata relevant to a
specific aspect of research study. For example, researchers often analyze detailed
information regarding the design of the study in the context of the research hypothesis of
the study, the appropriateness of the sample size of the study, and validity of the
conclusions derived from the study.

Motivation and Contribution. Figure 1 shows a screenshot of provenance triples
extracted from a research study exploring the association between sleep disordered
breathing and hypertension, which are classified according to the S3 model. However,
the classification of provenance triples according to the S3 model is a significant
challenge due to multiple issues, including:

1. Complexity of provenance metadata information modeled in each triple requires
significant effort for accurate classification;

2. Large volume of provenance triples generated from the ProvCaRe NLP workflow
(e.g., 48 million triples generated from 435,000 papers) requires the use of auto-
mated classification techniques.

The classification task for these semantic provenance triples [12] is similar to the
well-known task of sentence classification in the NLP domain [13]. In particular, deep
learning techniques have been used in NLP applications for classification of word
vectors learned from unstructured text and have generated high quality results.

Fig. 1. A screenshot of the ProvCaRe knowledgebase interface with provenance triples
corresponding to a user query

32 J. Valdez et al.

https://provcare.case.edu/
https://provcare.case.edu/

Therefore, we adapted deep learning architecture used for sentence classification to
classify provenance triples in the ProvCaRe project. In this paper, we describe the
extension of three deep learning techniques: (1) Convoluted Neural Network (CNN);
(2) Recurrent Neural Network (RNN); and (3) a combined CNN/RNN-based approach,
for multi-label classification of provenance triples in the ProvCaRe project.

2 Method

In this section, we describe the details of the S3 model used as the reference model for
classification of the provenance triples, the provenance-specific training data, and
details of the three deep learning models used in ProvCaRe. The deep learning models
used in the ProvCaRe project were constructed using Google Tensorflow [14] and used
hyperparameter tuning for classification of the provenance triples.

2.1 ProvCaRe S3 Model and Ontology

The ProvCaRe S3 model has been developed based on the NIH Rigor and Repro-
ducibility guidelines that describe the essential components of a research study, which
need to be reported in a transparent manner to support reproducibility [2]. The S3 model
is modeled in a formal ontology by extending the three core classes of the W3C PROV
Ontology, that is, prov:Entity, prov:Activity, and prov:Agent [10] (prov
represents the W3C PROV namespace, http://www.w3.org/ns/prov). The ProvCaRe
ontology represents various components of the S3 model in a class hierarchy, for
example three different categories of research study design, provcare:Facto-
rialStudy, provcare:InterventionalStudy, provcare:Observa-
tionalStudy, are modeled as subclasses of randomized controlled trial class
(provcare represents the namespace http://www.case.edu/ProvCaRe/provcare).

Figure 2 shows a subset of the ProvCaRe ontology class hierarchy representing
various types of research study design. Although, the ProvCaRe ontology currently
models more than 1300 provenance-specific classes, it is impractical to model prove-
nance terms for different biomedical domains using only pre-coordinated class
expressions [15]. Therefore, we have developed a post-coordinated compositional
grammar syntax that can be used to represent new class expressions based on
requirements of specific disciplines of biomedical research [16]. Similar to the
SNOMED CT post coordinated grammar syntax, this provenance-specific composi-
tional grammar syntax allows the re-use of existing ontology terms to create new
provenance expressions. For example, the expression |Models|: |underwent| =
|10-fold cross validation| describes the validation method for a model used
in a prospective cohort study to evaluate association between sleep disordered
breathing and hypertension [17]. Together with pre-coordinated classes, the post
coordinated syntax enables the representation of a variety of provenance terms in the
ProvCaRe ontology.

The ProvCaRe ontology is used as the reference knowledge model in the NLP
workflow for named entity recognition (NER), generation of provenance triples from
parse tree, and finally classification of the provenance triples before they are added to

Classification of Provenance Triples for Scientific Reproducibility 33

http://www.w3.org/ns/prov
http://www.case.edu/ProvCaRe/provcare

the ProvCaRe knowledgebase for user query. The classification of provenance triples
using deep learning model enables easier visualization of query results for users.

2.2 Training of Deep Learning Models

We used two manually created datasets consisting of provenance metadata extracted
from 75 full-text articles describing sleep medicine research studies to train the deep
learning models. The 75 articles were selected by two members of the US NIH-funded
National Sleep Research Resource (NSRR) project, which is creating the largest
repository of sleep medicine study data from more than 40,000 sleep studies involving
more than 36,000 participants [18]. They selected published articles describing research
studies that are releasing their study data through the NSRR project. Therefore, the
provenance information extracted from these articles can be used by the sleep medicine
community to potentially reproduce the results reported in these published articles.
These manually extracted provenance triples serve as gold standard in the ProvCaRe
project and they are used to train the deep learning models.

As part of the training procedure, the first step involves defining a session and
creation of a default Tensorflow graph in that session (a graph in Tensorflow can be
understood as a structure that contains tensors and operations). The next step in the
training process defines the Tensorflow network’s loss function and optimizes the loss
function using built-in Tensorflow Adam optimizer. Once the optimizer has been
defined, a function is created to perform a single training step using the optimizer. This
is implemented by allowing Tensorflow to automatically detect variables that can be

Fig. 2. A screenshot of the ProvCaRe ontology representing different categories of research
study design.

34 J. Valdez et al.

trained and then calculate the gradients of these variables. In the next phase, the global
step is defined and passed to the optimizer. This allows the count of the training steps to
be computed automatically by Tensorflow. The final phase in the training process
involves looping through the training steps defined above using specific number of
training loops that iterate over the predefined batched data.

2.3 Deep Learning Model Architectures

In this section, we describe the details of the three deep learning models used to classify
the provenance triples in the ProvCaRe project.

Convoluted Neural Network (CNN). The CNN model used for classification of
provenance triples is similar to a CNN architecture proposed by Kim et al. [13].
This CNN model has been used in the NLP community and it has performed well on a
variety of tasks ranging from sentiment analysis to classification. The architecture for this
model comprises of a first layer that embeds each word of the sentence into a low-
dimensional vector space using the pre-trained word-2-vec vectors. Following word
embedding, the vectors are passed to a convolution layer which performs convolutions
over the embedded vector using the specified filter sizes (standard filter sizes of 3, 4 and 5
were used in this project). Once the convolutions have been performed, the results are
max-pooled into a single, large feature vector. In the next step, dropout regularization is
added to stochastically turn-off a portion of the model to force the network to learn
features individually and not together (drop out is only set during the training process and
is disabled during prediction). Finally, the result is classified with a softmax layer and a
prediction label is produced with the highest value by performing matrix multiplication
operation. Figure 3 illustrates the components of a CNN model used in this project.

Recurrent Neural Network (RNN). RNN is the second deep learning model evalu-
ated in the project for classification of the provenance triples. Like CNN’s, RNN’s are a
type of neural network which have become more popular in recent years for natural
language classification. Specifically, RNN’s feedforward networks consist of recurrent

Fig. 3. Overview of the CNN model used in the ProvCaRe project

Classification of Provenance Triples for Scientific Reproducibility 35

connections. The advantage of this approach is that these connections afford the net-
work the capacity to refer to previous states. This means that RNN’s are able to process
arbitrary sequences of input. RNN’s model define and build a language model. This is
implemented through a series steps. The first step in this process is to clean and store
the training data. This is done according to several NLP techniques. To accomplish this
in our model we tokenize the text, remove stop words as well as infrequent words and
add special tokens to the beginning and end of the sentence. Figure 4 illustrates an
overview of a RNN network.

Once the training data has been cleaned, the next step is to construct the data
matrices that will hold our training data and map the words in the sentence to a vector
representation. Once our vectors have been built on our training data, the next step is to
feed our data into the RNN model. Our model represents each word from the training
data as a “one-hot” vector. Once the data has been converted a Tensorflow RNN, it is
initialized with the parameters specified above. During initialization, we allow for
forward propagation, this returns both the calculated outputs and the hidden states
which are used to calculate the gradients using Backpropagation Through Time
(BPTT). Once this is done full the full training procedure is performed making use of
stochastic gradient descent and BPTT the predicted label is produced.

Long-Short Term Memory (LSTM or CNN/RNN). Given the wide acceptance of
neural network architectures in the NLP community, there has been recent interest in
the use of a combined approach for classification tasks. To this end, we implemented a
combined model consisting of our CNN and RNN approaches described above. This
model is created with pre-trained vectors from word2vec, max pooling and LSTM
recurrent unit. The model takes local features extracted by the CNN as input for the
RNN. This is accomplished by first using the predefined word embedding as the input
for the CNN. The output of this step are feature maps, which were described earlier as

Fig. 4. Overview of the RNN model with input and output variables

36 J. Valdez et al.

part of the CNN implementation and are formed during the convolutional windowing
process. After convolution and pooling operations, the encoded feature maps are fed as
input into the RNN. The output from the RNN are the learned sentence-level repre-
sentations which are given to the network and the softmax output which produces the
classification label (Fig. 5).

These three deep learning models were applied to classify the provenance triples
generated by the ProvCaRe NLP workflow and the classified triples were added to the
ProvCaRe knowledgebase.

3 Result and Discussion

In this section, we describe the results of a comparative evaluation of the three deep
learning models for classification of provenance triples.

3.1 Classification Results

Table 1 shows the training and test accuracy of the three deep learning models in
addition to the time taken to train the three models. The training and test results are
evaluated using the following hyperparameter values: number of epochs (1); batch size
(50); number of filters (32); filter sizes (3, 4, 5, 7); embedding dimension (200);
evaluation loop (100); hidden unit (300); I1 regularization lamda (0); and dropout keep
probability (0.5). The CNN and LSTM models have comparable accuracy in terms of
training with score of 0.904 and 0.909 respectively. Similarly, the test accuracy for
CNN and LSTM are 0.844 and 0.861 respectively. In contrast, the RNN model has

Fig. 5. Overview of the LSTM model with input, output, and other layers of the network

Classification of Provenance Triples for Scientific Reproducibility 37

comparatively low accuracy of 0.792 for training and 0.758 for test. The test accuracy
is evaluated using a manually annotated dataset of provenance triples created by the
two members of the NSRR project serving as domain experts. It is important to note
that the training and test accuracy for all three deep learning models are similar
demonstrating the effectiveness of the training process.

Based on the results of the comparative evaluation, we integrated the LSTM model
for classification of provenance triples in the ProvCaRe project. In the next section, we
describe the results of classifying five datasets of provenance triples generated by the
ProvCaRe NLP workflow.

3.2 Comparative Evaluation Results

The LSTM deep learning model was used to evaluate 5 datasets of provenance triples
consisting of: (1) 20,000 triples; (2) 50,000 triples; (3) 100,000 triples; (4) 500,000
triples; and (5) 1 million triples, which were added to the ProvCaRe knowledgebase.
To systematically evaluate the multi-label classification feature of the deep learning
models, we used 12 subcategories of the S3 model. Table 2 shows the distribution of
provenance triples across the 12 subcategories of the S3 model. The results show that
Data Collection, Study Hypothesis, and terms describing Comparison (a component of
the PICO(T) model used in evidence-based medicine [19]) are the three categories with
highest number of provenance triples across all the five datasets. In contrast, the S3
subcategory describing software tools used in a research study have the lowest number
of provenance triples. This is not surprising as only relatively few number of research
studies use software tools, such as R or SAS-based libraries for data pre-processing or
data analysis, therefore the occurrence of provenance triples describing software tools
is relatively low.

Table 1. Comparative evaluation of the test and training accuracy of the three deep learning
models.

CNN RNN CNN/RNN (LSTM)

Training accuracy 0.904332007 0.792777778 0.909607732
Test accuracy 0.844146341 0.758648649 0.86105042
Training time 14 min

47 s
13 min
05 s

16 min
23 s

Table 2. Results of classification of provenance triples according to the S3 model.

Triples SV SH SM S P RI I DP DC DA C TV

20000 798 3,154 1,861 39 1,572 2,233 904 425 3,157 1,819 3,821 217

50000 2926 7,094 4,645 655 4,728 4,219 3,077 1,857 6,787 3,998 9,213 801

100000 4652 12,003 10,295 903 10,243 7,428 7,164 2,914 14,399 8,986 18,896 2,117

500000 20876 61,399 49,488 5,502 52,339 37,224 31,359 16,898 70,853 42,597 98,755 12,710

1000000 39452 127,125 95,820 9,039 100,409 80,003 58,862 36,039 146,319 87,343 197,713 21,876

38 J. Valdez et al.

Table Legends: SV (Study Variables), SH (Study Hypothesis), SM (Statistical
Model), S (Software), P (Population), RI (Recording Instrument), I (Intervention), DP
(Data Preprocessing), DC (Data Collection), DA (Data Analysis), C (Comparison), TV
(Time Value).

It is interesting to note that a high number of provenance triples are categorized into
the important S3 subcategories of recording instruments and statistical models with
80,003 and 95,820 triples respectively. Provenance metadata describing the details of
the recording instruments used in a research study is important to provide essential
contextual information for interpreting the research study data. For example, prove-
nance information describing the specific type of blood pressure measurement instru-
ment used to record systolic and diastolic blood pressure of patients and scalp or
intracranial electrodes used to record brain electrical activity are important for subse-
quent analysis of the recorded data. Similarly, a high number of provenance triples
describe the details of research study population (100,409 provenance triples out of 1
million provenance triples), which is critical for evaluating the statistical significance of
the results reported in a given study.

In contrast, the provenance triples describing the data variables used in a research
study and time values associated with different aspects of a research study (e.g.,
recording of patient information) is relatively low. This may highlight the need for
encouraging researchers to improve the quality of provenance metadata describing
these two important aspects of a research study. Overall, this analysis of the distribution
of provenance triples according to the S3 model subcategories clearly highlights the
need for classification of provenance triples for analyzing the properties of provenance
metadata extracted from published biomedical articles. In addition to the ease of query
result visualization (as illustrated in Fig. 1), the classification of provenance triples
using deep learning model (as described in this paper) makes it easier to characterize
the provenance metadata available in published articles describing biomedical research
studies.

4 Conclusion

The ProvCaRe project aims to advance the use of provenance metadata to meet the
objectives of various community-based initiatives to improve scientific reproducibility
in the biomedical research domain. In this paper, we described a comparative evalu-
ation of deep learning models to address the critical challenge of automated and
accurate classification of semantic provenance triples generated by the ProvCaRe NLP
workflow. The three deep learning models were trained and evaluated using a manually
curated dataset of provenance triples generated from 75 papers describing sleep
medicine research studies (as part of the NSRR project).

The LSTM model featuring a combination of CNN and RNN outperformed both
CNN and RNN models individually. The LSTM model was used to classify five dataset
of provenance triples according to 12 subcategories of the S3 model, which were
analyzed to demonstrate the importance of provenance triple classification for easier
analysis and interpretation of provenance metadata extracted from published biomed-
ical articles.

Classification of Provenance Triples for Scientific Reproducibility 39

Acknowledgement. This work is supported in part by the NIH-NIBIB Big Data to Knowledge
(BD2 K) 1U01EB020955 grant, NSF grant#1636850, and the NIH-NHLBI R24HL114473 grant.

References

1. Collins, F.S., Tabak, L.A.: Policy: NIH plans to enhance reproducibility. Nature 505, 612–
613 (2014)

2. Landis, S.C., et al.: A call for transparent reporting to optimize the predictive value of
preclinical research. Nature 490(7419), 187–191 (2012)

3. Prinz, F., Schlange, T., Asadullah, K.: Believe it or not: how much can we rely on published
data on potential drug targets? Nat. Rev. Drug Discov. 10(9), 712 (2011)

4. National Institutes of Health: Principles and Guidelines for Reporting Preclinical Research
(2016). https://www.nih.gov/research-training/rigor-reproducibility/principles-guidelines-
reporting-preclinical-research

5. Schulz, K.F., Altman, D.G., Moher, D.: CONSORT 2010 statement: updated guidelines for
reporting parallel group randomised trials. J. Clin. Epidemiol. 63(8), 834–840 (2010).
CONSORT Group

6. Sahoo, S.S., Valdez, J., Rueschman, M.: Scientific reproducibility in biomedical research:
provenance metadata ontology for semantic annotation of study description. In: American
Medical Informatics Association (AMIA) Annual Symposium, Chicago, pp. 1070–1079
(2016)

7. Valdez, J., Kim, M., Rueschman, M., Socrates, V., Redline, S., Sahoo, S.S.: ProvCaRe
semantic provenance knowledgebase: evaluating scientific reproducibility of research studies.
Presented at the American Medical Informatics Association (AMIA) Annual Conference,
Washington DC (2017)

8. Moreau, L., Missier, P.: PROV data model (PROV-DM). In: W3C Recommendation, World
Wide Web Consortium W3C (2013)

9. Valdez, J., Rueschman, M., Kim, M., Redline, S., Sahoo, S.S.: An ontology-enabled natural
language processing pipeline for provenance metadata extraction from biomedical text.
Presented at the 15th International Conference on Ontologies, DataBases, and Applications
of Semantics (ODBASE) (2016)

10. Lebo, T., Sahoo, S.S., McGuinness, D.: PROV-O: the PROV ontology. In: W3C
Recommendation, World Wide Web Consortium W3C (2013)

11. Herman, I., Adida, B., Sporny, M., Birbeck, M.: RDFa 1.1 primer - second edition. In: W3C
Working Group Note, World Wide Web Consortium (W3C) (2013). http://www.w3.org/TR/
rdfa-primer/

12. Sahoo, S.S., Sheth, A., Henson, C.: Semantic provenance for escience: managing the deluge
of scientific data. IEEE Internet Comput. 12(4), 46–54 (2008)

13. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprin. https://
arxiv.org/abs/1408.5882

14. TensorFlow. https://www.tensorflow.org/
15. Rector, A.L., Brandt, S., Schneider, T.: Getting the foot out of the pelvis: modeling problems

affecting use of SNOMED CT hierarchies in practical applications. J. Am. Med. Inform.
Assoc. 18(4), 432–440 (2011)

16. Valdez, J., Rueschman, M., Kim, M., Arabyarmohammadi, S., Redline, S., Sahoo, S.S.: An
extensible ontology modeling approach using post coordinated expressions for semantic
provenance in biomedical research. In: 16th International Conference on Ontologies,
DataBases, and Applications of Semantics (ODBASE), Rhodes, Greece (2017)

40 J. Valdez et al.

https://www.nih.gov/research-training/rigor-reproducibility/principles-guidelines-reporting-preclinical-research
https://www.nih.gov/research-training/rigor-reproducibility/principles-guidelines-reporting-preclinical-research
http://www.w3.org/TR/rdfa-primer/
http://www.w3.org/TR/rdfa-primer/
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://www.tensorflow.org/

17. O’Connor, G.T., et al.: Prospective study of sleep-disordered breathing and hypertension: the
sleep heart health study. Am. J. Respir. Crit. Care Med. 179(12), 1159–1164 (2009)

18. Dean, D.A., et al.: Scaling up scientific discovery in sleep medicine: the national sleep
research resource. Sleep 39(5), 1151–1164 (2016)

19. Huang, X., Lin, J., Demner-Fushman, D.: Evaluation of PICO as a knowledge representation
for clinical questions. Presented at the AMIA Annual Symposium Proceedings (2006)

Classification of Provenance Triples for Scientific Reproducibility 41

Modeling, Simulating and Capturing
Provenance

A Provenance Model for the European
Union General Data Protection

Regulation

Benjamin E. Ujcich1,2(B), Adam Bates3, and William H. Sanders1,2

1 Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{ujcich2,whs}@illinois.edu
2 Information Trust Institute, University of Illinois at Urbana-Champaign,

Urbana, IL 61801, USA
3 Department of Computer Science, University of Illinois at Urbana-Champaign,

Urbana, IL 61801, USA
batesa@illinois.edu

Abstract. The European Union (EU) General Data Protection Regula-
tion (GDPR) has expanded data privacy regulations regarding personal
data for over half a billion EU citizens. Given the regulation’s effectively
global scope and its significant penalties for non-compliance, systems
that store or process personal data in increasingly complex workflows
will need to demonstrate how data were generated and used. In this
paper, we analyze the GDPR text to explicitly identify a set of central
challenges for GDPR compliance for which data provenance is applicable;
we introduce a data provenance model for representing GDPR workflows;
and we present design patterns that demonstrate how data provenance
can be used realistically to help in verifying GDPR compliance. We also
discuss open questions about what will be practically necessary for a
provenance-driven system to be suitable under the GDPR.

Keywords: Data provenance · General Data Protection Regulation
GDPR · Compliance · Data processing · Modeling · Data usage
W3C PROV-DM

1 Introduction

The European Union (EU) General Data Protection Regulation (GDPR) [1], in
effect from May 2018, has significantly expanded regulations about how orga-
nizations must store and process EU citizens’ personal data while respecting
citizens’ privacy. The GDPR’s effective scope is global: an organization offer-
ing services to EU citizens must comply with the regulation regardless of the
organization’s location, and personal data processing covered under the regula-
tion must be compliant regardless of whether or not it takes place within the
EU [1, Art. 3]. Furthermore, organizations that do not comply with the GDPR
c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 45–57, 2018.
https://doi.org/10.1007/978-3-319-98379-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_4&domain=pdf

46 B. E. Ujcich et al.

can be penalized up to e20 million or 4% of their annual revenue [1, Art. 83],
which underscores the seriousness with which organizations need to take the
need to assure authorities that they are complying.

A recent survey [2] of organizations affected by the GDPR found that over
50% believe that they will be penalized for GDPR noncompliance, and nearly
70% believe that the GDPR will increase their costs of doing business. The same
survey noted that analytic and reporting technologies were found to be criti-
cally necessary for demonstrating that personal data were stored and processed
according to data subjects’ (i.e., citizens’) consent.

Achieving GDPR compliance is not trivial [3]. Given that data subjects are
now able to withhold consent on what and how data are processed, organizations
must implement controls that track and manage their data [4]. However, “[orga-
nizations] are only now trying to find the data they should have been securing
for years,” suggesting that there is a large gap between theory and practice, as
the GDPR protections have “not been incorporated into the operational reality
of business” [5]. Hindering that process is the need to reconcile high-level legal
notions of data protection with low-level technical notions of data usage (access)
control in information security [3].

In this paper, we show how data provenance can aid greatly in complying
with the GDPR’s analytical and reporting requirements. By capturing how data
have been processed and used (and by whom), data controllers and processors
can use data provenance to reason about whether such data have been in compli-
ance with the GDPR’s clauses [6–8]. Provenance can help make the compliance
process accountable: data controllers and processors can demonstrate to relevant
authorities that they stored, processed, and shared data in a compliant manner.
Subjects described in the personal data can request access to such data, assess
whether such data were protected, and seek recourse if discrepancies arise.

Our contributions include: (1) explicit codification of where data provenance
is applicable to the GDPR’s concepts of rights and obligations from its text
(Sect. 2.1); (2) adaptation of GDPR ontologies to map GDPR concepts to W3C
PROV-DM [9] (Sect. 3); and (3) identification of provenance design patterns to
describe common events in our model in order to answer compliance questions,
enforce data usage control, and trace data origins (Sect. 4). We also discuss future
research to achieve a provenance-aware system in practice (Sect. 5).

2 Background and Related Work

2.1 GDPR Background

The GDPR “[protects persons] with regard to the processing of personal data and
. . . relating to the free movement of personal data” by “[protecting] fundamental
rights and freedoms” [1, Art. 1]. The regulation expands the earlier Data Protec-
tion Directive (DPD) [10], in effect in the EU since 1995, by expanding the scope
of whose data are protected, what data are considered personally identifiable and
thus protected, and which organizations must comply. As a result, it mandates
“that organizations [must] know exactly what information they hold and where

A Provenance Model for the European Union GDPR 47

it is stored” [2]. Although the law does not prescribe particular mechanisms to
ensure compliance, the law does necessitate thinking about such mechanisms at
systems’ design time rather than retroactively [2,4].

The GDPR defines data subjects identified in the personal data, data con-
trollers who decide how to store and process such data, and data processors who
process such data on the controllers’ behalf [1, Art. 4]. Recipients may receive
such data as allowed by the subject’s consent, which specifies how the personal
data can be used. Controllers and processors are answerable to public supervisory
authorities in demonstrating compliance.

For each GDPR concept that is a right of a subject or an obligation of a
controller or processor, we summarize in Table 1 where data provenance can be
applicable using the GDPR’s text and where data provenance can help benefit
all involved parties from technical and operational perspectives.

2.2 Related Work

The prior research most closely related to ours is that of Pandit and Lewis [8] and
Bartolini et al. [3]. Both efforts develop GDPR ontologies to structure the reg-
ulation’s terminology and definitions. Pandit and Lewis [8] propose GDPRov,
an extension of the P-Plan ontology that uses PROV’s prov:Plan to model
expected workflows. Rather than use plans that require pre-specification of work-
flows, we opted instead for creating relevant GDPR subclasses of PROV-DM
agents, activities, and entities and encoding GDPR semantics into PROV-DM
relations. Our model allows for more flexible specifications of how data can be
used (i.e., under consent for particular purposes while being legally valid for
a period of time). Furthermore, our model focuses on temporal reasoning and
online data usage control, whereas it is not clear how amenable GDPRov is to
such reasoning or enforcement. The ontology of Bartolini et al. [3] represents
knowledge about the rights and obligations that agents have among themselves.
We find that a subset of that ontology is applicable in the data provenance
context for annotating data, identifying justifications for data usage, and rea-
soning temporally about whether data were used lawfully. Bonatti et al. [7]
propose transparent ledgers for GDPR compliance. Basin et al. [11] propose a
data purpose approach for the GDPR by formally modeling business processes.
Gjermundrød et al. [12] propose an XML-based GDPR data traceability system.

Aldeco-Pérez and Moreau [13] propose provenance-based auditing for reg-
ulatory compliance using the United Kingdom’s Data Protection Act of 1998
as a case study. Their methodology proposes a way to capture questions that
provenance ought to answer, to analyze the actors involved, and to apply the
provenance capture. For using provenance as access control, Martin et al. [6]
describe how provenance can help track personal data usage and disclosure with
a high-level example of the earlier DPD [10]. Bier [14] finds that usage control
and provenance tracking can support each other in a combined architecture via
policy decision and enforcement points. Existing systems such as Linux Prove-
nance Modules [15] and CamFlow [16] can collect provenance for auditing, access
control, and information flow control for Linux-based operating systems.

48 B. E. Ujcich et al.

Table 1. GDPR Concepts of Rights and Obligations as Applicable to Provenance.

Concept Explanation Provenance Applicability

Right to Consent
[1, Arts. 6–8]

Controllers and processors
can lawfully process personal
data when subjects have
given consent “for one or
more specific purposes”

Provenance can model the
personal data for which
consent has been given, the
purposes for which consent
is lawful, and the extent to
which derived data are
affected

Right to Withdrawal
[1, Art. 7]

Subjects can withdraw
consent regarding their
personal data’s use going
forward but without
affecting such data’s past use

Provenance can verify past
compliance from before the
withdrawal and prevent
future use

Right to Explanation
[1, Arts. 12–15]

Subjects may ask controllers
for explanations of how their
data have been processed
“using clear and plain
language”

Provenance-aware systems
can naturally provide such
explanations by capturing
past processing

Right to Removal
[1, Art. 17]

Controllers must inform
processors if subjects wish to
remove or erase their data

Provenance can track when
such removal requests were
made, what data such
requests affect, and to what
extent derived data are
affected

Right to Portability
[1, Art. 20]

Subjects can request their
data from controllers or ask
controllers to transmit their
data to other controllers
directly

A common provenance
model would allow each
controller to link its
respective provenance
records with others’ records

Obligation of
Minimality [1, Art. 25]

Controllers must not use any
more data than necessary for
a process

Provenance can help analyze
such data uses with respect
to processes

3 GDPR Data Provenance Model

Motivated by data provenance’s applicability to GDPR concepts as outlined in
Table 1, we define a GDPR data provenance model based on the data-processing
components of prior ontologies [3,8]. Our model is controller-centric because the
GDPR requires that controllers be able to demonstrate that their data processing
is compliant, though we imagine that both controllers and processors will collect
provenance data. Figure 1 graphically represents the GDPR data provenance
model’s high-level classes and their relations.

Tables 2, 3, and 4 explain the high-level classes shown in Fig. 1 for Agent,
Activity, and Entity W3C PROV-DM classes, respectively. Some high-level classes

A Provenance Model for the European Union GDPR 49

Fig. 1. GDPR data provenance model with high-level classes. House symbols repre-
sent agents (Table 2); rectangles represent activities (Table 3); ellipses represent entities
(Table 4); arrows represent relations (Table 5); and notes represent other properties.

Table 2. GDPR Data Provenance Model Agent Classes.

Class Explanation and Subclasses

Subject An “identifiable natural person . . . who can be identified,
directly or indirectly, in particular by reference to an
identifier” [1, Art. 4]. Subclasses: Child subjects who
cannot consent on their own and Parent subjects who can
consent on their behalf [1, Art. 8]

Controller An organization “which . . . determines the purposes and
means of the processing of personal data” [1, Art. 4].
Subclasses: EURecipient controllers (with country
subclasses), NonEURecipient controllers (with country
subclasses). (Data processing or transmission that leaves
the EU is subject to additional regulations [1, Arts. 44–50])

Processor An organization “which processes personal data on behalf
of the controller” [1, Art. 4]

Supervisory Authority “An independent public authority” [1, Arts. 4, 51–59] that
can “monitor and enforce the application of” the GDPR
and “handle complaints lodged by a data subject . . . and
investigate” [1, Art. 57]

50 B. E. Ujcich et al.

Table 3. GDPR Data Provenance Model Activity Classes.

Class Explanation and Subclasses

Process “Any operation or set of operations which is performed on personal
data or on sets of personal data, whether or not by automated
means” [1, Art. 4]. Subclasses: Collect, Store, Retrieve, Combine,
Disclose to another controller or processor via transmission; Erase to
destroy personal data to fulfill the right to erasure [1, Art. 17]; Profile
using “any form of automated processing . . . to evaluate certain
personal aspects relating to a natural person” [1, Art. 4]; or
Pseudonymize by “processing of personal data [so that it] can no
longer be attributed to a specific data subject without the use of
additional information” [1, Art. 4]

Justify The rationale that a controller uses in taking some action on personal
data, which includes temporal notions of “start” and “end” times.
Subclasses: a subject’s Consent [1, Arts. 6–7]; a controller’s
Obligation, Interest, or Authority [1, Art. 6]

Table 4. GDPR Data Provenance Model Entity Classes.

Class Explanation and Subclasses

PersonalData An “identifier [of a subject] such as a name, an identification
number, location data, an online identifier or to one or more
factors specific to the . . . identity of that natural
person” [1, Art. 4]. Subclasses: DerivedData simplifies
identification of data derived wholly or in part from PersonalData
objects (by some Process)

Request A request sent from a Subject to a Controller. Subclasses:
ConsentRequest [1, Art. 6], WithdrawRequest [1, Art. 7],
AccessRequest [1, Art. 15], CorrectionRequest [1, Art. 16],
ErasureRequest [1, Art. 17], or a RestrictionRequest [1, Art. 18]

Justification A justification (beyond a subject’s consent) for lawful processing.
Subclasses: LegalObligation “to which the controller is subject,” a
VitalInterest “of the data subject or of another natural person,” a
“performance of a task” in the PublicInterest, an OfficialAuthority
“vested in the controller,” a LegitimateInterest “pursued by the
controller,” or a Contract “to which the data subject is
party” [1, Art. 6]

(e.g., the Process activity) include subclasses (e.g., the Combine activity) either
because their notions are explicitly mentioned in the GDPR text or because
they align with Bartolini et al.’s ontology for representing GDPR knowledge. We
assigned more specific semantic meanings to several W3C PROV-DM relations;
those meanings are summarized in Table 5.

A Provenance Model for the European Union GDPR 51

Table 5. GDPR Data Provenance Model Relation Semantics.

From Relation To Semantic Meaning

Process wasInformedBy Justify Data processing actions under
the GDPR require
justification; we can reason
about why data exist or why
data were removed

PersonalData wasDerivedFrom PersonalData Data updates, such as
corrections submitted by the
subject as part of the right to
rectification [1, Art. 16]

PersonalData wasGeneratedBy or
wasInvalidatedBy

Process Personal data have lifespans.
For instance, a subject may
request that personal data be
deleted. Both generation and
invalidation require reasoning,
so we use both relations

Justify used or wasEndedBy Request or
Justification

Justifications also have
lifespans. For instance, a
subject may withdraw his or
her consent through a
WithdrawRequest, which stops
further data processing
activities from using the Justify
activity related to the
withdraw request

Justify wasAssociated With Controller Justify activities are associated
with controllers since
controllers must keep such
records for authorities;
however, the information used
to make the justification legal
(i.e., a Request or Justification
entity) can be attributed
directly to the source that
produced it (e.g., a Subject)

We found that the GDPR includes strong temporal notions throughout its
text that affect whether processing is considered lawful. For instance, the notion
of consent with respect to data usage may be valid only for a particular period
of time. We use data provenance not only for capturing data derivations, but
also for temporally reasoning about data usage, as we detail in Sect. 4.

52 B. E. Ujcich et al.

4 Using the GDPR Data Provenance Model

Although the GDPR data provenance model describes what provenance to col-
lect, it does not explain how to use such provenance. We present design patterns
that modelers and practitioners can use to describe common events. We use a
running example based on the examples from prior works [8,11] that involve
collecting personal data for a retail shop. We assume that a customer, Alice,
interacts with the retailer by registering, making purchases, and subscribing to
marketing information. We assume that each node and relation has a timestamp
of its insertion into the graph so that we can perform temporal queries.

4.1 Design Patterns

Data Collection and Consent by a Subject. At time τ , Alice registers with and
provides her personal data to the retail shop, along with her consent. Figure 2
shows the provenance generated from these activities. Our design pattern decou-
ples the personal data collected (PersonalData entities) from the subject’s consent
about such data (ConsentRequest entities), as personal data may be updated or
rectified [1, Art. 16] independently of the giving of consent.

The GDPR specifies that processing is lawful when consent has been given
“for one or more specific purposes” [1, Art. 6]. We represent this consent for
personal data in relation to purposes as a design pattern in the provenance graph

Fig. 2. Alice registers her personal data with a retail shop and consents to use of her
data for storage, purchases, and marketing. Note that Alice does not consent to use of
her credit card number for being shared for marketing purposes.

A Provenance Model for the European Union GDPR 53

by mapping Consent activities to ConsentRequest entities with the used relation.
As shown in Fig. 2, Alice does not consent to use of her credit card information
for marketing, but she does allow it to be used for making purchases or for being
stored by the retail shop (e.g., to simplify future purchases).

Fig. 3. The retail shop uses Alice’s data for marketing purposes by employing a third-
party marketer. The retail shop uses Alice’s consent to receive marketing in allowing
the processor to receive Alice’s name and address. (For simplicity, portions of the
provenance graph from Fig. 2 that are not relevant are not shown.)

Data Transfers Among Controllers and Processors. At time τ + 1, suppose that
the retail shop wishes to use a third-party marketing company to send marketing
information to Alice. Figure 3 shows the provenance generated from the data
transfer from the retail shop (the controller) to the marketing company (the
processor). We model the transfer as a Disclose activity (by the controller) by
which Alice’s data are stored with a Store activity (by the processor).

Withdrawal by a Subject. At time τ + 2, suppose that Alice no longer wishes to
receive any further marketing from the retail shop. Figure 4 shows the provenance
generated by her withdrawal of consent to receive marketing. We link the With-
drawRequest entity to the marketing Consent activity through the wasEndedBy
relation to indicate that any prior Process that wasInformedBy the justification
was valid, but that future uses will not be, after time τ + 2. That ensures that
“withdrawal of consent shall not affect the lawfulness of processing based on
consent before its withdrawal” [1, Art. 7].

4.2 Verifying Compliance

We can now use provenance to reason about several GDPR requirements, either
at run time when a decision about data usage is being made (i.e., access control)
or after the fact during an audit. The choice of when to verify will depend on
design decisions on what provenance information a controller or processor has the
ability to access. We can answer compliance questions by querying a provenance
graph such as the graph in Fig. 4, as follows.

54 B. E. Ujcich et al.

– Was Alice’s personal data used for marketing purposes after Alice withdrew
her consent? The “Send Customer Data to Marketer” activity was justified
because it occurred during a time in which its justification activity,“Consent
to Marketing,” was valid (i.e., after τ and before τ+2). If subsequent activities
used the “Consent to Marketing” as justification after τ+2, then the controller
would be noncompliant.

– Who and what used Alice’s address data? One of the new operational and
technical challenges with the GDPR is that of understanding where data
“live” and what derived data are affected [2]. To answer this question, we
start in Fig. 4 at the PersonalData entity representing Alice’s address and
work backward from the relations. We find that her address was used during
registration and was sent to and stored by the marketing processor as a
bundled piece of contact information.

Fig. 4. Alice no longer wishes to receive marketing information, so she withdraws her
consent for use of her personal data for marketing purposes. Future marketing activities
that attempt to use the “Consent to Marketing” as justification will be noncompliant.

A Provenance Model for the European Union GDPR 55

– From the processor’s perspective, under what usage conditions can Alice’s
address be used? Processors are allowed to process data only if given the
ability to do so by the controller. To answer this question, we start in Fig. 4
at the “Receive Customer Data from Retailer” activity to find any paths in
the graph that end at a Consent activity that, at the time of querying, have
not yet ended. We find that the processor can use Alice’s address to send
marketing on behalf of the controller.

Our questions presented here are necessarily incomplete, but we find that
provenance can be highly flexible in answering questions that subjects and super-
visory authorities will have when controllers or processors are audited.

5 Discussion

Privacy. Given that provenance collection includes metadata about all data
processing activities, it introduces new privacy issues that will require that the
metadata also be GDPR-compliant. That may require that PersonalData objects
and Subject identifiers be stored as hashes of personal data and references to the
personal data’s actual locations rather than through embedding of the personal
data in the provenance. We imagine that a data protection officer [1, Arts. 37–39]
will maintain access to the provenance graph for enforcing data usage control and
for complying with audit requests. Subjects may be entitled to the portions of
the controller’s provenance graph related to their personal data [1, Arts. 12, 20].
Challenges arise, however, in ensuring a balance among the subject’s fundamen-
tal rights [1, Art. 1], the privacy of the controller’s own (proprietary) processes,
and the privacy of other subjects so that releasing such data “shall not adversely
affect the rights and freedoms of others” [1, Art. 20].

Standardization. For inter-controller audits, we imagine that supervisory author-
ities will request provenance data from multiple controllers and processors so as
to stitch together the relevant pieces of each’s provenance graph. This will neces-
sitate further standardization of (1) the granularity at which controllers and
processors must collect provenance suitable for auditing; (2) the extent to which
provenance collection mechanisms are built-in or retrofitted; and (3) tamper-
proof and fraud-resistant provenance collection mechanisms.

Limitations. Provenance collection and querying alone are not sufficient for
meeting GDPR compliance, though we believe that automated provenance anno-
tations will simplify much of the work involved in reasoning about data process-
ing. The GDPR will always require some human activity to support reasoning
about whether compliance was met or not [11]. Annotation of existing work-
flows and application processes (e.g., reads and writes in databases) is gener-
ally a non-trivial and implementation-dependent process, though retrofitting of
applications to collect provenance for information security [17] shows promise.

56 B. E. Ujcich et al.

6 Conclusion

We outlined how data provenance can help with GDPR compliance by sup-
porting reasoning about how data were collected, processed, and disseminated;
reasoning about whether such collection and processing complied with subjects’
intents; enforcing data usage control; and aiding auditing by authorities to check
compliance. We presented a GDPR data provenance model and showed how our
model can be used. Although many practical issues will need to be considered,
we believe that provenance can reduce the burden on practitioners and make
systems more accountable to the subjects from whom controllers collect data.

Acknowledgments. The authors would like to thank Jenny Applequist for her edi-
torial assistance, the members of the PERFORM and STS research groups at the Uni-
versity of Illinois at Urbana-Champaign for their advice, and the anonymous reviewers
for their helpful comments. This material is based upon work supported by the Mary-
land Procurement Office under Contract No. H98230-18-D-0007 and by the National
Science Foundation under Grant Nos. CNS-1657534 and CNS-1750024. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science Foundation.

References

1. Council of the European Union, Regulation (EU) 2016/679 of the European Par-
liament and of the Council of 27 April 2016 (General Data Protection Regulation).
Official J. Eur. Union L 119, 1–88 (2016)

2. Tankard, C.: What the GDPR means for businesses. Netw. Secur. 2016(6), 5–8
(2016)

3. Bartolini, C., Muthuri, R., Santos, C.: Using ontologies to model data protec-
tion requirements in workflows. In: Otake, M., Kurahashi, S., Ota, Y., Satoh, K.,
Bekki, D. (eds.) New Frontiers in Artificial Intelligence. JSAI-isAI 2015. LNCS,
vol. 10091, pp. 233–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-50953-2 17

4. Vijayan, J.: 6 ways to prepare for the EU’s GDPR. InformationWeek, September
2016

5. Ashford, W.: Much GDPR prep is a waste of time, warns PwC, ComputerWeekly,
October 2017

6. Martin, A., Lyle, J., Namilkuo, C.: Provenance as a security control. In: Proceed-
ings of the Theory and Practice of Provenance 2012. USENIX (2012)

7. Bonatti, P., Kirrane, S., Polleres, A., Wenning, R.: Transparent personal data
processing: the road ahead. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFE-
COMP 2017. LNCS, vol. 10489, pp. 337–349. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66284-8 28

8. Pandit, H.J., Lewis, D.: Modelling provenance for GDPR compliance using linked
open data vocabularies. In: Proceedings of Society, Privacy and the Semantic Web
- Policy and Technology 2017 (2017)

9. World Wide Web Consortium, PROV-DM: The PROV data model, April 2013.
https://www.w3.org/TR/prov-dm/

https://doi.org/10.1007/978-3-319-50953-2_17
https://doi.org/10.1007/978-3-319-50953-2_17
https://doi.org/10.1007/978-3-319-66284-8_28
https://doi.org/10.1007/978-3-319-66284-8_28
https://www.w3.org/TR/prov-dm/

A Provenance Model for the European Union GDPR 57

10. Council of the European Union, Directive 95/46/EC of the European Parliament
and of the Council of 24 October 1995 (Data Protection Directive), Official J. Eur.
Union L 281, 31–50 (1995)

11. Basin, D., Debois, S., Hildebrandt, T.: On purpose and by necessity: compliance
under the GDPR. In: Proceedings of Financial Cryptography and Data Security
2018, March 2018

12. Gjermundrød, H., Dionysiou, I., Costa, K.: privacyTracker: a privacy-by-design
GDPR-compliant framework with verifiable data traceability controls. In:
Casteleyn, S., Dolog, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9881, pp.
3–15. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46963-8 1

13. Aldeco-Pérez, R., Moreau, L.: Provenance-based auditing of private data use. In:
Proceedings of Visions of Computer Science 2008, pp. 141–152 (2008)

14. Bier, C.: How usage control and provenance tracking get together - A data pro-
tection perspective. In: Proceedings of IEEE 4th International Workshop on Data
Usage Management, pp. 13–17, May 2013

15. Bates, A., Tian, D., Butler, K.R.B., Moyer, T.: Trustworthy whole-system prove-
nance for the Linux kernel. In: Proceedings of USENIX Security 2015, pp. 319–334
(2015)

16. Pasquier, T., Singh, J., Eyers, D., Bacon, J.: CamFlow: managed data-sharing for
cloud services. IEEE Trans. Cloud Comput. 5(3), 472–484 (2017)

17. Bates, A., et al.: Transparent web service auditing via network provenance func-
tions. In: Proceedings of the 26th International Conference on World Wide Web,
pp. 887–895 (2017)

https://doi.org/10.1007/978-3-319-46963-8_1

Automating Provenance Capture in
Software Engineering with UML2PROV

Carlos Sáenz-Adán1(B), Luc Moreau2, Beatriz Pérez1, Simon Miles2,
and Francisco J. Garćıa-Izquierdo1

1 Department of Mathematics and Computer Science, University of La Rioja,
Logroño, La Rioja, Spain

{carlos.saenz,beatriz.perez,francisco.garcia}@unirioja.es
2 Department of Informatics, King’s College London, London, UK

{luc.moreau,simon.miles}@kcl.ac.uk

Abstract. UML2PROV is an approach to address the gap between
application design, through UML diagrams, and provenance design, using
PROV-Template. Its original design (i) provides a mapping strategy from
UML behavioural diagrams to templates, (ii) defines a code generation
technique based on Proxy pattern to deploy suitable artefacts for prove-
nance generation in an application, (iii) is implemented in Java, using
XSLT as a first attempt to implement our mapping patterns. In this
paper, we complement and improve this original design in three different
ways, providing a more complete and accurate solution for provenance
generation. First, UML2PROV now supports UML structural diagrams
(Class Diagrams), defining a mapping strategy from such diagrams to
templates. Second, the UML2PROV prototype is improved by using a
Model Driven Development-based approach which not only implements
the overall mapping patterns, but also provides a fully automatic way
to generate the artefacts for provenance collection, based on Aspect Ori-
ented Programming as a more expressive and compact technique for cap-
turing provenance than the Proxy pattern. Finally, there is an analysis
of the potential benefits of our overall approach.

Keywords: Provenance data modeling and capture
PROV-Template · UML

1 Introduction

The diversity of provenance models used by existing software products (such as
PASS [1], PERM [2], or Taverna [3]) to capture provenance has motivated the
creation of PROV [4], an extensible provenance model created to exchange and
integrate provenance captured among different provenance models. By giving
support to PROV, these tools facilitate the software engineer’s task of creating,
storing, reading and exchanging provenance; however, they do not help decide
which provenance data should be included, nor how software should be designed

c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 58–70, 2018.
https://doi.org/10.1007/978-3-319-98379-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_5&domain=pdf

Automating Provenance Capture in Software Engineering 59

to allow its capture. In this context, the ability to consider the intended use of
provenance during software development has become crucial, especially in the
design phase, to support software designers in making provenance-aware systems.

Several design methodologies have been proposed to shorten the development
time of software products. In particular, the Unified Modeling Language (UML)
[5] has become a standard notation for OO software design. However, it does
not offer support for provenance. In fact, our experience in developing software
applications enhanced with support for provenance is that including provenance
within the design phase can entail significant changes to an application design
[6]. Against this background, PROV-Template [7] has been proposed as a declar-
ative approach that enables software engineers to develop programs that gener-
ate provenance compatible with the PROV standard. Provenance templates are
provenance documents expressed in a PROV-compatible format and contain-
ing placeholders (referred as variables), for values. PROV-Template includes an
expansion algorithm by means of which, given a template and a set of bind-
ings (associating variables to values), replaces the placeholders by the concrete
values, generating a provenance record in one of the standardized PROV repre-
sentations. Although this approach reduces the development and maintenance
effort, it still requires designers to have provenance knowledge.

To overcome these challenges, we introduced UML2PROV [8], an approach
to address the gap between application design, through UML behavioural dia-
grams, and provenance design, using PROV-Template. Briefly speaking, we (i)
provided a mapping strategy from UML State Machine and Sequence diagrams
to templates, (ii) defined a code generation technique based on the Proxy pat-
tern to deploy suitable artefacts for provenance generation in an application,
and (iii) developed a first prototype of UML2PROV in Java, using XSLT as a
first attempt to implement our mapping patterns. In this paper, we complement
and improve our previous approach by providing a more complete and accu-
rate solution for provenance generation. First, we mainly give support to UML
structural diagrams (UML Class Diagrams), by establishing a mapping strategy
from such type of diagrams to templates. Our approach for capturing provenance
data included on a system’s class diagram provides a mean of storing lower level
factors from objects’ internal structure, factors not given by the previously con-
sidered behavioural diagrams. Overall, we provide an effective mechanism that
integrates provenance data regarding both structural and behavioural aspects of
a system, allowing for more realistic software designs to be supported. Second,
we improve our first prototype by using a Model Driven Development (MDD)-
based approach which implements the overall mapping patterns, and provides a
fully automatic way to generate the artefacts for provenance collection based on
Aspect Oriented Programming (AOP). Finally, we analyse the potential bene-
fits of our overall approach in terms of time it takes to generate the templates,
run-time overhead given by bindings collection, development and maintenance.

This paper is organized as follows: Sect. 2 gives an overview of UML2PROV.
Section 3 describes our overall approach to translate UML Class diagrams to
templates. A detailed description of the new implementation we propose for

60 C. Sáenz-Adán et al.

our first UML2PROV prototype is described in Sect. 4. We analyse our overall
approach in Sect. 5, while Sect. 6 discusses related work. Finally, conclusions and
further work are set out in Sect. 7.

Fig. 1. The UML2PROV approach. The red and blue colours are used to refer to design
time and runtime documents of the approach, respectively. (Color figure online)

2 Overview: The UML2PROV Approach

To lay the foundation for a more in-depth understanding of the following sections,
we provide an overview of the UML2PROV architecture presented in [8]. We
illustrate our explanations using Fig. 1 which identifies the key facets of our
proposal together with the different stakeholders involved on the process. The
overall process consists of both design time (red) and runtime (blue) elements.

Design Time Facets. They correspond to the UML diagrams modelling the sys-
tem, the associated PROV templates generated from those diagrams, and the
bindings generation module. In particular, this module is composed by: a context-
independent component, which contains the bindings’ generation code that is
common to all applications, and a context-dependent component, which is gen-
erated from the system’s UML diagrams and includes the bindings’ generation
code specific to the concrete application. The starting point of the overall pro-
cess corresponds to the UML system design, created by the software designers as
stated by the concrete domain’s requirements. Among the two major categories
of UML diagrams (structural and behavioural) [5], in [8] we focused on these lat-
ter ones given the strong relation that provenance bears with all behavioural data
taking part in producing a final item. Having defined the UML diagrams, and
before applying our UML2PROV proposal, the diagrams are checked against a
set of OCL [9] constraints we have defined to ensure that they are consistent with
each other (see [10] for details about these constraints). Then, the UML2PROV
proposal takes as input the UML diagrams and automatically generates: (1) the
PROV templates with the design of the provenance to be generated, relying on
the information extracted from such diagrams, and (2) the context-dependent
component aimed at capturing provenance according to the PROV templates.

Runtime Execution Facets. They consist of the values logged by the application,
in the form of bindings, and the PROV documents. As far as the process is con-
cerned, taking as source both the templates and the bindings previously created,

Automating Provenance Capture in Software Engineering 61

the provenance consumer uses the provenance template expander included in the
PROV Template proposal to generate the final PROV documents (see Fig. 1).

3 From Class Diagrams to Templates

Our class diagrams to templates mapping takes operations as cornerstone ele-
ments. Translating data implicit on operations provides us with a complete back-
ground including not only the internal structure of the object before and after
the execution (values of the attributes), but also information showing the internal
changes (e.g. setting a new attribute, adding/removing an element in a collec-
tion). This represents a significant new capability since we were not able to
extract these lower-level aspects from Sequence/State Machine Diagrams in [8].

Aimed at defining concrete operation transformation patterns, their different
nature must be taken into account if we want to provide meaningful provenance
which explains the nuances of each type of operation’s execution. For instance,
the key factors involved in the execution of an operation such as getName (which
would return information about a data member) are different from the ones
related to a setName operation (which would set a data member). Thus, the
provenance data to be generated in both cases would be expected to be different.
For this reason, we have first established a taxonomy of UML Class Diagrams’
operations (Subsect. 3.1) to identify the different types of operations. Second,
based on such a classification, we have defined different transformation mappings
(Subsect. 3.2) depending on each type of operation.

Table 1. Extension of the taxonomy of methods’ stereotypes given in [11].

3.1 A Taxonomy of Operations Stereotypes

More than a nuance in terminology, the distinction between operation and
method is important to lay the foundations of this section. Operations are charac-
terized by their declaration, including name or parameters [5]. Methods are made

62 C. Sáenz-Adán et al.

up of the declaration (given by the operation) as well as the behaviour. From
now on, we use the term operation and method interchangeably, always referring
to the behaviour. In particular, we refer to the low-level behaviour related to the
internal structure of the object’s class to which the operation belongs.

In order to establish a taxonomy of operations that allows us to identify
the different transformation patterns, we have undertaken a literature search
looking for different categorizations of operations. Among the different works,
the presented by Dragan et al. [11] stands out for being one of the most com-
plete. Such a taxonomy is showed in Table 1 where, as we explain later, we
have also included additional stereotypes needed in our proposal (marked with
an asterisk). Their taxonomy establishes five categories of methods by defining
stereotypes for their categorization, three of which have been included in our pro-
posal (Structural Accessor, Structural Mutator and Creational). An explanation
of these categories together with their specific transformation will be presented
in Subsect. 3.2.

Whilst this taxonomy covers a wide range of behaviours, it lacks specific
stereotypes for methods that manage collections of data members (e.g. search,
addition or removal). Aimed at identifying this kind of methods on class diagrams
to generate concrete provenance data, we have enriched the previous taxonomy
with the additional stereotypes get-collection, set-add-collection and set-remove-
collection (marked with an asterisk in Table 1). On the other hand, some stereo-
types denote behaviours that cannot be faced without checking the source code
(empty), or behaviours already provided by Sequence/State Machine Diagrams.
In particular, Sequence Diagrams allow us to know if an operation works with
objects (collaborator), and State Machine Diagrams provide us with information
regarding external (controller) and internal (incidental) state changes. Thus, we
have not considered Collaborational and Degenerate categories.

3.2 Class Diagrams to Templates Transformation Patterns

Our transformations are focused on operations customized by stereotypes so
that, depending on the stereotype applied to an operation, they translate such
an operation into the corresponding PROV template representing the object ’s
state. We define the state of an object as its internal structure, consisting of
the object’s properties (attributes and relationships) together with the values of
those properties. The set of mappings comprises 8 transformation patterns iden-
tified CDP1-8, referred to as C lass D iagram Pattern. Table 2 shows patterns
CDP1-6, while patterns referring to collections, CDP7 (set-remove-collection)
and CDP8 (set-add-collection), are presented in [10] due to space reasons. Table 2
has three columns: the first one shows each pattern together with the correspond-
ing provenance template; the second and third columns depict the provenance
document generated after expansion, and the provenance information collected
during the operation’s execution (bindings), respectively. The information shown
in these two last columns corresponds to the case study we use in [8] referring to
a system that manages the enrolment and attendance of students to seminars of

Automating Provenance Capture in Software Engineering 63

Table 2. Patterns CDP1 -CDP6 including the proposed provenance templates,
together with the expanded template and the values of the variables (bindings).

a University course. We have used the Student ’s class constructor and the self-
explained getName and setName operations to exemplify CDP1, CDP3, and
CDP5. In Table 2: (1) the stereotypes (i.e. the types of operations) tackled by
each pattern are showed between curly brackets, and (2) the prov:Entities created
as a result of the operation’s execution are in dark yellow, while prov:Entities
assumed to exist before the operation’s invocation are in light yellow.

All patterns share common transformations. First, all the operations are
translated into a prov:Activity identified by var:operation. Second, when
applicable, the object’s initial state is given by a prov:Entity identified by
var:source. Third, each input operation’s argument is mapped to a prov:Entity
named var:input. Finally, when applicable, two prov:used relationships link
var:operation with var:source and var:input to represent that the operation
“uses” an initial state of the object (var:source), and a set of input arguments
(var:input).

Creational. The operations included in this category, which are constructor and
destructor, are addressed by CDP1 and CDP2, respectively. Following CDP1, a
constructor operation (identified by var:operation) creates a new object using
(or not) input arguments (identified by var:input). Such a new object is trans-
lated into a prov:Entity identified by var:target, together with its set of data
members, represented by the prov:Entity named var:attribute. Additionally, to
show that the new object (var:target) has been generated using the input argu-
ments (var:input), we define a prov:wasDerivedFrom relationship between them.
In turn, var:target is related to var:operation through prov:wasGeneratedBy
to show that the new object (var:target) has been generated by the con-
structor operation (var:operation). Following CDP2, a destructor operation

http://www.w3.org/ns/prov#Entities
http://www.w3.org/ns/prov#Entities
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasGeneratedBy

64 C. Sáenz-Adán et al.

(identified by var:operation) destroys an object (identified by var:source), fact
represented by the relationship prov:wasInvalidatedBy between var:source and
var:operation.

Structural Accessors. The operations that do not change the state of an
object (internal structure) are translated by CDP3 and CDP4 (see Table 2).
In particular, these operations are used for retrieving information, represented
by the prov:Entity identified by var:output. While the operations get and get-
collection tackled by CDP3 return the data member directly, the operations
predicate, property and void-accessor addressed by CDP4 generate new infor-
mation based on the data member(s). To represent the return of information
(not the generation of information) in CDP3, we use a prov:Entity identified by
var:messageReply, which is created by the operation (var:operation), and encap-
sulates the retrieved information (var:output). These elements, highlighted in
italic and with dashed lines in CDP3 of Table 2, are related to var:operation

by the relationship prov:wasGeneratedBy. The relationship prov:hadMember
is also used to link them (var:messageReply as source and var:output as tar-
get). On the contrary, the information retrieved by the operations tackled in
CDP4 is generated by such operations, involving a data member which is rep-
resented by an prov:Entity identified by var:targetAttribute. These additional
aspects, highlighted in bold in CDP4 of Table 2, are represented by the rela-
tionships: prov:wasGeneratedBy, between var:operation and var:output, and
prov:wasDerivedFrom, between var:output and var:targetAttribute.

Structural Mutators. For operations that change the state of an object, we
distinguish (i) those that set a specific data member –set methods– together
with those whose behaviour performs a complex change –command and non-
void-command methods– (tackled by CDP5 and CDP6); from (ii) those that
manage data member collections –set-remove-collection and set-add-collection
methods– (tackled by CDP7 and CDP8, presented in [10]).

In addition to the set of transformations shared by all patterns as explained
before, CDP5 and CDP6 also have a set of common transformations. The
operations tackled by these patterns change the object’s state (internal struc-
ture) through the modification of some of its data member(s). Hence, the new
state of the object is represented by a prov:Entity identified by var:target,
while each object’s data member is translated using a prov:Entity iden-
tified by var:attribute. To represent that such attributes (var:attribute)
belong to the new state of the object (var:target), we use the relationship
prov:hadMember between them. In turn, var:target is also related to the
operation (var:operation) through prov:wasGeneratedBy, representing that the
new object’s state has been generated by such an operation. Additionally,
var:target is linked, by means of prov:wasDerivedFrom, with a prov:Entity iden-
tified by var:source, which represents the previous object’s state. In addition
to these elements, the CDP5 pattern, which tackles set operations, includes
the prov:hadMember relationship between var:target and var:input to show
that the input parameter is set as a new data member (see the highlighted
prov:hadMember relationship in Table 2).

http://www.w3.org/ns/prov#wasInvalidatedBy
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#hadMember

Automating Provenance Capture in Software Engineering 65

4 Implementation

Here, we discuss our proposal for enhancing our first UML2PROV approach
[8], which is mainly characterized by: (1) the implementation of our transfor-
mation patterns from UML Diagrams to provenance templates files, and (2) the
generation of artefacts for provenance collection. Although both aspects were
reasonably tackled in our prototype, they were subject to improvement. Next,
we explain why and how we have enhanced our prototype leaning on Fig. 2.

4.1 Implementation of the Mapping Patterns

Given the wide range of contexts of application, a manual translation of the UML
Diagrams of a system to templates constitutes a time-consuming, error-prone and
not cost-effective task. To overcome these challenges, we originally developed an
XSLT-based prototype as first attempt to implement our mapping patterns [8].
Although being a powerful solution, the usage of XSLT for implementing map-
ping rules is no longer the best option, given the availability of mapping and
transformation languages created by the MDD community which have better
properties in terms of maintenance, reusability, and support to software devel-
opment processes [12]. For this reason, in this paper, we propose to use an MDD
approach [13], focusing on models rather than computer programs, so that the
templates files are automatically generated using a refinement process from the
UML Diagrams (see the top of Fig. 2). Our solution for template’s generation
follows an MDD-based tool chain, comprising transformations T1 and T2.

First, T1 performs a model–to–model (M2M) transformation, taking as
source the UML diagram models of the system (which conform to the UML meta-
model) and generating the corresponding provenance template models (which
conform to the PROV metamodel (PROV-DM [14]). Among the different MDD-
based tools in the literature, we have implemented this transformation by means
of the ATL Eclipse plug–in [15]. We have defined an ATL module named UML-
PROV which automatically translates each diagram model (sequence, state
machine and class diagram) into the corresponding provenance template mod-
els. Second, T2 carries out a model–to–text (M2T) transformation, taking the
provenance template models resulted previously, and generating the final tem-
plates files serialized in PROV-N notation. T2 has been implemented in the

Fig. 2. MDD-based implementation proposal.

66 C. Sáenz-Adán et al.

XPand tool [16] by means of a one-to-one transformation module named PROV-
PROVN. This module takes the previously generated models and returns the
template files in PROV-N.

By using the transformations defined in these two MDD–based tools, we are
able to automatically generate, starting from the UML Diagrams of a system,
the corresponding provenance template files. It is worth noting that the ATL
and Xpand transformations can be applied to UML Diagrams (Sequence, State
Machine, and Class Diagrams) in any context.

4.2 Generation of Artefacts

Having generated the template files, we need suitable code artefacts to create the
bindings containing the pairs template variables–values. Programming the cre-
ation of bindings typically involves manually adding many lines of code repeated
along the whole application’s base code (obtaining the well-known scattering
code), with its consequent loss of time on development and maintenance. Addi-
tionally, performing a manual creation of bindings requires the programmer to
have a deep understanding of the design of both the application and the prove-
nance to be generated. In [8] we faced this issue by following a Proxy pattern
[17] approach as a first attempt to generate bindings with a minor programming
intervention. Whilst the Proxy pattern approach facilitates such a generation
by wrapping each object to extend its behaviour with extra lines of code, this
solution still requires to manually modify the application’s source code. In order
to provide a fully automatic way for bindings generation, we instead propose
to use the Aspect Oriented Programming (AOP) [18] paradigm. AOP aims at
improving the modularity of software systems, by capturing inherently scattered
functionality, often called cross-cutting concerns (thus, data provenance can be
considered as a cross-cutting concern). Our solution exploits AOP to seamlessly
integrate cross-cutting concerns into existing software applications without inter-
ference with the original system. The core of AOP is the aspect, which constitutes
a separate module that describes the new functionality that should be executed
at precise locations as the original program runs.

Taking this into account, we have followed an MDD-based approach for gen-
erating, starting from the source UML Diagrams, a context-dependent aspect
in AspectJ (an AOP extension created for Java) together with other auxiliary
components in Java, constituting what we have called artefacts for provenance
collection. This new transformation T3 has been implemented as an Xpand mod-
ule named UML-Artefacts (see the bottom of Fig. 2) which, starting from the
UML diagram models which represent the system design, directly generates the
artefacts for provenance collection (Sect. 4 of online appendix [10] contains an
example). The generated AOP aspect implements the behaviour that is to be
executed to generate the bindings at specific points in the concrete application
code. We note that, although the new functionality to be executed for bind-
ings generation is common to all applications, such points are specific to the
concrete application. With our proposal, the programmer just needs to include
the resulted artefacts into the application, so that it will become automatically
provenance-aware without requiring any other intervention.

Automating Provenance Capture in Software Engineering 67

5 Analysis and Discussion

We first analyses the strengths and weaknesses of UML2PROV taking into
account (i) the automatically generation of templates, focusing on the time it
takes to generate the templates and how much elements are included on the
templates; and (ii) the collection of bindings during the execution of the appli-
cation, discussing its run–time overhead. Finally, we highlight development and
maintenance benefits of using UML2PROV.

As for the generation of the templates, since it is carried out during the design
phase, it does not interfere in any way with the overall application performance.
Regarding the amount of generated templates’ elements, each template defines a
fixed number of elements; thus, there is a linear association between the number
of elements and the number of templates generated. Thus, in case of a huge
amount of input/output arguments, and attributes, the number of elements after
the expansion process grows proportionally to the length of these elements.

Another issue that may concern the users of UML2PROV is the run–time
overhead. As a way of example, in Table 3 we provide a benchmark of seven
execution experiments (identified from 1 to 7) using the Stack case study pre-
sented in [10]. In particular, it depicts the execution times with and without
UML2PROV (see columns 2 and 3, respectively). We note that all experiments
use retrieved information from a database. Based on the benchmarks showed in
this table, as it would be expected, recording the provenance using our approach
increases the original processing time by ∼14.5%. We can consider worthwhile
this increment, taking into account that the approach herein captures prove-
nance from all the elements modelled in the UML Diagrams with a high level of
detail. In this line, an interesting aspect of future work would be to provide the
UML designer with a mechanism to specify both the (i) the specific elements
in the UML Diagrams to be traced, and (ii) the level of detail of the captured
provenance for each selected element.

As said previously, UML2PROV makes the development and maintenance of
provenance-aware systems a simple task, by automatically generating provenance
templates and artefacts for provenance collection. In particular, the automation
of template’s generation entails direct benefits in terms of compatibility between
the design of the application and the design of the provenance to be generated.
Every time the design of the application changes, provenance design is updated
automatically. As a consequence, since the artefacts for provenance collection

Table 3. Results obtained from seven experiments using the Stack case study [10].

68 C. Sáenz-Adán et al.

–which create bindings– are also automatically generated from the design of
the application (as well as the templates), there are no problems with regard
to incompatibility between templates and bindings. In fact, since these artefacts
contain all the instructions to generate the bindings, programmers do not need to
traverse the overall application’s code, and include suitable instructions. Specif-
ically, for each variable in a provenance template, a method call is needed to
assign a value to it; thus, a programmer would need to write one line of code
per each variable in a template. Although Table 2 shows that the templates are
relatively small (e.g. CDP4 –which is the biggest– comprises 6 nodes), we note
that an application may encompass thousands of methods. Thus, our approach
makes the collection of bindings a straightforward task.

6 Related Work

There is a huge amount of scientific literature about provenance, which has been
collected and analysed by several surveys among different fields (see a complete
review in [19]). Additionally, there are several works which particularly undertake
the development of provenance-aware systems. For example, PASS [20], which
is a storage systems supporting the collection and maintenance of provenance;
PERM [2], which is a provenance-aware database middleware; or Taverna [3],
Vistrails [21] and Kepler [22] which include provenance into workflow systems.
Whilst these applications show efficacy in their research areas, they manually
weave provenance generation instructions into programs, making the code main-
tenance a cumbersome task. In contrast to this strategy, some mechanisms for
automatically provenance capture have been proposed in the literature. Among
the systems in which the developers do not need to manually manipulate the
code, Tariq et al. [23], noWorkflow [24] and Brauer et al. [25] stand out. Tariq
et al. [23] automatically weave provenance capture instructions within the appli-
cation before and after each function call during the compilation process. The
noWorkflow tool [24] is registered as a listener in the Python profiling API, so
that the profiler notifies when the functions have been activated in the source
code. Brauer et al. [25] use AOP aspects for generating provenance. Our app-
roach is similar in spirit with all these works, since UML2PROV transparently
captures provenance in a non-intrusive way. Unlike these approaches which rely
on the source code of the application, UML2PROV constitutes a generic solution
based on the application’s design. It identifies the design of the provenance to
be generated (templates) and creates the context-dependent artefacts for prove-
nance collection using the application design given by UML Diagrams. This fact
unlinks the provenance capture with the specific implementation of the applica-
tion, providing a generic solution for developing provenance-aware applications.

Finally, we note PrIMe [6] which, although being considered the first
provenance-focused methodology, is standalone and is not integrated with exist-
ing software engineering methodologies. UML2PROV complements PrIMe, since
it integrates the design of provenance by means of PROV-Templates enriched
with UML.

Automating Provenance Capture in Software Engineering 69

7 Conclusions and Future Work

We have defined a comprehensive approach UML2PROV. First, we complete
it by giving support to Class Diagrams, establishing a mapping strategy from
such diagrams to templates. Second, we improve our first prototype by using an
MDD-based approach which not only implements the overall mapping patterns,
but also generates the AOP artefacts for provenance collection. Finally, there is
an analysis of the potential benefits of our overall approach.

In addition to the future work advanced previously, another line of future
work is the application of UML2PROV in a distributed system. We plan to
tackle this goal by automatically generating an artefact for provenance collection
able to capture provenance not only in a fully-in-memory system (as until now),
but also in a system comprising distributed components. Finally, we may use
some PROV attributes (e.g. prov:type, prov:role. . .) in the templates, in order
to specialize concrete elements. With such specializations, we aim to improve the
provenance consumption by creating less complex queries with higher accuracy,
reducing the noise levels in the retrieved provenance information.

Acknowledgements. This work was partially supported by the spanish MINECO
project EDU2016-79838-P, and by the U. of La Rioja (grant FPI-UR-2015).

References

1. Holland, D., Braun, U., Maclean, D., Muniswamy-Reddy, K.K., Seltzer, M.I.:
Choosing a data model and query language for provenance. In: Proceedings of
IPAW 2008, pp. 98–115 (2008)

2. Glavic, B., Alonso, G.: Perm: processing provenance and data on the same data
model through query rewriting. In: Proceedings of the 25th IEEE International
Conference on Data Engineering (ICDE 2009), pp. 174–185 (2009)

3. Wolstencroft, K.: The Taverna workflow suite: designing and executing workflows
of Web Services on the desktop, web or in the cloud. Nucleic Acids Res. 41, 557–561
(2013)

4. Groth P., Moreau L. (eds.): PROV-Overview. An Overview of the PROV Family
of Documents. W3C Working Group Note prov-overview-20130430 (2013). http://
www.w3.org/TR/2013/NOTE-prov-overview-20130430/

5. OMG. Unified Modeling Language (UML). Version 2.5: (2015) formal/03 Jan 2015.
http://www.omg.org/spec/UML/2.5/. Last visited, March 2018

6. Miles, S., Groth, P.T., Munroe, S., Moreau, L.: Prime: a methodology for devel-
oping provenance-aware applications. ACM Trans. Softw. Eng. Methodol. 20(3),
8:1–8:42 (2011)

7. Moreau, L., Batlajery, B.V., Huynh, T.D., Michaelides, D., Packer, H.: A tem-
plating system to generate provenance. IEEE Trans. Softw. Eng. (2017). http://
eprints.soton.ac.uk/405025/

8. Sáenz-Adán, C., Pérez, B., Huynh, T.D., Moreau, L.: UML2PROV: automating
provenance capture in software engineering. In: Proceedings of Sofsem 2018, pp.
667–681 (2018)

9. OMG: Object Constraint Language, Version 2.4 formal/02 March 2014 (2014).
http://www.omg.org/spec/OCL/2.4/PDF

http://www.w3.org/ns/prov#type
http://www.w3.org/ns/prov#role
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.omg.org/spec/UML/2.5/
http://eprints.soton.ac.uk/405025/
http://eprints.soton.ac.uk/405025/
http://www.omg.org/spec/OCL/2.4/PDF

70 C. Sáenz-Adán et al.

10. Supplementary material of UML2PROV (2018). https://uml2prov.github.io/
11. Reverse Engineering Method Stereotypes. In: Proceedings of the 22nd IEEE Inter-

national Conference on Software Maintenance (2006)
12. Costa, C.M., Marcos Menárguez-Tortosa, J.T.F.B.: Clinical data interoperability

based on archetype transformation. J. Biomed. Inform. 44(5), 869–880 (2011)
13. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25

(2003)
14. Moreau, L., et al.: PROV-DM: The PROV Data Model. W3C Recommendation

REC-prov-dm-20130430, World Wide Web Consortium (2013). http://www.w3.
org/TR/2013/REC-prov-dm-20130430/

15. ATL - a model transformation technology, version 3.8, May 2017. http://www.
eclipse.org/atl/. Last visited, March 2018

16. XPand: Eclipse platform (2018). https://wiki.eclipse.org/Xpand, Last visited,
March 2018

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison Wesley, Reading (1995)

18. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

19. Pérez, B., Sáenz-Adán, C., Rubio, J.: A systematic review of provenance systems.
Knowl. Inf, Syst (2018)

20. Glavic, B., Dittrich, K.R.: Data Provenance: A Categorization of Existing
Approaches. In: Proceedings of Datenbanksysteme in Büro, Technik und Wis-
senschaft (BTW 2007), pp. 227–241 (2007)

21. Silva, C.T., Anderson, E., Santos, E., Freire, J.: Using vistrails and provenance for
teaching scientific visualization. Comput. Graph. Forum 30(1), 75–84 (2011)

22. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the
kepler scientific workflow system. In: Moreau, L., Foster, I. (eds.) IPAW 2006.
LNCS, vol. 4145, pp. 118–132. Springer, Heidelberg (2006). https://doi.org/10.
1007/11890850 14

23. Tariq, D., Ali, M., Gehani, A.: Towards automated collection of application-level
data provenance. In: Proceedings of TaPP 2012 (2012)

24. Pimentel, J.F., Murta, L., Braganholo, V., Freire, J.: noworkflow: a tool for col-
lecting, analyzing, and managing provenance from python scripts. In: Proceedings
of VLDB 2017, vol. 10, pp. 1841–1844 (2017)

25. Brauer, P.C., Fittkau, F., Hasselbring, W.: The aspect-oriented architecture of
the CAPS framework for capturing, analyzing and archiving provenance data. In:
Ludäscher, B., Plale, B. (eds.) IPAW 2014. LNCS, vol. 8628, pp. 223–225. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16462-5 19

https://uml2prov.github.io/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.eclipse.org/atl/
http://www.eclipse.org/atl/
https://wiki.eclipse.org/Xpand
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/11890850_14
https://doi.org/10.1007/11890850_14
https://doi.org/10.1007/978-3-319-16462-5_19

Simulated Domain-Specific Provenance

Pinar Alper1, Elliot Fairweather2(B), and Vasa Curcin2

1 University of Luxembourg, Luxembourg City, Luxembourg
2 King’s College London, London, UK

elliot.fairweather@kcl.ac.uk

Abstract. The main driver for provenance adoption is the need to col-
lect and understand knowledge about the processes and data that occur
in some environment. Before analytical and storage tools can be designed
to address this challenge, exemplar data is required both to prototype
the analytical techniques and to design infrastructure solutions. Previous
attempts to address this requirement have tried to use existing appli-
cations as a source; either by collecting data from provenance-enabled
applications or by building tools that can extract provenance from the
logs of other applications. However, provenance sourced this way can
be one-sided, exhibiting only certain patterns, or exhibit correlations or
trends present only at the time of collection, and so may be of limited use
in other contexts. A better approach is to use a simulator that conforms
to explicitly specified domain constraints, and generate provenance data
synthetically, replicating the patterns, rules and trends present within
the target domain; we describe such a constraint-based simulator here.
At the heart of our approach are templates - abstract, reusable prove-
nance patterns within a domain that may be instantiated by concrete
substitutions. Domain constraints are configurable and solved using a
Constraint Satisfaction Problem solver to produce viable substitutions.
Workflows are represented by sequences of templates using probabilistic
automata. The simulator is fully integrated within our template-based
provenance server architecture, and we illustrate its use in the context
of a clinical trials software infrastructure.

1 Motivations and Approach

A key requirement for the progression and adoption of provenance research is the
availability of realistic provenance datasets. Such data is necessary to support
the prototyping of new techniques or tools for provenance capture, analysis and
visualisation. Thus far the community has tackled this requirement by using
existing applications as data sources. One such effort is the ProvBench series of
challenges [2,3] that built up a corpus from the output of a diverse selection of
provenance-enabled applications, such as those used in scientific workflows and
file systems.

Provenance sourced from a particular application is inherently tied to that
domain, which can be limiting. Firstly, it may be one-sided and exhibit only
certain patterns. For example, the Wikipedia corpus of the Reconstruction
c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 71–83, 2018.
https://doi.org/10.1007/978-3-319-98379-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_6&domain=pdf

72 P. Alper et al.

Challenge [4] focuses only on document revisions and not on delegation of author
responsibilities. In reality data is often produced through processes involving
multiple applications, such as security layers, content and collaboration man-
agement systems, local tools, and remote services. Focusing on a single element
makes it difficult to obtain a full description of the provenance of data.

Secondly, the provenance data may exhibit trends and correlations that exist
in the domain environment only at the time of collection. For example, the file
system corpus [9] contains data traces taken from applications that are run only
with a fixed default workload configuration. This only captures reality partially,
as the applications experience changing workloads over time.

An alternative approach is to use a simulator and generate provenance syn-
thetically. Synthetic data generation has been investigated in the context of rela-
tional databases [10,11] and graphs [17], but not as thoroughly in the context
of provenance. In order for synthetic data to be useful for a particular domain,
it needs to be valid (observe the allowed structure of the domain), and realis-
tic (observe the data correlations present with in the domain). However it is
important to note that true realism is only achievable by sampling distributions
derived from real-world data, which is sometimes not possible.

In this paper we describe a simulator that is configurable to a particular
domain and generates such data. Validity is achieved using provenance templates,
an emerging approach for provenance recording and management, which repre-
sent abstract, reusable provenance fragments that may be instantiated using
concrete data. Realism is approximated by providing the simulator with a set of
constraints that represent the data correlations and trends of the target domain.
Value sets for certain constraints are generated by sampling statistical distribu-
tions and we delegate the task of constraint solving to a Constraint Satisfaction
Problem (CSP) solver.

Single templates are not however sufficient to generate meaningful traces. We
therefore introduce the concept of processes to represent possible workflows. A
process is a defined as a probabilistic finite automaton, in which each state is
associated with a template. The simulator generates a path through the automa-
ton that is used to produce a sequence of templates to be instantiated. The
simulator is fully incorporated within our template-based provenance server.

2 Provenance Templates

A provenance template [5] is a abstract fragment of a provenance document,
that may be instantiated using concrete substitutions for variables contained
with the template. Variables are of two kinds; identifier variables inhabiting the
var namespace which are placeholders for node or relation identifiers, and value
variables under vvar, which can be used in the place of an attribute value. A
provenance template is itself a valid provenance document and as such allows
nodes to be semantically annotated, allowing the inclusion of domain-specific
information. Concrete provenance fragments are generated by an algorithm that
accepts as input a template and a substitution comprised of a set of variable-
value bindings, and replaces variables for values in a copy of the template.

Simulated Domain-Specific Provenance 73

The template approach does not prescribe how one produces bindings, as
this might differ across applications. This insulation from the application layer
makes templates a suitable mechanism to represent the combined provenance of
multiple applications.

Figure 1 gives an example of a template from the domain of health infor-
matics. It outlines the provenance trace that is to be collected from the use of
diagnostic support tool for the management of potential secondary stroke. An
initial assessment is performed by a clinician at a GP practice. The assessment
uses the available clinical guidelines and the patient’s health record and pro-
duces a stroke prevention plan for that patient. The patient’s progress with the
plan is checked in a follow-up assessment and a revised plan is produced. The
template illustrates the use of both identifier variables such as that for the entity
var:record, and value variables, such as vvar:riskLevel given as the value of
the attribute ex:priority.

Fig. 1. Provenance template for stroke risk assessment

We require one extension to the published template model [5]. Nodes
or relations using value variables must also be annotated with an attribute
pgt:vvarTypes that contains a map from the names of the value variables
present to their intended value type. The template model also provides the
ability to define iterable sub-graphs within templates; we do not consider this
functionality in this paper.

2.1 Variable Domains

Our first contribution is to introduce the concept of domains for template vari-
ables. Let VT denote the set of variables occurring in the template T . For each
variable x ∈ VT , we may specify a set of values Dx specifying the values that
may be used in bindings for x. If x is an identifier variable each element of the

74 P. Alper et al.

domain must be of type prov:QUALIFIED NAME, and if it is a value variable the
domain of each value must be of the type specified in the variable type map for
that node or relation.

3 Domain-Specific Constraints for Templates

We now focus on constraints that ensure our simulated traces are not only valid,
but also realistic. Application domains are often associated with restrictions or
trends beyond those encoded in the data schema of an application. For instance,
clinical guidelines contain rules restricting the ordering of events within a pro-
cess, e.g. a patient follow-up assessment should occur between 30 and 90 days
following the initial assessment. As another example, consider the extensive use
of medical ontologies describing medical conditions and interventions - when
multiple entities from ontologies are brought together in a particular context,
their co-occurrence may require co-ordination (e.g. no pregnancy events in male
patients).

We model such restrictions with constraints over the variables occurring
within a template. We currently support the following kinds of constraints.

3.1 Constraint Types

We now formalise the types of constraints supported in our simulations. Note
that, for simplicity, we avoid the use of formal medical terminologies and
ontologies.

Relation Constraints. Relation constraints are formed from Boolean compar-
isons between binary arithmetic expressions involving the variables occurring in
a template and numeric constants. They can be used to model domain-specific
event ordering requirements. An example for the stroke assessment template
would be as follows:

(preventionP lan.endT ime − preventionP lan.startT ime) > 30

Value-Dependency Constraints. Value-dependency constraints are condi-
tional expressions that enforce a dependency between the possible values that
two different variables may assume. A constraint of this type is constructed from
set membership tests between the value val(z) of a variable z and a subset of
the values in the domain of that variable, Vz ⊂ Dz, such that:

if val(x) ∈ Vx then val(y) ∈ Vy

Relations between domain-specific semantic attributes can be represented
using value-dependency constraints. For example, stating that in our simulations
diagnosis of diabetes should be followed by either a diet or insulin treatment or
both, would be expressed as:

if val(diagnosisKind) ∈ {Type1Diabetes, Type2Diabetes}
then val(treatmentKind) ∈ {CardioProtectiveDiet, InsulinTreatment}

Simulated Domain-Specific Provenance 75

Distribution Constraints. Distribution constraints specify how domain val-
ues are picked for certain variables. They are configurations represented as triples
of the form 〈x, k, Fx〉 where x ∈ VT , and k ∈ { uniform, exponential, pie }
denotes a distribution kind, and the set Fx represents the frequency of the occur-
rence of each possible domain value for the variable x. Each f ∈ Fx is a pair
〈d, p〉, such that d ∈ Dx, where Dx denotes the domain of x, and a probability
p ∈ R.

We use frequency sets derived from discrete probability distributions and
currently support three types of distribution: uniform distributions in which
each domain value has equal probability, pie distributions in which each domain
value has an associated probability, and the Zipf power law distribution.

Note that, in our implementation, any variables that have an associated rela-
tion or value-dependency constraint cannot also have a distribution constraint.

3.2 Solving Constraints

We make use of a Constraint Satisfaction Problem (CSP) solver [16] to solve the
constraints given for a template. CSP solvers operate on problems of the form
〈V,D,C〉, where V is a set of variables, D is a set of domains for variables and
C is a set of constraints. They use optimised search algorithms to find solutions
to a given problem. A solution is a set of variable-value assignments, which
ideally should be consistent and complete. A solution is consistent if it does not
violate any of the constraints, and it is complete if it contains assignments for
all variables.

We use the CSP solver in its most basic configuration; that is, where all
constraints and variables are mandatory and a consistent and complete solution
is sought. We create a problem with only integer variables. Each constraint type
identified in the Sect. 3.1 can be mapped to a CSP constraint types as follows.

Binary CSP constraints are those involving two variables. Relation con-
straints with complex arithmetic expressions can be mapped to Binary CSP
constraints through use of intermediary variables. Reified CSP constraints are
those that involve constraints combined with logical operators. We use this mech-
anism to implement value-dependency constraints. Global CSP constraints are
a portfolio of constraints that capture commonly encountered constraint pat-
terns, and are defined over an arbitrary number of variables. Specifically, we use
the Global Cardinality Constraint (gcc), which allows us to set the (min-max)
number of times a value can be assigned to a set of variables.

4 Processes and Simulation

In order to produce simulated provenance traces, we first need to specify the
processes involved, and map them onto templates.

76 P. Alper et al.

4.1 Processes

Processes represent simple workflows constructed from the instantiation of
sequences of templates, modelled as probabilistic finite automata, with each
automata state associated with a template. When generating a trace the simula-
tor first takes a possible path through the automata and outputs the respective
sequence of transitions. This information is then used to determine a sequence
of templates to be instantiated for that trace. The initial and terminal states
of an automaton are not associated with a state and the initial state is chosen
from a probability vector. Transition probabilities for each state sum to unity.
An example is shown in Fig. 2.

When template instances are merged into the provenance document being
constructed, any values given in bindings for variable identifiers that already
exist in the document are reused and, if not present, are freshly created. This
process by which nodes within template instances are grafted upon existing nodes
is what enables larger documents to be constructed from the fragment documents
created from the instantiation of templates. For more information on the docu-
ment construction process and how it is carried out within the provenance server,
see [7].

Whilst merging allows the natural building of complex documents under
normal operation the simulator requires that graft points between the templates
of a process be explicitly marked in order to control the way in which template
instances are joined. This is achieved in the following way. Each transition of
a process may be annotated with pairs of identifier variables called anchors.
The lefthand-side of each pair is a variable from the preceding template and
the righthand-side a variable from the subsequent template. Under simulation
the righthand-side must be instantiated with the same value as the left, thus
ensuring that a graft is created.

We also introduce the practice that a partial substitution may be associated
with a given process state. This substitution will be pre-applied to the template
of that state before the remaining bindings are generated. This allows more
generic templates to be defined which may be reused in similar but distinct
contexts.

Fig. 2. Automaton for randomised clinical trial workflow

Simulated Domain-Specific Provenance 77

Figure 2 shows an example automaton describing the data workflow for a
randomised clinical trial application. The eligibility check, consent gathering
and randomisation states are each associated with a distinct template, whilst
the Patient Reported Outcome Measure (PROM) and Clinician Reported Out-
come Measure (CROM) states (representing the completion of form-based assess-
ments) make use of the same single template, pre-applied with a partial substi-
tution specifying whether the form is to be completed by the patient or clinician.

4.2 Simulation

To produce a simulated provenance trace, the simulator operates in conjunction
with the provenance server. After reading the configuration, the given variable
domains are mapped to integer values and stored for use by the CSP solver. The
process configuration is then used to construct the described automaton, and
the template used in each state is read from the provenance server database and
stored. The variables for each template and any associated constraints are then
mapped to their counterparts in the CSP solver, and any required distribution
constraint value domains generated.

For each requested trace, the automaton is first used to generate a path, giv-
ing a sequence of templates to be instantiated. Then for each template in order,
bindings for its variables are generated. If a distribution constraint exists for a
variable, a sample is taken and together with any relation or value-dependency
constraints upon the same variable, submitted to the CSP solver to be solved.
If no constraint is present, a value is selected at random from the domain of the
variable, or in the case that no domain is specified, a value of the correct type
is generated at random.

These bindings are then submitted to the provenance server as a substitution,
which constructs a new instance of the respective template and stores it in
the database. Following the first instantiated template of a process the most
recent bindings are stored and any values generated for anchored variables in
the following transition reused.

5 Implementation and Architecture

The architecture of the simulator component and the template server are given in
Fig. 3. The simulated process is represented by an XML configuration comprising
the templates required, associated value domains for template variables, domain
constraints, and transitions between process states. The configuration is passed
to the simulator via the provenance server and template definitions are read from
the server database. We use the Choco 4.0 solver [15] for CSP solving and the
Apache Commons Mathematics library for distribution sampling.

Provenance documents are modelled as graphs in a formalism-agnostic way
by the server’s Model component. Interoperability with PROV is provided using
ProvToolbox. The Model component provides templates, substitutions and the
instantiation algorithm by which new provenance fragments are generated. The

78 P. Alper et al.

Fig. 3. Architecture of the simulator (left) and server (right)

Document Management component controls and executes the operations out-
lined in the document building workflow such as the creation of new target
documents, namespace management, the registering of templates, and the gen-
eration and merging of new fragment documents. Storage of data in the system
is abstracted by a persistence layer component to enable the use of different
database technologies - at present Neo4J and OrientDB graph databases are
supported, as is a relational SQL format. The management API may be accessed
directly via a RESTful web interface. Analysis of target documents may be per-
formed either at the database level, or otherwise by exporting target documents
or fragments and using existing PROV tools.

The clients invoke the simulator via the management API by providing a
configuration file, a target document and a number of iterations to be executed.

6 Evaluation

Following our initial work on decision support systems, we are now focusing on
simulating clinical trial traces. Clinical trials have become increasingly reliant
on contextual data sources that complement the data obtained directly from
the patients, e.g. Electronic Health Record (EHR) systems are used to identify
eligible patients and feed part of the required trial data into Electronic Case
Report Forms (eCRFs). Tractability of such system is of essence in order to
understand, evaluate and potentially improve the trial design. This requires the
minute study details, e.g. eligibility criteria encodings, how they were applied
to individual patients who presented to the clinician, data extracted from the
EHR systems, data collected through eCRFs and the analysis performed on the
collected data. Assembling the trace of the entire process requires provenance to
be captured from the Clinical Trial Management System, EHR system and the
patient/clinician data collection tools.

The overall goal is to use that provenance to demonstrate compliance of the
software tasks executed during clinical trials with regulations such as US’s 21
CFR Part 11 and Good Clinical Practice (GCP) standards. Techniques to vali-
date the clinical trial provenance data against such standards need to be devel-
oped initially on simulated data and validated themselves before being attempted
on real trial data, making it essential that synthetic data is structurally identical
to real provenance traces.

Simulated Domain-Specific Provenance 79

The trials we are observing are based on the TRANSFoRm clinical trial
infrastructure [6]. The key steps involve: (1) flagging up the patients eligible for
the trial to the clinician by checking their EHR in the background; (2) obtaining
patient consent; (3) randomising them into one arm of the trial; and (4) fill in
a series of forms. Figure 4 shows the four templates used in this context. Our
initial set of constraints states that:

– Forms must be completed between the start and end date of the trial: vvar:
formCompletionDate >= var:formStartDate, vvar:formCompletionDate
<= var:formEndDate

– We want an equal proportion of male and female participants:
vvar:patientSex is a uniform distribution

– Ages should be uniform across age band values ‘18–30’, ‘31–50’, ‘51–70’, ‘70+’:
vvar:patientAge is a pie distribution over the four categories defined.

Fig. 4. Templates used in RCT scenario

80 P. Alper et al.

With these constraints and templates in place, we run the simulation. Figure 5
shows an image from the Neo4j visualisation tool of a document built from
five iterations of the RCT process, together with the original templates (yellow
nodes) and the document metadata and indexing (green). The main subgraph
shows the simulated trace under construction, with entities depicted in blue,
activities in pink and agents in red. The trace can now be used to define various
checks as required by the trial and have them validated and ready for the real
data, once the trial starts.

Fig. 5. Neo4j visualisation of five traces of the RCT process (Color figure online)

7 Related Work

Synthetic data generation has been studied in the context of databases and
graphs. Commercial database systems such as those developed by Microsoft and
IBM have associated generators, however these rely on random generation and
only cater minimally for realism. One line of research has focused on generating
test queries, data and verifying oracles for a given database schema [11], in order
to create data with appropriate test coverage. Another approach is to generate
data to be used against known query benchmarks [10] or applications [18]. The
focus here is to have data with different (realistic or experimental) distributions.

Simulated Domain-Specific Provenance 81

These generators cater for dependencies such as foreign keys, but do not address
constraints among other data elements.

Graph-based data is encountered in social networks, the internet, or the
power grid. In order to assist the development of graph analysis and visuali-
sation techniques, research has been undertaken on synthetic graph generation
[13], focusing on statistical properties, with one recent work addressing the use of
predefined patterns when generating graphs [17]. These patterns can somewhat
be likened to templates, in that they constrain the structure of the generated
graph. However, this work does not cater for constraints and allows the manip-
ulations of the generated patterns to achieve statistical properties.

Two research groups are actively studying templates with similar approaches
[14] and [5]. A detailed comparison of these is beyond the scope of this paper; but
their difference mainly lies in the instantiation procedure. In [14] instantiation
uses the Cartesian product of available bindings, whereas in [5] bindings can be
given either simultaneously or incrementally using well-defined iteration zones.

To the best of our knowledge ProvGen [8] and DAGaholic [1] are the only
approaches that have studied the generation of synthetic provenance data. These
systems accept a seed graph as input, which identifies the PROV statements
allowed to be emitted by the generator, in the context of a set of additional
constraints. Constraints are restrictions that help enforce patterns or control
statistical graph properties (such as vertex degree), but do not support the
control of the domain-specific attributes of provenance elements. This highlights
an important distinction to our approach, where provenance is an information
model first, and its graph-based nature only of secondary importance. Hence
we focus on restricting domain-specific attributes to indirectly control statistical
graph properties.

Shapes Constraint Language (SHACL) [12] is a recent W3C specification for
validating RDF data. SHACL has a comprehensive set of built-in constraints
over RDF literals, such as regular expressions or integer ranges, and allows con-
straints involving complex graph patterns surrounding the focus node to be
defined as SPARQL ASK and SELECT queries, the results of which are used
to determine whether or not a constraint has been violated. We see SHACL
as a complementary foundational technology for encoding templates. Our tem-
plates can be encoded as shape graphs, and our relation constraints as SPARQL
constraints. However, SHACL has no means to represent value-dependency and
distribution constraints and, furthermore does not support variables, which, for
us are crucial abstractions for collecting and incrementally building provenance.

8 Conclusions and Future Work

In this paper we described a simulator for generating synthetic provenance in
a way that observes domain-specific constraints. Our approach uses templates
[5] to control and output provenance of a valid structure and three categories
of constraints mapped to and solved by a CSP solver to help model domain-
specific patterns in a realistic way. We described how workflows are modelled

82 P. Alper et al.

as probabilistic automata, traversals of which represent sequences of templates
to be instantiated, and explained how the simulator fits within our provenance
server architecture. Finally we illustrated our system with a case study based
upon randomised clinical trials.

The implementation and testing of our simulator is ongoing. CSPs have high
computational complexity, so an important next step for us is to determine the
performance of our system for large output sizes in terms of number of variables,
and number and types of constraints.

The clinical trial use case will be fully evaluated within the REST clinical trial
(Runny Ear STudy: Immediate oral, immediate topical or delayed oral antibiotics
for acute otitis media with discharge) later in 2018, before which provenance data
will be synthesised in accordance with the design presented here, to be compared
against the data collected.

References

1. David Allen, M., Chapman, A., Blaustein, B.: Engineering choices for open world
provenance. In: Ludäscher, B., Plale, B. (eds.) IPAW 2014. LNCS, vol. 8628, pp.
242–253. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16462-5 25

2. Belhajjame, K., Chapman, A.: 2nd ProvBench: Benchmarking Provenance
Management Systems (2014). https://sites.google.com/site/provbench/home/
provbench-provenance-week-2014

3. Belhajjame, K., Zhao, J.: 1st ProvBench: Benchmarking Provenance Management
Systems. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops (2013)

4. Belhajjame, K., Zhao, J., Garijo, D., et al.: A workflow PROV-corpus based on
Taverna and Wings. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops,
ProvBench: Provenance Benchmark Challenge (2013)

5. Curcin, V., Fairweather, E., Danger, R., et al.: Templates as a method for imple-
menting data provenance in decision support systems. J. Biomed. Inform. 65 (2017)

6. Delaney, B., Curcin, V., Andreasson, A., et al.: Translational medicine and patient
safety in Europe: TRANSFoRm - Architecture for the Learning Health System
in Europe. Biomed Research Int., special edition on Improving Performance of
Clinical Research: Development and Interest of Electronic Health Records (2015)

7. Fairweather, E., Alper, P., Porat, T., et al.: Architecture for Building Prove-
nance Documents using Templates (2017). https://elliot.fairweather.eu/resources/
ArchProvTemp.pdf

8. Firth, H., Missier, P.: ProvGen: generating synthetic PROV graphs with pre-
dictable structure. In: Ludäscher, B., Plale, B. (eds.) IPAW 2014. LNCS, vol. 8628,
pp. 16–27. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16462-5 2

9. Gehani, A., Tariq, D.: Cross-platform provenance. In: Proceedings of the Joint
EDBT/ICDT 2013 Workshops (2013)

10. Houkjær, K., Torp, K., Wind, R.: Simple and realistic data generation. In: Pro-
ceedings of the 32nd International Conference on Very Large Data Bases (2006)

11. Khalek, S. A., Elkarablieh, B., Laleye, Y. O. et al.: Query-aware test generation
using a relational constraint solver. In: Proceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering (2008)

12. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). Technical
report, W3C (2017)

https://doi.org/10.1007/978-3-319-16462-5_25
https://sites.google.com/site/provbench/home/provbench-provenance-week-2014
https://sites.google.com/site/provbench/home/provbench-provenance-week-2014
https://elliot.fairweather.eu/resources/ArchProvTemp.pdf
https://elliot.fairweather.eu/resources/ArchProvTemp.pdf
https://doi.org/10.1007/978-3-319-16462-5_2

Simulated Domain-Specific Provenance 83

13. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C.: Realistic, mathemati-
cally tractable graph generation and evolution, using kronecker multiplication. In:
Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005.
LNCS (LNAI), vol. 3721, pp. 133–145. Springer, Heidelberg (2005). https://doi.
org/10.1007/11564126 17

14. Michaelides, D., Huynh, T. D., Moreau, L.: PROV-TEMPLATE: A template
system for PROV documents (2014). https://provenance.ecs.soton.ac.uk/prov-
template/

15. Prud’homme, C., Fages, J.-G., Lorca, X.: Choco Documentation (2016)
16. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foun-

dations of Artificial Intelligence). Elsevier Science Inc. (2006)
17. Shuai, H.-H., Yang, D.-N., Yu, P.S., et al.: On Pattern Preserving Graph Genera-

tion. In: 2013 IEEE 13th International Conference on Data Mining (2013)
18. Soltana, G., Sannier, N., Sabetzadeh, M., et al.: A model-based framework for

probabilistic simulation of legal policies. In: 18th ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems (MoDELS 2015)
(2015)

https://doi.org/10.1007/11564126_17
https://doi.org/10.1007/11564126_17
https://provenance.ecs.soton.ac.uk/prov-template/
https://provenance.ecs.soton.ac.uk/prov-template/

PROV Extensions

Versioned-PROV: A PROV Extension
to Support Mutable Data Entities

João Felipe N. Pimentel1(B) , Paolo Missier2 , Leonardo Murta1 ,
and Vanessa Braganholo1

1 Instituto de Computação, Universidade Federal Fluminense, Niteró, Brazil
{jpimentel,leomurta,vanessa}@ic.uff.br

2 School of Computing, Newcastle University, Newcastle upon Tyne, UK
paolo.missier@newcastle.ac.uk

Abstract. The PROV data model assumes that entities are immutable
and all changes to an entity e are represented by the creation of a new
entity e′. This is reasonable for many provenance applications but may
produce verbose results once we move towards fine-grained provenance
due to the possibility of multiple binds (i.e., variables, elements of data
structures) referring to the same mutable data objects (e.g., lists or dic-
tionaries in Python). Changing a data object that is referenced by mul-
tiple immutable entities requires duplicating those immutable entities to
keep consistency. This imposes an overhead on the provenance storage
and makes it hard to represent data-changing operations and their effect
on the provenance graph. In this paper, we propose a PROV extension
to represent mutable data structures. We do this by adding reference
derivations and checkpoints. We evaluate our approach by comparing it
to plain PROV and PROV-Dictionary. Results indicate a reduction in
the storage overhead for assignments and changes in data structures from
O(N) and Ω(R×N), respectively, to O(1) in both cases when compared
to plain PROV (N is the number of members in the data structure and
R is the number of references to the data structure).

Keywords: Provenance · Specification · Interoperability

1 Introduction

The PROV data model [6] is an extensible domain-agnostic model that describes
the provenance of entities through their relationships with activities, agents, and
other entities. An entity is a term used to represent any data, physical object, or
concept whose provenance may be obtained. The activity term describes actions
or processes that use entities and generate other entities. Finally, the agent term
describes roles in activities.

PROV (and its predecessor, OPM [10]) has been applied to describe the
provenance gathered from operating systems [11], workflow systems [2], and
scripts [1]. Tools that collect operating system provenance map users as agents,
c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 87–100, 2018.
https://doi.org/10.1007/978-3-319-98379-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_7&domain=pdf
http://orcid.org/0000-0001-6680-7470
http://orcid.org/0000-0002-0978-2446
http://orcid.org/0000-0002-5173-1247
http://orcid.org/0000-0002-1184-8192

88 J. F. N. Pimentel et al.

Fig. 1. Floyd-Warshall implementation (A) and encoded input graph (B).

file objects and program arguments as entities, and program executions and sys-
tem calls as activities [11]. Workflow systems map data as entities and processing
steps as activities [2]. Finally, tools that collect coarse-grained provenance from
scripts map data in function arguments and data values obtained from return
statements as entities, and function calls as activities [1].

In the aforementioned approaches, entities are immutable data that go
through processing steps (modeled as activities) to produce new immutable data
(modeled as entities). The assumption of immutable entities also exists in the
PROV data model, where changes to an entity e are explicitly represented by
the creation of a new entity e′ generated by the activities that use the original e.

No known approaches use PROV to describe fine-grained provenance from
scripts, with support for variables and mutable data structures. Our goal is
to extend the well-known concepts of coarse-grained provenance for scripts,
which is limited to function arguments and function calls, to (1) script variables,
(2) expressions with operators, and (3) assignments, thus realizing fine-grained
provenance for scripts. Specifically, we note that we can map script variables to
entities, expressions with operators to activities that generate new entities, and
assignments to activities that produce derivations, i.e., from expression results to
variables. For example, a = b + c can be mapped as an activity + that uses the
entities b and c to generate the derived entity sum, and an assignment activity
that uses sum to generate the derived entity a.

This is a challenging goal because using PROV to represent fine-grained
provenance suffers from two main problems: (P1) when an entity that represents
a collection is changed (e.g., a list is updated to add an element), a new entity
should be created, together with multiple new relationships, connecting the new
entity to each of the existing or new entities that represent the elements of the
collection; and (P2) when more than one variable is assigned to the same col-
lection, and one of the variables changes, all other variables should also change,

Versioned-PROV: A PROV Extension to Support Mutable Data Entities 89

as they refer to the same memory area. This means that a new entity should
be created for each variable that contains the collection, together with edges for
all entities that represent the elements of the collection. As we show in Sect. 4,
these problems lead to O(N) and Ω(R × N) extra elements in the provenance
graph, respectively, for collections with N elements and R references.

PROV-Dictionary [8] improves the support for data structures in PROV by
adding derivation statements that indicate that a new collection shares most
elements of the old one, but with the insertion or removal of specific elements.
This solves P1 since it reduces the number of edges to 1. However, it still suffers
from P2, since it requires updating all entities that refer to the same collection
when it changes, which leads to Ω(R) extra elements.

We propose Versioned-PROV, an extension that adds reference sharing and
checkpoints to PROV. Checkpoints solve problem P1 in O(1) by allowing the
representation of multiple versions of collections with a single entity. Reference
sharing solves problem P2 in O(1) by allowing collections to be represented
only once and referred to by other entities through reference derivations plus
checkpoints to indicate states.

This paper is organized as follows. Section 2 presents a running exam-
ple, which is based on the Floyd-Warshall algorithm [3]. Section 3 introduces
Versioned-PROV. Section 4 evaluates the approach by comparing it to PROV
and PROV-Dictionary. Section 5 discusses related work, and Sect. 6 concludes
the paper.

2 Running Example

While Versioned-PROV intends to be generic enough for any situation that
requires sharing references to mutable collections in PROV, we use fine-grained
script provenance as a case study for presenting our extension. More specifically,
we use the Floyd-Warshall algorithm [3] as a base to describe and evaluate the
mapping of fine-grained provenance from scripts using Versioned-PROV. This
algorithm has relevant applications, such as finding the shortest path between
two addresses in a navigation system.

The algorithm calculates the length of the shortest path between all pairs of
nodes in a weighted graph. It achieves this by updating the distance of the path
from node i to node j if there is a node k for which the distance of the path
from i to k plus the distance of the path from k to j is shorter than the distance
from i to j. The result of Floyd-Warshall is the set of shortest distances among
all pairs of nodes, but it does not produce the actual shortest paths. However,
observing that the path between two nodes is defined by the sum of two other
paths, here we show that we can use the fine-grained provenance of a given
output distance to obtain the actual paths that have that distance.

Figure 1 presents a Python implementation of Floyd-Warshall with a pre-
defined input graph. Line 18 prints the distance of the shortest path from 0
to 2. While there is a direct edge with cost 4, the actual result is 3, because
the shortest path goes from 0 to 1, with cost 1, and then from 1 to 2, with

90 J. F. N. Pimentel et al.

cost 2. After the algorithm changes the result matrix, querying the provenance
of result[0][2] in line 18 should indicate that it derives from result[0][1]
and result[1][2].

3 Versioned-PROV

Versioned-PROV adds the concepts of checkpoints, reference sharing, and
accesses to PROV. Different from plain PROV, which assumes immutable
entities, a Versioned-PROV entity may represent multiple versions of a data
object. We present Versioned-PROV concepts in Sect. 3.1. In Sect. 3.2, we detail
Versioned-PROV by presenting a mapping of a part assignment in the Floyd-
Warshall algorithm, and contrasting it to PROV and PROV-Dictionary.

3.1 Concepts

The PROV data model is based on the idea of instantaneous transition events
that describe usage, generation, and invalidation of entities [6]. These events
are important to describe the provenance timeline without explicit time and
ordering. Versioned-PROV builds on top of PROV events and determines that
a version of a data object changes on a generation event, and is accessed on a
usage event. Instead of relying on the implicit ordering of events from PROV,
Versioned-PROV uses checkpoint attributes to tag events and changes on enti-
ties. Then, it uses the explicit ordering of checkpoints to obtain a version of a
data object. Hence, we require a total order to be defined on the set of check-
points. Our implementation of Floyd-Warshall uses timestamps as checkpoints,
but the figures in this paper use sequential numbers. Both can be ordered.

As an extension of PROV, Versioned-PROV follows its semantics. Thus,
despite the goal of representing multiple versions of a data object, an entity
in PROV can only be generated once, according to the unique-generation con-
straint of PROV [6]. Thus, the only mutability on the Versioned-PROV entities
occurs in the memberships of collection entities. A collection may have different
members at different moments, but the operations that put and delete members
from a collection are incremental. It means that if a collection c had an entity
e1 at checkpoint 1 and an operation put the entity e2 into a different position
of c at checkpoint 2, then c had both e1 and e2 at checkpoint 2.

Different from PROV and PROV-Dictionary that use copy-by-value to rep-
resent data-structure assignments and derivations, Versioned-PROV uses copy-
by-reference. Hence, it defines the data structure once and uses reference sharing
to indicate that more than one entity refers to the same data structure. When
generating and using Versioned-PROV entities, one must indicate a checkpoint
to unfold the specific version of the data structure for any given event. When
an entity associated with a data structure changes at a given checkpoint, we
can infer that all entities that share reference with it also changes at the same
checkpoint, without any extra explicit statements.

Versioned-PROV: A PROV Extension to Support Mutable Data Entities 91

Table 1. Versioned-PROV types.

Type Statement Meaning

Reference wasDerivedFrom The generated entity derived from the used entity by
reference, indicating that both have the same
numbers

Put hadMember Put a member into a collection key position at a
given checkpoint. Using a placeholder as member
indicates a deletion

Table 2. Versioned-PROV attributes.

Attribute Range Statement Meaning

checkpoint Sortable Value hadMember Checkpoint of the collection
update. Required for hadMember
with type Put

checkpoint Sortable Value Events (e.g.,
used,
wasDerivedFrom)

Checkpoint of the event. Required
for wasDerivedFrom with type
Reference

key String hadMember The position of Put

key String wasDerivedFrom The position of the accessed
collection entity

collection Entity Id wasDerivedFrom Collection entity that was accessed
or changed

access ‘r’ or ‘w’ wasDerivedFrom Indicates whether an access reads
(‘r’) an element from a collection or
writes (‘w’) into it

Versioned-PROV uses PROV optional attributes and defines types to extend
PROV. Table 1 presents the Versioned-PROV types, and Table 2 presents the
Versioned-PROV attributes. The attributes key, collection, and access of was-
DerivedFrom may only be used when the derivation is related to an access or
collection update. Similarly, the type Put can only appear in data structures, to
define their items. Differently, the attribute checkpoint and the type Reference
can appear anywhere, despite affecting only collection entities. This keeps the
model consistent in all situations that involve using and generating entities.

3.2 Mapping Example

We use the script example of Sect. 2 to detail Versioned-PROV in contrast to
PROV and PROV-Dictionary. We map the execution provenance of the Floyd-
Warshall algorithm (Fig. 1) to these three approaches. Due to space constraints,
we present only the first execution of the part assignment in line 17 of Fig. 1
(i.e., disti[j] = ikj). The complete mapping is available at [13].

92 J. F. N. Pimentel et al.

Fig. 2. Plain PROV mapping of disti[j] = ikj. (Color figure online)

Figures 2, 3, and 4 present the part assignment mapped to plain PROV,
PROV-Dictionary, and Versioned-PROV, respectively. In our mappings, we
name entities based on their textual representations. Since a textual element
(e.g., a variable) can be represented by multiple entities, we enumerate them.
Thus, ikj#2 denotes the second entity that represents the variable ikj (as
defined in line 15 of Fig. 1). In addition to this numbering, we change the nota-
tion of accesses to avoid using escaping characters to represent square brackets.
Instead, we use the collection name followed by “@” and the accessed key. For
instance, we use disti@j to represent disti[j] (lines 16–17 of Fig. 1). Note
in region A of these figures that we have both disti@j#2 in gray, representing
disti[j] of line 16, and disti@j#3 in yellow, representing disti[j] of line 17.
The latter is the result of the part assignment.

We divide these figures into three regions: A represents the base part assign-
ment that exists in all approaches; B represents a portion of the matrix that
existed before this operation; and C represents the overhead entities (i.e., enti-
ties that are specific to an approach) that were generated as consequence of the
part assignment. Note that Fig. 4 has no region C since Versioned-PROV does
not have overhead entities. All the entities that exist in Versioned-PROV also
exist in the other approaches.

We also use the color red to denote the overhead. Note that plain PROV
has a bigger overhead than PROV-Dictionary, which has a bigger overhead than
Versioned-PROV. This occurs due to the problems P1 and P2 mentioned in the
introduction. Additionally, we use gray to indicate the portion of the provenance
graph that is not related to the part assignment operation. As expected, all nodes
and edges in region B are gray. The only gray node outside region B is disti@j#2
in region A. This node appears due to the if condition in line 16 of Fig. 1. Hence,
it is specific to this algorithm and not a generic node that occurs in all part
assignments.

Versioned-PROV: A PROV Extension to Support Mutable Data Entities 93

Fig. 3. PROV-Dictionary mapping of disti[j] = ikj. (Color figure online)

The operation disti[j] = ikj is putting the value of ikj into the position
j of disti. In region A of all figures, ikj#2 represents the variable ikj; j#5
represents j; and disti#2 represents disti. Additionally, disti@j#3 represents
the resulting disti[j]. Note that disti in this execution is the same list as
dist[2], represented by the entity matrix2#1 (i.e., they point to the same
memory area). Note also that dist and result are the same matrix.

Since entities are immutable in PROV and PROV-Dictionary, an update
in a collection (disti#2 in region A) requires the creation of a new collection
(disti#3 in region C) that contains the updated members. PROV suffers from
P1, thus it reconstructs the membership of the new entity by using N hadMember
relationships in a collection with N members (3 in this case). We represent
these relationships by edges without labels in Fig. 2. PROV-Dictionary, on the
other hand, uses a single derivedByInsertionFrom (der-ins edges in Fig. 3) to
indicate that a collection was updated by the insertion of a member at a position
(disti#3 derived from disti#2 by the insertion of disti@j#3 from region A at
position 1).

As stated before, disti#2 represents the same value as matrix2#1. Thus,
we would have to update matrix2#1 to reflect the change. This does not occur
because matrix2#1 is out of the scope of the execution at this point and can-
not be directly used without an access to dist#1 or result#1. Due to P2,
plain PROV and PROV-Dictionary update dist#1 and result#1 by generat-
ing dist#2 and result#2 in region C and replacing matrix2#1, in the second
position, by disti#3.

94 J. F. N. Pimentel et al.

Fig. 4. Versioned-PROV mapping of disti[j] = ikj. (Color figure online)

In addition to this overhead in PROV and PROV-Dictionary, we use two
extra wasDerivedFrom edges for every new collection entity to indicate that
they derive both from the collection before the update and from the inserted
value (ikj#2). Thus, in PROV, this operation has an overhead of 3 entities,
6 wasDerivedFrom, and 9 hadMember, and in PROV-Dictionary, this operation
has an overhead of 3 entities, 6 wasDerivedFrom, and 3 derivedByInsertionFrom.
Moreover, these overheads depend on the number of elements in the collections
and the number of references to them.

Versioned-PROV does not suffer from these problems. It uses checkpoints to
indicate multiple versions of a collection, and derivations by reference to indicate
that two or more entities represent the same collection. In region C of Fig. 4,
matrix2#1 was defined at checkpoint 2 with the entities 2, m, 0 as members.
This changed at checkpoint 36 since this part assignment put disti@j#3 in
the first position. Thus, matrix2#1 has a version with the members 2, m, 0
between checkpoints 2 and 35, and a version with the members 2, disti@j#3,
0 after checkpoint 36. Note that in Fig. 4 we show the first value representation
of collections for easy reading, but other Versioned-PROV implementations are
free to decide on having the value attribute or not.

The aforementioned versions are valid for all the entities that derive by refer-
ence from matrix2#1. In Fig. 4, dist@i#2 derived by reference from matrix2#1,
and disti#2 derived by reference from dist@i#2. By transitivity, disti#2
derived by reference from matrix2#1. This derivation avoids the creation of
disti#3 and all the other entities and relationships that exist in the other map-
pings.

Since an entity can represent multiple versions of a collection in Versioned-
PROV, we also use the checkpoint attribute in the use of disti#2 to indicate
the used version. Note in region A of Fig. 4 that this operation is using disti#2
at checkpoint 35 to generate disti@j#3 at checkpoint 36.

Versioned-PROV: A PROV Extension to Support Mutable Data Entities 95

Every entity can only be derived by a single reference: if the algorithm assigns
a new value to the variable disti (in line 12 of Fig. 1), we must create a new
entity (e.g., disti#3) as a placeholder for the new value. That is, the checkpoint
attribute does not apply for reusing an entity with different values. A variable
entity in Versioned-PROV represents not just the variable name, but a pair
consisting of the variable name and its value (memory area). Note that we do
not need a new entity for disti#2 in the part assignment as it still references
the same memory area after the operation.

Finally, disti@j#3 derived by reference from ikj#2 in region A of Fig. 4.
Since these entities are not collections, the derivation by reference has no impact
on them - we use it just for consistency among all derivations. However, this
specific derivation has other attributes in addition to type and checkpoint. We
also indicate that it is a write access that puts the derived entity in the key
position 1 of the collection disti#2. This information is required to answer
the provenance query of Floyd-Warshall without encoding matrix positions into
entities. Note that the members of matrix2#1 in region B of Fig. 4 are the actual
entities that exist in line 5 of Fig. 1, while the members of matrix2#1 in Figs. 2
and 3 are dummy entities that encode the matrix position.

4 Evaluation

We evaluate the space overhead of Versioned-PROV in comparison to plain
PROV and PROV-Dictionary by measuring the number or PROV-N statements
each approach requires in similar situations. We analyze both the running exam-
ple and the general case.

Space Overhead Analysis of the Running Example. For most operations,
the storage requirements are the same in all three approaches. The only differ-
ences were observed in data structures definitions (lines 2–5 of Fig. 1), reference
assignments or accesses (lines 2–5, 7, 9, 12, 18), and data structure updates
(line 17).

In [13] we present the complete provenance graph of Floyd-Warshall in these
three mappings, coloring only nodes and edges related to the list definitions,
reference derivations, and part assignments, since these differ in the mappings.
All nodes and edges that are common to all mappings are in light gray. PROV
has many colored edges all over the graph due to the aforementioned problems
P1 and P2. PROV-Dictionary has fewer scattered edges in the graph, but it has
a huge concentration of Dictionary entities that derive from a single EmptyDic-
tionary entity due to problem P2. Finally, Versioned-PROV has fewer colored
nodes and edges since it does not suffer from these issues.

In Fig. 5(A) we count how many nodes are specific to each approach. Note
that PROV and PROV-Dictionary use respectively 7.52 and 4.14 times the num-
ber of specific PROV-N statements used by Versioned-PROV to represent the
same data structures. Additionally, Versioned-PROV does not impose any node
overhead. All of its overhead occurs in edges that specify the membership of col-
lections. On the other hand, PROV and PROV-Dictionary impose node overhead

96 J. F. N. Pimentel et al.

Fig. 5. Number of PROV, PROV-Dictionary, and Versioned-PROV PROV-N state-
ments for list definitions, reference derivations, and part assignments (A) and total
number of statements (B).

to indicate the position of elements in data structures and to derive immutable
entities from existing ones. Moreover, by comparing Fig. 5(A) with Fig. 5(B),
which shows the total number of statements, we can see that 29% of PROV
statements, 18% of PROV-Dictionary statements, and 5% of Versioned-PROV
statements are the overhead caused by collection operations.

These results refer to a small Floyd-Warshall execution, with a 3 × 3
matrix representing the input graph. Since the overheads of PROV and PROV-
Dictionary grow in terms of the number of collection elements and the number of
shared references, more complex input graphs and algorithms can cause a much
larger overhead.

Space Overhead Analysis of the General Case. In Sect. 3, we describe the
part assignment of PROV, PROV-Dictionary, and Versioned-PROV. Figure 6
presents the growth of statements in the three approaches for part assignments.
Versioned-PROV has an overhead of 2 PROV-N statements: the hadMember
that puts the member in the collection, and the used that indicates the changed
collection. Plain PROV has an overhead of (3+N) × R statements for collec-
tions with N members and R references: it creates R entities, each of them with 2
wasDerivedFrom and N hadMember. Finally, PROV-Dictionary has an overhead
of 4× R statements: it creates R entities, each with 2 wasDerivedFrom and
1 derivedByInsertionFrom. Note that both plain PROV and PROV-Dictionary
also use the changed collection, but this used relationship can be inferred from
one of the additional wasDerivedFrom statements. Hence, we count it only as
an overhead for Versioned-PROV. The number of statements for PROV and
PROV-Dictionary are lower bounds. If we update a collection x that is also a
member of another collection y, we must also update all the references of y and
apply this same rule with respect to references and number of elements. This
occurs in our example of Sect. 3.2: the update of disti#2 with R = 1 and N = 3
motivates the update of dist#1 with R = 2 and N = 3.

Versioned-PROV: A PROV Extension to Support Mutable Data Entities 97

Fig. 6. Overhead functions of part assignments.

Besides part assignments, the approaches also differ in list definitions and
derivations by reference. Figure 7(A) shows the overhead of defining a list in
each approach. Versioned-PROV has an overhead of only N hadMember state-
ments to define a list with N elements since they indicate the members with
their positions in the list and we reference these positions in accesses. Thus, the
provenance of Floyd-Warshall in Versioned-PROV includes the accessed posi-
tions, allowing us to use these positions to reconstruct the paths of the graph.

On the other hand, plain PROV and PROV-Dictionary have overheads of
3 × N + 2 statements, and 1 (global) +2 × N + 3 statements, respec-
tively. This occurs because these approaches do not indicate the access position
and the access derivation directly from the member. Hence, we must encode
the position information into entities. This encoding requires the creation of N
dummy entities. Each one of these dummy entities derives from their respec-
tive entities (i.e., N wasDerivedFrom) by the application of a new definelist
activity. The resulting list entity is also generated by this activity (i.e., 1 was-
GeneratedBy and 1 list entity itself), and it has the dummy entities as members.
PROV-Dictionary expresses the membership with a single derivedByInsertion-
From statement from a single global EmptyDictionary, while PROV additionally
requires N hadMember statements to define the membership of all elements.

Figure 7(B) compares the growth of overhead in derivations by reference.
Versioned-PROV imposes no statement overhead since it uses attributes
of wasDerivedFrom to indicate the derivation. On the other hand, PROV and
PROV-Dictionary have to recreate the membership of this new entity. PROV
requires N hadMember statements, and PROV-Dictionary requires a single
derivedByInsertionFrom statement. Note that both PROV-Dictionary and
Versioned-PROV do not grow in terms of the number of elements, but Versioned-
PROV still performs better than PROV-Dictionary, since the former does not
require any extra statement.

98 J. F. N. Pimentel et al.

Fig. 7. Overhead functions for list definitions (A) and derivations by reference (B).

5 Related Work

Many approaches have been proposed to collect and represent provenance from
scripts. Some tools export provenance from scripts to OPM [1,16], which is easily
convertible to PROV. However, these tools work at coarse-grain and do not take
mutable data structures into account. Other tools work at fine-grain but use
non-interoperable mechanisms for storage and distribution [5,14,15]. Moreover,
these approaches work only at the variable and statement dependency level and
do not provide support for tracking the provenance of changes on data structures
referred by multiple variables.

Michaelides et al. [7] collect fine-grained provenance from Blockly variables
and export it to plain PROV. Plain PROV assumes that entities are immutable
and uses hadMember statements to describe structures, but its usage is too
verbose and imposes a high overhead in the storage of mutable data structures,
as we present in Sect. 4.

PROV has been extended in many different ways [2,4,9], but most exten-
sions focus only on representing domain-specific provenance and do not improve
the support for data structures. The PROV-Dictionary extension [8] improves
the PROV support for data structures by adding insertion and removal deriva-
tions. Such derivations reduce the storage overhead in comparison to PROV,
but still produces a high overhead in comparison to Versioned-PROV due to the
assumption of immutability.

6 Final Remarks

In this paper, we propose Versioned-PROV, a PROV extension that supports
mutable data structures. Tools that collect fine-grained provenance from scripts
can use Versioned-PROV to support the collection of provenance from complex
data structures and variables that are implicitly modified due to the existence of
other variables pointing to the same mutable data. Nevertheless, our extension
is not restricted to scripts.

The proposed approach has some limitations. First, while our extension
reduces the storage overhead for provenance collection from scripts, it intro-
duces an extra overhead for querying due to the requirement of unfolding data

Versioned-PROV: A PROV Extension to Support Mutable Data Entities 99

structure versions based on checkpoints. Thus, users must consider this tradeoff
according to their needs. Second, by using a dictionary-like structure to repre-
sent lists (i.e., indexes mapped to keys, and elements mapped to values), some
operations still produce an overhead in the provenance storage. For instance,
inserting an element at the beginning of a list will require updating all the other
members of the list. Third, using an explicit checkpoint ordering imposes syn-
chronization challenges for parallel provenance collection. Finally, the usage of
optional attributes to extend PROV imposes a storage overhead in disk due to
the attribute name repetition. However, this overhead may not occur depending
on how it is stored. A normalized storage schema would remove the repetitions.

As future work, we intend to develop an efficient querying algorithm for
Versioned-PROV. We also plan to adopt the proposed model in noWorkflow [12]
to export its fine-grained provenance [14] and evaluate it in real scenarios. We
foresee the elaboration of unfolding algorithms that converts Versioned-PROV
into plain PROV to improve its interoperability and optimize analyses that
require many queries. These algorithms could also run by demand, populating
caches of unfolded data structures. Additionally, we plan to work on an exten-
sion of Versioned-PROV to improve the incremental membership definition of
lists.

Finally, our companion website [13] contains all the source code used to
generate images of this paper in addition to detailed descriptions of the mapping
we applied in each approach, as well as a preliminary query implementation.

References

1. Angelino, E., Yamins, D., Seltzer, M.: StarFlow: a script-centric data analysis
environment. In: McGuinness, D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010.
LNCS, vol. 6378, pp. 236–250. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17819-1 27

2. Costa, F., et al.: Capturing and querying workflow runtime provenance with ProV:
a practical approach. In: Joint EDBT/ICDT Workshops. ACM, Genoa (2013)

3. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM. 5(6), 345 (1962)
4. Garijo, D., Gil, Y.: Augmenting PROV with plans in P-PLAN: scientific processes

as linked data. In: LISC, Boston, USA (2012)
5. Lerner, B., et al.: Using introspection to collect provenance in R. Informatics 5(1),

12 (2018)
6. Moreau, L., Missier, P.: PROV-DM: The PROV Data Model (2012). http://www.

w3.org/TR/prov-dm/
7. Michaelides, D.T., Parker, R., Charlton, C., Browne, W.J., Moreau, L.: Intermedi-

ate notation for provenance and workflow reproducibility. In: Mattoso, M., Glavic,
B. (eds.) IPAW 2016. LNCS, vol. 9672, pp. 83–94. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40593-3 7

8. Missier, P., et al.: PROV-dictionary: modeling provenance for dictionary data
structures. https://www.w3.org/TR/prov-dictionary/

9. Missier, P., et al.: D-PROV: extending the PROV provenance model with workflow
structure. In: TaPP. USENIX, Lombard (2013)

https://doi.org/10.1007/978-3-642-17819-1_27
https://doi.org/10.1007/978-3-642-17819-1_27
http://www.w3.org/TR/prov-dm/
http://www.w3.org/TR/prov-dm/
https://doi.org/10.1007/978-3-319-40593-3_7
https://doi.org/10.1007/978-3-319-40593-3_7
https://www.w3.org/TR/prov-dictionary/

100 J. F. N. Pimentel et al.

10. Moreau, L., Freire, J., Futrelle, J., McGrath, R.E., Myers, J., Paulson, P.: The
open provenance model: an overview. In: Freire, J., Koop, D., Moreau, L. (eds.)
IPAW 2008. LNCS, vol. 5272, pp. 323–326. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89965-5 31

11. Muniswamy-Reddy, K.K., et al.: Provenance-aware storage systems. In: USENIX
Annual Technical Conference, pp. 43–56. USENIX, Boston (2006)

12. Murta, L., Braganholo, V., Chirigati, F., Koop, D., Freire, J.: noWorkflow: captur-
ing and analyzing provenance of scripts. In: Ludäscher, B., Plale, B. (eds.) IPAW
2014. LNCS, vol. 8628, pp. 71–83. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16462-5 6

13. Pimentel, J.F., et al.: Versioned-PROV. https://dew-uff.github.io/versioned-prov/
14. Pimentel, J.F., Freire, J., Murta, L., Braganholo, V.: Fine-grained provenance col-

lection over scripts through program slicing. In: Mattoso, M., Glavic, B. (eds.)
IPAW 2016. LNCS, vol. 9672, pp. 199–203. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40593-3 21

15. Runnalls, A., Silles, C.: Provenance tracking in R. In: Groth, P., Frew, J. (eds.)
IPAW 2012. LNCS, vol. 7525, pp. 237–239. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34222-6 25

16. Tariq, D., et al.: Towards automated collection of application-level data prove-
nance. In: TaPP. USENIX, Boston (2012)

https://doi.org/10.1007/978-3-540-89965-5_31
https://doi.org/10.1007/978-3-540-89965-5_31
https://doi.org/10.1007/978-3-319-16462-5_6
https://doi.org/10.1007/978-3-319-16462-5_6
https://dew-uff.github.io/versioned-prov/
https://doi.org/10.1007/978-3-319-40593-3_21
https://doi.org/10.1007/978-3-319-40593-3_21
https://doi.org/10.1007/978-3-642-34222-6_25
https://doi.org/10.1007/978-3-642-34222-6_25

Using the Provenance from Astronomical
Workflows to Increase Processing

Efficiency

Michael A. C. Johnson1(B), Luc Moreau2, Adriane Chapman1,
Poshak Gandhi1, and Carlos Sáenz-Adán3

1 University of Southampton, Southampton, Hampshire SO17 1BJ, UK
{Michael.Johnson,Adriane.Chapman,Poshak.Gandhi}@soton.ac.uk

2 King’s College London, London WC2B 4BG, UK
Luc.Moreau@kcl.ac.uk

3 Department of Mathematics and Computer Science,
University of La Rioja, Logroño, Spain

carlos.saenz@unirioja.es

Abstract. Astronomy is increasingly becoming a data-driven science
as the community builds larger instruments which are capable of gath-
ering more data than previously possible. As the sizes of the datasets
increase, it becomes even more important to make the most efficient use
of the computational resources available. In this work, we highlight how
provenance can be used to increase the computational efficiency of astro-
nomical workflows. We describe a provenance-enabled image processing
pipeline and motivate the generation of provenance with two relevant
use cases. The first use case investigates the origin of an optical varia-
tion and the second is concerned with the objects used to calibrate the
image. The provenance was then queried in order to evaluate the rela-
tive computational efficiency of use case evaluation, with and without the
use of provenance. We find that recording the provenance of the pipeline
increases the original processing time by ∼45%. However, we find that
when evaluating the two identified use cases, the inclusion of provenance
improves the efficiency of processing by ∼99% and ∼96% for Use Cases
1 and 2, respectively. Furthermore, we combine these results with the
probability that Use Cases 1 and 2 will need to be evaluated and find
a net decrease in computational processing efficiency of 13–44% when
incorporating provenance generation within the workflow. However, we
deduce that provenance has the potential to produce a net increase in
this efficiency if more uses cases are to be considered.

1 Introduction

Provenance is a staple in the art communities as it is a record of the origin,
ownership and custody of a work of art or artefact. In this context, it can be
used to assess the authenticity and probe past possession, in order to value a
work of art. The practice of provenance has also been adopted by the scientific
c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 101–112, 2018.
https://doi.org/10.1007/978-3-319-98379-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_8&domain=pdf

102 M. A. C. Johnson et al.

community as reliability and reproducibility are two of its fundamental axioms.
The use of provenance within science is becoming ever more important as the
quantities of data and the number of people analysing each dataset increase.

Over the last few decades, the ability of the astronomer to collect and pro-
cess data has increased dataset sizes from giga to tera to now peta-byte scale
datasets. This is in part due to the creation of large scale survey telescopes such
as the Sloan Digital Sky Survey (SDSS) [1], the Palomar Transient Factory [2]
and, in future, the Large Synoptic Survey Telescope (LSST) [3]. As astronomy
is increasingly becoming a data-driven science, many frameworks and tools have
been designed to automate the generation of the accompanying provenance. Pro-
ducing this detailed record of the provenance requires additional storage and
introduces an initial runtime overhead to the execution time. However, it can
also allow for a significant reduction in resources when analysing the final data
products.

With the advent of new survey telescopes, such as LSST, which have
extremely large datasets, it is becoming ever more crucial for the astronomer
to make the most efficient use of the computational resources available. PROV-
TEMPLATE [4] is a declarative approach to enable the generation of PROV
compatible provenance and in this paper we investigate the implementation of
PROV-templates as a means of producing the provenance of astronomical work-
flows. The aim is to quantitatively demonstrate the relative computational effi-
ciency of astronomical image processing with and without the use of PROV-
TEMPLATE generated provenance. In order to achieve this, firstly, PROV-
TEMPLATES were used to generate the provenance of an astronomical image
processing pipeline which was designed to measure the brightness variation of
black hole binary systems. Secondly, within the context of this workflow, two
use cases were identified for which provenance is vital for the astronomy com-
munity. Use Case 1 was to investigate the origin of an observed variation in
a target astronomical object’s brightness and in Use Case 2, a star was found
to be incorrectly measured and it was investigated whether this star was used
in the calibration process. These use cases were then evaluated with and with-
out the use of the generated provenance and the relative resources required by
each method were quantified. Finally, the total impact of provenance capture
and usage was measured by comparing the computational resources required for
implementation and use case evaluation with and without the use of provenance.

The contributions of this paper are: identifying two use cases for which prove-
nance is vital for the astronomy community; a quantitative measurement of the
impact of provenance capture and usage with these use cases and the application
of PROV-Templates to a real world situation.

The structure of this paper is as follows, Sect. 2 outlines the astronomy appli-
cation and identifies the use cases which will be evaluated. Section 3 describes
the provenance generation method. Section 4 details the evaluation of the out-
lined use cases. Section 5 outlines the related work and finally, Sect. 6 discusses
our findings.

Using Astronomical Provenance 103

2 Astronomy Application

The motivation of this paper is to investigate the potential for provenance to
increase the efficiency of processing astronomical data, therefore we outline an
astronomical dataset and image processing pipeline in this section. The astro-
nomical images used throughout this were all taken of the low mass X-ray binary
(LMXB), GS 1354-64 which consists of a star in orbit around a black hole. The
pipeline identifies the objects in the images, measures the brightness of all objects
and calibrates them to account for changing viewing conditions in order to find
the variations in flux that GS 1354-64 exhibits over time. These optical varia-
tions can be used to determine properties of the system such as its orbital period,
which can then be used, in-conjunction with spectral information, to infer the
masses of the binary components. Currently, this is the only way we have to
robustly measure the mass of stellar mass black holes and increasing the sample
of known black hole masses enables us to better understand their properties.
Survey telescopes are the ideal equipment in order to discover more systems as
they are designed to systematically observe large swathes of the sky. As we are
looking to discover new LMXBs, we do not know their position, although we
may know areas of the sky where they are more likely to be. This means that
large quantities of data must be analysed in order to find the objects of interest
and it is essential to utilise any advantage in computational efficiency available
which motivates our investigation into the use of provenance in this regard.

2.1 The Image Processing Pipeline

The image processing pipeline had two main functions: differential photometry
and pattern recognition. As the measured brightness of the object in an image
is dependent on conditions such as clouds, the image’s proximity to the moon
and light pollution, the images must be calibrated via differential photometry,
whereby stars of known and constant brightness within the same image are used
to adjust the measured brightness for differences in observing conditions. The
pattern recognition was required in order to determine which source in the image
corresponds to which astronomical object. The use cases are both concerned with
differential photometry, therefore the explanation of the workflow will focus on
this aspect.

The left hand side of Fig. 1 is a UML sequence diagram depicting a simpli-
fied version of the differential photometry in the image processing pipeline. The
two lifelines of the UML diagram represent the script itself and the astronomical
images. The first message, performAperturePhotometry, measures the brightness
of all objects within the image. Then, differentialPhotometry compares the mea-
sured brightness of known objects (standard stars) to their true brightness in
order to calculate the brightness correction needed for that particular image.
The pipeline determined which stars should be used as standard stars for each
image individually. Multiple standard stars were used in order to get a more
consistent calibration as any individual star is more effected by things such as
noise or systematic uncertainties. Bright stars were also chosen for the same

104 M. A. C. Johnson et al.

Fig. 1. The left hand side is a UML sequence diagram depicting a simplified version of
the differential photometry process. The right-hand side is a PROV template generated
from performAperturePhotometry.

reason. Once some candidate stars had been selected, they were cross-referenced
with the SIMBAD astronomical database [5] to determine whether they were
non-variable stars and if they were found to be so, then their true brightness
was retrieved and compared to the measured value and the brightness correction
for that image could be calculated. This process was repeated for each standard
star in the image and the final correction was the averaged value. The bright-
ness of the target object (in this case GS 1354-64) was then adjusted using this
correction. This process was then repeated for all images. Finally, the corrected
brightness of the object across all images was plotted against time to give the
lightcurve, demonstrating the objects temporal optical variation.

2.2 Use Cases

In order to assess the usefulness of provenance for the astronomical community,
the following use cases have been identified.

Use Case 1. Variation Investigation - An Astronomer, Alice, detects a change
in luminosity in a star between two images taken on two different nights. Alice
determines whether the change was intrinsic to the object or a result of the image
processing pipeline.

First, this use case requires a record of the version of the pipeline that was
used for the image processing. The change in brightness could also be the result
of the standard stars used to correct the measurement, either different stars
being selected for each image processing step.

If the image processing is found to be consistent between the observations,
then the change in observed brightness can be deduced to be due to the object,
however if there are inconsistencies then the images must be reprocessed to
determine the true origin of the variation.

With no accompanying provenance, the processing would have to be
repeated, ensuring the pipeline was identical in order to dispel any doubt in
the origin of the variation.

Using Astronomical Provenance 105

Evaluation of Use Case 1 asserts absolute certainty that the origin of the
optical variation was not due to the image processing pipeline. However, it is
usually expected, for this application, that the origin of the variation is from
the object. Therefore, it is likely that Use Case 1 would only be evaluated when
the astronomer, Alice, detects an unexpected result, such as too much variation
or no variation at all. An unexpected result from astronomical images is not
uncommon, however, quantifying how often this will occur is difficult to deter-
mine as this kind of data is typically poorly documented within the astronomical
community. Consequently, estimated probabilities of 1%, 10% and 30% were all
investigated in order to assess the impact of evaluating Use Case 1 on the total
computational resources required.

Use Case 2. Calibration Propagation - A star that was previously thought to
be standard has been shown to demonstrate variability. Alice determines which
objects used this star for calibration and recalculates the photometry for them.
Standard stars are objects of known and constant luminosity that astronomers
use to calibrate images. If a standard star that was used for calibration had a
different brightness than what was accounted for, then the calibration could be
incorrect and an incorrect calibration means that the measured brightness of the
target object is wrong, invalidating the results.

Without the use of provenance, there are two possible solutions for this cal-
ibration propagation: firstly, with no knowledge of the standard stars used for
calibration, all images which contain the previously standard star would have to
be re-processed, ensuring that this star is not selected; secondly, the workflow
could be re-run up until the standard stars are selected from each image, and
with this information, only the images which use the previously standard star
in the calibration would be repeated.

Conversely, when evaluating this use case with provenance, the provenance
can be queried to return the list of standard stars used in the calibration process
for each image. From this, only the images which contain the newly variable star
have to be re-processed.

The invalidation of the use of a standard star could also be due to an incor-
rectly measured brightness as well as incorrectly determining the object to be
variable. Determining how often Use Case 2 is likely to be evaluated is not triv-
ial by any means as an object may be incorrectly measured or identified if: the
object saturated the image; a cosmic ray interfered with the image; there were
unaccounted for artefacts or systematics; the standard object exhibited sporadic
variation or it transitioned into a variable object. Taking into account all of
these scenarios, an estimated 1% probability that Use Case 2 would need to be
evaluated was assumed. It should be noted that this number could be calculable
if provenance use was more ubiquitous within the astronomy community.

3 Provenance in Astronomy Simulations

Whilst the aim of this paper is to demonstrate the use of provenance to reduce
the overall processing cost, we must also address the initial overhead introduced

106 M. A. C. Johnson et al.

by provenance capture. The PROV-TEMPLATE [4] approach was used to gener-
ate PROV-compatible provenance which described the workflow. Firstly, the full
pipeline was modelled as a UML Sequence Diagram and later, UML2PROV [6]
was used to generate templates that described the design of the provenance to be
generated for each function. During the execution of the workflow, bindings were
generated every time a function was called which contained the variable-value
pairs (such as inputs or outputs) that were specific to that call of the function and
had corresponding variables on the template for that function. On the right-hand
side of Fig. 1 we can see a template generated from performAperturePhotome-
try. After completion of the workflow, these bindings were then expanded with
their corresponding templates using the ProvToolbox1 to yield the individual
provenance files. These were then merged to produce the full provenance that
described the system.

The image processing pipeline analysed a series of 10 images of LMXB GS
1354-64 taken by the Faulkes Telescope. All of the computation was repeated
twenty times and the results in Fig. 2(a) represent the average and standard
deviation of these execution times. One should note that the only relevant time
increase for workflow execution time is the addition of bindings as the merg-
ing and expansion can both be done post pipeline. The size of the products of
the workflow with and without provenance were also assessed and are shown in
Table 1. The size of the inputs are also included to demonstrate that whilst the
provenance files are large when compared to the outputs, they are still inconse-
quential on the scale of the full workflow.

All simulations were run on a Dell Latitude E7470 laptop with the following
specifications: 8 GB of system memory; an Intel� CoreTM i5-6200U CPU @
2.30 GHz. The machine was running Ubuntu 16.04, kernel: 4.4.0-112-generic.

Table 1. The size of inputs consumed by and outputs produced by the image processing
pipeline with and without provenance generation.

Method Total input size Total output size

Workflow only 21 MB 20 kB

Workflow with provenance 21 MB 546 kB

4 Evaluation

4.1 Use Case 1

The astronomical pipeline may not always perform a consistent analysis from
image to image. It may have different parameters during the calibration such
as which stars were used as standard stars. It may also use different library
versions of the pipeline and the path that each data product made through

1 https://lucmoreau.github.io/ProvToolbox/.

https://lucmoreau.github.io/ProvToolbox/

Using Astronomical Provenance 107

(a) Timing: Workflow Execution,
with and without Provenance

(b) Timing: Analysis of Use Case 2

Fig. 2. (a) Average processing times for workflow execution, with and without prove-
nance generation. (b) Computational resources required to evaluate Use Case 2, when
implementing different solutions. Execution times vary depending on whether the newly
variable star was used as a standard star in the calibration on not, so both times are
shown. The combined fraction convolves these processing times with the probability
that any star in the image was used as a standard star. Both sets of results are the
average found over twenty simulations and the error bars represent their standard
deviation.

the pipeline may not always be the same. Use Case 1 investigates an observed
change in brightness from one image to another and tries to determine whether
this variation was inherent to the object itself or whether its origin was due to
inconsistencies in the image processing pipeline.

In order to evaluate Use Case 1 without provenance, the workflow must be re-
run over the series of images where the variation was observed, with the pipeline
versions and calibration settings made certain to be the same throughout. To
evaluate Use Case 1 with the use of provenance, SPARQL queries were written
to determine which versions of the pipeline and which standard stars were used
for each image. The queries were <10 lines long and had a negligible run time
(<1 s).

It was found that the same standard stars were used throughout the series of
images and the versions of the pipeline used were the same throughout as well.
Therefore, the observed variation could be deduced to not be due to the image
processing and the data did not need to be reprocessed. This information resulted
in a ∼99% increase in computational efficiency over evaluating the use case
without provenance. Table 2 shows the processing time necessary for evaluating
each use case, as well as the length of the code required to do so.

4.2 Use Case 2

Use Case 2 was to determine whether a star that was recently determined to
be variable was used in the image processing as a standard star and therefore
invalidated the calibration for that image. Three ways of evaluating Use Case 2

108 M. A. C. Johnson et al.

Table 2. Computational resources required to evaluate Use Case 1, including the
average run time and an order of magnitude of the lines of code needed to evaluate the
use case with and without the use of provenance.

Method Use case analysis
computation time (s)

SD (s) Lines of code
(approximate)

Workflow only 671 22 500

With provenance 1 0 10

were investigated: firstly, the workflow was completely re-executed, ensuring that
the variable star is not used in the calibration process; secondly the workflow was
executed up until the selection of standard stars, this information was recorded
and the images which contain the variable object were re-computed and finally,
the provenance of the workflow was queried to determine which images should
be re-processed.

For the first case, the time to evaluate Use Case 2 is the same as the original
execution time as there is no information on which images did or did not use the
variable object for calibration so all must be repeated. For the second scenario,
the evaluation time is reduced when the variable star was found not to be used
as a standard star as the workflow had to only be partially re-run. However,
if it were found to be used as a standard star then the workflow must also be
completely re-run with this star not being used in the calibration in addition
to the partial run to find the standard stars used. The third evaluation queries
the provenance in order to determine whether the newly variable star was used
as a standard star. In summary, the first evaluation assumes no knowledge of
the workflow and always completely re-runs. The second method determines
information on the standard stars used by partially re-running the workflow then
deciding whether it should all be re-run. The final method leverages provenance
information in order to determine whether the workflow should be re-run.

If it was not used as a standard star, then there was only the computational
cost of provenance querying required to evaluate the use case as the workflow
does not need to be re-run. If it was used as a standard star, then the workflow
must be re-run with the newly variable star not used during the calibration
process. The SPARQL queries used to evaluate this use case were <10 lines long
and had a negligible run time (<1 s), as before.

As the computational efficiency of two of the methods rely on whether the
newly variable star was used as a standard star, the probability that any star
in the image was used in the calibration as a standard star was calculated. This
probability was convolved with the computation time required by each method
of use case evaluation for if the star was used as a standard star and if it was
not. This probability, P , was defined as P = n/A where n is the number of
standard stars per image and A is the average number of objects per image. For
this example, 10 standard stars were used and the total number of objects in
the image was ∼450, therefore, assuming all objects were treated equally, there

Using Astronomical Provenance 109

was a ∼2% chance that any star in the image was used as a standard star. By
combining this probability with the two timings, we compute the average cost
of use case evaluation if any given star in the image was found to be variable.

Figure 2(b) shows the results for evaluating Use Case 2 with the three possible
solutions. The time represents the average execution time after repeating the
simulation twenty times. The columns in Fig. 2(b) represent time taken when
the object found to be variable was used as a standard star, when it was not
used as a standard star and both these results combined with the probability
that any star in the image was used as a standard star (the combined fraction).

We found that the computational processing cost of Use Case 2 evaluation
if the star is found to be standard decreases by 21% with provenance when
compared to partially re-running the workflow. However, we also found that the
processing time increases in this respect with the use of provenance by 47% when
compared to simply re-running the workflow. This is due to three reasons: firstly,
the initial overhead of provenance production; secondly the relatively small cost
of querying the provenance and finally, the workflow must be completely re-run
in either case as the fact the star was used as a standard star invalidates the
initial results. We also found that the cost of evaluation is greatly reduced if the
star was not used as a standard star because here, the only computational cost is
for querying the provenance which is negligible when compared to re-running the
workflow, increasing the efficiency by ∼99% when compared to either evaluation
without the use of provenance. Finally, when we combine these efficiencies with
the probability that the star will be used as a standard star, we found that
with the use of provenance, the computational efficiency of evaluating Use Case
2 increases by a factor of 97% and 96% when compared to evaluating it by
re-running and partially re-running the workflow, respectively.

5 Related Work

5.1 Provenance in Astronomy and e-Science

An early example of provenance within e-Science was outlined in Lanter et al. [7]
where they designed lineage meta-data base system in order to document the
sources of data in geographic information system (GIS) applications. This infor-
mation then assisted in determining the quality of the data and the fitness of use
for potential applications. Another example framework is myGrid [8], designed
to meet the needs of in silico experiments in biology. myGrid prioritises semantic
complexity over availability of computationally intensive resources to reflect the
data centric nature of the bioinformatic experiments.

Examples of frameworks designed with the needs of the astronomy com-
munity in mind are Chimera [9] and Kepler [10]. One of the motivations for
Chimera was SDSS, their data intensive needs and the requirement for scalabil-
ity. Chimera therefore developed the virtual data system which allowed for on
demand data generation, reducing the storage requirements.

Many scientists have adopted the use of scripting languages rather than work-
ing within scientific workflow systems due to their relative proficiency in them.

110 M. A. C. Johnson et al.

Fortunately for the modern astronomer, tools such as YesWorkflow [11] and
NoWorkflow [12] have been developed to automate the generation of provenance
from these scripts. Groth et al. [13] explored the use of provenance queries within
astronomy. They identified relevant astronomy use cases for provenance which
motivated the construction of a new provenance model which requires less stor-
age than traditional provenance generation in anticipation for the large data
production expected by LSST.

5.2 PROV-TEMPLATES

PROV-TEMPLATES facilitate the design and generation of provenance com-
patible with the PROV standard of the world wide web consortium [4]. PROV-
TEMPLATE generated provenance has previously been employed by A Giesler
et al. [14] to provide provenance tracking in scientific workflows.

One advantage of PROV-TEMPLATES over other methods of provenance
generation is that only the bindings need be created during workflow execu-
tion and they can then be expanded later. This not only reduces the initial
processing required at execution, but also can reduce the storage requirement
as the bindings are typically only 40% of the size of the expanded provenance
templates [4]. PROV-TEMPLATES also facilitate the generation of provenance
without the need for writing code to do so, such as as the tools YesWorkflow [11]
or NoWorkflow [12]. However, unlike these systems, PROV-TEMPLATES also
allow for complex queries over the provenance that are possible in purpose built
frameworks such as Chimera [9].

Table 3. Total computational processing cost of running the workflow with and with-
out provenance. Including processing cost of use case analysis combined with the prob-
ability that the use case must be evaluated. Use Case 1 results are combined with the
probability the use case would need to be evaluated 1%, 10% and 30% of the time.

Workflow run
time (s)

Use case 1 run time (s)
(1%, 10%, 30%)

Use case 2 run
time (s)

Total run time (s)
(1%, 10%, 30%)

Workflow
only

671 7, 67, 201 6 684, 744, 878

Workflow
with
provenance

987 <1 <1 988

6 Conclusions

We have found that recording the provenance of an image processing pipeline
increases the initial processing cost by ∼45%. However, we have also demon-
strated that the use of provenance resulted in an increase in computational
efficiency of 99% and 96% when evaluating Use Cases 1 and 2, respectively.
We speculated that evaluation of Use Case 1 would occur from 1% to 30% of

Using Astronomical Provenance 111

the time and Use Case 2 would likely need to be evaluated ∼1% of the time.
By combining the processing cost of provenance production, use case evaluation
and the probability that the use cases will need to be evaluated, we compute the
total net change in processing efficiency of the workflow by introducing prove-
nance generation as a decrease in computational processing efficiency of 13–44%,
depending on how often Use Case 1 needs to be evaluated. The full results are
shown in Table 3.

We also found that when including provenance, the total size of artefacts
produced by the workflow increased by a factor of ∼6. Whilst these results
do represent a large increase in data products, it should be noted that they
are completely un-optimised for storage space savings. Also the provenance is
fairly fine-grained and has the potential to evaluate many other use cases not
investigated in this paper. This means that there is the possibility for a significant
reduction in both the size of the final provenance and its intermediate products.
Furthermore, the combined data products from provenance production and the
workflow still represented <1% of the total data products consumed by the
pipeline as the size of the input images dwarfs that of the data products.

These results pertain to the image processing pipeline used during this paper
and it is likely to change from pipeline to pipeline. Having said this, other
pipelines which are designed to achieve the same goals will likely be similar
in operation and correlate with the results found in this paper. One interesting
investigation would be the comparison between results obtained with the use of
PROV standard provenance vs the home-grown provenance solutions developed
by astronomers as part of their scripts.

One limitation of our approach was determining the probability that the use
cases would need to be evaluated as we were only able to postulate estimated
probabilities. The more often these use cases need to be evaluated, the more
provenance positively impacts the computational efficiency of the workflow. The
results therefore only serve as an estimation of the impact of provenance record-
ing on the computational efficiency of astronomical workflows.

The results suggest that implementing provenance recording on astronomical
workflows has a negative impact on the computational resources required. How-
ever, it has been clearly demonstrated that including provenance vastly reduces
the evaluation time of the outlined use cases and identifying more use cases
would therefore increase net computational efficiency of the workflow when using
provenance.

In conclusion; can provenance be used to decrease the computational
resources consumed by astronomical workflows? No, if the only use cases for
provenance are the two outlined in this paper. However, there is the potential to
do so with additional investigation into use cases for astronomical provenance.

112 M. A. C. Johnson et al.

References

1. York, D.G.: The Sloan digital sky survey: technical summary. Astron. J. 120(3),
1579 (2000)

2. Law, N.M., et al.: The palomar transient factory: system overview, performance,
and first results. Publ. Astron. Soc. Pac. 121(886), 1395 (2009)

3. Anthony Tyson, J.: Large synoptic survey telescope: overview. In: Survey and
Other Telescope Technologies and Discoveries, vol. 4836, p. 10–21. International
Society for Optics and Photonics (2002)

4. Moreau, L., Batlajery, B., Huynh, T.D., Michaelides, D., Packer, H.: A templating
system to generate provenance. IEEE Trans. Softw. Eng. 44, 103–121 (2017)

5. Wenger, M., et al.: The SIMBAD astronomical database-the CDS reference
database for astronomical objects. Astron. Astrophys. Suppl. Ser. 143(1), 9–22
(2000)

6. Sáenz-Adán, C., Pérez, B., Huynh, T.D., Moreau, L.: UML2PROV: automating
provenance capture in software engineering. In: Tjoa, A.M., Bellatreche, L., Biffl,
S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp.
667–681. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73117-9 47

7. Lanter, D.P.: Design of a lineage-based meta-data base for GIS. Cartograph. Geo-
graph. Inf. Syst. 18(4), 255–261 (1991)

8. Stevens, R.D., Robinson, A.J., Goble, C.A.: myGrid: personalised bioinformatics
on the information grid. Bioinformatics 19(suppl. 1), 302–304 (2003)

9. Foster, I., Vockler, J., Wilde, M., Zhao, Y.: Chimera: a virtual data system for
representing, querying, and automating data derivation. In: Proceedings of 14th
International Conference on Scientific and Statistical Database Management, pp.
37–46. IEEE (2002)

10. Ludäscher, B., et al.: Scientific workflow management and the Kepler system. Con-
curr. Comput.: Pract. Exp. 18(10), 1039–1065 (2006)

11. McPhillips, T., et al.: YesWorkFlow: a user-oriented, language-independent tool
for recovering workflow information from scripts. arXiv preprint arXiv:1502.02403
(2015)

12. Murta, L., Braganholo, V., Chirigati, F., Koop, D., Freire, J.: NoWorkFlow: cap-
turing and analyzing provenance of scripts. In: Ludäscher, B., Plale, B. (eds.)
IPAW 2014. LNCS, vol. 8628, pp. 71–83. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-16462-5 6

13. Groth, P., Deelman, E., Juve, G., Mehta, G., Berriman, B.: Pipeline-centric prove-
nance model. In: Proceedings of the 4th Workshop on Workflows in Support of
Large-Scale Science, p. 4. ACM (2009)

14. Giesler, A., Czekala, M., Hagemeier, B., Grunzke, R.: UniProv: a flexible prove-
nance tracking system for UNICORE. In: Di Napoli, E., Hermanns, M.-A., Iliev,
H., Lintermann, A., Peyser, A. (eds.) JHPCS 2016. LNCS, vol. 10164, pp. 233–242.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53862-4 20

https://doi.org/10.1007/978-3-319-73117-9_47
http://arxiv.org/abs/1502.02403
https://doi.org/10.1007/978-3-319-16462-5_6
https://doi.org/10.1007/978-3-319-16462-5_6
https://doi.org/10.1007/978-3-319-53862-4_20

Scientific Workflows

Discovering Similar Workflows via
Provenance Clustering: A Case Study

Abdussalam Alawini(B), Leshang Chen, Susan Davidson, Stephen Fisher,
and Junhyong Kim

University of Pennsylvania, Philadelphia, USA
{alawini,leshangc,susan}@cis.upenn.edu,

{safisher,junhyong}@sas.upenn.edu,
http://www.upenn.edu

Abstract. Several workflow management systems and scripting lan-
guages have adopted provenance tracking, yet many researchers choose
to manually capture or instrument their processing scripts to write
provenance information to files. The Next Generation Sequencing (NGS)
project we are associated with is tracking provenance in such manner.
The NGS project is a collaboration between multiple groups at different
sites, where each group is collecting and processing samples using an
agreed-upon workflow. The workflow contains many stages with vary-
ing degrees of complexity. Over time workflow stages are modified, but
data samples are only comparable when processed with identical versions
of the workflow. However, for various reasons (including the distributed
nature of the collaboration) it is not always clear which samples have
been processed with which version of the workflow. In this paper, we
introduce new techniques for clustering provenance datasets and attempt
to discover the ones that are likely to be generated by same workflow.
Based on the clustering result, users can identify similar provenance and
would be able to categorize them into different clusters for debugging
and zoom-in/zoom-out viewing.

Keywords: Workflow provenance · Clustering
Document classification · Structural features · K-Means

1 Introduction

Workflow management systems and scripting languages are increasingly being
instrumented to capture provenance, however many scientists choose not to use
these tools. Instead, they manually capture or instrument their processing scripts
to write a certain amount of provenance information to files (e.g. spreadsheets)
and use this to enable verifiability and reproducibility. This is the case in the
Next Generation Sequencing (NGS) project we are associated with, which is a
collaboration between multiple groups at different sites. As sequencing samples

J. Kim—Evolutionary and Molecular Biology (Kim) Lab, University of Pennsylvania.

c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 115–127, 2018.
https://doi.org/10.1007/978-3-319-98379-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_9&domain=pdf

116 A. Alawini et al.

are collected within a group, they are processed using an agreed-upon workflow.
The workflow contains many stages with varying degrees of complexity. Over
time workflow stages are modified, e.g. by updating software packages, updating
reference libraries or simply changing parameter values. Data samples are only
comparable when processed with identical versions of the workflow, however
for various reasons (including the distributed nature of the collaboration) it is
not always clear which samples have been processed with which version of the
workflow. The goal of this work is to determine which samples were processed by
which version of the workflow by clustering the collected provenance information.

In this paper, we introduce new techniques for clustering provenance datasets
and attempt to discover the ones that are likely to be generated by same work-
flow. Based on the clustering result, users are able to identify similar provenance,
and would be able to categorize them into different subsections for debugging
and zoom-in/zoom-out viewing. Our approach takes as input a set of prove-
nance datasets (modeled as PROV-DM graphs), computes abstracted prove-
nance graphs, extracts textual and structural features from each graph, and uses
these features to cluster provenance graphs into groups; each group indicates a
similar workflow template. We have tested our approach using two datasets, a
realistic gene-sequencing dataset and a synthetic dataset, as discussed in Sect. 4.
To enable testing the clustering accuracy, our real dataset was manually labeled
by human experts, and for our synthetic dataset we attached a label to each
provenance graph that indicates the workflow that was used to generate them.
In practice, we assume that no labels are attached.

The remainder of this paper is organized as follows. We introduce the moti-
vation for this problem within next generation sequencing and discuss related
work in Sect. 2. In Sect. 3, we introduce our provenance clustering framework
and discuss our data model. In Sect. 4 we present our preliminary experimental
results, and we conclude and discuss future work in Sect. 5.

2 Background

We start by introducing our running example and then discuss related work, in
particular, techniques related to clustering workflow templates and their prove-
nance.

2.1 Next Generation Gene Sequencing (NGS)

Sequencing is a technique used to decipher the nucleotide code in a strand of
DNA or RNA. Next generation sequencing (NGS) is a high-throughput method
of sequencing that has revolutionized genomic research over the past ten years.
NGS experiments contain complex experimental procedures with extensive pro-
cessing of the data after the actual sequencing event. Post-sequencing analysis
workflows typically have many stages involving different programs, scripts, and
reference libraries.

Discovering Similar Workflows via Provenance Clustering: A Case Study 117

While the post-sequencing workflow is largely automated, due to the mul-
titude of diverse programs and files used in the workflow there are many ways
things can go wrong due to both human and computer errors. The programs and
reference libraries used in the workflow are also under active development, and
incorporating updates can be problematic. It is therefore critically important
to be able to identify when either erroneous programs or reference libraries are
used as these errors can have direct effects on downstream, high-level analyses.
It is also important to be able to recover from unexpected or unidentified loss
of provenance data. Hence it is necessary to be able to identify which pipeline
was used to process a given sample which might be missing provenance data.
Our provenance clustering approach can help with identifying workflow execu-
tions with erroneous or missing provenance as such provenance graphs would
not be placed in the same cluster as those with correct and complete provenance
information.

2.2 Related Work

There has been work on clustering workflow and provenance graphs using
machine learning techniques such as K-Means and hierarchical clustering [4,11].
Because the accuracy of clustering relies heavily on the effectiveness of extracted
features, it is crucial to identify an indicative set of features for workflows and
provenance graphs. For workflow templates, clustering is more straightforward
as module identifiers can be used to determine the identity of workflow modules
and group workflows with similar modules. Santos et al. [11] developed two tech-
niques for clustering workflow templates. In the first technique, they represent
workflow graphs using one-hot encoding,1 whereas in the second they use Max-
imum Common Induced Subgraphs.2 Jung et al. [4] use both of these ideas in
a two-phase clustering scheme. Since these papers treat workflow nodes as the
smallest identifiable and labeled unit, their approaches can only be applied to
workflows.

Another related line of work is process mining from log files. Lu et al. [5]
studied detecting varying behaviors among executions of processes in the field of
business analysis. There has been also work on subgraph mining. Garijo et al. [3]
developed an approach that combines exact and inexact graph mining methods
to identify the most common sub-graphs in a corpus of workflows.

Unlike workflow clustering, clustering provenance graphs imposes several
challenges. Provenance graphs only capture workflow execution information,
which makes it very difficult to infer information about the original work-
flow modules. Additionally, each workflow run may produce somewhat differ-
ent provenance graphs due to different agents, timing or process id information.
In [5], the minimum unit in each execution is labeled atomic event, while the
label is not obtainable in our setting. Chen et al. [1] represented provenance

1 One-hot encoding is a process in which categorical data is converted into a bit vector.
2 An induced subgraph is a subset of nodes along with the edges connecting them in

original graph.

118 A. Alawini et al.

graphs as temporal data, which are built from the execution order of the orig-
inal workflow. They also introduce clustering methods that use temporal and
connectivity information, such as the number of incoming edges of a particu-
lar type. However, most of their features were manually selected. Further, the
features contain connectivity information, which can only be used for a specific
application domain. Clustering provenance graphs requires a set of indicative
and domain-agnostic features that allow for clustering provenances regardless of
their application domain.

Graph edit distance (GED) has been studied in previous graph matching
work [2,13]. GED is a metric used to quantify the distance between a pair of
graphs by counting the minimum number of edge/node operations (insert, delete
or update) required to transform one graph into the other. Computing the GED
between two graphs is know to be NP-Hard [13]; it has also been shown to
be hard to approximate (APX-Hard) [12]. Thus, in this paper, we use other
similarity metrics as we discuss in the next section.

3 Clustering Workflow Provenance

In this section, we introduce our provenance clustering framework and data
model.

3.1 Provenance Clustering Framework

As shown in Fig. 1, our provenance clustering framework consists of four pro-
cesses: Compute APG Graphs, Extract Textual Features, Extract Structural Fea-
tures, and Cluster APG Graphs. First, Compute APG Graphs builds Abstract
Provenance Graphs (APGs) from each provenance graph. Then, Extract Tex-
tual and Structural Feature processes extract text and structural vectors, which
will be used by the clustering algorithm. Next, Cluster APG Graphs uses these
feature vectors to approximate similarity between APG graphs and cluster them
accordingly. We discuss the details of our framework processes below.

Fig. 1. Graph clustering framework

3.2 Data Model: Abstract Provenance Graphs

Provenance data is typically modeled as a graph G = (V,E), where V denotes
the set of workflow modules and E denotes the direction of data flow between
modules. Specifically, we use the PROV-DM [7] as our data model, but the

Discovering Similar Workflows via Provenance Clustering: A Case Study 119

Fig. 2. Example of an PROV graph and its abstract activity graph

approach we propose is general and applicable to other formats. PROV graphs
are very large and complex in structure. They store information about agents,
entities and activities involved in a workflow execution. To improve clustering
performance and accuracy, we summarize PROV graphs by removing certain
types of provenance data, such as agents and entities, that are not useful for
clustering provenance based on the workflow template.

In this paper, we introduce an approach for converting a PROV graph into
an Abstract Provenance Graph3. APG = (VAPG, EAPG) is a graph where VAPG

is a set of activity nodes and EAPG is a set of edges connecting them. We focus
on analyzing activity nodes because they contain workflow modules (programs,
scripts, software libraries, etc.) and execution information (e.g., function calls,
execution parameters, software version, etc.) that we can use to reconstruct the
modules of the original workflow template.

Because activity nodes in PROV graphs may not be directly connected, our
technique also reconstructs connections between activities. For example, two
activities could be connected via an entity node (i.e., one activity generated an
entity, which was used by another activity). Thus, when constructing an APG
graph, we connect two activities if the first activity is connected to an entity
node via “GENERATED BY” edge, and the second activity is connected to
the same entity via “USED” edge. An example of a provenance graph and its
APG is shown in Fig. 2. APG nodes also contain key-value properties containing
provenance information of each activity. Listing 1 shows the properties of the
“Trim” activity shown in Fig. 2.

1 {"name": "kimlab:_225f2b0c-e5bd -4a15-b606-5accc184b26f",

2 "attributes":

3 { "{.../ provDefs/trim#}remove -N": "1",

4 "{.../ provDefs/trim#}contaminants -file":

5 ".../ provDefs/trim/contaminants.fa",

6 "...":"..." }
7 }

Listing 1. Properties of the “Trim” activity shown in Fig. 2

3 Linking two activities with a common entity is now supported by PROV Constraint
33.

120 A. Alawini et al.

3.3 Feature Extraction

Selecting the right feature sets is crucial to the accuracy of any clustering algo-
rithm. Our provenance clustering approach extracts indicative textual and struc-
tural feature vectors from APG graphs, and combines these features to calculate
similarity between PROV graphs.

Textual Features. To compute text features of APG graphs, we build on
ideas from textual cluster analysis (document clustering) techniques [10]. Term
Frequency and Inverse Document Frequency (TF-IDF) is a widely used technique
in information retrieval and text mining for weighting the importance of terms
in a document [8]. We use TF-IDF to build a textual feature vector for each
APG graph, as described below.

For each APG graph, we compute a feature vector as follows. First, we extract
properties from each activity node. Second, we extract the key part of each
key-value property (ignoring values as they change with each run). Third, for
each APG graph, we generate a feature vector by computing TF-IDF over the
extracted keys. TF-IDF can be computed by the following formula:

TF-IDF(g) = TF(g) ∗ IDF(g) (1)
TFt,g = 1 + log(ct,g) (2)

IDFt,g = log(
|g|

|gt| + 1
) (3)

Here, ct,g is the count of occurrence of word t in graph g. |gt| is the count of all
graphs who contain word t, and |g| is the total number of graphs in the dataset.

Table 1 shows an example of the feature vector extracted from the document
shown in Listing 1:

Table 1. Text features extracted from example graph in Fig. 2

kim bio upenn provDef trim remove-N contaminats-file . . .

Graph1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 . . .

Structural Features. In data mining, spectral graph analysis [2] is often used
to analyze graph structure. Previous research [9] proposed clustering graphs by
structural patterns, where they compute the distance of graphs by finding the
sequence of edit operations, and costs are determined by the components of
leading eigenvectors of adjacency matrix. The experimental results have shown
that the algorithm is a good approximation of distance between graphs [6]. We
use this method in extracting structural features from APG graphs.

First, we represent an APG graph Gk = (Vk, Ek) by an adjacency matrix:

Ak(i, j) =

{
1 (i, j) ∈ Ek, or (j, i) ∈ Ek

0 otherwise
(4)

Discovering Similar Workflows via Provenance Clustering: A Case Study 121

where k refers to the k’th provenance graph. To ensure that feature values are
real numbers, we convert the provenance graph to be undirected.

Then we calculate the eigenvalues of the adjacency matrix and place them
in a vector by descending order.

Bk = LeadingEigenvals(Ak) = [λ1
k, . . . , λ

n
k]T (5)

Here n is the size of the adjacency matrix and λi
k is the eigenvalue. In spectral

analysis, this vector stands for the major structural information (spectrum, and
connectivity) of the provenance graph. Then, we compute Principle Component
Analysis (PCA) to reduce the size of the feature space and get a regularized
structural feature vector on a common vector space.

Here is an example of the structural feature extracted from an APG graph
of 5 activity nodes linked in pipeline structure (Table 2).

Table 2. Structural features extracted from an example graph

Largest eigenvalue 2nd largest eig 3rd largest eig

Graph1 1.73 1.0 0

Combining Features. There are cases where two provenance graphs have
similar structure, but are generated from two different workflow templates, or
visa versa. Thus, we need to combine text features and structural features to
avoid clustering unrelated graphs together. To enable generalizability and cus-
tomizability of our approach, we allow users to assign normalization weights as
discussed below. The formula for combining textual and structural features is as
follows:

Text-Feature(g) = TFIDF(g) = [ft1,g, . . . , ftd,g]
Structural-Feature(g) = LeadEigval(g) = [xt1,g, . . . , xtm,g]

Combined-Feature(g) = [λ ∗ TFIDF,
√

1 − λ2 ∗ LeadEigval]

where λ is normalization factor used to determine feature importance. It is easy
to see that if we only want to rely on textual feature, we can set λ = 1, ignoring
structural features as their normalization factor will be set to zero in Combined-
Feature. To enable combined textual and structural feature set, we can tune the
value as λ =

√∑
j xtj ,g

2/(
∑

i fti,g
2 +

∑
j xtj ,g

2) over a small subset of feature
vectors g so that both features have approximately equal contribution to the
objective function (squared distance) of K-Means (introduced later). Note that
we also need to normalize the scale of the two kinds of features to make their
average to be at the same level, in case that they are very different.

122 A. Alawini et al.

3.4 Measuring Graph Similarity

The similarity between two graphs is measured by the distance between their
corresponding feature vectors. The closer the distance measure between a pair
of feature vectors, the more similar their corresponding graphs are. Several sim-
ilarity metrics can be used. If we naively treat the occurrence of each word inde-
pendently, then the similarity between documents can be calculated based on
Euclidean Distance between corresponding points. Another metric is the Cosine-
Similarity metric, which can be used to compute the angle between a pair of doc-
ument vectors. A third similarity metric is to compute the correlation between a
pair of feature vectors. In Sect. 4, we report the results of clustering provenance
graphs using these three similarity metrics.

Given a pair of feature vectors:

Vector(G) = Features(G) = [feature1, . . . , featurem] (6)

We can compute the similarity between a pair of APG graphs (G1, G2) as fol-
lowing, meaning that they are negatively correlated:

Similarity(G1, G2) ∝ 1/Distance(Vector(G1),Vector(G2)) (7)

3.5 Clustering Algorithm

There are several clustering algorithms, including K-Means, Hierarchical and
Density-Based Spatial Clustering of Applications with Noise (DBSCAN). One
of the most popular clustering approaches is the K-means algorithm. K-means
groups an input set of data points into K clusters so it minimizes the intra
cluster distance. K-Means algorithm aims at minimizing the following objective
function (squared error function):

J =
∑N

n=1

∑K

k=1
rnk||xn − μk||2

where ||xn − μk||2 is the distance measure between a data point xn and the
cluster center μk. In our approach, we use K-Means with Euclidean, Cosine, and
Correlation distance metrics, as we discuss in the next section.

4 Preliminary Experiments

In this section, we report the results of our preliminary evaluation on real and
synthetic provenance datasets. We ran our experiments on a machine with a
3.2 GHz Intel i7 processor and 12 GB of RAM. We use Python machine learning
library, scikit-learn, which includes packages for K-Means, TF-IDF, nltk.tokenize
(word tokenizer), and NumPy (scientific computing library). We also use MAT-
LAB to test K-Means over several distance metrics, as discussed below.

Discovering Similar Workflows via Provenance Clustering: A Case Study 123

4.1 Provenance Datasets

Real Datasets. We compiled a dataset4 from approximately 1,300 NGS exper-
iments with extensive data provenance describing pre- and post-sequencing
events. In particular, this dataset includes experimental samples processed by
nine different variants of a post-sequencing workflow used for the primary anal-
ysis of NGS data. The analysis workflow includes six possible stages (i.e. Blast,
FastQC, Trim, STAR, HTSeq, and Verse) with each sample being processed by
three to five of the stages.

Synthetic Datasets. To test the performance of our graph clustering algorithm
with varying and complex provenance graph structures, we generated a set of
synthetic provenance graphs. We modified the structure of a random sample of
the realistic datasets we described above by inserting or deleting activities, or
adding subgraphs from other provenance graphs, generating about 866 prove-
nance graphs with three different structures.

4.2 Analysis over Real Datasets

We first report on experimental results over real datasets. In the first experi-
ment, we evaluated our clustering algorithm on combined textual and structural
features using three distance metrics (Euclidean, cosine and correlation). We
used the elbow method, a technique for determining the optimal number of clus-
ters, by analyzing the change in the sum of squared intra-cluster distance error
(squared error) as a function of the number of clusters. The optimal number of
clusters should (1) minimize the squared error; and (2) reduce the number of
clusters to avoid overfitting.

1 2 3 4 5
Number of Clusters (Combined Features)

0

1

2

3

4

5

6

Su
m

 o
f S

qu
ar

ed
 In

-C
lu

st
er

 D
is

ta
nc

e

Euclidean
Cosine
Correlation

Fig. 3. Squared error of clustering over real datasets

4 Our dataset is available for download at https://github.com/alawinia/provClus
tering.

https://github.com/alawinia/provClustering
https://github.com/alawinia/provClustering

124 A. Alawini et al.

Table 3. Matching of clusters when k = 3 using Euclidean distance

Actual cluster In-cluster recall (%) Data count

1 92.8 111

2 98.5 199

3 89.7 215

Figure 3 shows the result of this experiment. The Euclidean distance works
best with our combined features as it assigns larger distance than the cosine
or correlation metrics. We also see that the optimal number of clusters for our
NGS dataset is 3, as three clusters reduced the error to almost zero. This results
matches the golden standard of our real (labeled) datasets. We define the in-
cluster recall to be the percentage of provenance graphs that are produced by
the same workflow template and have been clustered together. Table 3 shows
the recall of our clustering technique, which has a weighted average accuracy of
93.7%.

4.3 Analysis over Synthetic Datasets

We evaluated our clustering approach over the synthetic dataset using textual,
structural and a combination of structural and textual features. Figure 4 plots
the sum of intra-cluster squared distance of K-Means algorithm using Euclidean
distance with varying number of clusters. The results shows that the optimal
number of clusters are 3, 4 and 5 using structural, textual and combined features,
respectively. Using combined textual and structural feature vectors, we were able
to get the correct number of clusters in the synthetic dataset. Table 4 shows that
the per-cluster accuracy of our approach is 96%.

1 2 3 4 5 6
Number of Clusters (All Features)

0

2

4

6

8

10

12

14

Su
m

 o
f S

qu
ar

ed
 In

-C
lu

st
er

 D
is

ta
nc

e

Combined
Text
Structure

Fig. 4. In-cluster squared error over synthetic datasets

Discovering Similar Workflows via Provenance Clustering: A Case Study 125

Table 4. Clustering at k = 5 using combined features and Euclidean distance

Cluster In-cluster recall (%) Data count

1 100 95

2 100 157

3 91.0 334

4 100 95

5 100 185

4.4 Running Time Analysis

We also test the running time of our provenance clustering approach under large
workloads. For this experiment, we developed two synthetic provenance datasets.
The first set has about 60 features and 120 words extracted from each graph in
the dataset. The second set has about 120 features and 240 words. We evaluated
the performance of feature extraction and clustering over different number of
samples. The number of samples doubles at each test.

4500 9000 18000 36000 72000
(a) Number of Graphs vs Clustering

0

0.5

1

1.5

2

2.5

Ti
m

e
fo

r C
lu

st
er

in
g(

s)

60 features
120 features

4500 9000 18000 36000 72000
(b) Num of Graphs vs Extraction

0

20

40

60

80

100

Ti
m

e
fo

r F
ea

tu
re

 E
xt

ra
ct

io
n(

s) 120 words each
240 words each

Fig. 5. (a) Time for clustering step vs. the number of graphs; (b) Time for feature
extraction step vs. the number of graphs. Note that the number of input graphs
increases exponentially, but the running time is linear.

Figure 5(a) shows the time analysis. We can see that clustering takes less
than 2.5 s, which is very reasonable. Doubling the number of features (from 60
to 120) increases the processing time by about 1.75x. As a result, we can infer
that our clustering approach is roughly linear in the size of the input.

Figure 5(b) shows that extracting text features takes more time than cluster-
ing. When extracting a large number of text features for a large graph dataset,
feature extraction takes up to 85 s. However, since features are extracted on a
per-graph-basis, we can run text feature extraction for different graphs in par-
allel. Meanwhile, extracting structural features is really fast, and the time is

126 A. Alawini et al.

typically less than 10 s. The reason is that the structural information only con-
sists of connectivity, and that various optimization techniques can be used to
calculate eigenvalues.

5 Conclusion

This paper introduced a new approach for clustering workflow provenance,
enabling effective management and utilization of large provenance datasets. Our
approach uses text and structural feature sets extracted from summaries of the
provenance graphs. We tested our approach on real and synthetic workloads; pre-
liminary results show an accuracy of over 93% and a running time that is linear
to the size of the input. The textual and structural information are domain-
independent, and can be therefore used to cluster any type of provenance graph.

In future work, we plan to develop a visualization technique that uses our
provenance clustering approach to enable workflow visualizations that can zoom-
out to higher levels of abstraction. We will also explore clustering provenance
graphs based on common subgraphs. To do so, we need to implement a fine-
grained method for analyzing provenance graphs at the node- and edge-level.
We will also explore adding features from entities (such as input and output
parameters of workflow modules) and agents.

References

1. Chen, P., Plale, B., Aktas, M.S.: Temporal representation for mining scientific data
provenance. Future Gener. Comput. Syst. 36, 363–378 (2014). Special Section:
Intelligent Big Data Processing

2. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal.
Appl. 13(1), 113–129 (2010)

3. Garijo, D., et al.: FragFlow automated fragment detection in scientific workflows.
In: 2014 IEEE 10th International Conference on e-Science, vol. 1, pp. 281–289,
October 2014

4. Jung, J.-Y., Bae, J.: Workflow clustering method based on process similarity. In:
Gavrilova, M.L., et al. (eds.) ICCSA 2006. LNCS, vol. 3981, pp. 379–389. Springer,
Heidelberg (2006). https://doi.org/10.1007/11751588 40

5. Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.: Detecting
deviating behaviors without models. In: Reichert, M., Reijers, H.A. (eds.) BPM
2015. LNBIP, vol. 256, pp. 126–139. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-42887-1 11

6. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral clustering of graphs. In: Hancock,
E., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 190–201. Springer, Hei-
delberg (2003). https://doi.org/10.1007/3-540-45028-9 17

7. Moreau, L., Missier, P.: PROV-DM: The PROV Data Model, April 2013. http://
www.w3.org/TR/2013/REC-prov-dm-20130430/

8. Robertson, S.: Understanding inverse document frequency: on theoretical argu-
ments for IDF. J. Doc. 60(5), 503–520 (2004)

9. Robles-Kelly, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE
Trans. Pattern Anal. Mach. Intell. 27(3), 365–378 (2005)

https://doi.org/10.1007/11751588_40
https://doi.org/10.1007/978-3-319-42887-1_11
https://doi.org/10.1007/978-3-319-42887-1_11
https://doi.org/10.1007/3-540-45028-9_17
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/

Discovering Similar Workflows via Provenance Clustering: A Case Study 127

10. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Inf. Process. Manag. 24(5), 513–523 (1988)

11. Santos, E., Lins, L., Ahrens, J.P., Freire, J., Silva, C.T.: A first study on clustering
collections of workflow graphs. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW
2008. LNCS, vol. 5272, pp. 160–173. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-89965-5 18

12. Selçuk, C.K., Sapino, M.L.: Data Management for Multimedia Retrieval, p. 114.
Cambridge University Press, Cambridge (2010)

13. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approx-
imating graph edit distance. Proc. VLDB Endow. 2(1), 25–36 (2009)

https://doi.org/10.1007/978-3-540-89965-5_18
https://doi.org/10.1007/978-3-540-89965-5_18

Validation and Inference of Schema-Level
Workflow Data-Dependency Annotations

Shawn Bowers1(B), Timothy McPhillips2, and Bertram Ludäscher2

1 Department of Computer Science, Gonzaga University, Spokane, USA
bowers@gonzaga.edu

2 School of Information Sciences, University of Illinois, Urbana-Champaign,
Champaign, USA

tmcphillips@absoluteflow.org, ludaesch@illinois.edu

Abstract. An advantage of scientific workflow systems is their abil-
ity to collect runtime provenance information as an execution trace.
Traces include the computation steps invoked as part of the workflow
run along with the corresponding data consumed and produced by each
workflow step. The information captured by a trace is used to infer “lin-
eage” relationships among data items, which can help answer provenance
queries to find workflow inputs that were involved in producing specific
workflow outputs. Determining lineage relationships, however, requires
an understanding of the dependency patterns that exist between each
workflow step’s inputs and outputs, and this information is often under-
specified or generally assumed by workflow systems. For instance, most
approaches assume all outputs depend on all inputs, which can lead to
lineage “false positives”. In prior work, we defined annotations for spec-
ifying detailed dependency relationships between inputs and outputs of
computation steps. These annotations are used to define corresponding
rules for inferring fine-grained data dependencies from a trace. In this
paper, we extend our previous work by considering the impact of depen-
dency annotations on workflow specifications. In particular, we provide
a reasoning framework to ensure the set of dependency annotations on a
workflow specification is consistent. The framework can also infer a com-
plete set of annotations given a partially annotated workflow. Finally, we
describe an implementation of the reasoning framework using answer-set
programming.

1 Introduction

Within most scientific workflow systems, a workflow specification (or schema) is
modeled as a graph of nodes representing computational steps and edges rep-
resenting the data and control flow between steps [5,10]. Each workflow step
in a specification is typically treated as a “black box” by the workflow system.
For example, steps are frequently configured to invoke external programs, exe-
cute scripts, or call web services, where the step exposes only the inputs needed
and the corresponding outputs returned by the underlying calls. Once designed,

c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 128–141, 2018.
https://doi.org/10.1007/978-3-319-98379-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_10&domain=pdf

Validation and Inference of Schema-Level Workflow 129

workflow specifications serve as executable and potentially reusable (e.g., using
different input data and parameter settings) scientific analyses. Because scien-
tific workflow systems invoke and control the flow of data between steps during
workflow execution, most systems provide support for recording (or logging)
information about a workflow run. A workflow trace stores information associ-
ated with a run as an instance of a workflow specification [2,5]. In particular,
traces are modeled as graphs with nodes representing the invocations of steps
and edges representing the data passed between each step’s execution. Traces
are often used to infer the lineage of workflow data products. For instance, given
a data product output by a run, many systems use the trace to determine the
steps that were invoked as well as the input and intermediate data products that
contributed to its generation [2,5].

However, because steps in a workflow specification are black boxes, workflow
systems often “overestimate” the lineage relationships from a workflow trace
[2]. For instance, many systems assume that all data input to a step is used
to produce all outputs, when in fact only a portion of input data may produce
any particular output [2,4]. Additionally, most systems consider only a single,
often underspecified notion of dependency between a step’s inputs and outputs,
e.g., where data items are said to be “influenced by” or “contribute to” other
data items [3]. Taken together, the lineage information inferred from workflow
traces may result in lineage relationships that are not only unclear, but often
misleading or even incorrect.

In prior work [2], we developed a set of declarative rules for specifying depen-
dency patterns of individual computation steps. The inputs and outputs of a step
are annotated with rules, which are then used to infer the specific input data
used to produce an output for each invocation of a step within a trace. However,
to be effective, this approach requires a complete set of annotations for every
step within a workflow specification.

Contributions. We describe extensions to our prior work that supports par-
tially annotated workflow specifications and employs reasoning techniques to
validate and help infer a complete set of annotations. We consider different use
cases related to annotating a workflow specification and provide a set of depen-
dency types that can be used to help clarify the lineage relationships present
within a workflow trace. Finally, we describe a prototype implementation of our
approach (implemented using answer-set programming) that we plan to add to
the YesWorkflow system [11] as future work.

Organization. In Sect. 2 we describe an abstract model of workflow specifica-
tions, give an overview of the dependency types we consider for annotations, and
discuss use cases related to our framework. In Sect. 3 we describe the constraints
associated with the dependency types as well as the corresponding inferences for
reasoning over partially annotated workflow specifications. In Sect. 4 we present
a prototype implementation of the reasoning approaches described in Sect. 3.
Finally, in Sects. 5 and 6 we describe related and future work, respectively.

130 S. Bowers et al.

2 Workflow Dependency Annotations

This section describes an abstract model for workflow specifications used in
the rest of the paper, an overview of the types of dependencies we consider
for workflow annotations, and three example use cases related to annotation
inference.

Workflow Specifications. We consider an abstract workflow model that con-
forms to YesWorkflow [11] and similar dataflow-oriented scientific workflow mod-
els [2,5]. A workflow W = (P,D,E) consists of a set of program blocks P (work-
flow steps, i.e., computations), data blocks D (representing data items or data
containers), and input and output edges E ⊆ P × L × D × {in, out} where
L is a set of labels that uniquely identify edges within W . We use relations
in(pi, xi, di) and out(pj , xj , dj) to denote input and output edges, respectively,
for pi, pj ∈ P , xi, xj ∈ L, and di, dj ∈ D. Figure 1 shows an example work-
flow consisting of two program blocks (normalize and filter), five data blocks
(d1, . . . , d5), four input edges (x1, x3, xrange, and xcutoff), and two output edges
(x2 and x4). Also shown in Fig. 1 are a set of initial dependency annotations
(red, dashed) together with the corresponding inferred annotations (blue, dot-
ted). The normalize block takes input data items d1 and scales them to fit
within the given range (consisting of a minimum and a maximum value). The
output of normalize is then passed to filter, which outputs the data item if
it is smaller than a given cutoff value d4. In general, an input edge in(p1, x1, d1)
states that data items are input to the program block p1 and an output edge
out(p1, x2, d2) states that data items are output by p1. Data blocks allow for
data items to be passed as input to multiple program blocks (e.g., to create
workflow branches as in d2 in Fig. 4). In contrast, data blocks typically receive
only from a single writer, to avoid conflicts (e.g., d3 �= d4 in Fig. 4).1

Fig. 1. Example workflow with program blocks normalize and filter, data blocks
d1, . . . , d5, and dataflow edges (solid, black) between nodes; user-declared dependency
annotations (dashed, red edges); and inferred dependencies (dotted, blue edges), based
on the given user annotations. (Color figure online)

1 If data blocks denote containers (e.g., file folders or queues) multiple writers may be
allowable.

Validation and Inference of Schema-Level Workflow 131

Dependency Annotations. The set of dependency annotations A ⊆ L×L×T
for a workflow specification W associates different dependency types t ∈ T
to input and output edges of W . Dependency annotations are represented
by a relation dep rule(x1, x2, t) for input edges x1 ∈ L, output edges x2 ∈
L, and dependency types t ∈ T . The dashed, red arrows in Fig. 1 repre-
sent four explicit, user-supplied annotations: dep rule(x1, x2, DerivedFrom),
dep rule(xrange, x2, DerivedFrom), dep rule(x3, x4, SameAs), and dep rule
(xcutoff, x4, DependsOn). In the example, we say that the output of normalize
is “derived from” the input d1 and the range d2, and the output of filter
“depends on” the cutoff d4 and is the “same (data item) as” the input d2. We
note that annotations can be expressed over a single program block (e.g., the
explicit annotations in Fig. 1) or can span multiple program blocks (e.g., the
inferred annotations in Fig. 1).

Dependency Types. We consider a set of pairwise disjoint dependency types
for specifying annotations. The FlowsFrom type simply represents the cases
where an input data item was received and an output item was produced by
a program-block invocation, but the output value is not determined by or com-
puted from the input. A FlowsFrom annotation typically denotes that the input
is simply a “trigger” to tell the program block to be invoked. The DependsOn
type represents cases where a control dependence exists between the correspond-
ing inputs and outputs (explained in more detail in Sect. 3). The DerivedFrom
type represents cases where outputs are computed from inputs (again, described
further in Sect. 3). The ValueOf type represents the cases where an output pro-
duces a new data item (with a new object identifier) containing a copy of the
input data item’s value. Finally, the SameAs type represents the cases where the
input data item was passed through to the output (i.e., the output is the same
exact data item as the input data item).

Use Case 1: Inferring Dependency Annotations. Given a workflow speci-
fication that is partially annotated, we consider the case of inferring new anno-
tations from a given set of user-supplied annotations. Figure 1 gives a simple
example where each program block is annotated (dashed, red arrows) and the
corresponding annotations that are implied by the given annotations are also
shown (blue arrows). In this example, each individual workflow step is annotated
by a user, and the goal is to infer the annotations that span multiple steps. In
general, understanding the dependency relationships that span workflow steps
as a result of the composition of program blocks is useful for verifying the intent
and/or construction of the workflow (e.g., to ensure that certain workflow out-
puts are actually derived from certain workflow inputs). Having a complete set
of annotations is also useful when answering queries at the trace level, e.g., to
determine the inputs that specific outputs were derived from (as opposed to the
inputs that were simply copied from the input or were used for basic control
flow).

Use Case 2: Constraining Dependency Annotations. In this case, higher-
level annotations that span multiple program blocks (e.g., between workflow

132 S. Bowers et al.

Fig. 2. Example workflow with initial user annotation (dashed, red) from the output
x4 to the input x1. Which of the undeclared dependency options (dotted, blue) are
correct? (Color figure online)

inputs and outputs) are used to help guide annotation choices for the rest of
the workflow specification. As a simple example, we may know that the out-
put is (or should be) derived from the input as shown in Fig. 2 by the dashed
red annotation. Specifying this annotation first limits the choices for the lower-
level annotations (in this case of program blocks). The corresponding choices
are shown by the dotted blue annotations in Fig. 2. In this case, different combi-
nations of annotations over the two program blocks are compatible (consistent)
with the initial (dashed red) annotation of Fig. 2.

Use Case 3: Validating Dependency Relationships. Finally, we consider
the case where there is a mix of (potentially partial) higher-level (i.e., indi-
rect) and lower-level (i.e., direct) annotations of a workflow specification that a
workflow designer wants to ensure are compatible (consistent). Figure 3 is one
such example where the workflow specification consists of a subworkflow (named
generate sample as shown on the bottom of the figure). Each subworkflow step

Fig. 3. Workflow specification consisting of an annotated subworkflow (dashed red,
bottom) and an inconsistent higher-level annotation assertion (dashed purple, top)
that spans workflow steps. (Color figure online)

Validation and Inference of Schema-Level Workflow 133

is annotated (in red) and the containing workflow (shown on the top of the
figure) has a higher-level annotation asserting that the output should be derived
from the input. However, the given annotations are incompatible (i.e., inconsis-
tent) since the composition of the two subworkflow steps introduce an implied
DependsOn relationship between the input and output of generate sample.
Thus, based on the workflow specification, din and dout cannot participate in a
DerivedFrom relationship (as shown at the top in purple).

The reasoning framework we describe in the rest of this paper is designed to
handle each of these three cases. In particular, we assume that a workflow specifi-
cation is either fully or partially annotated, from which the reasoning framework
(i) ensures consistency of the given annotations (e.g., as in Fig. 3); (ii) infers all
specific implied annotations (e.g., as in Fig. 1); and (iii) provides the allowable
annotation options when there are multiple possible implied annotations (e.g.,
as in Fig. 2).

3 Reasoning over Dependency Types

This section describes our reasoning framework for dependency type validation
and inference. We first give a more detailed description of the annotation types
and then describe the annotation composition rules and constraints used within
our framework.

3.1 Dependency Types

In the following, we assume a simple program block p with input edge
in(p, x1, d1) and output edge out(p, x2, d2) as shown below.

Let D1 be the set of allowable values (the domain) of p with respect to the
input edge x1 and D2 be the set of possible output values (the range) with respect
to the output edge x2. We write p : D1 → D2 to denote the signature of p with
respect to x1 and x2. We assume data items are passed to and from program
blocks as objects o with unique identifiers id(o) and corresponding values val(o).
For a domain D and a sequence of data items ō, we write val(ō) ⊆ D if for every
data item oi ∈ ō, val(oi) ∈ D. Given the program block signature p : D1 → D2,
an invocation p(ō1) = ō2 states that p read a sequence of data items ō1 on x1 such
that val(ō1) ⊆ D1, and wrote a (possibly empty) sequence of data items ō2 on x2

such that val(ō2) ⊆ D2.2 Program blocks are not required to be deterministic,
and so different invocations over the same input may produce different output.

2 The use of sequences of data items allows for more complex program blocks such as
filters and aggregators as well as workflow computation models supporting implicit
iteration [1,2].

134 S. Bowers et al.

The image p[ō1] of ō1 under p is the set of all possible output sequences produced
by invocations of p receiving ō1. Note that if p has multiple input edges, the same
notion of image still applies since we are interested in the relationship between
a single input and output edge (although additional constraints are imposed in
some cases as described below).

Following the traditional convention used in programming language imple-
mentation [3,7], we use the ideas of “control” and“data” dependence between
statements when defining the dependency types below. For example, consider
the following statements (adapted from [7]).

S1: C = A * B

S2: E = C * D + 1

S3: if (E > 0) then

S4: H = F + G

Statement S2 is said to have a data dependence on S1 since the value of E depends
on the value of C. A data dependence is also referred to as a “read-after-write”
dependence since C is read as part of S2 to compute a value to write to E. Note
that data dependence relationships can either be direct or indirect. For instance,
in the example above, E directly depends on C (via S2) but indirectly depends
on A (via S1 and S2). Below, we write raw dep(p, x1, x2) to denote that within
a program block p, output edge x2 has either a direct or indirect read-after-
write dependence on input edge x1. Similarly, statement S4 is said to have a
control dependence on statement S3 since the execution of statement S4 (and
hence, the value of H) depends on the execution of S3 (specifically, the value of
E). However, note that H’s value is not computed from E’s value (which would
imply a data dependence). A control dependence can also be either direct or
indirect. We assume that if an x2 is indirectly control dependent on x1 then
either: (i) x2 is control dependent on another variable that is either directly
or indirectly control or data dependent on x1; or (ii) x2 is data dependent on
a variable that is either directly or indirectly control dependent on x1. Below,
we write ctl dep(p, x1, x2) to denote that x2 has either a direct or indirect
control dependence on x1. We define the dependency types below in terms of
the constraints they impose between possible inputs and outputs of program-
block invocations as well as their corresponding control and data dependences.

FlowsFrom. A FlowsFrom annotation implies that x2 does not have a control
or data dependence on x1, which is expressed by the constraint:

¬ ctl dep(p, x1, x2) ∧ ¬ raw dep(p, x1, x2).

FlowsFrom simply suggests that the input was present when p was executed,
e.g., the input was used as a “trigger” to invoke a program block p.

DependsOn. A DependsOn annotation implies that x2 has a control depen-
dence, but not a data dependence on x1, which is expressed by the constraint:

ctl dep(p, x1, x2) ∧ ¬ raw dep(p, x1, x2).

Validation and Inference of Schema-Level Workflow 135

DerivedFrom. A DerivedFrom annotation implies that x2 has a data depen-
dence on x1, but that not all outputs have the same value(s) as their correspond-
ing inputs (which would suggest a ValueOf or SameAs relationship):

raw dep(p, x1, x2) ∧ (∃ō2 ∈ p[ō1] : val(ō2) �⊆ val(ō1)).

As explained further below, we consider DerivedFrom to be a “stronger” depen-
dency relationship than DependsOn. Thus, while it is possible for x2 to have both
a control and data dependence on x1, it would be represented as DerivedFrom
within our framework.

ValueOf. A ValueOf annotation implies that the values of data items received
on x1 are output on x2 (e.g., by copying inputs to new outputs). Unlike with
SameAs, ValueOf assumes new data items are created as a result, and so the
identifiers for the input and output data items differ:

(∀ō2 ∈ p[ō1] : val(ō2) ⊆ val(ō1)) ∧ (∃ō2 ∈ p[ō1] : id(ō2) �⊆ id(ō1)).

We use id(ō) to denote the set of identifiers of the sequence of data items ō. Note
that ValueOf implies a data dependence from x2 to x1 since data items must be
read from input x1 and then written into data items that are output to x2.

SameAs. A SameAs annotation differs from ValueOf by requiring all outputs
to be the same as data items from the inputs:

∀ō2 ∈ p[ō1] : o ∈ ō2 → o ∈ ō1.

Here, o ∈ ō holds if the object o is a member of the sequence ō. A SameAs
relationship also implies a data dependence from x2 to x1 since the input data
items must be read from x1 and then written to x2.

3.2 Composing Dependency Annotations

Annotation inference within a workflow specification is largely based on under-
standing how annotations “propagate” under compositions (or “sequences”) of
workflow steps. Here we assume two connected program blocks p1 : D1 → D2

and p2 : D2 → D3:

When p1 and p2 are connected by a data block as above, we write p1 ◦
p2 to denote the connection. We also define the ordering ≺ to represent the
intuitive “dependency strength” of annotation types. In particular, if ti ≺ tj
then we say ti is a “weaker” dependency type than tj (or similarly, that tj
is a “stronger” dependency type than ti). The dependency types are ordered
according to dependency strength as follows.

FlowsFrom ≺ DependsOn ≺ DerivedFrom ≺ V alueOf ≺ SameAs

136 S. Bowers et al.

For instance, a DependsOn relationship suggests a “weaker” dependency than
a DerivedFrom relationship. The definitions of the annotation types with the
ordering above imply the following annotation composition rules for a sequence
of program blocks p1 ◦ p2, with in(p1, x1, d1), out(p1, x2, d2), in(p2, x3, d2), and
out(p2, x4, d3) as defined above, and � denoting weaker or of equal strength
(and where all variables are assumed below to be universally quantified).

dep rule(x1, x2, ti) ∧ dep rule(x3, x4, tj) ∧ ti � tj ↔ dep rule(x1, x4, ti)
dep rule(x1, x2, tj) ∧ dep rule(x3, x4, ti) ∧ ti � tj ↔ dep rule(x1, x4, ti)

These rules can also be applied to indirect annotations (spanning multiple
blocks) as well, which is further described in Sect. 4. As an example of prop-
agation, in Fig. 1, normalize has a DerivedFrom annotation and filter has a
SameAs annotation. Since DerivedFrom is “weaker” than SameAs, the compos-
ite annotation is DerivedFrom. Similarly, in Fig. 2 the composite annotation is
DerivedFrom, which implies that p1 and p2 have either DerivedFrom annotations
or “stronger” types (i.e., ValueOf or SameAs), since DerivedFrom must be the
“weaker” annotation. Additionally (and not shown in Fig. 2), note that at least
one of p1 or p2 must have a DerivedFrom annotation to satisfy the composition
rules above. The example in Fig. 3, while slightly more complex, follows the same
idea in that along the path from xout to xin, the generate sample subworkflow
implies a DependsOn annotation, and since DependsOn is strictly weaker than
DerivedFrom, the higher-level DerivedFrom annotation violates (is inconsistent
with) the composition rules.

According to the composition rules, weaker annotations propagate through
program-block compositions, which is due to the nature of the dependencies
established by the weaker annotation. For instance, if x2 FlowsFrom x1, then
d2 (via x2) does not have a control or data dependence on d1 (via x1). Thus,
since the value of d1 does not participate in the computation of d2, d1 also does
not participate in the computation of the values that have a control or data
dependence on d2. A similar situation exists when p2 has a FlowsFrom annota-
tion. Determining indirect control dependences (i.e., when looking at sequences
of statements involved in control and data dependences) was described in the
beginning of this section, and follows from the idea that control dependence can
be indirectly established through other control and/or data dependences. The
same ideas apply to copying the values of data items. If d2 is a (value) copy of
d1 with potentially different data item identifiers as d1 (i.e., x2 has a ValueOf
relationship with x1), but d2 is passed through to d3 (i.e., x4 has a SameAs rela-
tionship with x3), then d3 will also have the same value but a different identifier
as d1 (since d2 and d3 are the same data item). The same situation occurs when
the two annotations are flipped, i.e., p1 has a SameAs relationship and p2 has a
ValueOf relationship. Finally, when p1 and p2 have the same exact annotation,
the same annotation is also propagated, which follows from similar arguments
as those above.

Validation and Inference of Schema-Level Workflow 137

3.3 Additional Annotation Constraints

We also consider an additional “global” constraint on the dependency anno-
tations of a workflow specification related to inferring annotations when there
are two or more paths of program-block compositions within a workflow speci-
fication. Consider the example annotated workflow specification of Fig. 4, which
shows two paths (i.e., sequences of program block compositions) between x1 and
x9. While the top path (through p2) implies a FlowsFrom relationship from x9

to x1 (since FlowsFrom is the weakest type along the path), the bottom path
implies a stronger DerivedFrom relationship from x9 to x1. Since we allow at
most one dependency type between an input and an output, we use the annota-
tion inferred from the path with the strongest type.

Fig. 4. Example workflow specification with multiple paths between the input and
output.

4 Prototype Implementation

This section describes a prototype implementation of our annotation reasoning
framework using the Potassco3 suite of answer-set programming (ASP) tools.
Potassco implements ASP using a syntax similar to Datalog with additional sup-
port for nonmonotonic reasoning based on the answer set semantics [8]. Potassco
programs are often written using a generate-and-test algorithmic approach where
the result of a program is a set of minimal models, or “answer sets”, that sat-
isfy the rules and constraints defined within the program. Our implementation
follows this same approach by:

(i) “guessing” dependency annotations for each input-output pair in a work-
flow specification without a corresponding user-supplied annotation (the
generate step);

(ii) ensuring that each of the input-output pair annotations satisfy the program-
block annotation compositions described in the previous section (the test
step); and

3 See: https://potassco.org/.

https://potassco.org/

138 S. Bowers et al.

(iii) ensuring that annotations satisfy the additional constraints described in the
previous section, i.e., ensuring the “strongest” indirect annotations are used
between inputs and outputs with multiple paths of program blocks between
them (the test step).

In the generate-and-test approach, conceptually all possible models are
created—which in our case means that all possible combinations of input-output
pair combinations along a dataflow path are considered—and only those mod-
els (answer sets) that satisfy the given constraints are returned. Our prototype
implementation uses the answer sets for a workflow specification and then (i)
outputs all annotations that are contained in each answer set (i.e., the annota-
tions that are “entailed” by the program); and then (ii) outputs the annotation
choices (i.e., the union of annotations across answer sets) for the annotations
that are not entailed (e.g., as is the case with the blue annotations in Fig. 2).

Our prototype uses a “choice rule” to generate annotations for input-output
pairs not already annotated as part of the workflow specification:

{dep_rule(I,O,R) : dep_type(R)} = 1 :- up_stream(I,O).

Where up stream(I,O) finds all potential input-output annotation pairs:

up_stream(I,O) :- in(I,P,_), out(O,P,_).

up_stream(I,O) :- in(I,P1,_), out(O1,P1,D1), in(I2,P2,D1), up_stream(I2,O).

The following constraint ensures that all annotations satisfy the composition
rules:

:- dep_rule(I,O,R), not valid_dep_path(I,O,R).

In ASP the head of the (constraint) rule above is assumed to be false. Thus, if
the body is satisfied the constraint fails. To satisfy the constraint, the body must
not be true. So, in the constraint above, either there does not exist a dependency
between the input I and output O, or the dependency forms a valid dependency
path. The relation valid dep path(I,O,R) is true if there is a valid annotation
with type R between the input I and output O as defined below.

valid_dep_path(I,O,R) :- in(I,P,_), out(O,P,_), dep_rule(I,O,R).

valid_dep_path(I,O,R) :- in(I,P,_), out(O1,P,_), O != O1,

dep_rule(I,O1,R1), connected(O1,I1), I != I1,

valid_dep_path(I1,O,R2), compose(R1,R2,R).

The connected(O,I) relation is true if the output O shares a data block with
the input I (implying two program blocks share a dataflow connection from O1
to I1):

connected(O,I) :- out(O,_,D), in(I,_,D).

The compose(R1,R2,R) relation implements the basic dependency composition
rules defined in the previous section:

compose(R1,R2,R1) :- weaker(R1,R2).

compose(R1,R2,R2) :- weaker(R2,R1).

Validation and Inference of Schema-Level Workflow 139

The weaker(R1,R2) relation encodes the “strength” of dependency ordering over
types (i.e., the � relation; see Sect. 3). Thus, weaker(R1,R2) is true for types
R1 and R2 iff R1 � R2. The two compose rules select the weaker relation of R1
and R2. If R1 is weaker than R2, then the first compose rule selects R1, and if
R2 is weaker than R1, then the second compose rule selects R2. Finally, the first
rule of valid dep path considers the case where the path is a single program
block, and the second rule considers the case where a path consists of multiple
program blocks. For the the second valid dep path rule, we require O and O1
as well as I and I1 to be different values, respectively, for the case where I and
O form a simple cycle. Without the inequalities, checking valid dep path for
I and O would require valid dep path for I and O to be already known (from
the body of the rule). We note that workflow cycles, however, are supported by
the rules. The following constraint ensures that annotations are the “strongest”
along multiple program-block paths.

:- dep_rule(I,O,R), valid_dep_path(I,O,R1), R != R1, weaker(R,R1).

The constraint ensures there is not a stronger type between the input I
and output O than the one given (guessed or inferred) by the annotation
dep rule(I,O,R).

5 Related Work

We focus on the PROV model, data provenance, and other workflow-based
approaches:

The PROV model [12] defines a general wasInfluencedBy relationship with
wasDerivedFrom as the main lineage relationship between entities. PROV also
defines subtypes of wasDerivedFrom, including wasRevisionOf, wasQuotedFrom,
and hadPrimarySource. Although DependsOn and DerivedFrom are similar to
wasInfluencedBy and wasDerivedFrom, because our approach is designed for
computation via workflows, we adopt the more specific notions of dependency
(i.e., control and data dependence) from [3]. Our approach is also similar to
PROV-O [14], which models provenance at the schema level. We also consider
compositions of dependency annotation types, which are not considered within
PROV-O.

Cui and Widom [4] define three types of transformations for ETL workflows—
dispatchers, aggregators, and black-boxes—and for each a set of techniques for
inferring data-level lineage. They also define a number of specialized (i.e., a
hierarchy of) transformation types for computing data lineage. While our app-
roach also provides dependency types for transformations (in our case, program
blocks), the focus in [4] is to compute data-level workflow lineage (the input
items that contributed to output items), and does not consider the differences
between dependency, derivation, and so on. The approach used in LabelFlow
[1] is also similar to that in [4], in which different types of workflow steps are
considered and used for data annotation propagation (i.e., arbitrary metadata
attribute-value pair “labels”). Like [4], LabelFlow focuses on workflow execution
by inferring data-level labels for intermediate and final workflow data products.

140 S. Bowers et al.

Cheney et al. [3] employ dependency analysis techniques (program slicing),
which are focused on calculating data dependencies to infer “dependency prove-
nance” for a query language based on the nested relational calculus. Unlike other
approaches for inferring lineage from queries, [3] employs dependency analysis to
formalize the notion of lineage relationships. Huq et al. [9] describe a tool to com-
pute data-level lineage for workflows defined as Python scripts using Program
Dependence Graphs (PDGs) [7]. However, control dependencies are converted
to data dependencies to simplify lineage relationships for scientists. PDGs are
closely aligned with program slicing techniques, and offer a formal interpretation
of dependency also adopted by our model.

In [6], data dependencies are inferred from scripts and are then connected
to YesWorkflow specifications; a prototype linking YesWorkflow models and
noWorkflow traces has been described in [13]. Our approach differs from, but
complements these approaches by explicitly supporting lineage assertions for
both control and data dependency information (among other types of dependen-
cies) for workflow specifications and enables validation and inference procedures
over lineage annotations.

6 Conclusion and Future Work

This paper defines provenance dependency types for modeling lineage constraints
within scientific workflow specifications along with a reasoning framework that
can validate dependency annotations and infer a complete set of annotations for
workflow specifications, including the allowable choices (possible worlds) when
multiple annotation types are possible. We plan to extend YesWorkflow [11],
which uses annotations to declare workflow specifications for executable scripts,
with dependency annotations and the reasoning framework described here. We
also plan to develop support for annotating subworkflows within YesWorkflow.
While the dependency types described here cover a wide range of cases, addi-
tional types may be needed for some workflows. For instance, although not
described in this paper, we have recently developed extensions for supporting a
NotFlowsFrom dependency type, which is needed in some subworkflows to cap-
ture cases where subworkflow inputs are not connected (i.e., not “up-stream”)
from subworkflow outputs. Adding NotFlowsFrom required only minimal changes
to the rules presented in Sect. 4. Finally, we also intend to explore using static
dependency annotations in YesWorkflow models to infer trace-level (runtime)
data lineage relationships, thus combining our prior work in [2] with the reason-
ing framework presented here.

Acknowledgements. Work supported in part through NSF award SMA-1637155.

Validation and Inference of Schema-Level Workflow 141

References

1. Alper, P., Belhajjame, K., Curcin, V., Goble, C.: LabelFlow framework for anno-
tating workflow provenance. Informatics 11(5), 11 (2018)

2. Bowers, S., McPhillips, T., Ludäscher, B.: Declarative rules for inferring fine-
grained data provenance from scientific workflow execution traces. In: Groth, P.,
Frew, J. (eds.) IPAW 2012. LNCS, vol. 7525, pp. 82–96. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34222-6 7

3. Cheney, J., Ahmed, A., Acar, U.A.: Provenance as dependency analysis. Math.
Struct. Comput. Sci. 21(6), 1301–1337 (2011)

4. Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations.
VLDB J. 12(1), 41–58 (2003)

5. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and
opportunities. In: SIGMOD (2008)

6. Dey, S.C., Belhajjame, K., Koop, D., Raul, M., Ludäscher, B.: Linking prospective
and retrospective provenance in scripts. In: TaPP (2015)

7. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

8. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, Cambridge (2014)

9. Huq, M.R., Apers, P.M.G., Wombacher, A.: ProvenanceCurious: a tool to infer
data provenance from scripts. In: EDBT, pp. 765–768 (2013)

10. Ludäscher, B., Bowers, S., McPhillips, T.: Scientific workflows. In: Liu, L., Özsu,
M. (eds.) Encyclopedia of Database Systems, pp. 2507–2511. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-1-4899-7993-3

11. McPhillips, T., et al.: YesWorkflow: a user-oriented, language-independent tool
for recovering workflow information from scripts. Intl. J. Digit. Curation 10(1),
298–313 (2015)

12. Moreau, L., Missier, P.: PROV-DM: The PROV Data Model. W3C recommenda-
tion, W3C, April 2013. http://www.w3.org/TR/2013/REC-prov-dm-20130430/

13. Pimentel, J.F., et al.: Yin & Yang: demonstrating complementary provenance from
noworkflow & yesworkflow. In: Mattoso, M., Glavic, B. (eds.) Provenance and
Annotation of Data and Processes, IPAW 2016. LNCS, vol. 9672, pp. 161–165.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-40593-3 13

14. Sahoo, S., Lebo, T., McGuinness, D.: PROV-O: The PROV Ontology. W3C
recommendation, W3C, April 2013. http://www.w3.org/TR/2013/REC-prov-o-
20130430/

https://doi.org/10.1007/978-3-642-34222-6_7
https://doi.org/10.1007/978-1-4899-7993-3
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://doi.org/10.1007/978-3-319-40593-3_13
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/

Applications

Belief Propagation Through Provenance
Graphs

Belfrit Victor Batlajery1(B), Mark Weal1, Adriane Chapman1,
and Luc Moreau2

1 University of Southampton, Southampton, UK
{b.v.batlajery,m.weal,adriane.chapman}@soton.ac.uk

2 King’s College London, London, UK
luc.moreau@kcl.ac.uk

Abstract. Provenance of food describes food, the processes in food
transformation, and the food operators from the source to consumption;
modelling the history food. In processing food, the risk of contamination
increases if food is treated inappropriately. Therefore, identifying criti-
cal processes and applying suitable prevention actions are necessary to
measure the risk; known as due diligence. To achieve due diligence, food
provenance can be used to analyse the risk of contamination in order to
find the best place to sample food. Indeed, it supports building ratio-
nale over food-related activities because it describes the details about
food during its lifetime. However, many food risk models only rely on
simulation with little notion of provenance of food. Incorporating the
risk model with food provenance through our framework, prFrame, is
our first contribution. prFrame uses Belief Propagation (BP) over the
provenance graph for automatically measuring the risk of contamina-
tion. As BP works efficiently in a factor graph, our next contribution is
the conversion of the provenance graph into the factor graph. Finally, an
evaluation of the accuracy of the inference by BP is our last contribution.

1 Introduction

Provenance of food is well understood by both business and the public. Notions
of Appellation d’Origine Contrôllée are regulatory labels indicating that some
food products can be trusted to originate from a given region, thus vouching for
the authenticity and quality of the products. Likewise, organic labels encompass
more or less stringent guarantees that adequate processes have been followed
in the production of food products. The provenance model PROV (PROV-DM)
complemented by domain-specific ontologies [1,2] have been used to describe
processes of the food supply chain, enabling such descriptions to be shared and
queries over them to be answered. These capabilities allow confidence in food
products and processes to increase. For instance, the requirement for food oper-
ators to identify suppliers one level up and customers one level down can easily
be addressed using provenance-based modelling of the food supply chain [3].

Regulations demand that food operators undertake due diligence [4]. While
this term is not formally defined in law, it is usually understood to include
c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 145–157, 2018.
https://doi.org/10.1007/978-3-319-98379-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_11&domain=pdf

146 B. V. Batlajery et al.

identifying all the food safety critical stages of food production, storage and
distribution, then identifying suitable control measures to adequately prevent
the risk of food safety failures and putting in place appropriate management
control procedures to ensure they effectively happen [4,5].

Our claim in this paper is that provenance models such as PROV can be the
basis for food operators to develop a rationale for control procedures. Indeed,
our discussions with them show that food samples are analysed to check contam-
ination levels as part of a due diligence process to manage risk. However, such
samplings are costly in terms of resources, and a rationale needs to be developed
on how best to sample food supply chains. Regulators and food operators are
constantly on the lookout for better ways to measure, track, and analyse risk
in the food supply chain. In this paper, we discuss two techniques, adapted to
operate over provenance graphs, which result in a powerful tool to reason, esti-
mate, and understand risk of contamination across the food supply chain, over
which we have partial knowledge of level of contamination.

First, PROV provenance can be used to model the food supply chain in the
Modular Process Risk Model (MPRM), which is a tool for Quantitative Micro-
bial Risk Assessment (QMRA) [6]. MPRM uses Monte-Carlo (MC) simulation,
which is a computer-based technique allowing variation of randomly distributed
inputs to be propagated through mathematical models [7], to generate bacterial
concentration with the aim to understand the distribution of bacteria in the food
supply chain. This approach relies on the directed nature of provenance graphs,
and propagate bacterial concentration along edges of these graphs, according to
evidenced formulae of micro-organisms transmissions. However, MPRM does not
support any actual knowledge of contamination level as it relies on distributions
of bacterial concentration, derived from past studies.

Second, in this context, Belief Propagation (BP) is a technique that takes
observations of contamination levels in the food supply chain to calculate the
marginal distribution for each unobserved node, conditional on these observed
nodes [8]. BP, initially defined by Pearl, has been showed to operate on trees, but
also to provide useful approximations for graphs. It requires a notion of Factor
Graph (a bipartite graph containing nodes for variables and factors), which we
demonstrate can be easily derived from provenance graphs.

The aim of this paper is to introduce a prFrame, as a framework to estimate
risk of contamination in a food supply chain described by provenance, which
allows for observations (by directly sampled contamination levels) to be taken
into account, as well as estimates to be inferred for unobserved part of the chain.
We demonstrate the effectiveness of the methodology within this framework lies
when new evidence (i.e. sampling report) can easily be incorporated to more
accurately estimate the actual risk.

The concrete contributions of the paper are as follows:

1. A Monte-Carlo based simulation technique to derive contamination levels of
provenance-based descriptions of a food supply chain.

2. A transformation of food supply chain provenance graphs into factor graphs
to enable sum-product algorithm as a variant of Belief Propagation.

Belief Propagation Through Provenance Graphs 147

3. An evaluation framework, allowing contamination levels to be systematically
hidden in a provenance described supply chain (effectively creating unob-
served nodes) to generate estimations of contamination levels through Belief
Propagation.

Following this introduction, background to support our work is given in
Sect. 2. We present our case study and our approach with prFrame in Sects. 3
and 4 subsequently. Section 5 shows how our approach can be applied and Sect. 6
concludes the paper and suggests potential future work.

2 Background

In this section, some theoretical concepts are presented. In general, we have two
intersected concepts, namely provenance to describe what happened to food and
BP to infer the risk of contamination over the provenance graph.

2.1 Provenance

The World Wide Web Consortium (W3C) defines provenance as a record that
describes the people, institutions, entities, and activities involved in producing,
influencing, or delivering a piece of data or a thing in the world [9]. It contains
the description of data and the processes involved during the data lifetime, such
as how something is derived, who is responsible for certain actions, what the
consequences and the risks of an activity are, etc. As provenance describes the
lifetime of something, it can provide a crucial information for investigation.

The Provenance Data Model (PROV-DM) and Provenance Ontology (PROV-O)
[9,10] enable the modelling of something in provenance.

As PROV-O is designed to be domain agnostic, it often gets extended in specific
domains. For instance, Markovic et al. extend the PROV-O to monitor food safety
by documenting constraints that may be associated with an HACCP plan [2]
and Batlajery et al. provide prFood ontology to capture and model food and
risk along the food supply chain [1]. Another works by Ali and Moreau [11],
Packer et al. [12], and Markovic et al. [13] also extend PROV-O for their specific
purposes.

2.2 Belief Propagation

BP is an approach to perform inference based on message passing algorithm.
Here, we focus on sum-product, as an algorithm in the BP family.

Theory of Belief Propagation. In Probabilistic Graphical Model (PGM),
probability theory and graph theory are utilised to capture the knowledge in
graph-based representations [14]. Probability is about measuring uncertainty of
an occurrence in the world, which refers to the degree of confidence that an event
will occur [15]. For example, the probability P (X) of an event X quantifies the

148 B. V. Batlajery et al.

degree of confidence that X will occur. With P (X) = 1, we are certain that one
of the outcomes in X occurs and P (X) = 0 indicates that all outcomes in X are
impossible. Other probability values between 0 and 1 represent options that lie
between them. Probability can be expressed in 2 fundamental rules, sum rule and
product rule, which become the basic calculations of sum-product algorithm.

(a) sum rule P (X) =
∑

Y

P (X,Y) (b) product rule P (X,Y) = P (Y |X)P (X) (1)

In Eq. 1, P (X) is referred to as marginal distribution over the distribution
of random node X and is simply verbalized as the probability distribution of
X. In many cases, the questions often involve the values of several random
nodes or a Joint Probability Distribution (JPD), written as P (X,Y). Similarly, a
Conditional Probability Distribution (CPD) can be verbalized as the probability
of Y given X or P (Y |X) that specifies the belief in Y under the assumption that
X is known (observed) with certainty [16]. Entering an evidence to update our
belief about the probability is often mentioned as propagation and its mechanism
with BP is described in the following paragraph.

Mechanics Behind Belief Propagation. BP relies on an iterative message
passing algorithm inherently from bayesian procedure to perform an inference
efficiently. This technique explores the conditional independence relationship
over a Factor Graph. A factor graph is a bipartite graph that expresses the
global function into a product of local functions [17]. This graph consists of 2
types of nodes, namely a variable node for each node in the network and a factor
node for each factor f(x) in the joint distribution between nodes.

The message passing algorithm allows the nodes to communicate their local
state by sending messages over the edges [14,18,19]. By local, we mean that a
given node updates the outgoing messages on the basis of incoming ones from the
previous iterations. In general, the messages are passed around and get updated
until a stable belief state is reached (convergence). However, depending on the
type of graph, some may not reach the convergence due to circular reasoning.
In the context of food provenance, the circular process exists in the event of
splitting and joining food. Thus, having the provenance of food with a tree-based
structured, such as the sequential linear chain from the source to consumption,
can guarantee the convergence. Although convergence is not guaranteed, BP has
been found to have outstanding empirical success in loopy graphs too [14].

3 Food Supply Chain as a Use Case

This section presents a case study where a notion of provenance is needed in the
food domain in order to achieve due diligence. The study involves a food risk
model for the food domain and its modelling by provenance.

Belief Propagation Through Provenance Graphs 149

3.1 Food Provenance and Food Regulations

In order to achieve due diligence, food regulations (e.g. ISO 9000, Food Safety
Act (FSA) 1990, HACCP, etc.) are created for assuring food that people consume
is safe [4,20]. By identifying what, where, when, who, and how food is handled,
regulators and food operators can have an overview of potential contamination
and have more comprehensive way of understanding the risk.

Definition 1. Food Provenance is a record that describes a food product and
its ingredients; the processes involved in food transformation; and food operators
who are responsible for those processes in the food supply chain.

In modelling food provenance into the standardized provenance format, we
use PROV because of its capability to capture and describe the entities, activ-
ities, and agents that may have influenced the piece of data about food. The
modelling is performed by codifying a food stage (e.g. Prepared, Cooked, etc.) as
prov:Entity, a food process (e.g. preparing, cooking, etc.) as prov:Activity, and a
food operator as prov:Agent. Figure 1 shows an excerpt of food provenance.

Fig. 1. An excerpt of provenance graph of the food supply chain.

Figure 1 describes the provenance of food, which conveys its history and the
information about risk of contamination. To model the risk, the prFood ontology
[1] is used to capture the necessary data for risk calculation, such as bacterial
concentration, contamination level, risk factor, etc as attributes of entities.

Definition 2. Bacterial Concentration is the total bacteria in food.

Definition 3. Contamination Level is a range of values to categorize bacterial
concentration.

Definition 4. Risk Factor is any aspect that contributes to the risk of contami-
nation, such as improper storage, time and temperature abuse of food, etc. [21].

3.2 Modular Process Risk Model (MPRM)

MPRM is a process-driven framework to estimate the risk of food contamination
based on how food is handled [6]. This framework splits the food supply chain
into smaller modules and the transmission of bacteria is calculated based on the
well-known formulae with the MC simulation. The simulation selects a random
value from the distribution of a risk factor to generate bacterial concentration
after each food process, and it will be the input for the next process.

150 B. V. Batlajery et al.

MPRM supports 6 basic processes that can affect the bacterial concentra-
tion after the food process. They are Growth, Inactivation, Partitioning, Mix-
ing, Removal, and Cross Contamination. Growth and inactivation are two basic
microbial processes, which are strongly depending on the characteristic of bacteria
investigated and the surrounded environmental condition. Partitioning, mixing,
removal, and cross-contamination are 4 handling processes. Partitioning occurs
when a major unit of food is split up into several minor units, while mixing
describes the opposite process. Removal is a process where some units are removed
and cross-contamination describes the transmission of bacteria between objects.

4 The prFrame Framework

This section discusses prFrame, our proposed framework that incorporates Prove-
nance, Risk Model, and PGM to achieve due diligence. With multiple food risk
models that use a MC simulation, the input-output interaction of bacterial concen-
tration only works in one direction (forward, from source to destination), making
predicting the contamination level before a food process difficult, given the bac-
terial concentration after that process. In addition, its capability to incorporate
an actual bacterial concentration is limited. Meanwhile, BP is a non-directional
approach as it propagates information forward and backward. Thus, inferencing
is easier with additional observed information anywhere in the chain. The pseu-
docode of prFrame is shown in Algorithm 1 and is described below.

Algorithm 1. prFrame Algorithm

Input : pG: Provenance Graph

Output: infBin: Inferred Bacterial Level

1 var bConc: Bacterial Concentration ;

2 var preBin: Predicted Bacterial Level ;

3 〈bConc, preBin〉 ← monteCarlo(pG) ;

4 ;

5 var preBin: Predicted Bacterial Level ;

6 var binMtx: Bin Matrix ;

7 binMtx ← computeBinMtx(preBin);

8 ;

9 var binMtx: Bin Matrix ;

10 var jpdMtx: JPD Matrix ;

11 var cpdMtx: CPD Matrix ;

12 〈jpdMtx, cpdMtx〉 ← computeCpd(binMtx)

;

13 ;

14 var pG: Provenance Graph ;

15 var cpdMtx: CPD Matrix ;

16 var pGcpd: Provenance Graph with CPD;

17 pGcpd ← attachCpd(pG, cpdMtx) ;

18 ;

19 var pGcpd: Provenance Graph with CPD;

20 var fG: Factor Graph ;

21 fG ← convertPG(pGcpd) ;

22 ;

23 var fG: Factor Graph ;

24 var e: Observed nodes ;

25 var i: Inferred nodes ;

26 var infBin: Inferred Bacterial Level ;

27 infBin ← beliefPro(fG, e, i) ;

4.1 Food Risk Model with Monte-Carlo Simulation

Our framework begins with a given provenance graph that describes food. The
provenance graph is expected to hold data about risk factors as parameters to
simulate the flow of food based on MPRM. An MPRM basic process in a food
process depends on the activities described and the assumption hold in that food
process. For example, it is assumed that the number of microbes increases during

Belief Propagation Through Provenance Graphs 151

the transporting process; hence, the growth model becomes the basic process
for transporting. Changing or adding a basic process will affect the formula to
predict the number of microbes, which is not the scope of this paper. We refers
the readers to [21] for the details of risk factors and their distributions in each
food process as well as the formula for each MPRM basic process.

The simulation is needed as we do not know the exact risk factors, such
as time and temperature in processing food, leading us to only have partial
information about contamination levels. With this reason, we estimate bacterial
concentration by conducting MC simulation, which takes into account all the
possible values of risk factors in form of a distribution, to predict contamination
level along the provenance network. The MC simulation is performed the same as
in [21], which generates predicted bacterial concentration after each food process.

Each generated bacterial concentration is categorized into the contamination
level. The aim for categorization is that it is easier to compare the actual data
with the categorical data (contamination level) rather than with the continuous
data (bacterial concentration) in order to infer the updated risk of contamina-
tion. Thus, each contamination level counts food that have bacterial concentra-
tion within its defined range (Algorithm1 line 3). In the end, a Bin matrix is
constructed to capture all possible combinations between contamination levels
before (upwards) and after (downwards). The column and row of the matrix
represent the levels upward and downward consecutively (Algorithm 1 line 7).
For example, Fig. 2 shows that there are a total 24 food products in the trans-
porting process (Transported Food) and storing process (Stored Food). Four of
them had microbial level 1 after transporting and level 2 after storing.

Fig. 2. An example of a bin matrix. A blue square represents the level of contamination.
(Color figure online)

4.2 Belief Propagation in the Provenance Network

A Joint Probability Distribution (JPD) is captured in a JPD matrix by dividing
each value in the Bin matrix with the total number in Bin matrix (total food
used that have undergone the food process). Subsequently, a CPD matrix is
derived by dividing each value of the JPD matrix with its corresponding row
as the row represents the level downward the food process (Algorithm 1 line
12). A complete bin matrix, jpd matrix, and cpd matrix are presented in on-
line appendix (https://goo.gl/hXvici). Next, the CPD matrix is added as an
attribute in the provenance graph (Algorithm1 line 17) and the conversion into
a factor graph is performed (Algorithm 1 line 21).

https://goo.gl/hXvici

152 B. V. Batlajery et al.

In a factor graph, a factor can be described as a function that takes arguments
from the random nodes and return a value for every possible combinations over
those random nodes. A CPD is used as a factor, which holds the notion of
conditional probability for every prov:Entity that is linked with a prov:Activity
via both prov:usage (use) and prov:wasGeneratedBy (gen), in the present of a
prov:wasDerivedFrom (der) that identifies the origin and the result of the food
process for a CPD matrix. Algorithm 2 shows the pseudocode of the conversion.

Algorithm 2. function factorGraph(pGcpd)
Input : pGcpd: Provenance Graph with CPD
Output: fG: Factor Graph

1 var nx: Variable node ;
2 var fx: Factor node ;
3 var unEdgex: Undirected Edge ;
4 var o: Object ;
5 foreach o ∈ pGcpd do
6 if type(o)=prov:Entity AND type(o)=prFood:FoodStage then
7 nx ← convertEntity(o) ;
8 end
9 if type(o)=prov:Activity AND type(o)=prFood:FoodProcessing then

10 fx ← convertActivity(o) ;
11 end
12 if type(o)=prov:usage OR type(o)=prov:wasGeneratedBy then
13 unEdgex ← convertEdge(o) ;
14 end
15 end
16 return Factor Graph (fG)

Overall, the conversion maps each prov:Entity into a variable node
(n1, . . . ,nx) (Algorithm 2 line 6) and each prov:Activity into a factor node fx
(Algorithm 2 line 9) in the factor graph. Only a prov:Activity that has the type
prFood:FoodProcessing will be converted into a factor node, and a prov:Entity
of type prFood:FoodStage will be converted to a variable node. The factor node
fx holds the notion of CPD, which is a factor to determine the probability of
each variable nodes that are connected to it (n1, . . . ,nx). In the conversion, we
ignore prov:Agent to make the graph as simple as possible. Figure 3 shows an
example of the conversion.

In Fig. 3, in order to link the factor nodes with the variable nodes,
we identify prov:wasGeneratedBy (gen) and prov:usage (use) and convert
them into undirected edges (Algorithm 2 line 12) provided a corresponding
prov:wasDerivedFrom (der) exists (as its notion has been encapsulated in the
CPD matrix). For example, the probability of nx given nx−1 has implied the
derivation between nx and nx−1. Finally, the sum-product algorithm that uti-
lizes bayesian rules is applied to calculate the likelihood of a certain event (Algo-
rithm1 line 27). The figures of initial provenance graph and factor graph are
available in on-line appendix.

Belief Propagation Through Provenance Graphs 153

Fig. 3. A conversion from provenance graph into factor graph.

4.3 Methodology to Infer Risk of Contamination

As a framework, prFrame is intended to automatically infer the risk of food con-
tamination. It incorporates the general food risk model that uses MC simulation,
MPRM, with the inference technique, BP. BP infers the actual contamination
level by propagating belief based on the previous knowledge and the actual data
(i.e. sampling result). Our methodology compares the inference of contamination
level by BP (InfBin: Inferred Bacterial Level) with the prediction by the MC
simulation (prBin: Predicted Bacterial Level).

The aim in this methodology is to understand the accuracy of inference
across the food provenance network by capturing exhaustively experiments,
where nodes values are hidden and observed systematically, in order to evaluate
the performance of BP. To define an accuracy of inference, consider a bacterial
concentration in level 1 that was predicted by the MC simulation. There are
three possible inferences by BP. The first inference reveals with 100% proba-
bility that the prediction is in level 1. The second inference reveals with 97.6%
probability that the prediction is in level 1 and 2.4% probability in level 2. The
third inference reveals with 90% probability that the prediction is in level 1 and
5% probability is in both level 0 and level 2. Here, the most accurate inference
is the first inference, followed by the second and the third inferences.

5 Evaluation of the Methodology

The complete list of chains for our first and second setup is shown in the on-line
appendix. To keep the calculation and propagation simple, we use an example of
a fixed linear network that represents the food chain as configured in [21]. It is
also possible to define more complicated network as provenance of food can be
non-linear network. However, the use of linear chain in this paper is guaranteed to
reach a convergence in inferring with BP for further measurement of accuracy.
The defined network comprises 6 food stages, namely Initial(I), Retailed(R),
Transported(T), Stored(S), Prepared(P), and Cooked(C). We then predict bac-
terial concentration and contamination level by performing MC simulation with
50,000 iterations to represent the travelling of food products through this chain
and results in 10,502 food being contaminated.

154 B. V. Batlajery et al.

Each bacterial concentration will be categorized into a fixed determined bin
that represents contamination level. We consider 13 levels of bacteria because the
number is precise enough to categorize the bacterial concentration. While adding
more levels produces more precise result, it comes with higher computational. We
also introduce an inferred node, an unobserved node that its probabilities are in
our investigation when performing an inference. Finally, we perform an inference
with BP and compare the results against the prediction of MC simulation.

5.1 The Effect of the Distance and Position Between Nodes

Our first setup intends to measure accuracy of inference based on the distance
between an observed node and an inferred node. We set node I as an observed
node and the remaining nodes will be inferred. Figure 4(a) shows that the accu-
racy decreases as we infer the further nodes. Inferencing nodes R and T is always
correct as all of the inferences suggest the same level as predicted by MC simu-
lation. The inference becomes less accurate with total 10,432 correct inferences
(99.33%) in node S. In other words, it can be verbalized as there are 99.33%
contaminated food with 88%–100% probability of being correct. Finally, there
are 97.86% and 88.87% correct inferences in node P and node C consecutively.
In addition, inferring node C by observing node I, R, T, S, and P for our second
setup also suggest the same result.

In regards to the position of nodes, we condition some nodes (solid-filled-
node) and let BP does the inference in node S as a inferred node (dashed-unfilled-
node) as shown in several chains (ch.) in the on-line appendix. In Fig. 4(b),
inferencing node S with upward observed nodes (nodes I, R, and T) gives the
same result (ch.3a, ch.3b, and ch.3c). Among 10,502 inferences, only 159 infer-
ences (1.51%) are with 100% probability of being correct. In fact, more upward
observed nodes produces the same result too (ch.3e). The inference becomes more
accurate if the inferred node is set in between the observed nodes (ch.3f, ch.3g,
and ch.3h) with 1.75% correct inferences. However, the result is less accurate
if we observe nodes I and C (ch.3i) with only 1.51% correct inferences. The
opposite result is shown in ch.3d and ch.3j, where a downward node is observed
with the remaining nodes unobserved. This scenario shows the deterioration of
the accuracy with 0.66% and 0.0% correct inferences consecutively.

Fig. 4. The effect of distance and location of nodes in the accuracy of inferring.

Belief Propagation Through Provenance Graphs 155

5.2 Analysis of the Result

From our evaluation, we conclude that the closer the distance between observed
node and inferred node is, the more accurate the inference will be. This can
be proved through the first and second setup. Moreover, the highest accuracy
of inference is achieved when the inferred node is placed between the observed
nodes. This is obvious as the upward and downward nodes can infer the middle
one with more certainty. In fact, the accuracy is similar when we add more
observed nodes, indicating that the only important nodes are one node upward
and one node downward the inferred node. Although inferred node is located in
between observed nodes, the accuracy decreases if there is unobserved node in
between those observed nodes, which provokes the uncertainty.

Our evaluation also reveals that observing several nodes prior the inferred one
will not improve the accuracy if the nodes downward the inferred node remain
unobserved. Again, it means that adding more nodes prior the inferred node does
not affect the inference as long as the downward nodes remaining unobserved.
The same result derived if the observed nodes are located downward the inferred
node with remain nodes unobserved. However, the inference is more accurate
when observing upward nodes than the downward nodes of the inferred node.

6 Conclusion and Future Work

We have presented our work on using BP as an inference technique over the
provenance network through prFrame to infer the probability of a node, given
a condition of the others. We conclude that prFrame successfully combines BP
with the provenance network and our evaluation produces inferences with high
accuracy between 89% and 100% of being correct. In the food context, it can be
translated as the contaminated food are inferred with 89% to 100% chance of
being correct. We believe that more reliable results can be achieved with more
data captured in provenance, such as risk factors or sampling data. From an
implementation point of view, prFrame can accommodate the existence food
risk models in order to help food authority achieve due diligence in food.

In a case when a sampling report is used as the actual information, an infer-
ence can be performed after the fact that food has travelled to several places as
opposed to real time, because sampling analysis can take several days. In this
situation, provenance or the past description of food is an important information
to explain the reason behind the sampling result and assess the risk to identified
the next potential places to sampling food on the basis of the sampling report.

In the paper, we limit our work in a linear network only, while provenance
networks are mostly non-linear networks. In fact, many food chains in reality are
not a linear chain, such as tree structure. Our investigation reveals that as long
as the chain does not have cycle in it, the inference becomes converged. However,
even though the food chain have a cycle and the state belief cannot be achieved,
an approximate inference with BP has been proven as a good estimation as well.

156 B. V. Batlajery et al.

Finally, in performing the inference, we did not take into account the type
of activity of food process to assess the accuracy of inference. We believe that a
deeper investigation is required in order to systematically characterise BP-band
in inference in provenance trace.

References

1. Batlajery, B.V., Weal, M., Chapman, A., Moreau, L. prFood: ontology principles
for provenance and risk in the food domain. IEEE, December 2017

2. Markovic, M., Edwards, P., Kollingbaum, M., Rowe, A.: Modelling provenance of
sensor data for food safety compliance checking. In: Mattoso, M., Glavic, B. (eds.)
IPAW 2016. LNCS, vol. 9672, pp. 134–145. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40593-3 11

3. Thakur, M., Hurburgh, C.R.: Framework for implementing traceability system in
the bulk grain supply chain. J. Food Eng. 95(4), 617–626 (2009)

4. Food Standards Agency: Food Law Code of Practice (England)-April 2015. Report,
Food Standards Agency, April 2015

5. Eves, A., Dervisi, P.: Experiences of the implementation and operation of hazard
analysis critical control points in the food service sector. Int. J. Hosp. Manag.
24(1), 319 (2005)

6. Nauta, M.J.: A modular process risk model structure for quantitative microbio-
logical risk assessment and its application in an exposure assessment of Bacillus
cereus in a REPFED. RIVM Rapport 149106007 (2001)

7. Duarte, A.S.R.: The interpretation of quantitative microbial data: meeting the
demands of quantitative microbiological risk assessment. Ph.D. thesis, National
Food Institute, Technical University of Denmark (2013)

8. Pearl, J.: Reverend Bayes on inference engines: a distributed hierarchical approach.
In: AAAI 1982. AAAI Press (1982)

9. Moreau, L., Groth, P., Cheney, J., Lebo, T., Miles, S.: The rationale of PROV.
Web Semant.: Sci. Serv. Agents World Wide Web 35(4), 235–257 (2015)

10. Moreau, L., Missier, P.: PROV-DM: the PROV Data Model, W3C Recommenda-
tion REC-prov-dm-20130430, World Wide Web Consortium, April 2013

11. Moreau, L., Ali, M.: A provenance-based policy control framework for cloud ser-
vices, May 2014

12. Packer, H.S., Drăgan, L., Moreau, L.: An auditable reputation service for collective
adaptive systems. In: Miorandi, D., Maltese, V., Rovatsos, M., Nijholt, A., Stewart,
J. (eds.) Social Collective Intelligence. CSS, pp. 159–184. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08681-1 8

13. Markovic, M., Edwards, P., Corsar, D.: SC-PROV: a provenance vocabulary for
social computation. In: Ludäscher, B., Plale, B. (eds.) IPAW 2014. LNCS, vol.
8628, pp. 285–287. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
16462-5 35

14. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, Cambridge (2009)

15. Cohen, M.H.: The unknown and the unknowable-managing sustained uncertainty.
West. J. Nurs. Res. 15(1), 77–96 (1993)

16. Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge Uni-
versity Press, New York (2009)

https://doi.org/10.1007/978-3-319-40593-3_11
https://doi.org/10.1007/978-3-319-40593-3_11
https://doi.org/10.1007/978-3-319-08681-1_8
https://doi.org/10.1007/978-3-319-16462-5_35
https://doi.org/10.1007/978-3-319-16462-5_35

Belief Propagation Through Provenance Graphs 157

17. Frey, B.J., Kschischang, F.R., Loeliger, H.A., Wiberg, N.: Factor graphs and algo-
rithms. In: Proceedings of the Annual Allerton Conference on Communication
Control and Computing, vol. 35, pp. 666–680. University of Illinois (1997)

18. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, Secaucus (2006)

19. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Trans. Inf. Theor. 47(2), 498–519 (2006)

20. Holleran, E., Bredahl, M.E., Zaibet, L.: Private incentives for adopting food safety
and quality assurance. Food Policy 24, 669–683 (1999)

21. World Health Organization: Risk Assessments of Salmonella in Eggs and Broiler
Chickens, vol. 2. Food & Agriculture Organization, Geneva (2002)

Using Provenance to Efficiently
Propagate SPARQL Updates on RDF

Source Graphs

Iman Naja(B) and Nicholas Gibbins

Electronics and Computer Science, University of Southampton, Southampton, UK
{i.naja,nmg}@ecs.soton.ac.uk

Abstract. To promote sharing on the Semantic Web, information is
published in machine-readable structured graphs expressed in RDF or
OWL. This allows information consumers to create graphs using other
source graphs. Information, however, is dynamic and when a source graph
changes, graphs based on it need to be updated as well to preserve their
integrity. To avoid regenerating a graph after one of its source graphs
changes, since that approach can be expensive, we rely on its provenance
to reduce the resources needed to reflect changes to its source graph.
Accordingly, we expand the W3C PROV standard and present RGPROV,
a vocabulary for RDF graph creation and update. RGPROV allows us to
understand the dependencies a graph has on its source graphs and facil-
itates the propagation of the SPARQL updates applied to those source
graphs through it. Additionally, we present a model that implements a
modified DRed algorithm which makes use of RGPROV to enable partial
modifications to be made on the RDF graph, thus reflecting the SPARQL
updates on the source graph efficiently, without having to keep track of
the provenance of each triple. Hence, only SPARQL updates are commu-
nicated, the need for complete re-derivation is done away with, and prove-
nance is kept at the graph level making it better scalable.

Keywords: Provenance · PROV · RDF · SPARQL update

1 Introduction

The Semantic Web promotes the publishing, understanding, discovery, integra-
tion, and re-use of information, with recent years seeing a boost in the pub-
lication, inter-linkage, and consumption of large amounts of public datasets.
Knowledge is presented in machine-understandable formats, namely RDF [1]
and OWL [2] graphs, which provide well-defined meanings and support rules
for reasoning, and is queried and updated using SPARQL [3]. Graphs may be
manually created or automatically formed by combining information from other
graphs, and automated reasoning may be performed on them.

However, this is not without challenge, as knowledge is neither static nor
complete and its expansion and change is inevitable. Thus, in systems having
c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 158–170, 2018.
https://doi.org/10.1007/978-3-319-98379-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_12&domain=pdf

Using Provenance to Efficiently Propagate SPARQL Updates 159

graphs which relied on other source graphs when created, changes to those source
graphs need to be incorporated and reflected so as to keep such graphs up-to-
date. Typically, systems recreate those graphs from scratch and reason anew
on them. This may be expensive, and sometimes impractical to re-obtain the
data used and to re-reason with it. Alternatively, a system may contain its own
reasoner which takes responsibility for re-reasoning, like in [4].

Another challenge arises in the fact that the Semantic Web is an open envi-
ronment where ‘anyone can say anything about anything’. This begets the need
for means to appraise the trustworthiness, reliability, and reputation of data in
graphs to be consumed; and such assessments are intrinsically linked to know-
ing their provenance. Provenance describes the history of a datum or thing,
and which activities, entities, and people were involved in how they came to be
[5]. It has proven to be useful in numerous domains, as developers, researchers,
and users have been utilising it to establish trust, understanding, transparency,
attribution and accountability for outputs of intelligent systems. Moreover, the
recent community-driven work to achieve an open provenance vision resulted in
the PROV data model [6], a W3C recommendation.

While PROV facilitates interoperable provenance modelling, it is generic; a
more specialised vocabulary better serves to track and express the provenance
specific to RDF graphs, relating their creation and detailing and facilitating
their modification. Accordingly, we expand PROV and present RGPROV, a
vocabulary which models the classes and properties involved in an RDF graph’s
creation and update. It allows the specific capture of the provenance of an RDF
graph created using other graphs and understanding its dependencies on them. It
also expedites the propagation of SPARQL updates applied to its source graphs
without wide scale insertions or deletions and then complete re-derivation, thus
promoting the capture of the provenance of the update precisely and efficiently,
without resorting to tracking the provenance of individual triples.

The contributions of this paper are fourfold. (i) Our main contribution is
the RGPROV vocabulary, a specialisation of PROV-O which models the classes
and properties involved in an RDF graph’s creation and the SPARQL updates
applied on it. (ii) A partial re-derivation algorithm, based on DRed [7], which
makes use of RGPROV to propagate all or some of the SPARQL updates applied
on source graphs. (iii) A model which implements both RGPROV and the par-
tial re-derivation algorithm and (iv) A quantitative evaluation of our model
demonstrating that less resources are needed to achieve the same results.

Outline: Sect. 2 presents related work. Section 3 provides the running example
used throughout. Section 4 presents RGPROV. Section 5 describes our model
and presents the partial re-derivation algorithms. Section 6 describes the imple-
mentation of our system and presents the results. Finally, Sect. 7 presents our
conclusions and future work.

2 Related Work

The Delete and Rederive (DRed) algorithm [7] deletes the base data and all the
data that was derived from it, then re-inserts the subset of the derived data

160 I. Naja and N. Gibbins

that can be re-derived using other still present base data. RDFox [4] initially
materialises queries and its reasoner implements an incremental maintenance
algorithm based on DRed, but without making use of provenance. Elseways, [9]
presents an initial model, where they aim to have versioned data and functions
which would use provenance to detect changes between data versions, select
processes that require re-computation, and decide between complete or partial
re-computation. [10] extends their work on provenance semirings in [11] to sup-
port update exchange, schema mapping, and trust evaluation and to also extend
the DRed algorithm. When a deletion occurs, they utilise provenance to flag and
delete tuples which are no longer derivable. Similarly, [12] extends [13]’s work
and utilises colours to represent triple sources, although they consider inferred
quadruples independent of their sources. Before a quadruple is deleted, all the
quadruples that can be inferred from it are inserted first. Then, all the quadru-
ples that would entail it are deleted along with the quadruple itself. Further, [14]
extends both [11,13]’s work by also using quadruples. Their quadruples’ fourth
elements are named graphs and quadruples’ provenance is maintained in sepa-
rate tuples with an id element linking to them. They, however, do not consider
deletions; their algorithm describes how to insert quadruples and record their
provenance. The aforementioned works track provenance on the triple level, an
approach we avoided because of scalability concerns since tracking each triple’s
provenance using PROV would result in a graph having the size of its prove-
nance graph substantially larger than it1. Instead, using RGPROV we track
provenance on the graph level. [15] presents work similar to ours that tracks
dynamic provenance of collections using a specialisation of PROV, upd, which
allows them to capture SPARQL queries and updates performed on raw data
in a dataset. Their work only considers updates and ignores the other opera-
tions that may affect a graph or its provenance, namely fetching, set theoretic
operations, and re-entailment.

3 Running Example

We assume there are four systems A, B, C, and D, as shown in Fig. 1, each having
ownership of some RDF graphs and maintaining their provenance. We focus on
system C and explain our notations whilst identifying activities performed on
graphs. A graph GX,n belongs to system X, differentiated from other graphs by
the subset n, and PX,n is its provenance graph.

(1) Graph retrieval: the activity of fetching a graph and its provenance
from an external system and saving their copies internally. When copied
to system C, GX,n’s name becomes Gcopy(X,n) in C. Similarly PX,n’s name
becomes Pcopy(X,n). To reflect the activity of copying, Pcopy(X,n) is updated
and becomes P ∗

copy(X,n).

1 If each triple’s provenance consists of only triple prov:wasDerivedFrom

sourceTriple, a graph’s provenance graph would be a little larger than it. Even
adding provenance information about only the activity and agent that produced a
triple would result in the graph’s provenance graph being at minimum triple its size.

Using Provenance to Efficiently Propagate SPARQL Updates 161

Fig. 1. Example of distributed graph usage.

(2) Set theoretic operations: An intermediary graph GopC,m is produced by
applying one of Union, Merging, Intersection, and Difference. We currently
ignore blank nodes, and subsequently Merging.
(3) Entailment: In C, the entailed graph GC,m is produced from GopC,m

by running it through a reasoner. Entailment operations depend on which
entailment regime is implemented, namely: RDF, RDFS, Datatype, OWL
2 RDF-Based Semantics, OWL 2 Direct Semantics, or RIF. We use RDFS
Entailment [8] in our system.
An example of GC,3’s production is shown in Fig. 2. Throughout the identified
activities, C produces and updates the provenance PC,3 of GC,3. Note that the
aforementioned list of operations to create a graph is not exhaustive; other
operations, including the use of join, CONSTRUCT, OPTIONAL, etc., are
beyond the scope of this paper and may be addressed in some future work.
(4) SPARQL updates: If a system, say B, performs a SPARQL update
Upop(B,2) on GB,2 resulting in it becoming the new graph GB′,2, then C
should know about this update and subsequently needs to update GC,3, or
whichever parts of it should be affected, thus resulting in the more accurate
and up-to-date GC′,3. SPARQL updates are Insert, Delete, Delete/Insert,
Load, and Clear. We only focus on Insert and Delete as the latter three can
be seen as combinations or special cases of the former. The standard approach
is to retrieve a copy of GB′,2 and GA,1 - if not internally stored, reapply Gop on
them, and re-entailing to produce GC′,3. This becomes impractical in large
systems for two reasons: (1) it is computationally expensive to re-entail a
sizeable graph from scratch whenever there is an update, and (2) it requires
additional storage, communication overhead, or both since the source graphs
either need to be stored or re-fetched whenever a change occurs. Thus, we
identify the need for a more efficient way to reflect updates and produce
GC′,3. Our approach considers both the set theoretic operation which cre-
ated GopC,3 and the nature of Upop(B,2). This allows us to retrieve only the
update UpB,2 applied to GB,2 instead of retrieving all of GB′,2 and to iden-
tify whether Gcopy(A,1) is required, whether all or part of UpB,2 needs to be
propagated, and which parts of GC,3 need to be re-derived.

162 I. Naja and N. Gibbins

Fig. 2. Production of GC,3 from GA,1 and GB,2.

Fig. 3. RGPROV components for graph retrieval.

4 The RGPROV Vocabulary

RGPROV extends PROV-O and has the namespace prefix rgprov. Although we
only use it for RDF graphs, we intend it to be used for OWL graphs as well.

In accordance with PROV, we recognize that RDF and PROV graphs are
entities. To differentiate them from other types of entities, we introduce the class
Graph, a subclass of prov:Entity, that contains only entities which are graphs.
The actions that retrieve, produce, or update a Graph are activities, initiated
by agents. We extend these concepts and any necessary properties as follows.

Vocabulary for Graph Retrieval: We require stricter terms than
prov:hadPrimarySource and prov:wasQuotedFrom to represent copying a graph
as-is from its sources. Based on the description in Sect. 3, we show them in Fig. 3.
We see no need to create additional vocabulary for provenance production and
updating because provenance graphs are members of Graph, hence RGPROV’s
terms can be adequately applied to them.

Vocabulary for Graph Operations: We introduce the class GraphOperation,
a subclass of prov:Activity, that encompasses operations performed on a graph.

Vocabulary for Set theoretic Operations: Because there is a need to keep track
of which graph operation produced a graph, we introduce terms for set theoretic
operations, based on the description in Sect. 3, and show them in Fig. 4.

Vocabulary for Entailment Operations: To describe entailment operations, we
introduce the following, based on the description in Sect. 3, and depict a selection
of them in Fig. 5:

(1) Entailment, a subclass of GraphOperation, with subclasses representing par-
ticular entailment regimes.

Using Provenance to Efficiently Propagate SPARQL Updates 163

Fig. 4. RGPROV components for set theoretic graph operations.

Fig. 5. Some RGPROV components for entailment operations.

(2) Reasoner, a subclass of prov:SoftwareAgent that represent a reasoner, with
subclasses representing reasoners performing particular entailment regimes.

(3) wasEntailedFrom, a subproperty of prov:wasDerivedFrom, has domain
Graph, has range Graph.

Vocabulary for Updates: First, we introduce UpdateGraph, a subclass of Graph
that represents the graphs whose triples are to be inserted or deleted. We argue
for this because a graph that is stored in and being used by a system should be
differentiated from one whose entire purpose is containing triples to be inserted or
deleted in the former type of graph. Additionally, since we differentiate the types
of updates performed on a graph, we require stricter terms than prov:Revision

164 I. Naja and N. Gibbins

Fig. 6. RGPROV components for update operations.

and prov:wasRevisionOf. Thus we introduces terms for graph updates based on
the description in Sect. 3, and show them in Fig. 6.

RGPROV is published on https://archive.org/download/rgprov/rgprov.owl
and https://archive.org/download/rgprov/rgprovTurtle.owl.

5 The Model and Algorithms

5.1 System Architecture

We designed a system, shown in Fig. 7, comprising seven components, of which
we implemented four. (1) Operator, the main component, responsible for con-
trolling and invoking the operations performed on the graphs in the system.
As the central component, it invokes and communicates with the other compo-
nents. (2) Provenance Handler, responsible for creating, querying, and updating
provenance graphs. (3) SPARQL Server and Graph Store, which we have not
implemented but used the third party Jena Fuseki Server2. (4) Reasoner, which
we have also not implemented but used the third party Jena3. Jena is responsi-
ble for performing the set theoretic and entailment operations on all graphs. (5)
Update Producer, handles any updates applied on graph GC,3 for any outside
system that uses it. (6) Cache, used to store copies of retrieved graphs or updates
and any other temporary graphs as needed. Finally, (7) REST client, handles
the communications between the different systems. We have not implemented
it, as it does not pertain to the demonstrating the application of the RGPROV
vocabulary nor does it affect the evaluation of the system. Components have
been implemented in Java.

Note that unless they have been marked as inferred triples, all triples in
the source graphs are treated as ground triples in the system. Then, after it is

2 Fuseki2 is available on https://jena.apache.org/documentation/fuseki2/.
3 All Jena binary distributions are available on http://archive.apache.org/dist/jena/

binaries/.

https://archive.org/download/rgprov/rgprov.owl
https://archive.org/download/rgprov/rgprovTurtle.owl
https://jena.apache.org/documentation/fuseki2/
http://archive.apache.org/dist/jena/binaries/
http://archive.apache.org/dist/jena/binaries/

Using Provenance to Efficiently Propagate SPARQL Updates 165

Fig. 7. System design.

produced, graph GC,3 is split into and stored as two graphs. The first consists
of the ground triples and the second consists of the inferred triples produced
by our systems’ reasoner. This separation proves beneficial when re-deriving to
minimise over-deletions and re-insertions.

5.2 Update Propagation per Set Theoretic Operations

We now analyse how the combination of the set theoretic operation and the
kind of update influence what part of the triples in the update graph UpB,2

inserted into or deleted from GB,2 are to be propagated into graph GC,3 and
how. Note that inserting triples which already exist in a graph has no effect, nor
does deleting triples which do not exist.

Union GC,3 = Gcopy(A,1) ∪ Gcopy(B,2).
Insert : equivalent to inserting into GC,3 the triples in UpB,2. Gcopy(A,1) is not
needed and the only new entity needed is UpB,2.
Delete: equivalent to deleting from GC,3 the triples in UpB,2 \ Gcopy(A,1).
Gcopy(A,1) is needed along with UpB,2.
Intersection GC,3 = Gcopy(A,1) ∩ Gcopy(B,2).
Insert : equivalent to inserting into GC,3 the triples in UpB,2 ∩ Gcopy(A,1).
Gcopy(A,1) is needed along with UpB,2.
Delete: equivalent to deleting from GC,3 the triples in UpB,2. Gcopy(A,1) is
not needed and the only new entity needed is UpB,2.
Difference Case 1 GC,3 = Gcopy(A,1) \ Gcopy(B,2).
Insert : equivalent to deleting from GC,3 the triples in UpB,2. Gcopy(A,1) is not
needed and the only new entity needed is UpB,2.
Delete: equivalent to inserting into GC,3 the triples in UpB,2 ∩ Gcopy(A,1).
Gcopy(A,1) is needed along with UpB,2.
Difference Case 2 GC,3 = Gcopy(B,2) \ Gcopy(A,1).
Insert : equivalent to inserting into GC,3 the triples in UpB,2 \ Gcopy(A,1).
Gcopy(A,1) is needed along with UpB,2.
Delete: equivalent to deleting from GC,3 the triples in UpB,2. Gcopy(A,1) is
not needed and the only new entity needed is UpB,2.

166 I. Naja and N. Gibbins

5.3 Partial Re-derivation Algorithms

The Operator queries PC,3 for the set theoretic operation that produced GC,3,
checks the update type, and cross-references that pair with the list in Sect. 5.2
to decide whether all the update graph Upcopy(B,2) or a subset of it, namely
SubsUpcopy(B,2) , is to be applied to GC,3. Before propagating the update, it
removes the triples already present in the inferred portion of GC,3, so as to avoid
over-insertions/over-deletions and re-insertions. Finally, it applies the update as
follows.

If the update is an insert, the Operator creates an Insert statement and sends
it to Fuseki to be loaded into GC,3. It then requests the graphs resulting from
the Describe of those triples. The SPARQL Describe of a triple ‘describes’ it by
returning a graph containing all those triples that are connected to it, i.e., all the
triples which have as a subject any of the IRIs of the described triple’s subject,
predicate, or object. The union of the triples to be inserted and their descriptions
constitute the entirety of information that is needed for re-derivation. This union
is then forwarded to the reasoner, Jena, for inference. When the entailed graph
resulting from reasoning on this union is returned, the Operator creates another
Insert statement containing those inferred triples to be added by Fuseki thus
resulting in GC′,3. The aforementioned is shown in Algorithm 1.

Algorithm 1. Apply Insert Update
Function: describe : graph x triple → graph
Function: entail : graph → graph

procedure applyInsertUpdate(graph, triplesTBI)
described ← φ
graph ← graph ∪ triplesTBI
for each triple in triplesTBI do

described ← described ∪ describe(graph, triple)

graph ← graph ∪ entail(described)

If the update is a delete, then the Operator first gets, from Fuseki, the graphs
resulting from the Describe of the triples to be deleted. It then loops over each
triple to be deleted and examines its predicate. If the predicate is an rdf:type or
has super-properties (i.e. it is a sub-property of another property), then it adds,
to the list of the triples to be deleted, the triples with the same subject and
any objects that relate it to the predicate. This is in accordance with the RDFS
entailment rules described in [8]. Next, the Operator sends a Delete statement
containing the updated list of triples to Fuseki, so that the latter deletes them
from GC,3, thus resulting in GopC′,3. Afterwards, the Operator requests the
Describe of all the subjects and objects that were in the deleted triples and
sends the union of the resulting graphs to Jena for reasoning. When the entailed
graph resulting from reasoning on the union is returned, the Operator sends

Using Provenance to Efficiently Propagate SPARQL Updates 167

Algorithm 2. Apply Delete Update
Function: describe : graph x triple → graph
Function: entail : graph → graph

procedure ApplyDeleteUpdate(graph, triplesTBD)
described ← φ
for each triple in triplesTBD do

described ← described ∪ describe(graph, tripleTBD)

for each triple in triplesTBD do
subject = triple.Subj
t ← {t ∈ described|t.Subj = triple.Subj ∧ t.Prop = t.Prop}
for each t2 in t do

if t2.P rop = rdf : type then
superClasses ← {tsOAsS.Obj|tsOAsS ∈ described

∧tsOAsS.Subj = t2.Obj∧tsOAsS.Prop = rdfs : subClassOf}
for each superClass in superClasses do

infTriple ← 〈t2.Subj, rdf : type, superClass〉
triplesTBD ← triplesTBD ∪ infTriple

else
superProps ← {tp.Obj|tp ∈ described ∧ tp.Subj = t2.P rop

∧tp.Prop = rdfs : subPropertyOf}
for each superProp in superProps do

infTriple ← 〈t2.Subj, superProp, t2.Obj〉
triplesTBD ← triplesTBD ∪ infTriple

graph ← graph \ triplesTBD
� Re-derive and insert inferred triples.
subjsAndObjs ← {iri|iri ∈ triplesTBD.Subjects ∪ triplesTBD.Objects}
for each iri in subjsAndObjs do

described2 ← described2 ∪ describe(graph, iri)

graph ← graph ∪ entail(described2)

an Insert statement containing the inferred triples to Fuseki which inserts them
thus producing GC′,3. The aforementioned is shown in Algorithm 24.

6 Results

To test our system, we created a small RDF-Schema to represent fictional char-
acters and places, with both GA,1 and GB,2 making use of it. There are 12 classes
and 35 properties. In addition to this schema, both graphs GA,1 and GB,2 con-
tain instances of fictional characters and places. Graph GA,1 contains 275 triples,
while graph GB,2 contains 265 triples. 15 triples are inserted into GB,2 and then
4 triples are deleted from it. Table 1 displays the sizes of the produced graphs.

The evaluation criteria intends to verify that there is less overhead, in terms
of the number of triples being processed, when performing the following:
4 Due to space restrictions, the preceding description and subsequent algorithm only

focus on rdfs 5 , 7 , 9 , and 11 . Expanding them to cover the rest is straightforward.

168 I. Naja and N. Gibbins

Table 1. Size of GC,3 initially, after Insert, and after Delete.

ST\sizes Initial Entailed After Insert Entailed After Delete Entailed

Union 355 865 369 913 366 905

Intersection 185 336 186 341 185 338

Difference 1 90 109 89 108 90 108

Difference 2 71 75 94 98 91 95

1. Communication: retrieving the update is less overhead than retrieving both
source graphs.

2. Execution: propagating the update results in less triples processed during:
(a) the set theoretic operation, and (b) re-derivation.

Experimental Results. There is indeed less overhead in applying our approach
as detailed below.

(a) Communication. When the update is an Insert, the size of update will
always be less than the size of the whole graph. Hence, there is less communica-
tion overhead. However, when the update is a Delete, the overhead of communi-
cating the update is acceptable unless more than half of the triples in the graph
are to be deleted, because the size of the update is greater than the size of the
new source graph, and it may be more preferable to retrieve GB′,2 rather than
UpB,2. As shown in the analysis of the update propagation in Sect. 5.2, in the
cases of intersection and the second difference, there is no need for Gcopy(A,1),
but retrieving GB′,2 will force the re-retrieval of GA,1 - if it is not stored in the
system - plus the generation of GC′,3 from scratch. Combined, this would cause
more overhead depending on the availability and the comparative size of GA,1.
Hence, retrieving GB′,2 would be more preferable. In the cases of union and the
first difference where Gcopy(A,1) is needed, it may be more beneficial to retrieve
GB′,2 instead of UpB,2. So, it boils down to a case-by-case bases and can be
alleviated by requesting the size of the update from system B and depends on
if the other source graph is needed as well.

(b) Execution:

i. Set theoretic operations: We were not able to use Jena to count the
triples processed in set theoretic operations. However, from our analysis in
Sect. 5.2, we see that there are less triples to be checked because we are at
most using the whole update and one source graph and not the entirety of
both source graphs.
ii. Re-derivation: Inserting or deleting part of the update and then re-
deriving by only taking into account the affected triples and those related to
them reduces the number of triples processed by the reasoner in our experi-
mental example by: 53% and 77% for the Union, 78% and 83% for the Inter-
section, 67% and 68% for the Difference 1, and 48% and 64% for the Difference
2. We point out that these gains may fluctuate depending on the triples chosen
for insertion and deletion.

Using Provenance to Efficiently Propagate SPARQL Updates 169

7 Conclusion and Future Work

We examined where provenance of graphs on the Semantic Web should be
tracked, from their initial creation and through their modification, and based
on this we introduced a specialisation of the PROV ontology, RGPROV. Then,
we looked into how an update on a source graph needs to be propagated in a
graph which is based on it and applied RGPROV to do so efficiently. Finally,
we showed that our approach reduces overhead, in terms of number of processed
triples, when compared to re-creating a graph from scratch by implementing a
system which utilises algorithms to partially re-derive graphs.

There are a few directions worth exploring that extend our work. First, we
aim to test our approach using benchmark data like LUBM5 and UOBM6. Sec-
ond, our system and re-derivation algorithms can be extended to support OWL
graphs as well as RDF graphs by including OWL 2 entailment rules in the dele-
tion and re-entailment phases. Finally, they may be extended to deal with source
graphs which use different entailment regimes.

References

1. Schreiber, G., Raimond, Y.: RDF 1.1 primer. W3C note, W3C, June 2014. http://
www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/

2. Krötzsch, M., Patel-Schneider, P., Hitzler, P., Parsia, B., Rudolph, S.: OWL 2
web ontology language primer (second edition). Technical report, W3C, December
2012. http://www.w3.org/TR/2012/REC-owl2-primer-20121211/

3. SPARQL 1.1 overview. W3C recommendation, W3C, March 2013. http://www.
w3.org/TR/2013/REC-sparql11-overview-20130321/

4. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Incremental update of datalog mate-
rialisation: the backward/forward algorithm. In: Proceedings of the 29th AAAI
Conference on Artificial Intelligence, pp. 1560–1568. AAAI Press (2015)

5. Moreau, L., Groth, P.: PROV-overview. W3C note, W3C, April 2013. http://www.
w3.org/TR/2013/NOTE-prov-overview-20130430/

6. Lebo, T., Sahoo, S., McGuinness, D.: PROV-o: the PROV ontology. W3C recom-
mendation, April 2013. http://www.w3.org/TR/2013/REC-prov-o-20130430/

7. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally.
ACM SIGMOD Rec. 22(2), 157–166 (1993)

8. Hayes, P., Patel-Schneider, P.: RDF 1.1 semantics. W3C recommendation, W3C,
February 2014. http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

9. Missier, P., Cala, J., Wijaya, E.: The data, they are a-changin’. In: 8th USENIX
Workshop on the Theory and Practice of Provenance (TaPP 2016). USENIX Asso-
ciation, Washington, D.C. (2016)

10. Green, T.J., Karvounarakis, G., Ives, Z.G., Tannen, V.: Update exchange with
mappings and provenance. In: Proceedings of the 33rd International Conference
on Very Large Data Bases, Vienna, Austria, pp. 675–686 (2007)

11. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceed-
ings of the 26th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, Beijing, China, pp. 31–40. ACM (2007)

5 http://swat.cse.lehigh.edu/projects/lubm/.
6 https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/.

http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
http://swat.cse.lehigh.edu/projects/lubm/
https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/

170 I. Naja and N. Gibbins

12. Flouris, G., Fundulaki, I., Pediaditis, P., Theoharis, Y., Christophides, V.: Coloring
RDF triples to capture provenance. In: Bernstein, A., et al. (eds.) ISWC 2009.
LNCS, vol. 5823, pp. 196–212. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04930-9 13

13. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit
provenance in query and update languages. ACM Trans. Database Syst. 33(4),
1–47 (2008)

14. Avgoustaki, A., Flouris, G., Fundulaki, I., Plexousakis, D.: Provenance manage-
ment for evolving RDF datasets. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini,
C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 575–592.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3 35

15. Halpin, H., Cheney, J.: Dynamic provenance for SPARQL updates. In: Mika, P.,
et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 425–440. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11964-9 27

https://doi.org/10.1007/978-3-642-04930-9_13
https://doi.org/10.1007/978-3-642-04930-9_13
https://doi.org/10.1007/978-3-319-34129-3_35
https://doi.org/10.1007/978-3-319-11964-9_27

System Demonstrations

Implementing Data Provenance in Health Data
Analytics Software

Shen Xu1, Elliot Fairweather1, Toby Rogers2, and Vasa Curcin1(&)

1 King’s College London, London, UK
{shen.xu,elliot.fairweather,vasa.curcin}@kcl.ac.uk

2 Imosphere Ltd, Nottingham, UK
Toby.Rogers@imosphere.co.uk

Abstract. Data provenance is a technique that describes the history of digital
objects. In health applications, it can be used to deliver auditability and trans-
parency, leading to increased trust in software. When implementing provenance
in end-user scenarios, on top of standard provenance requirements, it is important
to properly contextualize the provenance features within the domain and ensure
their usability. We have developed a novel user interface, embedded into
Imolytics data analysis tool and based on our Provenance Template technology,
to help the end-user consume provenance information. In this demonstration, we
shall demonstrate how the interface can be used to examine the audit trail of
analysis results to spot when the two analytical methods start producing different
results. In addition to the novel provenance UI, this is the first implementation of
standard-based data provenance in a commercial data analytics software tool.

Keywords: Data provenance � System demo

1 Introduction

Atmolytics is a data analytics tool aimed at health and social care that focuses on
simplifying the data insight process by providing users with a set of generic apps that
can be customized into powerful interactive reports. The reports operate on cohorts –
patient data sets that are created from various databases integrated into Atmolytics
internal data warehouse. This model has proven effective for a range of use cases, from
genetical studies and cancer centres to primary care repositories for epidemiological
studies. In the Atmolytics architecture, an enterprise service bus is used to receive data
tasks before they are distributed over several farms for processing. Programmatic calls
within Atmolytics are invoking a RESTful API upon the provenance server. The
provenance services correspond to standard actions in the system and are implemented
using abstract provenance templates which get instantiated during API service calls
with concrete data and persisted into the provenance data store [1]. Provenance cap-
turing is triggered by a controller in Atmolytics – a Targeted Activity. After a new
graph segment, denoting a specific Atmolytics component, is created, it is linked into
the overall provenance graph by grafting the new nodes onto the existing structure.

The architecture of the Provenance Template Server is shown in Fig. 1. At the core
of the system is the model component. Provenance documents are represented as

© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 173–176, 2018.
https://doi.org/10.1007/978-3-319-98379-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_13&domain=pdf

graphs in which vertices and edges are typed and annotated with key-value pairs. The
graph itself may also have key-value properties. Serialisation and deserialisation to
PROV data formats is accomplished using the parsers provided by ProvToolbox
library. Substitutions also form part of the model and parsers to both a proposed
PROV-N format and JSON are given in the implementation. The template instantiation
algorithm by which new fragment documents are generated from templates and sub-
stitutions is also defined within the model component.

Storage of data in the system is abstracted by a persistence component to enable the
use of different database technologies. Here, a Neo4j graph database is used but a
relational database, SPARQL-enabled or alternative graph database could be used
either instead or concurrently. The metadata of documents is stored and updated sep-
arately to the graph data itself to facilitate indexing and other administrative operations
upon the documents stored [3].

The system is accessed via the document management component. This controls
and executes operations such as the creation of new target documents, namespace
management, the registering of templates, and the generation and merging of new
fragment documents. Fragment generation is achieved through interaction with the
model component. Operations requiring the import, export or update of document data
and metadata are supported via the persistence component.

Access to the document management interface is provided via a RESTful web
service. Documents and substitutions are passed to and from the server encoded as
JSON and analysis is conducted by running Cypher queries over the underlying Neo4j
database. The specifics of a higher-level query interface for the system, agnostic to a
particular storage solution, is an area of ongoing research.

Fig. 1. Provenance template server architecture

174 S. Xu et al.

2 Use Case

Atmolytics system is based on the use of patient cohorts for data analysis, which are
updated over time to reflect new additions to the data set. These cohorts can be created
either as dynamic queries or as static patient lists generated through set operations.
A common problem users are facing is to confuse the two and then later noticing that
the latter does not get automatically updated when new patients are added to the cohort
[2]. In our demonstration, we shall demonstrate how provenance data captured in
Atmolytics can be used to trace the origin of this problem.

Taking as an example an investigation of female hypertensive heart disease
(Fig. 2), a cohort could be created in two ways: (1) by creating a query for a group of
female patients with added criteria for presence of hypertensive heart disease, (2) by
creating a group of female patients and another group of hypertensive heart disease
patients, and then applying the subgroup function to create a static list which is the
intersection of the two groups. The results of the two approaches will initially be
identical, however over time, the cohort sizes might change.

To that goal, the demonstration will show:

a. The Atmolytics use case of diverging cohorts
b. How provenance is captured through the Provenance Template Server
c. How provenance data is visualized in Atmolytics
d. How this visualization is used to address the use case.

Fig. 2. Cohort of females with hypertensive heart disease

Implementing Data Provenance in Health Data Analytics Software 175

Figure 3 shows the temporal provenance view, visualizing relevant events on a
timeline, but also allowing free text to be shown alongside the provenance information.
This facilitates the justification of activities while reviewing the origin of results or
patient cohorts. Following user feedback, the interface highlights the changes between
activities, e.g. cohort updates, change of base cohort size etc. The events history
provenance reporting will also be demonstrated on a separate data example.

3 Summary

Atmolytics adopted a data provenance approach to implementing the auditing capa-
bilities required by their users and the evolving legislative landscape. The new features
help improve end-users’ trust in their results and data exploration performed. The
users’ response to initial provenance reporting functionality has been positive in initial
evaluations, and usability studies are continuing.

References

1. Curcin, V., et al.: Templates as a method for implementing data provenance in decision
support systems. J. Biomed. Inform. 65, 1–21 (2017)

2. Xu, S., et al.: Application of data provenance in healthcare analytics software: information
visualisation of user activities. In: Proceedings in AIMA Informatics Summits (2018)

3. Xu, S., et al.: Capturing provenance of visual analytics in social care needs. In: Informatics for
Health 2017, Manchester, p. 2 (2016)

Fig. 3. Timeline-based activity chain visualization of provenance data

176 S. Xu et al.

Quine: A Temporal Graph System
for Provenance Storage and Analysis

Ryan Wright(&)

Galois, Inc., Portland, OR 97214, USA
rrwright@gmail.com

Abstract. This demonstration introduces “Quine”, a prototype graph database
and processing system designed for provenance analysis with capabilities that
include: fine-grained graph versioning to support querying historical data after it
has changed, standing queries to execute callbacks as data matching arbitrary
queries is streamed in, and queries through time to express arbitrary causal
ordering on past data. The system uses a novel combination of schema-less data
storage and strongly-typed query language to enable well-typed analyses of
types unexpected when the database was initialized. The system is designed to
handle very large data with support for partitioning the graph to run across any
number of hosts/shards across a network.

Keywords: Provenance � Graph database � Graph query language
Distributed systems

1 Introduction

Provenance data in its richest form can be represented as a connected property graph.
Property graphs are ideal for representing the highly connected structure of provenance
data as given by various established and experimental tracing tools. However, existing
tools for working with graph data are not designed to favor provenance analysis. This
demonstration introduces “Quine”, a distributed graph database and processing system
meant to address the following infrastructure and usability challenges faced when
analyzing provenance data.

1.1 Highly Connected Temporal Data

Representing the state of a computer system at one point in time leads to highly
connected representations. In a running computer system, provenance data likely
includes information about the process tree hierarchy, the filesystem hierarchy, network
connections or perhaps network topology, the flow of data from one source to another,
or the graph of control flow among executing programs. Data elements among each of
these topics can be highly related to many elements from other topics.

Graph databases are a natural choice for representing the highly connected nature of
this kind of data. However, existing graph databases require modeling that data as a
single graph, so that current and historical states are mixed together uniformly and

© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 177–180, 2018.
https://doi.org/10.1007/978-3-319-98379-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_14&domain=pdf

distinguishable only by timestamps or other property-level data. This makes the
database very large in terms of node/edge count.

Quine is implemented as a property graph which maintains the current state of each
data item (nodes, edges, properties) as the derived result of its entire history. This
history is stored in a manner that allows efficiently querying back in time for previous
states, monitoring changes in state, or querying with other temporal constraints such as
causal ordering.

1.2 Queries on Complex Structures over Time

Existing graph query languages allow expression of terms at the level of nodes, edges,
and properties. Writing queries soon becomes akin to writing complex programs where
the query author must maintain a mental model of the graph schema or face incomplete
(or incorrect) query results. The complexity is compounded when the graph data is
meant to represent events and changes over time—as is common among provenance
data. When the history of data provenance is spread across a single graph, the query-
writer must weave temporal constraints into each hop and each value test as a query is
evaluated across the graph.

Quine is designed to represent time and change in graph data in a more manageable
way. The runtime for Quine manages the history of every value as they change. The
query language for Quine is meant to allow expressing queries at a level of abstraction
higher than primitive node/property/edge queries. Graph patterns are expressed as
classes and objects in a high-level programming language which offers type-safety at
the query level, so that a query author has immediate feedback when the query they are
assembling does not match the graph structure they are expecting. As a result, very
complex queries can be expressed as the composition of smaller parts and can be
evaluated on current and historical data, at one point in time or many.

1.3 Evolving Schema

Database schemas enforce types on singular values at data write-time, and aid query
writing at read-time, but this help comes at the cost of flexibility. NoSQL and other
“schema-less” databases provide speed and flexibility in the storage runtime, but little
help in understanding the shape of the data when writing queries.

Quine tries to balance this tradeoff by putting the schema and corresponding
constraints in the query language. Query instances first choose which schema to use,
then issue type-checked queries corresponding to that schema. This approach is similar
in spirit to the approach taken with GraphQL [1], however Quine does not require the
client and server to share schemas—or keep them in sync.

As analysis evolves, the schema can change as well. One kind of evolution can
occur by creating more meaningful/complex query terms by composition of existing
terms. Another evolution is the creation/discovery of a useful schema entirely disjoint
from the schema used to write the data initially. With either evolution, queries using
that schema will be type-checked before a query to the backend is issued.

178 R. Wright

1.4 Scalability for Large Datasets

Provenance datasets such as those produced by DARPA’s Transparent Computing
program are quite large, even though they are from one single system. Interesting
provenance questions spanning a large number of systems will be encumbered by the
size and processing constraints of such large data. These large datasets will need to be
processed by distributed systems designed for distributing a graph across many
machines. Existing commercial and open source solutions struggle in this area. Neo4j
scales across machines with read-only replicas that cannot support a high writing load.
JanusGraph (née TitanDB) relies on the distributed capabilities of its backing store and
ends up constrained by the administrative overhead and many round-trips between the
graph layer and the backing store [2, 3].

Quine was designed as a genuinely distributed graph. This system is partitioned
into graph shards even when run on a single system. One holistic view of the graph is
transparently queryable even when those shards are served from many different hosts
across a network. This allows the computational burden of reading and writing a large
graph to be distributed across many machines, opening the possibility of supporting the
large provenance datasets we hope to see in the near future.

2 Demonstration Topics

Streaming Ingest of Provenance Data. Provenance data from the DARPA Trans-
parent Computing program will be loaded in a streaming fashion and used as the basis
of the other demonstrations (see below). This data includes benign and malicious
activity from multiple host machines and operating systems.

Statically-Typed Query Language. A language for ingesting data will be demon-
strated. The query language is an eDSL embedded in Scala as the host language.
Defining a language is done by defining classes in Scala.

Visualizing Data. A visualization of the ingested data will be demonstrated to give an
intuition for how provenance data is represented in the system.

Query the Current State. The query language for Quine is realized as an embedded
DSL in the strongly-typed host language, Scala. Expressions of complex patterns in the
graph are aided by compile-time errors (i.e. before the query is issued to the database)
to give early user feedback when large and complex queries violate the chosen schema.
These kinds of queries aid provenance analysis by answering: Is the system currently in
a state such that ___?

Query Historical Data. Quine maintains all historical data for all data in the graph,
making it possible to query past states of the graph as they existed at any arbitrary point
in history. Complex queries spanning large sections of the graph can be issued for
many different times simultaneously. These kinds of queries aid provenance analysis by
answering: Was the system previously in a state such that ___?

Quine: A Temporal Graph System 179

Query Through Time1. In addition to searching a single point in the past, Quine aims
to provide the capability to efficiently query all points in the past to find whether a
certain query predicate holds. These kinds of queries aid provenance analysis by
answering: Was the system ever in a state such that ___?

Standing Queries. Quine allows queries to be expressed as “standing queries” which
execute a provided callback for each result found. A standing query will match existing
data and all cases where new additions or transformations of data result in a match.
These kinds of queries aid provenance analysis by answering: Did the system just
transition to a state such that ___?—if so, execute the desired action in real-time.

Graph Sharding (see footnote 1). Quine is built from the ground up as a distributed
system. One of the primary design goals for Quine is to support running a distributed
database across an arbitrary number of host machines on a network.

3 Conclusion

Research Contributions. Quine represents a management system contribution to the
domain of provenance research: a graph database with first-class representations of
time and changes over time. In addition, this system represents significant research
progress in the areas of graph query languages and distributed graph databases.

Acknowledgments. Portions of this research have been supported by DARPA under contract
number FA8650-15-C-7557. Opinions or conclusions expressed in this material are those of the
author and do not necessarily reflect the views of DARPA.

References

1. Facebook, Inc.: GraphQL. Working Draft, October 2016. http://facebook.github.io/graphql.
Accessed 3 June 2018

2. Holzschuher, F., Peinl, R.: Performance of graph query languages: comparison of cypher,
gremlin and native access in Neo4j. In: Proceedings of the Joint EDBT/ICDT 2013
Workshops, pp. 195–204. ACM (2013)

3. Pacaci, A., Zhou, A., Lin, J., Özsu, M.T.: Do we need specialized graph databases?:
benchmarking real-time social networking applications. In: Proceedings of the Fifth
International Workshop on Graph Data-Management Experiences and Systems, p. 12.
ACM (2017)

1 Demonstration of this feature depends on some functionality which is not complete at the time of this
writing. This feature will either be demonstrated or explained as “future directions” depending on
progress made before the conference.

180 R. Wright

http://facebook.github.io/graphql

Joint IPAW/TaPP Poster Session

Capturing Provenance for Runtime Data
Analysis in Computational Science

and Engineering Applications

Vítor Silva1(&), Renan Souza1,2, Jose Camata1,3, Daniel de Oliveira4,
Patrick Valduriez5, Alvaro L. G. A. Coutinho1, and Marta Mattoso1

1 COPPE/Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
silva@cos.ufrj.br

2 IBM Research, Rio de Janeiro, Brazil
3 Federal University of Juiz de Fora, Juiz de Fora, Brazil

4 Fluminense Federal University, Niterói, Brazil
5 Inria and LIRMM, Montpellier, France

Abstract. Capturing provenance data for runtime analysis has several chal-
lenges in high performance computational science engineering applications. The
main issues are avoiding significant overhead in data capture, loading and
runtime query support; and coupling provenance capture mechanisms with
applications built with highly efficient numerical libraries, and visualization
frameworks targeted to high performance environments. This work presents
DfA-prov, an approach to capture provenance data and domain data aiming at
high performance applications.

Keywords: Provenance � User steering
Computational Science and Engineering � HPC

1 Introduction

Computational Science and Engineering (CSE) applications are based on computa-
tional models that solve problems typically requiring High Performance Computing
(HPC) [1]. CSE applications are not tied to a particular domain. They can be found in
biology, chemistry, geology, several engineering areas, etc. They have the exploratory
nature of scientific applications but have to deal with large-scale executions, which last
for a long time even when using HPC. The software ecosystem for developing these
applications involves much more than writing scripts or invoking a chain of legacy
scientific codes. Computational scientists develop their simulation codes based on
complex mathematical modeling that results in invoking components of CSE frame-
works and libraries. For example, components are invoked to provide for: (i) support
for PDE discretization methods like libMesh, FEniCS, MOOSE, deal.II, GREENS,
OpenFOAM; (ii) algorithms for solving numerical problems with parallel computa-
tions, like PETSc, LAPACK, SLEPc; (iii) runtime visualizations, like ParaView Cat-
alyst, VisIt, SENSEI; (iv) parallel graph partitioning, like ParMetis, Scotch; and (v) I/O
data management like ADIOS.

© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 183–187, 2018.
https://doi.org/10.1007/978-3-319-98379-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_15&domain=pdf

As a result, a typical CSE software code works like a script, in the sense that to
code the underlying mathematical modeling it requires invoking functions, compo-
nents, or APIs from these libraries or frameworks. Figure 1 shows a fragment of the
FEniCS Python code for solving the Cahn-Hilliard equation, a mathematical model
from material science. The Cahn-Hilliard equation leads to a prototype of a transient
nonlinear multi-physics code. Several parameters have to be set to invoke these highly
efficient components, which are very difficult to preset and need monitoring for runtime
fine-tuning. The Interoperable Design of Extreme-scale Application Software (IDEAS)
[2] is a family of projects, involving several institutions in the US, concerned with the
complexity of developing software for CSE applications. IDEAS aims at “enabling a
fundamentally different attitude to creating and supporting CSE applications” with
desirable features like provenance and reproducibility [3]. In fact, provenance data can
help in registering parameter choices. Associating them to results can improve both
fine-tuning and data analyses at runtime.

Despite the several solutions available for making applications provenance-aware
[5–7], capturing provenance data in CSE applications is still an open issue. The chal-
lenges are mainly related to performance and provenance granularity. Stamatogiannakis
et al. [5] evaluated tradeoffs in provenance capture mechanisms. They consider that
solutions that are easy to deploy collect provenance in a very fine grain and present a
significant overhead, while solutions that are based on function calls present low
overhead and granularity is controlled by the code instrumentation. The disadvantage of
inserting function calls is the need to have access to the code. This is not an issue in CSE
applications as very often the code to be instrumented (Fig. 1) is written by the com-
putational scientist, who can assist in inserting the calls.

dataflow_tag = "fenics-df"
t1 = Task(1, dataflow_tag, "MeshCrea on")
t1.add_dataset(DataSet("iMeshCrea on", [Element([96, 96])]))
Create mesh
mesh = UnitSquareMesh(96, 96)
t1.add_dataset(DataSet("oMeshCrea on",

[Element([mesh.num_ver ces(), mesh.num_cells()])]))
t1.end()

t2 = Task(2, dataflow_tag, "Func onSpace", dependency=t1)
t2.add_dataset(DataSet("iFunc onSpace", [Element(["Lagrange", 1])]))
Define func on spaces
V = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
ME = Func onSpace(mesh, V*V)
t2.add_dataset(DataSet("oFunc onSpace", [Element([ME.dim()])]))
t2.end()

parts of code were omi ed
(...)

t3 = Task(3, dataflow_tag, "NewtonSolver", dependency=t2)
t3.add_dataset(DataSet("iNewtonSolver",

[Element(["lu", "incremental", 1e-6])]))
Define Newton solver
solver = NewtonSolver()
solver.parameters["linear_solver"] = "gmres"
solver.parameters["convergence_criterion"] = "incremental"
solver.parameters["rela ve_tolerance"] = 1e-6
t3.add_dataset(DataSet("oNewtonSolver",

[Element(["gmres", "incremental", 1e-6])]))
t3.end()
con nue in next frame

Labels:
Black Python na ve code
Red FEniCS invoca on
Green DfAnalyzer invoca on
Purple VTK invoca on

Output file
file = File("output.pvd", "compressed")

Step in me
t = 0.0; T = 50*dt; i =0
prev = t3
while (t < T):

t += dt; i += 1
current = Task(int(t3._id)+i ,dataflow_tag,"TimeStep", dependency=prev)
current.add_dataset(DataSet("iTimeStep", [Element([t,dt])]))
Solver execu on
u0.vector()[:] = u.vector()
iter_count, converged_flag = solver.solve(problem, u.vector())
current.add_dataset(DataSet("oTimeStep",

[Element([converged_flag,iter_count,solver.residual()])]))
current.end()

twrite = Task(int(current._id)+1, dataflow_tag, "Visualiza on"+iter_count,
dependency=current)

twrite.add_dataset(DataSet("iVisualiza on", [Element(["output.pvd"])]))
Visualiza on
file << (u.split()[0], t)
Raw data extrac on
extracted_data = Extractor(ExtractorCartridge.PROGRAM, "output.pvd")
twrite.add_dataset(DataSet("oVisualiza on", [Element(extracted_data[i-1])]))
twrite.end()

Fig. 1. FEniCS Python script for the Cahn-Hilliard equation adapted from [4].

184 V. Silva et al.

In CSE applications, the mechanism for provenance capture has to be deployed in
an HPC environment and preferably manage provenance data, asynchronously, in
computing nodes separate from the application. This separation avoids resource
competition, particularly in the memory hierarchy data space. Since CSE data are very
large, provenance capture cannot be in fine grain. Capturing provenance at the oper-
ating system or file level is not an option. CSE applications, like the one in Fig. 1, are
written in languages, like Python and C/C++, which are mapped to the CSE software
ecosystem, therefore solutions that are language specific are a limitation. HPC Scien-
tific Workflow Management Systems (SWMS) would be a natural solution for CSE.
However, conflicts among the parallel execution control of the workflow engine and
the CSE libraries prevent using SWMS in CSE software.

This work presents DfA-prov, an approach that follows the PrIMe methodology [8]
to make CSE applications provenance-aware and to provide runtime data analysis.
DfA-prov is language agnostic and does not present the limitations of capture mech-
anisms that compete with the computing nodes that execute the CSE application. DfA-
prov adopts DfAnalyzer [9] as provenance-aware components to be invoked by the
CSE applications. It works in the same way computational scientists invoke the CSE
and visualization libraries. Provenance data is captured by directly accessing input data
and parameters of the CSE function calls using in-situ and in-transit approaches. To
address the limitation of having coarse-grain provenance, DfA-prov provides function
calls that access raw data from files. In a previous work [10], we used DfAnalyzer
tightly coupled to a CSE application observing negligible overhead (less than 1%) in its
provenance capture, while providing rich data analytics at runtime. These results
encouraged us to propose DfA-prov as a standalone library with a corresponding
methodology to help on the adoption of provenance capture in CSE applications.

2 DfA-prov Making CSE Applications Provenance-Aware

DfA-prov follows the PrIMe methodology [8] to address CSE challenges for prove-
nance capture. After applying the methodology, DfA-prov generates a provenance
database, W3C PROV-compliant, enriched with domain data to be queried at runtime
or after the CSE application execution. DfA-prov is based on two main components
from DfAnalyzer, the provenance data capture and the raw data extractor.

PrIMe defines three phases. The first phase is an analysis step that identifies
questions related to provenance for data analysis. More specifically, Phase 1 identifies
data items and data transformations (or processing steps), all to be modeled using a data
representation. Phase 2 iteratively analyzes the application structure to identify actors
and interactions that provide the data items and data transformations to be registered as
provenance data. Phase 3 aims at adapting the application to capture provenance data.
We adapted these phases to match CSE application requirements.

DfA-prov requires a collaboration between the CSE application developer (named
as user) and a PROV specialist, as expected in Phase 1. The user identifies data items to
be tracked and how it relates to other data items along its lineage. The PROV specialist
models the data transformation chain using W3C PROV-DM activities and entities
with extensions for the domain data items, particularly data that need to be extracted

Capturing Provenance for Runtime Data Analysis 185

from raw data files. The result of this phase is a UML class diagram. The UML classes
are then mapped to a relational provenance database. The participation of the user in
this data modeling helps on query formulations. In addition, it selectively chooses only
application data of interest to be registered, providing a coarse-grain with relevant
provenance data and selected raw data. In Fig. 1, examples are: solver convergence,
number of iterations, and residual norms.

Provenance library calls are inserted in the CSE application as shown in Fig. 1 as
input, output, task and output followed by an extracted data call. Similarly to PROV-
Template [6], DfA-prov has a set of RESTful services (and libraries on C++, Python,
and Java) to help plugging the calls into the CSE applications. The invoked provenance
components capture data asynchronously during the CSE application execution. They
get the data and send all insert/update requests to a columnar database system that runs
in computing nodes different than the CSE application. As new phases within DfA-
prov, users configure CSE applications coupled to provenance-aware components to
specify input parameter values and the HPC environment. Then, they submit prove-
nance monitoring queries like what is the average error estimate calculated in all
iterations so far. Users can submit provenance queries using graphical interfaces or
SQL queries based on a dataflow abstraction. Finally, the monitoring helps parameter
fine tunings on the CSE application as evidenced in [10]. Real life applications are
much more complex than the script in Fig. 1, involving monitoring at runtime on an
HPC machine quantities of interest over time, metadata to visualization snapshots,
nonlinear systems solves, mesh adaptation parameters etc. These issues can be seen in
[10] for a particular CSE application, with examples in [11].

3 Conclusions

DfA-prov is an approach for making CSE applications provenance-aware and pro-
viding runtime data analytics. DfA-prov is based on application analysis, provenance
data modeling, and provenance-aware components to be invoked by the applications.
In addition to well-known advantages of collecting provenance in CSE applications,
such as reproducibility and reliability, runtime provenance augments online data ana-
lytical potential and is especially useful for CSE simulations in large-scale. Visual-
ization tools (e.g., ParaView Catalyst) have been coupled to DfA-prov calls to
complement domain data analyses. Based on runtime data analyses, the user may
dynamically adapt dataflow elements.

Acknowledgments. We thank Vinícius Campos for his help in DfA-prov development. The
research has received funding from CAPES, CNPq, FAPERJ and Inria (SciDISC projects), the
European Commission (HPC4E H2020 project), and the Brazilian Ministry of Science, Tech-
nology, 290 Innovation and Communications. It has been performed (for P. Valduriez) in the
context of the Computational Biology Institute.

186 V. Silva et al.

References

1. Rüde, U., Willcox, K., McInnes, L.C., Sterck, H.D., Biros, G., et al.: Research and
Education in Computational Science and Engineering. CoRR. abs/1610.02608 (2016)

2. IDEAS productivity. https://ideas-productivity.org
3. Bernholdt, D., Dubey, A., Heroux, M., Klinvex, A., McInnes, L.C.: Improving repro-

ducibility through better software practices. In: SIAM Conference on CSE, Atlanta, GA
(2017)

4. Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., et al.: Archive of Numerical
Software: The FEniCS Project Version 1.5. University Library Heidelberg (2015)

5. Stamatogiannakis, M., et al.: Trade-offs in automatic provenance capture. In: Mattoso, M.,
Glavic, B. (eds.) IPAW 2016. LNCS, vol. 9672, pp. 29–41. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40593-3_3

6. Moreau, L., Batlajery, B.V., Huynh, T.D., Michaelides, D., Packer, H.: A templating system
to generate provenance. IEEE Trans. Softw. Eng. 44, 103–121 (2018)

7. Pimentel, J.F., Murta, L., Braganholo, V., Freire, J.: noWorkflow: a tool for collecting,
analyzing, and managing provenance from python scripts. PVLDB 10, 1841–1844 (2017)

8. Miles, S., Groth, P., Munroe, S., Moreau, L.: PrIMe: a methodology for developing
provenance-aware applications. ACM Trans. Softw. Eng. Methodol. 20, 1–42 (2011)

9. Silva, V., De Oliveira, D., Valduriez, P., Mattoso, M.: DfAnalyzer: runtime dataflow
analysis of scientific applications using provenance. In: PVLDB, Rio de Janeiro, Brazil
(2018)

10. Camata, J.J., Silva, V., Valduriez, P., Mattoso, M., Coutinho, A.L.G.A.: In situ visualization
and data analysis for turbidity currents simulation. Comput. Geosci. 110, 23–31 (2018)

11. DfAnalyzer tool demonstration. https://github.com/vssousa/dfanalyzer-spark

Capturing Provenance for Runtime Data Analysis 187

https://ideas-productivity.org
http://dx.doi.org/10.1007/978-3-319-40593-3_3
http://dx.doi.org/10.1007/978-3-319-40593-3_3
https://github.com/vssousa/dfanalyzer-spark

UniProv - Provenance Management
for UNICORE Workflows in HPC

Environments

André Giesler(&) , Myriam Czekala , and Björn Hagemeier

Juelich Supercomputing Centre, Forschungszentrum Juelich GmbH,
Juelich, Germany

{a.giesler,m.czekala,b.hagemeier}@fz-juelich.de

Abstract. The goal of comprehensive provenance tracking in the scientific
environment should be the inclusion of the entire life cycle of data manage-
ment. Thus, the data collection process begins with the registration of lab-
generated or sensor-generated data, continues to organize and manage data in
the storage repositories, processing analysis and simulation data on clusters and
HPC systems, and finally referencing and verifying computational results in
scientific publications. In the associated provenance tracking life cycle, UniProv
initially concentrates on the processing and simulation of data in scientific
workflows used in particular on supercomputers in the HPC environment. In
this context, UniProv aims to create the core of a provenance management
framework that can be extended in order to integrate different sources of the
scientific provenance cycle. Here UniProv should facilitate the creation, the
standardized formalization, the storage and the retrieval of Provenance
Information.

Keywords: Provenance � Scientific workflows � Interoperability
PROV-O � Neo4j � UNICORE

1 Introduction

Scientific workflows are an integral part of using High-performance Computing
(HPC) systems in data centers. Some users rely on workflows that consist of a sequence
of logically concatenated programs and scripts between which intermediate results are
transferred and processed. Another group of users applies Workflow Management
Systems (WfMS) to enable complex, coherent simulations and calculations. These
tools provide a higher level of abstraction in terms of predefined structures, the
channeling of well-defined input and output data, standardization of analysis methods
and monitoring of all tasks within a workflow. The latter allows a continuous auto-
mated provenance tracking of scientific workflows by capturing information from the
processing logic of the WfMS.

© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 188–191, 2018.
https://doi.org/10.1007/978-3-319-98379-0_16

http://orcid.org/0000-0002-7929-4341
http://orcid.org/0000-0002-7389-2623
http://orcid.org/0000-0003-1528-0933
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_16&domain=pdf

2 Interoperable Provenance Framework for UNICORE

The UNICORE1 federation software suite includes a generic WfMS [1], which is
currently being used increasingly in the field of neuroscience [2]. UNICORE does not
provide proprietary provenance management. It is thus the initial goal of the UniProv
framework to process provenance information in UNICORE-based workflows to allow
UNICORE users to track their submitted workflows. For this purpose, UniProv was
initially integrated into the existing UNICORE service architecture. Based on the
UNICORE implementation UniProv is to be converted later to an autonomous
framework, to which further provenance providers can be attached. In this context,
UniProv pursues the following concept:

• Monitoring and extracting provenance information from UNICORE Job and
Workflow management services

• Processing of collected provenance information into an interoperable provenance
model according to W3C-PROV2

• Storing the provenance graph in a Neo4j graph database and allowing arbitrary
queries on the data

UniProv takes an interoperable approach in two respects: firstly, the potential
processing of the resulting provenance data should be enabled in other standard
compliant provenance services. Secondly, the later integration of such provenance
providers should be facilitated, which are capable of generating standard compliant
provenance data. For this reason, all provenance data is modeled based on the rec-
ognized W3C-PROV standard. UniProv uses the PROV-O ontology to express gen-
erated provenance information in compatibility with PROV. Furthermore, PROV acts
as a reference model to create application-specific ontologies for UniProv.

For instance, the general complexity of scientific workflows and processing WfMS
cannot be mapped sufficiently with the capabilities of the generic PROV standard. For
this reason, UniProv integrates the ProvONE ontology developed in the context of the
DataONE3 project and used in the context of the Pbase workflow provenance reposi-
tory [3]. The advantage of ProvONE lies in its variable specification of the cyclical
sequences of workflow logic, so that it can be very well modeled on UNICORE based
workflows. UniProv benefits from the conceptual decoupling of workflow provenance
into a prospective, a retrospective and a data-specific provenance view. In terms of
UNICORE-based workflows, this has the advantage that the static workflow definition
persisted in an XML file as well as the runtime information captured from the UNI-
CORE workflow engine can now be mapped in a common provenance graph. Addi-
tionally, the appropriate data flow of the workflow trace can be mapped and added
accordingly.

However, even the ProvONE ontology is not sufficient to map the entire resources,
elements and structures of a UNICORE workflow running on an HPC machine. To

1 https://www.unicore.eu/.
2 https://www.w3.org/TR/prov-overview/.
3 https://www.dataone.org/.

UniProv - Provenance Management for UNICORE Workflows 189

https://www.unicore.eu/
https://www.w3.org/TR/prov-overview/
https://www.dataone.org/

achieve this, ProvONE4 was specialized in the form of the UniPROV5 ontology. It
introduces the vocabulary that UNICORE uses for specifying structures such as
workflow loops, groupings, or synchronizations. For example, in ProvONE, the logical
dependency of two consecutive computational jobs in a workflow definition is
described by the class Controller. In UNICORE, the class Transition inher-
iting from Controller describes the transition from one job to the next, and contains
an additional condition describing that a job will not be executed until the associated
condition is met. In addition, the UniProv ontology provides the ability to include
annotations from users in the provenance graph. The UniProv ontology was serialized
in the OWL2 format such as PROV-O and the ProvONE ontology. All three ontologies
form the vocabulary of the UniProv framework to map UNICORE based workflows.
Using the Apache Jena RDF and Ontology API, Java interfaces were generated from
the ontologies so that compliant provenance data can be modeled in the UniProv
framework when processing UNICORE workflows.

3 Capturing and Storing Provenance Data

For extracting and processing provenance information from UNICORE, loggers have
been implemented and integrated into the UniProv framework. The Job Logger hooks
into the respective job management service of a UNICORE installation on a super-
computer and tracks the status of running computation jobs, the respective program
code, defined environment variables, the job properties (number of cores per node,
RAM, walltime, etc.), the use of imported files, and the generation of result data. In
addition, UNICORE job monitoring provides runtime information about the status of
the submitted job, hostnames, or the runtime of jobs.

The UNICORE workflow engine controls the logical sequence and synchronization
of interdependent jobs as well as the flow of data within a workflow. This information
is captured by the UniProv Workflow Logger, which is triggered by status messages
from the workflow engine. It then traverses all nodes and edges of the workflow graph
to capture current runtime information. Once a single job of the workflow is suc-
cessfully completed, the provenance information is prepared by the Job Logger of the
corresponding UNICORE instance, sent to the Workflow Logger, and added to the
internal UniProv workflow model. In this process, the WfModelOntProcessor module
processes the workflow model to the overall provenance graph by using the Apache
Jena RDF and Ontology API to generate ontology compliant provenance data. The
provenance graph is serialized by default in Turtle RDF, but can easily be managed to a
different syntax like XML or JSON.

UniProv supports the storage of provenance data in repositories based on a Neo4j
graph database, which was inspired by the scientific work in [4, 5]. Such a database
model allows a natural mapping of graph structures as modeled for workflow prove-
nance data in UniProv. One advantage of Neo4j is the support of highly connected data

4 https://purl.dataone.org/provone/2015/01/15/ontology#.
5 https://datapub.fz-juelich.de/uniprov.

190 A. Giesler et al.

https://purl.dataone.org/provone/2015/01/15/ontology#
https://datapub.fz-juelich.de/uniprov

as given in provenance graphs, particular as application-specific provenance data is
often subject to evolutionary changes. In this context, the schema-less character of a
graph database allows more flexibility than for example a relational database where
schema redesigning can be a time-consuming process. In Neo4j, it is possible to add
new data or relationships based on revised ontologies on the fly. On the other hand, the
connected graph structures of provenance data, especially of workflow provenance, can
cause complex nested queries along the nodes and edges of a graph. A graph database
such as Neo4j allows easy traversing of the data due to its graph-oriented Cypher query
language, while complex JOINs would be expected for traversal queries in a relational
database.

Since UniProv generates provenance output in PROV-based Turtle RDF syntax for
interoperability reasons, the created provenance graph must be migrated into the
Labeled Property Graph (LPG) model of Neo4j. For that reason, the UniProv frame-
work has been supplemented by the Neosemantics module representing an extension
point of Neo4j that is used to import existing RDF provenance data into the graph
database without the loss of its graph nature. The UniProv Neosemantics extension can
be installed in any Neo4j 3.x database as a plugin.

As future work, we intend to support Persistent Identification6 (PID) of data in
UniProv in order to provide a more consistent data flow tracking. We plan to support
and integrate other WfMS in UniProv such as Snakemake7, which is also a tool
frequently used in the domain of neuroscience.

Acknowledgements. The authors wish to thank all people and institutions involved in LSDMA.
We also thank the German Helmholtz Association for funding.

References

1. Demuth, B., et al.: The UNICORE rich client: facilitating the automated execution of
scientific workflows. In: 2010 IEEE Sixth International Conference on e-Science (e-Science),
Brisbane, Australia, pp. 238–245 (2010)

2. Amunts, K., Bücker, O., Axer, M.: Towards a multiscale, high-resolution model of the human
brain. In: Grandinetti, L., Lippert, T., Petkov, N. (eds.) BrainComp 2013. LNCS, vol. 8603,
pp. 3–14. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12084-3_1

3. Cuevas, V., Kianmajd, P., Ludäscher, B., et al.: The PBase scientific workflow provenance
repository. Int. J. Digit. Curation 9(2), 28–38 (2014)

4. Brauer, P.C., Fittkau, F., Hasselbring, W.: The aspect-oriented architecture of the CAPS
framework for capturing, analyzing and archiving provenance data. In: Ludäscher, B., Plale,
B. (eds.) IPAW 2014. LNCS, vol. 8628, pp. 223–225. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-16462-5_19

5. Heinis, T., Chapman, A.: Provenance storage. In: Liu, L., Ozsu, M.T. (eds.) Encyclopedia of
Database Systems. Springer, New York (2017). https://doi.org/10.1007/978-1-4899-7993-3

6 https://eudat.eu/services/userdoc/pids-in-eudat.
7 https://snakemake.readthedocs.io/en/stable/.

UniProv - Provenance Management for UNICORE Workflows 191

http://dx.doi.org/10.1007/978-3-319-12084-3_1
http://dx.doi.org/10.1007/978-3-319-16462-5_19
http://dx.doi.org/10.1007/978-3-319-16462-5_19
http://dx.doi.org/10.1007/978-1-4899-7993-3
https://eudat.eu/services/userdoc/pids-in-eudat
https://snakemake.readthedocs.io/en/stable/

Towards a PROV Ontology for Simulation
Models

Andreas Ruscheinski(B), Dragana Gjorgevikj, Marcus Dombrowsky,
Kai Budde, and Adelinde M. Uhrmacher

Institute of Computer Science, University of Rostock,
Albert-Einstein-Str. 22, 18059 Rostock, Germany

andreas.ruscheinski@uni-rostock.de

Abstract. Simulation models and data are the primary products of sim-
ulation studies. Although the provenance of simulation data and the sup-
port of single simulation experiments have received a lot of attention, this
is not the case for simulation models. The question of how a simulation
model has been generated requires to integrate diverse simulation exper-
iments and entities at different levels of abstractions within and across
entire simulation studies. Based on a concrete simulation model, we will
use the PROV Data Model (PROV-DM) and illuminate the benefits of
the PROV-DM approach to identify and relate entities and activities
that contributed to the generation of a simulation model, thereby taking
first steps in defining a PROV-DM ontology for simulation models.

Keywords: Simulation model · Provenance · Simulation study

1 Introduction

Provenance provides “information about entities, activities, and people involved
in producing a piece of data or thing, which can be used to form assessments
about its quality, reliability, or trustworthiness” [2]. Applying provenance to
outcomes of modeling and simulation studies, such as output data and the
simulation model, requires to identify central activities and products and to
put those into relation. Existing standards like SBML [3] or the ODD proto-
col [1] document what has been developed rather than how it has been developed.
The provenance of simulation data and the execution of individual simulation
experiments, be this single runs, parameter scans, or simulation-based optimiza-
tion, have been the subjects of major research efforts. Accordingly, different
approaches like scripts, domain-specific languages, and scientific workflows, e.g.,
Taverna [8] and Kepler [4], support the execution and replication of individual
simulation experiments. Thereby, simulation models are part of the simulation
data’s provenance rather than being its primary subject. The development of

The research was funded by the DFG (German Research Foundation) UH 66/18
“GrEASE” and by DFG CRC 1270 “Elaine”.

c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 192–195, 2018.
https://doi.org/10.1007/978-3-319-98379-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_17&domain=pdf

Towards a PROV Ontology for Simulation Models 193

a simulation model involves collecting and analyzing diverse data sources and
executing various simulation experiments interleaved with the refinement, com-
position, or extension of the simulation model. As the generation of a simulation
model is a highly intricate process, the accessibility of entities and diverse activ-
ities that contributed to its generation is as important as the accessibility of the
simulation model itself. To capture the provenance of simulation models within
and beyond individual simulation studies, we will exploit the PROV Data Model
(PROV-DM) [2]. In combination with simulation experiments as first class enti-
ties and a multi-level approach, (nearly) the full tale behind a simulation model
and its development can be revealed.

2 Exploiting PROV-DM for Simulation Model
Development

The potential of PROV-DM in describing the provenance of a simulation model
shall be illuminated based on a concrete biochemical model. The Wnt/β-catenin
signaling is involved in central cellular processes, such as differentiation, prolif-
eration, and migration of cells. As a central signaling pathway, significant efforts
have been dedicated to understand the mechanisms of the pathway by develop-
ing a variety of simulation models. In [7], we presented a preliminary provenance
model to relate a Wnt/β-catenin simulation model to earlier simulation models
and data. This provenance model has been refined, as seen in Fig. 1, and trans-
ferred to PROV-DM. The connections of the five models (M1–M3’) to other
entities and activities are described in the following part.

Data, Hypotheses and Model Development: Data artifacts are used as
input (W3 - LRP6 initial values - in A8), for calibration (W4 - nuclear β-
catenin - in A9), and for validation (D1 - cross validation with data produced
with model M1 - in A11). Assigning roles to the used relationship between
activities and data artifacts facilitates assessing the diverse data sources and
how they were used in generating simulation models.

Roles between activities and simulation models, such as used for adapta-
tion (M1 - for a different cell type - A2), extension, or used for composition (M2
- by a membrane model - A4, M3 - by a ROS model - A6), allow to assess the
relationships between simulation models and to reuse entities and activities for
a simulation model’s progeny [6].

Simulation Experiments: During the development of a simulation model,
diverse simulation experiments, such as parameter scans, sensitivity analy-
sis, simulation-based optimization, or statistical model-checking, are executed,
alternating with phases of simulation model refinement, extension, or composi-
tion. Simulation experiments are part of a simulation model’s generating pro-
cess: directly, e.g., in terms of simulation-based optimization or parameter fit-
ting (E3), or indirectly, by providing insights into the simulation model’s behav-
ior based on which the simulation model can be refined, extended, composed, or
found to be valid (E1, E2). In addition, specifications of simulation experiments

194 A. Ruscheinski et al.

Fig. 1. Provenance model at multiple levels (in gray: detailed view of A4). The letters
refer to: W - wet-lab data, D - model validation data, M - simulation model, A - activity
like simulation experiment, DC - data calibration result, VD - model validation result,
E - simulation experiments.

form important entities of a simulation model’s provenance in their own right.
They give substance to the generation process of a simulation model [7] and
allow reusing simulation experiments across simulation models for consistency
checks [6].

Activities at Different Levels: Similarly, as complex simulation models
require to integrate description levels at multiple levels of abstractions, the
“requirement of providing details at different levels of abstraction or from differ-
ent viewpoints is (also) common in provenance systems” [5]. As the development
of a simulation model is an intricate process, we cannot expect activities such
as A2, A4 or A6 to be monolithic. For example, developing the simulation
model M3 relied on diverse simulation experiments which become visible by a
more refined account (view) of activity A4. First, based on M2 and wet-lab
data, a model (M3 0) was derived (A8) which was subject to a calibration exper-
iment (A9, E3) and later was validated by further simulation experiments (A10,
A11 and E2, E1, respectively), again based on different wet-lab data. Whereas
those experiments and activities can be directly executed, the model (M3 0)
itself has been composed of two simulation models which have been validated
separately [6] and whose simulation experiments have been reused, which again
would add a more fine grained account to the provenance model.

Towards a PROV Ontology for Simulation Models 195

3 Towards an PROV Ontology for Simulation Model
Development

A PROV ontology defines a specialization of PROV-DM. Our small case study
already identified important ingredients of such an ontology: (a)specific types of
entities, e.g., data, theories, simulation experiments, and simulation models, (b)
specific roles between specific types of entities, e.g., used as input, for calibra-
tion, for validation (between data and generation process), used for adaptation,
extension, composition (between simulation models and generation process), (c)
specific refinement of activities: successive refinement of activities down to a level
where simulation experiment specifications define activities and thus are ready
to be executed, and (d) specific inference strategies, e.g., warning if the same
data have been used for calibration and validation, or validation experiments
can be reused among descendants to check consistency. To approach a prove-
nance ontology for simulation models, we are currently applying PROV-DM to
additional simulation models in systems biology but also in other domains such
as demography. In addition, we explore the potential of the provenance informa-
tion for consistency checks by reusing simulation experiments across simulation
models and studies.

References

1. Grimm, V., Polhill, G., Touza, J.: Documenting social simulation models: the ODD
protocol as a standard. In: Edmonds, B., Meyer, R. (eds.) Simulating Social Com-
plexity - A Handbook. UCS, pp. 349–365. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66948-9 15

2. Groth, P., Moreau, L.: PROV-overview. An overview of the PROV family of docu-
ments (2013). https://www.w3.org/TR/prov-overview/

3. Hucka, M., Finney, A., Sauro, H.M., et al.: The systems biology markup language
(SBML): a medium for representation and exchange of biochemical network models.
Bioinformatics 19(4), 524–531 (2003)

4. Ludäscher, B., et al.: Scientific workflow management and the Kepler system. Con-
cur. Comput.: Pract. Exp. 18(10), 1039–1065 (2006)

5. Moreau, L., et al.: The open provenance model core specification (v1. 1). Future
Gener. Comput. Syst. 27(6), 743–756 (2011)

6. Peng, D., Warnke, T., Haack, F., Uhrmacher, A.M.: Reusing simulation experiment
specifications in developing models by successive composition - a case study of the
wnt/β-catenin signaling pathway. Simul.: Trans. Soc. Model. Simul. Int. 93(8), 659–
677 (2017)

7. Ruscheinski, A., Uhrmacher, A.M.: Provenance in modeling and simulation studies
- bridging gaps. In: Winter Simulation Conference 2017, pp. 872–883. IEEE (2017)

8. Wolstencroft, K., et al.: The Taverna workflow suite: designing and executing work-
flows of web services on the desktop, web or in the cloud. Nucleic Acids Res. 41(W1),
W557–W561 (2013)

https://doi.org/10.1007/978-3-319-66948-9_15
https://doi.org/10.1007/978-3-319-66948-9_15
https://www.w3.org/TR/prov-overview/

Capturing the Provenance of Internet
of Things Deployments

David Corsar(B), Milan Markovic, and Peter Edwards

Computing Science, University of Aberdeen, Aberdeen, UK
{dcorsar,m.markovic,p.edwards}@abdn.ac.uk

Abstract. This paper introduces the System Deployment Provenance
Ontology and an associated set of provenance templates. These can be
used to describe Internet of Things deployments.

Keywords: IoT deployments · Semantic Sensor Networks
Provenance

1 Introduction

There is growing recognition that increasing the transparency of Internet of
Things (IoT) devices is key to fostering trust between citizens and the IoT [1,
2]. Within the TrustLens project1 we are working with members of the public
to identify what they want to know about IoT deployments. These end-user
requirements are influencing the design of an ontological framework that is being
used to represent this information, and make it available for use by tools that
enable citizens to pose transparency questions of future IoT deployments.

During our initial discussions, users have highlighted a desire to know what
IoT devices are doing, the types of sensors that are part of a device, how accu-
rate the sensors are, and what data are being generated. Information such
as this can be described by the Semantic Sensor Network Ontology (SSNO)
W3C recommendation [4], which provides formalisms to describe sensors and
related concepts in domains such as the Internet of Things. SSNO describes
ssn:Systems2, as pieces of infrastructure which may be composed of subsystems;
three types (subclasses) of ssn:System are defined: sosa:Sensors3, sosa:Actuator,
and sosa:Sampler. Systems implement sosa:Procedures that can be used to
describe the system’s intended operations (e.g. how a sensor will make an obser-
vation). SSNO also models system capabilities (e.g. accuracy, expected battery

David Corsar’s email address for correspondance is d.corsar1@rgu.ac.uk.
The research described here is supported by the RCUK Digital Economy programme
award made to the University of Aberdeen; award reference: EP/N028074/1.

1 http://www.trustlens.org.
2 Defined by the SSN namespace http://www.w3.org/ns/ssn/, abbreviated to “ssn”.
3 Defined by the SOSA namespace http://www.w3.org/ns/sosa/, abbreviated to
“sosa”.

c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 196–199, 2018.
https://doi.org/10.1007/978-3-319-98379-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_18&domain=pdf
http://www.trustlens.org
http://www.w3.org/ns/ssn/
http://www.w3.org/ns/sosa/

Capturing the Provenance of Internet of Things Deployments 197

life), acts (e.g. making an observation), results of those acts (e.g. an observation
value), features of interest (the subject of an act), and properties of a feature of
interest that can be observed, sampled, or changed.

Our interactions with end-users also highlighted their interest in the activi-
ties that may have occurred before and during IoT deployments. For example,
whether any community consultation was conducted, who designed the deploy-
ment, and if any assessment was made of potential privacy risks. While SSNO
includes a ssn:Deployment class, it only describes the deployed system and
the platform (such as a wall, shelf, etc.) that hosts it, along with any further
details about the platform, such as its location. We argue that having additional
information about the activities that influenced the deployment would greatly
increase its transparency (as desired by users), and assist with interpreting any
data generated by the deployed system. For example, knowledge of maintenance
activities performed on a sensor may influence an individual’s view of the quality
of data it generates. This may involve considerations such as when it was last
(re)calibrated, its specified accuracy and drift values [3], or whether the surfaces
of an air quality sensor have been recently cleaned [5].

This paper presents the Semantic Sensor Network System Deployment Prove-
nance Ontology (SDPO)4. SDPO extends PROV-O5 with a vocabulary for
describing deployments of IoT systems as a collection of PROV activities con-
ducted before or during a deployment, the associated agents and entities (e.g.
systems, sensors), that have shaped the deployment in some way.

2 Describing IoT System Deployments

SDPO defines the sdpo:DeploymentRelatedActivity class, and an initial hierarchy
of subclasses representing various types of such activities. SDPO also asserts
that: ssn:Deployment is a subclass of prov:Activity6; ssn:System is a subclass
of prov:Collection and prov:Agent ; and ssn:hasSubSystem is a subproperty of
prov:hadMember. These subsumptions are based on earlier work [3] aligning the
non-normative SSNO published by the W3C SSN-XG with PROV-O.

The types of activities defined by SDPO include those that may have been
conducted before deployment, such as sdpo:SystemSelection, sdpo:SiteInspection,
sdpo:DeploymentDesign, and sdpo:Installation. Various types of maintenance
operations are also defined, based on [5]. These include sdpo:Calibration,
sdpo:Cleaning, and sdpo:Replacement of a system or subsystem. To sup-
port developers use SDPO to describe IoT deployments, a set of PROV-
TEMPLATES7 are available for the ProvToolbox library8 that provide suggested
provenance patterns for several types of SDPO deployment related activities9.
4 Namespace http://www.w3id.org/sdpo/, abbreviated to “sdpo”.
5 Namespace http://www.w3.org/ns/prov#, abbreviated to “prov”.
6 SDPO views a ssn:Deployment as an activity during which, for example, a sensor
performs the act(s) of making one (or more) observations.

7 https://provenance.ecs.soton.ac.uk/prov-template/.
8 https://lucmoreau.github.io/ProvToolbox/.
9 The templates are available at http://www.github.com/TrustLens/sdpo.

http://www.w3id.org/sdpo/
http://www.w3.org/ns/prov#
https://provenance.ecs.soton.ac.uk/prov-template/
https://lucmoreau.github.io/ProvToolbox/
http://www.github.com/TrustLens/sdpo

198 D. Corsar et al.

Fig. 1. Provenance record describing the replacement of a sensor in a smart meter.

Figure 1 illustrates an instantiation of the PROV-TEMPLATE designed to
capture the replacement of a subsystem. In this example, the sensor :electric-
Sensor1 that monitors electricity consumption as part of a smart meter (:smart-
Meter) is replaced during the :replaceES activity. The roles sdpo:Replac-
ementSystem and sdpo:ReplacedSystem are used to differentiate the function of
the two sensors in :replaceES. As the sensors are part of the :smartMeter system
(described in PROV terms as a collection of system entities), a revision of the
system is created to reflect the change in collection membership. Consequently,
a revision of the platform (:platform) hosting the system must be created to
reflect that it now hosts :smartMeter r1. As :smartMeter and :platform cease
to exist following the replacement, they are invalidated by :replaceES10. While
not illustrated in Fig. 1, it is expected that :replaceES would link to the activ-
ity (e.g., a sdpo:DataReview) which identified that :electricSensor1 should be
replaced, or to the entity that triggered the replacement (e.g., a fault report).

While SSNO can link an ssn:System with the sosa:Procedures (plans) it imple-
ments, SSNO does not define how those procedures should be described. Figure 2
illustrates the use of P-PLAN11 to describe a sosa:Procedure as a p-plan:Plan that
a system will enact during a deployment. P-PLAN describes plans as a series of p-
plan:Steps that can be linked by p-plan:Variables. In Fig. 2 the first step of the
plan (:plan) is an sdpo:Observe step (a subclass of p-plan:Step12), which has an
output variable :electricityReading. This variable is input to the :uploadReading
step, which will send the reading to the energy supplier. An enactment of this
plan is captured in the :obs1-enactment provenance bundle, which also illustrates
the correspondences between the P-PLAN and SSNO concepts. This information
can be used to improve the transparency of the expected behaviour of a device
(as described by the implemented plan(s)), and contextualise the device’s actual
behaviour (as described in the retrospective provenance describing plan enact-
ments). Note, as plans are specific to deployments of individual systems, we do
not currently define a set of PROV-TEMPLATES for plans.

10 Note :electricSensor1 is not invalidated, as it may subsequently be used by a repair
or recycling activity.

11 Namespace http://purl.org/net/p-plan#, abbreviated to “p-plan”.
12 SDPO also defines the steps sdpo:Sample and sdpo:Actuate corresponding to the

sosa:Sampling and sosa:Actuation acts defined by SSNO.

http://purl.org/net/p-plan#

Capturing the Provenance of Internet of Things Deployments 199

Fig. 2. Example plan for a smart meter to observe and upload the quantity of electricity
consumed, and associated retrospective provenance generated during an enactment.

3 Future Work

The plan illustrated in Fig. 2 provides only partial transparency of :smart-
Meter r1 ’s expected behaviour. For example, the plan as shown does not record
that the smart meter will observe and upload energy usage every 30 min, as
P-PLAN does not presently include the constructs necessary to model repeat
processes. We are defining extensions to P-PLAN that will allow us to provide a
more representative view of a device’s expected behaviour. In addition to repeat
processes, our intended extensions include associating constraints with variables.
This will, for example, allow a plan to specify that the inputs to an upload step
will be all of the readings made in the past 24 h, rather than a single reading.

We are also continuing our user engagement activities, with plans to deploy
several IoT devices in public spaces. We are currently developing a software
framework that will capture ontological descriptions of these deployments and
data generated by the devices. These will be used during co-design sessions
involving members of the public, the outcomes of which will guide the develop-
ment of software tools that allow citizens to explore details about IoT deploy-
ments, assist them in understanding the risks and benefits associated with IoT
devices, and to assess the quality of the data produced.

References

1. Alliance for Internet of Things Innovation: AIOTI Strategy 2017–2021 (2017)
2. Almeida, V.A.F., Doneda, D., Monteiro, M.: Governance challenges for the internet

of things. IEEE Internet Comput. 19(4), 56–59 (2015)
3. Compton, M., Corsar, D., Taylor, K.: Sensor data provenance: SSNO & PROV-O

together at last. In: Proceedings of 7th International Workshop on Semantic Sensor
Networks, vol. 1401. CEUR (2014)

4. Haller, A., Janowicz, K., Cox, S., Le Phyoc, D., Taylor, K., Lefrancois, M.: Semantic
sensor network ontology. W3C Recommendation, March 2018

5. Williams, R., et al.: Air Sensor Guidebook. U.S. EPA (2014). ePA/600/R-14/159

Towards Transparency of IoT Message
Brokers

Milan Markovic1(B), David Corsar1, Waqar Asif2, Peter Edwards1,
and Muttukrishnan Rajarajan2

1 Computing Science, University of Aberdeen, Aberdeen AB24 5UA, UK
{milan.markovic,dcorsar,p.edwards}@abdn.ac.uk

2 School of Engineering and Mathematical Sciences, City, University of London,
London EC1V 0HB, UK

{waqar.asif,r.muttukrishnan}@city.ac.uk

Abstract. In this paper we propose an ontological model for document-
ing provenance of MQTT message brokers to enhance the transparency
of interactions between IoT agents.

Keywords: IoT · MQTT · Provenance

1 Introduction

The Internet of Things (IoT) enables multiple heterogeneous devices and applica-
tions to interact with each other using the Internet as a common communication
infrastructure. However, these devices bring with them a new set of problems
such as security and user data/identity privacy [1]. The concurrent operation of
such devices leads to a high risk of data breach where a device capable of com-
plex computations can launch an active or a passive attack in a network running
weak security protocols [2]. Alongside this, the increasing interest of IoT users in
data privacy and new regulations for protecting personal data such as the Gen-
eral Data Protection Regulation1 and the Safe Harbor Framework2 necessitate
greater transparency of IoT systems. This includes user-accessible information
on processes utilising the data generated/obtained through IoT devices.

We argue that transparency of interactions between IoT devices (e.g.
exchanging of messages) is a critical enabler to support IoT device account-
ability, privacy, and data quality assessments. Here, the W3C recommendation
PROV [5] could provide means to document causal relationships between agents
(i.e. things, data consumers, etc.), activities they perform (e.g. sensing, relaying

The work described here was funded by the award made by the RCUK Digital Econ-
omy programme to the University of Aberdeen (EP/N028074/1) and City, University
of London (EP/N028155/1).

1 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679.
2 https://www.ftc.gov/tips-advice/business-center/privacy-and-security/u.s.-eu-
safe-harbor-framework.

c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 200–203, 2018.
https://doi.org/10.1007/978-3-319-98379-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_19&domain=pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
https://www.ftc.gov/tips-advice/business-center/privacy-and-security/u.s.-eu-safe-harbor-framework
https://www.ftc.gov/tips-advice/business-center/privacy-and-security/u.s.-eu-safe-harbor-framework

Towards Transparency of IoT Message Brokers 201

messages), and data entities used and generated. In addition, by documenting
the intended actions of agents (i.e. plans) we could also support audit of IoT
components in terms of system capabilities and deviations in behaviour.

In this context, message brokers implementing the MQTT standard3 are com-
monly used to network groups of IoT devices and software agents4. In such net-
works all communication between clients can be inspected by auditing the con-
nected message brokers. At the same time, malfunctions, misconfigurations or the
limited capabilities of message brokers (e.g. not detecting abnormal behaviour
such as repeated failed authentication attempts) pose significant security and
privacy risks that may result in data loss or breach of data sharing permissions.
Provenance records documenting the intended and actual behaviour of message
brokers could support discovery of such issues. For example, a provenance query
could reveal a list of all agents that had access to a redistributed message which
can be checked against a user’s policy for data sharing. Further queries could
also identify messages that are not being forwarded by the broker (i.e. plans
not executed in full), frequent attempts at unauthorised client subscriptions, or
clients that are frequently disconnected due to their inactivity without properly
closing their connections.

In the remainder of the paper we introduce the MQTT-PLAN ontology,
designed to define plans describing the intended actions of brokers upon receipt
of different types of MQTT control packets. This can then be used to annotate
retrospective provenance records of the broker’s actual behaviour, identifying
correspondances between the retrospective entities and activities and concepts
in the plan. We conclude with a discussion of outstanding challenges and outline
our future work.

2 The MQTT-PLAN Ontology

MQTT-PLAN5 defines a vocabulary extending PROV-O6 and P-PLAN [3]
to describe high level abstract plans associated with MQTT brokers; and
their corresponding execution traces. The ontology captures information that
could be found by inspecting individual MQTT control packets (e.g. mes-
sage topics) and other information maintained by a broker (e.g. the iden-
tity of clients subscribed to receive messages published to each topic, and
reasons for client disconnections). In P-PLAN, plans are modelled as sets
of variables serving as inputs and outputs of steps. Execution traces are
then described using the concepts p-plan:Entity and p-plan:Activity7 which

3 http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.
4 MQTT is a publish/subscribe messaging transport protocol for a client-server com-
munication. The protocol specifies a set of control packets that govern the commu-
nication between the client and the message broker residing on a server.

5 http://w3id.org/mqtt-plan.
6 https://www.w3.org/TR/prov-o/.
7 Subclasses of prov:Entity and prov:Activity.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://w3id.org/mqtt-plan
https://www.w3.org/TR/prov-o/

202 M. Markovic et al.

m-plan:PacketAttribute
(p-plan:Variable)

m-plan:ControlPacket
(p-plan:Variable)

m-plan: BrokerAction
(p-plan:Step)

m-plan:triggers
m-plan:packetAtt

m-plan:hasActionResult
(p-plan:hasOutputVar)

m-plan:ActionResult
(p-plan:Variable)

m-plan:ResultAttribute
(p-plan:Variable)

m-plan:resultAtt

p-plan:hasOutputVarm-plan:hasActionInput
(p-plan:hasInputVar)

p-plan,prov:Plan

p-plan:isStepOfPlan
p-plan:isVariableOfPlan

p-plan:isVariableOfPlan

p-plan:isVariableOfPlan
p-plan:isVariableOfPlan

m-plan:triggers

Fig. 1. Main MQTT-PLAN concepts modelled as subclasses of P-PLAN concepts.

are linked to the corresponding plan via p-plan:correspondsToVariable and p-
plan:correspondsToStep. This approach allows for a separation of the abstract
plan description from individual execution traces describing instances of enacted
processes and associated data. As a result, the interpretation of retrospec-
tive provenance is bound to the corresponding plan description. Figure 1 illus-
trates the main MQTT-PLAN concepts8. A step m-plan:BrokerAction can be
triggered by m-plan:ControlPacket and its more descriptive subtypes such as
m-plan:PublishCP, m-plan:SubscribeCP, etc. Subtypes of m-plan:BrokerAction
such as m-plan:Subscribe9, m-plan:Publish10, m-plan:Disconnect11 are also
defined. Control packets can be associated with m-plan:PacketAttribute(s) such
as m-plan:TopicName and m-plan:Message. Using property chain axioms asso-
ciated with m-plan:hasActionInput such attributes are inferred as input vari-
ables of the m-plan:BrokerAction. A broker action can produce an m-plan:
ActionResult variable, which describes a results object and can also trigger
another m-plan:BrokerAction step. Such results can be associated with attributes
m-plan:Target, m-plan:Reason and m-plan:CompletionStatus. Subtypes of
m-plan:Target, namely m-plan:AffectedAgent and m-plan:AffectedAgents define
variables which can be instantiated via a retrospective provenance record to
describe either a single or group of agents affected by the activity instance corre-
sponding to m-plan:BrokerAction. Figure 2 illustrates an example plan describing
re-publishing of messages by a message broker and a corresponding execution
trace. In this example, a message containing a temperature reading was pub-
lished under the topic “/temp” by the client ex:Device1 and was forwarded to
the client ex:Device2 by the agent ex:Broker.

Similarly, m-plan:CompletionStatus and mplan:Reason can be instantiated
via the retrospective provenance record to determine whether the broker could
complete the activity and the reason if this was not possible. For example, a
publish control packet could trigger a publish action which could not complete
due to the client being denied access to the topic. A result of this action could
also trigger disconnection of the client.

8 MQTT-PLAN concepts are described with the prefix m-plan.
9 The client sending a control packet triggering this action should be registered to
receive messages published under the requested topics.

10 A message specified in the control packet triggering this action should be forwarded
to clients subscribed to the topic under which it was published.

11 This action should close the connection between a client and a broker.

Towards Transparency of IoT Message Brokers 203

ex:ClientVar1
(m-plan:Sender)

ex:PubContPacketVar1
(m-plan:PublishCP)

ex:TopicVar1
(m-plan:TopicName)

ex:PubStep
(m-plan:Publish)

ex:MessageVar1
(m-plan:Message)

p-plan:Bundle

ex:ActionResVar1
(m-plan:ActionResult)

m-plan:triggers

ex:RecipientsVar1
(m-plan:AffectedAgents)

m-plan:resultAtt

ex:RecipientColl1
(p-plan:Entity

prov:Collection)
ex:pub1

(p-plan,prov:Activity)

p-plan:correspondsToStep

ex:ActionRes1
(p-plan,prov:Entity)

p-plan:correspondsToVariable

prov:wasGeneratedBy
ex:Msg1

(p-plan,prov:Entity)

ex:Topic1
(p-plan,prov:Entity)

ex:Device1
(prov:Agent, p-plan:Entity)

ex:cp1
(p-plan,prov:Entity)

prov:wasStartedBy

"23
prov:used

ex:planPublish
(p-plan,prov:Plan)

m-plan:packetAtt

p-plan:correspondsToVariable

p-plan:isVariableOfPlan

p-plan:isVariableOfPlan

prov:wasGeneratedBy

p-plan:isStepOfPlan

ex:Device2
(prov:Agent)

prov:hadMember

p-plan:isVariableOfPlan

prov:used

prov:wasDerivedFrom

m-plan:hasActionInput

p-plan:correspondsToVariable

"/temp"
prov:value

prov:value

ex:Broker
(prov:Agent)

prov:wasAssociatedWith

p-plan:hasOutputVar

m-plan:hasActionResult

Fig. 2. An example provenance record describing a broker’s plan for re-publishing
received messages to other clients, and a record of the corresponding execution trace.

3 Discussion and Future Work

In order to keep the vocabulary lightweight, the initial version of the ontology
does not cover all of the functionalities specified in the MQTT standard. These
include: quality of service tracking, handling of will messages, retaining of mes-
sages by the broker, session flags. Username and password flags are also not cap-
tured explicitly for security reasons. However, the ontology enables modelling
of various plans describing single or multiple broker actions interlinked with
their input and output variables. As part of our future work we aim to create a
repository of common representations of broker’s plans described using MQTT-
PLAN to generate further community discussions about their use. We will also
evaluate how the lack of support for conditional branches impacts on modelling
such plans. Finally, traffic managed by message brokers presents scalability chal-
lenges. However, our previous work [4] demonstrated a possible approach using
linked data streams. We are currently exploring a means for capturing prove-
nance by extending an open source MQTT message broker in order to evaluate
the potential of a stream-based approach for consuming such data.

References

1. Asif, W., Rajarajan, M., Lestas, M.: Increasing user controllability on device specific
privacy in the Internet of Things. Comput. Commun. 116, 200–211 (2018)

2. Bertino, E., Islam, N.: Botnets and internet of things security. Computer 50(2),
76–79 (2017)

3. Garijo, D., Gil, Y.: Augmenting PROV with plans in P-PLAN: scientific processes
as linked data. In: Proceedings of the 2nd International Workshop on Linked Science
2012 (2012)

4. Markovic, M., Edwards, P.: Semantic stream processing for IoT devices in the food
safety domain. In: Posters and Demos SEMANTiCS 2016 and SuCCESS 2016 Work-
shop, Leipzig, Germany (2016)

5. Moreau, L., Groth, P., Cheney, J., Lebo, T., Miles, S.: The rationale of PROV. Web
Semant.: Sci. Serv. Agents World Wide Web 35, 235–257 (2015)

Provenance-Based Root Cause Analysis
for Revenue Leakage Detection:

A Telecommunication Case Study

Wisam Abbasi1(B) and Adel Taweel1,2(B)

1 Computer Science, Birzeit University, Birzeit, Palestine
wisam.alabbasi@gmail.com

ataweel@birzeit.edu
2 Informatics, King’s College London, London, UK

Abstract. Revenue Assurance (RA) represents a top priority function
for most of the telecommunication operators worldwide. Revenue leak-
age, if not prevented, depending on the severity of the leakage affecting
their profitability and continuity, could cause a significant revenue loss of
an operator. Detecting and preventing revenue leakage is a key process to
assure telecom systems and processes efficiency, accuracy and effective-
ness. There are two general revenue leakage detection approaches: big
data analytics and rule-based. Both approaches seek to detect abnor-
mal usage and profit trend behaviour and revenue leakage based on cer-
tain patterns or predefined rules, however both are mainly human-driven
and fail to automatically debug and drill down for root causes of leak-
age anomalies and issues. In this work, a rule-based RA approach that
deploys a provenance-based model is proposed. The model represents the
workflow of critical RA functions enriched with contextual and semantic
information that may detect critical leakage issues and generate poten-
tial leakage alerts. A query model is developed for the provenance model
that can be applied over the captured data to automate, facilitate and
improve the current process of root cause analysis of revenue leakages.

Keywords: Debugging · Provenance · Revenue Assurance
Root cause

1 Introduction

The main responsibility of RA analysts is to manage and prevent revenue leakage
based on RA methodology [8]. Current RA architectures support revenue leakage
detection by applying a series of detective processes consisting of monitoring,
summarization, auditing, and investigation [8]. But it is not an easy task to
track back to the sources and root causes of a leakage issue manually due to
the wide variety of rate plans, products, offers, campaigns, incidents, upgrades
and millions or even billions of records in addition to the existence of tiered
product plans and flat rates [3]. Therefore, automating the debugging and drill
c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 204–207, 2018.
https://doi.org/10.1007/978-3-319-98379-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_20&domain=pdf
http://orcid.org/0000-0002-6901-1838
http://orcid.org/0000-0003-0240-9857

Provenance-Based Root Cause Analysis 205

down process would greatly increase performance, ease the auditing process, save
operators revenues, provide better analytical experience, better management of
data, more accurate reports and leads to an informed future decision making.

On the other hand, provenance is a global term refers to the creation history
of an object and to the contextual information related to it [7]. Data Provenance
has been applied to the field of computing by defining the origin of processes
that have led to a specific state of data product within an information system
such as databases and workflows [6]. Scientific research have been conducted
in computer science for the purpose of data provenance application upon two
major domains, science with the aim of information sharing and validation while
preserving copyright and authority aspects [2] and business [1] to achieve data
quality, reproducibility, auditability, validation, debugging, accountability, error
backtracking, prediction, and forward tracking aspects [5].

Revenue leaks in telecom industry largely affect business profitability and
continuity, and there is a critical need in the market for an RA analytics debug-
ging tool as the debugging and drill down processes in current RA architectures
are done manually. Therefore, we are proposing a new uniquely provenance data
model for this domain, that would help revenue analysts audit their operators
traffic in a better way, simplify error tracing back, better management of the
data quality, and the provision of a historical record of data products.

2 The Proposed Approach

Provenance data represent semantic and contextual information related to the
leakage issue or the telecom usage anomaly. These data are being created auto-
matically based on the processes and sub-processes flow on the RA system. Each
RA detective process consists of a number of processing steps and entities.

Figure 1 presents an overview of how the proposed provenance model works.
Once an RA detective process starts execution the query model starts capturing
semantic and contextual provenance information of each of its sub-processes from
connected entities to each process, and store these information into data-oriented
workflows as provenance diagrams in a graph database.

Entities that represent source nodes are associated with other entities to
provide contextual information related to these nodes such as system logs, inci-
dents and launched offers. The final result data item in the graphical workflow
is associated with an entity named public holidays and events based on the date
parameter to add more contextual information.

Processes and entities in the provenance diagram are connected using rela-
tionships. The relationships are given the properties for backward tracing pur-
pose. Semantic information represented by mapped attributes, and used filters
if any are stored at the processing node level.

3 Running Examples

The review of the existing RA systems suggests that they lack the provenance
capturing capability to answer the questions of when, where, and why the issue

206 W. Abbasi and A. Taweel

has been introduced and what reason(s) may have caused the revenue leakage
issue. The proposed approach has been partially implemented and tested on two
revenue leakage scenarios. Initial results show that it can automate the detection
and root cause analysis of these scenarios.

Fake (i.e. False Positives) Revenue Leakage Alert: A great increase in
voice calls duration with no additional increase in call counts or call charges
has been used as an example of an abnormal behavior in the usage monitoring
trends, since any additional voice usage must introduce additional fees or charges
in the normal case, thus must be investigated by the RA team. The root cause
for this behavior is that an offer was launched for local voice calls for prepaid
subscribers to get 3 free minutes in each charged call.

Real (i.e. True Positives) Revenue Leakage Alert: A great missing of
voice calls in one of the main RA system functions that connects the MSC source
node representing the switch and the CCN source node representing the charging
system has been used as an example of a real revenue loss as in Fig. 2 and must
be investigated immediately by RA team. The root cause for this issue is that
calls charging has stopped due to a switch-charging disconnection occurred after
an upgrade was done to MSC3 without adjusting its settings properly.

Fig. 1. Proposed provenance-based approach.

Provenance-Based Root Cause Analysis 207

Fig. 2. Real revenue leakage alert scenario provenance graph.

4 Results

We have presented an approach that supports root cause analysis and drill
down capabilities in current rules based RA systems. The approach starts by
understanding the current state of RA function methodology, processes and
approaches, then the current approach was improved through the deployment
of logical data provenance and data workflows. For this stage, a preliminary
evaluation was conducted to show the potential of the proposed approach and
its plausibility on two scenarios, however for the next stage, the evaluation will
include several scenarios and enlarged scope. The proposed model has been eval-
uated based on the accuracy and correctness of answering the questions of how,
what, where, and why presented using the debugging and drill down concepts
and it has proven its correctness and accuracy depending on the provenance
data.

References

1. Curbera, F., Doganata, Y., Martens, A., Mukhi, N.K., Slominski, A.: Business prove-
nance – a technology to increase traceability of end-to-end operations. In: Meersman,
R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 100–119. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-88871-0 10

2. Greenwood, M., et al.: Provenance of e-science experiments-experience from bioin-
formatics, pp. 223–226 (2003)

3. Revenue assurance how to stop bleeding and start leading. https://clarity.
sutherlandglobal.com/blog/accounting-minute/revenue-assurance-how-to-stop-
bleeding-and-start-leading/. Accessed 7 Jan 2018

4. Global Telecom Revenue Assurance Survey 2013. http://www.ey.com/Publication/
vwLUAssets/Global telecoms revenue assurance survey 2013/$FILE/Global
revenue assurance survey 2013.pdf. Accessed 7 Jan 2018

5. Imran, M., Hlavacs, H.: Provenance in the cloud: why and how? In: The Third
International Conference on Cloud Computing, GRIDs, and Virtualization, pp. 106–
112. Cloud Computing (2012)

6. Moreau, L.: The provenance of electronic data. Commun. ACM 51(4), 52–58 (2008)
7. Provenance. https://en.wikipedia.org/wiki/Provenance. Accessed 7 Jan 2018
8. Revenue Assurance. https://en.wikipedia.org/wiki/Revenue assurance. Accessed 7

Jan 2018

https://doi.org/10.1007/978-3-540-88871-0_10
https://clarity.sutherlandglobal.com/blog/accounting-minute/revenue-assurance-how-to-stop-bleeding-and-start-leading/
https://clarity.sutherlandglobal.com/blog/accounting-minute/revenue-assurance-how-to-stop-bleeding-and-start-leading/
https://clarity.sutherlandglobal.com/blog/accounting-minute/revenue-assurance-how-to-stop-bleeding-and-start-leading/
http://www.ey.com/Publication/vwLUAssets/Global_telecoms_revenue_assurance_survey_2013/$FILE/Global_revenue_assurance_survey_2013.pdf
http://www.ey.com/Publication/vwLUAssets/Global_telecoms_revenue_assurance_survey_2013/$FILE/Global_revenue_assurance_survey_2013.pdf
http://www.ey.com/Publication/vwLUAssets/Global_telecoms_revenue_assurance_survey_2013/$FILE/Global_revenue_assurance_survey_2013.pdf
https://en.wikipedia.org/wiki/Provenance
https://en.wikipedia.org/wiki/Revenue_assurance

Case Base Reasoning Decision Support
Using the DecPROV Ontology

for Decision Modelling

Nicholas J. Car(B)

CSIRO Land and Water, Dutton Park, QLD, Australia
nicholas.car@csiro.au

http://people.csiro.au/C/N/Nicholas-Car

Abstract. Decisions are modelled using a new, Semantic Web, spe-
cialised provenance ontology. This allows for management in graph
databases and common instance components to be globally addressed
and thus reused. New decisions are compared to those in a Case Base to
provide best-practice advice. This is a Decision Support System (DSS)
which also assists other DSS by revealing contemporary practice in stan-
dardised ways with details for decision categorisation.

Keywords: Decision modelling · DecPROV · PROV · Provenance
Case-based reasoning

1 Decision Modelling Need and a Domain

Decision Support Systems (DSS) encode expert knowledge and perhaps data for
decisions to help users a:ain best practice. Few DSS cater for different decision
scenarios or even variations within a scenario.

Fig. 1. A drip irrigation system carrying water to crops via pipes, valves and emitters:
modern systems such as these allow for fine-grained irrigation management governed
by expert systems. Image curtesy of Irrigation Australia, Pty. Ltd.

c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 208–211, 2018.
https://doi.org/10.1007/978-3-319-98379-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_21&domain=pdf
http://orcid.org/0000-0002-8742-7730

CBR Decision Support Using the DecPROV 209

Standardised decision modelling would allow us to articulate many decision
types within a domain and variations within a type consistently perhaps allowing
DSS designers to be:er cater for decision ranges.

For irrigation decisions by smallholding farmers, perhaps using systems such
as that shown in Fig. 1, we would like to characterise decisions they make in a
standardised way, knowing that many factors affect their overall practice [9].

2 Standardised PROV Decision Modelling

DecPROV [2] a specialised version of the PROV Data Model [6] is used to model
past decisions. As opposed to other industry or academic decision modelling such
as DMN [8] or Decision Modelling Ontology [4], this ontology is both PROV-
aligned and uses Semantic Web methods allowing for (Fig. 2):

– Sophisticated modelling of complex decisions
• The Semantic Web has a large range of interoperable models
• Whole business processes can be modelled & decisions included

– Describing why particular decisions were made in PROV-like terms
– Describing different types of decisions within a domain and categorising them

with standard taxonomy techniques.

Fig. 2. Classes of DecPROV and their basic relationships. From the ontology doc-
umentation at https://promsns.org/def/decprov. DecPROV uses standard PROV-O
[5] properties to relate specialised versions of PROV-O classes that describe decision
elements in a manner similar to the W3C?s Decision Modelling Incubator Group?s
candidate Decision Ontology [7]

3 Case-Based Reasoning with Decisions

A way to provide support for a decision without expert systems is to com-
pare them to previous ones using Case-Based Reasoning [1]. Current cases are
matched for similarity to previous one whose results must be known, then best
practice advice is offered with the current case then stored for future use. Typ-
ically CBR systems use a cycle, see Fig. 3, and require a similarity metric to
compare cases.

https://promsns.org/def/decprov

210 N. J. Car

Fig. 3. The CBR cycle, after [1]

Using DecPROV and Semantic Web modelling generally, schema-less RDF
triplestores can be used to store decisions and the standardised SPARQL query
language used to compare them. For example, a query could find decision outputs
(an Answer) sharing datasets of Type X as an input (see Listing 1.1).

4 Current Work

Currently we are cataloguing and categorising known online irrigation-relevant
data sources so decisions using similar input data can be selected for. Without
cataloging we can’t ascertain data source reuse and without characterisation we
can’t determine similarity between data sources: multiple, sometimes branded,
data sources can deliver similar information.

As we characterise a series of data sources, we are establishing a range of
similarity measures to be used in CBR to allow the matching of a Current Case
to Past Cases of decisions made. Since the mechanics we are using are RDF
triplestores, we are establishing these similarity measures as SPARQL queries.

CBR Decision Support Using the DecPROV 211

We are also testing the modelling power of DecPROV: Does it cover all/many
irrigation decisions? Does using DecPROV improve data provenance generally
to assist with other questions such as those about data quality?

As we characterise decisions made, we are storing anonymised instances of
them in a triplestore with a SPARQL endpoint and a wrapping Linked Data layer
which publicly lists them with persistent URIs so they can be found, referred to
and reused in CBR systems and generally.

5 Future Work

Once a full CBR cycle is implemented, we will begin providing CBR-derived
decision support to irrigators. We hope to discover hitherto unknown decision
making patterns in irrigation to inform future non-CBR decision support sys-
tems. We also hope to expand the use of DecPROV to other decision domains.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological
variations, and system approaches. AICom - Artif. Intell. Commun. 7(1), 39–59
(1994)

2. Car, N.J.: Modelling causes for actions with the decision and PROV ontologies. In:
MODSIM 2017–22th International Congress on Modelling and Simulation, Hobart,
Australia (2017). https://www.mssanz.org.au/modsim2017/C2/car.pdf

3. Car, N.J., Moore, G.A.: Bridging the gap between modelling advice and irrigator
solutions through empirical reasoning techniques. In: MODSIM 2011–19th Inter-
national Congress on Modelling and Simulation, Perth, Australia (2011). https://
www.mssanz.org.au/modsim2011/B1/car.pdf

4. Kornyshova, E., Deneckère, R.: Decision-making ontology for information system
engineering. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER
2010. LNCS, vol. 6412, pp. 104–117. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-16373-9 8

5. Lebo, T., Sahoo, S., McGuinness, D.: PROV-O: The PROV Ontology. W3C Rec-
ommendation, 30 April 2013. https://www.w3.org/TR/prov-o/

6. Moreau, L., Missier, P. (eds.): PROV-DM: The PROV Data Model. W3C Recom-
mendation, 30 April 2013. https://www.w3.org/TR/prov-dm/

7. Nowara, P.: Decision Ontology. W3C Decisions and Decision Making Incubator
Group (2011). https://promsns.org/def/do

8. Object Management Group: Decision Model and Notation (DMN). OMG Specifica-
tion Formal/2016-06-01, Object Management Group (2016). http://www.omg.org/
spec/DMN/1.1

9. Whittenbury, K., Davidson, P.: Beyond adoption: the need for a broad understand-
ing of factors that influence irrigators? Decision-making. Rural Soc. 19(1), 4–16
(2009)

https://www.mssanz.org.au/modsim2017/C2/car.pdf
https://www.mssanz.org.au/modsim2011/B1/car.pdf
https://www.mssanz.org.au/modsim2011/B1/car.pdf
https://doi.org/10.1007/978-3-642-16373-9_8
https://doi.org/10.1007/978-3-642-16373-9_8
https://www.w3.org/TR/prov-o/
https://www.w3.org/TR/prov-dm/
https://promsns.org/def/do
http://www.omg.org/spec/DMN/1.1
http://www.omg.org/spec/DMN/1.1

Bottleneck Patterns in Provenance

Sara Boutamina1(B), James D. A. Millington2, and Simon Miles1

1 Department of Informatics, King’s College London, London WC2B 4BG, UK
{sara.boutamina,simon.miles}@kcl.ac.uk

2 Department of Geography, King’s College London, London WC2B 4BG, UK
james.millington@kcl.ac.uk

Abstract. A bottleneck, in general, is a point of congestion in a system
which impacts its efficiency, productivity and may lead to delays. Iden-
tifying and then fixing bottlenecks is an important step in maintaining
and improving a system. To detect bottlenecks, we must understand the
flow of processes, and dependencies between resources. Thus provenance
information is an appropriate form of input to address this matter. In
this paper, bottleneck patterns based on provenance graphs are proposed.
These patterns are used to define the structures bottlenecks may take
based on their classification, and offer a way to detect possible bottle-
necks. An example from soybeans distribution is used to illustrate this
preliminary work.

Keywords: Bottlenecks · Bottleneck patterns · Provenance graphs

1 Introduction

Bottlenecks can have a great impact on systems leading, for instance, to an
increase in the production and distribution times and costs, and hence, a reduc-
tion in satisfaction of customers. In global food distribution, for example, detect-
ing bottlenecks in processes can be an important step in solving problems such
as preventing food wastage.

There is an ambiguity in the literature regarding the definition of bottlenecks
despite the existence of much work, especially in manufacturing, dealing with this
topic. In particular, there is a conflation between the definition of bottlenecks
and the methods used to detect them (e.g. [1,2]). For instance, in the inventory
definition [1], bottlenecks are considered to be where there is a queue of the
most of work waiting to be processed. This definition focuses on how to identify
a bottleneck based on the waiting queue before a station rather than on what
independently characterises it. Moreover, the use of different characteristics to
describe bottlenecks may lead to different bottlenecks being identified [2]. To
have an acceptable definition of bottlenecks, the authors in [3] suggest that it is
important to reduce the level of detail integrated in such definition. They propose
the following definition: “The bottleneck of a system is the element (node or
edge) that limits the system in attaining higher throughput beyond a certain
threshold. This threshold is determined by the bottleneck’s physical throughput
c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 212–216, 2018.
https://doi.org/10.1007/978-3-319-98379-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_22&domain=pdf

Bottleneck Patterns in Provenance 213

capacity, organizational rules, or operational practices” [3]. It is notable from
this that they consider that a bottleneck may occur not only because of physical
capacity of a resource, for instance, but also because of the organisation of work
at this resource.

In this poster, we present initial work towards specifying bottlenecks in terms
of patterns within provenance graphs documenting past performance in a sys-
tem. First, a classification of bottlenecks is considered, then bottleneck patterns,
corresponding to provenance subgraphs, are proposed to match and suit this
classification.

The patterns are illustrated using the movement of soybeans between a
farmer in Brazil and a consumer in China. A trading company, acting as an inter-
mediary, bought soybeans from the farmer, then transported it to their stores
not far from the production area. After that, the soybeans were transported
from those stores to port, to be exported to China. This company delegated to
two transport companies to transfer soybeans firstly from farm to their storage
units, then from these units to port terminal managed by the trading company.

2 Classification of Bottlenecks

In order to determine the forms of pattern to look for in the provenance, we
need to first consider the types of bottleneck that can exist. We derive our
taxonomy from existing classifications [3]. Tangible bottlenecks impede higher
system throughput due to physical limitations. System elements that are tan-
gible bottlenecks can be either active or passive. Active tangible bottlenecks
represent elements which can influence system throughput by their own actions
and behaviour, such as workers in food distribution. On the other hand, passive
tangible bottlenecks are not able to change the throughput themselves, since
they do not have the power to do so, but represent other physical limitations,
such as streets slowing down transportation due to high traffic. Intangible bottle-
necks represent processes that prevent higher system throughput, for instance,
because of their poor design.

Other ways of classifying bottlenecks exist, not currently translated into
provenance patterns in our work. For example, comparable but not quite the
same as the above classification, one can distinguish organisational, physical
and operational bottlenecks, corresponding to limitations in the way activities
are planned, physical capabilities, and the way that work is conducted, respec-
tively. A bottleneck can also be either with an external or internal locus of
control, based on whether the measures used to manage bottlenecks are inside
or outside the organisations. We can also classify bottlenecks on whether they
are unavoidable at points when demand for a resource exceeds its capacity, or
avoidable when its emergence is due to, for instance, careless preparation.

214 S. Boutamina et al.

3 Bottlenecks Patterns

In this paper, we consider that the bottlenecks to be detected are classified
as tangible (active and passive) and intangible. To structure and specify these
bottlenecks, patterns are proposed which are defined as:

Definition 1. A bottleneck pattern is a set of rules that apply to a provenance
sub-graph indicating whether it presents a bottleneck in the process documented.

These patterns are specified using PROV which is defined as “a specification
to express provenance records, which contains descriptions of the entities and
activities involved in producing and delivering or otherwise influencing a given
object” [4]. It is based on three main core concepts which are entities, activities
and agents [5]. Entities represent digital, physical or other things; activities are
actions dealing with entities to create new ones or to use existing ones; and
agents correspond to something that was responsible for an already happened
activity, an entity or another agent.

We assume that the provenance graph within which we are trying to detect
bottlenecks is representative of the process’ past behaviour, or is a representa-
tive aggregation of information from multiple provenance documents effectively
documenting the process’ multiple executions over time. Each entity, activity
and agent in a PROV graph can have attributes, which we use to record, for
instance, past localised capacity and demand. The way in provenance graphs may
be aggregated and the ontology for expressing capacity and demand is beyond
the scope of this poster.

For each of the three bottleneck types in the classification, we have a prove-
nance pattern. These are defined informally at this point, but we illustrate their
effect with the case study. A bottleneck pattern comprises a potential bottleneck
pattern, identifying a PROV graph structure within which a bottleneck of the
given type may be found, and then rules over the attributes attached to the nodes
of the structure, such as demand and capacity, which can be used to confirm the
bottleneck exists. Examples of possible bottlenecks, based on the proposed pat-
terns, from the soybeans distribution example are presented in Figs. 1, 2, 3, 4
and 5.

– A potential intangible bottleneck may occur when there is an agent or a
number of agents acting on behalf of another agent (e.g. Fig. 1). Moreover, it
may occur when there is a collection representing for instance a regulation,
and there is at least a member who had business with a non-member (e.g.
Fig. 5). Being a member of this collection means that the agent had accepted
and signed the regulation, and having a business means that there is an
activity which is associated with at least two agents where one of them is a
buyer and the other is a seller.

– A potential passive tangible bottleneck may occur when there is an entity
used by one or more activities (e.g. Fig. 2). Moreover, it may occur when
there is a collection representing for instance a line of production where the
members (such as machines) play a role to define the bottleneck.

Bottleneck Patterns in Provenance 215

– A potential active tangible bottleneck may occur when one or more activities
are associated with an agent (e.g. Fig. 3) or when one or more entities are
attributed to an agent (e.g. Fig. 4).

Fig. 1. Agent-agent relationship example Fig. 2. Entity-activity relation-
ship example

Within the case study, we see bottlenecks matching the rules applied to
attributes in the potential bottleneck patterns, illustrated as follows. In Fig. 1,
the trading company, ADM, delegated to two transport companies with the goal
that soybeans were collected from a farm in one day, and after that reach port
terminal in six days. The first company acts according to the set goal, but the
second had another goal (9 days), and this discrepancy is an intangible bottle-
neck. In Fig. 2, roads are a resource shared between activities, with a volume-to-
capacity ratio representing the number of vehicles passing through divided by
the number of vehicles specified in the designed capacity (if it is greater than
1, then it is over capacity). The farmer was responsible for different entities
with damage percentages not to exceed (e.g. the expected percentage of damage
in storing bags was 10%, however it was 25%) (Fig. 3), and different activities
which would be completed in specific durations (e.g. the expected duration for
harvest was 31 days, however it took 40 days) (Fig. 4). As an example of an intan-
gible bottleneck, the Soybean Moratorium (SoyM) [6] is a voluntary agreement
to boycott trading soybeans grown on lands deforested after July 2006 in the
Brazilian Amazon. SoyM is represented as a collection of companies, traders,
etc. who signed it (Fig. 5). Members of this collection had to avoid trading with
other parties which did not belong to this collection.

Fig. 3. Agent-entity relationship example Fig. 4. Agent-activity relationship
example

216 S. Boutamina et al.

Fig. 5. Collection example

References

1. Lawrence, S.R., Buss, A.H.: Economic analysis of production bottlenecks. Math.
Probl. Eng. 1(4), 341–363 (1995)

2. Li, L., Chang, Q., Ni, J.: Data driven bottleneck detection of manufacturing systems.
Int. J. Prod. Res. 47(18), 5019–5036 (2009)

3. Beer, J.E.: Analysis and management of bottlenecks in supply networks: towards a
structured approach to stabilization of inbound material flow (2015)

4. W3C Working Group: PROV Model Primer (2013)
5. Moreau, L., Groth, P., Cheney, J., Lebo, T., Miles, S.: The rationale of PROV. Web

Semant. Sci. Serv. Agents World Wide Web 35, 235–257 (2015)
6. Gibbs, H.K., et al.: Brazil’s Soy Moratorium. Science 347(6220), 377–378 (2015)

Architecture for Template-Driven
Provenance Recording

Elliot Fairweather, Pinar Alper, Talya Porat, and Vasa Curcin(B)

King’s College London, London, UK
{elliot.fairweather,vasa.curcin}@kcl.ac.uk

Abstract. Provenance templates define abstract patterns of provenance
data and have been shown to be useful when implementing support for
provenance capture in existing software tools. Their strength is in expos-
ing only the relevant provenance capture actions through a service inter-
face, whilst hiding the complexities associated with managing the prove-
nance data. We present an architecture for the creation and management
of libraries of provenance documents constructed using templates.

1 Introduction

Provenance templates define abstract patterns of provenance data and have been
shown to be useful when implementing support for provenance capture in exist-
ing software tools. Their strength is in exposing only the relevant provenance
capture actions through a service interface, whilst hiding the complexities asso-
ciated with managing the provenance data. We expand upon the formal model
presented earlier in [1] by refining the methods by which provenance fragments
generated by such templates are combined and integrated into an overall prove-
nance document, and present an architecture for the creation and management
of libraries of such documents constructed using templates.

2 Methodology

A provenance template [1] is a abstract fragment of a provenance document,
that may be instantiated using concrete substitutions for variables contained
with the template. Variables are of two kinds; identifier variables inhabiting the
var namespace which are placeholders for node or relation identifiers, and value
variables under vvar, which can be used in the place of an attribute value. A
provenance template is itself a valid provenance document and as such allows
nodes to be semantically annotated, allowing the inclusion of domain-specific
information. Concrete provenance fragments are generated by an algorithm that
accepts as input a template and substitution comprised of a set of variable-
value bindings, and replaces variables for values in a copy of the template. We
now present a system for constructing and managing PROV documents using
templates.
c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 217–221, 2018.
https://doi.org/10.1007/978-3-319-98379-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_23&domain=pdf

218 E. Fairweather et al.

Document Types. We distinguish three types of document, target documents,
template documents and fragment documents. A target document is the doc-
ument under construction. A system may manage the construction of multiple
target documents at any given point. A template document describes a pattern
representing a domain action to be replicated within a specific target document.
A template document is registered to one particular target document. Call this
target document the parent document of the template document. A fragment
document is a document to be later merged into a target document, usually con-
structed by the instantiation of a template belonging to that document. A frag-
ment document is also associated with a single target document, again referred
to as its parent. Fragment documents perform a critical role in the document
construction.

Metadata. All documents are given a unique identifier and annotated with their
type. This is stored separately as metadata and used to index documents in the
management system. This metadata also includes which templates and fragments
are associated to a target document and namespace data for each document.
Metadata can be viewed as consisting of and represented by attribute-value
pairs that belong to a document.

Namespace Management. A data document is created empty with a default
namespace. Further namespaces may be added at any point. Except for the ivar,
vvar and pgt namespaces, a template document may only include namespaces
included in its parent document. A fragment document includes the fragment
namespace used for auditing purposes and during the instantiation process.
When a new fragment document is created it also inherits the namespaces of
its parent document. New namespaces may not be added to fragment docu-
ments. This means that qualified names contained in substitutions given during
instantiation must fall within the namespaces of the target document.

Fragment Generation. When a template is instantiated the graph generated is
represented as a new fragment document. The generation of new fragments from
templates may proceed in two ways, either simultaneously as a single step by
applying a complete substitution, or incrementally, by first applying an initial
substitution and then later applying zone substitutions. In both cases, it must
be checked that the number of iterations of each zone falls within the bounds
of that zone for the final instantiation to be valid. Simultaneous generation is
defined algorithmically in Fig. 6 of [1]. Incremental instantiation, however, in
contrast to the description given there, is now considered to proceed in such a
way that the fragment being generated is always connected. Entry and exit edges
of zones are generated at the application of each zone substitution. In the case of
serial zones, this requires that entry edges of the zone be repositioned upon each
instantiation. Fragment documents are annotated with attribute-value pairs in
the fragment namespace, as part of the mechanics of incremental instantiation
but also for the purposes of auditing and analysis of the construction of the
target document.

Architecture for Template-Driven Provenance Recording 219

Merging and Grafting. When instantiation is finished, if the fragment document
meets the iteration bound constraints for each zone the fragment is merged into
the target document. This may result in the grafting of nodes. If the identifier
of a node in a fragment pre-exists in the target document then that nodes is
reused and a graft is created, joining the fragment and target documents. If the
identifier of a fragment node does not exist in the target document a new node
is created in the target. The merging process also adds additional attributes
for the purpose of auditing. The validity of the target document is checked
against the standard constraints of the PROV model following the merging of
a fragment document. This is because the occurrence of grafting can lead to
potential violations. If constraints are not met the merge is rolled back and the
fragment removed from the target document.

Workflow. We now proceed to give a detailed account of the workflow of the
system. In a typical scenario, in order to construct a new document, a user
would interact with the system in the following way.

1. Create a new target document Δ
2. Add necessary extra namespaces to target Δ
3. Register templates with target Δ
4. Create a new fragment document Φ belonging to target Δ

(a) – by instantiating a template document with a complete substitution
– i. by instantiating a template document T with an initial substitu-

tion
ii. and then adding iterations to fragment Φ by instantiating zones

of the template T with zone substitutions
– by importing a standard PROV document

(b) Merge fragment Φ into target Δ
5. Analyse and export target Δ or fragments of target Δ.

3 Architecture

We now discuss the architecture of the proposed system with reference to the
implementation of the first author. The overall structure of the architecture can
be seen in Fig. 1. The core of the system is the model component. Provenance
documents are represented as graphs in which vertices and edges are typed and
annotated with key-value pairs. The graph itself may also have key-value prop-
erties. Serialisation and deserialisation to PROV data formats is accomplished
using the parsers provided by ProvToolbox library. Substitutions also form part
of the model and parsers to both a proposed PROV-N format and JSON are
given in the implementation. The template instantiation algorithm by which
new fragment documents are generated from templates and substitutions is also
defined within the model component. Storage of data in the system is abstracted
by a persistence component to enable the use of different database technologies.
By default, a Neo4j graph database is used but a relational database, SPARQL-
enabled or alternative graph database could be used either instead or concur-
rently. The system is accessed via the document management component. This

220 E. Fairweather et al.

Fig. 1. Architecture

controls and executes operations outlined in the workflow, such as the creation of
new target documents, namespace management, the registering of templates, and
the generation and merging of new fragment documents. Fragment generation is
achieved through interaction with the model component. Operations requiring
the import, export or update of document data and metadata are supported
via the persistence component. Access to the document management interface
is provided via a RESTful web service. Documents and substitutions are passed
to and from the server encoded as JSON and analysis is conducted by querying
the underlying database. The specifics of a higher-level query interface for the
system, agnostic to a particular storage solution, is an area of ongoing research.

4 Conclusions and Future Work

This poster presented an architecture for capturing provenance data using tem-
plates. The design is intentionally generic, allowing a similar approach to be
applied to any software architecture where it is preferable to capture provenance
by mirroring actions from the main software system, rather than embedding it
into a shared middleware. Ultimately, our goal is to facilitate the development
of provenance back-ends and minimise the overheads involved in integrating
provenance capture and utilisation into operational workflows. We have proto-
typed our architecture based on a decision aid software tool for communicating
the risk of recurrent stroke to patients, that is being developed within the stroke
theme of the Collaborative Leadership in Applied Healthcare Research and Care
(CLAHRC) programme in South London. A key challenge for implementing
provenance solutions is how to extract benefit from the captured data, and so,
as the next step, we plan to devise user interface solutions for provenance report-
ing from decision support scenarios and utilise our group’s previous experience
in the area [2] to conduct a full quantitative and qualitative evaluation.

Architecture for Template-Driven Provenance Recording 221

References

1. Curcin, V., et al.: Templates as a method for implementing data provenance in
decision support systems. J. Biomed. Inform. 65(1), 1–21 (2017)

2. Kostopoulou, O., et al.: Diagnostic accuracy of GPs when using an early-intervention
decision support system: a high-fidelity simulation. Br. J. Gen. Pract. 67(656), e201–
e208 (2017)

Combining Provenance Management
and Schema Evolution

Tanja Auge(B) and Andreas Heuer(B)

University of Rostock, Rostock, Germany
tanja.auge@uni-rostock.de, heuer@informatik.uni-rostock.de

https://dbis.informatik.uni-rostock.de

Abstract. The combination of provenance management and schema
evolution using the CHASE algorithm is the focus of our research in the
area of research data management. The aim is to combine the construc-
tion of a CHASE inverse mapping to calculate the minimal part of the
original database — the minimal sub-database — with a CHASE-based
schema mapping for schema evolution.

Keywords: CHASE algorithm · Data provenance
Schema evolution · Data evolution · Schema mapping
CHASE inverse

1 Introduction

Collecting, recording, storing, tracking, and archiving scientific data is the task
of research data management, which is the basis for scientific evaluations on this
data. In addition to the evaluation (i.e., a complex database query that we call
evaluation query) and the result itself, the section of the original database used
has also to be archived. Thus, to ensure reproducible and replicable research,
the evaluation queries can be processed again at a later point in time in order
to reproduce the result.

If the data or the schema of the research database changes frequently, the
original database would now have to be frozen (permanently stored) after every
evaluation carried out on the database. In order to avoid this and in order to
avoid massively replicated databases, we want to use provenance management
techniques to calculate the minimal part of the database that must be frozen in
order to be able to generate the query result again. For this, we want to combine
techniques of why and how provenance [3] with the theory of schema mappings
for data integration and data exchange, especially the inverse schema mappings
of Fagin [5,6].

In research data management, the path from data collection to publication
should be kept comprehensible, reconstructable, and replicable [9]. Since the
research database is constantly changing [8] and thus represents a bitemporal
database [7], the evolution of data and schemata must interact with the man-
agement and archiving of results, the management of the evaluation queries, and
c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 222–225, 2018.
https://doi.org/10.1007/978-3-319-98379-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_24&domain=pdf

Combining Provenance Management and Schema Evolution 223

the provenance management. Unfortunately, data provenance research has nor-
mally been carried out on a fixed database. Two research goals of the project
are therefore (1) the calculation of the minimal part of the original research
database (we call it minimal sub-database) that has to be stored permanently to
achieve replicable research, and (2) the unification of the theories behind data
provenance and schema (as well as data) evolution.

2 Problem and Poster Description

2.1 Calculation of a Minimal Sub-database

The calculated minimal sub-database should be able to reconstruct the results of
the evaluation query under various constraints. The following constraints range
from very strict preconditions to weaker constraints:

– The number of tuples of the original relation is retained.
– The sub-database can be homomorphically mapped to the original database.
– The sub-database is an intensional description of the original database.

One specific problem is to decide about the minimal (additional) information
that is required for the reconstruction of the sub-database, provided that the
query result and the evaluation query is archived. Is it sufficient to pick up a
minimum amount of witnesses (why -Provenance, [4]) or to calculate the asso-
ciated provenance polynomials (how -Provenance, [10])? Or is it necessary to
freeze whole tuples or other parts of the database directly?

The calculation of an inverse query Qprov, which is used to determine the
required minimal sub-database, depends on the type of the original query Q and
any additional information noted. Thus a result equivalent CHASE inverse can
be used for the projection [2]. A projection without duplicate elimination can be
specified by a relaxed CHASE inverse and a simple copy operation by an exact
CHASE inverse [6]. The homomorphism as a required condition mentioned above
is a quite strong constraint which has to be weakened in future investigations
[1].

2.2 Unification of Provenance and Evolution

Previous provenance queries Qprov (where-, why - and how -provenance) have
usually been processed on a given fixed database S1 and a query Q. The com-
bination of data provenance with schema and data evolution should enable the
evaluation of provenance queries with changing data and schemata (see Fig. 1).
By means of an inverse evolution step E−1, the new database J can be transferred
to the old schema, if possible. Formally, our evaluation result is calculated by an
extended CHASE algorithm, based on ST-TGDs (see below), and an (inverse)
provenance query Q′

prov should be added in a second step, the BACKCHASE
phase. The minimal sub-database I∗ (red dashed box) is then computed by
chasing the provenance query Qprov into the query result K∗ ⊆ K (green box),
adding the necessary provenance annotation (such as provenance polynomials).

224 T. Auge and A. Heuer

Fig. 1. Unification of provenance and evolution (Color figure online)

Under the schema evolution E : S1 → S3, the query Q′ can be directly calcu-
lated as a composition of the original query Q and the inverse evolution E−1:

Q′(J(S3)) = (E−1 ◦ Q)(J(S3)) = Q(E−1(J(S3))) = Q(I(S1)).

The new provenance query Q′
prov results analogously as

Q′
prov(K

∗(S2)) = (Qprov ◦ E)(K∗(S2)).

It is therefore sufficient to memorize one of the two minimal sub-databases I∗(S1)
(red dashed box) or J∗(S3) (blue dotted box). The other can be calculated with
the help of the inverse. In research data management, K∗ always corresponds
to the entire result database K, i.e.K∗ = K, since the complete result of the
scientific evaluation has to be reproducible. However, general provenance queries
can also be processed on subsets of this result (or even on single tuples in the
result).

2.3 Query Q

The representation of the evaluation query Q in the form of extended S-T TGDs
(source-to-target tuple-generating dependencies) or EGDs (equality-generating
dependencies) allows the application of the CHASE algorithm [5,6]. This incor-
porates a set of dependencies, here S-T TGDs and EGDs, into a given database
instance. The calculation of a CHASE inverse Qprov via the BACKCHASE
involves the reconstruction of the minimal sub-database I∗ of the original
database I(S1).

Combining Provenance Management and Schema Evolution 225

2.4 Evolution E
By using the inverse E−1, the old minimal sub-database I∗ can be calculated
from the current minimal sub-database J∗. For this, the evolution E and its
(exact) inverse E−1 are formulated as S-T TGDs and EGDs and processed by
the CHASE algorithm.

2.5 Data Provenance Qprov

The result of the evaluation query Q described by extended S-T TGDs and EGDs
can be calculated using the CHASE algorithm. The subsequent construction of
the minimal sub-database I∗ succeeds by inverting the query Q. This inverse
Qprov doesn’t necessarily have to correspond to an inverse in the classical sense

Q ◦ Qprov = Id,

since a CHASE inverse can’t always be specified [5,6]. In most cases, however,
a result equivalent CHASE inverse [1,2] can be specified that returns the same
result after applying the CHASE algorithm to the original instance I and the
minimal sub-database I∗ calculated using the BACKCHASE.

References

1. Auge, T., Heuer, A.: Inverse im Forschungsdatenmanagement. In: Proceedings of
30th Workshop Grundlagen von Datenbanken (2018, accepted for publication, to
appear). (in German)

2. Auge, T.: Umsetzung von Provenance-Anfragen in Big-Data-Analytics-
Umgebungen. Master’s thesis, University of Rostock (2017). (in German)

3. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: why, how and
where. Found. Trends Databases 1(4), 379–474 (2009)

4. Buneman, P., Khanna, S., Tan, W.C.: Why and where: a characterization of data
provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973,
pp. 316–330. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44503-
X 20

5. Fagin, R.: Inverting schema mappings. ACM Trans. Database Syst. 32(4), 25-1–
25-53 (2007)

6. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Schema mapping evolution through
composition and inversion. In: Bellahsene, Z., Bonifati, A., Rahm, E. (eds.) Schema
Matching and Mapping. DCSA, pp. 191–222. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-16518-4 7

7. Johnston, T.: Bitemporal Data: Theory and Practice. Morgan Kaufmann, Burling-
ton (2014)

8. Bruder, I., Klettke, M., Möller, M.L., Meyer, F., Heuer, A., Jürgensmann, S., Feis-
tel, S.: Daten wie Sand am Meer – Datenerhebung, -strukturierung, -management
und Data Provenance für die Ostseeforschung. Datenbank-Spektrum 17(2), 183–
196 (2017). (in German)

9. Heuer, A.: METIS in PArADISE: Provenance Management bei der Auswertung von
Sensordatenmengen für die Entwicklung von Assistenzsystemen. In: BTW Work-
shops. LNI, vol. 242, pp. 131–136. GI (2015). (in German)

10. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS, pp.
31–40. ACM (2007)

https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1007/978-3-642-16518-4_7
https://doi.org/10.1007/978-3-642-16518-4_7

Provenance for Entity Resolution

Sarah Oppold(B) and Melanie Herschel(B)

IPVS, University of Stuttgart, Universitätsstr. 38, 70569 Stuttgart, Germany
{sarah.oppold,melanie.herschel}@ipvs.uni-stuttgart.de

Abstract. Data provenance can support the understanding and debug-
ging of complex data processing pipelines, which are for instance com-
mon in data integration scenarios. One task in data integration is entity
resolution (ER), i.e., the identification of multiple representations of a
same real world entity. This paper focuses of provenance modeling and
capture for typical ER tasks. While our definition of ER provenance is
independent of the actual language or technology used to define an ER
task, the method we implement as a proof of concept instruments ER
rules specified in HIL, a high-level data integration language.

Keywords: Data provenance · Entity resolution · Data integration

1 Motivation

Entity resolution (ER) refers to the problem of identifying duplicates, i.e., mul-
tiple representations of or references to a same real-world entity within or across
data sources [1]. While numerous different solutions exist, they typically follow
the same steps, building a generic ER pipeline.

Provenance may facilitate the understanding and debugging of data process-
ing pipelines. While several provenance types exist for various applications [5],
to the best of our knowledge, no solution has been tailored to ER. Here, deter-
mining which input data led to a duplicate is not very informative (the data
provenance equals the duplicates). Instead, it is more relevant to see how these
data affect ER processing. We therefore define a provenance model for ER.

One means to collect ER provenance is to instrument the original program
defining ER by modifying it to return, in addition to the ER result, the corre-
sponding provenance. We opt for this solution for two reasons: (i) the modified
program can run on the same system as the original program, leveraging any
optimizations implemented and (ii) the returned provenance is in the same for-
mat as the original output data, facilitating further processing.

In summary, we present a model for provenance describing how data was
processed during ER. This model is independent of the actual language or pro-
cessing engine used to specify and run ER. Indeed, we first abstract ER tasks
to algebraic operators to then define provenance on this abstract representation
(Sect. 2). In Sect. 3, we discuss how to capture provenance conforming to the
abstract model by instrumenting ER rules specified in HIL, a data integration
c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 226–230, 2018.
https://doi.org/10.1007/978-3-319-98379-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_25&domain=pdf

Provenance for Entity Resolution 227

Fig. 1. Overview of the general approach

language developed at IBM [2]. We conclude the paper in Sect. 4 with a summary
and an outlook on further research questions.

2 Provenance Model for Abstract ER Pipelines

Figure 1 summarizes our general approach. While many different formalisms to
specify ER exist, they typically map to a generic model consisting of algebraic
operators. This model forms the basis to define general ER provenance. Concep-
tually, ER provenance capture can then be achieved by first translating an ER
script to the abstract model, to then execute provenance capture defined over
this abstract model. This however would entail significant overhead, both in run-
time and system complexity compared to running ER alone. A more lightweight
solution that we pursue is the instrumentation of ER scripts such that both ER
and ER provenance capture run on the original data processing system.

ER tasks typically divide into a pipeline consisting of several common steps
(e.g., see [1]). The input comprises two datasets A and B (it is possible that A
= B). The output are partitions of pairs of entity descriptions (e.g., tuples in
relational data) in A × B such that all entity descriptions in a partition refer
to the same entity while no two partitions share entity descriptions referring to
the same entity. Considering all pairs in A × B is computationally prohibitive,
so blocking prunes pairs from further processing. During pairwise classification,
the remaining pairs are compared, e.g., using similarity measures or domain-
knowledge to ultimately decide whether or not the pair is a duplicate. Finally,
post-processing views the classifications as a graph where vertices represent entity
descriptions and edges connect duplicates. It partitions the graph, handling con-
flicting classifications (e.g., a, b and b, c duplicates, but a, c non-duplicates) and
enforcing additional constraints (e.g., on cardinalities [2]).

Figure 2(a) shows a sample ER rule specified in HIL [2]. The syntax is not
important, we use the rule to illustrate the different steps of ER. Here, persons in
one source are matched with customers from another source. To avoid comparing
all persons with all customers, blocking requires them to have the same ZIP code.
Then, persons with same ZIP code are classified as duplicates if they match at
least one of two rules (labeled match1 and match2). Finally, a constraint requires
that a person can match at most one customer and vice versa. This is enforced
during post-processing by pruning pairwise matches violating the constraint.

228 S. Oppold and M. Herschel

(a) HIL ER rule (b) Operator tree (c) ER provenance schema

(d) Provenance capture using HIL EP rules

Fig. 2. Running example

The ER steps described above are common to many different ER solutions,
which we can thus map to an abstract representation. We have defined an
abstract description of ER pipelines using operators of the Nested Relational
Algebra for Bags (NRAB) [3]. Indeed, we want to cover ER both on flat rela-
tional and nested data and cannot assume that data is free of exact duplicates.
Figure 2(b) illustrates the operator tree for the HIL script shown in Fig. 2(a).
For HIL, we have defined a full set of inference rules to map any HIL ER script
to an operator tree, similarly to our previous work where we compile PigLatin to
NRAB [4]. We cannot cover the details here, but highlight a few principles based
on the example. First, we form all pairs of entity descriptions using the Cartesian
product ×. Blocking prunes pairs and can thus be modeled using a selection σ.
The matching performs pairwise classification that returns only those pairs that
satisfy either of the match conditions, resulting in a selection operator with a
complex predicate in DNF. Finally, the constraint of the 1:1 cardinality requires
both grouping G and selection based on the size of groups. The ER rules in HIL
return pairs of duplicates, which translates to the final projection π.

Given ER pipelines defined by trees of NRAB operators with clear seman-
tics, data provenance (i.e., why- and how-provenance) [5] is a candidate choice
for ER provenance. However, it focuses on data flow, which is not informa-
tive for ER, as the provenance of a duplicate pair simply consists of the pair
members. Instead, we propose to capture the control flow of the pipeline. More
specifically, we record, at each processing stage, the results of function calls,
comparisons etc. in addition to data valuations. For efficiency and understand-
ability reasons, we define two granularities of ER provenance: (i) the granularity
of operators and (ii) the granularity of individual predicates in the operator
parameters. Figure 2(c) shows the schema of the provenance at these two granu-
larities for our running example. An example instance of the second granularity is
[70569 = 70569, {[1 < 2, 5/29/60 = 6/29/60], 123-45-678 = 123-45-678}, 1 = 1].

Provenance for Entity Resolution 229

This evaluates to [true, {[true, false], true}, true], clearly indicating that the
duplicate was found based on match2 only, as unequal dates let match1 fail.

3 Implementing Provenance Capture for HIL ER Rules

As motivated previously, we opt for program instrumentation to capture prove-
nance for ER. As a proof of concept, we have formalized and implemented the
instrumentation of HIL scripts [2] that allow the specification of ER rules, illus-
trated in Fig. 2(a). Our implementation supports the full set of HIL ER rule
clauses (not all are illustrated here). Given a HIL script with an ER rule, we
generate additional entity population (EP) rules. These rules are an integral
part of the HIL language and will, when executed, produce the provenance con-
forming to our general ER provenance. Figure 2(d) shows EP rules generated for
the sample HIL ER rule of Fig. 2(a). Capturing the necessary provenance using
HIL constructs requires several intermediate steps, the final provenance being
stored in the result labeled PersonLink Matches Prov. A detailed discussion
is out of the scope of this paper, but the example showcases the complexity of
instrumenting HIL for provenance capture.

4 Conclusion and Outlook

This paper presented a framework for defining and capturing provenance for
typical ER pipelines. We showed how ER pipelines consisting of several common
steps map to trees of algebraic operators. We then defined ER provenance over
this abstract ER representation, thus providing a language-independent prove-
nance model. To capture ER provenance in practice, we showed how to instru-
ment a particular language to specify ER, namely HIL ER rules to capture ER
provenance conforming to our model.

In the future, we plan to extend provenance capture to further data inte-
gration tasks from both a language-independent and a HIL specific perspective.
Further important issues for making provenance capture practical and relevant
for users are runtime optimizations and provenance visualization, exploration,
and querying.

Acknowledgements. The authors thank the German Research Foundation (DFG)
for financial support within project D03 of SFB/ Transregio 161. This research was
also partly funded by an IBM Faculty Award.

References

1. Christen, P.: Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Data-Centric Systems and Applications.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31164-2

2. Hernández, M.A., Koutrika, G., Krishnamurthy, R., Popa, L., Wisnesky, R.: HIL: a
high-level scripting language for entity integration. In: EDBT (2013)

https://doi.org/10.1007/978-3-642-31164-2

230 S. Oppold and M. Herschel

3. Grumbach, S., Milo, T.: Towards Tractable Algebras for Bags. In: PODS (1993)
4. Camacho-Rodŕıguez, J., Colazzo, D., Herschel, M., Manolescu, I., Roy Chowdhury,

S.: Reuse-based optimization for pig latin. In: CIKM (2016)
5. Herschel, M., Diestelkämper, R., Lahmar, H.B.: A survey on provenance: what for?

What form? What from? VLDB J. (2017)

Where Provenance in Database Storage

Alexander Rasin(B), Tanu Malik, James Wagner, and Caleb Kim

DePaul University, Chicago, IL 60604, USA
{arasin,tanu}@cdm.depaul.edu, {jwagne32,khim85}@mail.depaul.edu

Abstract. Where provenance is a relationship between a data item and
the location from which this data was copied. In a DBMS, a typical
use of where provenance is in establishing a copy-by-address relationship
between the output of a query and the particular data value(s) that orig-
inated it. Normal DBMS operations create a variety of auxiliary copies of
the data (e.g., indexes, MVs, cached copies). These copies exist over time
with relationships that evolve continuously – (A) indexes maintain the
copy with a reference to the origin value, (B) MVs maintain the copy
without a reference to the source table, (C) cached copies are created
once and are never maintained. A query may be answered from any of
these auxiliary copies; however, this where provenance is not computed
or maintained. In this paper, we describe sources from which forensic
analysis of storage can derive where provenance of table data. We also
argue that this computed where provenance can be useful (and perhaps
necessary) for accurate forensic reports and evidence from maliciously
altered databases or validation of corrupted DBMS storage.

Keywords: Where Provenance · Database Forensics
DBMS Anti-Tampering

1 Introduction

Where Provenance is defined as the addresses of the data values that were used
to evaluate the query. It is similar to Why Provenance in tracing query inputs,
but focuses on the location of that data. In the relational model, value location is
defined as the row (tuple) and the value’s location within that row. We propose
to extend this concept to support database forensic analysis by computing where
provenance based on the physical address of data copies in DBMS storage.

Database Management Systems (DBMSes) generate a multitude of data
copies as part of their normal operation. For example, a materialized view (MV)
stores the pre-computed results of a query drawn from the data tables in order to
improve query performance. An index contains a copy of values from the indexed
column(s) combined with a pointer back to the source table in order to speed up
record access. Many other copies of data are created by DBMS engine actions
such as caching, log entries, or internal storage defragmentation.

These and other internal copies of data can be extracted from DBMS storage
with the help of database carving (briefly described in Sect. 2) and used for
c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 231–235, 2018.
https://doi.org/10.1007/978-3-319-98379-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_26&domain=pdf

232 A. Rasin et al.

evidence of database tampering or storage corruption. Such findings must be
supported by a forensic analysis framework that integrates where provenance to
formalize storage analysis and offer provable results. Recent work by Wagner
et al. [1] relied on ad-hoc case analysis (e.g., if the index value does not match
the value in table record, report this as a likely indication of tampering) to
report malicious activity. Such reports currently require significant effort from
forensic analysts – we describe two recent cases that would greatly benefit from
integration of where provenance into the process of forensic analysis:

Example 1. A consultant from Mandiant/FireEye (a major forensic firm) was
working on a case involving a hard drive captured from the suspect. Through
manual inspection of drive image, he came to suspect that the drive contained
a PostgreSQL database that was uninstalled by the owner. Reconstructing raw
data was the first step – but if the case went to court, the analyst could use
where provenance to prove that the accuracy of reconstructed data report.

Example 2. A forensic analyst from Royal Canadian Mounted Police was inves-
tigating a financial fraud case. One of the sources of evidence was a snapshot of
RAM from suspect’s computer that contained a MySQL database (the snapshot
of the hard drive was never recovered in this case). While RAM can contain data
from DBMS tables, all of the in-RAM values are copies of the original tables. In
order to establish MySQL data contents from RAM snapshot with a measure of
confidence, a where provenance derivation could be used.

In addition to these examples, there are other security and audit applica-
tions of where provenance that we outline in Sect. 3. Fully deriving and continu-
ously tracking where provenance remains a goal for future work. In this paper,
we define the categories of data copies created within all major DBMSes. We
consider the causal relationship between the tables and auxiliary structures in
DBMS storage, including active data, accessible data, abandoned data.

2 Background and Related Work

Relational databases store data in page units of fixed size – even logs are often
stored in system tables. Pages in relational databases (including IBM DB2, SQL
Server, Oracle, PostgreSQL, MySQL, Apache Derby, MariaDB, and Firebird)
follow the same basic layout structure. The work in [2] described how this layout
can be generally parameterized, reconstructed and even automatically learned
by loading synthetic data and observing storage behavior. Database page carving
(implemented as DBCarver [3]) is a method based on this analysis that recon-
structs database file contents without relying on the file system or DBMS. It
is also capable of extracting the non-queryable data values, which include: (a)
index values and pointers, (b) deleted records, including partially overwritten
records, (c) cache contents, including pages and intermediate query results, (d)
audit logs.

Where Provenance in Database Storage 233

3 Motivating Where Provenance in DBMSes

A forensic analysts will seek to discover and prove what is or was previously
stored in the database tables, or to determine what actions user may have under-
taken within the DBMS. While traditional provenance explains query output by
investigating the data sources and the computation process of the query, in foren-
sic cases the target of analysis is the data table itself. For each additional data
copy (index, MV, RAM), where provenance of that copy will serve as support
and evidence for contents of the original table.

DBMS tables

DBMS Disk Storage

Indexes
and MVs

Audit log

DBMS RAM Buffer
Cached pages Intermediate

& output
results

WAL log

Fig. 1. The causality flow of data in DBMS.

Figure 1 represents the overall
flow of data copying that occurs
inside a DBMS engine. After user
data is loaded into tables (data
loading process can create extra
copies in RAM or logs), every
access to these tables will cause
more copying. A SQL command
is initially copied into the audit
log; after the query is logged,
it proceeds to access the tables.
Table access affects several parts of
DBMS storage: modifications prop-
agate into WAL, both read and write access caches pages in RAM (including
intermediate results), and all auxiliary structures are cached in a similar manner.

The goal of this paper is to describe the copies that occur along the flow
arrows in Fig. 1. Computing where provenance (not available in DBMSes) would
also require reversing the arrows by extrapolating the connection back to the
table. For example, a record found in a cached page is evidence of a tuple hav-
ing been present (at some point) in a source table. The location of the cached
record is known, but where provenance also needs the link between that copy
and the original table record. Note that the original table record may already
be deleted (can be restored) or even erased (cannot be restored) in which case
where provenance offers evidence for the source data that ceased to exist.

The second application for where provenance is tracing back the arrow
between audit log and data tables. The idea is that each forensic artifact (e.g.,
a deleted row) must have been caused by some SQL command. User commands
(in Fig. 1) recorded in audit log cause changes to data tables. Therefore, if we
find a storage artifact (e.g., a deleted row) that does not link back to an audit
log command, this could be interpreted as a sign of log tampering.

4 Forensic Evidence in Where Provenance

The three categories of data copies include (1) actively maintained data copies
which encompasses indexes, MVs, and cached copies, (2) accessible data copies
(not actively maintained, may be out-of-date) including old MV values, audit

234 A. Rasin et al.

and WAL logs, and (3) abandoned data copies that consist of all deleted values
(in tables, MVs, and indexes), old cached values and discarded DBMS pages.

Once where provenance of data copies is computed, it will be unified into a
report describing (1) the data values contained within the target of the investiga-
tion, (2) the relative confidence in each reported value, and (3) an extrapolated
timeline information for each data value.

The target of the investigation can be either user data tables or WAL log.
For data tables, Part-#1 would include every value and every record for which
some evidence of existence (at any time) was identified. This will include data
from primary evidence sources (data tables), secondary evidence sources (cached
table pages, indexes, MVs), tertiary evidence sources (indexes over MVs, cached
index pages), and so on. In cases like Example 2 in Sect. 1 (only RAM data is
available), the entire report will be based on secondary evidence or lower.

A reported value may derive from conflicting facts (e.g., on-disk table page
and in-RAM cached page disagreeing on what the value was). Part-#2 would
therefore seek to unify multiple reports about each value. A value with multi-
ple agreeing sources would have higher confidence; a value with disagreeing or
lower tier (e.g., tertiary) sources would have a relatively low confidence. Most
importantly, confidence report should include reasons for how it was derived.

Finally, Part-#3 would further annotate all reported values with known time-
line information. Evidence of each reported value will be associated with the
time range during which it (likely) existed. For example, audit logs may help
determine the exact time when the value was created and subsequently deleted.

5 Conclusion

DBMS storage is a rich source of data copies created during normal operations
and accessible through forensic analysis. These copies can serve as evidence of
database state or proof of DBMS content tampering. Where provenance is the
mechanism that can create a formal analytical framework to explain and quantify
accuracy and of the forensic evidence reliability drawn from storage analysis.

A report of all known data augmented with confidence rating and timeline
knowledge will no doubt greatly help forensic and security analysts in their job.
Copies of the data are available – but these copies lack the connection to their
source; in order to reason about the evidence they offer, copy flow in DBMS
storage must be reverse engineered.

Acknowledgments. This material is based upon work supported by the National
Science Foundation Grant CNS-1656268.

Where Provenance in Database Storage 235

References

1. Wagner, J., et al.: Carving database storage to detect and trace security breaches.
Digit. Invest. 22, S127–S136 (2017)

2. Wagner, J., Rasin, A., Grier, J.: Database image content explorer: Carving data
that does not officially exist. Digit. Invest. 18, S97–S107 (2016)

3. Wagner, J., Rasin, A., Malik, T., Hart, K., Jehle, H., Grier, J.: Database forensic
analysis with DBCarver. In: CIDR (2017)

Streaming Provenance Compression

Raza Ahmad1, Melanie Bru2, and Ashish Gehani1(B)

1 SRI International, Menlo Park, CA, USA
{raza.ahmad,ashish.gehani}@sri.com
2 Ecole Polytechnique, Palaiseau, France

melanie.bru@sri.com

Abstract. Operating system data provenance has a range of appli-
cations, such as security monitoring, debugging heterogeneous runtime
environments, and profiling complex applications. However, fine-grained
collection of provenance over extended periods of time can result in large
amounts of metadata. Xie et al. describe an algorithm that leverages the
subgraph similarity and locality of reference in provenance graphs to per-
form batch compression. We build on their effort to construct an online
version that can perform streaming compression in SPADE. Our opti-
mizations provide both performance and compression improvements over
their baseline.

1 Introduction

Constructing streams of provenance online facilitates a range of real-time appli-
cations, including debugging runtime environments and profiling workflows com-
prised of diverse components. Systems like SPADE [2] are challenged to process,
store, and query large streams efficiently within short windows of time. One solu-
tion to alleviate the problem is to reduce the size of the provenance metadata
before committing it to persistent storage. To this end, several methods have
been presented for specific use cases [1,3,4].

Xie et al. [5] describe how to store provenance efficiently using techniques
from web graph compression. They divide the information contained in a prove-
nance graph into identity and ancestor information. Identity information is com-
prised of annotations on edges and vertices. It is compressed using dictionary
encoding to eliminate information duplication. Ancestor information describes
dependencies between vertices. It consists of a set of edges represented as an
adjacency list. This list is encoded using three steps: reference compression, run-
length encoding, and delta encoding. Reference compression finds a reference r for
each vertex v, such that their adjacency lists have maximum overlap. This over-
lap is stored only once with non-overlapping elements stored using run-length
encoding and delta encoding. These methods save space by utilizing consecu-
tive subsequences and storing differences between the identifiers of successive
elements, respectively.

M. Bru—While visiting SRI.

c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 236–240, 2018.
https://doi.org/10.1007/978-3-319-98379-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_27&domain=pdf

Streaming Provenance Compression 237

We improve Xie et al.’s algorithm with several optimizations. Our implemen-
tation provides better performance and compression when compared with the
baseline, as shown in Sect. 2.

2 Contributions

We implemented the improvements in SPADE, an open source data provenance
framework with a decentralized architecture. In our evaluation, data was col-
lected from Linux Audit over 78 min. It is comprised of 73 thousand vertices
and 200 thousand edges. To realize a reproducible stream processing setting,
the audit log was replayed in SPADE while performing online compression. We
optimize Xie et al.’s algorithm as follows:

Fig. 1. Three steps of the web compression algo-
rithm by Xie et al., illustrated in a step-by-step
example.

Bidirectional Traversal: Xie
et al. only stored the par-
ent information for vertices.
This information is insufficient
to satisfy common provenance
queries efficiently, such as find-
ing all neighbors of a given ver-
tex or finding descendants of
a vertex. We include numeric
identifiers for both the par-
ents and children of every
vertex. During insertion, we
separately compress and store
them in the adjacency list.

Reference Selection (ref):
During reference compression,
the reference y for a new ver-
tex x is selected to maximize
the overlap between the adja-
cency lists of x and y. This
overlap is stored in x as a bit list of size equal to that of adjacency list of
y. If the size of the adjacency list of y is significantly larger than that of x, space
is used to store many zeroes. To improve this, we search for a y that optimizes
for the maximum number of 1’s and miminum number of 0’s in the resultant bit
list.

Delta Encoding of Sequences (delta): In the second step of run length
encoding, each sequence of consecutive identifiers is encoded using the first ver-
tex’s identifier followed by the sequence length, as shown in Fig. 1. However,
the starting vertex identifiers could be very large for big datasets, occupying

238 R. Ahmad et al.

significant storage for multiple sequences. Hence, we perform delta encoding at
this step as well, storing only the differences between successive starting vertex
identifiers.

Uncompressed Buffer (buffer): During insertion of an edge e(x, y), a fast
lookup of the adjacency lists of previous vertices is needed. Retrieving this infor-
mation from the disk becomes temporally expensive as database size grows. We
buffer the uncompressed adjacency lists for a subset of vertices. The required
adjacency list of references can then often be found in memory during com-
pression, eliminating the time needed to search the disk and uncompress the
list.

Adjacency List Caching (cache): Even with the above uncompressed buffer,
some queries may need to be resolved using slower persistent storage. We imple-
mented an in-memory cache of compressed adjacency lists to improve perfor-
mance. When an element is not found in the uncompressed buffer, this cache
is consulted. To maintain consistency, the cache is periodically synchronized
with the underlying database. This allows end user queries to be satisfied while
provenance elements continue to stream into the system.

In the case that the workload is small enough or sufficiently compressible,
the entire adjacency list may fit in memory. This case results in the highest-
performance insertion and querying.

Fig. 2. Effect of individual optimizations on total storage size. Xie+All is the case
when they are combined.

We implemented five optimizations and studied their effect on storage size,
insertion time, and query time. The baseline for comparison is our reimplemen-
tation of Xie et al.’s algorithm. When all our optimizations are employed, the
size of the compressed provenance significantly decreases when compared to the
baseline, as illustrated in Fig. 2. Our approach improves insertion times by a

Streaming Provenance Compression 239

Fig. 3. Effect of individual optimizations on time taken to insert all records in the
database.

Fig. 4. Effect of individual optimizations on query execution time. Query time is the
average time taken to execute 1000 lineage descendant queries of depth 5, starting from
randomly chosen vertices.

factor of three, when compared to the baseline, as seen in Fig. 3. This is of par-
ticular import in a streaming setting. Finally, we report query time performance
in Fig. 4.

Acknowledgements. This material is based upon work supported by the National
Science Foundation under Grant ACI-1547467. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

240 R. Ahmad et al.

References

1. Chapman, A., Jagadish, H., Ramanan, P.: Efficient provenance storage. In: 34th
ACM International Conference on Management of Data (SIGMOD) (2008)

2. Gehani, A., Kazmi, H., Irshad, H.: Scaling SPADE to “big provenance”. In: 8th
USENIX Workshop on Theory and Practice of Provenance (TaPP) (2016)

3. Jeannot, E., Knutsson, B., Bjorkman, M.: Adaptive online data compression. In:
11th IEEE International Symposium on High Performance Distributed Computing
(HPDC) (2002)

4. Li, X., Xu, X., Malik, T.: Interactive provenance summaries for reproducible science.
In: 12th IEEE Conference on e-Science (2016)

5. Xie, Y., Muniswamy-Reddy, K.-K., Feng, D., Li, Y., Long, D.: Evaluation of a hybrid
approach for efficient provenance storage. ACM Trans. Storage (TOS), 9(4) (2013)

Structural Analysis of Whole-System
Provenance Graphs

Jyothish Soman(B), Thomas Bytheway, Lucian Carata,
Nikilesh D. Balakrishnan, Ripduman Sohan, and Robert N. M. Watson

Computer Laboratory, University of Cambridge, Cambridge, UK
{jyothish.soman,thomas.bytheway,lucian.carata,nikilesh.balakrishnan,

ripduman.sohan,robert.watson}@cl.cam.ac.uk

Abstract. System based provenance generates traces captured from
various systems, a representation method for inferring these traces is a
graph. These graphs are not well understood, and current work focuses
on their extraction and processing, without a thorough characterization
being in place. This paper studies the topology of such graphs. We ana-
lyze multiple Whole-system-Provenance graphs and present that they
have hubs-and-authorities model of graphs as well as a power law distri-
bution. Our observations allow for a novel understanding of the structure
of Whole-system-Provenance graphs.

1 Introduction

Provenance has become a topic of relevance lately with the advent of multiple
systems which augment the existing ones using provenance [1,6]. There are mul-
tiple WSP capturing systems which can generate detailed data regarding the
interactions happening at the machine level, these are naturally representable as
graphs. For such provenance systems, the structure and evolution of the graph
are both relevant in the design and optimisation of the storage, analysis and
synthetic data generators. This has equivalence in other domains such as web-
graphs, social networks, road-networks etc. A large volume of work present in
literature support this [2,7]. For example, the work in [7] presents the analysis of
the spread of disease in a human-interaction network. This draws parallels with
security related WSP research.

With this aim, we present an analysis of provenance graphs. Process traces
are taken from a set of running machines, and the structure of the graphs so
generated are studied. The results are used to present that the graphs are similar
in structure to a well studied class of graphs namely, Power-law graphs. Addi-
tionally, we are able to show that they are similar to a Hubs-and-Authorities
model of graphs [3] In the rest of the paper, nodes, edges and degree are used to
only discuss the graph properties. Degree represents the total number of edges,
both incoming and outgoing from a given node.

OPUS and PVM: OPUS [1] is a user space provenance system designed for
tracking provenance on a system. For this work, it was used to provide a graph
c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 241–244, 2018.
https://doi.org/10.1007/978-3-319-98379-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_28&domain=pdf

242 J. Soman et al.

representation of the various interactions on a tracked machine, both implicit and
explicit in the form of a graph. In OPUS, a process is considered the active agent,
and the changes made by it are tracked. This includes interactions of the process
with files and the I/O systems and its communication with other processes using
pipes and sockets. OPUS uses Provenance-Versioning-Model (PVM) to handle
state changes in entities, this is done with the intention of reducing the number
of false dependencies, and de-densifying the resulting graph.

2 Graph Types in WSP

In the current context, two set of graph models are relevant, namely power-
law graphs and the Hubs-and-Authorities graph model. In this section, we would
discuss them in further detail.

Power-Law Graphs: Power-law graphs have a degree distribution of the form
n(k) = Axk, where n(k) is the number of nodes with a degree k, and A and x
are constants. Such graphs also tend to have a tail in the degree distribution.
Examples include human-interaction networks such as social-networks, IMDB
actors graphs, web-graphs, email graphs, citation graphs and recommendation-
networks, to technological graphs such as Autonomous system graphs, web-
graphs etc. [4]. Such graphs are also common in time-evolving graphs where
interactions (edges) and elements (nodes) are added to an already existing graph.

In machines, such a process is possible as a limited number of processes and
files have a higher probability of addition of incoming edges to them. Longer
standing processes would accumulate both incoming and outgoing edges. Addi-
tionally, files and libraries would have multiple processes linking to them over
time. Hence, the number of edges they accumulate would increase, which is in
line with the preferential attachment theory.

Hubs and Authorities: In Hubs-and-Authorities (HaA) model of Klein-
berg [3], each node can be either a hub or an authority. Hubs are nodes which
connect high relevance nodes, and authorities are representative of the immediate
neighbourhood. An authority on the other hand would be specialised nodes, and
would only have information regarding a specific issue. HaA model also allows
for a class of nodes which cannot be classified as either and are disregarded. The
equivalent in WSP would be processes being authorities, and files, sockets and
other mediums by which they share state being hubs.

The power-law graphs and HaA model together can be used to describe the
graphs present in WSP. In Sect. 4, we would present graphs and their structural
and property similarities to these two models.

3 Setup

For the generation of the test graphs, single machine-level traces using DTrace
running on FREEBSD were taken from multiple machines running varied appli-
cations. A total of 9 traces are captured on active machines running multiple
processes. OPUS was used to summarise the graphs and to merge nodes from
the traces to form a more cohesive view of the traces.

Structural Analysis of Whole-System Provenance Graphs 243

4 Results

The analysis in this section deals with the graph structure, in terms of the degree
distribution and general structure of the graph.

Fig. 1. Degree distribution. Fig. 2. Graph showing all interactions
across 100 connected elements. (Color
figure online)

Figure 2 shows a small graph from which dangling nodes and nodes with
no outgoing edges are removed. In this graph, the community property of the
graph is better visible with two clear groups visible. This graph is similar in
structure to the dolphin social network [5]. In the dolphin social network, there
are two large groups, one of which is densely connected, and the other one is
relatively sparse. In Fig. 2, the purple nodes are processes, red and green are
files, and yellow represents sockets. Processes are central to the graph, with files
providing bridging connection between the nodes. This is a recurring structure
in the graphs studied in this work. From this, we can extrapolate that similar
interactions will be present in traces captured from other machines as well.

Figure 1 shows the degree distribution across all the 9 traces. It can be seen
that the power law distribution is followed by all the graphs. Do note that
versioning causes nodes to version, taking along all the active connections to the
next node. Such high degree nodes suggest that certain nodes are able to have
active connections to a large subset of the system. From a system stability and
security perspective, these are high value nodes, and would need to be stable for
a large duration of time. Additionally, such nodes would also add pressure on
the storage system, as it would be continously adding edges, and a graph storage
engine which does not coalesce storage for the edges of such nodes, would cause
large parts of th storage to be read multiple times.

Effect of Graph Structure on Storage and Analytics: For storage and
caching, the presence of high degree nodes can cause significant cache trashing
given OPUS like versioning. Access to the properties of the nodes connected
to such a high value node would require multiple accesses to the underlying
storage. These nodes were added to the system earlier and would have varying

244 J. Soman et al.

lifetimes and hence likely to be stored in different parts of the storage. Thus,
a conventional caching mechanism can cause significant cache trashing, as any
such access can lead to a large number of cache-evictions.

5 Conclusions

This paper presents that WSP show a power-law distribution, with processes
forming the hubs and the other elements connecting the processes forming the
authorities. The lifetime of a node in the WSP graph is limited and the effects
of such transient nature is also shown. Given the hub-authorities model, the life-
time does not affect the power-law model as long-lasting processes accumulate
more edges, and system-critical read-only files do the same. This presents oppor-
tunities for not just storage engine, but also to caching, and analysis methods
associated with the system.

Acknowledgements. This work is part of the CADETS Project sponsored by the
Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8650-15-C-7558. The views, opinions, and/or
findings contained in this paper are those of the authors and should not be inter-
preted as representing the official views or policies, either expressed or implied, of the
Department of Defense or the U.S. Government.

References

1. Balakrishnan, N., Bytheway, T., Sohan, R., Hopper, A.: OPUS: a lightweight
system for observational provenance in user space. In: Presented as part of the
5th USENIX Workshop on the Theory and Practice of Provenance. USENIX,
Lombard, IL (2013). https://www.usenix.org/conference/tapp13/opus-lightweight-
system-observational-provenance-user-space

2. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cas-
cade of failures in interdependent networks. Nature 464(7291), 1025 (2010)

3. Kleinberg, J.M.: Hubs, authorities, and communities. ACM Comput. Surv. 31(4es)
(1999). https://doi.org/10.1145/345966.345982

4. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining, pp.
177–187. ACM (2005)

5. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.:
The Bottlenose Dolphin community of doubtful sound features a large proportion
of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003). https://
doi.org/10.1007/s00265-003-0651-y

6. Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., Seltzer, M.: Provenance-aware
storage systems. In: Proceedings of the Annual Conference on USENIX 2006 Annual
Technical Conference, ATEC 2006, USENIX Association, Berkeley, CA, USA, p. 4
(2006). http://dl.acm.org/citation.cfm?id=1267359.1267363

7. Newman, M.E.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016128
(2002)

https://www.usenix.org/conference/tapp13/opus-lightweight-system-observational-provenance-user-space
https://www.usenix.org/conference/tapp13/opus-lightweight-system-observational-provenance-user-space
https://doi.org/10.1145/345966.345982
https://doi.org/10.1007/s00265-003-0651-y
https://doi.org/10.1007/s00265-003-0651-y
http://dl.acm.org/citation.cfm?id=1267359.1267363

A Graph Testing Framework for Provenance
Network Analytics

Bernard Roper1(&), Adriane Chapman1, David Martin1,
and Jeremy Morley2

1 University of Southampton, Southampton, UK
b.a.roper@soton.ac.uk

2 Ordnance Survey, Southampton, UK

Abstract. Provenance Network Analytics is a method of analyzing provenance
that assesses a collection of provenance graphs by training a machine learning
algorithm to make predictions about the characteristics of data artifacts based on
their provenance graph metrics. The shape of a provenance graph can vary
according the modelling approach chosen by data analysts, and this is likely to
affect the accuracy of machine learning algorithms, so we propose a framework
for capturing provenance using semantic web technologies to allow use of
multiple provenance models at runtime in order to test their effects.

Keywords: Graph � Network � Analytics

1 Introduction

Provenance data describes the events, agents, resources and relationships that have led
to the creation of a piece of data or thing and as such is naturally expressed as a graph.
Provenance is used in a range of application domains, e.g. geospatial [1–3] and sci-
entific experimentation [4–6]. Some of these applications generate large and complex
graphs resulting in a volume of data that is beyond the scope of inspection and query.
While some strategies exist [7–9] to simplify their representation for human usability,
these techniques are typically made for an individual inspecting a single provenance
graph to judge fitness for use of a specific artefact.

Provenance Network Analytics (PNA) is an approach proposed by Huynh et al.
[10, 11], which instead attempts to help users assess fitness for use for an artefact by
assessing a collection of provenance graphs. In their work, they use a set of provenance
specific network metrics [12] adapted from network theory [13]. These are used to
summarize a dependency subgraph graph as a feature vector to train machine learning
algorithms to predict characteristics of the data artefact for which the provenance has
been expressed.

This technique is used in [10] to assess the quality of a map feature from Col-
labMap, a crowdsourced mapping initiative used for disaster relief planning. Using
feature vectors from these provenance graphs, the authors trained a machine learning
algorithm to predict user trust ratings with 95% accuracy. They have also tested this in
other applications; identifying message types in a disaster response simulation game

© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 245–251, 2018.
https://doi.org/10.1007/978-3-319-98379-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_29&domain=pdf

and identifying owners of PROV-N documents, achieving a high degree of classifi-
cation accuracy across these domains [11].

However, in [11] the authors note that the model chosen for the provenance could
impact the quality of the ultimate machine learning model produced. We replicated this
in [14], using PROV graphs generated from Open Street Map (OSM) history data,
obtaining only 54% accuracy when attempting to predict the incidence of fix-me tags
left by users to indicate issues with the data describing a map feature (Fig. 1).

The inability to replicate the classifier accuracy of [10] in [14] could have any
number of reasons. While it could be argued that provenance is not useful for making
predictions about the characteristics of data, the results obtained from the work by
Huynh et al. [10, 11] are sufficient to discount this. Alternatively, the specific char-
acteristic (i.e. the fix-me tag) cannot be predicted by the provenance analytics method.
While we cannot discount this entirely, it seems unlikely, as this characteristic is
analogous to a user trust rating. Another possibility is that there are errors in the way
the machine learning algorithms were used. This is of course possible and will be
investigated further during this project. However, there are two important factors which
bear deeper investigation:

• The network metrics chosen. It is apparent from the previous Provenance Network
Analytics work [11] that these metrics have an impact on the machine learning
accuracy and that this varies depending on the type of feature from which the
provenance is derived.

• The shape of the extracted subgraphs, defined by the way the provenance is
modelled and expressed by analysts. Huynh et al. [11] found that the results from
one of the applications they studied, although still useful, were significantly poorer
than the other two applications. From visual inspection they noted that the shape of
these graphs was quite distinctive and so parameterized their capture method to vary
the shape of the graph. Doing so effected the classification accuracy.

OSM [14] Huynh et al [10]
Analysis goal Predict prevalence of fix-me tags Predict user trust ratings
Graph structure 6 relationships,3 vertex types 3 relationships, 4 vertex types
Feature Vector MFD, #vertices, #edges, diameter MFD, #vertices, #edges, diameter
ML Technique used decision tree classifier decision tree classifier
Target Attributes fix-me tag Trusted/uncertain rating
Target flags ratio 50:50 50:50
Most Relevant metrics diameter #vertices, #edges
Data sets Two geographic sets containing

30265 and 97393 features, adjust-
ed to 298 and 1604

Three sets divided by data type: 5175
buildings, 4911 evacuation routes and
3043 route sets

Accuracy of results 54% 95%

Fig. 1. Comparison of techniques between various approaches for machine learning over
provenance graphs, and the ultimate accuracy, from [14]

246 B. Roper et al.

The modelling of provenance is something of an art form, and characteristics of a
provenance graph can vary depending on the application, use-case, and analysis
requirements. E.g. nodes can be abstracted for reasons of confidentiality and data
protection [15], or granularity can be varied to manage computing resources [16].
These approaches to the expression of a graph decide its topological characteristics and
are likely to influence the effectiveness of PNA. OSM history data presents a variety of
ways in which provenance could be extracted to create provenance graphs whose form
differs depending on the modelling approach chosen.

For example, Table 1 shows two structurally different graphs of provenance for the
same OSM map artefact. The accompanying table shows some graph theoretic mea-
surements and values for MFD (maximum finite distance), a provenance specific
measurement used in [10, 11]. The graphs are obviously different in appearance and
produce a different set of measurement values (Table 2).

It is likely that different approaches to provenance modelling will result in varia-
tions in the accuracy of machine learning classifiers. To identify any effect, a frame-
work for testing the PNA method using graphs built using a range of modelling
approaches is needed. Our contributions in this work are the following:

• We create a provenance extraction framework that allows the shape of a provenance
graph to be changed at runtime.

• We showcase the use of this framework on Open Street Maps, and show how an
OSM XML history file can be parsed into a history representation that allows any
number and shape of provenance graphs to be generated programmatically

Table 1. Two provenance graphs of an OSM map feature

G1 G2

A Graph Testing Framework for Provenance Network Analytics 247

2 A Multi-model Graph Analysis Framework

The system proposed here is related to methods of ‘scraping’ provenance from log files
generated by an application as part of its instrumentation, such as [17, 18]. The diagram
in Fig. 2 shows our process, which uses OSM XML History Data, which is in the
same format as the OSM dataset but contains the state of each map artefact at any stage
in the its history, including timestamp, software used, external dataset derivations and
an ID of the creator agent. Rather than scraping a specific expression of provenance
from the data by parsing, XSLT is used to transform it into an RDF Graph. This is
encoded using OWL and the PROV-O ontology, which are used to enrich the data set
by entailing more triples to generate a comprehensive and universal provenance graph
from which different PROV-DM representations can be extracted.

Table 2. Metrics from the graphs in Table 1

Metrics G1 G2 MFD G1 G2

Nodes 12 8 Entity-entity 1 1
Edges 27 9 Entity-activity 2 2
Components 1 1 Entity-agent 3 3
Diameter 3 5 Activity-entity 0 0

Activity-activity 0 0
Activity-agent 2 1
Agent-entity 0 0
Agent-activity 0 8
Agent-agent 1 9

Fig. 2. The framework process

248 B. Roper et al.

The resulting RDF is added to a Triple Store created using the Apache JENA Java
libraries. The PROV graphs for map features are obtained using SPARQL queries
which return RDF Graphs as Apache JENA RDF model objects, which can be con-
verted to network graph representations and feature vectors using the JENA-JUNG
Graph Analysis Library. The feature vectors will be used to train a Machine
Learning classifier.

We capture data with the PROV-DM elements that allow data enrichment by
inference using the PROV-O ontology. Figure 3 shows the attribution and derivation
relationships of an OSM map artefact. The relationships in bold show provenance that
has been explicitly declared in the RDF produced by the XSLT transformation. The
other relationships have been inferred by a reasoner using PROV-O.

We also use a qualified relations design pattern [19] for the provenance relation-
ships, so that each edge is reified into an individual, linked with a qualified relation
edge so that more triples can be inferred, creating the simpler wasAttributedTo and
wasDerivedFrom relationship.

Once this process is complete, PROV graphs are then extracted using different
SPARQL queries to the same set of PROV data as seen in Fig. 4.

This framework allows specification of PROV models using SPARQL. The
example above shows two graphs produced by different SPARQL queries run over
RDF data extracted from an OSM history file with axioms generated by a reasoner in
Protégé [20]. Using feature vectors from results like these we train a ScikitLearn
Decision Tree Classifier [21]. This provides a human readable output with information
about the significance of the various graph metrics in the classification process, which
can be used to help inform the design of other PROV models which can be extracted
from the data using SPARQL.

Fig. 3. Inferred triples in Protégé

A Graph Testing Framework for Provenance Network Analytics 249

3 Future Work

Once this framework is completed we will create another XSLT module for use with
Ordnance Survey history data and examine other target quality characteristics. We will
also explore other machine learning techniques to see if classification accuracies can be
improved and if so, whether the decision tree classifier can still be used alongside other
algorithms to provide information about the role of the various metrics and different
graph morphologies and what insights this might give us into the social worlds and
processes of data creation.

Because we are using RDF in a triple store we will be able to update our Prove-
nance dataset as the OSM history is updated. This dataset could be used to produce a
provenance powered spatial representation of predicted data quality that updates over
time.

References

1. Yue, P., Zhang, M., Guo, X., Tan Z.: Granularity of geospatial data provenance. In: 2014
IEEE Geoscience and Remote Sensing Symposium, pp. 4492–4495 (2014)

2. Maso, J., Pross, B., Gil, Y., Closa, G. (eds.): Testbed 10 Provenance Engineering Report.
OGC, 14 July 2014

3. Yue, P., Gong, J., Di, L., He, L., Wei, Y.: Semantic provenance registration and discovery
using geospatial catalogue service. In: Proceedings 2nd International Workshop on the Role
of Semantic Web in Provenance Management, Shanghai, China, pp. 23–28 (2010)

4. Oliveira, W., Ambrósio, L.M., Braga, R., Ströele, V., David, J.M., Campos, F.: A framework
for provenance analysis and visualization. Procedia Comput. Sci. 108, 1592–1601 (2017)

5. Acar, U., Buneman, P., Cheney J.: A graph model of data and workflow provenance, p. 10
(2010)

CONSTRUCT {
?version prov:wasDerivedFrom ?entity.
?entity prov:wasAttributedTo ?agent.
} WHERE {
?entity provanalytics:versionOf osm:254430.
?version prov:wasDerivedFrom ?entity.
?entity prov:wasAttributedTo ?agent
}

CONSTRUCT {
?entity prov:qualifiedAttribution ?attr.
?attr prov:entity ?entity.
?attr prov:agent ?agent.
?version prov:qualifiedRevision ?rev.
?rev prov:entity ?entity.
} WHERE{
?entity provanalytics:versionOf osm:254430.
?entity prov:qualifiedAttribution ?attr.
?attr prov:agent ?agent.
?version prov:qualifiedRevision ?rev.
?rev prov:entity ?entity.
}

Fig. 4. Two SPARQL queries with their resultant graphs

250 B. Roper et al.

6. Miles, S., Groth, P., Branco, M., Moreau, L.: The requirements of recording and using
provenance in e-science experiments, p. 15 (2007)

7. Davidson, S., et al.: Provenance in scientific workflow systems, p. 7 (2007)
8. Moreau, L.: Aggregation by provenance types: a technique for summarising provenance

graphs. In: Electronic Proceedings in Theoretical Computer Science, vol. 181, pp. 129–144,
April 2015

9. Macko, P., Seltzer, M.: Provenance map orbiter: interactive exploration of large provenance
graphs, p. 6 (2011)

10. Huynh, T.D., Ebden, M., Venanzi, M., Ramchurn, S.D., Roberts, S., Moreau, L.:
Interpretation of crowdsourced activities using provenance network analysis. In:
First AAAI Conference on Human Computation and Crowdsourcing (2013)

11. Huynh, T.D., Ebden, M., Fischer, J., Roberts, S., Moreau, L.: Provenance network analytics:
an approach to data analytics using data provenance. In: Data Mining and Knowledge
Discovery, February 2018

12. Ebden, M., Huynh, T.D., Moreau, L., Ramchurn, S., Roberts, S.: Network analysis on
provenance graphs from a crowdsourcing application. In: Groth, P., Frew, J. (eds.) IPAW
2012. LNCS, vol. 7525, pp. 168–182. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34222-6_13

13. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford/New York
(2010)

14. Roper, B.: Investigating the role of data provenance in assessing variations in the quality of
open street map data, MSc, University of Southampton (2017)

15. Missier, P., Bryans, J., Gamble, C., Curcin, V., Danger, R.: ProvAbs: Model, policy, and
tooling for abstracting PROV graphs. In: Ludäscher, B., Plale, B. (eds.) IPAW 2014. LNCS,
vol. 8628, pp. 3–15. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16462-5_1

16. Pasquier, T., et al.: Practical Whole-System Provenance Capture, pp. 405–418 (2017). arXiv:
1711.05296 [cs]

17. De Nies, T., et al.: Git2PROV: exposing version control system content as W3C PROV. In:
Poster and Demo Proceedings of the 12th International Semantic Web Conference, vol.
1035, pp. 125–128 (2013)

18. Ghoshal, D., Plale, B.: Provenance from log files: a BigData problem, p. 290 (2013)
19. Moreau, L., Groth, P.: Provenance: An Introduction to PROV. Morgan & Claypool

Publishers, San Rafael (2013)
20. protégé. https://protege.stanford.edu/. Accessed 07 April 2018
21. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct),

2825–2830 (2011)

A Graph Testing Framework for Provenance Network Analytics 251

http://dx.doi.org/10.1007/978-3-642-34222-6_13
http://dx.doi.org/10.1007/978-3-642-34222-6_13
http://dx.doi.org/10.1007/978-3-319-16462-5_1
http://arxiv.org/abs/1711.05296
http://arxiv.org/abs/1711.05296
https://protege.stanford.edu/

Provenance for Astrophysical Data

Anastasia Galkin1(B) , Kristin Riebe1, Ole Streicher1 , Francois Bonnarel2,
Mireille Louys2, Michèle Sanguillon3 , Mathieu Servillat4,

and Markus Nullmeier5

1 Leibniz-Institute for Astrophysics Potsdam (AIP), Potsdam, Germany
agalkin@aip.de

2 Universitè de Strasbourg, CNRS, Observatoire astronomique de Strasbourg,

Strasbourg, France
3 LUPM, CNRS, Université de Montpellier, Montpellier, France

4 Laboratoire Univers et Thèories, Observatoire de Paris, PSL Research University,

CNRS, Paris, France
5 ARI, Zentrum fuer Astronomie Heidelberg, Heidelberg, Germany

Abstract. In the context of astronomy projects, provenance informa-
tion is important to enable scientists to trace back the origin of a dataset.
It is used to learn about the people and organizations involved in a
project and assess the quality of the dataset as well as the usefulness
of the dataset their scientific work. As part of the data model group
in the International Virtual Observatory Alliance (IVOA) we are work-
ing on the definition of a provenance data model for astronomy which
shall describe how provenance metadata can be modeled, stored and
exchanged. The data model is being implemented for different projects
and use cases.

Keywords: Astronomy · Astrophysics · Escience
Data management · Provenance · IVOA

1 Introduction

The Virtual Observatory (VO) is the vision that astronomical datasets and other
resources should work as a seamless whole. The IVOA [4] is an organisation that
debates and agrees on the technical standards that are needed to make the VO
possible.

The goal of the IVOA Data modeling group is to develop a provenance data
model which will not only store provenance information but also to find ways

This project is partially funded by BMBF 05A14BAD and 05AI7BA2S. Additional
funding is provided by ASTERICS (http://www.asterics2020.eu/), a project sup-
ported by the European Commission Framework Programme Horizon 2020 Research
and Innovation action under grant agreement no. 653477. Further funding was pro-
vided by the German Virtual Observatory (GAVO), the French Virtual Observatory
(ASOV OV-France), and Paris Astronomical Data Centre (PADC).

c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 252–256, 2018.
https://doi.org/10.1007/978-3-319-98379-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_30&domain=pdf
http://orcid.org/0000-0003-0131-7491
http://orcid.org/0000-0001-7751-1843
http://orcid.org/0000-0003-0196-6301
http://www.asterics2020.eu/

Provenance for Astrophysical Data 253

to let the astronomical community explore provenance in a interoperable way,
linking the provenance information to already existing VO data models and
infrastructures.

2 Use Cases for Provenace in Astronomy

For an astronomical data set, provenance can answer questions such as: Which
processing steps have been done already? Who was involved in the project? Who
can I ask about this data? Is the dataset suited for my research? Which datasets
were produced with the same pipeline version? “Forward tracking” is useful to
follow the usage within the given domain. Structured provenance metadata helps
to find possible error sources such as the version of processing software, telescope
configuration, parameter settings.

2.1 Cherenkov Telescope Array

The Cherenkov Telescope Array (CTA) [3] is the next generation ground-based
very high energy gamma-ray instrument. Contrary to previous Cherenkov instru-
ments, it will serve as an open observatory providing data to a wide astrophysics
community, with the requirement to propose self-described data products to
users that may be unaware of the Cherenkov astronomy specificities. Provenance
is used to organize the data reprocessing workflow of the pipeline.

2.2 Spectroscopic Surveys

In large spectroscopic surveys (e.g. 4MOST [1]), sections of the sky are scanned to
retrieve characteristics of the electromagnetic radiation emitted by cosmological
objects, such as stars, black holes or galaxies. The provenance model can help
identify adjacent objects on the CCD (an electronic light sensor) for a given 1D
spectrum to identify sources of crosstalk.

2.3 APPLAUSE Database - Scanning Historical Photoplates

The APPLAUSE archives [2] host digitized copies of photographic plates from
the German astronomical observatories. These items are of particular interest for
the study of long-term variability of many types of stars. The provenance use-
case here encompasses physical objects such as photographic plates, the scanners
and the log book as well as the software processing steps, parameters and the
digital outcome of the project - digitized images and identified objects such as
stars. The data release 3 is planned to be published in July 2018, provenance
metadata are being constructed and will be added in a later addition.

254 A. Galkin et al.

2.4 MUSE Data Reduction Pipeline

The Multi Unit Spectroscopic Explorer (MUSE) [5] is an instrument installed
at the Very Large Telescope (VLT) of the European Southern Observatory. The
raw data are recorded separately and then transformed into a fully calibrated,
science-ready data cube using the MUSE data reduction pipeline [13]. All infor-
mation is stored in a specific object oriented database [12]. First attempts to
describe the provenance information using the W3C model for one final data
cube result in metadata containing about 2700 file entities and 270 activities
(recipe runs).

2.5 RAVE Survey

RAVE (Radial Velocity Experiment) [6] is one of the largest spectroscopic sur-
veys of Milky Way stars. The final data products are data release tables with
properties for half a million stars. These properties are derived from the original
raw spectra which are observed by a number of fibres attached to the telescope
and were processed in numerous processing steps. If the provenance information
contains all the details and intermediate steps, tracking back the provenance
for each stellar property through to the original fibre-spectrum, the amount of
information becomes overwhelming.

3 Special Requirements in Modelling Provenance in
Astronomy

The IVOA provenance data model follows closely the W3C provenance model [7],
utilizing entities, activities and agents, and the relevant relations between them.
The provenance information use in astronomy has however some specific chal-
lenges:

First, the astronomical provenance records are highly complex. A coarse or
a detailed view of a provenance model is needed depending on the task where
the provenance is used.

Second, many tasks in astronomy are repetitive, e.g. several observations
can be performed with the same telescope and instrument, or many simula-
tions are performed using the same code and computing environment, but with
slightly varying code parameters. This is normalized by using a special class that
abstractly describes the activity. The complex data processing also may require
to structure the workflow by combining several activities into one.

Last, activities highly rely on parameters and parameter sets. Parameters
have a value and might or might not have a history as well. Thus, parameters
could be modeled as entities.

4 Integration into the IVOA Ecosystem

IVOA has built up a well functioning and widely used ecosystem of interoperable
services and tools such as Tool for OPerations on Catalogues And Tables (TOP-
CAT). One of the main concepts in IVOA is the Table Access Protocol (TAP) [8].

Provenance for Astrophysical Data 255

Within the TAP protocol the access is provided for both the database and the
table metadata as well as for actual table data. TAP also includes support for
synchronous and asynchronous queries as well as support for multiple query
languages, mainly the Astronomical Data Query Language (ADQL).

The ProvTAP accesses provenance information accordingly to the TAP stan-
dard. The output format is VOTable, the VO standard table output format.

ProvSAP (for Simple Access Protocol) allows the client to request informa-
tion in a REST framework way with W3C output formats such as PROV-JSON,
PROV-XML and PROV-N.

Provenance information can also be directly stored in data files such as images
files (FITS) or in VOTables. The standard for it is currently discussed by the
IVOA modeling group.

5 Summary

In this document we briefly outlined the development of the IVOA provenance
model for the astronomical scientific field. The current IVOA Provenance Data
Model is still in development and some core concepts are in discussion now. We
welcome and encourage the input of W3C provenance experts to complete the
model within the IVOA ecosystem.

For further reading please look at various proceedings, documents and notes,
e.g.: [10,11].

The latest official version of the working draft can be found at [9]. The
released versions will be published at the IVOA website [4] in the documents
section.

References

1. The 4-metre multi-object spectrograph telescope. https://www.4most.eu/
2. Applause - archives of photographic plates. https://plate-archive.org
3. Cherenkov telescope array. https://www.cta-observatory.org/
4. International virtual observatory alliance (ivoa). http://ivoa.net
5. Muse science - the multi unit spectroscopic explorer. https://muse-vlt.eu/science
6. Rave the radial velocity experiment. https://www.rave-survey.org/project/
7. Belhajjame, K., et al.: PROV-DM: The prov data model. W3C Recommendation,

April 2013. http://www.w3.org/TR/prov-dm/
8. Dowler, P., Rixon, G., Tody, D., Demleitner, M.: Table access protocol - version

1.1 (2018). http://www.ivoa.net/documents/TAP/
9. Riebe, K., et al.: The IVOA Data Model Working Group: IVOA Provenance Data

Model (2017). http://www.ivoa.net/documents/ProvenanceDM/
10. Riebe, K., Servillat, M., Bonnarel, F., Louys, M., Sanguillon, M.: The IVOA Data

Model Working Group: Provenance Implementation Note (2017). http://volute.g-
vo.org/svn/trunk/projects/dm/provenance/implementation-note/

11. Servillat, M., et al.: Provenance as a requirement for large-scale complex astronom-
ical instruments. In: ADASS XXVII. ASP Conference Series. ASP, San Francisco
(2018)

https://www.4most.eu/
https://plate-archive.org
https://www.cta-observatory.org/
http://ivoa.net
https://muse-vlt.eu/science
https://www.rave-survey.org/project/
http://www.w3.org/TR/prov-dm/
http://www.ivoa.net/documents/TAP/
http://www.ivoa.net/documents/ProvenanceDM/
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/implementation-note/
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/implementation-note/

256 A. Galkin et al.

12. Vriend, W.J.: Porting big data technology across domains. WISE for MUSE. In:
Science Operations 2015: Science Data Management - An ESO/ESA Workshop,
24–27 November 2015 at ESO Garching, p. 1, December 2015. https://doi.org/10.
5281/zenodo.34624

13. Weilbacher, P.M., Streicher, O., Urrutia, T., Pécontal-Rousset, A., Jarno, A.,
Bacon, R.: The MUSE data reduction pipeline: status after preliminary acceptance
Europe. In: Manset, N., Forshay, P. (eds.) Astronomical Data Analysis Software
and Systems XXIII. Astronomical Society of the Pacific Conference Series, vol.
485, p. 451, May 2014

https://doi.org/10.5281/zenodo.34624
https://doi.org/10.5281/zenodo.34624

Data Provenance in Agriculture

Sérgio Manuel Serra da Cruz1(&) , Marcos Bacis Ceddia1 ,
Renan Carvalho Tàvora Miranda1 , Gabriel Rizzo1 ,

Filipe Klinger1 , Renato Cerceau1,2 , Ricardo Mesquita4 ,
Ricardo Cerceau1 , Elton Carneiro Marinho5 ,

Eber Assis Schmitz5 , Elaine Sigette3 , and Pedro Vieira Cruz1

1 Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
{serra,ceddia}@ufrrj.br

2 National Agency of Supplementary Health, Rio de Janeiro, RJ, Brazil
3 Federal Fluminense University, Volta Redonda, RJ, Brazil

4 SENAI-RJ, Rio de Janeiro, RJ, Brazil
5 Federal University of Rio de Janeiro, Cidade Universitária, RJ, Brazil

Abstract. Soils are probably the most critical natural resource in Agriculture,
and soils security represents a critical growing global issue. Soils experiments
require vast amounts of high-quality data, are very hard to be reproduced, and
there are few studies about data provenance of such tests. We present OpenSoils;
it shares knowledge about data-centric soils experiments. OpenSoils is a
provenance-oriented and lightweight e-infrastructure that collects, stores,
describes, curates and, harmonizes various soil datasets.

Keywords: Reproducibility � Soil security � Open data � Data quality
Big data

1 Introduction

According to Food and Agriculture Organization (FAO)1, an agency of the United
Nations, the world’s population is expected to grow to about 9,6 billion by 2050. Thus,
there is widespread concern about the challenges to soil and food systems in meeting
the demand of populations for sufficient, affordable, and nutritious food. There are
similar concerns about meeting those challenges in ways that agriculture would benefit
hugely from common shared global agronomic data spaces.

The modern Agriculture is a data-centric interdisciplinary domain, with the inte-
gration of different subjects (from genomics to soil sciences), different scales (from
genes to geolocalisation) and, different markets (from local farmers to multinational
research teams). The ability to manage and explore these datasets is a crucial issue to
tackle the current sustainability challenges. A wide variety of datasets underpin
products and processes, which vary in size, complexity, structure, semantics, subject
matter and in how they are updated and used.

1 http://www.fao.org/about/what-we-do/en/.

© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 257–261, 2018.
https://doi.org/10.1007/978-3-319-98379-0_31

http://orcid.org/0000-0002-0792-8157
http://orcid.org/0000-0002-8611-314X
http://orcid.org/0000-0002-2668-4266
http://orcid.org/0000-0002-8988-9955
http://orcid.org/0000-0002-4751-6587
http://orcid.org/0000-0003-3953-4715
http://orcid.org/0000-0002-0267-6886
http://orcid.org/0000-0003-3016-229X
http://orcid.org/0000-0003-0117-0610
http://orcid.org/0000-0002-4839-4606
http://orcid.org/0000-0002-1139-1356
http://orcid.org/0000-0001-6476-3865
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_31&domain=pdf
http://www.fao.org/about/what-we-do/en/

Soils are probably the most critical natural resource in Agriculture; they generate
environmental, health and socio-economic benefits that are vital to sustaining life on
Earth [1]. Soil experiments are indispensable sources of knowledge. Researchers
conduct several kinds of soils experiments which are characterized as long-term field
experiments (LTE) and short-term (in vitro and in silico) lab experiments (STE).
The LTE have been running for years in many parts of the world for the last 175-years-
old (e.g. Rothamsted) and need more time to execute the research procedures. On the
other hand, STE experiments can be performed in a few weeks or months and have the
potential to contribute to the improve LTE. Thus, it is essential to deliver to the
agronomic community a novel computing infrastructure that can share raw and curated
data and the provenance of STE and LTE and augment the reproducibility of soil
experiments. This paper presents a multi-layer e-infrastructure which bring innovations
to Soils Science using FAIR principles (Findable, Accessible, Interoperable, and
Reusable) [2], W3C PROV-DM2, open data and semantic web standards.

2 Experiments in Soils Science

Soil Science represents the area that studies the soil (and its properties) as a natural
resource, including soil formation, composition, classification, mapping, management
and use [1, 3], these properties could be about physical, chemical, biological, and
fertility. Soils experiments are costly because the soils are incredibly diverse, and it is
necessary to treat them in a specific manner [3]. Any recommendation fits specific soil
and weather conditions. Besides, the soil properties have high spatial and time vari-
ability. Finally, changes in soil properties can often be proved and quantified only after
decades.

The LTE is essential in monitoring and understanding the changes in soil physics or
fertility occurring because of long-term agrotechnical operations. Their scientific and
practical value is immeasurable and keeps improving over the years. The information
about the soils use cannot be replaced by any other means [3]. Additionally, the STE
produced much of the data that built the sciences of soil physics, chemistry, and
biology [1, 3]. STE often explore soil processes subject to change over decades, topics
such as aggregation, weathering, microbial activity, and soil fertility itself.
Although STE enriches soil models, most tend to be reductionist, isolating individual
components, and do not study the whole soil, with its high-order interactions that
become apparent only with time.

3 Open Soils

Data and provenance are the primary and permanent assets in OpenSoils (www.
opensoils.org). The architecture is an open, provenance-oriented, and lightweight
computational e-infrastructure which rely on layers to store, compute and share curated

2 https://www.w3.org/TR/prov-dm/.

258 S. M. S. da Cruz et al.

http://www.opensoils.org
http://www.opensoils.org
https://www.w3.org/TR/prov-dm/

data of (STE and LTE) soils experiments [5]. Figure 1 illustrates a conceptual view and
the flow of information in the architecture.

Layer 1 (End-users layer) - hosts on the OpenSoils Web portal; it collects soil data
directly from the LTE into OpenSoils database. The specialists can use mobile and web
applications (e.g., OpenSoils App, API and Wet Lab tools) to collect the data directly
in the fields (LTE experiments) and trace the route of each soil sample sent to chemistry
and physics laboratories to be analyzed. Usually, the morphological properties of the
soil are analyzed in situ by the specialists. OpenSoils app sends raw data to the cloud-
based database thought the API. After that, each soil sample is tagged and sent to
laboratories where the scientist does wet experiments and execute STE which evaluate
specific physic-chemical properties of each soil horizon and selected soil samples are
shipped to the UFRRJ’s soils museum.

Layer 2 (Services layer) - hosts soil models and data-centric scientific workflows
which ingest large amounts of legacy data and analyses the consistency of the incoming
data [3].

Layer 3 (Data layer) - stores and describes various soils datasets with metadata.
The internal structure supports a diversified degree of data granularity and uses a
database named OpenSoilsDB [5, 6] which can store new curated soils data annotated
with provenance metadata. Much of the information needed to assure the data quality
and to allow researchers to reproduce STE experiments can be obtained by system-
atically capturing data provenance [4]. OpenSoilsDB can store provenance from ETL
workflows and scripts. ETL Workflow provenance consists of the record of the
derivation of a result (e.g., a soil experiment, an image, a map) by a computational
process represented as scientific workflows. Script provenance is obtained by running
the source code of scripts (e.g. R, Pyhton). OpenSoilsDB used W3C PROV-DM
recommendation to store provenance and was designed to support the FAIR principles
for scientific data management and data stewardship [2]. The principles ensure trans-
parency, reproducibility, and reusability of the experiments, facilitating data sharing
more systematically.

The database also supports the ingestion of legacy soils data imported through ETL
workflows. The layer can store scientific and governance data. Besides, to support open
data, we can use general-purpose data repositories (e.g., CKAN, Dataverse, DSpace,
Dryad, DataHub).

A specific thesaurus is used to add semantics and annotate soils data, allowing us to
link it as RDF triples in WikiData. The thesaurus used in the e-infrastructure is
Agrovoc [7], which is a SKOS-XL (Simple Knowledge Organization System eXten-
sion for Labels) concept scheme published as LOD (Linked Open Data). It covers
several areas of interest of the FAO including food, agriculture and, environment. This
thesaurus is used by researchers, librarians, and information managers for indexing,
retrieving, and organizing data in agricultural information systems.

Data management is not a target in itself, but a key conduit leading to knowledge
discovery and innovation in soil sciences. OpenSoilsDB database stores scientific and
governance data. The scientific data aims to serve high quality-assessed, georeferenced
soils profiles database to the Brazilian and international communities upon their
standardization and harmonization. Each soil profile description recorded in the data-
base has more than 43 entities, and 250 attributes to stores the soil properties and soil

Data Provenance in Agriculture 259

experiments (mineralogical, morphological, chemical, physical, and environmental
data). Furthermore, the database support data versioning and provenance; stores geo-
referenced soil data (text and images) about physic-chemical analytical data from each
horizon and soil samples analyzed in wet laboratories.

Data governance is an essential block in the knowledge base of information pro-
fessionals involved in supporting data-intensive research. Its adoption is advantageous
because it is a service based on standardized, repeatable processes, designed to enable
the data discovery and the transparency of data-related transformation processes.

Layer 4 (Governance layer) - hosts data licenses, re-use rights, analytical tools,
visualization and map generation services that can be connected to other software (e.g.,
ArcGIS, R or Jupyter) to generate analytical reports, prediction and raster maps.
Although received little attention in soils research communities, this layer is founda-
tional for soils security. The prime function of the layer is to improve and maintain the
citations and quality of the soils dataset; thus, to be successful at governance, quality
must be continuously measured, and the results continuously retrieved by the data and
services layers.

4 Concluding Remarks

Maintaining healthy soils is a key to modern agriculture. However, there is still much
computational work needed to be developed in soil sciences and more in-depth studies
to understand the role of data provenance in Agriculture. We introduced OpenSoils; it
is an e-infrastructure which share knowledge about STE and LTE in soils security using
FAIR, PROV, and semantic web approaches. The infrastructure is being developed and
aims to enhance reproducibility of experiments and deliver high-quality datasets,
knowledge and maps based on curated data.

Acknowledgments. This work was supported in part by the Brazilian agencies FNDE/MEC/
SESU, PIBIC/CNPq, Petrobras and CYTED networks BigDSSAgro and SmartLogistcs@IB.

Fig. 1. Overview of the conceptual data-flow in OpenSoils.

260 S. M. S. da Cruz et al.

References

1. Koch, A., et al.: Soil security: solving the global soil crisis. Glob. Policy 4(4), 434–441 (2013)
2. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and

stewardship. Sci. Data 3, 160018 (2016)
3. Körschens, M.: The importance of long-term field experiments for soil science and

environmental research – a review. Plant Soil Environ. 52, 1–8 (2006)
4. Cruz, S.M.S., do Nascimento, J.A.P.: SisGExp: rethinking long-tail agronomic experiments.

In: Mattoso, M., Glavic, B. (eds.) IPAW 2016. LNCS, vol. 9672, pp. 214–217. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40593-3_24

5. Cruz, S.M.S., et al.: Towards an e-infrastructure for open science in soils security. In: XII
Proceedings on Brazilian E-Science Workshop (BRESCI), pp. 59–66. SBC, Natal-RN (2018)

6. Rizzo, G.S.C., Ceddia, M.B., Cruz, S.M.S.: Banco de Dados Pedológico: Primeiros Estudos.
In: 5th Proceedings on Reunião Anual de Iniciação Científica (RAIC), pp. 1–2. UFRRJ,
Seropédica (2017). (in Portuguese)

7. Caracciolo, C., et al.: The AGROVOC linked dataset. Seman. Web 4(3), 341–348 (2013)

Data Provenance in Agriculture 261

http://dx.doi.org/10.1007/978-3-319-40593-3_24

Extracting Provenance Metadata
from Privacy Policies

Harshvardhan Jitendra Pandit(B), Declan O’Sullivan, and Dave Lewis

ADAPT Centre, Trinity College Dublin, Dublin, Ireland
{harshvardhan.pandit,declan.osullivan,dave.lewis}@adaptcentre.ie

Abstract. Privacy policies are legal documents that describe activities
over personal data such as its collection, usage, processing, sharing, and
storage. Expressing this information as provenance metadata can aid
in legal accountability as well as modelling of data usage in real-world
use-cases. In this paper, we describe our early work on identification,
extraction, and representation of provenance information within privacy
policies. We discuss the adoption of entity extraction approaches using
concepts and keywords defined by the GDPRtEXT resource along with
using annotated privacy policy corpus from the UsablePrivacy project.
We use the previously published GDPRov ontology (an extension of
PROV-O) to model provenance model extracted from privacy policies.

Keywords: Provenance · Privacy policy · GDPR

1 Motivation

A privacy policy is a document that outlines information about activities related
to personal data, and are notoriously difficult to read [3]. The privacy policy
(along with T&C and other documents) is commonly the only available author-
itative indication of how personal data is collected and used. Legislations, such
as the upcoming General Data Protection Regulation (GDPR), influence what
information is required to be mentioned in the privacy policy, but do not provide
a uniform structure or mechanism for its declaration.

Research, especially related to technical modelling of privacy, therefore suffers
from a lack of structured information about real-world usage of personal data.
The UsablePrivacy Project [4] provides a semi-automated annotation of privacy
policy based on a combination of crowdsourcing, machine learning and natural
language processing. It annotates privacy policy statements to help users identify
different data collection and use practices. We propose to extend this approach
to identify and automatically extract provenance metadata from privacy policies.
This paper describes provenance information present in privacy policies along
with approaches towards its identification, extraction, and representation.

c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 262–265, 2018.
https://doi.org/10.1007/978-3-319-98379-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_32&domain=pdf

Extracting Provenance Metadata from Privacy Policies 263

2 Provenance Metadata

Identification. GDPR is poised to significantly change the type of information
made available to the data subject or user regarding activities over their per-
sonal data. We discuss identification of provenance metadata using the privacy
policy provided by Airbnb Ireland1, and focus on categories or types of per-
sonal data, along with descriptions of activities that relate to how it is collected,
used, shared, and stored. The policy contains sections that offer context to its
contents. For example, the title of Section 1 refers to collection of information
with subsections describing where the information is obtained from. Taking into
account such context can be helpful towards heuristics for eventual extraction
of provenance metadata. For example, section 1. describes personal information
provided when creating a new account. Combining this with the aforementioned
context, we can infer that account information is a data category with first
name, last name, email address, date of birth being its types; and sign-up is an
activity that collects account information direct from the user.

Extraction Using Keyword-Based Entity Recognition. Manual efforts to
extract this provenance information do not scale well across a large number of
policies, nor can they be automated. Entity extraction techniques [1,2] can help
in identification and categorisation of methods. Identification and extraction
can take place by searching for certain keywords known to refer to provenance
information. For example, the word “collect” is almost always accompanied with
the type of information collected. A starting point for GDPR relevant keywords
is the GDPRtEXT ontology [5] that defines GDPR terms and concepts using
the SKOS vocabulary.

Extraction Using Machine Learning Models. This approach is similar to
the one take by the UsablePrivacy project [4] and requires annotations over
a sample corpus to train a machine learning algorithm for automatic entity
recognition and extraction. We plan to expand upon the categorisation of privacy
policy statements based on published approaches [4,7] with our keyword-based
extraction method. For this, the categorisation of statements can be used to
identify the type of information contained within the statement. For example,
a statement annotated with “First Party Collection/Use” offers the context of
a data collection activity, which can be used by the extraction algorithm to
identify the contextually relevant terms. Therefore, it may be more performant
to train the entity extraction algorithm only on similarly categorised statements
as opposed to all statements within policies.

Representation. Provenance metadata expressed using PROV-O concepts are
assertions about the past (execution) and should not be used to depict a ‘model’
or abstraction of how things are supposed to be happen. To this end, we created
1 Accessed 16-APR-2018 https://www.airbnb.ie/terms/privacy policy.

https://www.airbnb.ie/terms/privacy_policy

264 H. J. Pandit et al.

GDPRov [6], an OWL2 ontology that extends PROV-O and P-Plan (an exten-
sion of PROV-O) for modelling data-flows involving consent and data using rel-
evant GDPR terminology. An example representation of the use-case is depicted
in Fig. 1 with its representation as RDF triples.

:User

a gdprov:DataSubject,

prov:Agent .

:AccountInformation

rdfs:subClassOf gdprov:PersonalData .

:FirstName a :AccountInformation .

:LastName a :AccountInformation .

:Email a :AccountInformation .

:DOB a :AccountInformation .

:AccountSignUp

a gdprov:DataStep ;

dct:source :User ;

gdprov:collectsData :AccountInformation ;

gdprov:hasLegalBasis

gdprtext:LegitimateInterest .

Fig. 1. Example use-case for representation of information in Airbnb Privacy Policy

3 Potential Applications

Easier Representation of Privacy Policies. Privacy policies, as described
earlier, have been notoriously difficult to interpret and understand from the
point of view of a generic data subject or user. Efforts such as tl;drLegal3 and
UsablePrivacy are good examples of community efforts to mitigate this problem,
with UsablePrivacy offering a semi-automated way to annotate privacy policies.
Provenance metadata extracted from a privacy policy can be used to augment
these efforts through better descriptions and visualisations of how the data is
used across different processes. Having a visual representation accompany pri-
vacy policies can help users in quickly grasping the gist of the policy.

Approaches Related to Privacy Preferences. Matching a user’s privacy
preferences with the service is an important topic given the increasing misuse of
personal data and the lack of readily available information about data practices.
Provenance metadata can augment approaches that try to solve this problem by
providing a description of how data is used by the target entity related to the
policy. One possibility towards this is using the provenance metadata towards
interpreting privacy policies as agreements using Open Digital Rights Language
(ODRL). The provenance metadata provides information about what data is

Extracting Provenance Metadata from Privacy Policies 265

collected, how it is used, where/when it is shared. By matching the user’s privacy
preferences (also expressed as ODRL) with the ODRL privacy policy, it could be
possible to express areas that need user attention or those that do not comply
with the user’s preferences.

4 Conclusion

Through this paper, we presented our early stage work for the identification,
extraction, and representation of provenance metadata present in privacy poli-
cies. We describe our approach that uses keyword-based entity extraction based
on GDPR terms and concepts provided by the GDPRtEXT resource. This app-
roach adopts the machine-learning model used by the UsablePrivacy project to
create annotated privacy policies. We represent the extracted provenance meta-
data using GDPRov, which extends PROV-O and P-Plan, and allows for an
abstract model of the policy to be represented. We describe the potential appli-
cation of this work to augment several important topics related to privacy and
data practices.

Acknowledgments. This work is supported by the ADAPT Centre for Digital Con-
tent Technology which is funded under the SFI Research Centres Programme (Grant
13/RC/2106) and is co-funded under the European Regional Development Fund.

References

1. Bhatia, J., Breaux, T.D.: Towards an information type Lexicon for privacy policies.
In: 2015 IEEE Eighth International Workshop on Requirements Engineering and
Law (RELAW), pp. 19–24, August 2015. https://doi.org/10.1109/RELAW.2015.
7330207

2. Bhatia, J., Breaux, T.D.: A data purpose case study of privacy policies. In: 2017
IEEE 25th International Requirements Engineering Conference (RE), pp. 394–399.
IEEE (2017)

3. Fabian, B., Ermakova, T., Lentz, T.: Large-scale readability analysis of privacy
policies. In: Proceedings of the International Conference on Web Intelligence, WI
2017, pp. 18–25. ACM, New York (2017). https://doi.org/10.1145/3106426.3106427

4. Oltramari, A., et al.: PrivOnto: a semantic framework for the analysis of privacy
policies. Semant. Web 9(2), 185–203 (2018). https://doi.org/10.3233/SW-170283.
http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-170
283

5. Pandit, H.J., Fatema, K., O’Sullivan, D., Lewis, D.: GDPRtEXT - GDPR as a
Linked Data Resource, p. 14. Heraklion, Crete, Greece (2018)

6. Pandit, H.J., Lewis, D.: Modelling Provenance for GDPR Compliance using Linked
Open Data Vocabularies, p. 15

7. Tesfay, W.B., Hofmann, P., Nakamura, T., Kiyomoto, S., Serna, J.: PrivacyGuide:
towards an implementation of the EU GDPR on internet privacy policy evaluation.
In: Proceedings of the Fourth ACM International Workshop on Security and Privacy
Analytics, IWSPA 2018, pp. 15–21. ACM, New York (2018). https://doi.org/10.
1145/3180445.3180447

https://doi.org/10.1109/RELAW.2015.7330207
https://doi.org/10.1109/RELAW.2015.7330207
https://doi.org/10.1145/3106426.3106427
https://doi.org/10.3233/SW-170283
http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-170283
http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-170283
https://doi.org/10.1145/3180445.3180447
https://doi.org/10.1145/3180445.3180447

Provenance-Enabled Stewardship
of Human Data in the GDPR Era

Pinar Alper(B) , Regina Becker, Venkata Satagopam, Christophe Trefois,
Valentin Grouès, Jacek Lebioda, and Yohan Jarosz

Luxembourg Centre for Systems Biomedicine, 4362 Esch-sur-Alzette, Luxembourg
{pinar.alper,regina.becker,venkata.satagopam,christophe.trefois,

valentin.groues,jacek.lebioda,yohan.jarosz}@uni.lu
https://wwwen.uni.lu/lcsb

Abstract. Within life-science research the upcoming EU General Data
Protection Regulation has a significant operational impact on organisa-
tions that use and exchange controlled-access Human Data. One impli-
cation of the GDPR is data bookkeeping. In this poster we describe a
software tool, the Data Information System (DAISY), designed to record
data protection relevant provenance of Human Data held and exchanged
by research organisations.

Keywords: GDPR · Human Data · Provenance

1 Background

1.1 EU General Data Protection Regulation

Today, personal data breach incidents are not only front-page news items, they
are events with highly adverse impact on individuals and the society. In this
regard, a new EU-level legislation, the General Data Protection Regulation
(GDPR) [3], could not have been more timely. GDPR brings increased regu-
lation for organisations utilising personal data. Specifically:

– Organisations are now required to keep inventory on the personal data they
hold: from where, how and under what legal basis the data was obtained, with
whom it has been shared and the nature data use. This data provenance will
then serve as the starting point for audits performed by the national Data
Protection Authorities.

– Individuals have more rights on their data, such as the right to access, right
to deletion and the right to restriction of the use of their data. GDPR also
requires that requests for rectification, erasure etc. are passed on to the
recipients of the data, which means organisations must have a fine-grained
(subject-level) traceability of the sharing personal data.

– Organisations are expected to take data privacy measures at systems’
design time. These include data confidentiality, integrity and availability;

c© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 266–269, 2018.
https://doi.org/10.1007/978-3-319-98379-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_33&domain=pdf
http://orcid.org/0000-0002-2224-0780

Provenance-Enabled Stewardship of Human Data in the GDPR Era 267

data minimisation so that only necessary data attributes are used; storage
duration limitations so that data is not kept longer than necessary. Further-
more, GDPR expects documentation of security such measures as well as
documentation on systematic assessments of data processing setups in terms
of data privacy risks (aka “Data Processing Impact Assessment DPIA”).

1.2 Stewardship of Human Data

Scientific Data Stewardship refers to “activities for the long-term care of data” to
support scientific reproducibility or to enable data sharing [5]. In the context of
life-science research, data collected from living human subjects (aka “Human
Data”) falls under the scope of GDPR as “sensitive personal data”. Often,
Human Data is solely collected for research and is kept in a pseudonymized fash-
ion (detached from identifying attributes such as name or address). To ensure
data-protection Human Data is typically shared via “controlled-access” data cat-
alogues [4]. The common catalogue workflow starts by a study owner submitting
a dataset along with descriptive metadata. The second step is the provisioning of
a Data Access Committee (DAC) that will be responsible for assessing requests
for this dataset in terms of compliance with ethical standards and legal require-
ments. Data is then advertised in the catalog. Scientists that seeks controlled-
access data are required to make a formal application describing the planned
study and data use. In addition to the requirements listed in Sect. 1, the stew-
ardship of Human Data further brings the following requirements:

– GDPR allows EU countries to have their own legislative provisions. This leads
to the requirement to know if the requested type of data processing is allowed
in the country of the requester. Also subjects may disallow the transfer of their
data outside the country of collection, or outside the EU. Currently catalogues
do not model data use restrictions in detail, instead they rely on DACs to
match restrictions against requests. Under GDPR, however, data catalogues
will be accountable for granted accesses, therefore detailed consent modelling
and conflict detection is necessary.

– Catalogues are typically maintained by life-science institutes that also run
their own studies, which may involve Human Data. From the perspective of
GDPR, all Human Data needs to be accounted for, regardless of it being a
frozen data snapshot in the catalogue or an active dataset in the process of
being generated. Henceforth common abstractions and tools are needed to
keep inventory of Human Data.

Motivated by these observations, we are developing the Data Information
System at ELIXIR Luxembourg.

2 ELIXIR-LU Data Information System

ELIXIR [2] is a pan-European infrastructure for life-science data. ELIXIR-LU
is the Luxembourgish node of ELIXIR based at the Luxembourg Centre for
Systems Biomedicine (LCSB). ELIXIR-LU hosts a Translational Medicine data

268 P. Alper et al.

Fig. 1. Data information system overview.

repository as well as a cloud platform and tools to support data integration,
analytics and visualisation. ELIXIR-LU Data Information System (DAISY) is
a web application that is designed to collect rich provenance on the Human
Data held in LCSB for both local research and for the ELIXIR-LU Catalog.
Information gets accumulated in DAISY by (1) different stakeholders’ manual
input and (2) data-events that are generated from loosely coupled applications
(depicted in Fig. 1).

– Prior to data’s physical arrival to LCSB, we ask submitters to fill in a “Data
Information Sheet”, which collects essential data protection metadata, such
as data use restrictions, data’s de-identification method and the legal basis
for its processing.

– Data submitted for the catalog undergoes further processing, such as re-
pseudonymization, where subject identifiers in data are replaced by catalogue
accession numbers, also curation may be performed. These alterations and
data storage endpoints are recorded in DAISY by the data steward/curator.

– Access control to data in the catalogue is mediated by an application [1] that
facilitates the DAC decision. This application is monitored for information on
who has been granted access, and for which duration, all captured in DAISY.
This information is complemented with logs of transfers of data to authorised
catalog users.

– Access to local-research data is controlled via application/file-system level
permissions, through monitoring components DAISY can generate a report
on who has access to local data at any given time.

– Documents that guarantee data legality, such as Ethics Approvals, Data Shar-
ing agreements, Consent Templates may be renewed or revised. Such updates
are facilitated by manual input of the Legal Team into DAISY. Also data

Provenance-Enabled Stewardship of Human Data in the GDPR Era 269

privacy measures can be recorded by IT Administrators as tags on datasets
and any technical documentation, such as DPIA results, can be linked via the
content management system.

– The provenance stored in DAISY will be exportable in a standards compliant
form. This may be upon request by data subject, by auditor or for transfer
of information to other inventories.

In addition to recording provenance identified above, DAISY will provide the
following features:

– Detection and flagging of conflicts between datasets restrictions and the
requests made on those datasets.

– Generation of notifications based data use restrictions. For example notifying
the end of data storage durations or legal contracts nearing their end/renewal
date, or notifications to data recipients to remind their obligations e.g. co-
authorship on publications with data.

3 Future Directions

DAISY is currently under development and is scheduled for an alpha release in
July 2018. We are establishing a GDPR working group in ELIXIR. Through this
group we hope to refine requirements for DAISY and identify its functions that
can be re-used by the ELIXIR community. We plan to make DAISY available
as an open source tool.

Acknowledgments. This work was (partially) funded through the contribution of
the Luxembourg Ministry of Higher Education and Research towards the Luxembourg
ELIXIR Node.

References

1. Brandizi, M., Melnichuk, O., et al.: Orchestrating differential data access for trans-
lational research: a pilot implementation. BMC Med. Inf. Decis. Mak. 17(1), 30:1–
30:14 (2017)

2. Crosswell, L.C., Thornton, J.M.: ELIXIR: a distributed infras-
tructure for European biological data. Trends Biotechnol. 30(5),
241–242 (2012). https://doi.org/10.1016/j.tibtech.2012.02.002.
http://www.sciencedirect.com/science/article/pii/S0167779912000170

3. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 (General Data Protection Regulation). Off. J. Eur. Union L119, 1–
88 (2016). http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:
TOC

4. Lappalainen, I., Almeida-King, J., et al.: The european genome-phenome archive of
human data consented for biomedical research. Nat. Genet. 47(7), 692–695 (2015)

5. Wilkinson, M.D., Dumontier, M., et al.: The FAIR guiding principles for scientific
data management and stewardship. Sci. Data 3, 160018 EP (2016). https://doi.org/
10.1038/sdata.2016.18

https://doi.org/10.1016/j.tibtech.2012.02.002
http://www.sciencedirect.com/science/article/pii/S0167779912000170
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18

Author Index

Abbasi, Wisam 204
Ahmad, Raza 236
Alawini, Abdussalam 115
Alper, Pinar 71, 217, 266
Asif, Waqar 200
Auge, Tanja 222

Balakrishnan, Nikilesh D. 241
Bates, Adam 45
Batlajery, Belfrit Victor 145
Becker, Regina 266
Bonnarel, Francois 252
Boutamina, Sara 212
Bowers, Shawn 128
Braganholo, Vanessa 87
Bru, Melanie 236
Budde, Kai 192
Bytheway, Thomas 241

Cała, Jacek 3
Camata, Jose 183
Car, Nicholas J. 208
Carata, Lucian 241
Ceddia, Marcos Bacis 257
Cerceau, Renato 257
Cerceau, Ricardo 257
Chapman, Adriane 101, 145, 245
Chen, Leshang 115
Corsar, David 196, 200
Coutinho, Alvaro L. G. A. 183
Cruz, Pedro Vieira 257
Curcin, Vasa 71, 173, 217
Czekala, Myriam 188

da Cruz, Sérgio Manuel Serra 257
Davidson, Susan 115
de Oliveira, Daniel 183
Dombrowsky, Marcus 192

Edwards, Peter 196, 200

Fairweather, Elliot 71, 173, 217
Fisher, Stephen 115

Galkin, Anastasia 252
Gandhi, Poshak 101
García-Izquierdo, Francisco J. 58
Gehani, Ashish 236
Gibbins, Nicholas 158
Giesler, André 188
Gjorgevikj, Dragana 192
Grouès, Valentin 266

Hagemeier, Björn 188
Herschel, Melanie 226
Heuer, Andreas 222

Jarosz, Yohan 266
Johnson, Michael A. C. 101

Kim, Caleb 231
Kim, Junhyong 115
Kim, Matthew 30
Klinger, Filipe 257

Lebioda, Jacek 266
Lewis, Dave 262
Louys, Mireille 252
Ludäscher, Bertram 128

Malik, Tanu 231
Marinho, Elton Carneiro 257
Markovic, Milan 196, 200
Martin, David 245
Mattoso, Marta 16, 183
McPhillips, Timothy 128
Mesquita, Ricardo 257
Miles, Simon 58, 212
Millington, James D. A. 212
Missier, Paolo 3, 87
Moreau, Luc 58, 101, 145

Morley, Jeremy 245
Murta, Leonardo 87

Naja, Iman 158
Nullmeier, Markus 252

O’Sullivan, Declan 262
Oppold, Sarah 226

Pandit, Harshvardhan Jitendra 262
Pérez, Beatriz 58
Pimentel, João Felipe N. 87
Porat, Talya 217

Rajarajan, Muttukrishnan 200
Rasin, Alexander 231
Redline, Susan 30
Riebe, Kristin 252
Rizzo, Gabriel 257
Rogers, Toby 173
Roper, Bernard 245
Rueschman, Michael 30
Ruscheinski, Andreas 192

Sáenz-Adán, Carlos 58, 101
Sahoo, Satya S. 30
Sanders, William H. 45

Sanguillon, Michèle 252
Satagopam, Venkata 266
Schmitz, Eber Assis 257
Servillat, Mathieu 252
Sigette, Elaine 257
Silva, Vítor 183
Sohan, Ripduman 241
Soman, Jyothish 241
Souza, Renan 16, 183
Streicher, Ole 252

Tàvora Miranda, Renan Carvalho 257
Taweel, Adel 204
Trefois, Christophe 266

Uhrmacher, Adelinde M. 192
Ujcich, Benjamin E. 45

Valdez, Joshua 30
Valduriez, Patrick 183

Wagner, James 231
Watson, Robert N. M. 241
Weal, Mark 145
Wright, Ryan 177

Xu, Shen 173

272 Author Index

	Preface
	Organization
	Contents
	Reproducibility
	Provenance Annotation and Analysis to Support Process Re-computation
	1 Introduction
	1.1 Version Changes and Their Scope
	1.2 Problem Formulation and Contributions
	1.3 Example: Versioning in Genomics

	2 Recomputation Fronts and Restart Trees
	2.1 Recomputation Fronts
	2.2 Building a Restart Tree

	3 Computing the Re-computation Front
	4 Related Work
	5 Discussion and Conclusions
	References

	Provenance of Dynamic Adaptations in User-Steered Dataflows
	Abstract
	1 Introduction
	2 Related Work
	3 Workflows, Computational Steering and Data Provenance
	3.1 Dataflow-Oriented Approach and Runtime Provenance
	3.2 A Diagram for Runtime Provenance in HPC Workflows

	4 Provenance of Dynamic Adaptation in User-Steered Dataflows
	5 Specializing PROV-DfA Concepts
	5.1 Simulation Parameter Tuning
	5.2 Online Adaptation of Iterative Simulations
	5.3 Data Reduction

	6 Case Study
	7 Conclusion
	Acknowledgement
	References

	Classification of Provenance Triples for Scientific Reproducibility: A Comparative Evaluation of Deep Learning Models in the ProvCaRe Project
	Abstract
	1 Introduction
	2 Method
	2.1 ProvCaRe S3 Model and Ontology
	2.2 Training of Deep Learning Models
	2.3 Deep Learning Model Architectures

	3 Result and Discussion
	3.1 Classification Results
	3.2 Comparative Evaluation Results

	4 Conclusion
	Acknowledgement
	References

	Modeling, Simulating and Capturing Provenance
	A Provenance Model for the European Union General Data Protection Regulation
	1 Introduction
	2 Background and Related Work
	2.1 GDPR Background
	2.2 Related Work

	3 GDPR Data Provenance Model
	4 Using the GDPR Data Provenance Model
	4.1 Design Patterns
	4.2 Verifying Compliance

	5 Discussion
	6 Conclusion
	References

	Automating Provenance Capture in Software Engineering with UML2PROV
	1 Introduction
	2 Overview: The UML2PROV Approach
	3 From Class Diagrams to Templates
	3.1 A Taxonomy of Operations Stereotypes
	3.2 Class Diagrams to Templates Transformation Patterns

	4 Implementation
	4.1 Implementation of the Mapping Patterns
	4.2 Generation of Artefacts

	5 Analysis and Discussion
	6 Related Work
	7 Conclusions and Future Work
	References

	Simulated Domain-Specific Provenance
	1 Motivations and Approach
	2 Provenance Templates
	2.1 Variable Domains

	3 Domain-Specific Constraints for Templates
	3.1 Constraint Types
	3.2 Solving Constraints

	4 Processes and Simulation
	4.1 Processes
	4.2 Simulation

	5 Implementation and Architecture
	6 Evaluation
	7 Related Work
	8 Conclusions and Future Work
	References

	PROV Extensions
	Versioned-PROV: A PROV Extension to Support Mutable Data Entities
	1 Introduction
	2 Running Example
	3 Versioned-PROV
	3.1 Concepts
	3.2 Mapping Example

	4 Evaluation
	5 Related Work
	6 Final Remarks
	References

	Using the Provenance from Astronomical Workflows to Increase Processing Efficiency
	1 Introduction
	2 Astronomy Application
	2.1 The Image Processing Pipeline
	2.2 Use Cases

	3 Provenance in Astronomy Simulations
	4 Evaluation
	4.1 Use Case 1
	4.2 Use Case 2

	5 Related Work
	5.1 Provenance in Astronomy and e-Science
	5.2 PROV-TEMPLATES

	6 Conclusions
	References

	Scientific Workflows
	Discovering Similar Workflows via Provenance Clustering: A Case Study
	1 Introduction
	2 Background
	2.1 Next Generation Gene Sequencing (NGS)
	2.2 Related Work

	3 Clustering Workflow Provenance
	3.1 Provenance Clustering Framework
	3.2 Data Model: Abstract Provenance Graphs
	3.3 Feature Extraction
	3.4 Measuring Graph Similarity
	3.5 Clustering Algorithm

	4 Preliminary Experiments
	4.1 Provenance Datasets
	4.2 Analysis over Real Datasets
	4.3 Analysis over Synthetic Datasets
	4.4 Running Time Analysis

	5 Conclusion
	References

	Validation and Inference of Schema-Level Workflow Data-Dependency Annotations
	1 Introduction
	2 Workflow Dependency Annotations
	3 Reasoning over Dependency Types
	3.1 Dependency Types
	3.2 Composing Dependency Annotations
	3.3 Additional Annotation Constraints

	4 Prototype Implementation
	5 Related Work
	6 Conclusion and Future Work
	References

	Applications
	Belief Propagation Through Provenance Graphs
	1 Introduction
	2 Background
	2.1 Provenance
	2.2 Belief Propagation

	3 Food Supply Chain as a Use Case
	3.1 Food Provenance and Food Regulations
	3.2 Modular Process Risk Model (MPRM)

	4 The prFrame Framework
	4.1 Food Risk Model with Monte-Carlo Simulation
	4.2 Belief Propagation in the Provenance Network
	4.3 Methodology to Infer Risk of Contamination

	5 Evaluation of the Methodology
	5.1 The Effect of the Distance and Position Between Nodes
	5.2 Analysis of the Result

	6 Conclusion and Future Work
	References

	Using Provenance to Efficiently Propagate SPARQL Updates on RDF Source Graphs
	1 Introduction
	2 Related Work
	3 Running Example
	4 The RGPROV Vocabulary
	5 The Model and Algorithms
	5.1 System Architecture
	5.2 Update Propagation per Set Theoretic Operations
	5.3 Partial Re-derivation Algorithms

	6 Results
	7 Conclusion and Future Work
	References

	System Demonstrations
	Implementing Data Provenance in Health Data Analytics Software
	Abstract
	1 Introduction
	2 Use Case
	3 Summary
	References

	Quine: A Temporal Graph System for Provenance Storage and Analysis
	Abstract
	1 Introduction
	1.1 Highly Connected Temporal Data
	1.2 Queries on Complex Structures over Time
	1.3 Evolving Schema
	1.4 Scalability for Large Datasets

	2 Demonstration Topics
	3 Conclusion
	Acknowledgments
	References

	Joint IPAW/TaPP Poster Session
	Capturing Provenance for Runtime Data Analysis in Computational Science and Engineering Applications
	Abstract
	1 Introduction
	2 DfA-prov Making CSE Applications Provenance-Aware
	3 Conclusions
	Acknowledgments
	References

	UniProv - Provenance Management for UNICORE Workflows in HPC Environments
	Abstract
	1 Introduction
	2 Interoperable Provenance Framework for UNICORE
	3 Capturing and Storing Provenance Data
	Acknowledgements
	References

	Towards a PROV Ontology for Simulation Models
	1 Introduction
	2 Exploiting PROV-DM for Simulation Model Development
	3 Towards an PROV Ontology for Simulation Model Development
	References

	Capturing the Provenance of Internet of Things Deployments
	1 Introduction
	2 Describing IoT System Deployments
	3 Future Work
	References

	Towards Transparency of IoT Message Brokers
	1 Introduction
	2 The MQTT-PLAN Ontology
	3 Discussion and Future Work
	References

	Provenance-Based Root Cause Analysis for Revenue Leakage Detection: A Telecommunication Case Study
	1 Introduction
	2 The Proposed Approach
	3 Running Examples
	4 Results
	References

	Case Base Reasoning Decision Support Using the DecPROV Ontology for Decision Modelling
	1 Decision Modelling Need and a Domain
	2 Standardised PROV Decision Modelling
	3 Case-Based Reasoning with Decisions
	4 Current Work
	5 Future Work
	References

	Bottleneck Patterns in Provenance
	1 Introduction
	2 Classification of Bottlenecks
	3 Bottlenecks Patterns
	References

	Architecture for Template-Driven Provenance Recording
	1 Introduction
	2 Methodology
	3 Architecture
	4 Conclusions and Future Work
	References

	Combining Provenance Management and Schema Evolution
	1 Introduction
	2 Problem and Poster Description
	2.1 Calculation of a Minimal Sub-database
	2.2 Unification of Provenance and Evolution
	2.3 Query Q
	2.4 Evolution E
	2.5 Data Provenance Qprov

	References

	Provenance for Entity Resolution
	1 Motivation
	2 Provenance Model for Abstract ER Pipelines
	3 Implementing Provenance Capture for HIL ER Rules
	4 Conclusion and Outlook
	References

	Where Provenance in Database Storage
	1 Introduction
	2 Background and Related Work
	3 Motivating Where Provenance in DBMSes
	4 Forensic Evidence in Where Provenance
	5 Conclusion
	References

	Streaming Provenance Compression
	1 Introduction
	2 Contributions
	References

	Structural Analysis of Whole-System Provenance Graphs
	1 Introduction
	2 Graph Types in WSP
	3 Setup
	4 Results
	5 Conclusions
	References

	A Graph Testing Framework for Provenance Network Analytics
	Abstract
	1 Introduction
	2 A Multi-model Graph Analysis Framework
	3 Future Work
	References

	Provenance for Astrophysical Data
	1 Introduction
	2 Use Cases for Provenace in Astronomy
	2.1 Cherenkov Telescope Array
	2.2 Spectroscopic Surveys
	2.3 APPLAUSE Database - Scanning Historical Photoplates
	2.4 MUSE Data Reduction Pipeline
	2.5 RAVE Survey

	3 Special Requirements in Modelling Provenance in Astronomy
	4 Integration into the IVOA Ecosystem
	5 Summary
	References

	Data Provenance in Agriculture
	Abstract
	1 Introduction
	2 Experiments in Soils Science
	3 Open Soils
	4 Concluding Remarks
	Acknowledgments
	References

	Extracting Provenance Metadata from Privacy Policies
	1 Motivation
	2 Provenance Metadata
	3 Potential Applications
	4 Conclusion
	References

	Provenance-Enabled Stewardship of Human Data in the GDPR Era
	1 Background
	1.1 EU General Data Protection Regulation
	1.2 Stewardship of Human Data

	2 ELIXIR-LU Data Information System
	3 Future Directions
	References

	Author Index

